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Abstract

Modern wireless systems rely to a great extent on the judicious distribution of available resources

(e.g. power, bandwidth) to meet an ever increasing demand of better quality-of-service (QoS).

Scarcity of these resources with time, coupled with the tremendous growth in numbers of users,

network throughput, and applications, have resulted in making the problem of optimal resource

allocation extremely important especially in wireless networks.

Generally, optimization problems posed in the resource allocation framework are nonconvex

and thus render it difficult to find an optimal solution. Previous studies on this subject have re-

ported only numerically cumbersome and non-tractable solutions. This dissertation attempts to

exploit the hidden convexity of the resource allocation problems under some given performance

criteria such as minimum mean square error (MMSE) or signal-to-interference-plus-noise ratio

(SINR) and then successfully finds tractable optimization formulations.

The first research problem deals with the optimal power allocation and sensor assignment

in linear and nonlinear networks for static and dynamic target tracking. The proposed method

casts power allocation as a semi-definite program (SDP) while sensor selection is solved via d.c.

(difference of convex functions/sets) programming. The second problem considers optimal beam-

forming and source power allocation in relay-assisted multiuser communication. This problem is

further extended to include multiple-antenna systems to exploit spatial diversity in modern cellular

communication by jointly optimizing source precoding and relay processing matrices. Supremacy

of the proposed d.c. programming based iterative algorithm over existing methods is demonstrated

via extensive simulations.
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Chapter 1

Introduction

This chapter introduces the motivation and scope of this dissertation for exploiting the hidden

convexity of resource allocation research problems in wireless networks under various scenarios.

The brief survey of existing popular research issues in the context of wireless systems is also

presented. Then, the outline of the dissertation is provided and the key contributions are listed.

Finally, notations which are used extensively throughout the dissertation are introduced.

1.1 Motivation and Scope

Over the past decade, there has been a significant progress in the design of wireless networks

to suit the demands of various civil and military applications [1, 20]. In the presence of fading

channels, user mobility, energy/power constraints, and many other factors, the task of optimizing

performance of wireless communication systems becomes quite challenging. Optimal allocation

of resources to such wireless networks is, indeed, one of the most important issues, especially,

when physical constraints of the system are taken into account.

One of the important characteristics of a wireless network is its diversity–different users/nodes

at different locations and times that send same copy of a given signal may suffer from different

channel conditions, and therefore may have different requirements and capabilities [110]. Fixing

and allocating resources without considering such user diversity can result in wastage of system

resources, and thus system performance also degrades. Furthermore, taking advantage of the

1
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diversities in wireless networks can significantly improve communication performance. All these

factors contribute to the need of careful consideration of resource allocation [38].

The advance of resource allocation has been witnessed with tremendous progress in recent

years. As one can imagine, because of the number of degree of freedom on many different pa-

rameters, resource allocation in wireless networks is a broad issue that covers a wide range of

problems. Therefore, the mathematical optimization tools used to handle these problems also vary

a lot. Besides the commonly used convex optimization in communication system design, majority

of the resource allocation problems are nonlinear and nonconvex in nature. For instance, problem

of maximizing the worst throughput in multi-user communication is highly nonconvex and indefi-

nite, or when it comes to optimal power allocation to a nonlinear sensor network with an LMMSE

(linear minimum mean square error) estimator [29], the problem becomes intractable. Moreover,

if one takes into account time-varying conditions, then the problem evolves into one of dynamic

optimizations. Nevertheless, it is fair to say that there is no single optimization method to solve

all resource-allocation problems at once.

The fact that makes resource allocation more challenging is that for various applications, dif-

ferent wireless networks aim at different service goals, and therefore have different design spec-

ifications. A given network can be severely energy sensitive and power constrained, whereas the

other can be throughput hungry or bandwidth limited. In some situations, a network may have a

high degree of dynamic measurements with limited nonlinearity, while in other cases a network

has highly nonlinear measurements under a strictly static case. As such, different networks face

different resource-allocation problems, different aspects of problems employ different optimiza-

tion techniques, and joint consideration of different objectives encounter different constrained

optimization issues.

The scope of this dissertation is to exploit and utilize the inherent convexity of various power

and throughput allocation optimization problem in wireless network framework. We investigate

that optimal power allocation to wireless sensor network, in particular, can be cast as semi-definite

programming problems, and hence efficiently solved using recently developed interior-point meth-

ods. Furthermore, wireless network problems which aim at achieving optimum throughput for

multiple users can also be handled by using d.c. programming and penalty function based opti-
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mization methods. In particular, the goals of research in this dissertation are

• To study the power allocation and scheduling problems in nonlinear sensor networks to

guarantee an improvement in system performance while increasing network lifetime. An

analysis based on designing Bayesian filter in conjunction with power allocation is also

presented to accommodate system nonlinearity in both static and dynamic cases.

• To investigate binary/integer programming problem related to the optimal design of joint

power allocation and sensor assignment which is an NP hard problem. An efficient d.c.

(difference of convex functions/sets) programming based iterative methods is presented to

account for the hard discrete binary constraint for the sensor selection vector.

• To analyze the nonconvex properties of the maximin SINR (signal-to-interference-plus-

noise ratio) optimization for multiuser communication and propose efficient equivalent d.c.

form for which sequential convex approximation is developed.

• To investigate that the design problem of joint optimization of source and relay precoding

matrices for multi-antenna sources and MIMO relays can be expressed as d.c. functions

with the help of exact penalty function method and hence can be solved under various design

goals such as sum-rate maximization, minimax mean squared error (MSE).

1.2 Problems in Resource Allocation in Wireless Networks

This section reviews popular conventional design issues and active research problems for wireless

networks. In other words, a strong motivation is provided on why such research problems are

important enough to be considered by research community.

1.2.1 Distributed Estimation

Distributed estimation is based on measurements from multiple wireless sensors. It is assumed

that a group of sensors observe the same quantity in independent additive observation noises with

possibly different variances. The observations are transmitted using amplify-and-forward (ana-

log) transmissions over nonideal fading wireless channels from the sensors to a fusion center,
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where they are combined to generate an estimate of the observed quantity. Various problems and

researchable issues arise in this case out of which a few important ones are outlined below:

Power Allocation

Increasing transmission power is one way to counteract channel impairments and improve the

quality of the received signal. However, as the energy resources provided by the sensor networks

are extremely limited, a power allocation problem naturally arises [10, 25, 29]. The objective of

power allocation is to find an optimum strategy to assign power among different sensors, aiming

at minimizing the estimation error under certain transmission power constraints or its converse:

satisfying a target distortion performance with a minimum energy consumption.

Bandwidth Allocation

A related problem for both types of WSN (ad hoc, or with a fusion center) is that bandwidth is

limited, necessitating the estimator to be formed using quantized versions of the original observa-

tions [55]. In this setup, quantization becomes an integral part of the estimation process, since one

may think of quantization as a means of constructing binary observations.

Joint Sensor Selection and Power Allocation

Active sensor assignment to enhance the performance of FC (fusion center) is also equally im-

portant [49, 115]. Owing to the varying surrounding sensing environment, the networked sen-

sors experience quite different channel conditions, which certainly affect their observability. It

is desirable to deactivate sensors of poor observation and assign more power to those with better

observation to preserve limited on-board battery power.

1.2.2 Resource Allocation for Cooperative Networks

Cooperative communication have gained attention as an emerging technology for future wireless

networks. Cooperative communications efficiently take advantage of the broadcasting nature of

wireless networks. The basic idea is that users or nodes in a network share their information
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and transmit cooperatively to provide diversity that can significantly improve system performance

[26, 27].

1.2.3 Throughput Allocation with Antenna Array Beamforming

Advantage of having spatial diversity is best utilized when array or network of single or multi-

ple antenna nodes adjust their beam patterns such that the received desired signal has maximum

strength toward the desired direction, while the aggregate interference power is minimized at their

output. Antenna-array processing techniques such as beamforming can inadvertently be applied to

a multi-user communication scenario where it is desired to allocate balanced, or equal throughput

to all the users in network [111, 113]. Thus, multiple co-channel users can be supported in each

cell to increase the capacity by exploring the spatial diversity. Two important sub-problems of this

category are: beamforming in relay network for throughput maximization in multi-user commu-

nication, specifically when exact channel state information in not available; second, joint power

control and beamforming design which potentially grants better throughput than separate designs

of power allocation and beamforming.

1.3 Dissertation Outline

In this dissertation, we focus on power allocation and beamforming vector assignment in wireless

networks to enhance their performances. Particularly, we consider the optimized power alloca-

tion and sensor scheduling, beamforming design for multiple relay-assisted communication, and

then MIMO precoding designs for multiple-antenna systems. The outline of the dissertation is as

follows.

• Chapter 1, the introduction chapter, presents the motivation and scope, the outline and the

contributions of the dissertation.

• In Chapter 2, a brief review of important background materials for estimation theory and

wireless communication is presented. An overview of convex optimization and its special

class, semi-definite programming as well as nonconvex optimization is provided.
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• Chapter 3 is concerned with a sensor network, where each sensor is modeled by either a

linear or nonlinear sensing system. These sensors team up in observing either static or dy-

namic random targets and transmit their observations through noisy communication chan-

nels to a fusion center (FC) for locating/tracking the targets. Regardless of whether the

sensor measurements are linear or nonlinear, the targets are scalar or vectors, static or dy-

namic, the corresponding optimization problems are shown to be semi-definite programs

(SDPs) of tractable optimization and thus are globally and efficiently solved by any existing

SDP solver.

Next part of this chapter presents an effective solution for joint optimization of active sen-

sor selection and power allocation for linear and nonlinear sensor networks. In particular,

binary (discrete) constraints of the sensor selection problem are represented by a continuous

d.c. constraint in tandem with an exact penalty function approach. Thus, the problem is

expressed as minimization of a d.c. function subject to convex constraints, for which the

proposed d.c procedure is able to locate its global optimal solution within a few iterations.

Subsequent simulation results validate the effectiveness of the proposed method and prove

that the network capacity can be fully achieved by invoking as few as about half of the

available sensor nodes.

• Chapter 4 focuses on beamforming design for multi-user wireless relay networks under

the criterion of maximin information throughput which is an important but also very hard

optimization problem due to its nonconvexity nature. The existing approach to reformulate

the design to a matrix rank-one constrained optimization only makes the problem harder.

This paper exploits the d.c. structure of the objective function and the convex structure of

the constraints in such a global optimization problem to develop efficient iterative algorithms

of very low complexity to find the solutions. Both cases of concurrent and orthogonal

transmissions from sources to relays are considered. Numerical results demonstrate that

the developed algorithms are able to locate the global optimal solutions by a few iterations

and they are superior to other methods in both performance and computation complexity.

Next part considers the joint design of source power allocation and relay beamforming for

multi-user multi-relay wireless networks. This computationally intractable nonconvex prob-
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lem is recast as an equivalent d.c. programming. By exploiting specific structures of the d.c.

program, an iterative algorithm with low computational complexity is then developed to

obtain the optimal solution. Furthermore, a simplified sub-optimal solution with equally

constrained source powers is also suggested, which is efficient in both computation and

required communication overhead but still has very good performance.

• Chapter 5 presents a novel joint design of optimal source and relay processing matrices for

multi-antenna one/two-way MIMO relay-assisted multi-user communication. In the first

part, an optimal relaying strategy that uses multiple input multiple output (MIMO) fixed

relays with linear processing to support multiuser transmission in cellular networks is pro-

posed. The fixed relay processes the received signal with linear operations and forwards the

processed signal to multiple users creating a multiuser MIMO relay. Objective function of

maximizing the minimum SINR is cast as a d.c. function with the assistance of an exact

penalty function method.

• Finally, Chapter 6 summarizes the main contributions of this dissertation, and points out

future research directions.

1.4 List of Publications

The main contribution of this dissertation is to investigate the convex properties in the resource al-

location problems for wireless sensors and relays networks under various system-level constraints.

As a result, the algorithms with lower complexity and higher robustness are applied. The allocation

strategies for power and/or beamforming with improved performance can be efficiently obtained.

Details of the research contributions in each chapter are as follows.

Chapter 3

The main results in this chapter involve the development of power allocation and active sensor

assignment problem in nonlinear sensor network. Allocation of power is performed under both

static and dynamic frameworks for which effective methods are established to track parameter of

interest. Moreover, joint optimization algorithm for active sensor selection and power allocation is

considered. Combinatoric nature of the sensor selection problem is shown to have been effectively
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handled by the proposed d.c. programming based method in tandem with penalty function. The

results have been published in one journal paper and five conference papers while one journal

paper has been submitted:

• U. Rashid, H. D. Tuan, P. Apkarian, and H. H. Kha, ”Globally optimized power allocation

in multiple sensor fusion for linear and nonlinear networks,” IEEE Transactions on Signal

Processing, vol. 60, no. 2, pp. 903-915, 2012.

• U. Rashid, H. D. Tuan, P. Apkarian, and H. H. Kha, ”Joint optimization of active sensor

assignment and power allocation in sensor networks,” accepted in IEEE Transactions on

Vehicular Technology, 2013.

• U. Rashid, H. D. Tuan, and H. H. Kha, ”Optimized power allocation in nonlinear sensor

networks via semidefinite programming,” in IEEE 72nd Vehicular Technology Conference

Fall (VTC 2010-Fall), 2010, Ottawa.

• U. Rashid, H. D. Tuan, H. H. Kha, and H. H. Nguyen, ”Optimized power allocation by

semidefinite programming and unscented transformation for nonlinear sensor network,” in

4th International Conference on Signal Processing and Communication Systems (ICSPCS),

2010, Gold Coast.

• U. Rashid, H. D. Tuan, H. H. Kha, and H. H. Nguyen, ”Semi-definite programming for

distributed tracking of dynamic objects by nonlinear sensor network,” in IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, Prague.

• U. Rashid, H. D. Tuan, P. Apkarian, and H. H. Kha, ”Multisensor data fusion in nonlinear

Bayesian filtering,” in IEEE International Conference on Communications and Electronics

(ICCE), 2012, Vietnam.

• U. Rashid, H. D. Tuan, P. Apkarian, and H. H. Kha, ”Jointly Optimizing Sensor Selection

and Power Control for Nonlinear Sensor Networks,” in 12th International Symposium on

Communications and Information Technologies (ISCIT) , 2012, Gold Coast.

Chapter 4
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The main results in this chapter are related to optimal source power allocation and beamforming

vector assignment to a relay network to maximize the minimum SINR in a multi-user commu-

nication scheme. An efficient algorithm called DCI is proposed which deals with the nonconvex

and indefinite objective function of the said problem to generate optimized complex beamforming

vectors which guarantee optimal increase in the system capacity. Later on, a joint design of source

power allocation and relay beamforming is presented that has been shown to outperform separate

optimization of source power and/or relay beamforming. The results have been published in two

conference papers, and one journal paper while one journal paper is is under review:

• U. Rashid, H. D. Tuan, and H. H. Nguyen, ”Relay beamforming designs in multi-user wire-

less relay networks based on throughput maximin optimization,” to appear in IEEE Trans-

actions on Communications, 2013.

• U. Rashid, H. Kha, H.D. Tuan, and H. Nguyen, ”Joint Optimization of Source Power Allo-

cation and Relay Beamforming in Multi-User Multi-Relay Wireless Networks,” accepted in

IEEE Transactions on Vehicular Technology, 2013.

• U. Rashid, H. Tuan, and H. Nguyen, ”Maximin relay beamforming in multi-user amplify-

forward wireless relay networks,” in 4th International Conference on Wireless Communica-

tions and Networking Conference (WCNC), 2012, Paris.

• U. Rashid, H. H. Kha, H.D. Tuan, and H. H. Nguyen, ”Joint Design of Source Power Al-

location and Relay Beamforming in Multi-User Multi-Relay Wireless Networks,” in 6th In-

ternational Conference on Signal Processing and Communication Systems (ICSPCS), 2012,

Gold Coast.

Chapter 5

The key contribution of this chapter is to propose joint design of multi-antenna source and relay

precoding design for MIMO relay-assisted multiuser communication for both one-way and two-

way relays. The results are under one journal submission and one conference paper submission:

• U. Rashid, H. D. Kha, H. D. Tuan, and H. H. Nguyen, ”Joint Design of Source and Relay
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Precoding Matrices in One/Two-Way MIMO Relay Networks,” submitted to IEEE Trans-

actions on Communications, 2013.

• U. Rashid, H. D. Tuan, H. H. Kha, and H. H. Nguyen, ”Joint Source and Relay Precoding

Design in Wireless MIMO Relay Networks,” submitted to IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), 2013, Vancouver.

1.5 Notations

The notations of the dissertation are rather standard. In particular, our notations and conventions

are as follows.

• Matrices and column vectors are denoted by uppercase and lowercase characters, respec-

tively.

• Notation AAA ≥ 0 means AAA is a (Hermitian) positive semi-definite matrix.

• 000N and IIIN are zero and identity matrices of dimension N ×N, respectively.

• We denote 〈AAA,BBB〉 = trace(AAABBB) for matrices AAA and BBB of appropriate size, but 〈aaa,bbb〉 = aaaTbbb

(their dot product), so ||aaa||2 = 〈aaa,aaa〉 and ||aaa||2 = 〈āaa,aaa〉, where āaa is the conjugate of aaa.

• Notation λmax(XXX) means the maximum eigenvalue of XXX while ρ(XXX) := maxi=1,2,... |λi(XXX)|
with its eigenvalues λi(XXX) is its spectral radius.

• diag[a1,a2, ...,aN ] is a diagonal matrix with ordered diagonal entries a1,a2, . . . ,aN, which

may be scalars or matrices while aaa�bbb is the element-wise Hadamard product of two vectors

aaa and bbb.

• E[.] is the expectation operator. For a random variable (RV) x, the notation x̄ is referred to

its expectation E[x], while Rx is its auto-covariance Rx := E[(x− x̄)(x− x̄)T ] and Rxy is its

cross-covariance Rxy := E[(x− x̄)(y− ȳ)T ] with another RV y. x ∼ N (x̄,Rx) means x is

Gaussian RV with the moments x̄ and Rx.



Chapter 2

Fundamentals of Statistical Estimation,

Wireless Communication and

Optimization Theory

In this chapter we shall present a review of the concepts and techniques used throughout the

dissertation. Beginning with a brief overview of estimation theory, we will explore the statistical

characterization of various parameters under linear as well as nonlinear system models. After this

brief introduction to the statistical estimation, we will shift our focus to signal propagation through

a fading wireless channel, and then diversity is explored to explain how to mitigate fading and

interference in multiuser communication regimes. Finally, we will provide the basic definitions

and important concepts of optimization theory that are used extensively in our work. Without

going into great detail, we emphasize the significance of these techniques from an algorithmic

point of view.

2.1 Statistical Estimation

Estimation is the process of extracting information from data which can be used to infer the de-

sired information and may contain errors. Modern estimation methods use known relationships to

compute the desired information from the measurements, taking into account measurement errors,

11
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the effects of disturbances and control actions on the system as well as prior knowledge of the

information. Diverse measurements can be blended to produce ’best’ estimates, and information

which is not available for measurement can be approximated in an optimal fashion.

An optimal filter is basically a computational algorithm that processes measurements to de-

duce a minimum error estimate of a system by utilizing: knowledge of system and measurement

dynamics, assumed statistics of system noises and measurement errors, and initial condition infor-

mation. Advantage of such an estimator is that it minimizes the estimation error in a well defined

statistical sense and that it utilizes all measurement data plus prior knowledge about the system.

The potential disadvantages are its sensitivity to erroneous a priori models and statistics, and the

inherent computational burden.

When the time at which an estimate is desired coincides with the last measurement point,

the problem is referred to as filtering; when the time of interest falls within the span of available

measurement data, the problem is termed smoothing; and when the time of interest occurs after

the last available measurement, the problem is called prediction. However, the current dissertation

considers only estimation under various conditions and scenarios. Furthermore, it should be noted

that a linear MMSE (LMMSE) estimator has been employed in all of the estimation problems

covered in the thesis. The reason for using the LMMSE estimator in distributed estimation of

random parameters is that the input source has always been assumed to be following Gaussian

distribution throughout the thesis. The LMMSE estimator is known to be an optimal estimator

when the input source has Gaussian distribution. Moreover, with the known statistics of the input

source of upto second order, the estimator offers a closed form expression for the estimate which

makes it easier and fairly efficient to implement. This is, however, not the case with MAP, ML,

etc., estimators.

2.1.1 Estimation Foundation

In what follows [97], for two random variables X ,Y with the expectation/means E{X}= x̂,E{Y}=
ŷ, its covariance is

Cov(X ,Y ) = E{(X − x̂)(Y − ŷ)T}.

For two RVs X and y = f (X), the most important question is how to estimate X by an affine
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function AKY + bK . There may be several estimate criteria (mutual estimation, MMSE) but let’s

focus on linear MMSE (LMMSE), for which A and b are found from

min
AK ,bK

E{||X − (AKY +bK)||2} (2.1)

Obviously, whenever x̂ = 0 and ŷ = 0 it follows that bK = 0 and then whenever X and Y are

uncorrelated it must be AK = 0 as E{||X −AKY ||2}= Rx+AKRyAT
K , i.e., 0 is the optimal LMMSE

of X conditional on Y . Following theorem [4, 42] describes an important result related to the key

results of this dissertation

Theorem 2.1.1. It is true that

(RT
yxR†

y, x̂−RT
yxR†

y ŷ) = arg min
AK ,bK

E{||X − (AKY +bK)||2} (2.2)

Here Rx,Ry and Ryx are auto-covariance of x, y and their correlation, respectively, and R†
y is the

pseudo-inverse of Ry.

Consequently, the LMMSE estimation of x based on the observation Y = y for any random

variables X and Y is

x̂+RT
yxR†

y(y− ŷ).

Moreover, the exact first-moment model for the relation of x and y is

x = RT
yxR†

y(y− ŷ)+ x̂+ e, (2.3)

where the RV error e= x− x̂−RT
yxR†

y(y− ŷ) is always uncorrelated with y (∵Rey =RT
yx−RT

yxR−1
y Ry =

0) and is zero means with the auto-covariance

Pe = Rx −RT
yxR†

yRyx. (2.4)

Thus, in the linear case y = Ax+w with uncorrelated x and noise w,

Pe = (R−1
x +AT R−1

w A)−1

This result bears an immense importance in terms of providing an optimal linear estimator for

all types of random variables.



2.1 Statistical Estimation 14

Proof. Note that for the covariance matrix of the augmented vector [XT ,Y T ]T

Rx,y =

⎡
⎣ Rx Rxy

RT
xy Ry

⎤
⎦≥ 0

so that any vector orthogonal to columns of Ry(Rx) must be orthogonal to columns of Ryx(R
T
yx).

Let M (X) denote the space spanned by the columns of X , then we have M (Ryx) ⊆ M (Ry)

(M (RT
yx)⊆M (Rx)) and there is a matrix B such that RT

yx = BRy. Using the property RyR†
yRy = Ry,

it follows that

RT
yxR†

yRy = BRy = RT
yx (2.5)

Then

Cov(X − x̂−RT
yxR†

y(Y − ȳ),Y − ŷ) =

〈X − x̂,Y − ŷ〉−RT
yxR†

y〈Y − ŷ,Y − ŷ〉=
RT

yx −RT
yxR†

yRy = 0

In other words, e = X − x̂−RT
yxR†

y(Y − ȳ) and Y − ŷ are zero-means and uncorrelated. That implies

that 0 is the optimal LMMSE of X − x̂−RT
yxR†

y(Y − ȳ) conditional on Y − ŷ.

A consequence of the above theorem is the following most fundamental result on Gaussian

random variables.

Theorem 2.1.2. Suppose that Y and X are two Gaussian variables of dimensions r and p with

means ŷ and x̂, written as Y ∼ Nr(ŷ,Ry) and Y ∼ Np(x̂,Rx), respectively. Then the conditional

distribution x|y of X given Y is Gaussian, i.e.

X |Y ∼ Np(x̂+RT
yxR†

y(y− ŷ),Rx −RT
yxR†

yRyx)

It is clear that for Y = f (X) for a deterministic and generally nonlinear function f , the central

question is the computations of the following statistical parameters:

Ȳ =
∫

f (x)pX (x)dx

Ry =
∫
( f (X)−E[Y ])( f (X)−E[Y ])T pX (x)dx

Ryx =
∫
( f (X)−E[Y ])(X − X̄)T pX(x)dx

Of course, for y = Ax, all of the above parameters can be expressed in terms of x̂ =
∫

xpX (x)dx

and Rx =
∫

xxT pX(x)dx:

ȳ = Ax̂,Ry = ARxAT ,Ryx = ARx
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which hold true for all kind of distributions for x.

2.1.2 Basics of MMSE

Throughout in this dissertation, we will be interested only in minimum mean square error (MMSE)

estimates. According to this criteria, given a random variable Y that depends on another random

variable X , an estimate x̂ should be obtained such that the mean square error given by E(||X −
x̂||2) is minimized. Thus, in a more compact form, the MMSE estimate of a random variable X

conditioned on a random variable Y is defined as:

x̂ = argmin
z

E(||X − z||2|Y = y)

MMSE estimates are important because for Gaussian variables, the estimate is linear in the state

variable which allows us to restrict our attention to the linear estimators only [4, 97].

Theorem 2.1.3. x̂ =
∫

xpX |Y (x|y)dx, so E
[||X − x̂||2] = E[||X ||2|Y = y]−||x̂||2. This means that

the random variable X |Y is the estimator of X in terms of Y .

Proof. It is based on the least squares

E[||X − z||2|Y = y] =
∫ ||x− z||2 pX |Y (x|y)dx

= ||z− ∫ xpX |Y (x|y)dx||2 + ∫ ||x||2 pX |Y (x|y)dx−||∫ xpX |Y (x|y)dx||2

which attains the minimum at z =
∫

xpX |Y (x|y)dx.

Wiener Filter

The basic MMSE estimator is to estimate x from the observation equation

z = Hx+ v,z ∈ R
κ ,x ∈ R

n,v ∈R
κ (2.6)

where x and v are independent random processes with E(x) = x̄,Cov(x) = P0 > 0 and E(v) =

0,Cov(v) = R > 0. Calculating the covariance of the observation z:

Cov(

⎡
⎣ z

x

⎤
⎦ ,
⎡
⎣ z

x

⎤
⎦) =

⎡
⎣ H p0HT +R HP0

P0HT P0

⎤
⎦
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and then according to Theorem 2.1.2 and Matrix Inverse Lemma [78]

x|z = N (x̄+P0HT (HP0HT +R)−1(z−Hx̄x),(HT R−1H +P−1
0 )−1) (2.7a)

= N (x̄+(HT R−1H +P−1
0 )−1HT R−1(z−Hx̄),(HT R−1H +P−1

0 )−1) (2.7b)

Hence, the Bayes estimate of x under the observation z (i.e. expectation of x|z) is

x̂|z = x̄+(P−1
0 +HT R−1H)−1HT R−1(z−Hx̄). (2.8)

which is the same as its estimator by the conventional Wiener filter x = x̄+Gz with

G = arg min
G

E(||x̄+G(z−Hx̄)− x||2)
= P0Ht(HP0HT +R)−1

= (P−1
0 +HT R−1H)−1HT R−1 (2.9)

.

Figure 2.1: Block diagram depicting system, measurement and estimator.

