
Single and Multiple Instance

Learning for Visual

Categorisation

Ruo Du

Faculty of Engineering and Information Technology

University of Technology, Sydney

A thesis submitted for the degree of

Doctor of Philosophy

2013

CERTIFICATE OF

AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been

submitted for a degree nor has it been submitted as part of

requirements for a degree except as fully acknowledged

within the text.

I also certify that the thesis has been written by me. Any

help that I have received in my research work and the

preparation of the thesis itself has been acknowledged. In

addition, I certify that all information sources and literature

used are indicated in the thesis.

Signature of Author

________ ____

Production Note:
Signature removed prior to publication.

This thesis is dedicated to my wife and my parents.

For their endless support and encouragement

Acknowledgements

First and foremost I would like to sincerely thank my principal super-

visor, Prof. Xiangjian HE, for his guidance, understanding, patience

and help on scholarship to make my PhD experience such a rewarding

and exciting journey.

I also want to express my utmost gratitude to my co-supervisor, Dr.

Qiang Wu, who spent enormous time and energy on me as a mentor

and a friend. His guidance was embedded in every step of my studies.

Special thanks also to Dr. Wenjing Jia, Dr. Min Xu, Prof. Massimo

Piccardi and Dr. Richard Xu for their great suggestions, knowledge

sharing and invaluable assistance.

I wish to thank my fellow research students of our team, Muhammad

Hasan, Man Wong, Chao Zeng, Sheng Wang, Minqi Li, Thomas Tan,

Aruna Jamdagni, Ying Wan and Mohammed A AmbuSaid, for their

assistance and friendships.

Finally, and most importantly, I would like to thank my wife Ting

Zhou. Her faith in me, support, encouragement and quite patience

made it possible that I could even continue to pursue my PhD after

working in IT for ten years. I thank my parents, Changyou Du and

Shenghua Liu, and my parents in law, Ruguo Zhou and Shijie Li, for

their help and support as always.

Abstract

Nowadays, huge amounts of visual data, e.g., videos and images, have

become widely accessible. Therefore, intelligently categorizing the

large and growing collections of data for access convenience has been

a central goal for modern computer vision research. In this thesis, we

describe several newly-developed approaches for visual categorization

upon the single and multiple instance learning cases.

In single-instance learning (SIL), each of the training instances has

been labeled. Here, we focus on a challenging task of facial ex-

pressions recognition where manually labeling each training instance,

i.e., face video, is handy. To get the distinct features of expressions,

we propose a novel feature representation, Histogram Variances Face

(HVF), which integrates dynamic expression information into a static

image being invariant to illumination and in-plane rotation. Through

HVFs, the facial expression recognition can be cast as a facial recog-

nition problem. We have applied our approach on the well-known

Cohn-Kanade AU-Coded Facial Expression database, and then those

extracted HVFs are classied by using facial recognition technology,

i.e., Eigenfaces and Support Vector Machines (SVMs). The recogni-

tion accuracy is very encouraging. We further propose an extension

of HVFs, Hexagonal Histogram Variance Faces (HHVFs), which ap-

plies HVFs on a hexagonal structure. Comparing to HVFs, HHVFs

not only greatly reduce the computation costs but also improve the

recognition accuracy.

In multiple-instance learning (MIL), the training instances are divided

into groups and the instances in the same group share only one label.

MIL arises from many applications where individually labeling train-

ing instances is expensive. In this case, we propose a novel algorithm,

multiple-instance learning with a supervised kernel density estima-

tion (MIL-SKDE), to tackle the labeling ambiguity. Our algorithm

extends the twin technologies, kernel density estimation (SKDE) and

mean shift, to their supervised versions in which the labels of data

points will aect the mode seeking. We apply MIL-SKDE in several

applications of visual categorization, e.g., image and object catego-

rization, and our algorithm performs superiorly comparing to other

state-of-the-art methods. Furthermore, to address the complexity is-

sue of MIL-SKDE, we propose MIL-SS (MIL with speed-up SKDE)

to speed up the training process. Experiments shows that it has com-

parable performances to MIL-SKDE but is much more ecient in

training stage.

Finally, we apply MIL-SS in a “bag-of-words” (BoW) system to learn

the visual codebook for object categorization on a more comprehensive

dataset. Our system consists of four steps: codebook generation,

feature coding, feature pooling and classication. Unlike conventional

BoW methods that learn codebook from the whole image areas, our

method can learn codebook just from the areas of target objects,

which signicantly improves classication accuracy.

Author’s publications for the Ph.D

Journal paper:

1. Ruo Du, Qiang Wu, Xiangjian He, and Jie Yang. “MIL-SKDE: Multiple-

instance learning with supervised kernel density estimation”. Signal Pro-

cessing, Volume 93, Issue 6, June 2013, Pages 1471-1484

Conference papers:

2. Ruo Du, Qiang Wu, XiangJian HE, and Jie Yang. “Object categorisation

based on a supervised mean shift algorithm”. In 12th European Confer-

ence on Computer Vision (ECCV) Demos, Part III, LNCS 7585. Springer,

Heidelberg, 2012.

3. Ruo Du, Qiang Wu, XiangJian HE, and Jie Yang. “Multi-instance learn-

ing with an extended kernel density estimation for object categorisation”.

In IEEE International Conference on Multimedia and Expo (ICME) Work-

shops, pp.477-482, 9-13 July 2012.

4. Lin Wang, Xiangjian He, Ruo Du, Wenjing Jia, Qiang Wu, and Wei-

Chang Yeh. “Facial expression recognition on hexagonal structure using

lbp-based histogram variances”. In 17th International MultiMedia Modeling

Conference (MMM), pages 35 - 45, 2011.

5. Ruo Du, Sheng Wang, Qiang Wu, and Xiangjian He. “Learn concepts in

multiple-instance learning with diverse density framework using supervised

mean shift”. In Digital Image Computing: Techniques and Applications

(DICTA) - Oral presentation, pages 643-648, 2010.

6. Sheng Wang, Ruo Du, Qiang Wu, and Xiangjian He. “Adaptive stick-like

features for human detection based on multi-scale feature fusion scheme”.

In Digital Image Computing: Techniques and Applications (DICTA), pages

375-380, 2010.

v

7. Ruo Du, Qiang Wu, Xiangjian He, Wenjing Jia, and Daming Wei. “Facial

expression recognition using histogram variances faces”. In Workshop on

Applications of Computer Vision (WACV), pages 1-7, 2009.

vi

Contents

Contents vii

List of Tables xii

List of Figures xiv

Nomenclature xv

1 Introduction 1

1.1 Motivation . 1

1.2 Facial expression recognition . 3

1.2.1 Action unit based approaches 5

1.2.2 Emotion based approaches 6

1.2.3 Our approach for expression recognition 7

1.3 Object categorisation . 8

1.3.1 Multiple-instance learning 10

1.3.2 Our approach for object categorisation 13

1.4 Contributions . 13

1.5 Outline of this thesis . 14

2 Related feature extraction and pattern recognition methods 16

2.1 Feature extraction . 16

2.1.1 Haar-like features . 17

2.1.2 Eigenface . 20

2.1.3 Scale-invariant feature transform 22

2.1.4 Speeded up robust feature 27

vii

CONTENTS

2.1.5 Histogram of oriented gradients 28

2.2 Machine learning and pattern recognition 29

2.2.1 K-means . 30

2.2.2 Kernel density estimation and mean shift 31

2.2.3 Adaboost . 34

2.2.4 Support vector machines 36

2.2.5 Unsupervised and supervised topic models 38

2.2.5.1 Latent Dirichlet allocation (LDA) 38

2.2.5.2 Supervised latent Dirichlet allocation (sLDA) . . 41

2.2.5.3 Maximum entropy discrimination latent Dirichlet

allocation (MedLDA) 43

2.3 Summary . 46

3 Histogram Variances Faces for expression recognition 48

3.1 Histogram Variances Faces . 49

3.1.1 Faces Alignment . 49

3.1.2 Preprocessing and LBP texturising 51

3.1.3 Earth Mover’s Distance for calculation of histogram variances 53

3.1.3.1 Earth Mover’s Distance 53

3.1.3.2 Procedures of calculating histogram variances . . 55

3.1.3.3 Computing histograms of various-size blocks . . . 56

3.2 Classifying HVF images using PCA+SVMs 57

3.2.1 PCA dimensionality reduction 57

3.2.2 SVMs training and recognition 57

3.3 Experiments . 58

3.3.1 Dataset . 58

3.3.2 Parameter selection for HVFs generation 60

3.3.3 Training and recognition 61

3.4 Discussion . 63

3.5 Conclusion . 64

4 Hexagonal Histogram Variances Faces for expression recognition 65

4.1 Hexagonal Histogram Variances Faces 66

viii

CONTENTS

4.1.1 Fiducial point detection and face alignment 66

4.1.2 Conversion from square structure to hexagonal structure . 66

4.1.3 Preprocessing and LBP texturising 67

4.1.4 Earth Mover’s Distance (EMD) 68

4.1.5 Histogram variances . 69

4.2 Classication . 69

4.3 Experiments . 70

4.3.1 Dataset . 70

4.3.2 HHVFs generation . 70

4.3.3 Training and recognition 71

4.4 Discussion . 72

4.5 Conclusion . 74

5 MIL-SKDE: Multiple-instance learning with supervised kernel

density estimation 75

5.1 MIL-SKDE algorithm . 75

5.1.1 Conventional kernel density estimation and mean shift . . 76

5.1.2 Supervised kernel density estimation 78

5.1.2.1 SKDE versus DDE 82

5.1.3 Supervised mean shift . 83

5.1.3.1 Selecting starting points 85

5.1.3.2 Bandwidth estimation for supervised kernel den-

sity estimation 86

5.1.4 Algorithm summary . 88

5.1.5 Classication . 90

5.2 Experiments . 91

5.2.1 Experiments on synthetic data 92

5.2.1.1 Mixture of positive and negative points 92

5.2.1.2 Unbalance of positive and negative points 92

5.2.1.3 Multiple concepts learning 93

5.2.2 Region-based image categorisation 94

5.2.2.1 Experiment setup 94

5.2.2.2 Image categorisation results 96

ix

CONTENTS

5.2.2.3 Sensitivity to labeling noise 97

5.2.3 Object categorisation . 98

5.2.3.1 Experimental setup 99

5.2.3.2 Recognition results 101

5.2.3.3 Feature selection 103

5.3 Discussion . 104

5.4 Conclusion . 107

6 MIL-SS: Multiple-instance learning with a speed-up supervised

kernel density estimation 108

6.1 MIL-SS algorithm . 109

6.1.1 Revisit supervised kernel density estimation and mode seek-

ing . 109

6.1.2 Instance selection process 111

6.1.3 Bandwidth estimation . 113

6.1.4 MIL-SS algorithm summary 113

6.1.5 Classication . 114

6.2 Experiments . 114

6.2.1 Region-based image categorisation 114

6.2.2 Object categorisation . 115

6.2.3 Sensitivity to labeling noise 118

6.2.4 Regions of interest detection 120

6.3 MIL-SS for bag-of-words model 120

6.3.1 Bag-of-words model . 122

6.3.1.1 Feature extraction 124

6.3.1.2 Codebook generation 124

6.3.1.3 Feature coding and pooling 125

6.3.1.4 Classication . 125

6.3.2 Experiments on SIVAL dataset 126

6.4 Conclusion . 126

7 Conclusions and future work 128

7.1 Conclusions . 128

x

CONTENTS

7.2 Future work . 129

References 131

xi

List of Tables

3.1 Recognition rates of happy and surprise HVFs. 61

3.2 A recent investigation of facial expression recognition by human . 61

3.3 Recognition rates of happy and surprise versus other sorts of HVFs. 62

3.4 Recognition rates of anger, disgust, surprise and sadness HVFs. . 62

3.5 Recognition rates of all sorts of HVFs. 63

4.1 Recognition rates of happy and surprise HHVFs. 71

4.2 A recent investigation of facial expression recognition by human . 72

4.3 Recognition rates of anger, disgust, surprise and sadness HHVFs. 72

4.4 Recognition rates of all sorts of HHVFs 73

4.5 Recognition rates between HVFs and HHVFs. The last row is the

average recognition rates of six categories. In our experiments,

HHVFs slightly outperforms HVFs. 73

5.1 Learning for multiple concepts. 93

5.2 Comparison of image categorisation accuracy rates for MIL-SKDE

and other methods. 97

5.3 Confusion matrices of object categorisation on Caltech-4 and SIVAL

dataset respectively. 103

5.4 The recognition rates for MIL-SKDE, DD-SVM, MILIS and MILES.104

6.1 Comparison of image categorisation accuracy rates for MIL-SKDE

and other methods. 116

6.2 The recognition rates for MIL-SS, MIL-SKDE, DD-SVM, MILIS

and MILES. 117

xii

LIST OF TABLES

6.3 The average training scales and time uses of MIL-SS and MIL-

SKDE for object categorisation. 118

6.4 Classication accuracy comparisons among dierent methods over

30 runs on the SIVAL. 127

xiii

List of Figures

1.1 The training process for visual categorisation. 2

1.2 The testing process for visual categorisation. 2

1.3 Examples of some Action Units extracted from Cohn-Kanade database 4

1.4 Examples of some combinations of Action Units. 4

1.5 The task of object-based visual categorisation. 8

1.6 Examples of salient parts. 9

2.1 Examples of Haar-like features. 18

2.2 Computing the sum of a rectangular area using integral image. . . 19

2.3 Typical Haar-like features for face detection [68]. 19

2.4 Visualisation of the eigenface approach 20

2.5 Generation of Dierence of Gaussians (DoG) 23

2.6 SIFT keypoint candidature detection. 24

2.7 Generation of SIFT descriptor. 28

2.8 Maximum-margin hyperplane obtained by an SVM 36

2.9 LDA graphical model. 40

2.10 Graphical model representation of the variational distribution q. . 41

2.11 Supervised topic models (sLDA). 42

2.12 Graphical model of MedLDA. 44

3.1 Procedures of generating a HVF image. 50

3.2 An example of computing LBP in a 3× 3 neighborhood 52

3.3 Examples of HVF images . 56

3.4 Some example sequences in the Cohn-Kanade database. 59

xiv

LIST OF FIGURES

4.1 A 9x8 square structure and a constructed 7x8 hexagonal structure. 67

4.2 An example of computing LBP in a 3× 3 neighborhood on square

structure. 68

4.3 An example of computing HLBP in a 7-pixel hexagonal cluster. . 68

4.4 Examples of HHVF images . 70

5.1 The properties of concepts in a feature space. 80

5.2 One of the iterations of the supervised mean shift 85

5.3 Kernel density estimate with dierent bandwidths. 88

5.4 Supervised mean shift on simulated data for mixture of positive

and negative data. 93

5.5 Supervised mean shift on simulated data for local mode displacement. 94

5.6 Supervised mean shift on simulated data for unbalance data. . . . 95

5.7 Image samples from the COREL image database for region-based

image categorisation. 96

5.8 Comparison of sensitivity to labeling noise among MIL algorithms. 98

5.9 Some image samples from the Caltech-4 dataset for object cate-

gorisation. 100

5.10 Some image samples from the SIVAL dataset. 100

5.11 An example of instances detection and matching using SIFT. . . . 101

5.12 A gure shows bandwidth calculation on SIVAL dataset using Al-

gorithm 3. 102

5.13 Several sample images that are recognised as containing a target

object. 105

6.1 Remained training data after instance selection process. 112

6.2 Comparisons of sensitivity to labeling noise among dierent methods.119

6.3 The regions of interest detected by MIL-SS. 121

6.4 General procedures for a bag-of-words model. 123

xv

Chapter 1

Introduction

1.1 Motivation

The proliferation of digital imaging products like mobile phones and digital cam-

eras is keeping producing a large number of video and image collections. Such

collections are vital information resources for our daily lives. Those resources

can only be well exploited when they have been properly organised according

to their categories. Given visual data with categorisation, one can easily access

the wanted instances via high-level semantic search. Otherwise, seeking desired

videos or images in a massive repository will be dicult. However, manually

assigning the categories to those overwhelming and ever-growing visual data is

extremely time-consuming and infeasible. We are thus confronted with an issue

of automatic visual categorisation which has been a central goal for the modern

computer vision research.

Typically, a system of visual categorisation with supervised learning includes

two stages: training stage and recognition stage. In training stage, the repre-

sentative features must be extracted from the manually labeled training data.

Then, the classiers need to be learned by using machine learning and pattern

recognition algorithms in the feature space. In recognition stage, the same fea-

ture extraction method will rst be applied on testing data, then the feature

representation of test data will be classied by the classiers learned in training

process. The general training and recognition process are illustrated in Figure

1

Figure 1.1: The training process for visual categorisation.

Figure 1.2: The testing process for visual categorisation.

1.1 and Figure 1.2 respectively.

The performances of recognition heavily depends on the classiers learned

from training data. How to label the training data will signicantly aect the

classier training. Basically, in terms of dierent labeling on training data, the

supervised learning can be divided into three categories: single-instance (fully

supervised), multiple-instance (weakly supervised) and semi-supervised learning.

In single-instance learning (SIL), the instances in training data have been

individually labeled, i.e., each instance has its own label. This is an ideal situation

occurring when labeling individual training instance is handy. However, in quite

a few cases, individually labeling each instance is too expensive. In that case,

labeling grouped instances or a small part of instances are often applied. In

multiple-instance learning (MIL), the training data are divided into groups and

the instances in the same group share only one label. In semi-supervised learning,

only a part of the training data are labeled, typically a small amount of data is

labeled and a large amount of data is unlabeled, and semi-supervised learning

makes use of both labeled and unlabeled data for training classiers.

In this thesis, we explore the single-instance learning and multiple-instance

learning for visual categorisation. The semi-supervised learning for visual cat-

egorisation is beyond our scope and interested readers can refer to the related

literature.

For visual categorisation using single-instance learning, we focus on a chal-

lenging task of recognition of human facial expressions in which the training

instances, i.e., expression videos, are handy to be labeled, and our major goal

2

is to extract representative features from videos. For multiple-instance learning,

we propose a novel algorithm, multiple-instance learning with a supervised kernel

density estimation (MIL-SKDE), and apply it object categorisation. Both expres-

sion recognition and object categorisation are challenging and active in current

computer vision research and their backgrounds will be described in Section 1.2

and 1.3.

1.2 Facial expression recognition

Human facial expressions are the visible representations of human’s emotions,

mental activity, social interaction and physiological signals. Recognizing such

facial expressions can help computer to better understand human’s inward ac-

tivities and react more sophisticatedly. Therefore, it has enormous potentials in

human-computer interaction (HCI).

