OPTIMIZED RESOURCE ALLOCATION IN WIRELESS SYSTEMS

By

Umar Rashid

B.Sc. in Electrical Engineering, University of Engineering and Technology, Lahore, Pakistan

A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Faculty of Engineering and Information Technology, University of Technology, Sydney Australia

January 2013

Abstract

Modern wireless systems rely to a great extent on the judicious distribution of available resources (e.g. power, bandwidth) to meet an ever increasing demand of better quality-of-service (QoS). Scarcity of these resources with time, coupled with the tremendous growth in numbers of users, network throughput, and applications, have resulted in making the problem of optimal resource allocation extremely important especially in wireless networks.

Generally, optimization problems posed in the resource allocation framework are nonconvex and thus render it difficult to find an optimal solution. Previous studies on this subject have reported only numerically cumbersome and non-tractable solutions. This dissertation attempts to exploit the hidden convexity of the resource allocation problems under some given performance criteria such as minimum mean square error (MMSE) or signal-to-interference-plus-noise ratio (SINR) and then successfully finds tractable optimization formulations.

The first research problem deals with the optimal power allocation and sensor assignment in linear and nonlinear networks for static and dynamic target tracking. The proposed method casts power allocation as a semi-definite program (SDP) while sensor selection is solved via d.c. (difference of <u>c</u>onvex functions/sets) programming. The second problem considers optimal beamforming and source power allocation in relay-assisted multiuser communication. This problem is further extended to include multiple-antenna systems to exploit spatial diversity in modern cellular communication by jointly optimizing source precoding and relay processing matrices. Supremacy of the proposed d.c. programming based iterative algorithm over existing methods is demonstrated via extensive simulations.

Originality Statement

'I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UTS or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UTS or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.'

Signed: Umar Rashid Date: May 23, 2013

Acknowledgements

First and foremost, I would like to thank Almighty Allah Subhanahu Wataala for His countless bounties and blessings upon me. Then I am grateful and proud for being Ummati of my Lord Prophet Muhammad (Sallal Lahu Alaih-e-Wasallam).

I also express my sincere gratitude and appreciation to my supervisor, Professor Hoang D. Tuan, for all the guidance and encouragement he has offered me throughout the period of this research. In addition to learning tricks of the trade, I have tremendously benefited from him in terms of acquiring essential skills for my professional life.

I am also grateful to my co-supervisor Dr H. H. Kha for his valuable contribution and technical assistance throughout my whole PhD tenure. He has actively participated in almost all of my research publication for which I am greatly indebted to him. I am thankful to Professor Ha H. Nguyen from University of Saskatchewan, Canada for his contribution in my projects on relay beamforming for multiuser communication. He has also been a mentor and a constant contributor in my research work. I am also obliged to Professor Pierre Apkarian from Institut de Mathematiques, Universite Paul Sabatier, France for his guidance and assistance in the field of nonlinear filtering in data fusion problems.

I would also like to take this opportunity to extend my thanks to Dean of Faculty of Engineering and Information Technology at University of Technology, Sydney, Professor Hung Nguyen who granted me tuition waiving scholarship which enabled me to fully focus on my research. My gratitude also goes to the generous financial support provided by Australian Research Council (ARC) Discovery Project for my graduate studies. I am thankful to them for putting their faith in my capabilities and I hope I have delivered.

Finally, I would like to thank my parents for their constant love and support, and for encour-

aging me to pursue higher studies.

Contents

Abstract			i	
O	Originality Statement i			
Ac	Acknowledgements			
Co	Contents			
List of Figures viii				
Li	st of]	ables	xi	
List of Acronyms xii			xii	
1	Intr	duction	1	
	1.1	Motivation and Scope	1	
	1.2	Problems in Resource Allocation in Wireless Networks	3	
		1.2.1 Distributed Estimation	3	
		1.2.2 Resource Allocation for Cooperative Networks	4	
		1.2.3 Throughput Allocation with Antenna Array Beamforming	5	
	1.3	Dissertation Outline	5	
	1.4	List of Publications		
	1.5	5 Notations		

