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Abstract

Nowadays, huge amounts of visual data, e.g., videos and images, have
become widely accessible. Therefore, intelligently categorizing the
large and growing collections of data for access convenience has been
a central goal for modern computer vision research. In this thesis, we
describe several newly-developed approaches for visual categorization

upon the single and multiple instance learning cases.

In single-instance learning (SIL), each of the training instances has
been labeled. Here, we focus on a challenging task of facial ex-
pressions recognition where manually labeling each training instance,
i.e., face video, is handy. To get the distinct features of expressions,
we propose a novel feature representation, Histogram Variances Face
(HVF), which integrates dynamic expression information into a static
image being invariant to illumination and in-plane rotation. Through
HVFs, the facial expression recognition can be cast as a facial recog-
nition problem. We have applied our approach on the well-known
Cohn-Kanade AU-Coded Facial Expression database, and then those
extracted HVFs are classified by using facial recognition technology,
i.e., Eigenfaces and Support Vector Machines (SVMs). The recogni-
tion accuracy is very encouraging. We further propose an extension
of HVFs, Hexagonal Histogram Variance Faces (HHVFs), which ap-
plies HVFs on a hexagonal structure. Comparing to HVFs, HHVF's
not only greatly reduce the computation costs but also improve the

recognition accuracy.

In multiple-instance learning (MIL), the training instances are divided
into groups and the instances in the same group share only one label.
MIL arises from many applications where individually labeling train-

ing instances is expensive. In this case, we propose a novel algorithm,



multiple-instance learning with a supervised kernel density estima-
tion (MIL-SKDE), to tackle the labeling ambiguity. Our algorithm
extends the twin technologies, kernel density estimation (SKDE) and
mean shift, to their supervised versions in which the labels of data
points will affect the mode seeking. We apply MIL-SKDE in several
applications of visual categorization, e.g., image and object catego-
rization, and our algorithm performs superiorly comparing to other
state-of-the-art methods. Furthermore, to address the complexity is-
sue of MIL-SKDE, we propose MIL-SS (MIL with speed-up SKDE)
to speed up the training process. Experiments shows that it has com-
parable performances to MIL-SKDE but is much more efficient in

training stage.

Finally, we apply MIL-SS in a “bag-of-words” (BoW) system to learn
the visual codebook for object categorization on a more comprehensive
dataset. Our system consists of four steps: codebook generation,
feature coding, feature pooling and classification. Unlike conventional
BoW methods that learn codebook from the whole image areas, our
method can learn codebook just from the areas of target objects,

which significantly improves classification accuracy.



Author’s publications for the Ph.D

Journal paper:

1.

Ruo Du, Qiang Wu, Xiangjian He, and Jie Yang. “MIL-SKDE: Multiple-
instance learning with supervised kernel density estimation”. Signal Pro-
cessing, Volume 93, Issue 6, June 2013, Pages 1471-1484

Conference papers:

2.

Ruo Du, Qiang Wu, XiangJian HE, and Jie Yang. “Object categorisation
based on a supervised mean shift algorithm”. In 12th European Confer-
ence on Computer Vision (ECCV) Demos, Part 111, LNCS 7585. Springer,
Heidelberg, 2012.

. Ruo Du, Qiang Wu, XiangJian HE, and Jie Yang. “Multi-instance learn-

ing with an extended kernel density estimation for object categorisation”.
In IEEE International Conference on Multimedia and Expo (ICME) Work-
shops, pp.477-482, 9-13 July 2012.

. Lin Wang, Xiangjian He, Ruo Du, Wenjing Jia, Qiang Wu, and Wei-

Chang Yeh. “Facial expression recognition on hexagonal structure using
Ibp-based histogram variances”. In 17th International MultiMedia Modeling
Conference (MMM), pages 35 - 45, 2011.

. Ruo Du, Sheng Wang, Qiang Wu, and Xiangjian He. “Learn concepts in

multiple-instance learning with diverse density framework using supervised
mean shift”. In Digital Image Computing: Techniques and Applications
(DICTA) - Oral presentation, pages 643-648, 2010.

. Sheng Wang, Ruo Du, Qiang Wu, and Xiangjian He. “Adaptive stick-like

features for human detection based on multi-scale feature fusion scheme”.
In Digital Image Computing: Techniques and Applications (DICTA ), pages
375-380, 2010.