Kalman Filter

Probably the most common optimal filtering technique is that developed by Kalman for estimating

the state of a linear time-varying system shown in Figure 2.1. Furthermore, for a problem of

estimating a state x by using the state and measurement equation at time k [42]

xk+1 = Akxk +Bkuk, (2.10)

zk = Ckxk +Dknk (2.11)

where xk is the system state variable, zk is measurement variable, uk is process noise and nk is the

measurement noise. Ck and Ak denote state and measurement gain matrices, respectively. When
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xk,uk and nk are Gaussian, zk and xk+1 must be Gaussian too. Suppose at the initial time k = 0,

the random variable x0 has mean x̄0 = m0|−1 and covariance Rx,0 = P0|−1. By (2.10), the random

variable z0 has mean η0 = C0m0|−1 and covariance Rz,0 = C0P0|−1C
T
0 +D0R0DT

0 with the cross-

covariance of x0 and z0 given by Rzx,0 = C0P0|−1. On arrival of data z0, the conditional mean

E{x0z0} of the state x0|z0 is

m0 = m0|−1 +K0(z0 −η0)

and the covariance Rzx,0 of x0z0 is P0 =P0|−1−K0C0P0|−1, where K0 =RT
zx,0R−1

z,0 =P0|−1C
T
0 (C0P0|−1C

T
0 +

D0R0. Predicted state x1|z0 at the next time step conditional on data z0 is the expectation m1|0 =

E{x1|z0}= A0E{x0|z0}= A0m0 and the covariance of x1|z0 is P1|0 = A0P0AT
0 +B0Q0BT

0 . A similar

implementation of Kalman filter for k ≥ 1 is as follows:

• Suppose the estimate of the state xk−1 at time k− 1 given the history zk−1 has mean mk−1

and covariance Pk−1. Then, the conditional expectation of the predicted state at time k is

mk|k−1 with covariance Pk|k−1 where

mk|k−1 = Ak−1mk−1 (2.12)

Pk|k−1 = Ak−1Pk−1AT
k−1 +Bk−1Qk−1BT

k−1 (2.13)

• Taking mk|k−1 as the estimate of the predicted state xk given zk−1 and Pk|k−1 as its covariance,

the conditional expectation of x|zk−1 also conditional on the data zk at time k is mk with

covariance Pk where

mk = mk|k−1 +Kk(zk −ηk) (2.14)

Pk = Pk|k−1 −KkCkPk|k−1 (2.15)

with

ηk = Ckmk|k−1 (2.16)

Kk = Pk|k−1C
T
k (CkPk|k−1CT

k +DkRkDT
k )

−1. (2.17)

When either X or Y is non-Gaussian, Theorem 1 still provides the optimal linear estimator for X

conditional on Y .
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MMSE for nonlinear systems

As stated earlier, when observations are related to the state variable via nonlinear functions, the

statistical parameters, required to produce estimate, cannot be generated via direct analytical ex-

pressions. Below are three methods which can be used under nonlinear functions:

1. Extended Kalman filter. The extended Kalman filter (EKF) applies a local linearization

to the nonlinear mapping around the state estimate. For any smooth nonlinear function

y = f (x), we can This method is predicated on the weak premise that the estimate lies in the

neighborhood of the global true value. As a result, stability of the filter and convergence of

the estimate are not guaranteed. The EKF employs an approximation which is to linearize

the nonlinear function f around x̄ where the higher order terms of the Taylor series are trun-

cated under the assumption that the expected value x̄ lies in the proximity of the distributed

values x. The approximation of f leads to the following:

ȳ ≈ Ax̄+ f (x̄), Ry ≈ ARxAT , Rxy = RxAT . (2.18)

2. Unscented Kalman filter. The unscented Kalman filter (UKF) [40, 105] applies the un-

scented transformation, which uses linear regression technique, to approximate the moments

of random variables. Thus, UKF aims at the direct approximation of Rxy,Ry and ȳ so its lin-

earized model is more accurate than that of the EKF. Regression points xi, i = 1, ..., p where

p = 2n are selected for n-dimensional x around x̄ in a manner such that the sample mean

and covariance of the points are identical to the mean and covariance of x

x̄ =
1

p+1

p

∑
i=0

xi

Rx =
1

p+1

p

∑
i=0

(xi − x̄)(xi − x̄)T (2.19)

As Rx > 0 and thus admits Cholesky decomposition Rx = ∑n
i=1 qiq

T
i , an obvious choice of

these regression points is

x0 = x̄, xi = x0 +
√

p+1
2

qi

xn+i = x0 −
√

p+1
2

qi
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Let yi = f (xi), i = 1, ..., p, then the mean and covariance of the random variable y and the

cross-covariance of y and x are approximated by the distribution of the regression points xi

and yi as

ȳ =
1

p+1

p

∑
i=0

yi (2.20a)

Ry =
1

p+1

p

∑
i=0

(yi − ȳ)(yi − ȳ)T (2.20b)

Ryx =
1

p+1

p

∑
i=0

(yi − ȳ)(xi − x̄)T (2.20c)

One can see that (2.20) are indeed approximations of the continuous distribution px(.) to the

discrete uniform distribution

P(x = xi) =
1

p+1
, i = 1, ..., p

i.e., the distribution px(.) is statistically linearized around the regression points xi, i= 0,1, ..., p

in the UKF.

3. Linear Fractional Transformation. The linear fractional transformation (LFT) representa-

tion for a nonlinear system comprises of a linear model and a simple nonlinear structure in

the feedback loop with sparse representation [6,7,67]. This structure offers two advantages:

first, any approximation involved is localized to the feedback loop only. Second, the highly

uncorrelated nature of the nonlinear structure gives better approximation of the second-order

moments. According to LFT model, any nonlinear mapping f differentiable at any order

admits an equivalent representation:⎡
⎣ y

yΔ

⎤
⎦ =

⎡
⎣ A B

C D

⎤
⎦
⎡
⎣ x

ωΔ

⎤
⎦ (2.21a)

ωΔ = Δ(x)yΔ, (2.21b)

where A ∈ R
m×n,B ∈ R

m×nΔ,C ∈ R
nΔ×n and D ∈ R

nΔ×nΔ . The auxiliary variables ωΔ ∈ R
nΔ

and yΔ ∈ R
nΔ are related via the feedback path Δ(x), which admits a simple structure of the

form Δ(x) = ∑n
i=1 Δix(i). In a compact form, the above model can be written as:

y = (A+BΔ(x)(I−DΔ(x))−1C)x (2.22)
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where Δ(x) enters the relation in a highly nonlinear fashion. Under this representation,

an approximation is localized to the feedback path for estimation of the auxiliary random

variables ωΔ. Define the regression points ωΔi = Δ(xi)yΔi, where

yΔi =Cxi +Dω̄Δ (2.23)

and ω̄Δ ≈ E[ωΔ] is

ω̄Δ =
(
I− Δ̄D

)−1

(
1

p+1

p

∑
i=0

Δ(xi)Cxi

)
(2.24)

with

Δ̄ =
1

p+1

p

∑
i=0

Δ(xi) = Δ(x0). (2.25)

The covariance of ωΔ and the cross-covariance with x are computed as

RΔ =
1

p+1

p

∑
i=0

(ωΔi − ω̄Δ)(ωΔi − ω̄Δ)
T (2.26a)

RΔx =
1

p+1

p

∑
i=0

(ωΔi − ω̄Δ)(xi − x̄)T (2.26b)

Hence, the moments of y are:

ȳ = Ax̄+Bω̄Δ (2.27a)

Ry = ARxAT +BRΔBT +ART
ΔxB

T +BRΔxA
T (2.27b)

Ryx = ARx +BRΔx (2.27c)

2.2 Wireless Channel

Freedom from wires is an attractive, and often indispensable, feature for many communication

applications. Examples of wireless communication include radio and television broadcast, point-

to-point microwave links, cellular communications, and wireless local area networks (WLANs).

Increasing integration of transceiver functionality using DSP-centric design has driven down im-

plementation costs, and has led to explosive growth in consumer and enterprise applications of

wireless, especially cellular telephony and WLANs.

Performance of a wireless communication system is largely dependent on the wireless channel

environment. As opposed to the typically static and predictable characteristics of a wired channel,
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a wireless channel is rather dynamic which makes an exact analysis of the wireless communication

system more difficult. It is, therefore, important to develop understanding of wireless channels to

lay the foundation of high performance and bandwidth-efficient wireless transmission technology.

2.2.1 Propagation and Fading

In wireless communication, radio propagation refers to the behaviour of radio waves when they are

propagated from transmitter to receiver. In the course of their propagation, these waves are affected

by three types of physical phenomena: reflection, diffraction and scattering [80, 90]. Reflection

occurs when a wave impinges on an object with very large dimension compared to the wavelength,

for example, surface of the earth and building. It forces the transmit signal to be reflected back

to its origin. Diffraction refers to a phenomenon that occurs when the radio path between the

transmitter and the receiver is obstructed by a surface with small and sharp irregularities. It appears

as bending of waves around the small obstacles and spreading out of waves past small openings.

Scattering is a phenomenon that forces radio waves to deviate from a straight path by one or more

local obstacles.

A unique characteristic in a wireless channel is a phenomenon called ’fading’, which is the

variation of the signal amplitude over time and frequency. In addition to the additive noise as the

most common source of signal degradation, fading is another source of signal degradation that is

characterized as a non-additive signal disturbance in the wireless channel. Fading may either result

from multipath propagation, referred to as multi-path fading, or from shadowing from obstacles,

called shadow fading. The fading phenomenon can be broadly classified into two different types:

large-scale fading and small-scale fading.

Large-scale fading occurs as a receiver moves through a large distance, for example, a distance

of the order of cell size [90]. It is thus caused by path loss of signal as a function of distance as

well as by shadowing by large objects. Small-scale fading refers to rapid variation of signal levels

due to constructive and destructive interference of multiple signal paths when the receiver moves

through short distances. Depending on the relative extent of a multipath, frequency selectivity of

a channel is characterized (e.g., by frequency-selective or frequency flat) for small-scale fading.

On the other hand, depending on the time variation in a channel due to mobile station speed
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(characterized by the Doppler spread), short term fading can be classified as either fast fading or

slow fading. In summary, small-scale fading is attributed to multi-path propagation, mobile speed,

speed of surrounding objects and transmission bandwidth of signal.

Channel Fading Statistical Characterization

As discussed earlier, the rapid variations (fast fading) in signal power caused by local multipaths

are represented by Rayleigh distribution. The long-term variations in the mean level are denoted

by lognormal distribution. With a LOS propagation path, the Rician distribution is often used for

fast fading. Thus, the fading characteristics of a mobile radio signal are described by the following

statistical distributions:

1. Rician Distribution. When there is a dominant stationary (nonfading) signal component

present, such as a LOS propagation path, the small-scale fading envelope distribution is

Rician. The Rician distribution has a probability density function (PDF) given by:

p(r) =
r

σ 2
e
−
(

r2+A2

2σ2

)
I0

(
Ar

σ 2

)
forA ≥ 0, r ≥ 0 (2.28)

where A = peak amplitude of the dominant signal, I0 = Bessel function of the first kind and

order zero, r2/2 = instantaneous power, and σ = standard deviation of the local power. As

the dominant path decreases in amplitude, the Rician distribution degenerates to a Rayleigh

distribution (see Figure 2.2).

2. Rayleigh Distribution. The Rayleigh distribution is used to describe the statistical time-

varying nature of the received envelope of a flat fading signal, or the envelope of an individ-

ual multipath component. The Rayleigh distribution is given as:

p(r) =
r

σ 2
e
−
(

r2

2σ2

)
0 ≤ r ≤ ∞ (2.29)

One can rightfully say that a flat fading signal is exponentially fading in power. This model,

which is called Rayleigh fading, is quite reasonable for scattering mechanisms where there

are many small reflectors, but is adopted primarily for its simplicity in typical cellular situ-

ations with a relatively small number of reflectors.
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Figure 2.2: Rayleigh and Rician distribution.

3. Lognormal Distribution. Lognormal distribution describes the random shadowing effects

which occur over a large number of measurement locations which have the same transmitter

and receiver separation, but have different levels of clutter on the propagation path. The

signal, s(t), typically follows the Rayleigh distribution but its mean square value or its local

mean power is lognormal in dBm with variance equal to σ 2
s . The lognormal distribution is

given by (see Figure 2.3):

p(S) =
1√

2πσs

e
−
[
(S−Sm)2

2σ2

]
(2.30)

where Sm = mean value of S in dBm, σs = standard deviation of S in dBm, S = 10log s in

dBm , and s = signal power in mW .

2.2.2 Diversity in Wireless Communication

Appropriate resource sharing mechanisms must be put in place if multiple users are to co-exist in a

particular frequency band. The wireless channel can be shared among multiple users using several

different approaches. One possibility is to eliminate potential interference by assigning different

frequency channels to different users; this is termed frequency division multiple access (FDMA).

Similarly, we can assign different time slots to different users; this is termed time division multiple
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Figure 2.3: Lognormal distribution.

access (TDMA). If we use orthogonal multiple access such as FDMA or TDMA, then we can focus

on single-user wireless link design. However, there are also nonorthogonal forms of multiple

access, in which different users can signal at the same time over the same frequency band. In this

case, the users would be assigned different waveforms, or ”codes,” which leads to the name code

division multiple access (CDMA) for these techniques.

In addition to time and bandwidth, another resource available in wireless systems is space.

For example, if one transmitter receiver pair is far enough away from another, then the mutual

interference between them is attenuated enough so as to be negligible. Thus, wireless resources

can be utilized more efficiently by employing spatial reuse, which forms the basis for cellular

communication systems.

MIMO Communications

In recent years, Multiple-Input Multiple-Output (MIMO) systems have emerged as a most promis-

ing technology in these measures. MIMO communication systems can be defined intuitively by

considering that multiple antennas are used at the transmitting end as well as at the receiving end.

The core idea behind MIMO is that signals sampled in the spatial domain at both ends are com-

bined is such a way that they either create effective multiple parallel spatial data pipes (therefore
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increasing the data rate), and/or add diversity to improve the quality of the communication.

It is largely due to the seminal works of [31,93], that a proper utilization of the extra dimension

of space culminated in the so called MIMO techniques. In our discussion, we will mainly limit

ourselves to the fundamentals of these techniques. For an excellent elaboration, the reader is

referred to [96]. Let us focus on the narrowband, frequency flat, point-to-point MIMO channel.

Figure 2.4: A schematic diagram of a generic MIMO system.

Assume that the transmitter is equipped with t and the receiver with r antennas as shown in Figure

2.4. The output at the receiver is given by

yyy =HHHxxx+nnn (2.31)

where yyy ∈ C
t , xxx ∈ C

r, HHH lies in the space of r× t matrices having complex and possibly random

entries i.e., HHH ∈C
r×t with hi j denoting the channel between jth transmitter and the ith receiver and

nnn is a zero mean circularly symmetric complex Gaussian (ZMCSCG) noise vector with indepen-

dent and identically distributed (i.i.d.) entries. If we assume a noise variance of σ 2
n at each receive

antenna, we have E{nnnnnnH} = σ 2
n IIIr. In addition to this, we also suppose that E{|hi j|2} = 1∀i, j.

With these assumptions we impose a constraint that the total transmit power is E{xxxxxxH} = P. The

SNR at the ith receiver branch is

E{xxxHHHHH(i, :)HHH(i, :)xxx}
σ 2

n

=
E{xxxHIIItxxx}

σ 2
n

=
P

σ 2
n

. (2.32)

where HHH(i, :) denotes the ith row of HHH .
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2.3 Optimization Theory

In wireless networks, the available radio resources such as power, bandwidth are very limited. Re-

source allocation and its optimization are general method to improve network performance. Many

wireless resource-allocation problems can be formulated as constrained optimization problems,

which can be generally written as [15]:

min
x∈Ω

f (x), (2.33)

s.t.

⎧⎨
⎩ gi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., l

where x is the parameter for optimizing the resource allocation. Ω := {x ∈R
N : gi(x)≤ 0,hj(x) =

0} is the feasible range for the parameter, and f (x) is the optimization objective function that

represents the performance or cost. Here gi(x) and hj(x) are the inequality and equality constraints,

repectively. The optimization process finds the solution x∗ that satisfies all inequality and equality

constraints. For an optimal solution, f (x∗) ≤ f (x),∀x ∈ Ω. This is also called global optimal

solution. On the other hand, a point x∗ ∈ Ω is a local minimum of f (x) if f (x∗) ≤ f (x) when

|x− x∗|< ε .

The solvability of the problem (2.33) and the complexity of the algorithm to obtain the solution

mainly depend on the properties of the function f (x) and the feasibility set Ω. It is well known

that the challenges of solving the optimization problem are related to its convexity, rather than

its nonlinearity [83]. The nonconvex optimization problems are in general very difficult to solve,

especially when the number of decision variables in x is large. The primary reason is that the

problem may have many local optima. Furthermore, it might be very hard to find a feasible

point. Other reasons are that the stopping criteria used in general optimization algorithms are

often arbitrary, and that optimization algorithms may have very poor convergence rates. However,

optimization problems can be efficiently solved if they are convex.

2.3.1 Convex Optimization

If the optimization function, the set of equality and inequality constraints are all linear functions

of x, then the problem in (2.33) is called a linear program. While it is fairly easy to obtain a global



2.3 Optimization Theory 27

optimal point by linear programming, most of the practical problems in resource allocation are

nonlinear. In general, there are multiple local optima in a nonlinear program and to find global

optima is not an easy task. One special kind of nonlinear programs is the convex optimization

problem in which the feasible set Ω is a convex set, and the objective function and constraints are

convex/linear functions [83, 102]. A convex set is defined as: A set Ω is convex if for any x,y ∈ Ω

and any θ with 0 ≤ θ ≤ 1, we have θx+(1− θ)y ∈ Ω. Similarly, a convex function is defined

as : A function f is convex over x if the feasible set Ω of x is a convex set, and if for all x,y ∈ Ω

and 0 ≤ θ ≤ 1, we have f (θx +(1− θ)y) ≤ θ f (x) + (1− θ) f (y). Moreover if the function is

Figure 2.5: Convexity of a set and a function.

differentiable, and if either of the following two conditions hold, the function is a convex function:

First-order condition: f (y) ≥ f (x)+∇ f (x)T (y− x); (2.34)

Second-order condition: ∇2 f (x)� 0 (2.35)

As compared to general nonconvex optimization problems, the convex optimization problems offer

a number of advantages:

• Any local optimum is also a global optimum.

• There are very efficient path-following algorithms with non-heuristic stopping criteria for

computing the global minimizer.
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• Convex optimization algorithms are also very tractable from theoretical point of view since

the worst-case complexity is polynomial .

Although most convex optimization problems do not have analytical solutions, they can be solved

numerically very efficiently. Unfortunately, the natural formulation of many engineering problems

is nonconvex. Therefore, it is significantly important to cast the nonconvex optimization problems

into the convex ones. There are two key techniques to reformulate the problems into the convex

forms. The first method is to apply changes of variables. After finding the optimal solution from

the convex problem, the original variables of the nonconvex problem can be recovered, and two

problems are said to be equivalent. However, in certain problems it is hard to devise a convex

problem which is exactly equivalent to the nonconvex one. In this case, the nonconvex problem

can be convexified by relaxing constraints. Then, the optimal value of the relaxed problem is a

lower bound of that of the original one.

An important class of convex programming is semidefinite programming (SDP) which can be

efficiently solved using recently developed interior-point methods [59]. An SDP is an optimization

problem of the minimization of a linear objective function subject to the constraint that an affine

combination of symmetric matrices is positive semidefinite.

min
x

cT x (2.36)

s.t. F(x) = F0 + x1F1 + ...+ xnFn � 0

where Fi ∈ R
m×m are known symmetric matrices and f (x) ≥ 0 denotes that F(x) is positive

semidefinite at x.

2.3.2 Duality Theory

The concept of duality as applied to optimization is essentially a problem transformation that leads

to an indirect but sometimes more efficient solution method. In a duality-based method the original

problem, which is referred to as the primal problem, is transformed into a problem in which the

parameters are the Lagrange multipliers of the primal. The transformed problem is called the

dual problem. In the case where the number of inequality constraints is much greater than the
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dimension of x, solving the dual problem to find the Lagrange multipliers and then finding x∗ for

the primal problem becomes an attractive alternative.

Consider (2.33) as the primal problem. The Lagrange function associated with (2.33) can be

defined as

L (x,λ ,ν) = f (x)+
m

∑
i=1

λigi(x)+
l

∑
j=1

ν jh j(x) (2.37)

where λi is the Lagrange multiplier associated with the ith inequality constraint gi(x) ≤ 0, and ν j

is the Lagrange multiplier associated with the jth equality constraint hj(x) = 0. It is obvious that

sup
λ≥0,ν

L (x,λ ,ν) =

⎧⎨
⎩ f (x) ifx ∈ Ω

+∞ otherwise

Hence, the dual of (2.33) is stated as:

min
x

max
λ≥0,ν

L (x,λ ,ν) (2.38)

Then, the dual problem associated with the problem (2.38) is defined as a maximization problem

max
λ≥0,ν

min
x

L (x,λ ,ν) (2.39)

Here, the objective function of the dual problem is called the dual function g(λ ,ν) defined as

g(λ ,ν) = minx L (x,λ ,ν). It should be noted that the dual problem is a convex optimization

problem because it involves the maximization of the concave function over a convex constraint

set. It can be proved that

max
λ≥0,ν

min
x

L (x,λ ,ν) ≤ min
x

max
λ≥0,ν

L (x,λ ,ν)

Here, the duality gap, which is defined as f (x∗)−g(λ ∗,ν∗), is zero if the primal problem is convex.

Therefore, most of robust convex optimization algorithms are based on primal-dual methods which

generate a sequence of primal and dual feasible points in iteration to reduce the duality gap to zero

for optimality [59].

2.3.3 d.c. Programming

A function is called d.c. (difference of convex functions/sets) if it can be expressed as the differ-

ence of two convex functions. Mathematical programs which deal with d.c. functions are called
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d.c. programming problems. d.c. programming plays an important role in the field of nonconvex

optimization because of its wide range of applications. Theoretically, every continuous function

can be represented by a d.c function with any desired precision [45, 102]. Formally, it can be

defined as:A real-valued function f : Ω → R is called d.c. on a convex subset Ω, if there exist two

convex functions f1, f2 : Ω → R such that f can be expressed in the form

f (x) = f1(x)− f2(x) (2.40)

We follow an iterative procedure based on expressing f2 as its convex minorization to obtain an

optimal solution for the d.c. programs over set of convex constraints. Suppose that x(κ) is a feasible

point of (2.40) and ∇ f2(x
(κ)) is gradient of f2 at x(κ). Then one has

f1(x)− f2(x) ≤ f1(x)− f2(x
(κ))−〈∇ f2(x

(κ)),x− x(κ)〉 ∀x.

It follows that for any feasible x(κ) to (2.40), the following convex program provides a global upper

bound minimization for d.c. program (2.40):

[ f1(x)− f2(x)≤ f1(x)− f2(x
(κ))−〈∇ f2(x

(κ)),x− x(κ)〉] : x ∈ Ω (2.41)

Moreover, for the optimal solution x(κ+1) of (2.41), one has

f1(x
(κ+1))− f2(x

(κ+1)) ≤ f (x(κ+1))−g(x(κ))−∇ f2(x
(κ)),x(κ+1)− x(κ)〉

≤ f (x(κ))−g(x(κ))−∇ f2(x
(κ)),x(κ)− x(κ)〉

≤ f (x(κ))−g(x(κ))

which means that x(κ+1) is better than x(κ), i.e., convex program (2.41) generates a proper solution

x(κ). Thus, initialized from a feasible x(0), recursively generating x(κ) for κ = 0,1, ..., by the

optimal solution of convex program (2.41) is a path-following algorithm, which converges to an

optimized solution.

2.3.4 Penalty Function Method

An important analytical and algorithmic technique in nonlinear programming involves the use of

penalty functions, whereby the equality and inequality constraints are discarded, at the same time

some terms are added in the objective function that penalize the violation of the constraints [77]. A
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typical example for penalty function for mixed equality and inequality constraint problem (2.33)

is given by

Fμ(x) = f (x)+μ‖
m

∑
i=1

gi(x)+
l

∑
j=1

hj(x)‖, (2.42)

where μ is a positive penalty parameter. If x∗ denotes the optimal solution to (2.33) and λ ∗ is

the corresponding optimal Lagrange multiplier vector, then the solutions to (2.33) and (2.42) are

equal if μ > ||λ ∗||, and (2.42) is called exact penalty function.



Chapter 3

Globally Optimized Power Allocation

and Sensor Assignment for Linear and

Nonlinear Networks

Sensor networks (SNs) hold key to a wide range of future applications and have the potential to

play a significant role in the realm of modern technology. Deployment of these networks ensures

controlling instrumentation in industrial automation, sensing data remotely in a data collecting

environment and providing surveillance in defense related applications [23]. These networks were

initially used in military applications but their potential has recently been exposed in other areas of

science and engineering such as process monitoring in industrial plants, navigational and guidance

systems, radar tracking, sonar ranging [62], [9], [56], [41].

This chapter is organized as follows. Introduction is presented in Section 3.1. Sections 3.4.1

and 3.3 address distributed Bayes filtering for static and dynamic objects, respectively. Section

3.4 presents joint power allocation and sensor selection problem for nonlinear sensor networks.

Section 3.4.1 describes system model and then formulates the joint problem. The proposed

method/algorithm is described in detail in Section 3.4.2. Section 3.5 presents simulation results to

validate superior performance of the proposed power allocation strategy. This is followed by the

concluding remarks.

32
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3.1 Introduction

The present chapter is concerned with a sensor network, where each sensor is modeled by either

a linear or nonlinear sensing system. These sensors team up in observing either static or dynamic

random targets and transmit their observations through noisy communication channels to a fusion

center (FC) for locating/tracking the targets. Physically, the network is limited by energy resource.

According to the available sum power budget, we develop a novel technique for power allocation

to the sensor nodes that enables the FC produce the best linear estimate in terms of the mean square

error (MSE). Regardless of whether the sensor measurements are linear or nonlinear, the targets

are scalar or vectors, static or dynamic, the corresponding optimization problems are shown to

be semi-definite programs (SDPs) of tractable optimization and thus are globally and efficiently

solved by any existing SDP solver. In other words, new tractably computational algorithms of dis-

tributed Bayes filtering are derived with full multi-sensor diversity achieved. Intensive simulation

shows that these algorithms clearly outperform previously known algorithms.

An SN is said to be linear (LSN) when each of its sensors is modeled by a linear input-

output system. On the other hand, the most popular sensors are range and/or bearing sensing

(see e.g. [12, 13, 35]), which are nonlinear input-output systems and accordingly an SN of such

sensors is called nonlinear (NSN). Typically, sensors are geographically distributed and operating

in an amplify-and-forward (AF) mode [32,33]. Through orthogonal noisy wireless communication

channels, they send their own local measurements of a target to a central system, called the fusion

center (FC). The FC fuses these local measurements to produce a global estimate of the target.

Obviously, the sensors consume power during transmission of their observations to the FC, which

must be economical because of low battery power of the sensors. Power efficiency is highly crucial

for the network lifetime. An optimized power allocation to minimize estimate distortion of scalar

parameters has been considered in [25] and [94] for LSNs. Instead of the optimal linear minimum

square error estimator (LMMSE), the FC filtering in [25, 94] is the BLUE (Best Linear Unbiased

Estimator) for accommodation of tractable convex optimization. Again for LSNs with FC filtering

by LMMSE estimator, convex optimization for power allocation has been given in [10] but it is

still not attractive enough for computational implementation. An NSN has been touched in [29]

but unfortunately its nonlinear sensing modeling does not seem to correspond to any practically
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used scenario. Its assumption that sensor output statistics are known at the FC does not look

quite conventional as well. It is fair enough to say that decentralized estimation by NSNs for a

static target has practically not been considered and tracking a dynamic object by NSNs has been

completely open for research.

This chapter is divided in two parts. The first part develops an efficient strategy for allocat-

ing power to the sensor nodes in a globally optimized manner. The novelty of our approach is

accentuated by a combination of computationally tractable semi-definite programming [14, 60]

(for globally optimal power allocation) with unscented transformation [40] and linear fractional

transformation (LFT) [36, 67, 99, 101] (for nonlinear statistic function approximation). The major

contributions of the paper are:

• Unlike all previous works [10, 25, 29, 94] mainly of LSNs for locating a static target, the

globally optimal decentralized Bayes filtering for both LSNs and NSNs are shown compu-

tationally tractable in our approach. Further extensive computation show its full diversity as

well.

• Unlike previous works [65, 89, 92] which mainly focus on LSNs for tracking a dynamic

target, and which, at the end, do not admit computationally tractable and optimal solutions of

decentralized estimation, the globally optimal power allocation at each time instant is solved

by computationally tractable SDP in both LSNs and NSNs. In other words, the globally

optimal distributed Bayes filtering is solved by a sequence of tractably computational SDPs

in our approach with multi-sensor diversity shown computationally;

• Our globally optimal power allocation for sensor nodes also leads to an efficient and prac-

tical sensor node selection. In fact, our simulation shows that the power allocation is rather

concentrated at a few active sensor nodes, which means that only these sensor nodes con-

tribute to the FC filtering performance. Other sensor nodes with zero or almost zero power

allocation obviously have no impact in the FC filtering performance and thus should be put

to sleep to prolong the network lifetime. In short, the optimal selection of linear or nonlinear

sensor nodes in an SN can be effectively solved via our globally optimal power allocation.

The second part of this chapter deals with somewhat related yet equally important problem
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of joint power allocation and sensor assignment in a nonlinear sensor network. Active sensor se-

lection for the best performance of FC filtering is another important issue [115]. In general, the

problem of optimally selecting a fixed number of sensor nodes among a set is a very difficult com-

binatoric problem and thus is not tractable at all. Note that the global optimal solution presented

in the first half can also provide solution for the sensor selection problem. On the other hand, it

will be shown that the proposed algorithm which is developed specifically for the sensor selection

and power allocation, can outperform the previous method.

3.2 Global optimized decentralized Bayes filtering

In SN context, localization of a static target is based on the knowledge of its statistics along

with the sensor noisy observations. The goal is to produce an estimator that has MMSE under

constraints on transmission power at the sensors. Target localization is immensely important to

the modern research arena such as target localization for active sonar systems [44], video sensor

nodes selection for localization in wireless camera sensor networks [52] and source localization

based on range and bearing information [35].

Consider a target θ ∼ N (θ̄,RRRθ) in N-dimensional space (i.e. rough initial information on

θ expressed by θ̄ and RRRθ is given), which is observed by M spatially distributed sensors. The

sensors send their noise corrupted observations to a FC over wireless flat-fading time-orthogonal

communication channels [32, 33]. Thus, all these interactions can be compactly modeled by the

following behavioral equations

yyy = g(θ)+nnn, (3.1)

zzz = HHH(α)yyy+www, (3.2)

where g(θ) = (g1(θ),g2(θ), ....,gM(θ))T with each component gi(θ) a (linear or nonlinear) de-

terministic function for expression of i-sensor measuring quantity such as range and/or bearing.

Accordingly, yyy = (y1,y2, ...,yM)T is the sensor observations and nnn ∼N (0,RRRnnn) with diagonal RRRnnn is

a corrupt noise, which is uncorrelated with the source θ. These observations are relayed to the FC

and so HHH(α) ∈ R
M×M is called the relay matrix defined by

HHH(α) = diag[
√

αi

√
hi]i=1,2...,M (3.3)
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which includes the channel gains
√

hi between i-th sensor node and FC and amplifier coefficients

√
αi to control the transmit power of i-th sensor node. www ∼ N (0,RRRwww) with diagonal RRRwww is the

communication noise. It follows that the power consumed by i-th sensor node is

Pi =RRRyyy(i, i)αi.