In literature (e.g., [1], [2], [3] and [4]), the approaches of facial expression

recognition are summarised into two categories:

1. Action Unit (Sign) based recognition.

2. Emotion (Judgment) based recognition.

In the rst category, a set of basic facial Action Units (AU) are rstly carefully

dened. Each AU represents a certain deformation of a specic set of facial

muscles. Then, facial expressions are treated as the combinations of such basic

AUs in a coded way. The key task of this category is to detect the AUs or

combinations of AUs from the expression imagery. Finally, the interpretation

of human’s mental activities is determined by the pre-dened templates of AU

combination, i.e., the codes of AU. Currently, the Facial Action Coding System

(FACS) [5] is the most commonly used AU code system developed by Ekman et al.

in 1978. In total, there are 46 AUs dened in FACS. Fig.1.3 shows the examples

of some action units extracted from Cohn-Kanade database [6]. By using AU,

the facial expressions can be translated into dierent combinations (codes) of AU.

For example, AU6+12 represents “happiness” and AU1+2+4+5+20+26 means

“fear”. Some expression codes are shown in Fig.1.4. Note that the same type of

facial expression may have multiple AU combinations (codes).

3

(a) AU1: Inner
Brow Raiser

(b) AU2: Outer
Brow Raiser

(c) AU4: Brow Low-
erer

(d) AU5: Upper Lid
Raiser

(e) AU6: Cheek
Raiser

(f) AU7: Lid Tight-
ener

(g) AU10: Upper
Lip Raiser

(h) AU17: Chin
Raiser

(i) AU18: Lip Puck-
erer

(j) AU20: Lip
stretcher

(k) AU22: Lip Fun-
neler

(l) AU23: Lip Tight-
ener

(m) AU28: Lip Suck (n) AU41: Lid
droop

(o) AU42: Slit (p) AU43: Eyes
Closed

Figure 1.3: Examples of some Action Units extracted from Cohn-Kanade
database [6].

The approaches in the second category do not code the facial expressions.

Instead, they try to learn the expression patterns directly from imagery associated

with human’s emotions, e.g., happiness, sadness, fear, disgust, surprise and anger.

The key task of this category is to obtain the representative features of a specic

facial expression.

Figure 1.4: Examples of some combinations of Action Units. [7]

4

1.2.1 Action unit based approaches

A number of approaches in computer vision and pattern recognition have been

developed to recognise AUs and their combinations from video sequences or static

images by extracting and classifying features related to the corresponding AUs.

To get the expression features, [8] and [9] used dense optical ow to detect

the direction and magnitude of the facial skin motion related to some AUs by

extracting a motion eld for the whole face area in each frame. However, these

methods based on dense optical ow are sensitive to image alignment, motion

smoothness and illumination variation. Furthermore, the computation of dense

optical ow is expensive. To be more ecient, some other methods, e.g., [10],

[11] and [12], extracted facial expression motion through the dierence between

the face with expression and the reference neutral face. These methods need less

computation but only obtain limited expression dynamics. Besides the dierence-

between-images methods mentioned above, some single-image-based methods are

employed to recognise AUs from the static image. BarBartlett et al. [13] extracted

expression features from the still image by using Gabor wavelet lters and Lanitis

et al. [14] utilised statistical learning by an Active Appearance model for feature

extraction. This category of methods can eciently detect geometrical informa-

tion of facial expressions, however, they have the limitation that only static clues

are used and the information of temporal evolution of facial expressions has been

ignored.

Another group of methods [15] [16] [7] [17] [18] [19] [20] observe the displace-

ment of feature points around the local permanent facial components, e.g., eye-

brows, eyes and mouth for AU detection. These local approaches are sensitive to

subtle changes in small areas and more computationally ecient than the above

mentioned approaches. However, detecting and tracking the feature points on

the human face are often unreliable.

Recently, Jiang et al. [21] detected AUs in the spatial-temporal video volumes.

First, the Local Binary Pattern (LBP) [22] descriptor is computed for every pixel

in the face. Then, the face is broken down into sub-regions and the histograms of

those sub-regions are summarised to reduce the dimensionality and the sensitivity

to alignment of the face. Aside from LBP, other appearance descriptors, e.g., Ga-

5

bor Wavelet lter [23][24][25][26], Haar-like features [27], Free-Form Deformations

and Motion History Images [28], have also been used in AU detection.

For those approaches based on AU detection, although there are only a small

number of distinctive AUs, i.e., 46 AUs, which are dened in FACS, the number

of dierent AU combinations that depict the facial expressions is large. For

example, in [29], there are over 7,000 AU combinations that have been observed.

As AUs and their combinations are independent of any interpretation on human’s

emotion, such interpretation will be left for the higher level decision making

process. However, accurately mapping the huge number of AU combinations

to real facial expressions is tricky and arduous. In addition, when several AUs

occur together, their features often change signicantly comparing to when only

a single AU occurs. This phenomenon makes detecting individual AU of human

face unstable.

1.2.2 Emotion based approaches

The aim of emotion based approaches is to directly acquire the patterns that

underlie the displayed facial expressions. Therefore, this category of approaches

attempts to recognise the prototypes of emotional facial expressions, e.g., happi-

ness, sadness, fear, disgust, surprise and anger.

As the appearance features usually have distinctive patterns to describe the

texture of the face caused by expression, many appearance features have been

employed for expression recognition. They include LBP operator [30] [31], Local

Gabor Binary Pattern [32], Local Phase Quantisation (LPQ) and Histogram of

Oriented Gradients (HOG) [33]. Zafeiriou et al. [34] proposed a method based on

non-negative matrix factorisation (NMF) for data representation and classica-

tion. This method achieved 83.5% recognition rate over the six basic expressions

on the Cohn-Kanade dataset [35]. Zhi et al. [36] proposed a method called Graph-

preserving sparse nonnegative matrix factorisation (GNSMF). This method takes

into account the occlusion in the expression recognition and achieved recognition

rate between 91.4% and 94% on the occluded images.

Aside from appearance based methods, another group of approaches utilise

the geometric features to get the expression patterns by tracking a set of critical

6

points around the facial components such as mouth and eyes. In this sort of

methods, most of them use Active Appearance Models (AAMs) or its variances

for point tracking. Then, the displacements and locations of the facial points

are later used to classify the expressions. Asthana et al. [37] compared dierent

AAM based algorithms and evaluated their performances on the Cohn-Kanade

dataset. Sung et al. [38] utilised AAMs to track critical facial points in 3-D videos

and proposed Stereo Active Appearance Models (STAAM) which improved the

tting and tracking of AAMs by using multiple cameras to model the 3D shape

and rigid motion parameters. Sebe et al. [39] proposed another approach that

used geometric features to detection expressions. They rst manually located a

number of critical points of face, then used Piece-wise Bézier volume deformation

to track those points. They implemented the algorithms with several machine

learning classication methods and found that the k-Nearest Neighbor attained

the best result with 93% recognition rate.

The emotion based approaches do not rely on the pre-dened decomposition

of facial expression (e.g., AUs) and have more freedom to model the expression

dynamics. However, seeking the good features that are able to robustly grasp the

distinction of expression dynamics is still challenging. To address this problem, we

propose a new feature, Histogram Variances Face, which can grasp the expression

dynamic features well and is easy to be calculated.

1.2.3 Our approach for expression recognition

We develop a new feature, Histogram Variances Face(HVF), to represent the

facial expression. Our method belongs to emotion-based category. It extracts ex-

pression dynamic features and stores the extracted features into an image. Each

pixel of HVF represents the variance of sub-region texture among the frames of

a face video. In our method, the Local Binary Pattern (LBP) [40] is employed to

extract the face texture for making the histogram variances be immune to illu-

mination interference. Furthermore, the Earth Movers’s Distance (EMD) [41] is

used to measure the histogram distance for ensuring that the histogram variances

are consistent with human’s vision. The nally obtained HVF images will be simi-

lar if they belong to the same expression, so that static facial recognition methods

7

can be utilised for the dynamic expression recognition. We test the HVFs classi-

cation by Support Vector Machines (SVMs) after Principal Component Analysis

(PCA) dimensionality reduction. The accuracy of HVFs classication is very

encouraging.

1.3 Object categorisation

Object categorisation involves determining whether or not an image contains

some specic categories of objects as shown in Figure 1.5.

Figure 1.5: The task of object-based visual categorisation.

Object categorisation is still a challenging task in computer vision so far. One

of the reasons is that the high intra-class variability means the global appearance

of the objects within the same category may be quite dierent. It demands that

the category models should be representative to the objects that belong to the

same category and be exible enough to accommodate intra-class variability. An-

other major disturbance for object categorisation is irrelevant background which

8

hampers learning category models by using clustering techniques, especially the

backgrounds across training samples are similar.

There is a broad agreement that one category is modeled as a collection of

local salient parts (i.e., stable regions representing the category) and these salient

parts will be used for classier training. Figure 1.6 shows a few examples of salient

parts for car category. However, manually labeling the salient parts in a large

number of training samples will be arduous and often too subjective.

Figure 1.6: Examples of salient parts (colored circles) that form the model of car
category [42].

Here, the major task we are targeting is to automatically nd the salient

parts for arbitrary object categories and then recognise the categories based on

the salient parts. In practice, the sample images can be easily labeled to indicate

whether or not the target objects are in the image. But annotating (locating) and

aligning such objects is often infeasible. In this case, we assume that the training

data are images containing target objects with dierent scales, rotations and

positions. This assumption naturally poses a multiple-instance learning (MIL)

[43] (or called weakly supervised learning) problem. Unlike standard supervised

learning which receives a set of instances labeled positive or negative, the MIL

learner receives a set of bags that are labeled positive or negative. Each bag

contains many instances. A bag is labeled negative if all the instances in it are

negative. On the other hand, a bag is labeled positive if there is at least one

9

instance in it which is positive. From a collection of labeled bags, the learner

tries to induce concepts that will label individual bag or instances correctly.

1.3.1 Multiple-instance learning

In standard supervised (or single-instance) learning, the training set is given by

D′ = {xi, yi}ni=1, where xi ∈ R
d is an instance, and for each xi, there is a known

label yi ∈ Y = {0, 1}. The task is to learn a classier f : Rd → Y. This learning

usually requires much manual labor on labeling. In contrast, the multiple-instance

learning (MIL) avoids labeling the individual instances and assigns only one label

to a collection of instances instead. Such a collection of instances is called a bag.

More formally, the training set in MIL is given by D = {Bi, yi}mi=1, where bag

Bi = {xi,j}|Bi|
j=1, xi,j ∈ R

d is an instance and |Bi| is the number of instances in Bi.

Let yi,j ∈ {0, 1} be the latent label of instance xi,j ∈ Bi. Then, the label of Bi is

known as yi = max {yi,j}|Bi|
j=1. The aim of MIL is to learn a classier that is able

to classify new bags or new instances.

Many tasks in computer vision and machine learning can be naturally cast as

an MIL problem. For instance, object categorisation which involves determining

whether or not an image contains a certain category of objects [44][45][46]. To

tackle the intra-class variability, e.g., appearance diversity of vehicles according

to dierent makes and models, MIL treats each image as a set of local regions, but

only those regions that carry category-specic information are regions of interest

(ROIs) for purposes of classication. For example, all the wheel regions of vehi-

cles have common circular shapes, so the wheel regions are ROIs. Other regions

have random features and possess no discriminative power. From this viewpoint,

an image is a bag and the image regions are instances of the image categorisa-

tion problem. Likewise, many other applications are also able to be treated as

MIL problems, e.g., content-based image retrieval [47][48][49], segmentation [50],

object tracking [51], human detection [52] and computer aided diagnosis [53][54].

Loosely speaking, if an instance repeatedly occurs in dierent positive bags,

this instance is called a concept (concepts for negative bags are not considered

here because negative instances are usually randomly distributed) and the weights

of concepts indicate the frequencies of which concepts occur in positive bags.

10

Learning concepts is critical for MIL algorithms. However, MIL algorithms often

confront a problem of inducing weighted concepts from a large instance space

(large value of n =
∑m

i=1 |Bi| as each bag may contain many instances) and a

large feature space (feature vectors extracted from instances are high-dimensional.

E.g., SIFT features [55] are usually of 128-D). How to eciently induce important

concepts from a large instance+feature space is still challenging for MIL. Another

issue is that many existing MIL algorithms follow a multiple-instance setting such

that a positive bag must contain at least one true positive instance, whereas a

negative bag contains negative instances only. This setting is often not true in

computer vision tasks because the labeling processing is quite subjective and

visual features extracted from instances may be distorted due to changes of scale,

illumination and view angle etc.. Those bags labeled positive but containing no

true positive instances and bags labeled negative but containing true positive

instances are called labeling noise.

MIL is rstly proposed in the context of drug activity prediction [43]. Since

then, many eorts have been endeavored to address this learning with ambiguous

labeling. Maron et al. [56] proposed the Diverse Density to estimate the instance

distribution in the feature space. Specically, let

B+

i

m+

i=1
and


B−

i

m−

i=1
denote

positive and negative bags respectively and x be a concept, the Diverse Density

estimator (DDE) of x is dened as:

f̂dde (x) =
m+


i=1

Pr

x|B+

i


m−



i=1

Pr

x|B−

i


. (1.1)

The Pr

x|B+

i


and Pr


x|B−

i


in (1.1) are dened using a noisy-or model as

below,

Pr

x|B+

i


= 1−



j

(1− Pr(x|x+
i,j)) (1.2)

Pr

x|B−

i


=


j

(1− Pr(x|x−
i,j)) (1.3)

where

Pr (x|xi,j) = exp(−xi,j − x2). (1.4)

11

The target concept can be found by maximizing DDE (1.1), i.e.,

x = argmax
x

f̂dde (x) . (1.5)

Based on the Diverse Density (DD), EM-DD [57] utilised an Expectation

Maximisation framework to improve the concept learning. Since learning a single

concept might be insucient to capture the multi-modal distribution, GEM-DD

[58] and DD-SVM [59] iteratively located multiple concepts from various initial

locations using Quasi-Newton methods.

The MIL problem has also been tackled by some variations of the standard

supervised learning. mi/MI SVM [60] treated the multiple-instance setting as

extra constraints of Support Vector Machine (SVM) optimisation and learned

hyperplanes to separate bags or instances. Many more MIL approaches, such as

MILES [46], MIL for sparse positive bags [61], IS-MIL [44] and MILIS [62], were

also based on SVM. Aside from SVM, there are some other supervised learning

methods that have also been modied to suit the MIL. These methods include the

nearest neighbor [63], decision tree [64], Bayesian [53], Boosting [65], randomised

trees [66] and logistic regression [67].

Many current MIL approaches are sensitive to labeling noise (e.g., DD-based

approaches such as GEM-DD [58] and DD-SVM [59]). To our knowledge, MILES

[46] is the only one that is reportedly robust to labeling noise and capable of

learning multiple concepts. However, MILES maps every bag into an instance

space whose dimensionality is given by the total number of instances across all

bags. Then, the 1-norm SVM is used to select concepts and to train classiers.

The high-dimensional issue will lead to high complexity for both bag mapping

and 1-norm SVM optimisation even for a moderate scale dataset. MILIS [62]

later addressed the high-dimensional issue by initially selecting a concept from

each bag and all the selected concepts were iteratively optimised by an EM-like

framework. Although it is much more ecient, MILIS becomes vulnerable to

labeling noise according to our experiments and often learns too few concepts.

12

1.3.2 Our approach for object categorisation

In our application, an image is treated as an MIL bag and the local regions of

the image are treated as instances. As shown in Figure 1.6, the salient parts

should occur in every positive bag (image), so each of the salient parts is ac-

tually a concept to be sought. We propose a novel MIL algorithm, MIL-SKDE

(multiple-instance learning with supervised kernel density estimation), which is

able to conveniently learn concepts in a large feature space and is robust to

labeling noise. Firstly, we advance a modied version of kernel density estima-

tion (KDE) function to estimate the instance distribution. The modied KDE is

named supervised kernel density estimation (SKDE) as it considers class labels of

data points. SKDE is an alternative to the well-known diverse density estimation

(DDE) [56] and more robust to the labeling noise. The same as DDE, the modes

(local maxima) of SKDE are the concepts to be learned. As mean shift is widely

used to locate modes of KDE, we extend mean shift to its supervised version

(named supervised mean shift) to adapt it to SKDE. Similar to mean shift, the

supervised mean shift is also steepest ascent (and it only computes the rst order

gradient) with a varying step sise that is the magnitude of the gradient. Super-

vised mean shift is handy to seek modes in a large feature space because, from an

initial point, it can quickly converge to a mode without expensively computing

Hessian matrix (a second-order gradient) in the high-dimensional space.

1.4 Contributions

The contributions of this thesis are summarised as follows.

• For facial expression recognition, we develop a new feature representation,

Histogram Variances Faces (HVFs), to grasp the dynamic feature, and the

expression recognition rate is quite encouraging by using HVFs.

• An update of the Histogram Variances Faces, which is called Hexagonal

Histogram Variances Faces (HHVFs), is later proposed for better eciency

and performances in facial expression recognition.

13

• We develop a novel multi-instance learning (MIL) algorithm, Multiple-

instance Learning with Supervised Kernel Density Estimation (MIL-SKDE),

for object categorisation and our method outperforms other state-of-the-art

approaches.

• We develop a fast version of MIL-SKDE called multiple-instance learning

with a speed-up supervised kernel density estimation (MIL-SS). Compared

to MIL-SKDE, MIL-SS signicantly reduces the expensiveness of training

process meanwhile maintaining comparable performance.

• Finally, we apply MIL-SS in a bag-of-words model and develop an object-

categorisation software system which consists of four components, i.e., code-

book generation, feature coding, feature pooling and classication. The

whole system is modularised and each of the components can be easily

modied.

1.5 Outline of this thesis

The organisation of the rest of the thesis is:

• In Chapter 2, we briey describe some related work on feature extraction

and machine learning methods. Those methods will be utilised in our work.

• In Chapter 3, we propose a dynamic feature presentation, Histogram Vari-

ances Faces (HVFs), for facial expression recognition.

• We extend HVFs to a hexagonal structure and develop the Hexagonal His-

togram Variances Faces (HHVFs) for facial expression recognition in Chap-

ter 4 .

• In Chapter 5, we describe an innovative MIL algorithm, Multiple-instance

Learning with Supervised Kernel Density Estimation (MIL-SKDE), and its

applications for image classication and object categorisation.

• In Chapter 6, we speed up the training process of MIL-SKDE and propose

MIL-SS. Then, we apply MIL-SS in a bag-of-words model and develop a

software demo for object categorisation.

14

• Chapter 7 is to draw conclusions.

15

Chapter 2

Related feature extraction and

pattern recognition methods

In this section, we briey describe the related existing algorithms that will be

utilised in the rest sections on feature extraction and pattern recognition. Here,

we only give the the review of related technologies. For more details of such

approaches, please refer to the references listed in the corresponding reviewed

papers.

2.1 Feature extraction

Feature extraction is an essential pre-processing step for pattern recognition and

machine learning problems. It transforms the input graphic data into a reduced

representation set of features (also named feature vector) that truly maintains the

distinct information of the original data. Then, the extracted features, instead

of the original data, will be treated as the input for the subsequent pattern

recognition algorithms. Note that here we refer the term “feature extraction” to

not only feature extraction but also feature detection as feature detection is a

pre-requisite to get the features in most cases.

The feature extraction methods for videos and images can be summarised as

follows1.