2	Fundamentals of Statistical Estimation, Wireless Communication and Optimization					
	The	ory		11		
	2.1	Statisti	ical Estimation	11		
		2.1.1	Estimation Foundation	12		
		2.1.2	Basics of MMSE	14		
	2.2	Wirele	ss Channel	20		
		2.2.1	Propagation and Fading	21		
		2.2.2	Diversity in Wireless Communication	24		
	2.3	Optim	ization Theory	25		
		2.3.1	Convex Optimization	26		
		2.3.2	Duality Theory	28		
		2.3.3	d.c. Programming	29		
		2.3.4	Penalty Function Method	30		
3	Glol	oally O _l	ptimized Power Allocation and Sensor Assignment for Linear and Nonlin	-		
	ear Networks					
	3.1	Introdu	action	33		
	3.2	Global	optimized decentralized Bayes filtering	35		
		3.2.1	Decentralized Bayes filtering for LSN	37		
		3.2.2	Decentralized Bayes Filtering for NSN	38		
	3.3	Global	optimal decentralized Bayes filtering for tracking dynamic objects	41		
	3.4	Joint C	Optimization of Active Sensor Assignment and Power Allocation in Sensor			
		Netwo	rks	46		
		3.4.1	Problem Formulation	47		
		3.4.2	Computational Methodology	51		
	3.5	Simula	ation Results	53		
		3.5.1	Decentralized Bayes filtering for locating static targets and the optimized			
			sensor selection	54		
		3.5.2	Decentralized Bayes filtering for locating dynamic targets	61		
		3.5.3	Joint sensor selection and power allocation	67		

	3.6	Summ	ary	70		
4	Rela	y Beam	ıforming Designs in Multi-User Wireless Relay Networks	72		
	4.1	Introdu	action	73		
	4.2	Maxin	in Throughout Optimization: Problem Formulations and Challenges	76		
	4.3	Maxin	nin Throughout Optimization by d.c. Programming	81		
	4.4	Beamf	orming Design with Orthogonal Source Transmissions	85		
	4.5	Joint C	Optimization of Source Power Allocation and Relay Beamforming	88		
		4.5.1	System Model and Formulation of the Joint Design Problem	89		
		4.5.2	Proposed D.C. Formulation and Iterative Algorithm	92		
	4.6	Numer	rical Results	95		
		4.6.1	Non-Orthogonal (Concurrent) Source Transmissions	95		
		4.6.2	Orthogonal Source Transmissions	99		
		4.6.3	Joint Optimization	101		
	4.7	Summ	ary	106		
5	Join	Joint Source and Relay Precoding Design in Wireless MIMO Relay Networks				
	5.1	Introdu	action	110		
	5.2	Joint C	Optimization Formulation for Source and Relay Precoding	112		
	5.3	Two-W	Vay Relays with MMSE Receiver	118		
	5.4	Simula	ation Results	122		
		5.4.1	Multiuser MIMO Downlink Communication	124		
		5.4.2	Two-way Relays with MMSE Receiver	128		
	5.5	Summ	ary	130		
6	Con	clusion		133		
Bi	bliogı	raphy		135		

List of Figures

2.1	Block diagram depicting system, measurement and estimator	16
2.2	Rayleigh and Rician distribution.	22
2.3	Lognormal distribution	23
2.4	A schematic diagram of a generic MIMO system.	25
2.5	Convexity of a set and a function.	27
3.1	Mean square error versus sum transmit power in minimizing MSE for scalar pa-	
	rameter	53
3.2	Mean square error versus logarithm of sum transmit power in minimizing sum	
	power for scalar parameter	54
3.3	(a) MSE estimation performance for proposed multisensor and single sensor. (b)	
	MSE estimation performance for proposed SDP based power allocation and equal	
	power allocation schemes.	55
3.4	Mean square error versus total transmit power while minimizing MSE for vector-	
	valued parameter	56
3.5	Mean square error versus total transmit power while minimizing power for vector-	
	valued parameter.	57
3.6	Mean square error versus total transmit power in nonlinear model of locating a	
	static target.	60
3.7	(a) True trajectory and estimate of the state θ_k under single sensor and multisensor	
	case for a nonlinear dynamic model. (b) Mean square error versus total transmit	
	power for a nonlinear dynamic model in an LSN.	61