Hence, for Σα := diag[αi]i=1,2...,M, the sum power consumed by the entire SN is
M

∑
i=1

Pi =Trace(ΣαRRRyyy)

is normally constrained by a fixed budget PT > 0

Trace(ΣαRRRyyy)≤ PT . (3.4)

By [42, Theorem 12.1], the LMMSE estimate for θ based on FC output zzz is

θ̂ = θ̄+RRRT
zzzθRRR−1

zzz (zzz− z̄zz)

= θ̄+RRRT
yyyθHHHT (α)(HHH(α)RRRyyyHHH

T (α)+RRRwww)
−1(zzz−HHH(α)ȳyy), (3.5)

while the covariance of LMMSE estimator of θ given zzz is

RRRθ−RRRT
zzzθRRR−1

zzz RRRzzzθ =RRRθ−RRRT
yyyθHHHT (α)(HHH(α)RRRyyyHHH

T (α)+RRRwww)
−1RRRyyyθHHH(α). (3.6)

This covariance is also the covariance of the estimator error

eee := θ− θ̂,

so

RRReee = RRRθ −RRRT
zzzθ(HHH(α)RRRyyyHHH

T (α)+RRRwww)
−1RRRzzzθ

= RRRθ −RRRT
yyyθHHHT (α)(HHH(α)RRRyyyHHH

T (α)+RRRwww)
−1HHH(α)RRRyyyθ.

Using the Inverse Matrix Lemma [37]

RRRyyy −RRRyyyHHH
T (α)(HHH(α)RRRyyyHHH

T (α)+RRR−1
w)w)w)

HHH(α)RRRyyy = (RRR−1
yyy +HHHT (α)RRR−1

www HHH(α))−1

⇔ HHHT (α)(HHH(α)RRRyyyHHH(α)+RRRwww)
−1HHH(α) =RRR−1

yyy − (RRRyyy +RRRyyyHHH
T (α)RRR−1

www HHH(α)RRRyyy)
−1.

Therefore,

RRReee =RRRθ−RRRT
yyyθRRR−1

yyy RRRyyyθ+RRRT
yyyθ(RRRyyy +RRRyyyHHH

T (α)RRR−1
www HHH(α)RRRyyy)

−1RRRyyyθ (3.7)

We are now in a position to formulate the problem of minimization of MSE, subject to the power

budget constraint (3.4) as

min
αi≥0, i=1,2,...,M

Trace(RRReee) subject to (3.4), (3.8)
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which by (3.70) is equivalent to

min
αi≥0, i=1,2,...,M

Trace(RRRT
yyyθ(RRRyyy +RRRyyyHHH

T (α)RRR−1
www HHH(α)RRRyyy)

−1RRRyyyθ) subject to (3.4). (3.9)

Note that by Schur’s complement [37]

Trace(RRRT
yyyθ(RRRyyy +RRRyyyHHH

T (α)RRR−1
www HHH(α)RRRyyy)

−1RRRyyyθ)≤ t

⇔ RRRT
yyyθ(RRRyyy +RRRyyyHHH

T (α)RRR−1
www HHH(α)RRRyyy)

−1RRRyyyθ � ZZZ, Trace(ZZZ)≤ t

⇔
⎡
⎣ ZZZ RRRT

yyyθ

RRRyyyθ RRRyyy +RRRyyyHHH
T (α)RRR−1

www HHH(α)RRRyyy

⎤
⎦� 0, Trace(ZZZ)≤ t

while HHHT (α)RRR−1
www HHH(α) = ΣαRRR−1

www Σhhh (because RRR−1
www is diagonal) with Σhhh = diag{[}hi]i=1,2...,M .

This leads to the following SDP formulation for (3.9),

min
t,ZZZ,αi≥0, i=1,2,..,M

t subject to (3.10)

(3.4), Trace(ZZZ)≤ t,

⎡
⎣ ZZZ RRRT

yyyθ

RRRyyyθ RRRyyy +RRRyyyΣαRRR−1
www ΣhhhRRRyyy

⎤
⎦� 0. (3.11)

Alternatively, the problem of minimization of the total power consumption under MSE threshold

ε is also formulated by the following SDP

min
ZZZ,t,αi≥0,i=1,2,...,M

Trace(ΣαRRRyyy) subject to (3.12)⎡
⎣ QQQ RRRT

yyyθ

RRRyyyθ RRRyyy +RRRyyyΣαRRR−1
www ΣhhhRRRyyy

⎤
⎦� 0, Trace(QQQ)≤ ε −Trace(RRRθ)+Trace(RRRT

yyyθRRR−1
yyy RRRyyyθ). (3.13)

Both SDPs (3.71)-(3.11) and (3.12)-(3.13) are computationally tractable and can be globally

solved by any existing SDP solver such as YALMIP [53], provided that the sensor output co-

variance RRRyyy and its cross-covariance RRRyyyθ with the source θ can be calculated. The remainder of

this section is devoted to the computational issue for these covariance matrices to make SDPs

(3.71)-(3.11) and (3.12)-(3.13) completely realizable.

3.2.1 Decentralized Bayes filtering for LSN

In LSNs, model (3.1)-(3.2) is completely linear, i.e. the input-output system (3.1) of the sensor

measurements is represented by

yyy =GGGθ+nnn, (3.14)
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where GGG ∈ R
M×N is a matrix representing effects of path loss, fading and shadowing, which is

known to the FC. Therefore their analytical forms are available

RRRθyyy = E[(θ− θ̄)(yyy− ȳyy)T ] =RRRθGGG

RRRyyy = E[(yyy− ȳyy)(yyy− ȳyy)T ] =GGGRRRθGGGT +RRRnnn

(3.15)

Theorem 3.2.1. The optimal decentralized Bayes for locating the target θ by a LSN modeled by

(3.52), (3.2) under the power constraint (3.4) is (3.57) where RRRyyyθ and RRRyyy are defined by (3.15)

while α is found from the SDP

min
t,ZZZ,αi≥0, i=1,2,..,M

t subject to (3.15),(3.11). (3.16)

3.2.2 Decentralized Bayes Filtering for NSN

Due to nonlinearity of sensing map g in (3.1), analytical expressions of RRRθyyy and RRRyyy for computa-

tional implementation of (3.9) and (3.12) are not expected. However, we now present their efficient

and attractive approximations. The first one is the unscented transformation based approxima-

tion [40], which works reasonably well for moderately nonlinear maps whereas, the second one

is the linear fractional transformation (LFT) based approximation [67], which works reasonably

well for higher order nonlinear or fractional maps g. Without loss of generality, assume that g(θ)

admits form

g(θ) =

⎛
⎝ g1(θ)

g2(θ)

⎞
⎠ , (3.17)

where g1(θ) is moderately nonlinear in θ (e.g. a range function) while g2(θ) is highly nonlinear

(e.g. a bearing function) and admits a tractable LFT [36, 67, 99, 101]⎡
⎣ g2(θ)

yyyΔ

⎤
⎦=

⎡
⎣ GGG DDD

GGGΔ DDDΔ

⎤
⎦
⎡
⎣ θ

ωΔ

⎤
⎦ , ωΔ = Δ(θ)yyyΔ, (3.18)

with deterministic matrices GGG,DDD,GGGΔ,DDDΔ and simple nonlinear feedback ωΔ = Δ(θ)yyyΔ capturing

all nonlinearity of g in (3.1) but nevertheless Δ(θ) a linear map in θ.

As shown in [67], for either higher order nonlinearity or forms involving fractional terms like

the above g2(θ), the above equivalent LFT model (3.18), consisting of a linear model and a simple
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nonlinear structure in the virtual feedback, performs better than the conventional global unscented

transformations. In the LFT setting, better approximations for moments are obtained by applying

unscented transformations in the feedback loop Δ(θ) only. It is well known from robust control

(see e.g. [116]) that any smooth nonlinear map g2 in (3.17) admits an LFT (3.18). The name of

LFT (3.18) comes from the following actual linear fractional form of g2

g2(θ) = [GGG+DDDΔ(θ)(III −DDDΔΔ(θ))−1GGGΔ]θ.

Unscented Transformations for Moderately Nonlinear Maps

Unlike linearizing the deterministic map g1 in (3.17) as done in the Extended Kalman Filter (EKF),

the unscented transformation [40] provides a first order approximation for its distribution moments

as follows. Since RRRθ � 0, it admits Cholesky decomposition

RRRθ =
N

∑
r=1

ψrψ
T
r ,ψr ∈ RN . (3.19)

Accordingly, 2N +1 regression points θ(r),r = 0,1, . . . ,2N are defined

θ(0) = θ̄, θ(r) = θ̄+

√
2N +1

2
ψr, θ

(M+r) = θ̄−
√

2N +1

2
ψr, r = 1,2, ...,2N. (3.20)

Clearly,

θ̄ =
1

2N +1

2N

∑
r=0

θ(r), Rθ =
1

2N +1

2N

∑
r=0

(θ(r)− θ̄)(θ(r)− θ̄))T ,

and thereby transform yyy(r) := g1(θ
(r)), r = 0,1, ...,2N for approximations

ḡ1(θ) =
1

2N +1

2N

∑
r=0

yyy(r)

RRRg1(θ) =
1

2N +1

2N

∑
r=0

(yyy(r)− ḡ1(θ))(yyy
(r)− ḡ1(θ)))

T

RRRg1(θ)θ =
1

2N +1

2N

∑
r=0

(yyy(r)− ḡ1(θ)))(θ
(r)− θ̄)T .

(3.21)
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Linear Fractional Transformations for Highly Nonlinear Maps

For the regression points θ(r),r = 0,1, ...,2N defined by (3.20) set

Δ̄ =
1

2N +1

2N

∑
r=0

Δ(θ(r)) = Δ(θ̄),

ω̄Δ = (I − Δ̄DDDΔ)
−1(

1

2N +1

2N

∑
r=0

Δ(θ(r))GGGΔθ
(r)),

yyy
(r)
Δ = GGGΔθ

(r) +DDDΔω̄Δ, r = 0,1, ...,2N,

ω
(r)
Δ = Δ(θ(r))yyy

(r)
Δ , r = 0,1, ...,2N,

RRRΔ =
1

2N +1

2N

∑
r=0

(ω
(r)
Δ − ω̄Δ)(ω

(r)
Δ − ω̄Δ)

T ,

RRRΔθ =
1

2N +1

2N

∑
r=0

(ω
(r)
Δ − ω̄Δ)(θ

(r)− θ̄)T .

(3.22)

Utilize the following alternative approximations to (3.21)

ḡ2(θ) = GGGθ̄+DDDω̄Δ

RRRg2(θ) = GGGRRRθGGGT +DDDRRRΔDDDT ,

RRRg2(θ)θ = GGGRRRθ+DDDRRRΔθ.

(3.23)

SDP based decentralized Bayes filtering for NSN

Having the moment approximations (3.21) and (3.22) we can easily approximate the moments of

yyy in (3.1) as follows

ȳyy =

⎛
⎝ ḡ1(θ)

ḡ2(θ)

⎞
⎠ , RRRyyyθ =

⎛
⎝ RRRg1(θ)θ

RRRg2(θ)θ

⎞
⎠ ,

RRRg1(θ)g2(θ) =
1

2N +1

2N

∑
r=0

(g1(θ
(r))− ḡ1(θ))(GGGθ(r) +DDDω

(r)
Δ − ḡ2(θ)),

RRRyyy =

⎛
⎝ RRRg1(θ) RRRg1(θ)g2(θ)

RRRT
g1(θ)g2(θ)

RRRg2(θ)

⎞
⎠+RRRnnn.

(3.24)

Theorem 3.2.2. The optimal decentralized Bayes for locating the target θ by NSN modeled by

(3.1), (3.17) under the power constraint (3.4) is (3.57) with RRRyyyθ and RRRyyy defined by (3.24) and α

found from the SDP

min
t,ZZZ,αi≥0, i=1,2,..,M

t subject to (3.19),(3.20),(3.21),(3.22), (3.23),(3.24),(3.11). (3.25)



3.3 Global optimal decentralized Bayes filtering for tracking dynamic objects 41

Remark. It is obvious that GGGθ in (3.52) is a particular (linear) case of (3.17) with

g(θ) = g2(θ) and DDD = 0 in (3.18). Then (3.15) is (3.23) corresponding to DDD = 0. Thus, Theorem

3.2.1 is a particular case of Theorem 3.2.2 with DDD = 0.

A more general representation of g than (3.17) is

g(θ) = g1(θ)+g2(θ), (3.26)

where like g1 and g2 are at the same structure as in (3.17), i.e. g1 is moderately nonlinear while

g2 is represented by LFT (3.18). Then, still using approximations (3.21) and (3.23) leads to the

following approximation instead of (3.24)

ȳyy = ḡ1(θ)+ ḡ2(θ), RRRyyyθ =RRRg1(θ)θ +RRRg2(θ)θ,

RRRyyy =
1

2N +1

2N

∑
r=0

[(g1(θ
(r))− ḡ1(θ))+ (GGGθ(r) +DDDω

(r)
Δ − ḡ2(θ))]

×[(g1(θ
(r))− ḡ1(θ))+ (GGGθ(r) +DDDω

(r)
Δ − ḡ2(θ))]

T +RRRnnn.

(3.27)

3.3 Global optimal decentralized Bayes filtering for tracking dynamic

objects

This section discusses tracking of a dynamic target by SN under a power constraint. We consider

a scenario consisting of a target moving within a surveillance area. The sensor nodes of a SN are

assigned to carry out measurements necessary for tracking the object and send their measurements

to the FC to output the final estimate of the target’s trajectory. Such a process can be modeled by

the following input-output system

θk+1 = fk(θk)+vvvk, (3.28)

yyyk = gk(θk)+nnnk, (3.29)

zzzk = HHH(α(k))yyyk +wwwk. (3.30)

Here at time instants k, (3.28) is the evolution equation of the target state θk ∈ RRRN transition,

(3.29) is the measurement equation of all sensors and (3.30) is the FC equation. vvvk ∼ N (0,RRRvvvk
),

nnnk ∼ N (0,RRRnnnk
) and wwwk ∼ N (0,RRRwwwk

) are additive noises. Note the similarity of (3.29)-(3.30) and
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(3.1)-(3.2), i.e. the physical meaning of variables yyyk,θk,zzzk in (3.29)-(3.30) is exactly the same as

yyy,θ,zzz in (3.1)-(3.2), while like HHH(α) in (3.2) defined by (3.3), the matrix HHH(α(k)) is defined by

HHH(α(k)) = diag{[}
√

αi(k)
√

hi]i=1,2...,M (3.31)

where
√

hi is the channel gain between i-th sensor node and FC, while
√

αi(k) is the amplifier

coefficient to control the transmit power of i-th sensor node at time instant k, i.e. at each time

instant k, the sum power of the SN is constrained by a budget PT :

Trace(Σα(k)RRRyyyk
)≤ PT , (3.32)

with Σα(k) := diag{[}αi(k)]i=1,2,...,M . On the other hand, (3.29)-(3.30) is also a particular case of

(3.1)-(3.2) with fk(θk) = θk, vvvk ≡ 0 and gk(θk)≡ g(θk).

From now on, we adopt the following form of fk(θk) and gk(θk),

fk(θk) =

⎛
⎝ f1k(θk)

f2k(θk)

⎞
⎠ , gk(θk) =

⎛
⎝ g1k(θk)

g2k(θk)

⎞
⎠ (3.33)

where f1k,g1k are moderately nonlinear maps while f2k,g2k are highly nonlinear map, which are

then transformed to an LFT⎡
⎢⎢⎢⎣

f2k(θk)

g2k(θk)

θΔk

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

FFFk BBBk

GGGk DDDk

FFFΔk BBBΔk

⎤
⎥⎥⎥⎦
⎡
⎣ θk

ωΔk

⎤
⎦ , ωΔk = Δk(θk)θΔk, (3.34)

with deterministic matrices FFFk,BBBk,GGGk,DDDk,FFFΔk,BBBΔk and linear map Δk(θk). We have seen at the end

of the previous section that the linear case of fk or gk corresponding to (3.33) with fk = f2k,BBBk = 0

or gk = g2k,DDDk = 0 in (3.34), so (3.33)-(3.34) is an universal representation for whatever possible

(linear or nonlinear) modeling.

Given the initial information

E[θ0] = θ̄0|−1 and RRRθ0
=RRR0|−1, (3.35)

the problem at the FC level is to track the state θk based on the instant information zzzk, which is

power constrained by (3.32). If one sets θ0|−1 ∼ N (θ̄0|−1,RRR0|−1), as an initial estimator of θ0,

then the following recursive Bayes filtering to track the target θk is most natural. At time instant
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k, suppose θk|k−1 is the estimator of θk by using k− 1 past measurements zzz0,zzz1, ..,zzzk−1 with the

moments θ̄k|k−1 and RRRk|k−1 :=RRRθk|k−1
. The FC process two iterations at each time instant k.

• Treat θk in (3.29)-(3.30) as θk|k−1:

yyyk = gk(θk|k−1)+nnnk, zzzk =HHH(α(k))yyyk +wwwk (3.36)

to produce the LMMSE estimator θk|k for θk|k−1 under the power constraint (3.32).

Like (3.71), for Σα := diag{[}αi]i=1,2,...,M , solve the following SDP

min
t,ZZZ,αi≥0, i=1,2,..,M

t subject to (3.37)

Trace(ΣαRRRyyyk
)≤ PT , Trace(ZZZ)≤ t,

⎡
⎣ ZZZ RRRT

yyykθk|k−1

RRRyyykθk|k−1
RRRyyyk

+RRRyyyk
ΣαRRR−1

wwwk
ΣhhhRRRyyyk

⎤
⎦� 0 (3.38)

for the optimal solution α(k). Then, like (3.57) and (3.58), the moments of θk|k are approx-

imated by

θ̄k|k = θ̄k|k−1 +HHHT (α(k))RRRT
yyykθk|k−1

(HHH(α(k))RRRyyyk
HHHT (α(k))+RRRwwwk

)−1

×(zzzk −HHH(α(k))ȳ̄ȳyk), (3.39)

RRRk|k := RRRθk|k

= RRRk|k−1 −HHHT (α(k))RRRT
yyykθk|k−1

(HHH(α(k))RRRyyyk
HHHT (α(k))+RRRwwwk

)−1

×RRRyyykθk|k−1
HHH(α(k)) (3.40)

which makes use of the following approximations of RRRyyyk
and RRRyyykθk|k−1

.

– Unscented Transformations. Like (3.21), make Cholesky decomposition RRRk|k−1 =
N

∑
r=1

ψrψ
T
r for the definition of 2N +1 regression points θ(r), r = 0,1, ...,2N by (3.20)

(with θ̄→ θ̄k|k−1) and then transform yyy
(r)
k := g1k(θ

(r)), r = 0,1, ...,2N for approxima-

tions,

ḡ1k(θk|k−1) =
1

2N +1

2N

∑
r=0

yyy
(r)
k

RRRg1(θk|k−1) =
1

2N +1

2N

∑
r=0

(yyy
(r)
k − ȳyyk)(yyy

(r)− ȳyyk))
T

RRRg1k(θk|k−1)θk|k−1
=

1

2N +1

2N

∑
r=0

(yyy
(r)
k − ȳyyk)(θ

(r)
k − θ̄k|k−1)

T .

(3.41)
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– Linear fraction transformation. Determine 2N + 1 corresponding regression points

θ(r), r = 0,1, ...,2N by (3.20) (with θ̄ → θ̄k|k−1). Set

Δ̄k =
1

2N +1

2N

∑
r=0

Δk(θ
(r)),

ω̄Δk = (III − Δ̄kDDDΔk)
−1(

1

2N +1

2N

∑
r=0

Δk(θ
(r))FFFΔkθ

(r)),

yyy
(r)
Δk = FFFΔkθ

(r) +BBBΔkω̄Δk, r = 0,1, ...,2N

ω
(r)
Δk = Δk(θ

(r))yyy
(r)
Δk , r = 0,1, ...,2N,

RRRΔk =
1

2N +1

2N

∑
r=0

(ω
(r)
Δk − ω̄Δk)(ω

(r)
Δk − ω̄Δk)

T ,

RRRΔkθk|k−1
=

1

2N +1

2N

∑
r=0

(ω
(r)
Δk − ω̄Δk)(θ

(r)− θ̄k)
T .

(3.42)

Accordingly,

ḡ2k(θk|k−1) = GGGkθ̄k|k−1 +DDDkω̄Δk

RRRg2k(θk|k−1) = GGGkRRRk|k−1GGGT
k +DDDkRRRΔkDDD

T
k +RRRnnnk

RRRg2k(θk|k−1)θk|k−1
= GGGkRRRθk|k−1

+DDDkRRRΔkθk|k−1
.

(3.43)

– Finalize

RRRg1k(θk|k−1)g2k(θk|k−1) =
1

2N +1

2N

∑
r=0

(g1k(θ
(r))− ḡ1k(θk|k−1))(GGGkθ

(r) +DDDkω
(r)
Δk − ḡ2k(θk|k−1))

T ,

ȳ̄ȳyk =

⎛
⎝ ḡ1k(θk|k−1)

ḡ2k(θk|k−1)

⎞
⎠ , RRRyyykθk|k−1

=

⎛
⎝ RRRg1k(θk|k−1)θk|k−1

RRRg2k(θk|k−1)θk|k−1

⎞
⎠ ,

RRRyyyk
=

⎛
⎝ RRRg1k(θk|k−1) RRRg1(θk|k−1)g2(θk|k−1)

RRRT
g1(θk|k−1)g2(θk|k−1)

RRRg2k(θk|k−1)

⎞
⎠+RRRvvvk

,

(3.44)

• Treat θk+1 and θk in (3.28) as θk+1|k and θk|k, respectively

θk+1|k = fk(θk|k)+vvvk (3.45)

and apply [42, Theorem 12.1] to produce the moments θ̄k+1|k and RRRk+1|k := RRRθk+1|k for the

next recursive time k+1,

θ̄k+1|k = f̄k(θk|k), RRRk+1|k =RRRfk(θk|k) +RRRvvvk
. (3.46)
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Like (3.19), (3.20), (3.21), (3.22), (3.23), (3.24) making Cholesky factorization RRRk|k =
N

∑
r=1

ψrψ
T
r to define 2N +1 regression points θ(r),r = 0,2, ...,2N by (3.20) with θ̄ obviously

replaced by θ̄k|k, the resultant approximation equation for (3.46) is

θ̄k+1|k =

⎛
⎝ f̄1k(θk|k)

f̄2k(θk|k)

⎞
⎠ ,

RRRk+1|k =

⎛
⎝ RRRf1k(θk|k) RRRf1(θk|k) f2(θk|k)

RRRT
f1(θk|k) f2(θk|k)

RRR f2k(θk|k)

⎞
⎠+RRRvvvk

,

(3.47)

where

f̄1k(θk|k) =
1

2N +1

2N

∑
r=0

f1k(θ
(r)),

RRRf1k(θk|k) =
1

2N +1

2N

∑
r=0

( f1k(θ
(r))− f̄1k(θk|k))( f1k(θ

(r))− f̄1k(θk|k))T ,

(3.48)

and

f̄2k(θk|k) =FFFkθ̄k|k +BBBkω̄Δk, RRR f2k(θk|k) =FFFkRRRk|kFFFT
k +BBBkRRRΔkBBB

T
k ,

RRRf1k(θk|k) f2k(θk|k) =
1

2N +1

2N

∑
r=0

( f1k(θ
(r))− f̄1k(θk|k))(FFFkθ

(r) +BBBkω
(r)
Δk − f̄2k(θk|k))T .

(3.49)

with

Δ̄k =
1

2N +1

2N

∑
r=0

Δk(θ
(r)),

ω̄Δk = (III − Δ̄kBBBΔk)
−1(

1

2N +1

2N

∑
r=0

Δk(θ
(r))FFFΔkθ

(r)),

θ
(r)
Δk = FFFΔkθ

(r) +BBBΔkω̄Δk, r = 0,1, ...,2N,

ω
(r)
Δk = Δk(θ

(r))θ
(r)
Δk , r = 0,1, ...,2N,

RRRΔk
=

1

2N +1

2N

∑
r=0

(ω
(r)
Δk − ω̄Δk)(ω

(r)
Δk − ω̄Δk)

T

(3.50)

Theorem 3.3.1. The decentralized Bayes filtering for tracking the dynamic target θk by a NSN

modeled by (3.28)-(3.30) with fk and gk in form (3.33), (3.34), under the sum power constraint

(3.32) and initialized condition (3.35) is the following recursive procedure for k = 0,1,2, ...,.

• Solve the SDP (3.37)-(3.38) with ȳ̄ȳyk, RRRyyyk
and RRRyyykθk|k−1

approximated by (3.44)

• Execute (3.39)-(3.40);
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• Execute (3.47).

Remark. It should be noted that Theorem 3.3.1 in the particular case of BBBk = 0 and

DDDk = 0 while fk = f1k and gk = g2k, i.e. (3.28)-(3.30 is the following linear system

θk+1 =FFFkθk +vvvk, yyyk =GGGkθk +nnnk, zzzk =HHH(ααα(k))yyyk +wwwk (3.51)

is nothing but the decentralized Kalman filter, which is also a new result.

3.4 Joint Optimization of Active Sensor Assignment and Power Al-

location in Sensor Networks

Owing to the varying surrounding sensing environment, the networked sensors experience quite

different channel conditions, which certainly affect their observability. It is desirable to deactivate

sensors of poor observation and assign more power to those with better observation to preserve

limited on-board battery power. However, in contrast to sensor power allocation, which has been

shown convex and thus computationally tractable [82], active sensor assignment is a combinatoric

(binary) program and thus is N P-complete. The existing assignment is either through computa-

tionally intensive enumeration or relaxation of binary constraints by box constraints, which is far

from optimality.

For linear sensor networks, power allocation is considered jointly with sensor assignment

in [57] but their applicability is limited to the estimation of the scalar parameter only. In the

present paper, we consider joint optimization of active sensor assignment and power allocation

to both linear and nonlinear sensor nodes. This problem is recognized as mixed binary program,

which is very challenging because of original coupling constraints in continuous power variables

and binary assignment variables. Nevertheless, through elegant variable changes, it is firstly trans-

formed to a much more tractable convex program with additional binary constraints. Since these

binary constraints are represented by a continuous d.c. (difference of two convex functions/sets)

constraint, this program is actually a convex program with an additional reverse constraint [102].

In order to accommodate iterative d.c. programming [98] we follow the exact penalty function

approach [70] to equivalently re-express it as minimization of a d.c. function subject to convex



3.4 Joint Optimization of Active Sensor Assignment and Power Allocation in Sensor

Networks 47

constraints only. Our simulation shows that the global optimal solution of the latter can be located

by quite a few convex programs within the proposed d.c. procedure.

The purpose of this section is two-fold: to develop a solution procedure of practical compu-

tational complexity for the mixed binary program of joint active sensor assignment and power

optimization and to show a striking fact that the capacity of a WSN can be fully achievable by

activating only about half of its sensor nodes. Although we consider joint optimization of assign-

ment and power allocation for estimation of a static target only, its extension to tracking a dynamic

target is obvious [82].

3.4.1 Problem Formulation

Let θ ∼ N (θ̄ ,RRRθ ) be an M-dimensional parameter that is to be estimated by a network of N

sensors. We refer to θ as a parameter, although it is a vector of M parameters. Each i-th sensor

can be called for making the following i.i.d. noise corrupted observation of the targeted parameter

θ :

yi = fff i(θ)+ vi, (3.52)

where fff i(θ) generally is a nonlinear function of θ and yi is the corresponding sensor observation

corrupted by noise vi ∼N (0,RRRv(i, i)) for diagonal RRRv. This observation is scaled by an amplifica-

tion factor
√

αi if the i-th sensor is activated for transmission to FC. Therefore, the received signal

from the ith sensor at FC takes the form

zi = xi(
√

αihiyi +wi), (3.53)

where wi ∼ N (0,RRRwi, i) is the channel noise and
√

hi denotes the ith channel power gain. Here

xi is the assignment variable, i.e. xi = 1 means the i-th sensor is active and and will transmit

its sensing data to FC through the AF protocol. Otherwise, xi = 0 means that the i-th sensor is

deactivated in data sensing operation. Define an assignment vector as

xxx = (x1,x2, . . . ,xN)
T ∈ {0,1}N , (3.54)

which is constrained by a given number N0 of activated sensors

N

∑
i=1

xi = N0. (3.55)
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Rewrite (3.53) in vector form

zzz =XXXHHH(α)yyy+XXXwww, (3.56)

where XXX = diag[x1, . . . ,xN ],HHH(α) := diag[
√

α1h1, . . . ,
√

αNhN ].

On the background that auto-covariance matrix RRRy and cross-covariance matrix RRRyyyθ admit either

the analytical form whenever fff i in (3.52) are linear in θ , or an effective approximation based

on linear fraction transformation (LFT) technique when they are nonlinear in θ [82], the Linear

Minimum Mean Square Error (LMMSE) estimate of θ based on FC output zzz is

θ̂ = θ̄ +RRRT
zzzθRRR†

zzz (zzz− z̄zz)

= θ̄ +RRRT
yyyθHHH(α)XXX(XXXHHH(α)RRRyyyHHH(α)XXX +XXXRRRwww)

†(zzz−XXXHHH(α)ȳyy), (3.57)

while the covariance of LMMSE estimator of θ given zzz is

RRReee :=RRRθ −RRRT
zzzθRRR†

zzzRRRzzzθ =RRRθ −RRRT
yyyθHHH(α)XXX(XXXHHHαRRRyyyHHH(α)XXXT +XXXRRRwww)

†XXXHHH(α)RRRyyyθ . (3.58)

Here and after, by AAA† we denote the pseudo-inverse matrix of a matrix AAA.