1Modied from Wikipedia - http : //en.wikipedia.org/wiki/Feature extraction

16

• Extraction of low-level features

– Edge detection

– Corner detection

– Blob detection

– Ridge detection

– Scale-invariant feature transform

– Curvature.

– Motion detection.

• Extraction of shape features

– Thresholding

– Blob extraction

– Template matching

– Hough transform

• Others

– Extraction of deformable, parameterised shapes

– Extraction of active contours (snakes)

The computer vision community has advanced considerable feature extraction

methods. In this section, we review those approaches that are closely related to

our work.

2.1.1 Haar-like features

Haar-like features are image features used in object recognition. They owe their

name to their intuitive similarity with Haar wavelets and were used in the rst

real-time face detector proposed by Viola et al. [68]. A Haar-like feature considers

adjacent rectangular regions at a specic location in a detection window, sums

up the pixel intensities in each region and calculates the dierence between these

sums. Figure 2.1 shows some samples of Haar-like features.

17

Figure 2.1: Examples of calculation of Haar-like features within the detection
window. The intensity sum of the pixels within the white rectangles is subtracted
by the density sum of pixels in the grey rectangles. Such pixel dierence is a Haar-
like feature value. Two-rectangle features are shown in (A) and (B). (C) shows a
three-rectangle feature, and (D) shows a four-rectangle feature. [68]

Because of its simplicity, a Haar-like feature has the key advantage of lower

computation over most other features. A fast way to calculate Haar-like feature

is to use the integral images (or called summed area tables). The integral image

at location (x, y) contains the sum of the pixels above and to the left of (x, y),

I(x, y) =


x≤x,y≤y

i(x′, y′), (2.1)

where I(x, y) is the density of integral image and i(x′, y′) is the density of original

image. Once the integral image has been computed based on the original image,

the task of calculating sum of any rectangle on original image can be accomplished

in constant time. Specically, using Figure 2.2 1 as an example, the sum value is

just


A(x)<x≤C(x)
A(y)<y≤C(y)

i(x′, y′) = I(C) + I(A)− I(B)− I(D). (2.2)

The Haar-like features are then used to categorise object regions of an image.

For instance, suppose we have a dataset of human face images. It is a common

observation that among all faces the region of the eyes is darker than the region

of the cheeks. Therefore a common haar-like feature for face detection is a set of

two adjacent rectangles that lie above the eye and the cheek region as the feature

1Figure 2.2 is from http://upload.wikimedia.org/wikipedia/commons/e/ee/Prm VJ g3
computeRectangleWithAlpha.png

18

Figure 2.2: Computing the sum of a rectangular area using integral image.

Figure 2.3: Typical Haar-like features for face detection [68].

values are quite stable for such face region. The position of these rectangles is

dened relative to a detection window that acts like a bounding box to the target

object (e.g., the face in this case) as shown in Figure 2.3.

Haar-like features combining with Adaboost (described in Section 2.2.3) algo-

rithm will be used to detect the human face regions from videos at the early stage

of our facial expression recognition. Since describing features is the emphasis of

this section, please see [68] for more details of facial detection using Haar-like

features and Adaboost.

19

Figure 2.4: Visualisation of the eigenface approach: The rst row shows a set of
eigenfaces derived from many face samples. The second line shows that a new
face can be represented as a linear combination of the eigenfaces. The new feature
vector of the test face formed by the coecients of the linear combination, which
is (0.95,−0.19, 0.04, 0.05). By representing a face image with the coecients, the
dimensionality of face data can be greatly reduced.

2.1.2 Eigenface

Eigenfaces are commonly used in the computer vision problem of human face

recognition. Generally, eigenfaces [69] can be seen as a set of “standardised face

ingredients” derived statistically from many face sample images. Any human face

can be considered to be a linear combination of these eigenfaces. For example,

one’s face might be composed of 95% the rst eigenface plus -19% the second

eigenface, and plus 4% the third eigenface. Remarkably, it does not take many

eigenfaces combined together to achieve a fair approximation of most faces. Fig-

ure 2.4 illustrates a visualisation of the eigenface approach. The rst row shows

a set of eigenfaces. The second row shows a new face that is represented as a

linear combination of the eigenfaces.

Formally, suppose that column vectors a1, . . . , am ∈ R
n represent m face im-

ages, and the matrix T = [a1 − u, . . . , am − u] ∈ R
n×m denotes the data set with

each column representing a preprocessed training image, where u = 1
m

∑m
i=1 ai is

the mean. The eigenfaces are actually a set of principal eigenvectors of covari-

ance matrix S = TTT . The eigenfaces are usually generated by a mathematical

procedure called principal component analysis (PCA) summarised as follows.

1. Prepare a training set of face images. The pictures constituting the

20

training set should be aligned (e.g., eyes have the same positions) across

all images. They must also have the same size, e.g., r by c pixels. Each

image is treated as one vector ai ∈ R
n, simply by concatenating the rows

(or columns) of pixels in the original image, resulting in a single vector with

n = r × c elements. Suppose that there are m images in the training set

and they are stored in a single matrix A = [a1, . . . , am] ∈ R
n×m, where each

column of the matrix is an image.

2. Subtract the mean. The average image u needs to be computed and

then subtracted from each original image in A. The new training set is

denoted as T = A − uh, where h is a 1 × N row vector of all 1s, i.e.,

hi = 1 for i = 1, . . . , N and u = 1
m

∑m
i=1 ai.

3. Calculate the eigenvectors and eigenvalues of the covariance ma-

trix S = TTT ∈ R
n×n. Each eigenvector has the same dimensionality

(n× 1) as the original images, and thus can itself be seen as an image. The

eigenvectors of this covariance matrix are therefore called eigenfaces. Note

that because image size n is normally a large value, directly calculating

eigenvectors of S is extremely expensive. Alternatively, the eigenvectors of

S are computed by the singular value decomposition (SVD) on matrix T,

i.e., T = UΣVT , where U is an n×n unitary matrix, Σ is an n×m rectan-

gular diagonal matrix with nonnegative real numbers on the diagonal, and

VT is an m×m unitary matrix. The columns of U are the eigenvectors of

S = TTT .

4. Choose the principal eigenvectors. The n × n covariance matrix will

result in n eigenvectors. Here, only those eigenvectors (eigenfaces) with the

largest associated eigenvalue are kept.

These eigenfaces can now be utilised to represent both existing and new faces.

Suppose that z1, z2, . . . , zk ∈ R
n denote the k chosen eigenfaces, and xi ∈ R

n

denotes a face image. Then, to represent xi using eigenfaces, we need only to

21

compute the corresponding vector

hi =

⎡

⎢
⎢
⎢
⎢
⎣

zT1 xi

zT2 xi

...

zTk xi

⎤

⎥
⎥
⎥
⎥
⎦

∈ R
k. (2.3)

Thus, whereas xi ∈ R
n, the vector hi now gives a lower k-dimensional approxima-

tion/representation for xi as k << n. Eigenfaces or PCA is therefore also referred

to as a dimensionality reduction algorithm. Finally, the vectors hi’s, rather than

xi’s are used for classication such as facial recognition.

Eigenfaces will be used in our work for human expression recognition.

2.1.3 Scale-invariant feature transform

Scale-invariant feature transform (SIFT) [70][55] is a method for detecting and

extracting distinctive invariant features from images that can be later used to

perform reliable matching between dierent views of an object or scene. Because

a SIFT feature descriptor is invariant to uniform scaling, orientation, and par-

tially invariant to ane distortion and illumination changes, it has been widely

utilised in object recognition, robotic mapping and navigation, image stitching,

3D modeling, gesture recognition, video tracking, and match moving.

Basically, SIFT features can be obtained via four steps described as below.

1. Scale-space extrema detection. This step is to detect the interest

points, which are called keypoints in the SIFT framework, from an image.

To do so, the image is rstly convolved with Gaussian lters G(x, y, σi) =
1

2πσ2
i

e−(x2+y2)/2σ2
i at dierent scales σi, i = 1, . . . , n, and then the dier-

ence of successive Gaussian-blurred images are taken. Keypoints are nally

taken as maxima/minima of the Dierence of Gaussians (DoG) that occur

at multiple scales. Specically, let D (x, y, σ) be a DoG image,

D (x, y, σi) = L (x, y, σi)− L (x, y, σi+1) , (2.4)

where the Gaussian-blurred image L (x, y, σ) is the convolution of the orig-

22

Figure 2.5: Left column is the Gaussian-blurred images with dierent scales σi’s.
Right column is the DoG images obtained by subtracting adjacent Gaussian-
blurred images.

inal image I (x, y) with the Gaussian blur G (x, y, σ) at scale σ, i.e.,

L (x, y, σ) = G (x, y, σ) ∗ I (x, y) (2.5)

Hence a DoG image D (x, y, σi) between scales σi and σi−1 is just the dif-

ference of the Gaussian-blurred images at scales σi and σi−1. Figure 2.5

illustrates the generation of DoG. Once DoG images have been obtained,

keypoints are identied as local minima/maxima of the DoG images across

scales. This is done by comparing each pixel in the DoG images to its eight

neighbors at the same scale and nine corresponding neighboring pixels in

each of the neighboring scales. Altogether, it compares with the nearest

26 neighbors as shown in Figure 2.6. If the pixel value is the maximum or

minimum among all compared pixels, it is selected as a candidate keypoint.

2. Keypoints localisation. DoG extrema detection produces too many can-

didate keypoints, of which some are unstable or do not contribute to feature

description (e.g., the candidates having low-contrast or localizing along an

edge responses are often vulnerable to noise). To discard those unstable

23

Figure 2.6: Maxima and minima of the dierence-of-Gaussian images are detected
by comparing the values of a pixel (marked with X) with the values of its 26
neighbors in a 3x3 regions at the current and adjacent scales (marked with circles)
[55]

.

candidates, this step performs a detailed tting to the nearby data for lo-

cation, scale, and ratio of principal curvatures. Then, this information is

used for candidate selection.

Firstly, for each candidate keypoint, its nearby data are interpolated so that

the accurate position of keypoint can be determined. Unlike the previous

approach that simply locates each keypoint at the location and scale of the

extremum [70], the updated approach computes the interpolated location of

the extremum, so it signicantly improves matching and stability [55]. The

interpolation uses the quadratic Taylor expansion of the DoG function (2.4)

with the candidate keypoint as the origin, i.e., 0. This Taylor expansion is

given by:

D(x) = D(0) +
∂D(0)T

∂x
x+

1

2
xT ∂

2D(0)

∂x2
x (2.6)

where x = (x, y, σ) is the oset from the candidate keypoint. The location

of the extremum x̂ is determined by taking the derivative of (2.6) with

respect to x and setting it to zero. If the oset x̂ > 0.5 in any dimension, it

indicates that the extremum lies closer to another candidate keypoint. In

24

this case, the candidate keypoint is changed and the interpolation performed

instead about that point. Otherwise, the oset is added to its candidate

keypoint to get the interpolated estimate for the location of the extremum.

Then, the keypoints with low contrast need to be discarded. To do that,

the value of the second-order Taylor expansion D(x) in (2.6) is computed

at the oset x̂. In [55], if this value is less than 0.03, the candidate keypoint

is discarded. Otherwise, it is kept, with nal location y + x̂ and scale σ,

where y is the original location of the keypoint at scale σ.

Finally, those high edge responses need to be eliminated. This is because

the DoG function (2.4) will have strong responses along edges, even if the

candidate keypoint is not robust to small amounts of noise. If a keypoint

poorly locates along an edge, in the DoG function (2.4), the principal cur-

vature across the edge would be much larger than the principal curvature

along it. Getting these principal curvatures requires solving for the eigen-

values of the second-order Hessian matrix, H:

H =



Dxx Dxy

Dxy Dyy



,

where D is dened in (2.4), and the eigenvalues of H are proportional to

the principal curvatures of D. Suppose k1 is the larger eigenvalue and k2

the smaller eigenvalue, explicitly computing the eigenvalues is actually un-

necessary as the ratio r = k1/k2 is sucient for SIFT’s purposes. The sum

k1 + k2 and product k1k2 can be computed from the trace and determinant

of H respectively,

Tr (H) = Dxx +Dyy = k1 + k2

Det (H) = DxxDyy −D2
xy = k1k2.

The ratio R = Tr (H)2 /Det (H) can be shown to be equal to (r + 1)2 /r,

which depends only on r rather than individual values of k1 and k2. R is

minimum when r = 1, i.e., k1 = k2, and monotonously increases when r ≥ 1.

Therefore, the higher value ofR implies a higher absolute dierence between

the two principal curvatures of (2.4). It follows that, for some threshold

25

eigenvalue ratio rth, if R > (rth + 1)2 /rth for a candidate keypoint, that

keypoint is poorly localised and hence rejected. Empirically, rth = 10 [55].

3. Orientation assignment. In this step, each keypoint is assigned one or

more orientations (called dominant orientations) based on local image gra-

dient directions. Such orientation(s) will be used to rotate corresponding

keypoint in order to achieve orientation invariance. To get the dominant ori-

entations, the Gaussian-blurred image L (x, y, σ) in (2.5), at the keypoint’s

scale σ is taken so that all computations are performed in a scale-invariant

manner. For an image sample L (x, y) at scale σ, the gradient magnitude,

m (x, y), and orientation, θ (x, y), are precomputed by:

m (x, y) =



(L (x+ 1, y)− L (x− 1, y))2 + (L (x, y + 1)− L (x, y − 1))2

(2.7)

θ (x, y) = tan−1


L (x, y + 1)− L (x, y − 1)

L (x+ 1, y)− L (x− 1, y)



(2.8)

(2.7) and (2.8) are computed for every pixel in a neighboring region around

the keypoint in the Gaussian-blurred image. An orientation histogram with

36 bins is formed, with each bin covering 10 degrees. Each sample in the

neighboring window added to a histogram bin is weighted by its gradient

magnitude and by a Gaussian-weighted circular window with 1.5σ (σ is the

scale of the keypoint). The peaks in this histogram correspond to dominant

orientations. Once the histogram is lled, the orientations corresponding to

the highest peak and local peaks that are within 80% of the highest peaks

are assigned to the keypoint. In the case of multiple orientations being

assigned, an additional keypoint is created having the same location and

scale as the original keypoint for each additional orientation. According to

[55], only about 15% of points are assigned multiple orientations, but these

contribute signicantly to the stability of matching.

4. Keypoint descriptor. Previous steps have found positions of keypoints at

particular scales and assigned orientations to such keypoints. Those works

ensure invariance to image location, scale and rotation. Now, a descriptor

26

vector for each keypoint needs to be computed such that the descriptor is

highly distinctive and partially invariant to the remaining variations such

as illumination, 3D viewpoint, etc. This step is performed on the image

closest in scale to the keypoint’s scale.

First, a set of orientation histograms are created on a 4x4 pixel neighbor-

hood with 8 bins each. These histograms are computed from magnitude

and orientation values of samples in a 16 x 16 region around the keypoint

such that each histogram contains samples from a 4 x 4 subregion of the

original neighborhood region. The magnitudes are further weighted by a

Gaussian function with σ equal to one half the width of the descriptor

window. The descriptor then becomes a vector of all the values of these

histograms. Since there are 4 x 4 = 16 histograms each with 8 bins, the

vector has 128 elements. This vector is then normalised to unit length in

order to enhance invariance to ane changes in illumination. To reduce

the eects of non-linear illumination, a threshold of 0.2 is applied and the

vector is again normalised. Figure 2.7 [55] illustrates the generation of SIFT

descriptor.

There are also some variants of SIFT that have been proposed recently. For

instance, SURF (Speeded Up Robust Features) [71] greatly accelerates the pro-

cessing of keypoint detection with little performance loss. HOG (Histograms of

Oriented Gradients) [72] adopts a similar way to generate the feature descriptor

and has excellent performance in human detection. GLOH (Gradient Location

and Orientation Histogram) [73] extends SIFT by changing the location grid and

using PCA to reduce the size. GLOG was designed to increase robustness and

distinctiveness of SIFT descriptor. In the comprehensive test within [73], GLOG

has the best performance in the most tests comparing with other common de-

scriptors.

2.1.4 Speeded up robust feature

Speeded-Up Robust Features (SURF) [71] can be seen as a speed-up revision

of SIFT features. The procedures of SURF are very similar to SIFT and are

described below.

27

Figure 2.7: To get a SIFT descriptor, the gradient magnitudes and orientations
in a region around the keypoint are computed as shown on the left. Those mag-
nitudes and orientations are weighted by a Gaussian window indicated by the
overlaid circle. These samples are then accumulated into orientation histograms
summarizing the contents over 4x4 subregions, as shown on the right, with the
length of each arrow corresponding to the sum of the gradient magnitudes near
that direction within the region. This gure shows a 2x2 descriptor array com-
puted from an 8x8 set of samples, whereas the experiments in [55] use 4x4 de-
scriptors computed from a 16x16 sample array.

1. Find the interest points. SURF utilises the maxima of the determinant

of the Hessian matrix whereas SIFT uses extreme values in Dierence of

Gaussians (DoG), but both of them are to nd extrema in scale space.

2. Interest points orientation assignment. SIFT uses the histogram of gradient

in a rectangular area and SURF calculates the Haar wavelet responses in x

and y direction within a circular neighborhood around the interest point.

3. Point descriptor. SIFT uses an 8 directions histogram for one of the 4× 4

cells and gets a 128 dimensional vector; SURF descriptor is based on sum

of Haar Wavelet responses v = (
∑

dx,
∑

dy,
∑ |dx|,

∑ |dy|) for one of the

4× 4 cells and get a 64 dimensional vector.

2.1.5 Histogram of oriented gradients

Histogram of oriented gradients (HOG) descriptors [72] are feature descriptors

used in object detection of computer vision. The basic idea behind the HOG

28

descriptors is that local object appearance and shape within an image can be

described by the distribution of intensity gradients or edge directions. The algo-

rithm is shown as follows.

1. Gradient computation. For each pixel, compute the horizontal and vertical

gradient values. The best masks in experiments are [−1, 0, 1] (horizontal)

and [−1, 0, 1]T (vertical). In this step, the image preprocessing e.g. nor-

malisation is not necessary due to the descriptor normalisation essentially

achieves the same result. Also the Gassian smoothing would not perform

better in practice.

2. Orientation bining. Generating orientation histogram using above gradient

values, 9 histogram channels performed best in human detection experi-

ments.

3. Descriptor blocks. There are two main block geometries - rectangular R-

HOG blocks and circular C-HOG blocks. R-HOG are commonly square

grids, parametrised by the number of cells per block, the number of pixels

per cell, and the number of channels per cell histogram.

4. Block normalisation. Some normalisation factors which provide similar per-

formance are listed below, where v is vector and e is a constant.

L2− norm : f =
v



v22 + e2

L1− norm : f =
v

v1 + e

L1− sqrt : f =


v

v1 + e

2.2 Machine learning and pattern recognition

In machine learning, the purpose of pattern recognition is to assign a label to a

given input instance. An example of pattern recognition is classication, which

attempts to map each input instance to one of a given set of class labels (for

29

example, determine whether a given face video indicates a certain expression,

e.g., happiness, sadness, fear, disgust, surprise and anger). The term “instance”

refers to a piece of input data for which an output label (value) is generated. An

instance is formally described by a vector of features, which together constitute

a description of all known characteristics of the instance via feature extraction.