3.8	Trajectory of a maneuvering target and distribution of nodes over surveillance region.	62
3.9	Target tracking performance of multisensor and single sensor in terms of estima-	
	tion error of x-coordinate	63
3.10	Target tracking performance of multisensor and single sensor in terms of estima-	
	tion error of y-coordinate	64
3.11	True trajectory and estimates by single and multisensor network	65
3.12	Distribution of power among different sensor nodes for the case $N = 10. \dots$	66
3.13	MSE estimation performance comparison in an LSN for $N = 30. \dots \dots \dots$	68
3.14	MSE estimation performance comparison in an NSN for $N = 12$	69
3.15	MSE estimation performance comparison in an NSN for $N = 20$	70
<i>A</i> 1	A multi user emplify and forward wireless relay network	76
4.1	A multi-user multi-relay network	80
4.2	A multi-user multi-relay network	09
4.5	mornation throughput versus total relaying power for $M = 5$ and $N = 10$ under	04
1 1	Information throughout various total relaying neuron for $M = 4$ and $N = 12$ under	94
4.4	information throughput versus total relaying power for $M = 4$ and $N = 12$ under	05
4.5		95
4.5	Information throughput versus total relaying power for $M = 4$ and $N = 16$ under	
	non-orthogonal source transmissions.	96
4.6	Effect of channel uncertainty on information throughput for $M = 5, N = 20$ under	
	non-orthogonal source transmissions.	99
4.7	Information throughput versus total relaying power for orthogonal source trans-	
	missions	100
4.8	Effect of uplink and downlink channel uncertainties on the information throughput	
	for $M = 5, N = 10$ under orthogonal source transmissions	101
4.9	Performance comparison of proposed joint optimization methods and separate op-	
	timizations of source powers and beamforming vector, $M = 3$ and $N = 10$	103
4.10	Performance comparison of proposed joint optimization methods and separate op-	
	timizations of source powers and beamforming vector, $M = 4$ and $N = 12$	104

4.11	Performance comparison of proposed joint optimization methods and separate op-	
	timizations of source powers and beamforming vector, $M = 4$ and $N = 16$	105
4.12	Performance comparison of proposed joint optimization methods and separate op-	
	timizations of source powers and beamforming vector, $M = 5$ and $N = 16$	106
4.13	Distribution of source powers for a specific channel realization in a network with	
	M = 4 and $N = 12$	107
5.1	A multi-user amplify-and-forward MIMO wireless relay network for downlink	
	cellular communication.	112
5.2	A two-way MIMO Relay system.	118
5.3	Signal-to-interference-plus-noise ration (SINR) plotted versus total relaying power	
	for $(M, N, K) = (4, 4, 4)$ for downlink cellular communication.	122
5.4	Signal-to-interference-plus-noise ration (SINR) plotted versus total relaying power	
	for $(M, N, K) = (2, 2, 4)$ for downlink cellular communication.	123
5.5	Signal-to-interference-plus-noise ration (SINR) plotted versus total relaying power	
	for $(M, N, K) = (3, 5, 5)$ for downlink cellular communication.	124
5.6	Signal-to-interference-plus-noise ration (SINR) plotted versus total relaying power	
	for $(M, N, K) = (3, 6, 6)$ for downlink cellular communication.	125
5.7	Signal-to-interference-plus-noise ration (SINR) plotted versus total relaying power	
	for $(M, N, K) = (4, 8, 8)$ for downlink cellular communication.	126
5.8	Signal-to-interference-plus-noise ration (SINR) plotted versus total relaying power	
	for $(M, N, K) = (5, 8, 8)$ for downlink cellular communication.	127
5.9	Sum throughput plotted versus total relaying power for two-way and one-way	
	MIMO relay-assisted communication.	129
5.10	Sum throughput plotted versus total relaying power for two-way and one-way	
	MIMO relay-assisted communication.	130
5.11	Sum of MSE of both source \mathscr{S}_1 and \mathscr{S}_2 plotted versus total relaying power with	
	(M,N) = (2,2) for two-way MIMO relay-assisted communication	131
5.12	Bit error rate plotted versus total relaying power with $(M,N) = (4,4)$ for two-way	
	MIMO relay-assisted communication.	132

List of Tables

3.1	Power allocation α for locating random scalar	58
3.2	Power allocation α to sensors for locating random vector $\ldots \ldots \ldots \ldots$	59
3.3	Average No. of iterations for LSN with $N = 30$	68
3.4	Average No. of iterations for NSN with $N = 20$	69
4.1	Average number of iterations for obtaining solutions under non-orthogonal source	
	transmissions	97
4.2	Average rank i_{opt} of \boldsymbol{X}_{opt} by SDP relaxation.	98
4.3	Average number of iterations for obtaining solutions under orthogonal source	
	transmissions	102
4.4	Average number of iterations for convergence	108
5.1	Average number of iterations for convergence for $(M, N, K) = (3, 5, 5)$	128

List of Acronyms

Acronyms

SN	Sensor Network
FC	Fusion Center
MMSE	Minimum Mean Square Error
SDP	Semi-definite Programming
DCP	Difference of Convex Programming
UKF	Unscented Kalman Filter
LMI	Linear Matrix Inequality
LFT	Linear Fractional Transformation
SINR	Signal to Interference Plus Noise Ratio
SDR	Semidefinite Relaxation
MIMO	Multiple Input Multiple Output
s.t.	Subject to