Thus the joint optimization of active sensor assignment and power allocation under total sensor

power constraint PT can be formulated as

min
xxx∈{0,1}N

〈RRReee〉 : (3.55),
N

∑
i=1

xiαiRRRyyy(i, i)≤ PT . (3.59)

It can be seen from the definition (3.58) that the objective 〈RRReee〉 is a highly nonlinear function in

both binary assignment variable xxx=(x1, ....,xN)
T and continuous power variable ααα :=(α1, ...,αN)

T .

Moreover, these variables are coupled in this objective as well as in constraints in (3.59). Con-

sequently, (3.59) looks to be too hard for a mixed nonconvex program. We now equivalently

re-express it by more computationally tractable mixed convex program.

For every xxx ∈ {0,1}N satisfying (3.55) define

I(xxx) := {i j ∈ {1,2, ...,N} : xi j
= 1}, (3.60)

and accordingly

yyyxxx := (yi1 , ...,yiN0
)T , zzzxxx := (zi1 , ...,ziN0

)T , wwwxxx := (wi1 , ...,wiN0
)T ,

z̄zzxxx := (z̄i1 , ..., z̄iN0
)T , H̄HH(α(xxx)) = diag[

√
αi1 hi1 , ...,

√
αiN0

hiN0
], Σh(xxx) = diag[hi1 , ...,hiN0

].
(3.61)
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Then (3.56) is rewritten by

zzzxxx = H̄HH(α(xxx))yyyxxx +wwwxxx. (3.62)

Accordingly, (3.57) is rewritten by

θ̂ = θ̄ +RRRT
yyyxxxθxxx

H̄HH(α(xxx))(H̄HH(α(xxx))RRRyyyxxx
H̄HH(α(xxx))+RRRwwwxxx

)−1(zzzxxx −H̄HH(α(xxx))ȳyyxxx), (3.63)

while (3.58) becomes

Reee =RRRθθθ −RRRT
yyyxxxθxxx

H̄HH(α(xxx))(H̄HH(α(xxx))RRRyyyxxx
H̄HH(α(xxx))+RRRwwwxxx

)−1H̄HH(α(xxx))RRRyyyxxxθθθ . (3.64)

The key observation to ravel complexity of (3.63) is the following equality

〈RRRT
yyyxxxθH̄HH(α(xxx))(H̄HH(α(xxx))RRRyyyxxx

H̄HH(α(xxx))+RRRwwwxxx
)−1H̄HH(α(xxx))RRRyyyxxxθθθ 〉 =

〈RRRT
yyyθHHH(α)XXX(XXXHHH(α)RRRyyyHHH(α)XXX +RRRwww)

−1XXXHHH(α)RRRyyyθ 〉.
(3.65)

Indeed, for each such xxx we re-label sensor nodes such that I(xxx) = {1,2, ...,N0} so we can write

yyy = (yyyT
xxx ,yyy

T
2 )

T , www = (wwwT
xxx ,www

T
2 )

T ,XXX = diag[IIIN0
,0N−N0

], H̄HH(α(xxx)) = diag[
√

α1h1, ...,
√

αN0
hN0

]

Hence

RRRyyyθ =

⎡
⎣ RRRyyyxxxθ

RRRyyy2θ

⎤
⎦ , XXXHHH(α)RRRyyyθ =

⎡
⎣ H̄HH(α(xxx))RRRyyyxxxθθθ

0(N−N0)M

⎤
⎦ ,

(XXXHHH(α)RRRyyyHHH(α)XXX +RRRwww)
−1 = diag[(H̄HH(α(xxx))RRRyyyxxx

H̄HH(α(xxx))+RRRwwwxxx
)−1,RRR−1

www2
]

which verifies (3.65).

Now, set new variables ᾱi = αixi, i = 1,2, ...,N which are constrained by

0 ≤ ᾱi ≤ xiPT , i = 1,2, ....,N. (3.66)

For HHH(ᾱ) :=XXXHHH(α), Σᾱ := diag[ᾱ1, . . . , ᾱN ] and Σh := diag[h1, . . . ,hN ], note that

HHH2(ᾱ) = diag[ᾱ1h1, . . . , ᾱNhN ] = Σᾱ Σh

Accordingly, the sum power constraint in (3.59) is

〈ΣᾱRRRy〉 ≤ PT . (3.67)
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Thus

〈RRReee〉= 〈RRRθ 〉− 〈RRRT
yyyθHHH(ᾱ)(HHH(ᾱ)RRRyyyHHH(ᾱ)+RRRwww)

−1HHH(ᾱ)RRRyyyθ 〉. (3.68)

Using the Inverse Matrix Lemma

RRRyyy −RRRyyyHHH(ᾱ)(HHH(ᾱ)RRRyyyHHH(ᾱ)+RRRwww)
−1HHH(ᾱ)RRRyyy = (RRR−1

yyy +HHH(ᾱ)RRR−1
www HHH(ᾱ))−1

⇔ HHH(ᾱ)(HHH(ᾱ)RRRyyyHHH(ᾱ)+RRRwww)
−1HHH(ᾱ) =RRR−1

yyy − (RRRyyy +RRRyyyHHH(ᾱ)RRR−1
www HHH(ᾱ)RRRyyy)

−1.

Therefore, (3.68) becomes

〈RRReee〉 = 〈RRRθ 〉− 〈RRRT
yyyθRRR−1

yyy RRRyyyθ +RRRT
yyyθ (RRRyyy +RRRyyyHHH(ᾱ)RRR−1

www HHH(ᾱ)RRRyyy)
−1RRRyyyθ 〉 (3.69)

= 〈RRRθ 〉− 〈RRRT
yyyθRRR−1

yyy RRRyyyθ +RRRT
yyyθ (RRRyyy +RRRyyyΣᾱRRR−1

www ΣhRRRyyy)
−1RRRyyyθ 〉

= 〈RRRθ 〉− 〈RRRT
yyyθRRR−1

yyy RRRyyyθ 〉− 〈RRRT
yyyθ (RRRyyy +RRRyyyΣᾱRRR−1

www ΣhRRRyyy)
−1RRRyyyθ 〉. (3.70)

Since 〈RRRθ 〉 and 〈RRRT
yyyθRRR−1

yyy RRRyyyθ 〉 are constants, minimizing 〈RRReee〉 is the same as maximizing 〈ZZZ〉 :=

〈RRRT
yyyθ (RRRyyy +RRRyyyΣᾱRRR−1

www ΣhRRRyyy)
−1RRRyyyθ 〉. Using Shur’s complement, (3.59) is now equivalently rewritten

by

min
t,xxx,ᾱ ,ZZZ

t : (3.54),(3.55),(3.66),(3.67), (3.71a)

〈ZZZ〉 ≤ t,

⎡
⎣ ZZZ RRRT

yyyθ

RRRyyyθ RRRy +RRRyΣᾱRRR−1
w ΣhRRRy

⎤
⎦≥ 0. (3.71b)

The objective function in (3.71) is linear while all but the binary constraint (3.54) are convex, so

(3.71) is a convex program with binary constraints, which is still nonconvex as a mixed convex

program but is already much more computationally tractable than the original mixed nonconvex

program (3.59). Interestingly, relaxing binary constraint (3.54) by xxx ∈ [0,1]N leads to the following

convex program of optimized power allocations (for all sensors active) [82]

min
t,ᾱ ,ZZZ

t : (3.67),(3.71b), 0 ≤ ᾱi ≤ PT . (3.72)

Indeed, after obtaining the optimal solution ᾱ(0) of convex program (3.72), it is obvious that

x(0) := ᾱ(0)/PT ∈ [0,1]N (3.73)

and constraint (3.55) in (3.71) is actually always verified.

Since the convex program (3.72) for all sensor power allocation is a relaxation of the mixed convex
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program (3.71) for joint sensor assignment and power allocation, the optimal value of the former

represents the estimation capacity of the overall WSN and the estimation capacity of the later can

be judged by how its optimal value approaches the capacity of the former.

3.4.2 Computational Methodology

This section is devoted to computation for the optimal solution of the mixed convex program

(3.71). One can see that binary constraint (3.54) is equivalent to

xxx ∈ [0,1]N , (3.74a)

N

∑
i=1

xn −
N

∑
i=1

x2
n ≤ 0. (3.74b)

Indeed, (3.74a) implies x2
n ≤ xn, n= 1,2, ...,N, which together with (3.74b) yield ∑N

i=1 xn = ∑N
i=1 x2

n

and then x2
n = xn, n = 1,2, ...,N, which is (3.54).

Since (3.74a) is linear and (3.74b) is reverse convex, (3.71) is a convex program with additional

reverse convex constraint [102], which belongs to the realm of d.c. optimization [102]. To avoid

the well developed global optimization algorithms [102], which are computationally expensive

due to their global search nature, we now amend (3.71) to a program of minimization of a d.c.

function subject to convex constraints only. This is another important class in d.c. optimization

but can be efficiently solved by iterative d.c. algorithms of local search nature with much less

computational complexity but nevertheless being capable of locating the global optimal solutions

in many cases of interest [43, 100].

Following our recently developed exact penalty function approach [70], there is 0 < μ0 <+∞

such that (3.71) is equivalent to the following optimization problem whenever μ > μ0

min
xxx,ᾱ

[t +μ(
N

∑
i=1

xn −
N

∑
i=1

x2
n)] : (3.55),(3.66),(3.67),(3.71b),(3.74a). (3.75)

Thus, the only nonconvex constraint (3.74) in (3.71) is relegated to the objective function in its

equivalent program (3.75). Then (3.75) can be compactly written as

min
t,xxx,ᾱ

[ fμ(t,xxx)−gμ(xxx)] : (3.55),(3.66),(3.67),(3.71b),(3.74a), (3.76)

where both fμ and gμ are convex functions defined by

fμ(xxx) := t +
N

∑
i=1

xn +(
N

∑
i=1

xn)
2, gμ(xxx) :=

N

∑
i=1

x2
n +(

N

∑
i=1

xn)
2.
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The following iterative d.c. procedure [43, 98] is readily applied for solution of d.c. program

(3.76):

• Initialize by (t(0), ᾱ(0),x(0)), whereas (t(0), ᾱ(0)) is the optimal solution of relaxed convex

program (3.72) (for all sensor power allocation) and x(0) is defined by (3.73).

• For κ = 0,1,2, ..., iteratively generate feasible solution (t(κ+1), ᾱ(κ+1),x(κ+1)) by the opti-

mal solution of the following convex program

min
t,xxx,ᾱ

[ fμ(t,xxx)− (gμ(x
(κ))+ 〈∇gμ(x

(κ)),xxx− x(κ)〉)] : (3.55),(3.66),(3.67),(3.71b),(3.74a),

(3.77)

where 〈∇gμ (x
(κ)),xxx− x(κ)〉= 2μ(∑N

n=1(x
(κ)
n +∑N

n=1 x
(κ)
n )(xn − x

(κ)
n )).

• Given a tolerance ε > 0, stop to output the solution (ᾱ∗,x∗) = (ᾱ(κ),x(κ)) whenever

fμ(t
(κ+1),x(κ+1))− fμ(t

(κ),x(κ))−gμ(x
(κ+1))+gμ(x

(κ))

| fμ(t(κ),x(κ))−gμ(x(κ))|
< ε

Due to convexity of functions gμ ,

gμ(xxx)≥ gμ (x
(κ))+ 〈∇gμ(x

(κ)),xxx− x(κ)〉 ∀xxx,

so the objective function of (3.77) is a global upper bound for that of (3.76). Therefore, as shown

by [43, 98], the above iterative d.c. procedure generates a sequence {(t(κ), ᾱ(κ),x(κ))} of its im-

proved feasible solution:

fμ(t
(κ),x(κ))−gμ(x

(κ))< fμ(t
(κ−1),x(κ−1))−gμ(x

(κ−1)),

which converges to its local optimal solution. With an appropriate initial solution (t(0), ᾱ(0),x(0))

as that defined above, this local optimal solution is often the global optimal one. Indeed, for the

above specific program (3.76), the following power re-optimization often leads to its global opti-

mal solution.

Recalling that the assignment vector x∗ is found through the above iterative d.c. procedure, I(x∗)

and then yyyx∗ , wwwx∗ and Σh(x∗) are defined according to (3.60) and (3.61). The optimal power alloca-

tion for active sensors defined by x∗ is provided by the following convex program

min
t,ᾱ ,ZZZ

t : 〈ZZZ〉 ≤ t,

⎡
⎣ ZZZ RRRT

yyyx∗θ

RRRyyyx∗θ RRRyyyx∗ +RRRyyyx∗ diag[ᾱ1, ..., ᾱN0
]RRR−1

wwwx∗ Σh(x∗)RRRy∗

⎤
⎦≥ 0 (3.78)
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The power re-optimization (3.78) has been previously used in [82] but with x∗ such that its N0

nonzero (one) components correspond to the N0 largest components of the optimal solution ᾱ(0)

of all sensor power program (3.72).
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Figure 3.1: Mean square error versus sum transmit power in minimizing MSE for scalar parameter.

3.5 Simulation Results

Effectiveness of the proposed strategies is validated via 10000 Monte Carlo channel realizations

through simulation results presented for both static and dynamic targets. There are ten sensors

(M = 10) and channel gains hi between these sensors and the FC are generated by normal distri-

bution. It is also assumed that

RRRnnnk
≡RRRnnn =RRRwwwk

≡RRRwww = diag{[}0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]. (3.79)

Following is the graphical demonstration of how the proposed filtering algorithms discussed in

previous sections perform under various scenarios.
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Figure 3.2: Mean square error versus logarithm of sum transmit power in minimizing sum power

for scalar parameter

3.5.1 Decentralized Bayes filtering for locating static targets and the optimized sen-

sor selection

Consider (3.52), (3.2) with

GGG = diag{[}1.00,1.11,1.22,1.33,1.44,1.55,1.66,1.77,1.88,2.0], (3.80)

i.e. the sensors are in different channel conditions. The decentralized Bayes filter for static target

based on SDP (3.16), is simulated by applying Theorem 3.2.1. Depending on the target’s state

dimension, there are two possible cases: Scalar target case consists of sensor nodes transmitting

their observations of one dimensional parameter of interest to the FC. Figure 3.1 shows the MSE

performances at the FC for four different power allocation schemes. From the analytical view

point, the resultant solutions offered by [29] lose their tractability for a relatively general channel

environment in which each sensor experiences a different noise variance. It can be observed from

Figure 3.1 that the proposed LMMSE based technique (by using Theorem 3.2.1) yields better
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Figure 3.3: (a) MSE estimation performance for proposed multisensor and single sensor. (b) MSE

estimation performance for proposed SDP based power allocation and equal power allocation

schemes.

results than the single best sensor approach, which assigns all the power to a single sensor of the

highest SNR, the sub-optimal solution of [29] and the equal power strategy. Our solution takes full

advantage of using a sensor network over a single sensor, while all other solution could not; the

suboptimal solution of [29] is actually worse than that by a single sensor and the equal power based

solution is much worse that that by a single sensor. Furthermore, Table 3.1 with the optimal power

allocations under different sum powers reveals that our globally optimal decentralized Bayes filters

assigns the power to only a selective number k < M of sensors (sensors # 4, 2 and 3 for PT = 0.8,

PT = 0.6 and PT = 0.4, respectively). These Bayes filters, thus, effectively solves the optimal

sensor selection by SDP instead of a hard conventional combinatoric problem of selection. For

comparison with the result of [25], consider the problem of minimizing the sum transmit power

subject to a threshold of MSE distortion, whose global optimal solution is computed based on

(3.12)-(3.13). The corresponding simulation is sketched in Figure 3.2, from which it is clear that

for a given distortion, the proposed solution requires a much smaller amount of the sum power

than does the BLUE based solution of [25]. This demonstrates that BLUE is far from the optimal

LMMSE, despite that its theoretical diversity has been shown.
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Figure 3.4: Mean square error versus total transmit power while minimizing MSE for vector-

valued parameter

Next, we study estimation performance of various power allocation schemes for a random vec-

tor θ. We consider localizing a static object in R3 in which the vector parameter to be estimated

consists of three Cartesian coordinates. Observations performed by sensor nodes include measure-

ments of range, elevation angle and azimuth angle, all of which are then fused at the FC to estimate

the target’s position. A formal representation of such a model is yyy= (g1(θ),g2(θ), ...,gM(θ))T +nnn,

where

gi(θ)= (
√

(θ(1)− si,x)2 +(θ(2)− si,y)2 +(θ(3)− si,z)2,
θ(2)− si,y

θ(1)− si,x
,

θ(3)− si,z√
(θ(1)− si,x)2 +(θ(2)− si,y)2

)T

Under LSN framework, nonlinear maps gi(θ) are linearized at θ̄ to have the linear sensor

model (3.52) with GGG = [GGGT
1 GGGT

2 ... GGGT
M]T with GGGi = ∂gi(θ̄)/∂θ. From Fig 3.3(a), it can be seen

that, by exploiting spatial diversity, LSN provides a far better estimate of the position vector as

compared to a single sensor. In Fig 3.3(b), it is demonstrated that our proposed strategy of optimal

power allocation gives lower MSE for the same transmit power when compared to the scheme of



3.5 Simulation Results 57

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
10

0

10
1

10
2

10
3

 

 

Mean Square Error

M
in

im
um

 T
ot

al
 P

ow
er

proposed MMSE based approach, ρ=0.9

Approach of Bahceci et al., ρ=0.9

proposed MMSE based approach, ρ=0.5

Approach of Bahceci et al., ρ=0.5

Figure 3.5: Mean square error versus total transmit power while minimizing power for vector-

valued parameter.

assigning equal power among nodes.

In another scenario of vector estimation, we consider a model [10, 29] for comparison pur-

pose. According to this model, each sensor in an LSN measures one scalar component of the

N-dimensional parameter. The resulting simulation result is given in Figure 3.4. Once again, our

proposed approach performs by far the best in terms of the sum power spent for different MSE

thresholds. Table 3.2 describes distribution of power to the sensors. As expected, the roles of

the sensors are more or less equal so the decentralized Bayes filters pick almost every sensor for

activity. Alternatively, for comparison with the result of [11] we consider the sum power mini-

mization subject to different MSE thresholds. Figure 3.5, providing the different performances,

clearly shows how ours approach using SDP (3.12)-(3.13) outperforms that by [11], under the

same simulation conditions as given in [11]: observation noise variance σ 2
n = 0.01, channel noise

variance σ 2
w = 1, with 2 sensor nodes and channel gains h1 = 0.8,h2 = 1, while

[RRRθ]i, j = ρ | j−i|, |ρ |< 1
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Table 3.1: Power allocation α for locating random scalar

Sensor PT = 0.8 PT = 0.6 PT = 0.4

1 0.580 0.583 0.561

2 0.388 0.396 0.000

3 0.000 0.000 0.000

4 0.171 0.000 0.109

5 0.241 0.000 0.000

6 0.000 0.000 0.000

7 0.000 0.000 0.000

8 0.000 0.000 0.083

9 0.000 0.000 0.000

10 0.000 0.000 0.000

with ρ used to express the correlation between the sensor observations.

Simulation environment for NSN is similar to its counterpart in the previous subsection, ex-

cept that the sensors carry out nonlinear range and bearing measurements here [12, 13, 35]. It is

assumend that sensors are randomly distributed over a region where they perform range and bear-

ing measurement of a target lying on the x-axis. Thus the target is located by its x-axis coordinate

θ based on range and bearing sensors

yi =

⎛
⎝
√

(si,x −θ)2 + s2
i,y

si,y

si,x−θ

⎞
⎠+ni,
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Table 3.2: Power allocation α to sensors for locating random vector

Sensor PT = 8 PT = 6 PT = 4

1 0.262 0.284 0.242

2 0.240 0.233 0.194

3 0.235 0.217 0.176

4 0.213 0.153 0.160

5 0.185 0.112 0.120

6 0.179 0.152 0.128

7 0.166 0.128 0.121

8 0.093 0.141 0.089

9 0.127 0.112 0.000

10 0.105 0.000 0.000

Here (si,x,si,y) are (x,y)-coordinates of i-sensor. Thus, the nonlinear sensing map g is in the

form of (3.17) with g1(θ) =
√

(si,x −θ)2 + s2
i,y and g2(θ) =

si,y

si,x−θ , which admits an LFT (3.18)

with

GGG = 0M×4, DDD = diag{[} 1

s2
i,x

[si,y − si,x]], GGGΔ = 0M×4, DDDΔ = diag{[} [ 1

si,x
0]], Δ(θ) = θ .

Accordingly, the approximation (3.24) is used in implementation of SDP (3.25) of Theorem 3.2.2.

Figure 3.6 shows the performance comparison between the proposed power allocation by Theorem

3.2.2, the equal power allocation and the strategy of assigning all power to a single sensor. It is

notable that the single sensor performance is not even comparable to the proposed and equal power

schemes due to lack of spatial diversity, i.e a full diversity is achievable for multi nonlinear sensors.

The proposed scheme performs better than the equal power allocation throughout the entire range.

One can also note that the difference between these two strategies become lager for smaller values

of PT , which demonstrates that our scheme ensures best use of the resources under severe power

budget constraints.

To determine MSE performance for vector target in NSN, we consider an object in a 2D plane,

which is located by its (x,y)-axis coordinates θ = (θ(1),θ(2))T .
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Figure 3.6: Mean square error versus total transmit power in nonlinear model of locating a static

target.

A typical sensor’s measurements consist of the following ranging and bearing

yi =

⎛
⎝ √

(si,x −θ(1))2 +(si,y −θ(2))2

si,y−θ(2)
si,x−θ(1)

⎞
⎠+ni (3.81)

where each map gi(θ) = (g1(θ),g2(θ))
T in form (3.17) with g2(θ) := (si,y −θ(2))/(si,x −θ(1))

admits an LFT (3.18) with

GGG = 0M×4, DDD = diag{[} 1

s2
i,x

[si,y − si,x]], GGGΔ = 0M×4, DDDΔ = diag{[} [ 1

si,x
0]], Δ(θ) = θ.

Accordingly, the approximation (3.24) is used in implementation of SDP (3.25) of Theorem 3.2.2.

Simulation results in Fig. 3.6 indicate that the SDP based approach outperforms the single sensor

approach, and shows better results than the equal power based scheme.
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Figure 3.7: (a) True trajectory and estimate of the state θk under single sensor and multisensor case

for a nonlinear dynamic model. (b) Mean square error versus total transmit power for a nonlinear

dynamic model in an LSN.

3.5.2 Decentralized Bayes filtering for locating dynamic targets

We begin our discussion of simulation results for dynamic target’s state estimation with a nonlinear

state transition model of the third order. In this example, we consider a typical third order nonlinear

autoregressive process described mathematically as qqqk+2 = −0.1qqqk+1 −qqq3
k +wwwk with the noise

corrupted observations yyyk = qqqk +nnnk. Addressed in previous work [67], this system admits the

following state-space formulations with the state θk = (θk(1),θk(2))
T := (qqqk,qqqk+1)

T

θk+1 =

⎛
⎝ 0 1

−θk(1)
2 −0.1

⎞
⎠θk +

⎛
⎝ 0

1

⎞
⎠vvvk

yyyk = [GGG 0]θk(1)+nnnk

with RRRvk
= 0.04. An equivalent LFT model (3.34) and (3.49) for this third-order nonlinearity is

achieved with the following deterministic parameters

FFFk =

⎡
⎣ 0 1

0 −0.1

⎤
⎦ , BBBk =

⎡
⎣ 0 0

0 −1

⎤
⎦



3.5 Simulation Results 62

FFFΔk =

⎡
⎣ 1 0

0 0

⎤
⎦ BBBΔk =

⎡
⎣ 0 0

1 0

⎤
⎦ ,Δ(θk) = θk(1)III2

where I2 is the 2×2 identity matrix.
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Figure 3.8: Trajectory of a maneuvering target and distribution of nodes over surveillance region.
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Using θ̄0|−1 =(0,0)T as the initial conditional estimate of the state with covariance [RRRθ0|−1
]i, j =

ρ | j−1|, ρ = 0.75, trajectory of the state θk for 50 time steps along with state estimates are shown

in Fig. 3.7 where mean square error for the first component of the state variable obtained from 102

Monte Carlo runs is plotted using Theorem 3.3.1. These results suggest that the proposed multi-

sensors approach outperforms the single sensor scheme for the measured state estimation. Also,

the proposed optimal power allocation technique offers less MSE than equal power allocation.
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Figure 3.9: Target tracking performance of multisensor and single sensor in terms of estimation

error of x-coordinate.
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Figure 3.10: Target tracking performance of multisensor and single sensor in terms of estimation

error of y-coordinate.

The problem of dynamic target tracking has been extensively addressed in previous literature

(see, e.g. [12] and [13] and the references therein). In this example, we consider a vehicle moving

along a trajectory as specified in Fig 3.8, with a dynamic model based on constant velocity and

a coordinated turn model [12] to account for nonmaneuver and maneuver motion of the target.

Corresponding state and the ith measurement equations are

θk+1 = AAAθk +wkwkwk

yik =

⎛
⎝ √

(si,x −θk(1))2 +(si,y −θk(3))2

si,y−θk(3)
si,x−θk(1)

⎞
⎠+nik,
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Figure 3.11: True trajectory and estimates by single and multisensor network.

where wkwkwk ∼ N (0,RRRwwwk
) is the process noise, θk = (pxk

, ṗxk
, pyk

, ṗyk
)T denotes the kinetic state

of the target at time k consisting of the target coordinate (pi,x, pi,y) and its velocity (ṗi,x, ṗi,y), and

with the system matrices

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 sinωT
ω 0 − 1−cosωT

ω

0 cosωT 0 −sinωT

0 1−cosωT
ω 1 sinωT

ω

0 sinωT 0 cosωT

⎞
⎟⎟⎟⎟⎟⎟⎠
, Rwwwk

=

⎛
⎜⎜⎜⎜⎜⎜⎝

T 4

4
T 3

2
0 0

T 3

2
T 2 0 0

0 0 T 4

4
T 3

2

0 0 T 3

2
T 2

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Here T is the sampling period and ω is the turn rate of the maneuvering target. RRRθk
is initialized

as RRRθ0|−1
= diag

[
10,2.5,10,2.5

]
with initial position and velocity as (250,150) and (15,15),

respectively. The sensor nonlinear measurements include range and bearing information of the

vehicle, corrupted by noise vector nnnk ∼ (0,RRRnnnk
). It is notable that range measurement function

bears a moderate nonlinear map, hence (3.41) is used to approximate mean and other moments,

whereas for highly nonlinear map of the bearing information, we use (3.43) to evaluate the required

statistics with the same LFT system matrices as used in the static nonlinear scenario. In other

words, implementation of Theorem 3.3.1 is sought to track the ever evolving state vector under

linear state dynamics for this target tracking problem.
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Figure 3.12: Distribution of power among different sensor nodes for the case N = 10.

Tracking of the moving vehicle is executed over a 2D surveillance region of [100,50] ×
[1000,450]m2. A multitude of sensor nodes M = 10, randomly deployed over the region of in-

terest, takes measurements at a sampling period of 1 sec. For process noise, we choose σ 2
w = 0.5.

Similarly, variance of local as well as global channel noise while measuring range and bearing are

σ 2
n,range = 0.5,σ 2

n,bearing =
π

180
and σ 2

v,range = 1.0,σ 2
v,bearing =

π
180

, respectively. The target’s trajec-

tory, along with sensor nodes distribution have been shown in Fig 3.8. A one-dimensional view of

the true and estimated trajectory for single and multiple sensors converted to Cartesian coordinates

is shown in Fig. 3.11. At k = 1 sec target sets off from (250,150) at a constant velocity of 15

m/sec and after 14 sec performs a clockwise turn for 6 sec at a turn rate of ω = −0.2 rad/sec. It

takes two counterclockwise turns; one after 16 sec and then after 4 sec. Simulation results shown

in Fig 3.9 and 3.10 suggest that multisensors perform better than a single sensor even when all

available power is allocated entirely to the single sensor.

Of particular interest is the observation that for optimized estimation performance at all time

instants, nodes with the best channel conditions, determined by the proposed strategy, are selected

to sense and send their data. This is further elaborated in Fig 3.12 where distribution of power

among 10 sensor nodes is plotted.
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3.5.3 Joint sensor selection and power allocation

This section provides simulation results obtained from 5000 Monte Carlo realizations of the ran-

dom channel gains hi from sensors to the FC which follow normal distribution. Perfect channel

state information is acknowledged at the FC. For computational implementation, the penalty pa-

rameter is set as μ = 10 and the tolerance is ε = 0.01. Zero-mean additive white Gaussian noise

(AWGN) with variance RRRw(i, i) = 0.1 is considered for all sensors which are assumed to be ran-

domly deployed in a given geographic area to localize an object through linear/nonlinear noisy

observations.