These feature vectors can be seen as dening points in an appropriate multi-

dimensional feature space, and pattern recognition methods can be applied to

manipulate those points in the feature space, such as separating feature points

according to their class labels (classication), mapping each feature point to a

value (regression) and grouping similar feature points together (clustering).

Traditionally, the algorithms of pattern recognition are divided into two cat-

egories: supervised learning or unsupervised learning. In supervised learning,

each feature vector in training data is paired with a given label. For unsu-

pervised learning, only the feature vectors are known and labels are not given.

Formally, the problem of supervised pattern recognition can be stated as fol-

lows: Suppose an unknown function g : X → Y is the “ground truth” that

maps input instances x ∈ X to output labels y ∈ Y, along with training data

D = {(x1, y1), . . . , (xn, yn)} assumed to represent accurate examples of the map-

ping, produce a function h : X → Y that approximates as closely as possible the

correct mapping g. (For example, if the problem is facial expression recognition,

then xi is some representation of a face video and y is an expression like ”happi-

ness” or ”sadness” etc.). In contrast, unsupervised learning is not trying to nd

the mapping between feature vectors and labels but to nd hidden structure in

unlabeled training data D′ = {(x1), . . . , (xn)}.
In this section, we will review those widely-used algorithms of pattern recog-

nition that are related to our work.

2.2.1 K-means

K-means is a simple and widely-used clustering algorithm which aims to parti-

tion n observations into k (k ≤ n) clusters in which each observation belongs

to the cluster with the nearest mean. Formally, Given a set of observations

(x1,x2, . . . ,xn), where each observation xi ∈ R
d is a d-dimensional real vec-

30

tor, k-means clustering aims to partition the n observations into k sets S =

{S1, S2, . . . , Sk} so as to:

S = argmin
S

k

i=1



xj∈Si

xj − μi2 ,

where μi =
1

|Si|

∑

xj∈Si
xj is the mean of the vectors in set Si.

For K-means, the most common algorithm utilises an iterative renement

technique to obtain S. Given an initial set of k means μ
(1)
1 , . . . ,μ

(1)
k , the algorithm

proceeds by alternating between two steps1:

1. Assignment step: Assign each observation to the cluster with the closest

mean.

S
(t)
i =


xp :


xp − μ

(t)
i


 ≤


xp − μ

(t)
j


 ∀ 1 ≤ j ≤ k


,

Where each xp goes into exactly one S
(t)
i , even if it could go in more than

one of them.

2. Update step: Calculate the new means to be the centroid of the observa-

tions in the cluster.

μ
(t+1)
i =

1

|S(t)
i |



xj∈S
(t)
i

xj.

Then, go back to step one.

The algorithm is deemed to have converged when the assignments no longer

change, i.e., μ
(t+1)
i = μ

(t)
i , ∀i = 1, . . . , k.

As K-means is a heuristic algorithm, there is no guarantee that it will con-

verge to the global optimum, and the result may depend on the initial clusters.

However, as it is simple and usually very fast, K-means is nearly the most popular

algorithm for clustering in computer vision.

2.2.2 Kernel density estimation and mean shift

Kernel density estimation (KDE) [74], also termed the Parzen-Rosenblatt win-

dow method [75][76], is a non-parametric way to estimate the probability density

1From wikipedia: http://en.wikipedia.org/wiki/K-means clustering

31

function of a random variable based on a nite amount of data samples. Suppos-

ing that {x1,x2, . . . ,xn}, xi ∈ R
d are i.i.d. data drawn from an unknown density

f(x), then the KDE, denoted by f̂kde, can be used to approximate the original

unknown density in the way of:

f(x) ≈ f̂kde (x) =
1

n

n

i=1

1

hd
i

K


x− xi

hi



, (2.9)

where hi is a variable bandwidth associating with data point xi for all i = 1 . . . n

[77]. Normally, hi is estimated beforehand. And function K (x) is a bounded d-

variate Kernel function with compact support satisfying the following properties.

• Normalized:


Rd K (x) dx = 1.

• Symmetric:


Rd xK (x) dx = 0.

• Exponential weight decay: limx→∞ xd K (x) = 0.

• Uncorrelated:


Rd xx
TK (x) dx = cI.

We are interested in special class of radially symmetric kernels satisfying:

K (x) = c · k

x2


,x ∈ R

d, (2.10)

where the function k(x) is called the prole of kernel K (x) (dened only for

x ∈ R
+). c is the normalisation constant, which makes K (x) be integrated to

one, is assumed strictly positive.

One of the commonly-used kernels is the multivariate Gaussian kernel KN =

(2π)−d/2 exp

−1

2
x2


, whose prole is

kN (x) = exp



−1

2
x



, x ≥ 0. (2.11)

Another example is the Epanechnikov prole

kE (x) =

⎧

⎨

⎩

1− x 0 ≤ x ≤ 1

0 x > 1,
(2.12)

32

which yields the Epanechnikov kernel

KE (x) =

⎧

⎨

⎩

1
2
c−1
d (d+ 2)


1− x2


x2 ≤ 1

0 otherwise,

where cd is the volume of the unit d − dimensional sphere. These two proles

of kernels, i.e., (2.11) and (2.12), will suce for most applications. Mostly, the

type of kernel is not critical for the kernel density estimation. Actually, dierent

kernels may have similar performances in most cases.

In many applications of KDE, the key purpose is to nd the modes (local

maxima) of the density function (2.9) located at the zeros of the gradient function.

Mean shift algorithm is an elegant way to locate the modes. Putting (2.10) into

(2.9), we yield:

f̂kde (x) =
c

n

n

i=1

1

hd
i

K






x− xi

hi






2


, (2.13)

Taking the gradient of (2.13) and setting the gradient to zero yields,

∇f̂kde (x) =
2c

n

n

i=1

x− xi

hd+2
i

k′






x− xi

hi






2


=
2c

n

n

i=1

xi − x

hd+2
i

g






x− xi

hi






2


=
2c

n


n

i=1

1

hd+2
i

g






x− xi

hi






2


⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑n
i=1

xi

hd+2
i

g




x−xi

hi





2


∑n
i=1

1

hd+2
i

g




x−xi

hi





2


  

mean vector

− x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0,

(2.14)

where

g(x) = −k′(x). (2.15)

33

Mean shift [78][79] is an iterative procedure to locate the KDE local maxima x′s

that satisfy (2.14). Generally, mean shift procedure can be described as follows.

Let x be one of the initial points. Then, x will gradually converge to a maximum

of (2.9) via iteratively setting x = x̄, where x̄ is the mean vector calculated by

x̄ =

∑n
i=1

xi

hd+2
i

g




x−xi

hi





2


∑n
i=1

1

hd+2
i

g




x−xi

hi





2
 . (2.16)

2.2.3 Adaboost

AdaBoost, short for Adaptive Boosting formulated by Yoav Freund and Robert

Schapire [80], is a classication algorithm for constructing a “strong” classier as

linear combination of “weak” classiers:

f (x) =
T

t=1

αtht (x)

where ht (x) is a ”weak” classifer, hypothesis H (x) = sign (f(x)). AdaBoost

generates and calls a “best” weak classier in each of a series of rounds t =

1, . . . , T . For each call, a distribution of weights Dt is updated that indicates

the importance of training samples for the classication. On each round, the

weights of each incorrectly classied sample are increased, and the weights of

each correctly classied sample are decreased, so the new classier focuses on the

samples which have been incorrectly classied so far. The Algorithm 1 shows the

Adaboost for the binary classication. Some examples of weak classier ht ∈ H:

• Decision tree builder, perceptron learning rule - H innite

• Selecting the best one from given nite set H

Normally, AdaBoost is sensitive to noisy data and outliers. However, it can

be less susceptible to the over-tting problem than most learning algorithms.

34

Algorithm 1 Adaboost for the binary classication.
Input:


x(i), y(i)


|i = 1, . . . ,m


, x(i) ∈ X, y(i) ∈ {−1, 1};

Number of iterations T ;
Output:

The strong classier, H (x) = sign

∑T

t=1 αtht (x)


;

1: Initialise weights D1 (i) = 1/m, i = 1, . . . ,m. Dj (i) is the weight of sample

x(i), y(i)


at the j-th round.

2: for t = 1, . . . , T do
3: Find a classier ht : X → {−1, 1}, ht ∈ H that maximises the absolute

value of the dierence of the corresponding weighted error rate t from 0.5
with respect to the distribution Dt:

ht = argmax
ht∈H

|0.5− t| ,

whereH is the family of weak classiers, and t =
∑m

i=1 Dt(i)I(yi = ht(xi)),
I is the indicator function.

4: if |0.5− t| ≤ β, where β is a previously chosen threshold then
5: Stop.
6: else
7: Choose αt ∈ R, typically αt =

1
2
ln1−t

t
.

8: Update:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

,

where Zt is the normalisation factor:
∑

i Dt(i) exp(−αtyiht(xi)) which
ensures that Dt+1 will be a probability distribution.

9: end if
10: end for
11: return the nal classier:

H(x) = sign


T

t=1

αtht(x)



.

35

Figure 2.8: Maximum-margin hyperplane and margins for an SVM trained with
samples from two classes. Samples on the margin are called the support vectors.

2.2.4 Support vector machines

A (binary) support vector machine constructs a hyperplane in a high- or innite-

dimensional feature space. This hyperplane is a classier to separate positive

and negative data. Intuitively, a good separation is achieved by the hyperplane

that has the largest distance to the nearest training data point of any class (so-

called functional margin), since in general the larger the margin the lower the

generalisation error of the classier. Figure 2.8 1 shows the maximum-margin

hyperplane obtained by an SVM. Samples on the margin are called the support

vectors.

In real applications, the positive and negative training data may be not lin-

early separable in the feature space. In that case, the “kernel” has been intro-

duced to map the original nite-dimensional space into a much higher-dimensional

space, presumably making the separation easier in that space. Mathematically,

the SVM can be formalised as an optimisation problem as follows.

Given some training data D = {(xi, yi)}ni=1, where xi ∈ R
d, yi ∈ {−1, 1}.

1From wikipedia: http://en.wikipedia.org/wiki/Support vector machine

36

The yi is either 1 or -1, indicating the class to which the point xi is positive or

negative. Each xi is a d-dimensional real vector. SVM trys to nd the maximum-

margin hyperplane that divides the points having yi = 1 from those points having

yi = −1. Such hyperplane can be written as the set of points x satisfying

w · x− b = 0,

where the w and b are optimised by :

min
w,ξ,b



1

2
w2 + C

n

i=1

ξi



(2.17)

subject to (for any i = 1, . . . n)

yi(w · xi − b) ≥ 1− ξi, ξi ≥ 0, (2.18)

where C is a pre-dened constant, and ξi are introduced slack variables which

measure the degree of misclassication of the data xi if there exists no hyper-

plane that can “clearly” split the positive and negative training examples. By

introducing Lagrange multipliers α and β, the above constrained problem can be

expressed as:

min
w,ξ,b

max
α,β



1

2
w2 + C

n

i=1

ξi −
n

i=1

αi[yi(w · xi − b)− 1 + ξi]−
n

i=1

βiξi



(2.19)

with αi, βi ≥ 0. This leads to a dual form of SVM optimisation:

Maximise (with respect to αi)

L̃(α) =
n

i=1

αi −
1

2



i,j

αiαjyiyjk(xi,xj) (2.20)

subject to (for any i = 1, . . . , n)

0 ≤ αi ≤ C,

37

and
n

i=1

αiyi = 0.

k(xi,xj) is a kernel, and some common kernels include:

• Polynomial (homogeneous): k(xi,xj) = (xi · xj)
d.

• Polynomial (inhomogeneous): k(xi,xj) = (xi · xj + 1)d.

• Gaussian radial basis function: k(xi,xj) = exp(−γxi − xj2), for γ > 0.

• Hyperbolic tangent: k(xi,xj) = tanh(κxi · xj + c), for some (not every)

κ > 0 and c < 0.

2.2.5 Unsupervised and supervised topic models

In this section, we describe a hierarchical Bayesian model, Latent Dirichlet allo-

cation (LDA) [81], that projects a text document or an image into a latent low

dimensional space (i.e., topic space). This low-dimensional representation can be

later used for regression and classication. LDA is originally an unsupervised

model as the side information, e.g., the class labels or responses of documents,

has not been utilised. In order to take into account side information for discover-

ing more predictive representations, LDA has been extended to a few supervised

manners, e.g., Supervised topic models (sLDA) [82], DiscLDA [83], Labeled LDA

[84] and maximum entropy discrimination latent Dirichlet allocation (MedLDA)

[85]. Specically, we will utilise MedLDA for image classication in our later

work as presented in the Chapters 5 and 6.

2.2.5.1 Latent Dirichlet allocation (LDA)

In LDA, the given data are a collection of documents, i.e., corpus D, and how

many topics, say K, to which these documents belong. Each document consisting

of a sequence of words is treated as a latent mixture of K topics, and each topic

is a multinomial distribution over M words in a given vocabulary. LDA is a gen-

erative model that maps a document into a K-dimensional topic space in which

38

the regression or classication algorithms can be applied for given documents.

Conventionally, the following notations are used in LDA model:

• A corpus is a collection of L documents denoted by D = {w1,w2, . . . ,wL},
and the i-th document wi is a sequence of Ni words denoted by wi =

(wi1, wi2, . . . , wiNi
), where wi,j is the j-th word in document wi.

• α is the parameter of the Dirichlet prior on the per-document topic distri-

butions.

• β = [β1, . . . , βK] is the M ×K matrix of topic distribution parameters, of

which each βk parameterises the topic-specic multinomial word distribu-

tion for topic k.

• θi is the topic distribution for document wi.

• zi,j is the topic for the word wi,j.

Only the words wi,j are observable variables, and the other variables are latent

variables. Suppose all the latent variables have been known, the LDA process

that generates all the documents of the corpus D is described as belows.

1. Draw a topic mixing proportion vector θi according to a K-dimensional

Dirichlet prior: θi ∼ Dir(α), Dir(α) is the Dirichlet distribution for param-

eter α.

2. For each of the words wi,j in document wi, where j ∈ {1, . . . , Ni},

(a) Draw a topic assignment zi,j ∼ Multinomial(θi).

(b) Draw a word instance wi,j ∼ Multinomial(βzi,j).

It is worth noting that there is a little abuse of notations on the topic assignment

zi,j which is a K-dimensional indicator vector (only one element is 1; all others

are 0), and βzi,j denotes the topic that is selected by the non-zero element of zi,j .

In the latter supervised extensions of LDA, usually the average of Z̄ = 1
N

∑N
n=1 zn

is evaluated. This average is actually a mean vector.

The LDA model is represented as a directed graphical model in Figure 2.9.

To use LDA model, there are two major problems need to be solved:

39

Figure 2.9: Probabilistic graphical model for LDA. The boxes are “plates” repre-
senting replicates. The outer plate indicates L documents, while the inner plate
represents the repeated selection of topics and words within a document.

1. Inference problem of computing the posterior distribution of the hidden

variables θ and z (both are the low-dimensional representation of the doc-

ument) given a document w:

p (θ, z|w,α, β) =
p (θ, z,w|α, β)
p (w|α, β) . (2.21)

2. Parameter estimation of α and β given a corpus of documentsD = {w1,w2, . . . ,wL}:

(α∗, β∗) = argmax
(α,β)

 (α, β) = argmax
α,β

L

i=1

log p (wi|α, β) . (2.22)

Unfortunately, neither inference problem (2.21) nor parameter estimation

(2.22) is tractable due to the intractability of the likelihood p (w|α, β)1. To

address the issue, approximate inference algorithms based on variational [81] or

Markov Chain Monte Carlo (MCMC) [86] approaches have been widely used for

parameter estimation and posterior inference for LDA. Here, we briey describe

the variational inference as an example: let q (θ, z|γ,φ) be a proposed variational

distribution that approximates the true model posterior p (θ, z|w,α, β) (2.21),

where {γ,φ} are introduced parameters related to {w,α, β}. q (θ, z|γ,φ) is de-

signed to be a tractable family of lower bounds of (2.21), and the tightest possible

1The explanation of intractability of p (w|α,β) is beyond the scope of this thesis, interested
readers can refer to the LDA paper [81].

40

Figure 2.10: Graphical model representation of the variational distribution q.

lower bound can be obtained by:

(γ∗,φ∗) = argmin
(γ,φ)

KL (q (θ, z|γ,φ) || p (θ, z|w,α, β)) , (2.23)

where KL () is the Kullback-Leibler (KL) divergence between the variational

distribution and the true posterior. Therefore, q (θ, z|γ∗,φ∗) can be viewed as

an approximation to the posterior distribution p (θ, z|w,α, β). By making some

independence assumption (e.g., mean eld) about q (θ, z|γ,φ) as shown in (2.24)

whose graphical model is indicated in Figure 2.10, the problem (2.23) can be

eciently optimised via an iterative xed-point method [81].

q (θ, z|γ,φ) = q (θ|γ)
N

i=1

q (zi|φi) . (2.24)

We would like to note that aside from textual documents, LDA can also

be applied to image data. In that case, an image is able to be treated as a

document by breaking down an image into small pieces. Thus, the whole image

is a document and each piece of such image is a word.

2.2.5.2 Supervised latent Dirichlet allocation (sLDA)

In the unsupervised topic model (i.e., LDA described in Section 2.2.5.1), the

side information (e.g., class label or rating of a document) has not been utilised

41

Figure 2.11: Supervised topic models (sLDA).

for learning topics and inferring topic vectors θ. To use side information appro-

priately for discovering more predictive representations, supervised topic models

(sLDA) [82] introduce a response variable Y into LDA for each document, and

the graphical model for sLDA is shown in Figure 2.11. Under the sLDA model,

each document wi and response yi arises from the following generative process:

1. Draw a topic mixing proportion vector θi according to a K-dimensional

Dirichlet prior: θi ∼ Dir(α).

2. For each of the words wi,j in document wi, where j ∈ {1, . . . , Ni},

(a) Draw a topic assignment zi,j|θi ∼ Multinomial(θi).

(b) Draw a word instance wi,j|zi,j , β ∼ Multinomial(βzi,j).

3. Draw response variable yi|zi,1, . . . , zi,Ni
, η, δ ∼ GLM (z̄i, η, δ), where z̄i =

1
Ni

∑Ni

j=1 zi,j corresponds to document wi.

The distribution of the response is a generalised linear model (GLM) [87],

p (y|z1, . . . , zN , η, δ) = h (y, δ) exp


ηT z̄


y − A


ηT z̄



δ



. (2.25)

For each xed δ, equation (2.25) is an exponential family, with base measure

h (y, δ), sucient statistic y, and log-normaliser A

ηT z̄


. For example, the nor-

mal distribution corresponds to h (y, δ) =


1/
√
2πδ



exp {−y2/2} and A

ηT z̄


=

42


ηT z̄

2
/2. In this case, the usual Gaussian parameters, mean μ and variance σ2,

are equal to ηT z̄ and δ, respectively.