7. Ruo Du, Qiang Wu, Xiangjian He, Wenjing Jia, and Daming Wei. “Facial
expression recognition using histogram variances faces”. In Workshop on
Applications of Computer Vision (WACYV), pages 1-7, 2009.

vi



Contents

Contents

List of Tables

List of Figures

Nomenclature

1

2

Introduction

1.1 Motivation . . . . . . . ..o

1.2 Facial expression recognition . . . . . . . . .. ... ... ... ..
1.2.1  Action unit based approaches . . . . . .. ... ... ...
1.2.2  Emotion based approaches . . . . . . . .. ... ... ...
1.2.3  Our approach for expression recognition . . . . .. .. ..

1.3 Object categorisation . . . . . ... ... ... .
1.3.1 Multiple-instance learning . . . . . . . .. ... ... ...
1.3.2  Our approach for object categorisation . . . . . .. .. ..

1.4 Contributions . . . . . . . . ...

1.5 Outline of this thesis . . . . . . .. .. ... ... ... ... ...

Related feature extraction and pattern recognition methods

2.1 Feature extraction . . . . . . .. ...
2.1.1 Haar-like features . . . . . . . . . .. ...
2.1.2 Eigenface . . . . . .. .. ...
2.1.3 Scale-invariant feature transform . . . .. ... ... ...

2.1.4 Speeded up robust feature . . . . .. ... ... ... ...

vil

vii

xii

Xiv

XV

W o= e

o ~J O Ot

16



CONTENTS

2.1.5 Histogram of oriented gradients . . . . ... .. ... ... 28
2.2 Machine learning and pattern recognition . . . . . . . . .. .. .. 29
221 K-means . . . . ... 30
2.2.2  Kernel density estimation and mean shift . . . . . . .. .. 31
2.2.3 Adaboost . . .. ... 34
2.2.4  Support vector machines . . . . ... ... 36
2.2.5  Unsupervised and supervised topic models . . . . . . . .. 38
2.2.5.1 Latent Dirichlet allocation (LDA) . . . . ... .. 38
2.2.5.2  Supervised latent Dirichlet allocation (sLDA) . . 41

2.2.5.3 Maximum entropy discrimination latent Dirichlet
allocation (MedLDA) . . . . . ... ... ... .. 43
2.3 SUmMmary ... oo .. 46
Histogram Variances Faces for expression recognition 48
3.1 Histogram Variances Faces . . . . . . . . ... ... ... .. ... 49
3.1.1 Faces Alignment . . . . . ... ... ... 49
3.1.2  Preprocessing and LBP texturising . . . .. .. ... ... 51
3.1.3 Earth Mover’s Distance for calculation of histogram variances 53
3.1.3.1 Earth Mover’s Distance . . . ... ... .. ... 53
3.1.3.2  Procedures of calculating histogram variances . . 55
3.1.3.3 Computing histograms of various-size blocks . . . 56
3.2 Classifying HVF images using PCA+SVMs . . . . . . ... .. .. 57
3.2.1 PCA dimensionality reduction . . . . . ... ... ... .. 57
3.2.2 SVMs training and recognition . . . . .. ... ... ... 57
3.3 Experiments . . . . . . ... 58
3.3.1 Dataset . . ... .. 58
3.3.2  Parameter selection for HVFs generation . . . . . . . . .. 60
3.3.3 Training and recognition . . . . . .. ... ... 61
3.4 Discussion . . . . . ... 63
3.5 Conclusion . . . . . . ... 64

Hexagonal Histogram Variances Faces for expression recognition 65

4.1 Hexagonal Histogram Variances Faces . . . . . . . . .. .. .. .. 66

viii



CONTENTS

4.2
4.3

4.4
4.5

4.1.1 Fiducial point detection and face alignment . . . .. . .. 66
4.1.2 Conversion from square structure to hexagonal structure . 66
4.1.3 Preprocessing and LBP texturising . . .. .. .. .. ... 67
4.1.4 Earth Mover’s Distance (EMD) . . . . ... ... ... .. 68
4.1.5 Histogram variances . . . . . .. .. ... ... ...... 69
Classification . . . . . . . . . .. ... 69
Experiments . . . . . .. ... 70
4.3.1 Dataset . . . .. .. 70
4.3.2 HHVFs generation . . ... ... ... ... ... ..... 70
4.3.3 Training and recognition . . . . . . .. ... ... ... 71
Discussion . . . . . . . ... 72
Conclusion . . . . . . . . ... 74