Firstly, consider localizing a static object in R3, i.e. the vector parameter to be estimated

consists of three Cartesian coordinates. Observations performed by sensor nodes include mea-

surements of range with fi(θ) =
√

(θ1 − si,x)2 +(θ2 − si,y)2 +(θ3 − si,z)2, elevation angle by sen-

sors with fi(θ) =
θ2−si,y

θ1−si,x
and azimuth angle by sensors with fi(θ) =

θ3−si,z√
(θ1−si,x)2+(θ2−si,y)2

, where

(si,x,si,y,si,z) are the Cartesian coordinates of the ith sensor [82]. Under the linear sensor network

(LSN) framework, nonlinear maps fi(θ) are linearized at θ̄ to have the linear sensor model so

fi(θ) = FFFiθ with Fi = ∂ fi(θ̄ )/∂θ for definition of (3.52). The noise vi is assumed to be zero-

mean AWGN with its variance for the range measurement RRRv,range(i, i) = 0.1 whereas for bearing

measurement (e.g. for both elevation and azimuth angles) RRRv,bearing(i, i) = π/180. Accordingly,

RRRyyyθ = FFFRRRθ and RRRyyy = FFFRRRθFFFT +RRRv, where FFF := (FFFT
1 , ...,FFF

T
N)

T . Figure 3.13 shows MSE plot

versus total transmit power budget under for N = 30 and N0 = 6 and N0 = 15. A comparison

is drawn among the proposed technique, the power re-optimization method of [82] for solution

of mixed convex program (3.71) , and the lower bound provided by the relaxed program (3.72)

(for power allocation to all sensors). Note that the power re-optimization method jointly performs

sensor selection and power allocation in two steps: first, it solves SDP under MSE minimization

to determine the active set of sensors, and second, it solves another SDP to optimally allocate

power over the reduced set of active sensors. As illustrated in the figure, the MSE curves of the

proposed method with N0 = 15 is closest to the lower bound curve (for optimal value of (3.72))

which implies that implies that the proposed method is capable of locating the optimal solution of

(3.71) by just using half of available sensor nodes. In particular, the curve of the proposed method

with N0 = 15 gradually approaches its lower bound as total power increases. The joint optimized
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Figure 3.13: MSE estimation performance comparison in an LSN for N = 30.

sensor assignment and power allocation are well motivated. It can be seen that the performance of

the power re-optimization method of [82] does not perform better than the proposed method, and

its performance is even far worse when the active sensor number N0 is decreased to 6.

Table 3.3: Average No. of iterations for LSN with N = 30

PT (mW) 500 1000 1500 2000 2500 3000 3500 4000

Iterations (N0 = 3) 3.0280 2.0380 2.1140 2.1720 2.3160 2.3520 2.3880 2.4560

Iterations (N0 = 6) 2.0640 2.1460 2.2360 2.3540 2.4220 2.4820 2.4780 2.6860

Next, consider the simulation example for nonlinear sensing function used in [82], where an

object in a 2D plane, which is located by its (x,y)-axis coordinates θ = (θ1,θ2)
T . The sensor’s

measurements consist of the range with fi(θ) =
√

(si,x −θ1)2 +(si,y −θ2)2 and bearing fi(θ) =

si,y−θ2

si,x−θ1
. Local sensor noise is zero-mean AWGN with RRRv,range(i, i) = 0.1 and RRRv,bearing(i, i) = π/180.

Of course, there are no analytical forms of the auto-covariance RRRyyy and cross-covariance RRRyyyθ but

they can be approximately computed well based on the linear fraction transformation technique
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Figure 3.14: MSE estimation performance comparison in an NSN for N = 12.

Table 3.4: Average No. of iterations for NSN with N = 20

PT (mW) 500 1000 1500 2000 2500 3000 3500 4000

Iterations (N0 = 6) 2.1148 2.0312 2.0672 2.1200 2.2012 2.2692 2.3384 2.3848

Iterations (N0 = 14) 4.1704 4.0172 3.9592 3.8868 3.6976 3.5236 3.2752 3.0064

[82], which is also used in our simulation. Like Figure 3.13, Figures 3.14 and 3.15 present a

performance comparison between the proposed method and that of [82]. Again, the lower bound

provided by program (3.72) is found to be very close to the proposed curve of N0 = 6 (for N = 12)

and N0 = 10 (for N = 20) in Figures 3.14 and 3.15, respectively. On the other hand, the above

mentioned power re-optimization method of [82] performs poorly compared to the corresponding

proposed technique for both cases.

Tables I and II provide the averaged number of iterations, i.e. the averaged number of the convex

program (3.77) used in the proposed d.c. procedure for solution of (3.71). Just up to three iterations

are needed for its solutions. The computational efficiency of our d.c. procedure is obvious.
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Figure 3.15: MSE estimation performance comparison in an NSN for N = 20.

3.6 Summary

The problem of power allocation among sensor nodes for locating a static target or for tracking

a dynamic target in either linear or nonlinear sensing systems has been addressed. These sensors

observe the targets and then transmit their noisy observations through noisy wireless channels to

the FC where the final estimate is carried out. Due to limited energy resources, it is desired to

develop an optimized power allocation technique which is able to minimize mean square error

of the estimate under a given power budget. A novel technique based on tractable optimization

(SDP) and approximation (unscented and linear fractional transformations) has been proposed.

The multi-sensor diversity has been fully exploited to arrive at an accurate estimate of the target’s

state. Accompanying simulation results clearly showed the viability of the theoretical results.

In the next part, a joint program of active sensor assignment and power allocation in linear

and nonlinear sensor network is considered. Its optimized solutions are quickly located by the

developed d.c. procedure of local search. Nevertheless, simulation results indicate that the global

optimal solutions are obtained in a few iterations, which result in the full WSN capacity within
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only about half of sensor nodes invoked.



Chapter 4

Relay Beamforming Designs in

Multi-User Wireless Relay Networks

Relay-assisted wireless communication is currently one of the most active research topics (see

e.g. [34, 48, 86]). The key advantage of relay-assisted communication is that spatial diversity

can be exploited via cooperation of relays/nodes to improve the link reliability, and to extend

the communication coverage area [16, 39, 108]. In a multi-user relaying framework, distributed

relay nodes are employed to assist the communication among a number of multiple sources and

destinations [50]. Relay-assisted communication schemes are generally classified into three main

categories: decode-and-forward (DF), compress-and-forward (CF) and amplify-and-forward (AF)

[46, 48]. Due to its simplicity in mathematical modeling and low cost in implementation, AF

relaying scheme has been extensively studied. In AF relaying, the relays simply amplify the

signals received from the sources and then forward the amplified versions to all the destinations.

In a multi-user relay network, beamforming is implemented at relay nodes such that the desired

signal of each user at the destination can be constructively combined, while the interferences and

noise are efficiently mitigated [28, 30, 63, 70, 71].

The outline of this chapter is organized as follows. A brief introduction and motivation of

the problem is given in Section 4.1. Section 4.2 describes the system model when the sources

simultaneously transmit to the relays (i.e., under non-orthogonal source transmissions). It also

formulates the optimization problem and discusses challenges in obtaining solutions. Section 4.3

72
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presents a formulation of the optimization problem as a d.c. program and develops an iterative

algorithm to obtain the solutions. Section 4.4 considers a beamforming design problem when

the sources operate in orthogonal channels in communicating with the relays in the first phase

(so as to improve the quality of service for networks with a larger number of source-destination

pairs). Section 4.5.1 formulates the joint source power allocation and relay beamforming design

problem for which proposed solution is presented in Section 4.5.2. A simplified joint optimization

based on equally constrained source powers is also developed in Section 4.5.2. Simulation results

that support the algorithm developments are presented in Section 4.6. Conclusions are drawn in

Section 4.7.

4.1 Introduction

A large body of works considered beamforming design in the context of relay power minimization

subject to the signal-to-interference-plus-noise ratio (SINR) constraints. While the objective func-

tion of beamforming power is quadratic convex in the complex beamforming vector, the SINR

constraints are indefinite (nonconvex), which makes the overall program nonconvex quadratic.

Such a nonconvex quadratic program can be trivially rewritten as a rank-one constrained matrix

program with the variable dimension substantially increased. Without individual relay power con-

straints, this nonconvex program can be transformed into a relaxed semi-definite (convex) program

(SDP) by dropping the rank-one constraint because the relaxed SDP often outputs its rank-one op-

timal solution [30, 63]. However, as shown both theoretically and numerically in [70–72], the

presence of the individual relay power constraints (which are necessary to reflect practical limi-

tations of relay hardware [16]) would make the optimized solution of the corresponding relaxed

SDP just low-rank, but no longer rank-one. Not having rank-one with the optimal solution of the

SDP relaxation means that it is not possible to locate even feasible beamforming solutions. On the

other hand, the low-rank of its optimal solution means that a further randomization [30], which

in fact tries to randomly generate feasible solutions in the low-dimensional subspace of eigenvec-

tors corresponding to nonzero eigenvalues of its optimal solutions, is highly inefficient. It can

be easily shown that a nontrivial randomization would simply perform the same. Our previous

works [70, 71] developed efficient algorithms to address this beamforming power minimization,
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where the original matrix rank-one (nonconvexity) constrained optimization is exactly reformu-

lated as minimization of nonsmooth matrix spectral objective functions under convex constraints.

Additionally, the objective functions of the reformulated optimizations have been shown to be

d.c. (difference of two convex) functions in the matrix variables [102]. The d.c. path-following

procedures [8] have been known to effectively locate the global optimal solutions.

One of the main objectives of emerging wireless technologies is to provide reliable services at

high throughput under limited power resources. In the context of multi-user relay-assisted wire-

less networks, the goal is to maximize the information throughput among multiple sources and

destinations in a fair manner. Accordingly, the beamforming design problem is to maximize the

minimum information throughput among source-destination pairs. In other words, the problem is

maximin throughput optimization, which is related to the maximization problem of the minimum

SINR under limited beamforming power constraints. However, in contrast to the above mentioned

power beamforming program, the objective function of maximin information throughput optimiza-

tion is neither smooth nor concave. This means that the program is maximization of nonconcave

and nonsmooth objective functions subject to (nonconvex) rank-one constraints. Such a program

belongs to the most challenging optimization class [102].

Specifically, even by dropping the rank-one constraints, the relaxed maximization problem

is still not computationally tractable as the objective function is still not concave. The conven-

tional rank-one dropping relaxation simply does not work. This problem has been considered

by [17] for a particular case of a total relay power constraint only. A standard bisection pro-

cedure to iteratively update feasible SINR thresholds has been employed. As mentioned above,

without individual relay power constraints, the feasibility/infeasibility of a SINR threshold can be

accurately solved by the SDP relaxation. Under the individual relay power constraints, this non-

convex program cannot be addressed by SDP relaxation and so the bisection method is no longer

a good solution procedure. Again, a trivial randomization would perform the same. In the end,

this maximin throughput optimization is convex constrained optimization in beamforming vector.

Such a matrix rank-one constrained re-formulation not only increases the problem dimension sub-

stantially but also unnecessarily invites the nonconvex hard rank-one constraint that destroys the

tractable convexity of the original constraints, while the new objective function is still nonconvex.
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In other words, the existing matrix optimization approach reformulates the original hard convex

constrained minimization of a nonconvex objective function to a much harder and much larger

dimension nonconvex constrained minimization of a nonconvex objective function.

In this chapter, we follow [8, 98] and adopt d.c. programming [45, 102] to directly address

this nonconvex maximin throughput optimization problem, bypassing the above mentioned matrix

rank-one constrained optimization. The main issue is how to recognize and then explore hidden

partial convex structures of the problem at hand in order to develop an effective algorithm to find

the solutions. As both dimension and nonconvexity rank of this optimization problem are surely

high for applicability of global optimization algorithms [102], we pursue alternative iterations of

the local search, which however are able to locate approximately global optimal solutions. The

advantages of the developed algorithm are summarized as follows:

• Unlike other sequential quadratic/SDP iterations (see e.g. [6,7]) for locating solutions of the

Karush-Kuhn-Tucker (KKT) necessary optimality condition, the proposed iterations can

locate optimal solutions.

• Unlike other nonsmooth optimization iterations (see e.g. [5]), which may suffer the so-called

zero-progression steps that slows down the convergence, the proposed iterations surely im-

prove the solution at every step and thus converge quickly.

• The implementation of the proposed iterations is simple and does not involve the control of

step size (which can be both sensitive and difficult to determine) [5–7].

Furthermore, this chapter also considers joint design of source power allocation and relay

beamforming for multi-user multi-relay wireless networks. The design problem is formulated as

maximizing the worst signal-to-inference-plus-noise ratio (SINR) among users (SINR maximin

optimization) subject to meaningful power constraints. This computationally intractable noncon-

vex problem is recast as an equivalent d.c. (difference of two convex functions) programming. By

exploiting specific structures of the d.c. program, an iterative algorithm with low computational

complexity is then developed to obtain the optimal solution. Furthermore, a simplified sub-optimal

solution with equally constrained source powers is also suggested, which is efficient in both com-

putation and required communication overhead but still has very good performance. Extensive
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simulation results show that our optimal and sub-optimal solutions of the joint optimization prob-

lem significantly outperform the solution obtained by separate designs of source power allocation

and/or relay beamforming.

Figure 4.1: A multi-user amplify-and-forward wireless relay network.

4.2 Maximin Throughout Optimization: Problem Formulations and

Challenges

Figure 5.1 illustrates a wireless relay network, in which M pairs of source-destination communi-

cates with the help of N relays. All relay and user nodes are equipped with a single antenna and

operate in half-duplex mode. In the first time-slot, the sources simultaneously send their signals

to the relays. The relays “amplify” their received signals by multiplying with certain weights and

then simply forward these processed signals to all destinations. The case that sources communicate

with the relays over orthogonal channels shall be treated in Section 4.4.

Let sss = (s1,s2, . . . ,sM)T ∈ C M be the vector of signals sent by M sources, which is assumed to

be zero mean and component-wise independent with variance σ 2
s =E[|si|2]. Let h̃hhm =(h̃m1, h̃m2, . . . , h̃mN)

T ∈
C N , m = 1,2, . . . ,M, be the vector of uplink channel coefficients between the mth source and all

the relays. Likewise, let �̃��i = (�̃i1, �̃i2, . . . , �̃iN)
T ∈ C N , i = 1,2, . . . ,M, be the vector of downlink

channel coefficients between all the relays and the ith destination. The received signals at all the
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relays can be collectively written as

yyyup =
M

∑
m=1

h̃hhmsm +nnnR, (4.1)

where nnnR = (nR,1, . . . ,rR,N)
T ∈ C N represents the additive noises at the relay receivers, which

is modeled as zero-mean white Gaussian random variables of variance σ 2
R = E[|nR,n|2], n =

1,2, . . . ,N.

Let xxx = (x1,x2, . . . ,xN)
T be the vector of beamforming weights. Then the relays send the

following signals to the destinations:

yyyamp = xxx�yyyup =
M

∑
m=1

xxx� h̃hhmsm +xxx�nnnR. (4.2)

Accordingly, the received signal at the ith destination is

yyyD,i = 〈�̃��i,yyyamp〉+nD,i =
M

∑
m=1

〈c̃ccmi,xxx〉sm + 〈�̃��i �nnnR,xxx〉+nD,i, (4.3)

where nD,i is the additive Gaussian noise at the ith destination with variance σ 2
D. The vector

c̃ccmi = �̃��i � h̃hhm represents the compound channel coefficient from source m to destination i.

To incorporate the channel uncertainties in the beamforming design, assume that

h̃hhmh̃hh
H

m = hhhmhhhH
m +ΔHHHm, m = 1,2, . . . ,M,

�̃��i�̃��
H

i = ���i���
H
i +ΔLLLi, i = 1,2, . . . ,M,

c̃ccmic̃cc
H
mi = cccmiccc

H
mi +ΔCCCmi, m, i = 1,2, . . . ,M,

(4.4)

where

• hhhm, ���i and cccmi are nominal values that can be obtained through channel estimation (see e.g.

[95], where the compound channel coefficients cccmi can be directly obtained at the destination

side);

• ΔHHHm ∈ C N×N , ΔLLLi ∈ C N×N and ΔCCCmi ∈ C N×N are Hermitian symmetric full block uncer-

tainty matrices [116], which satisfy the following spectral constraints:

ρ(ΔHHHm)≤ ζ 2, ρ(ΔLLLi)≤ ζ 2, ρ(ΔCCCmi)≤ ζ 2, m, i = 1,2, . . . ,M. (4.5)
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The uncertainties in the form of (4.4) are called unstructured (see e.g. [116]). On the other hand,

the structured uncertainties have the following forms:

h̃hhm = hhhm +δhhhm, �̃��i = ���i +δ���i, c̃ccmi = cccmi +δcccmi, m, i = 1,2, . . . ,M (4.6)

with

||δhhhm|| ≤ ζ̄ , ||δ���i|| ≤ ζ̄ , ||δcccmi|| ≤ ζ̄ , m, i = 1,2, . . . ,M. (4.7)

In fact, (4.6) can be rewritten in the form of (4.4) with

ΔHHHm = hhhm(δhhhm)
H +(δhhhm)hhh

H
m +δhhhm(δhhhm)

H ,

ΔLLLi = ���i(δ���i)
H +(δ���i)���

H
i +δ���i(δ���i)

H ,

ΔCCCmi = cccmi(δcccmi)
H +(δcccmi)ccc

H
mi +δcccmi(δcccmi)

H , m, i = 1,2, . . . ,M

(4.8)

and

ζ 2 := ζ̄

(
ζ̄ +2max

{
max

m=1,2,...,M
||hhhm||, max

i=1,2,...,M
||���i||, max

m,i=1,2,...,m
||cccmi||

})
. (4.9)

For the received signal given in (4.3), since only the signal component 〈cccii,xxx〉si is of interest,

its “robust” power is defined by

Si(xxx) = σ 2
s inf

ρ(ΔCCCii)≤ζ 2
|〈xxx,c̃ccii〉|2

= σ 2
s inf

ρ(ΔCCCii)≤ζ 2
[|〈xxx,cccii〉|2 +xxxHΔCCCiixxx]

= σ 2
s [|〈xxx,cccii〉|2 −ζ 2||xxx||2]. (4.10)

Analogously, the “robust” interference power in (4.3) is defined by

INTi(xxx) = sup
ρ(ΔLLLi)≤ζ 2, ΔCCCmi≤ζ 2

[
σ 2

s ∑
m �=i

|〈xxx,c̃ccmi〉|2 +σ 2
R|〈�̃��i,xxx〉|2

]

= σ 2
s ∑

m �=i

(|〈xxx,cccmi〉|2 +ζ 2||xxx||2)+σ 2
R(|〈���i,xxx〉|2 +ζ 2||xxx||2). (4.11)

It follows that the “robust” signal-to-interference-plus-noise ratio (SINR) at destination i can be

expressed as

SINRi(xxx) =
Si(xxx)

INTi(xxx)+σ 2
D

. (4.12)

Note that by (4.2) the total beamforming power across all the relays is

PT (xxx) = E{||yyyamp||2}= σ 2
s sup

ρ(ΔHHHm)≤ζ 2

M

∑
m=1

||xxx� h̃hhm||2 +σ 2
R||xxx||2 = 〈xxxxxxH ,RRR〉,
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with

RRR := diag[rrr], rrr := (r1, . . . ,rN)
T ,rn = σ 2

s

M

∑
m=1

(|hmn|2 +ζ 2)+σ 2
R,n = 1,2, . . . ,N.

On the other hand, the individual beamforming power at relay n is Pn(xn) = rn|xn|2.

In order to quantify the quality of service (QoS) for the multi-user relay communication frame-

work under consideration, we use the metric of information throughput computed for each source-

destination pair. This quantity is expressed for the ith source-destination pair as

Ii(xxx) = log2(1+SINRi(xxx)). (4.13)

In particular, the program of maximin information throughput under the individual relay power

constraints, Pn(xn)≤ γn, n = 1,2, . . . ,N, is formulated as

max
xxx∈C N

min
i=1,2,...,M

log2(1+SINRi(xxx)) : rn|xn|2 ≤ γn, n = 1,2, . . . ,N. (4.14)

The equivalent program in terms of SINR threshold maximin optimization is

max
xxx∈C N

min
i=1,2,...,M

SINRi(xxx) :=
σ 2

s (|〈xxx,cccii〉|2 −ζ ||xxx||2)
σ 2

s ∑m �=i(|〈xxx,cccmi〉|2 +ζ 2||xxx||2)+σ 2
R(|〈���i,xxx〉|2 +ζ 2||xxx||2)+σ 2

D

:

rn|xn|2 ≤ γn, n = 1,2, . . . ,N.

(4.15)

While the constraints in maximin programs (4.14) and (4.15) are convex, their objective functions

are not concave nor convex. To the best of our knowledge, effective methods to solve this program

were not known.

For the particular case of ζ = 0, i.e., there is no channel uncertainty, the original minimax

problem, which is essentially minimization of relay transmit power subject to constraints on SINR,

becomes:

min
xxx

max
n=1,2,...,N

[rn|xn|2/γn] : SINRi(xxx)≥ α , i = 1,2, . . . ,M (4.16)

where α is the lower bound of individual SINR. The above problem is reformulated in reference

[30] by using the equivalent matrix rank-one constrain:

min
XXX∈CN×N

max
n=1,2,...,N

[rnXXX(n,n)/γn] : XXX ≥ 0, rank(XXX) = 1,

σ 2
s 〈XXX ,CCCii〉 ≥ α [σ 2

s ∑m �=i〈XXX ,CCCmi〉+σ 2
R〈XXX ,LLLi〉+σ 2

D],
(4.17)
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which is then relaxed to the following SDP by dropping the only nonconvex rank-one constraint,

also known as semidefinite relaxation (SDR):

min
XXX∈CN×N

max
n=1,2,...,N

[rnXXX(n,n)/γn] : σ 2
s 〈XXX ,CCCii〉 ≥ α [σ 2

s ∑
m �=i

〈XXX ,CCCmi〉+σ 2
R〈XXX ,LLLi〉+σ 2

D], XXX ≥ 0. (4.18)

It then follows that one can use the bisection method to find the maximum αopt of those α such

that the optimal value of SDP (4.18) is less than one. Thus αopt provides an upper bound for the

maximin program (4.15). If SDP (4.18) at α = αopt has rank-one optimization solution XXXopt =

xxxoptxxx
H
opt then such xxxopt is surely optimal solution of the nonconvex program (4.16) and then of

maximin program (4.15). However, XXXopt is often not rank-one [70, 71], so it admits a singular

value decomposition (SVD) XXXopt = UUUΣΣΣUUUH with unitary matrix UUU = (uuu1, . . . ,uuuN) and diagonal

matrix ΣΣΣ, whose diagonal entries are arranged in decreasing order and so ΣΣΣ(i, i) = 0 for i ≥ iopt :=

rank(XXXopt)≥ 2. The SDR-based randomization generates

xxx(v) =UUUΣΣΣ1/2vvv =
iopt

∑
i=1

ΣΣΣ1/2(i, i)viuuui, (4.19)

where vvv = (v1, . . . ,vN) is generated as unit-variance complex Gaussian vector with uncorrelated

components. Hence, xxx(v) always belongs to span{uuu1, . . . ,uuuiopt
} of low dimension iopt, i.e., random-

ization is performed in a low-dimensional sub-space. Each randomly generated vector xxx(v) is fur-

ther scaled by tv := minn=1,2,...,N

√
γn/rn|xxx(v)n |2 to satisfy the power constraint in maximin program

(4.15) and then minn=1,2,...,N SINRi(tvxxx
(v)) is calculated to update its current best value. Obviously,

the optimized solution of maximin program (4.15) hardly resides in subspace span{uuu1, . . . ,uuuiopt
} ⊂

C N . As such, no matter how many xxx(v) are randomly generated, the value of maximin program

(4.15) is not much improved. As a matter of fact, the simulation results in Section 6 will show that

a more trivial randomization will simply work quicker because it calls only one SDP solver.

From the view point of finding solutions, the above standard bisection method is backward

because the original maximin program (4.15) as maximization of a nonconcave objective function

over convex constraints is in fact easier than the minimax program (4.16) used for the bisection

routine, which is minimization of a convex objective function over nonconvex constraints [102].

Moreover, variable XXX in matrix rank-one constrained reformulation (4.17) for program (4.16) is

of dimension N(N +1)/2, which is (N +1)/2 times larger than that of variable xxx in the maximin

program (4.15).
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Although both the minimax program (4.16) and maximin program (4.15) in nonrobust scenar-

ios (ζ = 0) can be solved by our nonsmooth matrix spectral optimization algorithm with the matrix

variable setting XXX = xxxxxxH of dimension N(N + 1)/2 [71], the next section develops and presents

direct approaches for obtaining solutions of maximin programs (4.14) and (4.15), hence bypassing

any bisection approach and computationally demanding matrix optimization.

4.3 Maximin Throughout Optimization by d.c. Programming

Our strategy is to express the maximin program (4.15) in the following canonical form of d.c.

optimization [102]:

min
zzz
[ f (zzz)−g(zzz)] : zzz ∈ K , (4.20)

where zzz is a matrix and/or vector variable, K is a compact and convex set, f (·) is a quasi-convex

function (i.e., for each t the level set {zzz : f (zzz) ≤ t} is either empty or convex) and g(·) is a

convex and smooth function. Suppose that zzz(κ) ∈ K and ∇g(zzz(κ)) is the gradient of g(·) at zzz(κ).

Then [102]

f (zzz)−g(zzz)≤ f (zzz)−g(zzz(κ))−〈∇g(zzz(κ)),zzz−zzz(κ)〉 ∀zzz ∈ K

It then follows that the following convex program provides a global upper bound minimization for

d.c. program (5.17):

min
zzz
[ f (zzz)−g(zzz(κ))−〈∇g(zzz(κ)),zzz−zzz(κ)〉] : zzz ∈ K , (4.21)

where zzz(κ) is also its feasible solution. Moreover, for the optimal solution zzz(κ+1) of (5.17),

f (zzz(κ+1))−g(zzz(κ+1)) ≤ f (zzz(κ+1))−g(zzz(κ))−〈∇g(zzz(κ)),zzz(κ+1)−zzz(κ)〉
≤ f (zzz(κ))−g(zzz(κ))−〈∇g(zzz(κ)),zzz(κ)−zzz(κ)〉
= f (zzz(κ))−g(zzz(κ)),

which means that zzz(κ+1) is better than zzz(κ) toward (5.17). Thus, initialized from a feasible zzz(0) ∈
K , for κ = 0,1, . . . , generating zzz(κ) by the optimal solution of convex program (5.18) is a path-

following algorithm, which converges to an optimal solution.

It can be seen that there are infinite number of d.c. representations for the same nonconvex

problems and it is clear from (5.18) that the efficiency of the d.c. path-following procedure crit-

ically depends on the choice of d.c. representation. The next section shall examine this issue in
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more details. Unlike the approach of [69], which attempts to locate the global optimal solution

of d.c. program (5.17) by combining iterations (5.18) with customized branch-and-bound of high

computational complexity, here we develop effective equivalent d.c. decompositions that make

iterations (5.18) converge to the global optimal solution.

Proposition 1. The maximin program (4.15) is equivalent to

max
xxx∈C N , yyy∈RM

+

min
i=1,2,...,M

ϕi(xxx,yi) :=
|〈xxx,cccii〉|2 −ζ 2||xxx||2

yi +σ 2
D/σ 2

s

: (4.22a)

∑
m �=i

(|〈xxx,cccmi〉|2 +ζ 2||xxx||2)+ σ 2
R

σ 2
s

(|〈���i,xxx〉|2 +ζ 2||xxx||2)≤ yi, i = 1,2, . . . ,M, (4.22b)

rn|xn|2 ≤ γn, n = 1,2, . . . ,N. (4.22c)

Proof. For any feasible solution (xxx,yyy) of (4.22), it is obvious that

|〈xxx,cccii〉|2 −ζ 2||xxx||2
yi +σ 2

D/σ 2
s

≤ |〈xxx,cccii〉|2 −ζ 2||xxx||2

∑m �=i(|〈xxx,cccmi〉|2 +ζ ||xxx||2)+ σ2
R

σ2
s
(|〈���i,xxx〉|2 +ζ 2||xxx||2)

.

Therefore,

max (4.22) ≤ max (4.15). (4.23)

On the other hand, for the optimal solution xxxopt of the maximin program (4.15), it is also obvi-

ous that (xxxopt,yyyopt) with yopt,i = ∑m �=i(|〈xxxopt,cccmi〉|2 + ζ 2||xxxopt||2)+ σ2
R

σ2
s
(|〈���i,xxxopt〉|2 + ζ 2||xxxopt||2) is

feasible to program (4.22). Then

max (4.15) = min
i=1,2,...,M

ϕi(xxxopt,yopt,i)≤ max (4.22). (4.24)

It is concluded from (4.23) and (4.24) that (xxxopt,yyyopt) must be the optimal solution of (4.22).

Obviously, (4.22b)-(4.22c) are convex quadratic constraints, which can also be represented by

the linear matrix inequality (LMI):⎡
⎣ QQQi QQQixxx

xxxHQQQi yi

⎤
⎦� 0;

⎡
⎣ γn

rn
xn

xH
n 1

⎤
⎦� 0, n = 1,2, . . . ,N, (4.25)

QQQi := ∑
m �=i

(cccmiccc
H
mi +ζ 2IIIN)+

σ 2
R

σ 2
s

(���i���
H
i +ζ 2IIIN), i = 1,2, . . . ,M.

Proposition 2. Each fractional function |〈xxx,cccii〉|2/(yi +σ 2
D/σ 2

s ) is convex
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Proof. First, each function φi(s,yi) := |s|2/(yi +σ 2
D/σ 2

s ) is convex in (s,yi) ∈ C ×R+ because its

Hessian, which is defined by

Hs,yi
:=

⎡
⎣ ∂ 2φi(s,yi)

∂ 2s

∂ 2φi(s,yi)
∂ s∂yi

∂ 2φi(s,yi)
H

∂ s∂yi

∂ 2φi(s,yi)
∂ 2yi

⎤
⎦= 1

yi+σ2
D/σ2

s

⎡
⎣ 2 − s+s̄

yi+σ2
D/σ2

s

− s+s̄

yi+σ2
D/σ2

s

2|s|2
(yi+σ2

D/σ2
s )

2

⎤
⎦

is positive definite [102]:

Hs,yi
(1,1) = 2 > 0, Hs,yi

(2,2) = 2|s|2/(yi +σ 2
D/σ 2

s )
3 ≥ 0,

det(Hs,yi
) = 4(|s|2 −Re(s)2)/(yi +σ 2

D/σ 2
s )

3 ≥ 0.