Similar to LDA, sLDA also utilises the variational approximation (by propos-

ing a tractable variational distribution q as (2.24)) to infer the posterior, i.e.,

p (θ, z|w, y,α, β, η, δ), and estimate parameters by maximizing the joint likelihood

p (y,W|α, β, η, δ) where y is the vector of response variables in a corpus and W

are all the words.1 A more important purpose of applying sLDA is to predict

a document response. Given a new document w and a tted model {α, β, η, δ},
prediction computes the expected response value,

E [Y |w,α, β, η, δ] = E

μ

ηT Z̄


|w,α, β, η, δ


, (2.26)

where μ (·) = EGLM [Y |·], Z̄ = 1
N

∑N
n=1 Zn (z̄ is an instance of Z̄) and E


Z̄

=

φ̄ = 1
N

∑N
n=1 φn. A specic case is that GLM


Z̄, η, δ


is a normal distribution

parametrised by μ = ηT Z̄ and δ = σ2, i.e., GLM

Z̄, η, δ


= N


ηT Z̄, σ2


, and

Y ∈ R, then (2.26) becomes:

E

Y |w,α, β, η, σ2


= ηTE


Z̄|w,α, β, η, σ2


, (2.27)

By approximating the posterior mean of Z̄ using variational inference, (2.26) can

be estimated with

E [Y |w,α, β, η, δ] ≈ Eq


μ

ηT Z̄


. (2.28)

2.2.5.3 Maximum entropy discrimination latent Dirichlet allocation

(MedLDA)

Most supervised topic models (e.g., sLDA) are built on a likelihood-driven proba-

bilistic inference paradigm. To explore the max-margin based techniques (some-

times arguably more powerful) that are widely used in learning discriminative

models to learn supervised topic models, Zhu et al. proposed the Maximum

entropy discrimination latent Dirichlet allocation (MedLDA) [85] [88], which in-

tegrates maximum likelihood estimation and maximum margin estimation under

1The variational methods for inference and estimation of sLDA are not the focus of this
thesis, please refer to [82] for details

43

Figure 2.12: Graphical model of MedLDA.

a unied constrained optimisation framework.

Although the topic models that handle side information, e.g., sLDA, DiscLDA

and MedLDA, share the same goal which is to uncover the low-dimensional topic

representations for documents while retaining predictive power for regression and

classication, they dier in the training procedures. sLDA learns the model pa-

rameters by maximizing the joint likelihood of data and response variables. Dis-

cLDA is trained by maximizing the conditional likelihood of response variables1.

MedLDA is a combination of sLDA and support vector regression (SVR). In it,

the model parameters are learned in a max-margin manner; and the discovery of

latent topics is coupled with the max-margin estimation of the model parame-

ters. This interplay yields latent topic representations that are more suitable for

supervised tasks such as regression and classication.

By adopting the same notations as LDA and sLDA, the graphical model

of MedLDA is illustrated in Figure 2.12. Observant readers may nd that the

graphical model of MedLDA is the same2 as the sLDA as shown in Figure 2.11.

However, the learning and prediction process of MedLDA are quite dierent.

Following [85] and [88], we describe MedLDA for regression and classication

separately.

1The content of DiscLDA is beyond the scope of this thesis, interested readers can refer to
[83] for details.

2Rigorously, there is a slightly dierence of the graphical models between sLDA and
MedLDA: sLDA learns a point estimate of the parameter η, whereas MedLDA learns a dis-
tribution q (η) instead.

44

MedLDA for regression: For regression, the document response variables

y are continuous, i.e., y ∈ R. Instead of learning a point estimate of regression

coecient η as in sLDA, regressional MedLDA learns a distribution q (η) in a

max-margin manner, and the prediction rule for regression of MedLDA is:

ŷ , E

Y |w,α, β, σ2


= Eq(η)


ηT Z̄|w,α, β, σ2


, (2.29)

where Z̄ = 1
N

∑N
n=1 Zn (z̄ is an instance of Z̄).

Let q (θ, z, η|γ,φ) is a variational distribution to approximate the posterior

p (θ, z, η|W,y,α, β, σ2), and the response variable y is drawn from a linear Gaus-

sian: y|z1:N , η, σ2 ∼ N

ηT z̄, σ2


as shown in the generative process of sLDA

model, the learning problem is dened as:

P1(MedLDAr): min
q,α,β,σ2,ξ,ξ∗

L (q) + C

L

d=1

(ξd + ξ∗d)

s.t. ∀d :

⎧

⎪⎨

⎪⎩

yd − E

ηT Z̄d


≤ + ξd

−yd + E

ηT Z̄d


≤ + ξ∗d

ξd, ξ
∗
d ≥ 0,

(2.30)

where

L (q) = −E

log p


θ, z, η,W,y|α, β,σ2


−H (q (θ, z, η)) (2.31)

is an upper bound of negative log (marginal) likelihood: − log p (W,y|α, β, η, σ2).

As the marginal likelihood is intractable (as in sLDA [82]), MedLDA optimises

an upper bound L (q) instead; H (q) , −Eq [log q] is the entropy of q; ξ, ξ∗ are

slack variables absorbing errors in training data; and  is a precision parameter

as in support vector regression (SVR).

P1(MedLDAr) is solved by using a variational EM-algorithm 1.

MedLDA for classication: For classication, the document response vari-

ables y are discrete, i.e., y ∈ {1, 2, . . . ,M}). The classication model of MedLDA

also is to learn a distribution q (η). Then, the prediction rule for multi-class

1We skip the description of variational methods that solve the optimisation problem
P1(MedLDAr) as they are not the focus of this thesis. Please refer to [85] or [88] for the
optimizing procedures.

45

classication is

ŷ = argmax
y

E

ηT f


y, Z̄


|α, β,w


, (2.32)

where η is an MK-dimensional parameter vector whose components from (y −
1)K + 1 to yK are associated with the class y, and f


y, Z̄


is a feature vector

whose components from (y− 1)K +1 to yK are those of the vector Z̄ and all the

others are 0.

Similar to the regression model, the integrated latent topic discovery and

multi-class classication model is dened as follows:

P2(MedLDAc): min
q,q(η),α,β,ξ

L (q) +KL (q (η) ||p0 (η)) + C

L

d=1

ξd

s.t. ∀d, y = yd :



E

ηTΔfd (y)


≥ 1− ξd

ξd ≥ 0,

(2.33)

where q (θ, z|γ,φ) is a variational distribution; L (q) = −E [log p (θ, z,W, |α, β)]−
H (q (θ, z)) is a variational upper bound of− log p (W|α, β); KL () is the Kullback-

Leibler (KL) divergence; p0 (η) is a prior from which the parameter η is sampled;

Δfd (y) = f

yd, Z̄d


− f


y, Z̄d


, and ξ are slack variables. E


ηTΔfd (y)


is the

“expected margin” by which the true label yd is favored over a prediction y.

Finally, a variational EM-algorithm is used to solve the optimisation of P2(MedLDAc)1.

2.3 Summary

In this chapter, we have briey introduced some existing algorithms in feature

extraction, machine learning and pattern recognition that closely relate to the

following chapters. In the rest of thesis, the algorithms described above will

be utilised directly without repeated introductions. For example, in Chapters 3

and 4, Haar-like features and Adaboost approach are used for detecting facial

areas. Then, eigenfaces and SVM are used for facial expression recognition. In

Chapters 5 and 6, SIFT, SURF etc. will be our feature presentations and KDE

1We also skip the description of variational methods that solve the optimisation problem
P2(MedLDAc) as they are not the focus of this thesis. Please refer to [85] or [88] for the
optimizing procedures.

46

and MedLDA etc. will be used as classiers for object recognition. Although

some of these approaches, e.g., MedLDA, are only employed and not improved

in the later work, we also put their introductions in this chapter for readers’

references.

47

Chapter 3

Histogram Variances Faces for

expression recognition

In human’s expression recognition, the representation of expression features is

essential for the recognition accuracy. In this work we propose a novel approach

for extracting expression dynamic features from facial expression videos. Rather

than utilising temporal statistical models, e.g., Hidden Markov Model (HMM),

our approach integrates expression dynamic features into a static image, the His-

togram Variances Face (HVF), by fusing histogram variances among the frames

in a video. The HVFs can be automatically obtained from videos with dierent

frame rates and immune to illumination interference. In our experiments, for the

videos picturing the same facial expression, e.g., surprise, happy and sadness etc.,

their corresponding HVFs are similar, even though the performers and frame rates

are dierent. Therefore the static facial recognition approaches can be utilised

for the dynamic expression recognition. We have applied this approach on the

well-known Cohn-Kanade AU-Coded Facial Expression database then classied

HVFs using PCA and Support Vector Machine (SVMs), and found the accuracy

of HVFs classication is very encouraging.

48

3.1 Histogram Variances Faces

Our goal is to obtain distinct features depicting a certain expression from a face

video. Under an assumption that a video (i.e., a sequence of face images) has

been properly segmented 1 and aligned 2, an expression is usually featured by the

motions at specic facial positions. For instance, “happy” is more likely to have

a distinct smile motion around the mouth and “sad” is mostly represented by a

frown occurring at the upper portion of a face. Therefore, compared with “sad”,

“happy” will have greater variance around the mouth and less variance around

forehead in the temporal direction. By breaking down the face area with a grid

and recording variance of each cell in temporal direction, the dynamic features of

an expression can be stored into a single static image, which is called a Histogram

Variances Face (HVF) in this work.

In general, the procedures of generating a HVF from a video can be sum-

marised as follows, and the related techniques will be described in later subsec-

tions:

1. Automatically align faces in temporal direction by detecting ducial points

(the eyes) per frame.

2. Preprocess and texturise face images.

3. Break down each texturised image into M × N blocks and compute the

histogram variance for each block in temporal direction.

4. Create a new M×N 8-bit grayscale image, i.e. a Histogram Variances Face

(HVF). Each pixel value corresponds to a block histogram variance.

Figure 3.1 illustrates how to construct a Histogram Variances Face (HVF).

3.1.1 Faces Alignment

For dierent expression videos, normally the scales and locations of human faces

in frames are various. To make all the HVFs have the same scale and location,

1Only the duration of facial expression, i.e., from neutral to apex, has been included. The
process of video segmentation is beyond the scope of this thesis.

2Facial areas have been cropped out and aligned in temporal direction.

49

Figure 3.1: Procedures of generating an HVF image, whereHx,y;k is the histogram
of Blockx,y in the k-th texture image, P is the number of images, μx,y is the mean
histogram of Hx,y;k, EMD(∗) is the Earth Mover’s Distance

.

50

it is necessary to detect the face ducial points and cut the faces out in terms

of ducial points. Meanwhile, bilinear interpolation is used to make sure all the

face images have the same size. To detect the ducial points, we make use of

a real-time face detection scheme based on Haar-Like feature classier cascade

and AdaBoost learning [89], called Viola-Jones face detector. It consists of a

cascade of classiers trained by the AdaBoost algorithm. Each classier uses

integral image lters, bases on Haar Basis functions and can be computed very

fast at any location and scale. For each stage in the cascade, a subset of features

is chosen using a feature selection procedure based on the AdaBoost. This face

detection scheme detects and locates the positions of eyes on the Cohn-Kanade

expression database [35] precisely and fast. In our system, the eyes are the ducial

points used to cut and align the faces in the frontal face image sequences. The

positions of human’s eyes determine the face position accurately. The faces in

videos are cut out according to eyes’ positions and are normalised to a xed size

in proportion to the distance between eyes.

3.1.2 Preprocessing and LBP texturising

After getting aligned faces using Viola-Jones face detector [89], we mask the

areas outside an ellipse around each face and leave only the face area as the

region of interest (ROI). Histogram equalisation in ROI is also applied to reinforce

the gradient. Furthermore, the illumination variety in a video is another issue

that could interfere with the histogram variance in the temporal direction. To

overcome this, we employ the LBP operator shown in [22][40] to extract the

texture of the masked faces, and hence eliminate the illumination interference.

Local Binary Pattern (LBP) describes the surroundings of a pixel by

generating a bit-code from the binary derivatives of a pixel. The operator is

usually applied to grayscale images and the derivative of the intensities. A typical

form of the LBP operator takes the 3× 3 surrounding of a pixel and generates a

binary 1 if the neighbor of the centre pixel has larger value than the centre pixel.

The operator generates a binary 0 if the neighbor is less than the centre. The

eight neighbours of the centre can then be represented with an 8-bit unsigned

51

Figure 3.2: An example of computing LBP in a 3× 3 neighborhood

integer. The LBP value is calculated using Equation 3.1 [22][40]:

LBPP,R(xc, yc) =
P−1

p=0

s(gp − gc)2
p (3.1)

s(x) =



1 if x ≥ 0,

0 if x < 0

where P is the number of neighbors, R is the radius and gc corresponds to the

gray value of the center pixel of a local neighborhood. gp(p = 0, . . . , P − 1)

correspond to the gray values of P equally spaced pixels on a circle of radius R

that form a circularly symmetric set of neighbors. Figure 3.2 shows the example

of an LBP operator.

52

3.1.3 Earth Mover’s Distance for calculation of histogram

variances

There are a number of approaches to compute the similarity between two his-

tograms. Normally these approaches are divided into two categories: bin-to-bin

and cross-bin. In our case, although a block may not have texture change during

a video, its corresponding histograms in dierent frames are unlikely to keep the

same because of the noise. It is quite often that the block histograms shift slightly

according to Gaussian distributions. The bin-to-bin approaches will not work well

here because they are sensitive to the slight histogram shifting. Note that the

histogram shifts caused by noise are invisible for human vision, so we should ig-

nore these kinds of shifts. Earth Mover’s Distance (EMD) is a cross-bin approach

and able to address the shift problem caused by noise because slight histogram

shifts do not aect the EMD much. EMD is consistent with the human’s vision

because if two images look more dierent according to human’s vision, generally

the histograms of the two images will create a greater EMD value. Another good

cross-bin choice can be the Quadratic Form Distance. However, it needs a pos-

itively denite parameter matrix which must be pre-dened. Our experiments

prove that EMD has the best performance in this application.

3.1.3.1 Earth Mover’s Distance

Earth Mover’s Distance (EMD) is a method to evaluate dissimilarity between two

multi-dimensional distributions in some feature space where a distance measure

between single features (called the ground distance) is given. It has the excellent

capability of matching human’s vision on histogram distribution dierences. Ba-

sically, EMD was formalised as the following linear programming problem. Let

P = {(p1, wp1), . . . , (pm, wpm)} (3.2)

be the rst signature with m clusters, where pi is the cluster representative and

wpi is the weight of the cluster; and let

Q = {(q1, wq1), . . . , (qn, wqn)} (3.3)

53

the second signature with n clusters; and D = [dij] is the ground distance matrix

where dij is the ground distance between clusters pi and qj. EMD is to nd a

ow F = [fij], where fij is the ow between pi and qj, that minimises the overall

cost [41]

WORK(P,Q, F) =
m

i=1

n

j=1

dijfij (3.4)

subject to the following constraints [41]:

1. fij ≥ 0; i ∈ [1,m] , j ∈ [1, n],

2.
∑n

j=1 fij ≤ wpi; i ∈ [1,m],

3.
∑m

i=1 fij ≤ wqj; j ∈ [1, n] and

4.
∑m

i=1

∑n
j=1 fij = min


∑m

i=1 wpi,
∑n

j=1 wqj



Constraint 1 allows moving “supplies” from P to Q and not vice versa. Con-

straint 2 limits the amount of supplies that can be sent by the clusters in P to

their weights. Constraint 3 limits the clusters in Q to receive no more supplies

than their weights; and constraint 4 forces to move the maximum amount of

supplies possible. This amount is called the total ow. Once the transportation

problem is solved, and the optimal ow F has been found, the EMD is dened

as the resulting work normalised by the total ow [41]:

EMD(P,Q) =

∑m
i=1

∑n
j=1 dijfij

∑m
i=1

∑n
j=1 fij

. (3.5)

The normalisation factor is the total weight of the smaller signature because of

constraint 4. This factor is needed when the two signatures have dierent total

weights, in order to avoid favoring smaller signatures. In general, the ground

distance dij can be any distance and will be chosen according to the problem in

question.

We employ EMD to measure the distance between two histograms when cal-

culating histogram variances in the temporal direction. In our case, pi and qj

are the grayscale pixel values, which are in [0, 255]. wpi and wqj are the pixel

54

distributions at pi and qj respectively. The ground distance dij that we choose is

the square of euclidean distance between pi and qj, i.e., dij = (pi − qj)
2.

3.1.3.2 Procedures of calculating histogram variances

1. Suppose a sequence consists of P face texture images. We rstly break

down each image evenly into M ×N blocks, denoted by Bx,y;k, where x is

row index, y is column index and k is corresponding to the k-th frame in

the sequence. Then, calculate every gray-value histogram of Bx,y;k, denoted

by Hx,y;k, where x = 0, 1, . . . ,M −1; y = 0, 1, . . . , N −1; k = 0, 1, . . . , P −1.

2. Calculate the histogram variance var(x, y):

var(x, y) =
1

P

P−1

k=0

EMD(Hx,y;k,μx,y), (3.6)

where μx,y is the mean histogram

μx,y =
1

P

P−1

k=0

Hx,y;k, (3.7)

and EMD(Hx,y;k,μx,y) is the Earth Mover’s Distance between Hx,y;k and

μx,y.

3. Construct an M × N 8-bit grayscale image as our HVF. Suppose that

hvf(x, y) denotes the pixel value at coordinate (x, y) in an HVF image:

hvf(x, y) = 255−


255 ∗ var(x, y)
MAX(var(x, y))



, (3.8)

To make the HVF image more “clean”, we set hvf(x, y) = 255 when

hvf(x, y) > threshold, where the threshold is predened, e.g., 200.

Figure 3.3 shows some HVF examples extracted from happiness, surprise

and sadness videos respectively.

55

Figure 3.3: Examples of HVF images

3.1.3.3 Computing histograms of various-size blocks

Whether the dierent block sizes aect our HVFs recognition is one of the ques-

tions we are going to answer in this chapter. Hence, we must get the histograms

for various-size blocks. To make the histogram computation more ecient, we

get the bigger-size histograms by adding small-size ones.

Suppose that H(α) denotes the histogram vector with respect to image area

α. Then, we have

H(α) +H(β) = H(α ∪ β). (3.9)

Therefore, if Hx,y;k(γ, η) denoted the histograms of γ × η pixels block at the x-th

row and y-th column in frame k, then

Hx,y;k(aγ, bη) =
a−1

i=0

b−1

j=0

Hax+i,by+j;k(γ, η), (3.10)

where a, b, γ, η ∈ N+. We only obtain all histograms with size 3 × 3 in our

experiments. After then, the size 6× 6 and 12× 12 histograms can be computed

fast and easily through Equation 3.10.

56

3.2 Classifying HVF images using PCA+SVMs

HVF records the dynamic features of the expression. As we can see in Figure 3.3,

for the expressions of happiness, surprise and sadness, the homogeneous HVFs

look similar and HVFs belonging to dierent expressions have their own unique

features. To verify the performance of HVF image’s features, we just utilise the

typical facial recognition technologies PCA+SVMs, which have proven to be very

well suitable for classication tasks such as facial recognition.