MIL-SKDE: Multiple-instance learning with supervised kernel

density estimation 75
5.1 MIL-SKDE algorithm . . . . . . .. ... ... ... ........ 75
5.1.1 Conventional kernel density estimation and mean shift . . 76
5.1.2  Supervised kernel density estimation . . . . .. ... ... 78
5.1.2.1 SKDE versus DDE . . . . .. .. ... ... ... 82
5.1.3 Supervised mean shift . . . ... .. ... ... ... ... 83
5.1.3.1 Selecting starting points . . . . . . ... ... .. 85

5.1.3.2 Bandwidth estimation for supervised kernel den-
sity estimation . . . . . . ... ... ... L. 86
5.1.4 Algorithm summary . . . .. .. ... ... ... ..... 88
5.1.5  Classification . . . . . ... ... ... ... ... ..., 90
5.2 Experiments . . . . . ... 91
5.2.1 Experiments on synthetic data . . . . . ... .. ... ... 92
5.2.1.1 Mixture of positive and negative points . . . . . . 92
5.2.1.2  Unbalance of positive and negative points . . . . 92
5.2.1.3 Multiple concepts learning . . . . . . .. ... .. 93
5.2.2 Region-based image categorisation . . . ... ... .. .. 94
5.2.2.1 Experiment setup . . . . .. ... ... L. 94
5.2.2.2  Image categorisation results . . . . . . ... ... 96

1X



CONTENTS

5.2.2.3 Sensitivity to labeling noise . . . . . ... .. .. 97

5.2.3 Object categorisation . . . . . . . . . ... ... ... 98
5.2.3.1 Experimental setup . . . . .. ... ... ... .. 99

5.2.3.2 Recognition results . . . . .. ... ... ... .. 101

5.2.3.3 Feature selection . . . . ... ... ... .. ... 103

5.3 Discussion . . . . . .. 104
54 Conclusion . . . . . . .. 107

MIL-SS: Multiple-instance learning with a speed-up supervised

kernel density estimation 108
6.1 MIL-SS algorithm . . . . . . .. ... .. o 109
6.1.1 Revisit supervised kernel density estimation and mode seek-

INg . .o 109

6.1.2 Instance selection process . . . . . . .. ... ... ... 111
6.1.3 Bandwidth estimation . . . . ... ... ... ... ... 113
6.1.4 MIL-SS algorithm summary . . . . ... ... ... .... 113
6.1.5 Classification . . . . ... .. .. ... ... ... ..., 114

6.2 Experiments . . . . . . .. ... 114
6.2.1 Region-based image categorisation . . . ... .. ... .. 114
6.2.2 Object categorisation . . . . . . . . . ... ... ... ... 115
6.2.3 Sensitivity to labeling noise . . . . . ... ... ... ... 118
6.2.4 Regions of interest detection . . . . . . ... ... ... 120

6.3 MIL-SS for bag-of-words model . . . . ... ... ... ...... 120
6.3.1 Bag-of-wordsmodel . . . . . . ... ... ... L. 122
6.3.1.1 Feature extraction . . ... ... ... ... ... 124

6.3.1.2 Codebook generation . . . . . .. ... ... ... 124

6.3.1.3 Feature coding and pooling . . . . .. ... ... 125

6.3.1.4 Classification . . . . .. ... ... ... ... .. 125

6.3.2 Experiments on SIVAL dataset . . . .. ... ... .... 126

6.4 Conclusion . . . . . . . . ... 126
Conclusions and future work 128
7.1 Conclusions . . . . . . . ... 128



CONTENTS

7.2 Future work . . . . . .. 129

References 131

X1



List of Tables

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5

5.1
0.2

9.3

5.4

6.1

6.2

Recognition rates of happy and surprise HVFs. . . . . . . . .. .. 61
A recent investigation of facial expression recognition by human . 61

Recognition rates of happy and surprise versus other sorts of HVFs. 62

Recognition rates of anger, disgust, surprise and sadness HVFs. . 62
Recognition rates of all sorts of HVFs. . . . . ... ... ... .. 63
Recognition rates of happy and surprise HHVFs. . . . . . . . . .. 71
A recent investigation of facial expression recognition by human . 72
Recognition rates of anger, disgust, surprise and sadness HHVFs. 72
Recognition rates of all sorts of HHVFs . . . . . . ... .. .. .. 73

Recognition rates between HVFs and HHVFs. The last row is the
average recognition rates of six categories. In our experiments,
HHVFs slightly outperforms HVFs. . . . . ... ... ... ... 73