This means that, for any 0 ≤ θ ≤ 1 and (s,yi),(s
′,y′i) ∈ C ×R+, one has

|θs+(1−θ)s′|2
θyi +(1−θ)y′i +σ 2

D/σ 2
s

≤ θ |s|2
yi +σ 2

D/σ 2
s

+
(1−θ)|s′|2
y′i +σ 2

D/σ 2
s

.

Therefore,

|〈θxxx+(1−θ)xxx′,cccii〉|2
θyi +(1−θ)y′i +σ 2

D/σ 2
s

=
|θ〈xxx,cccii〉+(1−θ)〈xxx′,cccii〉|2
θyi +(1−θ)y′i +σ 2

D/σ 2
s

≤ θ
|〈xxx,cccii〉|2

yi +σ 2
D/σ 2

s

+(1−θ)
|〈xxx′,cccii〉|2

y′i +σ 2
D/σ 2

s

,

which shows that |〈xxx,cccii〉|2/(yi +σ 2
D/σ 2

s ) is convex.

Also from [102] one has

min
i=1,2,...,M

ϕi(xxx,yi) = min
i=1,2,...,M

[ |〈xxx,cccii〉|2 −ζ 2||xxx||2
yi +σ 2

D/σ 2
s

]

=
M

∑
j=1

|〈xxx,ccc j j〉|2
y j +σ 2

D/σ 2
s

− max
i=1,2,...,M

(
ζ 2||xxx||2

yi +σ 2
D/σ 2

s

+ ∑
m �=i

|〈xxx,cccmm〉|2
ym +σ 2

D/σ 2
s

)

= f02(xxx,yyy)− f01(xxx,yyy), (4.26)

where

f02(xxx,yyy) :=
M

∑
j=1

|〈xxx,ccc j j〉|2
y j +σ 2

D/σ 2
s

, f01(xxx,yyy) := max
i=1,2,...,M

(
ζ 2||xxx||2

yi +σ 2
D/σ 2

s

+ ∑
m �=i

|〈xxx,cccmm〉|2
ym +σ 2

D/σ 2
s

)
. (4.27)

Note that f02(xxx,yyy) is convex since it is a sum of convex functions [102].

Proposition 3. The function f01(xxx,yyy) is quasi-convex.
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Proof. For every t ≥ 0, the level set

{(xxx,yyy) : f01(xxx,yyy)≤ t} (4.28)

is fully described by the following constraints:

ζ 2||xxx||2
yi +σ 2

D/σ 2
s

≤ t0i, i = 1,2, . . . ,M;
|〈xxx,cccmm〉|2

ym +σ 2
D/σ 2

s

≤ t1m, m = 1,2, . . . ,M, (4.29a)

t0i + ∑
m �=i

t1m ≤ t, i = 1,2, . . . ,M. (4.29b)

On the other hand, the LMIs representations for convex constraints (4.29a) are⎡
⎣ t0i xxxH

xxx
yi+σ2

D/σ2
R

ζ 2 IN

⎤
⎦� 0, i = 1,2, . . . ,M;

⎡
⎣ t1m 〈xxx,cccmm〉

〈xxx,cccmm〉 ym +σ 2
D/σ 2

R

⎤
⎦� 0,m = 1, . . . ,M. (4.30)

Thus, the level set (4.28) is fully described by LMIs (4.29b) and (4.30), so it is convex, proving

that f01 is quasi-convex.

The preceding analysis implies that the maximin program (4.22) can be recast as the following

d.c. program:

− min
xxx∈C N , yyy∈RM

+

[ f01(xxx,yyy)− f02(xxx,yyy)] : (4.22b)− (4.22c) (4.31)

which belongs to the d.c. class (5.17) with zzz = (xxx,yyy), f (·) = f01(·), g(·) = f02(·) and K described

by convex constraints (4.22b)-(4.22c).

Initialized from a feasible solution (xxx(0),yyy(0)) of (4.31), by (5.18), the path-following (xxx(κ+1),yyy(κ+1))

is the optimal solution of the following convex program:

min
xxx∈C N , yyy∈RM

+

[
f01(xxx,yyy)− f02(xxx

(κ),yyy(κ))−
M

∑
i=1

〈∇ϕi(xxx
(κ),y

(κ)
i ),(xxx,yi)− (xxx(κ),y

(κ)
i )〉

]
: (4.22b)−(4.22c)

(4.32)

where

〈∇ϕi(xxx
(κ),y

(κ)
i ),(xxx,yi)− (xxx(κ),y

(κ)
i )〉= 2Re(〈xxx(κ),cccii〉 · 〈cccii,xxx−xxx(κ)〉)

y
(κ)
i +σ 2

D/σ 2
s

− |〈xxx(κ),cccii〉|2(yi − y
(κ)
i )

(y
(κ)
i +σ 2

D/σ 2
s )

2
.

The computational complexity of convex program (4.32) solver is O((N +M)4).

The main result in this section is summarized in the following algorithm.



4.4 Beamforming Design with Orthogonal Source Transmissions 85

Path-following d.c. iterations (DCI)

Initialization: Set κ = 0 and choose an initial feasible solution (xxx(0),yyy(0)) of (4.31).

κ-th iteration: Solve the convex program (4.32) to obtain the optimal solution (xxx∗,yyy∗)

and set κ → κ+1, (xxx(κ),yyy(κ))→ (xxx∗,yyy∗). Given the tolerance level ε , stop if | f01(xxx
(κ),yyy(κ))−

f01(xxx
(κ−1),yyy(κ−1))− f02(xxx

(κ),yyy(κ))+ f02(xxx
(κ−1),yyy(κ−1))|/( f01(xxx

(κ−1),yyy(κ−1))− f01(xxx
(κ−1),yyy(κ−1)))≤

ε .

In order to use the existing convex program software such as SeDuMi [91] for solution of

(4.32), we express it by the following SDP:

min
xxx∈C N , yyy∈RM

+ , t, t0i,t1i, i=1,2,...,M

[
t − f02(xxx

(κ),yyy(κ))−

M

∑
i=1

(
2Re(〈xxx(κ),cccii〉.〈cccii,xxx−xxx(κ)〉)

y
(κ)
i +σ 2

D/σ 2
s

− |〈xxx(κ),cccii〉|2(yi − y
(κ)
i )

(y
(κ)
i +σ 2

D/σ 2
s )

2

)]
: (4.25),(4.29b),(4.30).(4.33)

4.4 Beamforming Design with Orthogonal Source Transmissions

Our previous studies (see e.g. [70, 71]) show that it is not practical to aim for a very high SINR

threshold under nonorthogonal (concurrent) transmissions of the source-destination pairs if there

are more than five pairs in the network. This motivates us to consider a system model where

the uplink channels h̃hhm,m = 1,2, . . . ,M are orthogonal [32, 72]. This allows the beamforming

to be applied individually on the received signal from each source before combining them for

forwarding to the destinations.

Let xxxm = (xm1,xm2, . . . ,xmN)
T ∈ C N be the beamforming weight applied by the relays to the

signals received from source m, namely h̃hhmsm +nnnR. After beamforming is applied, the signal

received from source m becomes

yyy
(m)
amp = xxxm � (h̃hhmsm +nnnR) (4.34)

Thus, the signals forwarded by the relays to the destination are given in the following vector:

yyyamp =
M

∑
m=1

xxxm � (h̃hhmsm +nnnR). (4.35)
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The received signal at destination i is thus

yyyD,i = 〈�̃��i,yyyamp〉+nD,i =
M

∑
m=1

[〈c̃ccmi,xxxm〉sm + 〈�̃��i �nnnR,xxxm〉]+nD,i. (4.36)

As in Section II, all the concerned channels gains hhhm, cccmi and ���i are subject to uncertainties as

described in (4.4)-(4.5). Similarly to (4.10) and (4.11), the robust power of the desired signal

component at destination i is

Si(xxxi) = σ 2
s (|〈cccii,xxxi〉|2 −ζ 2||xxxi||2),

while the robust interference power is

INTi(xxx1, . . . ,xxxM) = σ 2
s

M

∑
m �=i

(|〈cccmi,xxxm〉|2 +ζ 2||xxxm||2)+σ 2
R

M

∑
m=1

(|〈���i,xxxm〉|2 +ζ ||xxxm||2)+σ 2
D.

The total beamforming power can be computed as

PT (xxx1, . . . ,xxxM) = ∑
ρ(ΔHHHi)≤ζ 2

E{||yyyamp||2}=
M

∑
i=1

〈σ 2
s diag[hhhi �hhhH

i ]+ (σ 2
s ζ 2 +σ 2

R)IN ,xxxixxx
H
i 〉, (4.37)

while the individual beamforming power at relay n is

Pn(xxx1, . . . ,xxxM) =
M

∑
m=1

(σ 2
s |hmn|2 +σ 2

s ζ 2 +σ 2
R)|xmn|2. (4.38)

The maximin optimization of the information throughput can now be expressed as

max
xxxm∈C N , m=1,2,...,M

min
i=1,2,...,M

log2

(
1+

Si(xxxi)

INTi(xxx1, . . . ,xxxM)

)
(4.39a)

s.t.
M

∑
m=1

(σ 2
s |hmn|2 +σ 2

s ζ 2 +σ 2
R)|xmn|2 ≤ γn, n = 1,2, . . . ,N (4.39b)

Like the maximin program (4.15), (4.39) is equivalent to

max
xxxi, yi

min
i=1,2,...,M

ϕi(xxxi,yyyi) :=
|〈cccii,xxxi〉|2 −ζ 2||xxxi||2

yi +
σ2

D

σ2
s

: (4.39b), (4.40a)

M

∑
m �=i

(|〈cccmi,xxxm〉|2 +ζ 2||xxxm||2 + σ 2
R

σ 2
s

M

∑
m=1

(|〈���i,xxxm〉|2 +ζ 2||xxxm||2)≤ yi, i = 1,2, . . . ,M. (4.40b)

Define

xxx = (xxxT
1 ,xxx

T
2 , . . . ,xxx

T
M)T ∈ C NM , C̃CCi = diag(cccH

1i, . . . ,ccc
H
(i−1)i,01×N ,ccc

H
(i+1)i, . . . ,ccc

H
Mi) ∈ C M×(NM),

JJJi = diag(IIIN , . . . ,0N , . . . ,IIIN), L̃LLi = diag(���H
i , . . . ,���

H
i ) ∈ C M×(NM).
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It then follows that

M

∑
m �=i

(|〈cccmi,xxxm〉|2 +ζ 2||xxxm||2)+ σ 2
R

σ 2
s

(
M

∑
m=1

|〈���i,xxxm〉|2 +ζ 2||xxxm||2) =

xxxH(C̃CC
H

i C̃CCi +ζ 2JJJi +
σ2

R

σ2
s
(L̃LL

H
i L̃LLi +ζ 2IIIMN))xxx

and the convex constraints (4.40b) are expressed by the following LMIs:⎡
⎣ Q̃QQi Q̃QQixxx

xxxHQ̃QQi yi

⎤
⎦� 0, Q̃QQi := C̃CC

H

i C̃CCi +ζ 2JJJi +
σ 2

R

σ 2
s

(L̃LL
H

i L̃LLi +ζ 2IIIMN), i = 1,2, . . . .,M. (4.41)

Similarly, the LMI representation for robust power constraint (4.39b) is⎡
⎣ IM An(x1n, . . . ,xMn)

AH
n (x1n, . . . ,xMn) γn

⎤
⎦� 0, n = 1,2, . . . ,N, (4.42)

where An(x1n, . . . ,xMn) =
(√

σ 2
s |h1n|2 +σ 2

R +ζ 2x1n, . . . ,
√

σ 2
s |hMn|2 +σ 2

R +ζ 2xMn

)T

. Therefore,

like (4.31), the maximin program (4.40) can be recast by the following d.c. program:

− min
xxx∈C NM ,yyy∈RM

+

[ f01(xxx,yyy)− f02(xxx,yyy)] : (4.41),(4.42) (4.43)

where the function f01(xxx,yyy) := max
i=1,2,...M

[ζ 2|xxxi||2/(yi +σ 2
D/σ 2

s )+ ∑
m �=i

|〈cccmm,xxxm〉|2/(ym+σ 2
D/σ 2

s )] is

quasi-convex while the function f02(xxx,yyy) :=
M

∑
i=1

|〈cccii,xxxi〉|2/(yi +σ 2
D/σ 2

s ) is convex and smooth.

Obviously, DCI is also applicable to find the solutions of (4.43) by initializing from a feasible

solution (xxx
(0)
1 , . . . ,xxx

(0)
M ,yyy(0)) of (4.43). In particular, the following convex program is required at

κ-th iteration for generating (xxx
(κ+1)
1 , . . . ,xxx

(κ+1)
M ,yyy(κ+1)) instead of (4.32):

min
xxx∈C NM , yyy∈RM

+

[
f01(xxx,yyy)− f02(xxx

(κ),yyy(κ))−
M

∑
i=1

[
2Re(〈xxx(κ)i ,cccii〉 · 〈cccii,xxxi −xxx

(κ)
i 〉)

y
(κ)
i +σ 2

D/σ 2
s

−|〈xxx(κ)i ,cccii〉|2(yi − y
(κ)
i )

(y
(κ)
i +σ 2

D/σ 2
s )

2

]]
: (4.39b),(4.41)

(4.44)

Similarly to (4.33), the above convex program can be easily converted to a SDP format so that the

existing SDP solvers can be readily used.
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4.5 Joint Optimization of Source Power Allocation and Relay Beam-

forming

Recently, reference [21] has applied a path-following procedure of d.c. programming [98, 102] to

jointly design the source powers and relay beamforming for minimizing the total transmitted power

while meeting the SINR requirements of all users. The limitation in [21] is that the individual

transmission capacities of both sources and relays expressed via the individual power constraints

could not be incorporated into the optimization. Although these additional meaningful individual

power constraints are convex, their feasibility when enforced together with the practical SINR

requirements is not quite computationally tractable. In other words, a feasible solution needed for

initialization of any iterative optimization is hardly found by random generation [21]. Moreover,

the resultant feasible set may be disconnected that makes the iterative solutions converge to a

wrong solution if it is initialized from a feasible solution, which is disconnected from the optimal

solution. It is no wonder only impractically low SINR target 3dB was set in [21]. To deal with the

infeasibility issue, the admission control should be take into consideration, which leads to other

highly intractable optimization problems [76, 88].

This section examines an optimization problem that maximizes the minimum SINR subject to

the mentioned individual power constraints. Different to the min-power problem in [21], which

can be infeasible, the max-min SINR problem considered in this paper is always feasible. The

admission control is not only absolutely unnecessary but also can be resolved consequently in

our setting. The fairness among users is also taken into account by considering the quality of the

worst user. Inspired by the efficiency of a special class of d.c. algorithm [43, 81, 98], we cast the

optimization problem into a d.c. programming through elegant variable changes. In particular,

the design problem is shown as minimization of a d.c. objective function over the set of convex

constraints. A low complexity iterative algorithm (DCI), which exhibits a fast convergence, is

then devised. Unlike other sequential quadratic iterations (see e.g. [6, 7]) for targeting solutions

of the Karush-Kuhn-Tucker (KKT) necessary optimality condition, DCI is capable of locating the

optimal solutions. Also, different from nonsmooth optimization iterations (see e.g. [5]) which

may suffer from the so-called zero-progression steps that slow down the convergence, DCI surely
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improves the solution at every step and thus converges quickly. The implementation of DCI is

simple and does not involve the control of step size, which can be both sensitive and difficult to

determine [5–7].

It should also be pointed out that more complicated programs of joint precoder design for

MIMO and joint beamforming for multiantenna relay broadcast channels have been considered

in [111, 113], but their solutions appear to be far from being efficient in both performance and

computation. In addition to the joint optimization strategy, we also suggest a simplified sub-

optimal strategy in which the source powers are constrained equal. Thus, the corresponding d.c.

program has only one more power variable as compared to that for the beamforming-only pro-

gram [81]. Consequently, the simplified joint optimization becomes much less computationally

demanding. It will be shown by simulation results that the proposed simplified sub-optimal solu-

tion also gives better results than the results obtained by separate optimizations of source powers

and relay beamforming. This means that the number of design parameters can be substantially

reduced in the joint optimization. As these parameters are found at the destination and fed back to

the corresponding sources and relays, a reduction in the overhead communications is provided.

4.5.1 System Model and Formulation of the Joint Design Problem

Figure 4.2: A multi-user multi-relay network.

Figure 5.2 shows a wireless communication network under consideration in which M sources

communicate in pair to M destinations with the assistance of N relays. This scenario applies when
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the direct links from sources to destinations cannot be used due to the serve path loss and shadow-

ing. All user terminals (sources and destinations) and relays are equipped with a single antenna

and operate in half-duplex mode. As mentioned, we consider the amplify-and-forward signal pro-

cessing strategy for relays. The transmission from sources to destinations is carried out in two time

slots. Let sss = (s1,s2, . . . ,sM)T ∈ C M with sss ∼ C N (0,IIIM) represent the transmitted symbols from

all the sources. Also denote the transmitted powers at the sources by ppp = (p1, p2, . . . , pM)T ∈ RM
+ .

In the first time slot, all the sources send their signals to all the relays. All the channels in the

network are assumed to be independent Rayleigh flat-fading channels and let

hhhm = (hm,1,hm,2, . . . ,hm,N)
T ∈ C

N , m = 1,2, . . . ,M (4.45)

be the vector of the “uplink” channels between the mth source and all the relays. The assumption

of statistical independence of channels over time (4.45) is based on the consideration of a block

fading channel model where the channel state remains constant within a fading block, but becomes

independent across a different fading block.

The received signals at the relays can be collectively given by vector rrrr as

rrrr =
M

∑
m

hhhm

√
pmsm +nnnr ∈ C

N (4.46)

where nnnr = (nr,1, . . . ,rr,N)
T ∈ C N represents the additive white Gaussian noise components at the

relays and nnnr ∼ C N (0,σ 2
r IIIN). In practice, the source terminals have their own power limits. As

such, the following constraints are imposed on the source transmitted powers:

0 ≤ pm ≤ PS,max
m , m = 1, . . . ,M. (4.47)

where P
S,max
m is a maximum allowable transmit power of the mth source terminal.

As the channel state information is available at the relays, the relays perform beamforming

to adjust the phases and amplitudes of their received signals so that the signals are constructively

combined at destinations. In general, let xxx = (x1,x2, . . . ,xN)
T ∈ C N be the beamforming weights

to be used by the relays. Then, in the second time slot, the relays send the following signals to the

destinations:

rrrb = xxx�rrrr =
M

∑
m=1

xxx�hhhm

√
pmsm +xxx�nnnr ∈ C

N .
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Typically the relays are geographically distributed and one needs to impose the following individ-

ual power constraints on the relays:

PR
n (xn,ppp) := |xn|2

(
M

∑
m=1

|hm,n|2 pm +σ 2
r

)
≤ PR,max

n , n = 1, . . . ,N, (4.48)

where P
R,max
n is the maximum transmitted power of the nth relay. Furthermore, it is also practical

and desirable to constraint the total transmitted power of all relays and sources as follows:

Psum(xxx,ppp) :=
M

∑
m=1

pm +
N

∑
n=1

PR
n (xn,ppp)≤ Pmax

sum . (4.49)

Let ���i = (�i,1, �i,2, . . . , �i,N)
T ∈ C N , i = 1,2, . . . ,M be the vector of the “downlink” channels

between all the relays and the ith destination. Then, the received signal at the ith destination is

yi = 〈���i,rrrb〉+nd,i =
M

∑
m

〈cccm,i,xxx〉√pmsm + 〈���i �nnnr,xxx〉+nd,i ∈ C , i = 1, . . . ,M, (4.50)

where cccm,i = ���i�hhhm presents the effective channel gains from sources to destinations via the relays.

Note that the noise components at all M destinations can be described as nnnd = (nd,1, . . . ,nd,M) ∼
C N (0,σ 2

d IIIM). For the multi-user wireless network under consideration, the performance metric

of interest is the signal-to-inference-plus-noise ratio (SINR). It follows from (4.50) that the SINR

at destination i is given as

SINRSINRSINRi(xxx) :=
|〈xxx,ccci,i〉|2 pi

M

∑
m=1,m �=i

|〈xxx,cccm,i〉|2 pm +xxxHLLLixxx+σ 2
d

, (4.51)

where LLLi = σ 2
r diag([|�i,1|2, . . . , |�i,N |2]).

The aim of this paper is to jointly find the power allocation vectors ppp and the beamforming

vector xxx to maximize the minimum SINR subject to the individual power constraints, which is

mathematically formulated as

max
xxx∈C N ,ppp∈RM

+

min
i=1,2,...,M

SINRSINRSINRi(xxx) : (4.47),(4.48),(4.49). (4.52)

It can be seen that the optimization problem in (4.52) is highly nonlinear and nonconvex and hence

it is challenging to find the optimal solution.
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4.5.2 Proposed D.C. Formulation and Iterative Algorithm

In this section, we introduce an efficient iterative algorithm to jointly optimize (ppp,xxx) as stated in

problem (4.52). To this end, we first recast the optimization problem (4.52) into a specific class of

d.c. programming which minimizes a d.c. objective function over a set of convex constraints.

Define

qm =
1

p2
m

≥ 0, m = 1, . . . ,M. (4.53)

Then, problem (4.52) is rewritten as

max
xxx∈C N ,qqq∈RM

+ ,ααα∈RM
+

min
i=1,...,M

ϕi(xxx,qi,αi) :=
|〈xxx,ccci,i〉|2√

qiαi

s.t. (4.54a)

qm ≥ 1/(PS,max
m )2, m = 1, . . . ,M, (4.54b)

ΠR
n (xn,qqq) :=

M

∑
m=1

|hm,n|2 |xn|2√
qm

+σ 2
r |xn|2 ≤ PR,max

n ,n = 1, . . . ,N, (4.54c)

Πsum(xxx,qqq) :=
M

∑
m=1

1√
qm

+
N

∑
n=1

(
M

∑
m=1

|hm,n|2 |xn|2√
qm

+σ 2
r |xn|2

)
≤ Pmax

sum , (4.54d)

Πi(xxx,ααα) :=
M

∑
m �=i

|〈xxx,cccm,i〉|2√
qm

+xxxHLLLixxx+σ 2
d −

√
αi ≤ 0, i = 1, . . . ,M. (4.54e)

To analyze the convexity of the above problem, it is relevant to notice that the function

ϕ(x,y) = x2/
√

y is convex in its variable (x,y) ∈R2
+. Accordingly, the function φ(x,y,z) = x2/

√
yz

is also convex in variables (x,y,z) ∈ R2
+ [18]. Therefore, all the functions ΠR

n (·), ΠR
sum(·), Πi(·)

and ϕi(xxx,qi,αi) are convex. Consequently, constraints (4.54b)-(4.54e) are convex. However, the

objective function (4.54a) is not convex as it is point-wise minimum of convex functions ϕi(·).
Nevertheless, its d.c. decomposition is available [102]:

min
i=1,...,M

ϕi(xxx,qi,αi) = f1(xxx,qqq,ααα)− f2(xxx,qqq,ααα)

where

f1(xxx,qqq,ααα) :=
M

∑
i=1

ϕi(xxx,qi,αi), f2(xxx,qqq,ααα) := max
j=1,...,M

M

∑
i=1,i�= j

ϕi(xxx,qi,αi)

are both convex as they are a sum and maximum of convex functions, respectively. Thus, problem

(4.54) is equivalent to the following d.c. programming [102]:

min
xxx∈C N ,qqq∈RM

+ ,ααα∈RM
+

[ f2(xxx,qqq,ααα)− f1(xxx,qqq,ααα)] s.t. (4.54b), (4.54c), (4.54e). (4.55)
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It should be emphasized that, although problem (4.55) is equivalent to problem (4.54), the lat-

ter exposes the separate nonconvex term which can be exploited to develop an efficient iterative

algorithm.

We now develop an iterative algorithm, called DCI, for the specific problem in (4.55). Initial-

ized from a feasible solution zzz(0) := (xxx(0),qqq(0),ααα (0)), we obtain zzz(κ+1) := (xxx(κ+1),qqq(κ+1),ααα(κ+1))

as the optimal solution of the convex program

min
zzz:=(xxx,qqq,ααα)∈C N×RM

+×RM
+

[ f2(zzz)− f1(zzz
(κ))−〈 f1(zzz

(κ)),zzz−zzz(κ)〉]

s.t. (4.54b), (4.54c), (4.54d), (4.54e),

(4.56)

where

〈 f1(zzz
(κ)),zzz−zzz(κ)〉 =

M

∑
i=1

〈∇ϕi(xxx
(κ),q

(κ)
i ,α

(κ)
i ),(xxx,qi,αi)− (xxx(κ),q

(κ)
i ,α

(κ)
i )〉

=
M

∑
i=1

[2
Re(〈xxx(κ),ccci,i〉 · 〈ccci,i,xxx−xxx(κ)〉)√

q
(κ)
i ,α

(κ)
i

− 1

2

|〈xxx(κ),ccci,i〉|2(qi −q
(κ)
i )√

(q
(κ)
i )3α

(κ)
i

−1

2

|〈xxx(κ),ccci,i〉|2(αi −α
(κ)
i )√

q
(κ)
i (α

(κ)
i )3

].

The computational complexity of program (4.56) is O((N +2M)3). Furthermore, in view of con-

vexity of f1(zzz),

f2(zzz
(κ+1))− f1(zzz

(κ+1)) ≤ f2(zzz
(κ+1))− f1(zzz

(κ))−〈∇ f1(zzz
(κ)),zzz(κ+1)−zzz(κ)〉

≤ f2(zzz
(κ))− f1(zzz

(κ))−〈∇ f1(zzz
(κ)),zzz(κ)−zzz(κ)〉

= f2(zzz
(κ))− f1(zzz

(κ)),

showing that zzz(κ+1) is a better solution of (4.56) than zzz(κ). Therefore, initialized by feasible zzz(0),

the sequential convex program generates a sequence of zzz(κ) of improved solutions of (4.56). Since

the feasible set of (4.55) is bounded and closed, the sequence {zzz(κ)} is compact and converges to

an optimized solution. The proposed iterative algorithm repeatedly solves the convex optimization

(4.56) until the objective value converges, i.e., |F(κ+1)−F(κ)

F(κ) | ≤ ε , where ε is an error tolerant number

and F (κ) = f2(zzz
(κ))− f1(zzz

(κ)).

It is pointed out that that the convex program (4.56) solves for a total of M +N variables, M

for source power variables and N for relay beamforming variables. A simpler joint optimization
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problem can be considered when all source power variables are constrained equal to a single

scalar variable, namely pm = p, m = 1,2, . . . ,M. As a consequence, the number of variables is

N +1, regardless of the number of user pairs. Letting q = 1/p2, the optimization problem (4.54)

simplifies to the following:

max
xxx∈C N ,q≥0,ααα∈RM

+

min
i=1,...,M

ϕi(xxx,q,αi)

s.t. (4.54e),ΠR
n (xn,q)≤ P

R,max
n ,n = 1, . . . ,N;Πsum(xxx,q) ≤ Pmax

sum

(4.57)
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Figure 4.3: Information throughput versus total relaying power for M = 3 and N = 10 under non-

orthogonal source transmissions.

For convenience, we call the above formulation with scalar power variable p ∈ R+ the struc-

tured formulation, whereas the original problem in (4.54) with vector power variable p ∈ RM
+ is

called structure-free formulation. Finally, it can be observed that, the computational complexity

of the joint optimization is reduced to O((N +M)3) because of the inherent flexibility of the joint

optimal design.
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Figure 4.4: Information throughput versus total relaying power for M = 4 and N = 12 under non-

orthogonal source transmissions.

4.6 Numerical Results

In all the simulations carried out in this section, the power of AWGN at relays and destination

nodes is normalized to σ 2
R = σ 2

D = 1, while the signal power of all the sources is set at σ 2
s =

100. Both uplink and downlink channel gains are randomly generated according to a circularly

symmetric complex Gaussian distribution (i.e., Rayleigh distribution of their magnitudes). All

results are averaged over 100 Monte-Carlo simulation runs to capture the variation of the channel

coefficients.

4.6.1 Non-Orthogonal (Concurrent) Source Transmissions

First, consider the case of no channel uncertainty, i.e., ζ = 0 in (4.5). This means that

h̃hhm ≡ hhhm, �̃��i ≡ ���i, c̃ccmi ≡ cccmi (4.58)



4.6 Numerical Results 96

6.98 10.00 11.76 13.01 13.97 14.77 15.44 16.02
0

0.5

1

1.5

2

2.5

3

3.5

4

Total Relay Power (dB)

In
fo

rm
at

io
n 

T
hr

ou
gh

pu
t (

bp
s/

H
z)

 

 

DCI
Upper bound
Trivial randomization
SDR-based randomization

M=5, N=16

M=4, N=16

Figure 4.5: Information throughput versus total relaying power for M = 4 and N = 16 under non-

orthogonal source transmissions.

in (4.4). We use the following convex program for any 10log10(αi)≥ 1dB,

min
XXX∈C N×N

max
n=1,2,...,N

XXX(n,n) s.t. XXX ≥ 0, σ 2
s 〈CCCii,XXX〉 ≥ αi

(
σ 2

s

M

∑
m �=i

〈CCCmi,XXX〉

+σ 2
R〈LLLi,XXX〉+σ 2

D

)
, i = 1,2, . . . ,M.