3.2.1 PCA dimensionality reduction

In experiments, all pixel values of an HVF image construct an n × 1 column

vector zi ∈ Rn, and an n × l matrix Z = {z1, z2, . . . , zl} denotes the training

set which consists of l sample HVF images. The PCA algorithm nds a linear

transformation orthonormal matrix Wn×r(n >> r), projecting the original high

n-dimensional feature space into an r -dimensional feature subspace, where n >>

r. xi denotes the new feature vector:

xi = W T · zi (i = 1, 2, . . . , l). (3.11)

The columns of matrix W are called eigenfaces [90], which are the r eigenvec-

tors corresponding to the r largest eigenvalues of the scatter matrix S :

S =
l

i=1

(zi − μ)(zi − μ)T (3.12)

where μ is the mean image of all HVF samples and μ = 1
l

∑1
i=1 zi.

3.2.2 SVMs training and recognition

SVMs [91][92][93] is an eective supervised classication algorithm and its essence

is to nd a hyperplane that separates the postive and negative feature points with

maximum margin in the feature space. Very likely that the real-world problems

are not linearly separable. In this case, SVMs map the original input space using

57

‘kernel’ functions into a higher dimenional space where the feature points are

linearly separable.

Suppose that α denotes the Lagrange parameters that describe the separat-

ing hyperplane ω in SVM. Finding the hyperplane that maximises the margin

between positive and negative data set involves getting the nonzero solutions αi

of a Lagrangian dual problem, which is a quadratic programming problem and is

solvable. Once we nd all αi and given a labeled training set x, y, the decision

function can be as follows:

f(x) = sgn


l

i=1

αiyiK(x, xi) + b



, (3.13)

where b is the bias of the hyperplane, l is the number of training samples, yi is

the label of train data, xi is the vector of PCA projection coecients of HVFs,

and K(x, xi) is the ’kernel mapping’. For linear SVMs,

K(x, xi) = x, xi , (3.14)

where x, xi means the dot product of x and xi.

Since the SVM is basically a two-class classication algorithm, here we adopt

the pairwise classication (one-versus-one) for multi-class. In pairwise classica-

tion, there is a two-class SVM for each pair of classes to separate members of

one class from members of the other. Specically, there are maximum C2
6 = 15

two-class SVM classiers trained for the classication of six sorts of expressions.

When recognising a new HVF image, all the 15 two-class classiers are applied

for testing HVF and the winner class is the one that takes the most votes.

3.3 Experiments

3.3.1 Dataset

Our experiments adopt the Cohn-Kanade AU-Coded Facial Expression Database

[35]. This database consists of 97 university students ranging in age from 18 to 30

years. 65% are female, 15% are African-American, and 3% are Asian or Latino.

58

Figure 3.4: Some example sequences in the Cohn-Kanade database for facial
expression recognition. Each of the sequences depicting a certain facial expression
starts from a neutral face and ends with the expression apex. The frame numbers
of sequences are various.

Videos in this database have been recoded using a camera located directly in front

of the subject. Subjects have been instructed by an experimenter to perform a

series of 23 facial expressions. Subjects begin and end each display with a neutral

face. Before performing each display, an experimenter described and modeled

the desired display. Image sequences from neutral to expression apex have been

digitised into 640 by 480 pixel arrays with 8-bit precision for grayscale values.

Figure 3.4 shows some example sequences from the Cohn-Kanade AU-Coded

Facial Expression Database.

Although Cohn-Kanade is a benchmark dataset for expression recognition, it

only contains the AU-Coded combinations for its objects instead of expression

denitions (i.e. surprise, happy, anger etc.). To assess classication accuracy in

a supervised way, we need to create “ground truth” by manually labeling each

object with a specic expression according to FACS. However, facial expression

59

labeling is extremely subjective and we found that many of the objects were

dicult to be surely labeled. This labeling process prevents us from using all

the objects in Cohn-Kanade dataset. Instead, We select 31 subjects that can be

labeled with high condence. On the other hand, because the manual labeling

process is subjective, that is why it is not feasible to compare our work with other

people’s work on Cohn-Kanade dataset.

Each subject has up to 6 expressions (image sequences). The total number of

sequences is 169, so 169 HVFs are generated. The image sequences belonging to

the same expression have the similar duration but their frame rates are dierent.

For a certain expression, we feed around 80% HVFs to PCA+SVMs training

process and the classiers are later applied to all HVFs.

3.3.2 Parameter selection for HVFs generation

The faces of selected subjects are detected and cut out. Then, these faces are

resized to 300×300 pixels and aligned. To eliminate illumination interference, we

use a 3× 3 neighborhood with radius 1 for the LBP operator. As to the ground

distance for EMD, we adopt the square of Euclidean distance between two pixel

values. The reason for choosing Euclidean distance here is because, for human’s

vision, more dierence of pixel value distribution between two image histograms

will cause more distinction of the two images. The nal data dimensions are

reduced to 95 after PCA operation. For classication, we tried Gaussian kernel

SVM with various gamma and linear SVMs. We found that linear SVM had

better overall performance. Actually, performance of SVM is data-dependent. It

seems that linear SVM ts our application better. Our penalty parameter C for

the linear SVMs is 8.

Moreover, to check the inuence of dierent block segmentations, we chose

the block’s sizes as 3 × 3, 6 × 6 and 12 × 12 pixels. So each texture image is

broken down into 100 × 100, 50 × 50 and 25 × 25 blocks respectively. Because

the histogram variance among blocks in the temporal direction becomes a pixel

value in HVF, our HVF sizes are 100× 100, 50× 50 and 25× 25 pixels as well.

60

100× 100 blocks 50× 50 blocks 25× 25 blocks
Recognition FPR Recognition FPR Recognition FPR

HA 96.6% 3.3% 100% 3.3% 100% 3.3%
SU 96.7% 3.4% 96.7% 0.0% 96.7% 0.0%

Table 3.1: Recognition rates of happy and surprise HVFs.

HA SU AN DI FE SA
Recog(%) 97.8 79.3 55.9 60.2 36.8 46.9

Table 3.2: A recent investigation of facial expression recognition by human in
[94].

3.3.3 Training and recognition

When labeling the face videos, we were quite condent to recognise original im-

age sequences of happiness and surprise. Therefore, the training data for these

two classes can be labeled with high correction. This implies that these two ex-

pressions have evidently unique features. Our experimental results (Table 3.1)

testies this point with high HVF recognition rate, where FPR is the false positive

rate.

When we were labeling HVFs of anger, disgust, fear and sadness, nearly

half of them were very challenging to be attached the convincing classications,

according to neither AU-Coded combinations nor human’s perception on original

image sequences, especially for anger and sadness. From the AU-Code of FACS

perspective, AU-Coded prototypes in FACS (2002 version) [35] are overlapping for

these expressions. From human’s vision perspective, one expression of a person

may be reected by several dierent sequences of images and one sequence of

images is also often interpreted as various expressions. An investigation [94]

about facial expression recognition by human discloses that compared to the

expressions of happy and surprise, the expressions of anger, fear, disgust and

sadness are much more dicult to be recognised by people (see Table 3.2).

After trying our best to manually label the expressions under above circum-

stances, we conduct the following experiments:

1. Feed happy, surprise and anger HVFs into the SVMs. For these three sorts

61

100× 100 blocks 50× 50 blocks 25× 25 blocks
Recognition FPR Recognition FPR Recognition FPR

HA 96.6% 0.0% 100% 0.0% 100% 0.0%
SU 86.7% 3.3% 90.0% 1.7% 90.0% 1.7%
AN 96.8% 6.8% 96.8% 5.1% 96.8% 5.1%

HA 89.7% 0.0% 96.6% 0.0% 96.6% 0.0%
SU 83.3% 7.0% 90.0% 5.3% 90.0% 5.3%
DI 85.7% 13.5% 89.3% 6.8% 89.3% 6.8%

HA 93.1% 1.9% 96.5% 0.0% 96.5% 0.0%
SU 90.0% 7.7% 93.3% 3.8% 90.0% 3.8%
FE 86.9% 10.1% 91.3% 5.1% 86.9% 8.5%

HA 93.1% 1.7% 96.5% 0.0% 96.5% 0.0%
SU 90.0% 3.5% 93.3% 3.5% 93.3% 3.5%
SA 89.2% 8.4% 92.8% 5.1% 89.2% 6.7%

Table 3.3: Recognition rates of happy and surprise versus other sorts of HVFs.

100× 100 blocks 50× 50 blocks 25× 25 blocks
Recognition FPR Recognition FPR Recognition FPR

AN 74.1% 12.6% 77.4% 12.6% 70.9% 13.9%
DI 78.6% 12.1% 78.6% 10.9% 75.0% 13.4%
FE 69.5% 8.0% 73.9% 8.0% 69.5% 8.0%
SA 67.8% 3.6% 67.8% 2.4% 67.8% 3.6%

Table 3.4: Recognition rates of anger, disgust, surprise and sadness HVFs.

of expressions, we train C2
3 = 3 two-class classiers (i.e. happy-surprise,

surprise-anger and anger-happy classiers) and test HVFs using majority

voting. Likewise, we keep surprise and anger unchanged but substitute

anger with disgust, fear and sadness respectively, and then conduct the

same training and testing. The results are displayed in Table 3.3.

2. Put anger, disgust, fear and sadness in one group. For these four tough

expressions, we train a set of classiers which has C2
4 = 6 two-class classiers

and test new HVFs using majority voting. Table 3.4 shows our results.

3. Put all of the HVFs together, train C2
6 = 15 two-class classiers. Use this

62

100× 100 blocks 50× 50 blocks 25× 25 blocks
Recognition FPR Recognition FPR Recognition FPR

HA 93.1% 0.0% 96.5% 0.0% 93.1% 0.0%
SU 90.0% 0.0% 93.3% 0.0% 90.0% 0.0%
AN 80.6% 10.1% 80.6% 8.6% 80.6% 10.1%
DI 75.0% 8.5% 82.1% 7.8% 75.0% 8.5%
FE 78.2% 3.4% 78.2% 2.7% 73.9% 3.4%
SA 75.0% 0.0% 71.4% 0.0% 71.4% 1.4%

Table 3.5: Recognition rates of all sorts of HVFs.

set of classier to recognise all of the HVFs by voting. We obtain the

experimental results as shown in Table 3.5.

3.4 Discussion

1. From Table 3.1, we can see that both happy and surprise HVFs have very

high recognition rates. For example, happy HVFs reach amazing 100%

recognition rate with only 3.3% false positive rate (FPR). They are also

quite distinguishable from the rest HVFs according to Table 3.3. These

results coincide with our observations on the original image sequences, as

human can also easily identify the original happy and surprise sequences

from the Cohn-Kanade database. This fact conrms that HVFs preserve

the dynamic features well.

2. From Table 3.4, the recognition rates for anger, fear, disgust and sadness

HVFs are a lot lower. This reects the challenges that we have encountered

when labeling the training data (noting that nearly half of the training data

in these four expressions are not convincing for us to label a class because

of expression features entanglement). An investigation of facial expression

recognition by human [94] also indicates that human is not sensitive to

recognise the anger, fear, disgust and sadness expressions. This fact is

exactly embodied in our HVF recognition results.

3. Table 3.5 shows the recognition results when all six expressions are fed to

63

SVMs for training. We can see that happy and surprise HVFs still stand

out and the rest ones are hampered by the entanglement of features. Taking

into account our diculties for labeling the training data, the recognition

rates in Table 3.5 make sense.

4. The frame rate of videos and the faces location in frames do not aect our

experimental results evidently, but the durations of the expressions have to

be similar, e.g., from neutral to apex. Moreover, the size of block is not

critical to our results, but generally, the 50×50 block segmentation has the

best performance in our experiments.

3.5 Conclusion

According to Figure 3.1, an HVF is a set of variances of local cells (blocks) in

temporal direction. HVF uses LBP to extract texture and EMD to calculate the

variance, so it can resist illumination and noise inuence. In addition, HVF only

takes aligned face area as the region of interest, which makes the cell at a certain

position represent the same part of a human face. Our experiments demonstrate

HVF is an eective representation of the dynamic and internal features of a face

video or image sequence. HVF is able to integrate well the dynamic features of a

certain duration of expression into a static image through which the static facial

recognition approaches can be utlised to recognise the dynamic expressions.

64

Chapter 4

Hexagonal Histogram Variances

Faces for expression recognition

In our earlier work, we have proposed an HVF (Histogram Variance Face) ap-

proach and proved its eectiveness for facial expression recognition. In this chap-

ter, we extend the HVF approach and present a novel approach for facial ex-

pression. We take into account the human perspective and understanding of

facial expressions. For the rst time, we propose to use the Local Binary Pat-

tern (LBP) dened on the hexagonal structure to extract local, dynamic facial

features from facial expression images. The dynamic LBP features are used to

construct a static image, namely Hexagonal Histogram Variance Face (HHVF),

for the video representing a facial expression. We show that the HHVFs repre-

senting the same facial expression (e.g., surprise, happy and sadness etc.) are

similar no matter if the performers and frame rates are dierent. Therefore, the

proposed facial recognition approach can be utilised for the dynamic expression

recognition. We have tested our approach on the well-known Cohn-Kanade AU-

Coded Facial Expression database. We have found the improved accuracy of

HHVF-based classication compared with the HVF-based approach.

65

4.1 Hexagonal Histogram Variances Faces

The HVF image is a representation of the dynamic features in a face video [95].

An extension of HVF represented on the hexagonal structure, namely HHVF, is

performed in this section.

4.1.1 Fiducial point detection and face alignment

For dierent expression videos, normally the scales and locations of human faces

in frames are various. To make all the HHVFs have the same scale and location,

it is critical to detect the face ducial points. Bilinear interpolation is used to

scale the face images to the same size. To detect the ducial points, we apply

Viola-Jones face detector [89], a real-time face detection scheme based on Haar-

like features and AdaBoost learning. We detect and locate the positions of eyes

for the images on the Cohn-Kanade expression database [35]. Each face image is

cut and scaled according to eyes’ positions and the distance between the eyes.

4.1.2 Conversion from square structure to hexagonal struc-

ture

We follow the work shown in [96] and also in the previous chapter to represent

images on the hexagonal structure. As shown in Figure 4.1, the hexagonal pixels

appear only on the columns where the square pixels are located. As illustrated

in Figure 4.1, for a given hexagonal pixel (denoted by X but not shown in the

gure), there exist two square pixels (denoted by A and B but again not shown in

the gure), lying on two consecutive rows and the same column of X, such that

point X falls between A and B. Therefore, we can use the linear interpolation

algorithm to obtain the light intensity value of X from the intensities of A and

B. When we display the image on the hexagonal structure, every two hexagonal

rows as shown in Figure 4.1 is combined into one single square row with their

columns unchanged.

Although there are some additional computations for conversion between

square to hexagonal structure, these computations are light-weighted and can

be ignored.

66

Figure 4.1: A 9x8 square structure and a constructed 7x8 hexagonal structure
[96]

4.1.3 Preprocessing and LBP texturising

After each input face image is aligned, cut, rescaled and normalised, we replace

the values of the pixels outside the ellipse area around the face by 255, and keep

the pixel values unchanged in the elliptic face area. To eliminate the illumination

interference, we employ an LBP operator [97][22][40] to extract the texture (i.e.,

LBP) values in each masked face.

LBP was originally introduced by Ojala et al. in [98] as texture description

and dened on the traditional square image structure. The basic form of an LBP

operator labels the pixels of an image by thresholding the 3 × 3 neighborhood

of each pixel by the grey value of the pixel (the centre). An illustration of the

basic LBP operator is shown in Figure 4.2. Similar to the construction of basic

LBP on the square structure, the basic LBP on the hexagonal structure, called

Hexagonal LBP (HLBP) is constructed as shown in Figure 4.3 [97] on a cluster

of 7 hexagonal pixels. By dening the HLBPs on the hexagonal structure, the

number of dierent patterns has been reduced from 28 = 256 on the square

67

Figure 4.2: An example of computing LBP in a 3 × 3 neighborhood on square
structure [97]

Figure 4.3: An example of computing HLBP in a 7-pixel hexagonal cluster [97].

structure to 26 = 64 on the hexagonal structure. More importantly, because all

neighboring pixels of a reference pixel have the same distance to it, the grey values

of the neighboring pixels have the same contributions to the reference pixel on

the hexagonal structure.

4.1.4 Earth Mover’s Distance (EMD)

We employ EMD as shown in Section 3.1.3.1 to measure the distance between

two histograms when calculating histogram variances in the temporal direction.

In Equations 3.2 and 3.3, pi and qj are the grayscale pixel values, which are in

[0, 63]. wpi and wqj are the pixel distributions at pi and qj respectively. The

ground distance dij that we choose is the square of Euclidean distance between

pi and qj, i.e., dij = (pi − qj)
2.

68

4.1.5 Histogram variances

The steps to compute the histogram variance on hexagonal structure are similar

to the ones shown in Section 3.1.

1. Break down each image evenly into M×N blocks, denoted by Bx,y;k, where

x is row index, y is column index and k is the k-th frame in the sequence.

Here, the block size, rows and columns are corresponding to those images

displayed on the square structure as described in Subsection 4.1.2. We then

calculate every gray-value histogram of Bx,y;k, denoted by Hx,y;k.

2. Calculate the histogram variance var(x, y) using Equation 3.6 of Section

3.1.3.2.

3. Construct an M ×N 8-bit grayscale image as our HHVF. Similar to former

HVF, Suppose that hhvf(x, y) denotes the pixel value at coordinate (x, y)

in an HHVF image. Then, hhvf(x, y) is also computed by Equation 3.8.

Figure 4.4 shows some HHVF examples extracted from happiness, surprise

and sadness videos respectively.

To consider if the dierent block sizes may aect the recognition, we obtain

HHVFs with size 3 × 3 in our experiments, then with the sizes of 6 × 6 and

12 × 12. How a row and a column are dened has been described in Section

4.1.2 and illustrated in Figure 4.1 showing the dierence from that in the square

structure.

4.2 Classication

HHVF records the dynamic features of the expression. As we can see in Figure

4.4, for the expressions of happiness, surprise and sadness, the homogeneous

HHVFs look similar and HHVFs belonging to dierent expressions have very

distinct features. To verify the performance of HHVF image’s features, we utilise

the typical facial recognition technologies PCA+SVMs as shown in Section 3.2.

69

Figure 4.4: Examples of HHVF images

4.3 Experiments

4.3.1 Dataset

The same as Chapter 3, our experiments also use the Cohn-Kanade AU-Coded

Facial Expression Database [35]. Because of the restriction described in Section

3.3, we select 49 subjects from the database instead using all the objects. Each

subject has up to 6 expressions. The total number of expression sequences is 241.

The image sequences belonging to the same expression have the similar duration

but their frame rates are various and are from 15-30 frames per second. For

each expression, we use about 80% HHVFs for PCA+SVMs training and use all

HHVFs for classication (i.e., testing).