Learning for multiple concepts. . . . . . . . ... ... ... ... 93
Comparison of image categorisation accuracy rates for MIL-SKDE
and other methods. . . . . . . .. ... ... 97
Confusion matrices of object categorisation on Caltech-4 and SIVAL
dataset respectively. . . . . . ... Lo 103
The recognition rates for MIL-SKDE, DD-SVM, MILIS and MILES.104

Comparison of image categorisation accuracy rates for MIL-SKDE

and other methods. . . . . . . . . ... 116
The recognition rates for MIL-SS, MIL-SKDE, DD-SVM, MILIS
and MILES. . . . . . . . . . 117

xii



LIST OF TABLES

6.3

6.4

The average training scales and time uses of MIL-SS and MIL-
SKDE for object categorisation. . . . . . . . ... ... ... ... 118

Classification accuracy comparisons among different methods over
30 runs on the SIVAL.

xiil



List of Figures

1.1
1.2
1.3
14
1.5
1.6

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3
3.4

The training process for visual categorisation. . . . . . .. .. ..
The testing process for visual categorisation. . . . . . . . . . ...
Examples of some Action Units extracted from Cohn-Kanade database 4
Examples of some combinations of Action Units. . . . . . . . ...
The task of object-based visual categorisation. . . . . . . . .. ..

Examples of salient parts. . . . . .. .. ... ... ... ...,

Examples of Haar-like features. . . . . . .. ... ... ... ... 18
Computing the sum of a rectangular area using integral image. . . 19
Typical Haar-like features for face detection [68].. . . . . . . . .. 19
Visualisation of the eigenface approach . . . . .. ... ... ... 20
Generation of Difference of Gaussians (DoG) . . . . . .. ... .. 23
SIFT keypoint candidature detection. . . . . . . . . .. ... ... 24
Generation of SIFT descriptor. . . . . . . . ... ... ... ... 28
Maximum-margin hyperplane obtained by an SVM . . . . . . .. 36
LDA graphical model. . . . . .. .. ... .. ... ... 40
Graphical model representation of the variational distribution ¢. . 41
Supervised topic models (sLDA). . . .. ... ... 42
Graphical model of MedLDA. . . . . .. ... ... ... ..... 44
Procedures of generating a HVF image. . . . . . . . .. ... ... 50
An example of computing LBP in a 3 x 3 neighborhood . . . . . . 52
Examples of HVF images . . . . . .. . ... ... ... .. .... 56
Some example sequences in the Cohn-Kanade database. . . . . . . 59

Xiv



LIST OF FIGURES

4.1
4.2

4.3
4.4

5.1
5.2
5.3
5.4

9.5
5.6
5.7

5.8
5.9

5.10
5.11
5.12

0.13

6.1
6.2
6.3
6.4

A 9x8 square structure and a constructed 7x8 hexagonal structure. 67

An example of computing LBP in a 3 x 3 neighborhood on square

structure. . . . ..o 68
An example of computing HLBP in a 7-pixel hexagonal cluster. . 68
Examples of HHVF images . . . . . . . . . ... ... ... ..., 70
The properties of concepts in a feature space. . . . . ... .. .. 80
One of the iterations of the supervised mean shift . . . . . . . .. 85
Kernel density estimate with different bandwidths. . . . . . . . . 88

Supervised mean shift on simulated data for mixture of positive

and negative data. . . . . . . . ... Lo 93
Supervised mean shift on simulated data for local mode displacement. 94
Supervised mean shift on simulated data for unbalance data. . . . 95
Image samples from the COREL image database for region-based

image categorisation. . . . . . ... .. Lo oL 96
Comparison of sensitivity to labeling noise among MIL algorithms. 98

Some image samples from the Caltech-4 dataset for object cate-

gorisation. . . . . . ... 100
Some image samples from the SIVAL dataset. . . . .. ... ... 100
An example of instances detection and matching using SIFT. . . . 101
A figure shows bandwidth calculation on SIVAL dataset using Al-

gorithm 3. . . . . . .. .o 102
Several sample images that are recognised as containing a target

object. . . .. 105
Remained training data after instance selection process. . . . . . . 112

Comparisons of sensitivity to labeling noise among different methods.119
The regions of interest detected by MIL-SS. . . . ... ... ... 121

General procedures for a bag-of-words model. . . . . . . ... .. 123

XV