(4.59)

We take as an initial (xxx(0),yyy(0)) for the DCI the eigenvector xxx(0) corresponding to the eigenvalue

λmax(XXX
(0)) of the optimal solution XXX (0) of (4.61) such that ||xxx(0)||2 = λmax(XXX

(0)), and accordingly

y
(0)
i = ∑m �=i |〈xxx(0),cccmi〉|2 + σ2

R

σ2
s
|〈���i,xxx

(0)〉|2.

Table 5.1 lists the numbers of iterations used, while Figures 4.3, 4.4 and 4.5 present simulation

results for different numbers of users and relay nodes. Specifically, plotted in these figures are the

minimum information throughput among all users achieved by our proposed DCI approach given

by (4.31). Since the DCI method achieves the balanced throughput for all users, this minimum

throughput is the actual information throughput for all users as well. The plots of the upper bound

for the throughput performance obtained by solving a sequence of relaxed programs (4.18) are

also included in these figures (i.e., the SDR curves log2(1+αopt), where αopt is the maximum of
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Table 4.1: Average number of iterations for obtaining solutions under non-orthogonal source trans-

missions.

M = 3, N = 10 M = 4, N = 16 M = 5, N = 20

PT (dB) Iterations PT (dB) Iterations PT (dB) Iterations

0.04 13.57 0.04 21.03 -10 23.71

4.08 13.25 7.27 20.39 7.51 21.88

6.14 12.62 9.85 20.16 10.48 21.20

7.53 12.11 11.46 18.77 12.23 20.25

8.58 12.23 12.63 18.67 13.48 19.08

9.43 11.33 13.55 17.60 14.44 17.99

10.14 10.15 14.31 16.59 15.27 17.07

10.75 9.16 14.96 15.73 15.90 14.83

11.28 7.95 15.52 12.69 16.48 12.72

11.76 6.11 16.02 7.48 16.99 8.84

those α such that the optimal value of SDP (4.18) is not more than one). In each of these figures,

the DCI curve is observed to be very close to the SDR curve which establishes the superiority of

our proposed method.

It is naturally expected that an increase in throughput would happen with an increased value

of the total relay power. In this paper the total relay power budget is equally divided among the

relay nodes. We start with a scenario consisting of M = 3 users and N = 10 relays. It can be

observed in Figure 4.3 that with our proposed d.c. programming based approach, a throughput of

2.5 bps/Hz is achieved for each user when the total power budget is 9.03 dB, while the SDR-based

randomization approach only gives 1.7 bps/Hz for the same amount of total relay power. The

randomization techniques fail to distribute the information throughput fairly among all users.

The effect of the number of relay nodes on throughput performance can be illustrated by

comparing results of Figure 4.4 and 4.5 where, as expected, an increase in the number of nodes

boosts the corresponding throughput for the same amount of total power.

Table 4.2 provides the averaged rank of the optimal solution XXXopt of SDP (4.18) at αopt for
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Table 4.2: Average rank iopt of XXXopt by SDP relaxation.

M = 3, N = 10 M = 4, N = 16 M = 5, N = 20

PT (dB) Avg. iopt PT (dB) Avg. iopt PT (dB) Avg. iopt

0.04 2.18 0.04 2.55 0.04 2.55

4.08 2.09 7.27 2.52 7.27 2.58

6.14 2.11 9.85 2.47 9.85 2.62

7.53 2.11 11.46 2.50 11.46 2.64

8.58 2.11 12.63 2.52 12.63 2.62

9.43 2.14 13.55 2.65 13.55 2.62

10.14 2.11 14.31 2.46 14.31 2.57

10.75 2.14 14.96 2.49 14.96 2.63

11.28 2.15 15.52 2.54 15.52 2.59

11.76 2.14 16.02 2.52 16.02 2.55

different choices of users and relay nodes. It reveals that vectors xxx(v) in (4.19) are generated in 2 or

3 dimensional subspace of 10, 16 and 20-dimensional space. This explains why such SDR based

randomization performs poorly as Figures 4.3-4.5 show, even 5,000 such xxxv have been generated

for each case. This randomization is only as good as a more trivial randomization, which needs

only one SDP solver for a feasible solution XXX of SDP (4.18) at some α to generate xxx(v) according

to (4.19) with iopt replaced by the rank of XXX and unitary UUU and diagonal ΣΣΣ in SVD XXX =UUUΣΣΣUUUH .

Figures 4.3-4.5 show that the performance of this simple randomization is still poor although it

is comparable to that of the more computationally-intensive SDR based randomization (which

requires tens of SDP solvers for solution of SDP (4.18) in the bisection procedure to locate the

optimal αopt).

Next, Figure 4.6 presents throughput for the scenario that ζ �= 0 in (4.5), whose value can be

set to represent varying degrees of channel uncertainties. For each user, throughput curves are

plotted versus the total relay power for ζ = 0.1,0.3,0.6,0.8. Except for the fifth user in ζ = 0.3

case, which is assigned a slightly higher throughput, all users achieve approximately the same

throughput when beamforming is performed according to our proposed DCI method.
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Figure 4.6: Effect of channel uncertainty on information throughput for M = 5,N = 20 under

non-orthogonal source transmissions.

4.6.2 Orthogonal Source Transmissions

Again, consider first the case of no channel uncertainty case, i.e., ζ = 0 in (4.5) and (4.58) is

realized as in (4.4). With the bisection procedure in α , one can find the maximum αopt such that

the optimal value of the following SDP is less than one:

min
XXXm∈C N×N , m=1,2,...,M

max
n=1,2,...,N

[
1

γn

M

∑
m=1

(
σ 2

s |hmn|2 +ζ 2 +σ 2
R

)
XXXm(n,n)

]
:

σ 2
s 〈CCCii −ζ 2IIIN ,XXXi〉 ≥ α

[
σ 2

s

M

∑
m �=i

〈CCCmi +ζ 2IIIN ,XXXm〉+σ 2
R

M

∑
m=1

〈LLLi +ζ 2IIIN ,XXXm〉+σ 2
D

]
,

XXXi ≥ 0, i = 1,2, . . . ,M

(4.60)

where CCCmi = cccmiccc
H
mi and LLLi = ���i���

H
i . However, in contrast to the SDP (4.18), the SDP (4.60) al-

ways admits the optimal rank-one solution XXX
(i)
opt = xxx

(i)
optxxx

(i)H
opt , i = 1,2, . . . ,M. This means that

log2(1+αopt) is actually the global solution of the maximin program (4.39) and xxx
(i)
opt, i= 1,2, . . . ,M

form the optimal solution. This also means that SDR is able to provide the optimal solution for the

maximin program (4.39). Table 4.3 provides the iteration numbers of DCI and also of the above

mentioned SDR bisection for finding the solution of the nonconvex program (4.39). These num-
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Figure 4.7: Information throughput versus total relaying power for orthogonal source transmis-

sions.

bers correspond to the numbers of required SDP (4.44) to implement the DCI and the SDR-based

bisection procedure, respectively. One can see that the required number of SDP (4.44) is always

less than that of the required number of SDP (4.60). Moreover, the variable dimension of (4.44)

is (N +1)M while that of (4.60) is MN(N +1)/2. This clearly indicates that the DCI approach is

much more computationally efficient than the SDR-based bisection approach. We solve (4.60)

for some arbitrary value of α (e.g., α ≥ 0.01) to obtain (XXX
(0)
1 , . . . ,XXX

(0)
M ), whose eigenvectors xxx

(0)
m

corresponding to eigenvalues λmax(XXX
(0)
m ) constitute the initial (xxx

(0)
1 , . . . ,xxx

(0)
M ,yyy(0)) of DCI. The sim-

ulation results presented in Figure 4.7 illustrate throughput performance of the DCI algorithm. We

consider typical scenarios for orthogonal transmission with M = 4,5,6 while the number of relay

nodes N = 10 is fixed. The rank-one solution obtained by the aforementioned SDR (4.60) is also

plotted to establish an upper bound. It is noted that the DCI method achieves approximately the

same throughput curve as that of the SDR bisection method despite the lower dimensions of the

DCI variables.

Finally, Figure 4.8 illustrates the impact of channel state uncertainty under the scenario of

orthogonal source transmissions. Plotted in the figure is the minimum information throughput
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Figure 4.8: Effect of uplink and downlink channel uncertainties on the information throughput for

M = 5,N = 10 under orthogonal source transmissions.

for different values of ζ , accounting for different amounts of channel uncertainty. As can be

observed from the figure, an increase in channel uncertainty causes a reduction in the information

throughput, and that the performance gaps among the curves increase for higher relay powers. It is

important to note that the DCI method is able to maintain a balanced throughput (or equivalently

SINR) for all users, even when the exact knowledge of channel state information is not available.

4.6.3 Joint Optimization

The iterative algorithm developed for joint optimization of source powers and beamforming vector

is numerically evaluated in this section. In order to quantify the quality of service, we use metric

of information throughput (bps/Hz) achievable for every source-destination pair, which is directly

related to the SINR metric. Performance comparison is made among the following designs: (i)

Optimal beamforming vector with fixed equal source powers [81]; (ii) Optimal source power al-

location with known optimal beamforming vector; and (iii) Our proposed joint optimization of

source power allocation and beamforming vector. Note that (i) employs d.c. iteration method to

converge to the local optimal solution [81], while (ii) makes use of the bisection method to solve
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Table 4.3: Average number of iterations for obtaining solutions under orthogonal source transmis-

sions.

M = 4, N = 10 M = 5, N = 10 M = 6, N = 10

PT (dB) DCI SDR bisection PT (dB) DCI SDR bisection PT (dB) DCI SDR bisection

-3.01 11.43 13.19 -3.01 12.64 13.30 -3.01 8.72 13.21

5.05 11.41 13.19 5.05 12.82 13.29 5.05 7.60 13.22

7.74 11.27 13.24 7.74 12.59 13.23 7.74 5.37 13.29

9.38 11.39 13.28 9.38 12.70 13.23 9.38 4.31 13.25

10.56 11.11 13.25 10.56 12.63 13.18 10.56 3.23 13.22

11.50 10.89 13.22 11.50 12.06 13.22 11.50 2.13 13.22

12.26 10.34 13.18 12.26 11.38 13.29 12.26 1.25 13.19

12.91 9.53 13.22 12.91 10.32 13.31 12.91 1.26 13.18

13.48 7.63 13.29 13.48 7.85 13.33 13.48 2.28 13.29

13.98 2.24 13.21 13.98 2.89 13.25 13.98 8.84 13.33

the linear program in source power allocation.

The individual source power is set as pm ≤ ν p0 where ν = 1.5 is a scaling factor, and p0 =

100 is the equal source power used in [81]. On the other hand, the individual relay power is

limited to P
R,max
n = γn = Ptot

rel /N. Thus, the total sum power budget is upper bounded by Pmax
sum =(

Mp0 +∑N
n=1 γn

)
.

In Fig. 4.9, the information throughput achieved for an arbitrary user pair (since other user

pairs also have the same throughput because of the balanced optimal results) is plotted against

the total relay power for a 3-user network with 10 relays. The results clearly shows that the per-

formance of the proposed joint optimization scheme is much better than the other two alternative

optimization methods in which the beamforming vector and source power allocation are optimized

separately. Specifically, it can be seen that there is a capacity gain of around 0.5 bps/Hz achieved

by our proposed method over the optimized source power allocation scheme at Ptot
rel = 11.76 dB.

Of particular interest is the observation that for the structured optimization in (4.57), the sub-
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Figure 4.9: Performance comparison of proposed joint optimization methods and separate opti-

mizations of source powers and beamforming vector, M = 3 and N = 10.

optimal solution, even with a reduced number of variables, still offers a much better throughput

than that obtained with the optimal source power allocation and fixed optimized beamforming.

In other words, the joint optimization over only one scalar power variable and beamforming vec-

tor improves the spectral efficiency of multi-user relay network. On the other hand, as shown in

Figures 4.9-4.12, when the source power is optimized separately while using a fixed optimized

beamforming, the throughput performance improves very modestly.

Fig. 4.10 illustrates the throughput performance when N = 12 relays are used to assist M = 4

users. While there is a decline in the throughput value as compared to the network with 3 users, the

proposed joint optimization method still offers a better throughput over the entire range of the total

relay power. Upon increasing the number of relays to N = 16 for the same number of users, we can

observe an increase in the information throughput as shown in Fig. 4.11. To evaluate the impact

of adding an additional user into this network, the throughput plot is shown in Fig. 4.12 for M = 5

users. Again, the proposed joint optimization method also outperforms the alternative optimization
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Figure 4.10: Performance comparison of proposed joint optimization methods and separate opti-

mizations of source powers and beamforming vector, M = 4 and N = 12.

techniques for such a network scenario. Moreover, as the total relay power increases, the capacity

gain of the proposed algorithm over the alternative optimizations also increases. The distribution

of the source powers determined by the proposed method for a given channel realization is plotted

in Fig. 4.13 for M = 4 and N = 12. The fact that the source powers are vastly different for

different sources signifies the importance of our approach of jointly optimizing source power and

beamforming vector compared to the equal power setting used in [81]. It also shows that power

control among the sources is adaptive to the corresponding channels.

One can easily find initial feasible solution of (4.56) by solving convex feasibility problem

defined by the set of convex constraints (4.54b)-(4.54e). It should be emphasized however that

successful implementation of DCI demands a good initial feasible point to guarantee convergence

towards right optimized solution. Such an initial point is obtained by solving the following convex
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Figure 4.11: Performance comparison of proposed joint optimization methods and separate opti-

mizations of source powers and beamforming vector, M = 4 and N = 16.

program

min
XXX∈C N×N

max
n=1,2,...,N

XXX(n,n)

s.t. XXX ≥ 0,

p
(0)
i 〈CCCi,i,XXX〉 ≥ αi

(
M

∑
m �=i

p
(0)
m 〈CCCm,i,XXX〉+σ 2

R〈L̃LLi,XXX〉+σ 2
D

)
, i = 1,2, . . . ,M,

(
M

∑
m=1

p
(0)
m |hm,n|2 +σ 2

r )XXX(n,n) ≤ γn, n = 1,2...,N,

M

∑
m=1

p
(0)
m +

N

∑
n=1

(
M

∑
m=1

p
(0)
m |hm,n|2 +σ 2

r )XXX(n,n) ≤ Pmax
sum

(4.61)

for a small value of α ≥ 0, with CCCm,i = cccm,iccc
H
m,i, L̃LLi = ���i���

H
i and p

(0)
i ≡ p0 = 100. Suppose xxx(0) is the

eigenvector corresponding to the maximal eigenvalue λmax(XXX
(0)) of the optimal solution XXX (0) of

(4.61) such that ||xxx(0)||2 = λmax(XXX
(0)) and p(0) = (p0, ..., p0)

T ∈ RM, so that the individual source

power constraint (4.47) is also satisfied. Defining qqq(0) = (1/p2
0, ...,1/p2

0)
T ∈ RM and

α
(0)
i = (

M

∑
m=1,m �=i

|〈xxx(0),cccm,i〉|2 p0 +xxx(0)HLLLixxx
(0) +σ 2

d )
2, i = 1,2, ...,M,
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Figure 4.12: Performance comparison of proposed joint optimization methods and separate opti-

mizations of source powers and beamforming vector, M = 5 and N = 16.

the initial feasible solution of (4.55) is taken as zzz(0) = (xxx(0),qqq(0),ααα(0)). Also the tolerance ε =

0.01 is set. The convergence performance of the proposed DCI is illustrated in Table 5.1, which

confirms that optimized solutions are obtained within a few iterations.

4.7 Summary

This chapter has solved the beamforming design problems in multi-user wireless relay networks

to maximize the minimum information throughput among all users. Both cases of concurrent

and orthogonal transmissions from sources to relays are considered. Different from the existing

approach which reformulates the design problems to matrix rank-one constrained optimizations,

our approach exploits the d.c. structure of the objective function and the convex structure of the

constraints to develop efficient iterative algorithms of very low complexity to find the solutions.

Numerical results demonstrate that the developed algorithms are able to locate the global optimal

solutions by a few iterations and they illustrate the superiority of our method over the existing



4.7 Summary 107

0 10 20 30 40 50
0

50

100

150

Total Relay Power (W)

In
di

vi
du

al
 S

ou
rc

e 
Po

w
er

 (
W

)

 

 

Source 1
Source 2
Source 3
Source 4

Figure 4.13: Distribution of source powers for a specific channel realization in a network with

M = 4 and N = 12.

methods.

In the next part, joint design problem of source power allocation and relay beamforming in

multi-user multi-relay wireless networks has been addressed. Different from existing approaches

which use a fixed and equal power at all the sources, the proposed method simultaneously op-

timizes the source powers and relay beamforming weights. To handle the difficulty of the non-

convexity in the design problem, we first cast the design problem into a specific class of d.c.

programming and develop an iterative algorithm to solve it. Furthermore, a simplified joint opti-

mization problem is also suggested whose solution exhibits good performance and low computa-

tional complexity. The simulation results indicate that our joint optimization methods outperform

the separate optimizations of either the source power allocation or the relay beamforming vector.
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Table 4.4: Average number of iterations for convergence.

M = 3, N = 10 M = 4, N = 12 M = 5, N = 20

Ptot
rel (dB) Iterations Ptot

rel (dB) Iterations Ptot
rel (dB) Iterations

0 5.20 0 6.60 0 4.30

5.98 3.00 9.44 4.35 9.44 9.20

8.20 5.00 12.20 3.40 12.20 9.80

9.73 4.80 13.87 5.10 13.87 13.75

10.86 2.75 15.07 5.40 15.07 20.25

11.76 2.85 16.02 5.60 16.02 10.00



Chapter 5

Joint Source and Relay Precoding

Design in Wireless MIMO Relay

Networks

Next generation wireless systems seek to extend the information throughput capacities of the ex-

isting cellular systems without consuming additional spectral resources. The thirst for greater data

rates exhibited by users of mobile wireless services has been on an exponential trajectory. Addi-

tionally, the current multiple-input multiple-output (MIMO) antenna techniques in the uplink and

downlink is a well-known technology to enhance the spectral efficiency and link reliability [31].

Deployment of multiple antennas at wireless stations offer increase in channel capacity through

spatial multiplexing as well as spatial modulation and coding [93].

The outline of this chapter is organized as follows. A brief introduction and motivation of

the problem is given in Section 5.1. Section 4.2 describes the system model for MIMO broadcast

downlink cellular communication through MIMO relay and formulates joint optimization prob-

lem for source and relay precoding design. Section 5.3 presents a formulation of the optimiza-

tion problem for two-way MIMO relay-assisted communication between multi-antenna sources

as minimization of the worst mean-squared error and sum-throughput maximizations. Simula-

tion results that support the effectiveness of the proposed algorithm are presented in Section 5.4.

109
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Conclusions are drawn in Section 5.5.

5.1 Introduction

Recent release of long-term evolution-advanced (LTE-A) has adopted the idea of relaying tech-

niques for wireless transmissions to further increase the data throughput and coverage range of

wireless networks [68]. It is known that the direct wireless link between a source and destination

fails to provide the desired data throughput in the presence of channel impairments such as path-

loss, shadowing and small-scale fading. Under such circumstances, wireless relay nodes can be

deployed to assist the communication between source and destination, especially when there are

multiple users at the destination side. Fixed relays are low cost and low transmit power elements

that receive and forward data from the base station to the users via wireless channels, and vice

versa [66]. Conventionally, the use of single-input single-output (SISO) relays has been focused

in most of the multi-user communication systems [30, 47, 61, 74, 81]. However, recently much at-

tention has been paid on investigating MIMO relay-assisted multi-user systems [3,22,64,73,107].

This is because using MIMO relay node can enhance transmission quality of a multi-user system

more efficiently than using multiple SISO relay nodes. In general, relay can be either regener-

ative (e.g., decode-and-forward) or non-regenerative (e.g., amplify-and-forward). The amplify-

and-forward (AF) protocol is of practical interest due to its ease of implementation. For MIMO

relays, the AF protocol can essentially be extended to filter-and-forward (FF) protocol in which

the MIMO relay transforms the input vector through its precoding matrix and then forwards it to

the destination [85].

The MIMO broadcast channel, where a BS communicates with multiple users with multiple

antennas, has been studied in terms of information theory [19,87]. With MIMO relay station inter-

play between the BS and the single antenna users, increasing attention has been given to the joint

design of source and relay precoding matrices to attain high throughput performances [111, 113].

Particularly, [113] was dealt with the total transmit power minimization under certain quality-of-

service (QoS) requirements expressed by signal-to-interference-ration (SINR) constraints. Its so-

lutions are based on alternating optimization between source and relay precoding matrices, which

is computationally cumbersome. Beside a well-known premature termination inherent in any al-
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ternating optimization, even optimization routine in the relay precoding matrix with source pre-

coding matrix held fixed remains highly nonconvex and thus computationally intractable. Fur-

thermore, [111] considered the sum-rate maximization, which is maximization of SINR function

under transmit power constraints. The alternating optimization is hardly applied as any optimiza-

tion routine in one matrix variable with another one held fixed is still intractable. As a matter of

fact, the iterations proposed in [111] are just classical smooth function local approximation that

does not perform better than the advanced sequential quadratic programming code fmincon in

standard Matlab [58]. Moreover, the sum-rate is not quite appropriate target in multiuser commu-

nication scenario as it leads to unbalanced rate distributions for the users. For fair QoS, it is more

natural to maximize the lowest rate among the users, especially the users which are located at the

edge of a cell. The resultant nonconvex objective function even becomes nonsmooth so all the

aforementioned tools of smooth optimization are not applicable.

Meantime, two-way relay networks [79] have attracted considerable attention in research com-

munity [2, 54, 112, 114] due their higher spectral efficiency than the conventional one-way relay

networks. By two-way relaying, the overall network throughput rate can be increased by con-

ducting information exchange in two-time slots as opposed to the four time slots used in case

of one-way relay system [24, 54]. Obviously, the two-way relaying scheme suffers even more

severely from interference arising from concurrent transmission from both communication end

compared with one-way relaying. However, with ”source” precoding matrix now including that at

the both ends of communication, all the design problems in two-way relaying are still mathemat-

ically similar to that for one-way relaying. Similar challenges and unsolved problems in one-way

relaying are easily observed in joint design of users and relay precoding matrices in two-way

MIMO relaying [51, 84, 106]. Particularly, [84, 106] considered sum-MMSE (minimum mean-

square error) minimization under the transmission power constraint by alternating optimization.

As mentioned above, as the optimization routine in relay precoding matrix with source precoding

matrices held fixed remains highly nonconvex, even one more artificial vector variable is intro-

duced to introduced for alternating optimization of this optimization routine. As the problems of

either sum-rate maximization or sum-MMSE under transmission power constraints can be triv-

ially by unconstrained optimization of highly nonlinear function, [51] simply applied a standard
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gradient algorithm for its solution.

In summary, the joint designs of source and relay precoding in FF protocol are very com-

plex nonconvex programs of matrix variables with no known efficient computational solutions.

Actually, they are polynomial fractional programs, which are among the hardest classes of non-

convex optimization [103]. Nevertheless, following our approach [72,75,98] we will show in this

paper that these programs can be very efficiently treated by d.c. (difference of two convex func-

tions/sets) programming [102], where the partial convexity structures are recognized for locating

the optimized solutions. Firstly, these programs are efficiently transferred to minimization of d.c.

function under d.c. constraints. They are still not tractable enough for computation purpose and so

the nonconvex duality with zero gap [104] is applied to equivalently transfer them to minimization

of d.c. functions under convex constraints, for which d.c. iteration (DCI) is ready to apply.

5.2 Joint Optimization Formulation for Source and Relay Precoding

Figure 5.1: A multi-user amplify-and-forward MIMO wireless relay network for downlink cellular

communication.

Consider a scenario of multi-user downlink cellular communication with a base station (BS),

equipped with K antennas, serving M single-antenna users through a N-antenna relay station

(RS) [111, 113]. The transmission is conducted in two independent time-slots. In the first time

slot, the BS transmits M data streams to the relay station which processes the received signal by

mixing them with a linear transformation and then simply forward these processed signals to all

destinations in the second time slot.

Let sss=(s1,s2, ...,sM)T ∈C M present transmit symbols from the sources, with sss∼C N (0,IIIM).
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Before transmitting sss to the RS, the BS applies precoding transformation WWW = [www1 www2 ...wwwM] ∈
C K×M to sss. Since sss is assumed to have unit power, the transmit power of the signal at BS is given

by :

PB(WWW ) := E[WsWsWssssHWWW H ] = 〈WWWWWW H〉 (5.1)

The transmission from the BS to the RS can be treated as a typical MIMO communication for

which the received signal at RS is expressed as :

yyyr =HHHWWWsss+nnnr (5.2)

where HHH = (hhh1, ...,hhhK) ∈ C N×K , with hhhi = (hi1, ...,hiN)
T ∈ C N , i = 1, ...,K, represents MIMO

complex channel gain from the ith BS antenna to the RS, and nnnr = (nr,1, ...,nr,N)
T ∈C N is complex

noise vector at RS which is assumed nnnr ∼ C N (0,σ 2
r IIIN). Suppose FFF ∈ C N×N is the beamforming

precoding matrix used to pre-process the relay received signal. The RS hence sends the following

signals to the destinations:

yyyamp =FFFyyyr =XXXsss+FFFnnnr

for

XXX := [xxx1 ... xxxM] =FFFHHHWWW = [FFFHHHwww1 ... FFFHHHwwwM] (5.3)

Power of the transmitted signal at the RS is expressed as:

PR(WWW ,FFF) := E[yyyampyyyH
amp] = 〈XXXXXXH〉+σ 2

r 〈IIIF)FFF
H〉.

The transmission from the RS to all users can be modelled as typical MISO broadcasting. Namely,

the received signal at destination i is

yd,i = lllixxxisi +
M

∑
j �=i

lll jxxx js j + llliFFFnnnr +nd,i, i = 1, ...,M (5.4)

where the complex noise at destination i is nd,i ∼ C N (0,σ 2
d ) and the channel vector between

the RS and destination i is llli = (li1, ..., liN) ∈ C 1×N , i = 1, ...,M. As only the signal component

llliFFFHHHwwwisi in (5.4) is of interest, the other components are treated as noise and interference. Hence,

the signal-to-interference-plus-noise ratio (SINR) at destination i is given as:

SINRi(WWW ,FFF) =
|lllixxxi|2

∑M
j �=i |lllixxx j|2 +σ 2

r ||llliFFF||2 +σ 2
d

(5.5)
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Since the information rate at destination i is defined by Ri(WWW ,FFF) = log2(1+SINRi(WWW ,FFF)), the

rate maximin optimization max min
i=1,2,...,M

Ri(WWW ,FFF) is equivalent to the following SINR maximin

optimization

max
WWW∈C K×M ,FFF∈C N×N ,XXX∈C N×M

min
i=1,2,...,M

|lllixxxi|2
∑M

j �=i |lllixxx j|2 +σ 2
r ||llliFFF||2 +σ 2

d

s.t (5.3), (5.6a)

[
WWWWWW H

]
k,k

≤ ν p0, k = 1, ...,K (5.6b)[
XXXXXXH +σ 2

r FFFFFFH
]

n,n
≤ γn, n = 1, ...,N (5.6c)

〈WWWWWW H〉+ 〈XXXXXXH +σ 2
r FFFFFFH〉 ≤ Pmax

sum . (5.6d)

It can be seen that the objective function in (5.6) is highly nonlinear and nonconvex accompanied

by the nonlinear equality constraint (5.3) . This renders the difficulty to obtain the optimal solution.

Furthermore, the problem is still nonconvex even if one fixes one matrix e.g. WWW and solve for the

relay matrix FFF , and vice versa, i.e. alternating optimization is not applicable at all.

[113] considered the total transmission power minimization under SINR constraints

min
WWW ,FFF

PB(WWW ,FFF)+β .PR(WWW ,FFF) s.t. SINRi(FFF,WWW )≥ γi, i = 1,2, ...M (5.7)

for given β > 0 and γi > 0, i = 1,2, ...,M. Alternating optimization has been used in [113] to

address (5.7), which optimize alternatively on only each of variables WWW and FFF with the another

variable held fixed. While the objective function in (5.7) is obviously separably convex in WWW and

FFF , by a result of [109] the SINR constraints in (5.7) can be equivalently to (convex) second-order

cone constraint only when FFF is held fixed. This means only the optimization routine in WWW is

convex and thus tractable. The optimization routine in FFF remains difficult and could be efficiently

addressed only very recently [73]. On the other hand [111] attempted to address the sum-rate

maximization

max
WWW ,FFF

M

∑
i=1

ln(1+SINRi(WWW ,FFF)) : (5.6b),(5.6c) (5.8)

by a rough local approximation of each function ln(1+SINRi(WWW ,FFF)) and Ps(WWW ,FFF) (s∈{B,R}) by

quadratic concave and affine functions, respectively. Particularly, SINRi(WWW ,FFF) is firstly linearised

by an affine function Ai(WWW ,FFF) of the first order Taylor expansion and then ln(1+SINRi(WWW ,FFF))

is approximated by the second-order Taylor expansion for function ln(1+Ai(WWW ,FFF)). The authors
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of [111] do not seem to know that function ln(1+Ai(WWW ,FFF)) is already concave so its maximiza-

tion is already tractable and efficiently solved by a standard convex program software. In other

words, approximation for ln(1+Ai(WWW ,FFF)) is not necessary and only results in deterioration of the

iterative performance. In any case, such approach cannot perform better than advanced sequential

quadratic programming approach coded by Matlab fmincon [58].