4.3.2 HHVFs generation

The faces of selected subjects are detected and cut. Then these faces are scaled to

size of 300×300 and aligned. These cut and rescaled images are then converted to

the images on the hexagonal structure. The size of the new images are of 259×300.

70

3× 3 blocks 6× 6 blocks 12× 12 blocks
Recog rate FPR Recog rate FPR Recog rate FPR

Happy 100% 2.17% 97.78% 2.17% 97.78% 2.17%
Surprise 97.82% 0.00% 97.82% 2.22% 97.82% 2.22%

Table 4.1: Recognition rates of happy and surprise HHVFs.

HLBP operator is then applied to the images on the hexagonal structure. The

nal data dimension is reduced to 220 after the PCA operation.

4.3.3 Training and recognition

As a supervised learning, the training data (HHVFs) are labeled according to their

classes. Since the Cohn-Kanade database contains only the AU-Coded combina-

tions for image sequences instead of expression denitions (i.e. surprise, happy,

anger etc.), we need to label each HHVF with an expression denition manually

according to FACS before feeding it to SVMs. In terms of human perception, we

are quite condent to recognise original image sequences of happiness and sur-

prise. Therefore, the training data for these two classes can be labeled with high

accuracy. This implies that these two expressions have evidently unique features.

Our experimental results (Table 4.1) testify this point with high recognition rate

when we train and test only these two expressions. In Table 4.1, FPR stands for

false positive rate.

When we manually label HHVFs of anger, disgust, fear and sadness, nearly

half of them are very challenging to be correctly classied. Neither AU-Coded

combinations nor human’s perception can satisfactorily classify these facial ex-

pression sequences, especially the anger and sadness sequences. Actually, AU-

Coded prototypes in FACS (2002 version) [35] have created large overlaps for

these expressions. From human’s vision perspective, one expression appearance

of a person may reect several dierent expressions, so the image sequence of a

facial expression can often be interpreted as for dierent expressions. An investi-

gation [94] about facial expression recognition by human indicates that compared

to the expressions of happy and surprise, the expressions of anger, fear, disgust

and sadness are much more dicult to be recognised by people. (see Table 4.2).

71

Happy Surprise Angry Disgust Fear Sadness
Recognition rate(%) 97.8 79.3 55.9 60.2 36.8 46.9

Table 4.2: A recent investigation of facial expression recognition by human in
[94].

3× 3 blocks 6× 6 blocks 12× 12 blocks
Recog rate FPR Recog rate FPR Recog rate FPR

Angry 74.36% 13.51% 76.92% 13.51% 74.36% 14.41%
Disgust 73.68% 10.71% 73.68% 9.82% 71.05% 10.71%
Fear 68.57% 8.69% 71.43% 7.83% 68.57% 8.69%

Sadness 68.42% 5.36% 68.42% 5.36% 68.42% 5.35%

Table 4.3: Recognition rates of anger, disgust, surprise and sadness HHVFs.

Despite the above-mentioned diculties, we have tried our best to manually

label the expressions. We have also conducted the following experiments:

1. We test for only anger, disgust, fear and sadness classes. For these four

tough expressions, we train a set of classiers having C2
4 = 6 two-class

classiers and test the HHVFs based on majority voting. Table 4.3 shows

our results.

2. We consider all HHVFs, and train C2
6 = 15 two-class classiers. We use

this set of classiers to recognise all HHVFs based on voting. We obtain

the experimental results as shown in Table 4.4.

3. To compare performances between HHVFs and HVFs, we replace HHVFs

with HVFs and conduct the same experiments of Table 4.4 on the same

dataset. The average recognition rates between HVFs and HHVFs are

shown in Table 4.5.

4.4 Discussion

1. From Table 4.1, we can see that both happy and surprise HHVFs have

produced very high recognition rates. For example, the happy HHVFs

72

3× 3 blocks 6× 6 blocks 12× 12 blocks
Recog rate FPR Recog rate FPR Recog rate FPR

Happy 93.33% 0.0% 95.56% 0.0% 95.56% 0.0%
Surprise 91.3% 0.51% 93.48% 0.51% 93.48% 0.51%
Angry 82.05% 7.43% 82.05% 5.94% 76.92% 5.94%
Disgust 78.95% 4.93% 81.58% 4.43% 81.58% 4.93%
Fear 77.14% 5.34% 80.00% 5.34% 77.14% 5.34%

Sadness 78.95% 0.49% 78.95% 0.49% 78.95% 1.48%

Table 4.4: Recognition rates of all sorts of HHVFs

3× 3 Recog rate 6× 6 Recog rate 12× 12 Recog rate
HHVFs HVFs HHVFs HVFs HHVFs HVFs

Happy 93.33% 91.10% 95.56% 93.33% 95.56% 93.33%
Surprise 91.30% 91.30% 93.48% 93.48% 93.48% 91.30%
Angry 82.05% 79.49% 82.05% 79.49% 76.92% 76.92%
Disgust 78.95% 78.95% 81.58% 81.58% 81.58% 81.58%
Fear 77.14% 77.14% 80.00% 77.14% 77.14% 77.14%

Sadness 78.95% 78.95% 78.95% 78.95% 78.95% 75.60%

Average rate 83.60% 82.82% 85.27% 83.99% 83.94% 82.65%

Table 4.5: Recognition rates between HVFs and HHVFs. The last row is the
average recognition rates of six categories. In our experiments, HHVFs slightly
outperforms HVFs.

73

reach amazing 100% recognition rate with only 2.17% false positive rate

(FPR). These results coincide with our observation on the original image

sequences, as human can also easily identify the original happy and surprise

sequences from the Cohn-Kanade database.

2. From Table 4.3, the recognition rates for anger, fear, disgust and sadness

HHVFs are much lower. This reects the challenges that we have encoun-

tered when labeling the training data (that nearly half of the training data

for these four expressions are not convincing us to accurately label their

classes because of the expression feature entanglement).

3. Table 4.4 shows the recognition results when all six expressions were fed

to SVMs for training. We can see that the happy and surprise HHVFs

still stand out and the rest are hampered by the entanglement of features.

Taking into account our diculties for labeling the training data, the recog-

nition rates in Table 4.4 make sense.

4. The size of blocks is not critical to our results, although the segmentation

into 6× 6 blocks has the best performance in our experiments as shown in

Table 4.4.

4.5 Conclusion

Our experiments demonstrate that HHVF is an eective representation of the

dynamic and internal features of a face video or an image sequence. Comparing

to HVFs, HHVFs can achieve better recognition rates for expression recognition

in accordance with Table 4.5. HHVF is able to integrate well the dynamic features

of a certain duration of expression into a static image through which the static

facial recognition approaches can be utlised to recognise the dynamic expressions.

The application of HHVFs lls the gap between the expression recognition and

facial recognition.

74

Chapter 5

MIL-SKDE: Multiple-instance

learning with supervised kernel

density estimation

In previous chapters, our work is focused on the expression recognition which is a

categorisation task using single-instance learning because labeling such training

data is quite convenient. In this chapter, we switch our job to another application

of object categorisation which involves determining whether or not an image con-

tains some specic categories of objects. As mentioned in Section 1.3, the task

of object categorisation can be naturally cast as an multiple-instance learning

(MIL) problem because individually labeling and normalizing objects for train-

ing is expensive. Therefore, we propose an innovative multiple-instance learning

algorithm, Multiple-instance Learning with Supervised Kernel Density Estima-

tion (MIL-SKDE), to tackle the object categorisation. Actually, aside from object

categorisation, our approach is able to be applied for any other MIL applications,

e.g., drug activity detection and region-based image classication.

5.1 MIL-SKDE algorithm

Multiple-instance learning (MIL) is a variation on supervised learning. Instead

of receiving a set of labeled instances, the learner receives a set of bags that are

75

labeled. Each bag contains many instances. The aim of MIL is to classify new

bags or instances. Here, we propose a novel algorithm, MIL-SKDE (multiple-

instance learning with supervised kernel density estimation), which addresses

MIL problem through an extended framework of “KDE (kernel density estima-

tion) + mean shift”. Since the KDE + mean shift framework is an unsupervised

learning method, we extend KDE to its supervised version, called supervised

KDE (SKDE), by considering class labels of samples. To seek the modes (lo-

cal maxima) of SKDE, we also extend mean shift to a supervised version (called

supervised mean shift) by taking into account sample labels. SKDE is an alterna-

tive of the well-known diverse density estimation (DDE) whose modes are called

concepts. Comparing to DDE, SKDE is more convenient to learn multi-modal

concepts and robust to labeling noise (mistakenly-labeled bags). Finally, each

bag is mapped into a concept space where the multi-class SVM classiers are

learned. We show the properties of supervised mean shift on synthetic data and

test MIL-SKDE in region-based image classication and object categorisation.

The results demonstrate that our approach outperforms the state-of-the-art MIL

approaches.

5.1.1 Conventional kernel density estimation and mean

shift

As described in Section 2.2.2, kernel density estimation (KDE) [76][74] is a well-

known nonparametric estimator of univariate or multivariate densities based on

a nite amount of data samples. For simplicity, here we utilise KDE with xed

bandwidth, i.e., h1 = h2 = . . . = hn. Supposing that {xi}ni=1, xi ∈ R
d are

i.i.d. data drawn from an unknown density f(x), then the density f(x) can be

estimated by the KDE with xed bandwidth:

f(x) ≈ f̂kde (x) =
c

nhd

n

i=1

k






x− xi

h






2


, (5.1)

where c is the normalisation constant to make f̂kde be integrated to one, h is a

xed bandwidth (variable h is shown in Section 2.2.2), and function k (x) is one

76

of the kernel proles. For example, the Gaussian kernel prole

k (x) = exp



−1

2
x



, x ≥ 0, (5.2)

or the Epanechnikov kernel prole

k (x) =

⎧

⎨

⎩

1− x 0 ≤ x ≤ 1

0 x > 1.
(5.3)

To locate the modes of the density function (5.1), we take the gradient of (5.1)

and set the gradient to zero, resulting in,

∇f̂kde (x) =
2c

nhd+2

n

i=1

(xi − x) g






x− xi

h






2


=
2c

nhd+2


n

i=1

g






x− xi

h






2


⎡

⎢
⎢
⎢
⎢
⎢
⎣

∑n
i=1 xig


x−xi

h



2


∑n
i=1 g


x−xi

h



2


  

mean vector

− x

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= 0,

(5.4)

where

g(x) = −k′(x). (5.5)

Mean shift [78][79] is an iterative procedure to locate the KDE local maxima x′s

that satisfy (5.4). Let x be an initial point. Then, x will gradually converge to

a maximum of (5.1) via iteratively setting x = x̄, where x̄ is the mean vector

calculated by

x̄ =

∑n
i=1 xig


x−xi

h



2


∑n
i=1 g


x−xi

h



2
 . (5.6)

Comaniciu et al. [79] and Li et al. [99] showed that the convergence was guar-

anteed when x starting from any data point. Fashing et al. [100] showed that

the mean shift was equivalent to Newton’s method in the case of piecewise con-

stant kernels and proved that for all kernels mean shift procedure was a quadratic

77

bound maximisation. Carreira-perpiñán et al. [101] showed that, when the ker-

nel was Gaussian, mean shift was an expectation-maximisation (EM) algorithm,

and when the kernel was non-Gaussian, it was a generalised EM algorithm. KDE

and mean shift have been widely employed in applications of the feature space

analysis, such as image segmentation [79] and object tracking [102].

Our intention is to tackle the MIL problem using the kernel density analysis.

By observing (5.1) and (5.6) above, one can see that there is not class label

associated with any data point xi in both KDE and mean shift. However, the

labels of instances (i.e., data points in a feature space) are necessary for all MIL

approaches. Since the kernel density analysis cannot be applied in MIL, in the

following sections, we propose the supervised versions of KDE and mean shift by

introducing class labels into (5.1) and (5.6) in our approach.

We would like to note that there have been existing approaches with titles

similar to the title of this chapter, e.g., “semi-supervised kernel density estima-

tion (SSKDE)” [103] and “weakly supervised mean shift” [104]. However, these

existing approaches have little relation to our approach. [103] targets on how to

assign labels to extra unlabeled data based on a fraction of already labeled data

in order to obtain more accurate density estimator. Therefore, the goal of [103]

is to compute a posterior P̂ (Ck|xj), where Ck is the class label to be assigned to

xj whose label is unknown. However, our approach investigates how the modes

of KDE will be inuenced if the positive and negative labels are considered in the

same time. In [104], the mean shift itself has not been changed but data points

are mapped to a new feature space where the constraints that the pairs of points

should be clustered together are enforced. In this paper, we focus on developing

a novel mean shift process which adopts to the situation that data points are

divided into positive and negative.

5.1.2 Supervised kernel density estimation

In this section, we derive a new density to estimate instance distribution given

the bag samples. We desire that the modes of the new density are able to rep-

resent the concepts to be learned. To formulate such density, the kernel density

estimation (KDE) seems to be a good option as seeking modes in KDE has been

78

well investigated in the existing work. However, a gap between MIL and KDE is

that MIL is a generalised supervised learning whereas KDE is an unsupervised

learning. To bridge this gap, we derive an supervised version of KDE in which

the class labels are considered.

Firstly, a preprocessing on the original data set is needed. Suppose data set

D = {Bi, yi}mi=1, where Bi = {xi,j}|Bi|
j=1. To reduce problem complexity, we clus-

ter the instances {xi,j}|Bi|
j=1 of each Bi separately using mean shift, and replace

the instances of each bag Bi with the cluster centers, then resulted concise bag

corresponding to Bi is denoted by B′
i (|B′

i| ≤ |Bi|). This clustering operation

merges the similar instances together. It does not change the nature of MIL at

all but saves much computation later on by reducing bag sizes from |Bi| to |B′
i|.

Besides, the condition that the instances in any bag are distinct from each other

will reduce the disturbance of our concept learning. Basically, any clustering

methods, e.g., K-means or DBSCAN, can be applied in the preprocessing step.

However, the reason to choose mean shift in the preprocessing step is that, af-

ter preprocessing, we need to apply the supervised mean shift for MIL concept

learning. The mean shift in the preprocessing step and the supervised mean shift

can share the same bandwidth value, to make our job more consistent. After

preprocessing, the new data set is denoted by D′ = {B′
i, yi}mi=1.

Since the labels are on bag level instead of instance level, to learn concepts

from D′, we rstly pass the bag labels to the instances, i.e., the instances within

a positive (negative) bag are labeled positive (negative). Then, by reindexing

instances, the data set is now D′ = {xi, yi}ni=1, where each xi ∈ R
d is an in-

stance, yi ∈ {0, 1} is a label and n =
∑m

i=1 |B′
i|. Although passing bag labels

to instances and reindexing instances release the relationship between bags and

instances, there exist a couple of clues that help us to induce the concepts from

the new data set D′. These labeled instances are the data points in the feature

space. Note that each point in the feature space now has a class label. There-

fore, conventional KDE methods cannot be applied directly to estimate instance

distribution. To tackle this issue, we rstly investigate two properties of concepts

in MIL.

Property 1: Any potential concept must stay far away from the high density

of the negative instances in the feature space. The reason is that any concept

79

will never frequently occur across the negative bags.

Property 2: Any potential concept must stay in the high density of the

positive instances in the feature space. The reason is that a concept tends to

frequently occur across positive bags. Therefore, a concept only comes from a

high density of the positive instances.

Figure 5.1 illustrates these two properties of MIL in a feature space.

Figure 5.1: The properties of concepts. As shown above, the sporadic positive
instances are actually the false positive instances, and the positive instances that
form a cluster but stay close to negative clusters are also false positive instances
(e.g., Area 1). Only those positive instances form a cluster, as well as staying far
away from negative clusters are true positive instances. The centroid of a cluster
of the true positive instances is a concept to be learned. Note that the instances
that form a cluster must come from dierent bags because a clustering operation
has been applied on each bag beforehand.

Properties 1 and 2 provide us the clues to build a new density function which

has high values at compact areas of positive points and low values at compact

areas of negative points. Then, the modes of such density function would be

the concepts to be sought. Suppose that the sample set D′ = z = {zi}ni=1 =

{xi, yi}ni=1 are i.i.d. samples, and let x ∈ R
d denote a concept, then the density

80

Pr(x) is:

Pr(x) =



z

Pr(x|z)Pr(z)dz

= Ez[Pr(x|z)]

≈ 1

n

n

i=1
Pr (x|zi) .

(5.7)

For clarity, we separate notations of positive and negative samples, then the

sample set D′ = {zi}ni=1 =

x+
i

n+

i=1


x−
i

n−

i=1
, where x+

i and x−
i denote the

positive (having yi = 1) and negative (having yi = 0) points respectively, and

n = n+ + n−. Finally,

Pr(x) ≈ f̂(x) =
1

n


n+


i=1

Pr

x|x+

i


+

n−



i=1

Pr

x|x−

i





. (5.8)

Now, we dene Pr

x|x+

i


and Pr


x|x−

i


in (5.8) as follows.

Pr

x|x+

i


=

c

hd
k






x− x+
i

h






2


, (5.9)

Pr

x|x−

i


= 1− c

hd
k






x− x−
i

h






2


, (5.10)

where c is a normalisation constant to ensure Pr

x|x+

i


∈ [0, 1], h is the band-

width constant, d is the feature space dimensionality, and k(·) is one of the kernel
proles such as the Gaussian prole as shown in (5.2). Putting (5.9) and (5.10)

into (5.8) we get:

f̂ (x) =
c

nhd

n+


i=1

k






x− x+
i

h






2


− c

nhd

n−



i=1

k






x− x−
i

h






2


+
n−

n
. (5.11)

Rewrite (5.11) into a compact form:

f̂ (x) =
c

nhd

n

i=1

(−1)1−yi k






x− xi

h






2


− 1

n

n

i=1

yi + 1. (5.12)

81

Note that (5.12) is an extension of KDE (5.1) by embedding labels yi’s into KDE.

If all xi’s are positive , i.e., all yi = 1, then (5.12) will revert to a standard KDE

(5.1). To distinguish it from standard KDE, we call (5.12) the supervised KDE

(SKDE).

5.1.2.1 SKDE versus DDE

Supervised Kernel Density Estimation (SKDE) (5.12) is an alternative of the

widely adopted Diverse Density Estimation (DDE) (1.1) which has been the base

of many other algorithms, e.g., GEM-DD [58] and DD-SVM [59]). The DDE

denes a “concept” that is an area where there is both high density of positive

instances and low density of negative instances. The problem of trying to nd a

concept changes to a problem of nding the mode of DDE (1.1). Likewise, the

concepts can also be found by seeking modes of SKDE (5.12). For example, if a

point x is in the area of high density of positive instances like the concept area

in Figure 5.1, that means x has many near positive neighbors xi and leads the

value of (5.12) to be high. On the contrary, if x is in the area of high density of

negative instances like Area 1 and Area 2 in Figure 5.1, the value of (5.12) will be

low. This justies that the modes of (5.12) stand for the concepts to be learned.