We now develop an efficient approach for solution of nonsmooth and nonconvex program

(5.6) which is also easily workable for solution of nonconvex but smooth program (5.8) as well.

Following [73], to rewrite (5.6) equivalently as

max
WWW ,FFF ,XXX ,yyy∈RM

+

min
i=1,2,...,M

|lllixxxi|2
yi +σ 2

d

s.t. (5.6b),(5.3),(5.6c),(5.6d), (5.9a)

M

∑
j �=i

|lllixxx j|2 +σ 2
r ||llliFFF||2 ≤ yi, i = 1,2, ...,M, (5.9b)

or equivalently,

− min
WWW∈C K×M ,FFF∈C N×N ,XXX ,yyy

[ f01(XXX ,yyy)− f02(XXX ,yyy)] : (5.6b),(5.3),(5.9b),(5.6c) (5.10)

with

f01(XXX ,yyy) := max
i=1,2,...,M

∑
j �=i

|lll jxxx j|2
y j +σ 2

d

, f02(XXX ,yyy) :=
M

∑
i=1

|lllixxxi|2
yi +σ 2

d

(5.11)

Since each function |lll jxxx j|2/(y j +σ 2
d ) is convex in its variables [73], both functions f01 and f02

are convex as maximum and sum of convex function [102]. The objective function in (5.10) is

thus a d.c. function [102]. On the other hand, all constraints (5.6b), (5.9b) and (5.6c) are convex.

The main issue is how to recognize partial convexity structures of the quadratic equality constraint

(5.3). We have the following result with its proof given below.

Lemma 1. The equality constraint (5.3) is equivalent to the following equality constraints in

additional variables WWW 11 and WWW 22,⎡
⎢⎢⎢⎣

WWW 11 XXX FFFHHH

XXXH WWW 22 WWW H

HHHHFFFH WWW IIIK

⎤
⎥⎥⎥⎦� 0, (5.12a)

〈WWW 11 −FFFHHHHHHHFFFH〉 ≤ 0. (5.12b)
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Proof. Let’s begin with an auxiliary result.

Lemma 2. For given matrix W12,W22 of sizes n×m and m×m with W22 positive definite, one has⎡
⎣ 0 W12

W T
12 W22

⎤
⎦� 0 (5.13)

if and only if W12 = 0.

Proof. Since the “if” part is obvious, let’s prove the “only if” part. First, (5.13) means

2xTW12y+ yTW22y ≥ 0, ∀(x,y) ∈ Rn+m (5.14)

Now, suppose the contrary, that W12 �= 0, i.e. there is (i, j) such that W12(i, j) �= 0. Take (x,y) such

that xk = 0 for k �= i and y� = 0 for � �= j. Then (5.14) gives

2W12(i, j)xiy j +W2( j, j)y2
j ≥ 0, ∀(xi,y j) ∈ R2 (5.15)

However, for every y j �= 0, taking xi = −W2( j, j)+1

2W12(i, j)
y j will make LHS of (5.15) negative, a contra-

diction.

By Shur’s complement, (5.12a) is equivalent to⎡
⎣ WWW 11 XXX

XXXH WWW 22

⎤
⎦−
⎡
⎣ FFFHHH

WWW H

⎤
⎦[ HHHHFFFH WWW

]
=

⎡
⎣ WWW 11 −FFFHHHHHHHFFFH XXX −FFFHHHWWW

XXXH −WWW HHHHHFFFH WWW 22 −WWWWWW H

⎤
⎦� 0

(5.16)

which implies WWW 11 −FFFHHHHHHHFFFH � 0. This together with (5.12b) yields WWW 11 = FFFHHHHHHHFFFH . Then

applying Lemma 2 to (5.16) gives XXX =FFFHHHWWW as desired.

Define a convex set

D := {(WWW ,FFF,XXX ,yyy,WWW 11,WWW 22) s.t. (5.6b),(5.9b),(5.6c), (5.12a)}

and use Lemma 1 to write (5.10) as a minimization of a d.c. function subject to d.c. constraint

min
(WWW ,FFF,XXX ,yyy,WWW 11,WWW 22)∈D

[ f01(XXX ,yyy)− f02(XXX ,yyy)] : (5.12b), (5.17)
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which is written as

min
(WWW ,FFF,XXX ,yyy,WWW 11,WWW 22)∈D

max
μ≥0

L ((XXX ,yyy,FFF,WWW 11),μ) (5.18)

for

L ((XXX ,yyy,FFF,WWW 11),μ) := f01(XXX ,yyy)− f02(XXX ,yyy)+μ〈WWW 11 −FFFHHHHHHHFFFH〉.

A nonconvex duality for (5.18) is

max
μ≥0

min
(WWW ,FFF ,XXX ,yyy,WWW 11,WWW 22)∈D

L ((XXX ,yyy,FFF,WWW 11),μ) (5.19)

It is known that there is a gap between a primal nonconvex program and its duality [102], even for

indefinite quadratic programs with just one nonconvex quadratic constraint [104]. However, we

have the following result.

Lemma 3. The following minimax equality holds true

min
(WWW ,FFF ,XXX ,yyy,WWW 11,WWW 22)∈D

max
μ≥0

L ((XXX ,yyy,FFF ,WWW 11),μ) = max
μ≥0

min
(WWW ,FFF,XXX ,yyy,WWW 11,WWW 22)∈D

L ((XXX ,yyy,FFF,WWW 11),μ).

(5.20)

Moreover, the function

g(μ) := min
(WWW ,FFF ,XXX ,yyy,WWW 11,WWW 22)∈D

L ((XXX ,yyy,FFF,WWW 11),μ)

is increasing in μ .

Proof. Note that (5.12a) implies that

〈WWW 11 −FFFHHHHHHHFFFH〉 ≥ 0 (5.21)

By the above Lemma 3, we solve (5.10) by the exact penalty function:

min
WWW∈C K×M,FFF∈C N×N ,XXX ,yyy,WWW 11,WWW 22

[ f01(XXX ,yyy)− f02(XXX ,yyy)+μ〈WWW 11 −FFFHHHHHHHFFFH〉] :

(5.6b),(5.9b),(5.6c),(5.12a),

(5.22)

where the difficult constraint (5.12b) is losslessly incorporated into its objective function.

Rewrite (5.22) in the clearly canonical d.c. form [102]

min
(WWW ,FFF ,XXX ,yyy,WWW 11,WWW 22)∈D

[F01(XXX ,yyy,WWW 11)−F02(XXX ,yyy,FFF)], (5.23)
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with the convex functions F01(XXX ,yyy,WWW 11) := f01(XXX ,yyy) + μ〈WWW 11〉 and F02(XXX ,yyy,FFF) = f02(XXX ,yyy) +

μ〈FFFHHHHHHHFFFH〉. Initialized from (WWW (0),FFF (0),XXX (0),yyy(0),WWW
(0)
11 ,WWW

(0)
22 ) ∈ D , our proposed d.c. iteration

(DCI) at κ-th iteration solves the following convex program to generate (WWW (κ+1),XXX (κ+1),yyy(κ+1),FFF(κ+1)),

min
(WWW ,FFF,XXX ,yyy,WWW 11,WWW 22)∈D

[F01(XXX ,yyy)−F02(XXX
(κ),yyy(κ),FFF (κ))−

〈∇F02(XXX
(κ),yyy(κ),FFF(κ)),(XXX ,yyy,FFF)− (XXX (κ),yyy(κ),FFF(κ))〉]

(5.24)

where due to convexity of F02,

〈∇F02(XXX
(κ),yyy(κ),FFF (κ)),(XXX ,yyy,FFF)− (XXX (κ),yyy(κ),FFF(κ))〉 :=

M

∑
i=1

2Re((lllixxx
(κ)
i ) · llli(xxxi −xxx

(κ)
i ))

y
(κ)
i +σ 2

d

− |lllixxx
(κ)
i |2(yi − y

(κ)
i )

(y
(κ)
i +σ 2

D)
2

+2Re〈(FFF − F̄)HHHHHHHF̄H〉 ≤

F02(XXX ,yyy,FFF)−F02(XXX
(κ),yyy(κ),FFF (κ)) ∀ (XXX ,yyy,FFF). (5.25)

By (5.25), it is easily seen that

F01(XXX
(κ+1),yyy(κ+1),FFF (κ+1)−F02(XXX

(κ+1),yyy(κ),FFF (κ+1))≤ F01(XXX
(κ),yyy(κ),FFF(κ)−F02(XXX

(κ),yyy(κ),FFF (κ))

so (WWW (κ+1),XXX (κ+1),yyy(κ+1),FFF(κ+1))∈D is better than (WWW (κ),XXX (κ),yyy(κ),FFF (κ))∈D and the proposed

DCIs indeed generates a sequence {(WWW (κ),XXX (κ),yyy(κ),FFF(κ))} of improved solutions that converges

to a local optimal solution (W̄WW ,X̄XX ,ȳyy,F̄FF). It is important to have a good initial (WWW (0),FFF(0),XXX (0),yyy(0),WWW
(0)
11 ,WWW

(0)
22 )∈

D , so that convergence towards optimized solution is obtained efficiently. This will be further ad-

dressed in the Simulation section.

5.3 Two-Way Relays with MMSE Receiver

Figure 5.2: A two-way MIMO Relay system.
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This section explores throughput capacity achievable by using two-way MIMO relay systems.

Consider a two-way MIMO relay communication system where nodes S1 and S2 exchange in-

formation with the aid of a MIMO relay R [106]. We assume that both nodes S1 and S2 are

equipped with M antennas, whereas the relay R node has N antennas. The generalization to a sys-

tem with different number of antennas at each node is straightforward. The information exchange

between nodes S1 and S2 is completed in two time slots. In the first time slot, nodes S1 and

S2 concurrently transmit, and the signal vector from node i is xxxi =WWW isssi, i = 1,2, where sssi is the

N ×1 modulated source signal vector covariance matrix RRRsi = E[sssisss
H
i ] and WWW i is the M×M source

precoding matrix at node i. Assume that the source signal vector satisfies E[sssisss
H
i ] = IIIM, i = 1,2,

where IIIM stands for an M×M identity matrix. The N×1 received signal vector rrr at the relay node

is

rrr =HHH1xxx1 +HHH2xxx2 +nnnr (5.26)

where HHHi is the N ×M MIMO channel from node Si to the relay node and nnnr is the additive

Gaussian noise vector with covariance matrix σ 2
r IIIN .

In the second time slot, the MIMO relay node filters rrr by FFF ∈ N N×N and broadcasts the

signal vector FFFrrr to nodes S1 and S2. After cancelling the self-interference term, the received

signal vector yyyi at node i∗ can be written as

yyyi = LLL2/iFFFHHH2/iWWW 2/isss2/i +LLL2/iFFFnnnr +nnnd,i, i = 1,2 (5.27)

where LLL2/i is the M×N forward channel from the relay R to terminal Si, and nnnd,i is the additive

Gaussian noise vector with zero means and covariance σ 2
d IIIN .

Using linear MMSE receivers at the both nodes Si, i = 1,2 the estimated signal waveforms

are given by ŝss2/i = B̂BBiyyyi, where [42]

B̂BBi = arg min
BBBi

E(||sss2/i −BBBiyyyi||2) =RRRH
yis2/i

RRR−1
yi
, (5.28)

with RRRyis2/i
= E[yyyisss

H
2/i
] = LLL2/iXXX2/i and RRRyi

= E[yyyiyyy
H
i ] = LLL2/iXXX2/iXXX

H
2/i

LLLH
2/i

+σ 2
r LLL2/iFFFFFFHLLLH

2/i
+σ 2

d IIIM

for

XXX j =FFFHHH jWWW j, j = 1,2. (5.29)

∗2/i := 2
i

in common sense
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The MMSE at terminal i is thus

E(||sss2/i−ŝss2/i||2)= e2/i(WWW 1,WWW 2,FFF) := 〈[IIIM+(LLL2/iXXX2/i)
H(σ 2

r LLL2/iFFFFFFHLLLH
2/i+σ 2

dIIIM)−1LLL2/iXXX2/i]
−1〉,

(5.30)

which is a very complicated nonlinear functions in (WWW 1,WWW 1,FFF). Obviously its minimization re-

mains intractable even when (WWW 1,WWW 2) is held fixed. To apply alternating optimization, with this

MMSE is expressed as optimization in (WWW 1,WWW 1), FFF) and (BBB1,BBB2) (from (5.28)) [106], which is

convex when two of them are held fixed.

Now, with the introduction of nonlinear variables

WWW 11 =FFFFFFH , (5.31)

YYY j = (LLL jXXX j)
H(σ 2

r LLL jWWW 11LLLH
j +σ 2

dIIIM)−1LLLjXXX j, j = 1,2, (5.32)

the MMSE minimax optimization subject to transmission power constraints is formulated as

min
WWW i,FFF,YYY j ,XXXi

max
j=1,2

〈(IIIM +YYY j)
−1〉 s.t. (5.29),(5.31),(5.32), (5.33a)[

WWW jWWW
H
j

]
m,m

≤ ν p0, m = 1, ...,M, j = 1,2, (5.33b)[
2

∑
j=1

XXX jXXX
H
j +σ 2

r FFFFFFH

]
n,n

≤ γn, n = 1, ...,N, (5.33c)

〈
2

∑
j=1

(WWW jWWW
H
j +XXX jXXX

H
j )+σ 2

r FFFFFFH〉 ≤ Pmax
sum (Total Power) (5.33d)

The key observation is that the nonlinear constraints (5.29), (5.31), and (5.32) are equivalently

expressed by ⎡
⎢⎢⎢⎣

WWW 11 XXX j FFF

XXXH
j WWW 22 j WWW H

j HHHH
j

FFFH HHH jWWW j IIIN

⎤
⎥⎥⎥⎦� 0, j = 1,2, (5.34a)

⎡
⎣ YYY j XXXH

j LLLH
j

LLL jXXX j σ 2
r LLLjWWW 11LLLH

j +σ 2
dIIIM

⎤
⎦� 0, j = 1,2, (5.34b)

〈WWW 11 −FFFFFFH〉+
2

∑
j=1

〈YYY j − (LLL jXXX j)
H(σ 2

r LLLjWWW 11LLLH
j +σ 2

dIIIM)−1LLL jXXX j〉 ≤ 0. (5.34c)

In summary, the exact penalty formulation for minimizing the maximum mean-squared error of

the estimates of the two messages by two different sources can be formulated as under the power
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constraints is

min
FFF,WWW 11XXX j,YYY j ,WWW 22 j , j=1,2

[max
j=1,2

〈(IIIM +YYY j)
−1〉+μ(〈WWW 11 −FFFFFFH〉

+
2

∑
j=1

〈YYY j − (LLLjXXX j)
H(σ 2

r LLL jWWW 11LLLH
j +σ 2

dIIIM)−1LLL jXXX j〉)] : (5.33b)− (5.33d),(5.34a),(5.34b).

(5.35)

In Appendix C, it is shown that function

gj(XXX j,WWW 11) := 〈(LLL jXXX j)
H(σ 2

r LLL jWWW 11LLLH
j +σ 2

dIIIM)−1LLL jXXX j〉 (5.36)

is convex with

〈∇gj(X̄ j,W̄11),(XXX j,WWW 11)− (X̄ j,W̄11)〉 =

2.Re{〈X̄H
j LLLH

j (σ
2
r LLL jW̄11LLLH

j +σ 2
d IIIM)−1LLL j(XXX j − X̄ j)〉}−

σ 2
r .〈X̄H

j LLLH
j (σ

2
r LLL jW̄11LLLH

j +σ 2
d IIIM)−1LLL j(WWW 11 −W̄11)LLL

H
j (σ

2
r LLL jW̄11LLLH

j +σ 2
dIIIM)−1LLL jX̄ j〉.

(5.37)

On the other hand, by (5.27), the information throughput at terminal Si is

ln I(sssi/2;yyyi) = lndet(IIIM +LLLi/2XXXi/2(σ
2
r LLLi/2FFFFFFHLLLH

i/2 +σ 2
dIIIM)−1(LLLi/2XXXi/2)

H). (5.38)

Under the variable introductions (5.29), (5.31), (5.32), the sum throughput maximization is written

by

min
FFF,WWW 11ZZZ j ,YYY j ,WWW 22 j , j=1,2

[−
2

∑
j=1

log2 det(IIIM +YYY j)] : (5.33b)− (5.33d),(5.34a)− (5.34c). (5.39)

Its exact penalty formulation through nonconvex duality is thus

min
FFF,WWW 11ZZZ j ,YYY j ,WWW 22 j, j=1,2

[−
2

∑
j=1

log2 det(IIIM +YYY j)+μ(〈WWW 11 −FFFFFFH〉

+
2

∑
j=1

(〈YYY j〉−gj(XXX j,WWW 11))] : (5.33b)− (5.33d),(5.34a)− (5.34b),

(5.40)

with convex functions gj(XXX j,WWW 11) defined from (5.36).

Obviously, the information throughput maximization at terminal Si in one way relaying is

described by (5.38) by setting WWW i/2 = 0 and can be solved similarly by DCI. Suppose p(Psum) and

pi(Psum/2) are the optimal values of (5.39) and the mentioned information throughput maximiza-

tion at terminal Si (in one way relaying) with power sum Psum/2. Since two-way relaying uses 2
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Figure 5.3: Signal-to-interference-plus-noise ration (SINR) plotted versus total relaying power for

(M,N,K) = (4,4,4) for downlink cellular communication.

channels for communication between two terminals while one-way relaying uses 4 channels in to-

tal for their communication, the overall information throughput efficiency is defined by p(Psum)/2

and (p1(Psum/2)+ p2(Psum/2))/4, respectively. Therefore the advantage of two-way relaying over

one-way one can be verified by compare these values.

5.4 Simulation Results

In this section, simulation results and discussions are presented to illustrate the performance of the

proposed DCI method. It is assumed that the knowledge of both forward channel (i.e. between

BS and RS) as well as backward channel (i.e. between RS and users) is perfectly known. All

channel elements are generated as zero-mean, complex Gaussian distributed with unit variance



5.4 Simulation Results 123

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Average Channel SNR (dB)

SI
N

R
 p

er
 u

se
r

 

 

Optimal source precoding , fixed optimized relay precoding
Approach of Xu et al.
Proposed DC Joint Optimization

Figure 5.4: Signal-to-interference-plus-noise ration (SINR) plotted versus total relaying power for

(M,N,K) = (2,2,4) for downlink cellular communication.

and the results are averaged out over 100 Monte Carlo runs. Power of the input symbols sss as well

as AWGN at relay station and destination nodes are normalized to unity. Recall that M is the

number of user pairs, N is the number of antennas at the relay station (RS), and K is the number

of antenna at base station (BS). Simulation is carried out for different combinations of parameters

(M,N,K). The individual antenna power is set as pm ≤ ν p0 where ν = 1.5 is a scaling factor, and

p0 = 10. On the other hand, the individual relay antenna power is limited to P
R,max
n = γn = Ptot

rel /N.

Thus, the total sum power budget is upper bounded by Pmax
sum =

(
K p0 +∑N

n=1 γn

)
. In the following

subsections, we divide simulation results into two parts based upon two MIMO communication

system models described in previous sections.
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Figure 5.5: Signal-to-interference-plus-noise ration (SINR) plotted versus total relaying power for

(M,N,K) = (3,5,5) for downlink cellular communication.

5.4.1 Multiuser MIMO Downlink Communication

First, we consider MIMO broadcast channel downlink communication model where a BS broad-

casts message signals towards multiple users with the assistance of a MIMO relay station. For

(M,N,K) = (2,2,4) and (M,N,K) = (2,2,4), we plot SINR achieved for each user against total

relay station power in Figure 5.3 and Figure 5.4. It is assumed equal transmit power at base sta-

tion and relay station, i.e., PB
tot = PR

tot is utilized. Simulation results compare performance of the

minimum SINR achieved by proposed joint d.c. algorithm with the average SINR achieved by

method of [111] and alternating optimization of FFF and WWW . It is observed that the numerical results

demonstrate better performance of the proposed optimization method than the rest of aforemen-

tioned methods. Although, curve of [111] denotes average SINR per user based on the sum-rate
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Figure 5.6: Signal-to-interference-plus-noise ration (SINR) plotted versus total relaying power for

(M,N,K) = (3,6,6) for downlink cellular communication.

maximization considered in [111], it is still not better than the minimum SINR achieved by the

proposed method. Note that the SINR performance of both the [111] algorithm and alternating

method are almost similar to each other. It is worth mentioning that throughput sum achieved by

the proposed method for, say, 4 users at power level of 15 dB is 6.34 bps/Hz compared to 5.51

bps/Hz achieved by [111] despite the fact that the proposed method does not even aim at sum rate

maximization.

Next examples for this broadcast model attempts to present an extensive comparison between

the proposed method and several rounds of alternating optimization method from Figure 5.5 to

Figure 5.8. Essentially, we implement the following two steps to yield results from alternating

optimization:



5.4 Simulation Results 126

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

Total Relay Station Power (dB)

M
in

im
um

 S
IN

R
 (

dB
)

 

 

Proposed DC Joint Optimization
Optimal source precoding, fixed optimized relay precoding (3 Rounds)
Optimal source precoding, fixed optimized relay precoding (1 Round)

One-round
alternation

Three-round
alternation

Figure 5.7: Signal-to-interference-plus-noise ration (SINR) plotted versus total relaying power for

(M,N,K) = (4,8,8) for downlink cellular communication.

1. With fixed BS precoding matrix WWW , we maximize minimum SINR as a function of FFF in the

form of a d.c. program which can be solved by [81].

2. With fixed FFF obtained from the previous step, we solve d.c program in WWW .

This procedure is repeated recursively, until their is no further improvement in the resulting SINR.

Figure 5.5 illustrates that the proposed joint source and relay optimization algorithms obtains

improvement of approximately 2 dB of SINR at power level of 16 dB compared with the other

approaches. Although the three-round algorithm performs better than the one-round of alternation,

the former algorithm requires a larger number of iterations than the latter one to converge to final

solution as listed in Table I. Furthermore, it is observed that the joint optimization algorithm

converge to the same final result whether it is initiated from the solution of the three-round or
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Figure 5.8: Signal-to-interference-plus-noise ration (SINR) plotted versus total relaying power for

(M,N,K) = (5,8,8) for downlink cellular communication.

one-round alternating algorithm. Based on the number of iterations they need to converge, the

overall computational complexity of the one-round alternating algorithm is smaller than that of

the three-round algorithm. Such performance-complexity trade-off is very important for practical

multiuser MIMO relay communication systems.

By increasing number of antenna, as shown in Figure 5.7, significant improvement in SINR

is achievable by virtue of spatial diversity. In the later examples, we compare the SINR perfor-

mance of the proposed algorithms for different number of antennas at the RS and BS for various

combinations of user mobiles. Figure 5.7 compares minimum SINR performance of the proposed

algorithms versus one- and three-round alternating optimizations for the same number of source

and relay antennas as used in Figure 5.8 with different number of users. It can be clearly seen
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Table 5.1: Average number of iterations for convergence for (M,N,K) = (3,5,5).

Power (dB) Joint Algorithm One-Round Three-Round

0.00 12.00 22.20 34.10

4.00 13.15 26.35 36.45

8.00 13.20 19.40 29.20

12.00 13.75 27.80 39.55

16.00 14.85 16.75 29.10

20.00 14.00 18.75 25.00

from Figure 5.7 that as we increase the number of antennas at the relay and/or source(s), the

performance of the proposed algorithms improve significantly.

5.4.2 Two-way Relays with MMSE Receiver

Next we consider two-way MIMO relay model with MMSE receiver under two performance cri-

teria: 1) Sum-rate maximization, and 2) Minimization of maximum MSE. Maximization of sum

of information throughput is solved by both DCI and exact penalty function approach of (5.40)

by choosing an appropriate value of μ (which is μ = 10 in our case). We use a randomly chosen

initial point to start the proposed d.c. iterations similar to the previous scenario. Four system con-

figurations of (M,N) = {(2,2),(3,4),(4,4),(5,5)} are studied in two-way MIMO relay case. The

individual power thresholds are similarly set as in previous simulation results with source power

for each antenna fixed at p0 = 10 dB while the relay station power is varied from 1 dB to 10 dB.

The maximized sum throughput for two-way and one-way relay communication are obtained for

comparison.

A comparison is drawn in terms of sum throughput between two-way and on-way MIMO

relays in Figure 5.9 for (M,N) = (3,4) and (M,N) = (3,5). As can be observed, there is a gap of

5 bps/Hz at relay power of 10 dB between the two modes of communication. In Figure 5.10, we

further investigate the sum throughput performance when the antenna number N at S j changes

from 3 to 4 with N = 4,5 that allows the system performance to significantly improve when N is
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Figure 5.9: Sum throughput plotted versus total relaying power for two-way and one-way MIMO

relay-assisted communication.

greater. This owes to extra diversity gain that can be exploited to enhance the reliability of data

transmission.

Furthermore, in Figure 5.11, we plot sum of MSEs for both sources S1 and S2 when they

communicate with each other simultaneously through the MIMO relay for a configuration of

(M,N) = (2,2). By solving (5.35), we obtain solution for minimizing the maximum MSE among

the given sources/users for which a comparison is drawn between [106] and the proposed d.c.

based method. Note that it is rather the sum of MSE of both sources which is used along the ver-

tical axis of the plot, and despite the fact that the objective function in the proposed method does

not aim at minimizing the sum of mean square error, the proposed method shows improvement

over method of [106] by just aiming at minimizing the sum of MSEs. This is further evident when
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Figure 5.10: Sum throughput plotted versus total relaying power for two-way and one-way MIMO

relay-assisted communication.

bit error rate is plotted with QPSK modulation scheme for (M,N) = (4,4) to show in Figure 5.12

that the proposed method achieves lower bit error rate than the method of [106].

5.5 Summary

Joint optimization of source precoding and MIMO relay processing matrices is considered in this

chapter in two parts. In the first part, a maximin SINR optimization problem is jointly solved for

one-way MIMO relays in multiuser broadcast communication in cellular network via proposed

DCI method. In the second part, two-way MIMO relays with MMSE receiver are considered for

both minimax MSE and sum-throughput maximization. Both of these problems have been shown

to be solved via DCI joint iterative algorithm. Simulation results demonstrate supremacy of the
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Figure 5.11: Sum of MSE of both source S1 and S2 plotted versus total relaying power with

(M,N) = (2,2) for two-way MIMO relay-assisted communication.

proposed methods over previously known algorithms.
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Figure 5.12: Bit error rate plotted versus total relaying power with (M,N) = (4,4) for two-way

MIMO relay-assisted communication.



Chapter 6

Conclusion

In this chapter, we recap the main contributions of the dissertation and point out some possible

future research areas. This dissertation attempts to exploit the hidden convexity of the resource

allocation problems under some given performance criteria such as minimum mean square er-

ror (MMSE), information throughput or signal-to-interference-plus-noise ratio (SINR) and then

successfully finds tractable optimization formulations. We have considered the optimal design

problems of power allocation, active sensor selection and antenna beamforming vector assignment

problems to meet various performance goals in an optimized manner. In short, the contributions

of this dissertation are summarized as follows.

After giving the motivation of the dissertation in Chapter 1, an overview of statistical esti-

mation, wirless communication and convex optimization theory on which many results of this

dissertation are based on have been briefly introduced in Chapter 2.

Chapter 3 has addressed the problem of power allocation among sensor nodes for locating a

static target or for tracking a dynamic target in either linear or nonlinear sensing systems. These

sensors observe the targets and then transmit their noisy observations through noisy wireless chan-

nels to the FC where the final estimate is carried out. Due to limited energy resources, it is desired

to develop an optimized power allocation technique which is able to minimize mean square error

of the estimate under a given power budget. A novel technique based on tractable optimization

(SDP) and approximation (unscented and linear fractional transformations) has been proposed.

The multi-sensor diversity has been fully exploited to arrive at an accurate estimate of the target’s

133
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state. Moreover, Chapter 3 has also formulated joint program of active sensor assignment and

power allocation in linear and nonlinear sensor network is considered. Its optimized solutions are

quickly located by the developed d.c. procedure of local search. Accompanying simulation results

clearly showed the viability of the theoretical results.

Chapter 4 has analyzed the beamforming design problems in multi-user wireless relay net-

works to maximize the minimum information throughput among all users. Both cases of concur-

rent and orthogonal transmissions from sources to relays are considered. It has also considered

joint design problem of source power allocation and relay beamforming in multi-user multi-relay

wireless networks. Different from the existing approach which reformulates the design problems

to matrix rank-one constrained optimizations, the proposed approach exploits the d.c. structure

of the objective function and the convex structure of the constraints to develop efficient iterative

algorithms of very low complexity to find the solutions. Numerical results demonstrate that the

developed algorithms are able to locate the global optimal solutions by a few iterations and they

illustrate the superiority of our method over the existing methods.

In Chapter 5 joint optimization of source precoding and MIMO relay processing matrices is

considered in this paper. The paper is divided into two parts. In the first part, a maximin SINR

optimization problem is jointly solved for one-way MIMO relays in multiuser broadcast commu-

nication in cellular network via proposed DCI method. In the second part, two-way MIMO relays

with MMSE receiver are considered for both minimax MSE and sum-throughput maximization.

Both of these problems have been shown to be solved via DCI joint iterative algorithm. Simulation

results demonstrate supremacy of the proposed methods over previously known algorithms.
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