However, SKDE has advantages over DDE in terms of robustness to labeling

noise and mode seeking. For DDE (1.1), if x = t ∈ R
d is a concept, with all bags

correctly labeled, then

∀ Bi : Pr (t|Bi) → 1
via (1.1)
=====⇒ f̂dde (t) → 1. (5.13)

However, if a bag, say B+
i (or B−

i), is mislabeled, then it means

∀ xi,j ∈ B+
i : Pr (t|xi,j) → 0

via (1.2)
=====⇒ Pr


t|B+

i


→ 0



or ∃ xi,j ∈ B−
i : Pr (t|xi,j) → 1

via (1.3)
=====⇒ Pr


t|B−

i


→ 0



via (1.1)
=====⇒ f̂dde (t) → 0.

(5.14)

From (5.14), we can see that even a single mislabeled bag (labeling noise) will

signicantly change DDE. In contrast, for SKDE (5.12), if x = t ∈ R
d is a concept,

82

having a fraction of labels yi’s negated, the f̂ (t) will not changed greatly because

(5.12) is the summation instead of the product in DDE (1.1).

Additionally, in a high-dimensional space R
d, swiftly nding the modes of

DDE (1.1) is hard. One of the reasons is that computing the Hessian in a high-

dimensional space is costly. However, SKDE represented in (5.12) is not an

arbitrary function. It is basically a kernel density and its modes can be found by

modifying the existing techniques of kernel density analysis such as mean shift,

which starts from an initial point and quickly converges to the mode without

computing the Hessian. In Section 5.1.3 below, we propose a supervised version

of mean shift to tackle the mode seeking of SKDE.

5.1.3 Supervised mean shift

In the mean shift algorithm for mode seeking of KDE, a starting point x will

quickly converge to a mode (local maximum) of KDE by iteratively shifting x to

a mean vector x̄ calculated by (5.6). The convergence is guaranteed as the mean

shift vector x̄−x always points toward the direction of maximum increase in the

KDE, i.e., the gradient of (5.1). The mean shift is steepest ascent with a varying

step size which is the magnitude of the gradient. Mean shift does not compute

the Hessian matrix which is very expensive in a high-dimensional space during

optimisation.

By embedding the class label into mean shift iteration, we extend mean shift

to seek modes of SKDE and the extended mean shift is named supervised mean

shift. Following previous notations, let

D′ = {xi, yi}ni=1 =

x+
i

n+

i=1


x−
i

n−

i=1
, (5.15)

where data point xi ∈ R
d, label yi ∈ {0, 1} and n = n++n−. By taking derivative

of (5.12), we have that

∇f̂ (x) =
2c

nhd+2

n

i=1

(−1)1−yi (xi − x) g






x− xi

h






2


. (5.16)

83

For clarity, we separate positive and negative points explicitly and denote

τxi,h
x = g






x− xi

h






2


. (5.17)

Then,

∇f̂ (x) =
2c

nhd+2

n

i=1

(−1)1−yi (xi − x) τxi,h
x

=
2c

nhd+2


n+


i=1


x+
i − x


τ
x+
i ,h

x −
n−



i=1


x−
i − x


τ
x−

i ,h
x



=
2c

nhd+2


n

i=1

τxi,h
x

⎡

⎣

∑n+

i=1


x+
i − x


τ
x+
i ,h

x −∑n−

i=1


x−
i − x


τ
x−

i ,h
x

∑n
i=1 τ

xi,h
x

⎤

⎦

=
2c

nhd+2


n

i=1

τxi,h
x

⎡

⎣

∑n+

i=1 x
+
i τ

x+
i ,h

x +
∑n−

i=1


2x− x−

i


τ
x−

i ,h
x

∑n
i=1 τ

xi,h
x

− x

⎤

⎦ .

(5.18)

In (5.18), the rst term
∑n

i=1 τ
xi,h
x is a positive number. The second term is the

supervised mean shift vector

m(x) =

∑n+

i=1 x
+
i τ

x+
i ,h

x +
∑n−

i=1


2x− x−

i


τ
x−

i ,h
x

∑n
i=1 τ

xi,h
x

− x. (5.19)

Rewrite (5.19) into a compact form by embedding the label yi:

m(x) =

∑n
i=1


xyi
i (2x− xi)

1−yi τxi,h
x



∑n
i=1 τ

xi,h
x

  

mean vector x̄

−x.
(5.20)

Therefore, the mean vector x̄ in our supervised mean shift is:

x̄ =

∑n
i=1



xyi
i (2x− xi)

1−yi g

x−xi

h



2


∑n
i=1 g


x−xi

h



2
 . (5.21)

In our proposal, a starting point x will converge to a mode (local maximum)

84

of SKDE by iteratively shifting x to a mean vector x̄ calculated using Equation

(5.21).

Diering from mean vector computation in mean shift (5.6), the mean vector

of supervised mean shift (5.21) is computed by taking into account class labels

of data points. If all the data points are positive, (5.21) will reduce to (5.6).

The iteration of supervised mean shift can be interpreted as follows. Suppose

x is the initial point, before shifting x to mean vector x̄, every negative xi will

be ipped to the other side of x, i.e., (2x − xi). We call point (2x− xi) the

shadow point of the negative point xi. Then, calculate the mean vector x̄ among

positive points and shadow points using standard mean shift. Finally, shift x to

x̄. Figure 5.2 shows one of the iterations in our supervised mean shift procedure.

The procedure will nally converge to a mode of SKDE.

(a) Original feature space
with positive (x+

i
) and neg-

ative (x−

i
) points. x is the

starting position for an iter-
ation.

(b) Flip every negative point
x
−

i
to the other side of x,

which is (2x − x
−

i
) and it

is called the shadow point of
x
−

i
.

(c) Compute the mean vec-
tor x̄ of all the positive points
and shadow points, then shift
current x to x̄.

Figure 5.2: One of the iterations of the supervised mean shift. Starting with a
proper initial point in the feature space, this process goes on until convergence
and the convergence point is a mode of SKDE.

5.1.3.1 Selecting starting points

For seeking multiple modes of KDE using mean shift, the starting points are nor-

mally all the sample points and the mean shift process is applied to each starting

point until convergence. However, for seeking the modes of SKDE using super-

vised mean shift, the starting points do not need to be the all sample instances.

Actually, the negative instances do not contribute to the modes of density and

they can be ignored as initial points. Hence, the starting points are only chosen

85

from the positive instances. Furthermore, those positive instances that stay in

the high-density negative areas (like those positive instances in Area 1 of Figure

5.1) can also be ignored. As the training set is usually dominated by negative

instances, the selection of starting points will greatly decrease the complexity of

the mode seeking. Here, we advance a criterion for selecting initial points. Given

a point and its label (x, y) ∈ D′ = {(xi, yi)}ni=1, x will be regarded as a starting

point if it satises:

ψ (x, y) =
n

i=1

(−1)1−yi k






x− xi

h






2


1(y = 1) > 1, (5.22)

where indicator function 1(y = 1) =

⎧

⎨

⎩

1 if y = 1,

0 otherwise .

The selection criterion (5.22) above is a variation of (5.12) and it ensures that

any starting point is a positive point whose neighbors are mostly positive. If x is

a false positive point, i.e., a positive point whose most of neighbors are negative

(yi = 0), then most of the terms of (−1)1−yi k

x−xi

h



2


that have large absolute

values are negative and the criterion (5.22) is unlikely to hold. It indicates that

x is not qualied to be a starting point. Also, all negative points cannot be

the starting points because they do not satisfy the criterion. Only those positive

points in the dense areas of positive points will have high ψ (x, y) values as shown

in (5.22) and will be the starting points for supervised mean shift. Algorithm 2

describes how to learn concepts and corresponding weights using the proposed

supervised mean shift.

5.1.3.2 Bandwidth estimation for supervised kernel density estima-

tion

Bandwidth estimation is important to ensure KDE/SKDE to properly estimate

the underlying density. Inappropriate bandwidth will cause that KDE/SKDE

cannot truly reect the underlying distribution of the sample points. To illustrate

eect of bandwidth selection on kernel density estimation, we take a simulated

random sample from the standard normal distribution as shown in Figure 5.3

86

Algorithm 2 Concept learning using supervised mean shift.
Input:

Feature points, D′ = {(xi, yi)}ni=1, xi ∈ R
d, yi ∈ {0, 1};

Predened bandwidth, h;
Output:

M = {(φ1, w1), . . . , (φν , wν)}, where φi’s are distinct convergence points and
wi’s are weights;

1: Initialise M = ∅, and ν = 0.
2: Select starting points {x} from D′ using (5.22).
3: For each x ∈ {x}:

Do{
φν+1 := x;
Calculate the mean x̄ with respect to x using (5.21);
x := x̄;
}While (x = φν+1)

If φν+1 /∈ M Then

wν+1 := f̂

φν+1


using (5.12);

Append (φν+1, wν+1) to M;
ν := ν + 1;

4: return M = {(φ1, w1), . . . , (φν , wν)};

1(plotted as the blue spikes on the horizontal axis). The grey curve represents

the true density X ∼ N(0, 1). In comparison, the red curve is under-smoothed

as it adopts a too small bandwidth. The green curve is over-smoothed since using

a too large bandwidth. Only the black curve with a proper width is considered

to be optimally smoothed since its density estimate is close to the true density.

Here, we apply a bandwidth h estimation method based on the nearest neigh-

bors as shown in Algorithm 3.

In Algorithm 3, we assign k = the number of positive bags, and n = 100. In

our experiments, a bag is an image in the training data, and the instances in a

bag are the feature representations of local regions of an image. Therefore, the k

is equal to the number of images in positive set. These settings work pretty well

for estimating bandwidth h on the training sets. In practice, the k does not have

to strictly be equivalent to positive image number. Actually, a minor change of

1Image is originally from Wikipedia http://upload.wikimedia.org/wikipedia/en/e/e5
/Comparison of 1D bandwidth selectors.png.

87

Figure 5.3: Kernel density estimate with dierent bandwidths for a standard
normal distribution. Grey curve represents the true density (standard normal).
Red curve is an estimated density with too small bandwidth. Green curve is an
estimated density with too large bandwidth. Black curve shows the optimally
estimated density with a proper bandwidth.

the k value (e.g., by up to 5% change of positive image number) does not change

the bandwidth signicantly. Figure 5.12 presented in Section 5.2.3.1 illustrates

the relationship between the k and the bandwidth h in our experiments of object

categorisation.

5.1.4 Algorithm summary

Here, we summarise the MIL-SKDE algorithm when it is used to learn multiple

concepts for a certain class.

88

Algorithm 3 Bandwidth estimation.
Input:

Positive data set, D+ =

x+
i

n+

i=1
, x+

i ∈ R
d;

k nearest neighbors, k;
Loop rounds, n;

Output:
Value of bandwidth, h;

1: Initially set h = +∞;
2: for i = 1; i < n; i++ do
3: Randomly pick out an x+

i from D+;

4: Find k nearest neighbors of x+
i from


x+
i

n+

i=1
, denoted as X =


x+
i1,x

+
i2, . . . ,x

+
ik


;

5: h∗ = E X− EX, where · is L1 or L2 norm;
6: if h > h∗ then
7: h = h∗;
8: end if
9: end for
10: return h;

Given a set of data D = {Bi, yi}mi=1, where bags Bi = {xi,j}|Bi|
j=1 and class

labels yi ∈ {0, 1}, The procedures of learning concepts and corresponding weights

in MIL-SKDE can be summed up as follows.

1. Apply a mean shift clustering on each bag Bi and replace the instances of

Bi with cluster centers. This clustering ensures that the instances in Bi are

distinct (note that, at this step, the bandwidth of mean shift is not critical,

and it can be decided by the level of distinction of instances).

2. Pass the bag labels to the instances and reindex instances across all bags

to generate the training set D′ = {(xi, yi)}ni=1, xi ∈ R
d and n =

∑m
i=1 |Bi|.

3. Estimate a bandwidth h using Algorithm 3 on the dataset D′, where the

value of nearest neighbors k = m.

4. Use the supervised mean shift (Algorithm 2) with bandwidth h to obtain the

concepts and weights on D′, denoted as M = {(φi, wi)}νi=1, where φi ∈ R
d

and w1 ∈ [0, 1].

89

5. Remove those (φi, wi) from M whose wi’s are below average, i.e., those

wi < E[w] = 1
s

∑ν
i=1 wi. Therefore, only important concepts are kept. We

call the nal set M = {(φi, wi)|}ti=1, where wi ≥ E[w] and t < ν, the pattern

of a class which is later used to map bags for classication.

5.1.5 Classication

Suppose that there are patterns {Mi}γi=1 from γ categories. Each pattern is

denoted as Mi =

(φij , wij)

ti

j=1
, where φij ∈ R

d is the j-th concept in pattern

i, wij ∈ [0, 1] is the weight and ti ∈ N is the concept number for set i. To train

the classiers, we rstly map each image (or called a bag) Bi = {xij}|Bi|
j=1 into a

concept space whose dimension is V =
∑γ

i=1 ti. Specically, by concatenating all

the patterns and reseting indexes, we getM′ = M1∪M2∪. . .∪Mγ = {(φi, wi)}Vi=1.

For each concept φi in M
′, we dene the distance between φi and an image Bk

as

dki = min
x∈Bk

φi − x , (5.23)

where · is 1 or 2-norm. Hence, any image Bi can be represented as a feature

vector

zi =


di1

w1 + 
,

di2
w2 + 

, . . . ,
diV

wV + 

T

, (5.24)

where  is a smoothing constant which is set to the minimum oating-point num-

ber. For multiple classication, we adopt a Multi-Class Support Vector Ma-

chine (SVM) described in [105]. For a training set {(z1, y1)...(zn, yn)} with labels

yi ∈ [1..γ], Multi-Class SVM nds the solution of the following optimisation

problem during training.

min
wi,ζi

f(w1, . . . ,wγ) =

γ


i=1

wi2 +
C

n

n

i=1

ζi

s.t. ∀y ∈ [1..γ] : wT
yi
z1 ≥ wT

y z1 + 100 ·Δ(y1, y)− ζ1
...

∀y ∈ [1..γ] : wT
ynzn ≥ wT

y zn + 100 ·Δ(yn, y)− ζn.

(5.25)

90

Here, C is the usual regularisation parameter that trades o margin size and

training error. Δ(yi, y) is the loss function that returns 0 if yi = y, and 1 oth-

erwise. Here, there are γ linear classiers being learned in parallel. Given the

testing example zi, the decision value of classier k is calculated by wT
k zi, and

zi is assigned label k if the decision value returned by the k − th classier is the

largest among those returned decision values of all the classiers.

5.2 Experiments

Firstly, we qualitatively analyse the supervised mean shift, which is a key com-

ponent of MIL-SKDE, on synthetic data. Secondly, to evaluate the proposed

MIL-SKDE, we apply it to two typical but challenging MIL applications, region-

based image categorisation and object categorisation, based on the publicly avail-

able benchmark datasets. The results are compared with other state-of-the-art

approaches. The source codes of some previous MIL approaches are kindly pro-

vided online by researchers in this area. The downloaded packages include mi/MI

SVM [60]1, DD-SVM [59]2 and MILES [46]3. We implement MILIS [62] and the

proposed MIL-SKDE in Visual C++ with OpenCV library4 and MOSEK opti-

misation package5.

For the sake of clarity, we list some MIL terms and describe their counterparts

in the experiments as follows.

1. A bag is a single image in the data sets.

2. An instance is a small patch in an image.

3. A concept is the representation of a region (patch) of interest that really

represents the features of a category.

4. A pattern is a set of pairs. Each pair contains one concept and its weight.

All the concepts within a pattern together depict the essence of a category and

are used to map images into a new feature space where the classiers are trained

using multi-class SVM (as described in Section 5.1.5) or MedLDA (as described

1Downloaded from http://www.cs.cmu.edu/∼juny/MILL/index.html
2Downloaded from http://www.cs.olemiss.edu/∼ychen/ddsvm.html
3Downloaded from http://cs.olemiss.edu/∼ychen/MILES.html
4OpenCV library http://opencv.willowgarage.com/wiki/
5For more information visit http://www.mosek.com/index.php

91

in Section 2.2.5.3).

5.2.1 Experiments on synthetic data

The experiments on synthetic data qualitatively analyse the supervised mean

shift algorithm by showing how the negative points aect the local modes. Fur-

thermore, we will show that multiple concepts can be found using our approach

without the prior knowledge of concept number, and this can hardly be achieved

by the typical Diverse Density methods.

The negative points represent the instances in negative bags, so the local

modes should be kept far away from negative points but close to the high-

density of positive areas. Firstly, we apply a simple scenario by generating

two multivariate normal distributions in a feature space. X+ ∼ N (μ+,Σ+) and

X− ∼ N (μ−,Σ−) are positive and negative points with distributions respectively.

The covariance matrices are Σ+ = σ2
+I and Σ− = σ2

−I.

For each normal distribution, we generate 1000 points. This simulation can be

seen as an example with only one concept in MIL. If we remove all the negative

points, then the situation becomes a typical mean shift clustering.

5.2.1.1 Mixture of positive and negative points

Firstly, we study the inuence on condences (weights) of local modes with re-

spect to the mixing degree of positive and negative points. We mix positive points

X+ ∼ N (μ+,Σ+) and negative points X− ∼ N (μ−,Σ−) gradually by tuning the

values of μ+ − μ− and σ−, then observe the concept condences f̂dde (x) by

using (5.12). We also evaluate the nal local mode displacement by using norm

x− μ+. Figure 5.4 and Figure 5.5 illustrate our results.

5.2.1.2 Unbalance of positive and negative points

Here, we investigate how the data unbalance between positive and negative points

aects the local mode. Suppose two normal distributions with the same mean,

X+
N+ , X

−
N− ∼ N (μ,Σ). N+ and N− denote the positive and negative point num-

bers respectively. By tuning N+ and N−, we get the f̂ (x) (using (5.12)) illus-

trated in Figure 5.6.

92

Figure 5.4: Local mode condence with respect to the mixing degree of positive
and negative points. When μ+ − μ− increases, the negative points are gradually
going away from the positive points, and the condence of local mode increases.
When σ− increases, the negative points become sparser, and the condence of
local mode increases.

5.2.1.3 Multiple concepts learning

Finally, we consider the situation of seeking multiple concepts. As a simulation

example, we generate three positive normal distributions: X+
i ∼ N (μi,Σ

+) , i =

1, 2, 3, where every μi is far away from the others, so that these concepts are

quite dierent. We also generate the negative distribution X− ∼ N (μ3,Σ
−)

with the same mean as X+
3 . Starting with the points selected by (5.22) and after

convergence, we get the top three local modes and their corresponding condences

f̂ (x) ∈ [0, 1] as illustrated in Table 5.1.

Concept 1 Concept 2 Concept 3
Condence 0.799 0.801 0.498

Table 5.1: Learning for multiple concepts. The condence of concept 3 is lower
than the others because there are many negative points close to it.

From Table 5.1, we can see that the surrounding negative points of a concept

(i.e., concept 3) signicantly aect the condence of the concept.

93

Figure 5.5: Local mode displacement. If there are no negative points, the local
mode of a normal distribution should be the mean (x ≈ μ+) using a proper
bandwidth. With a bigger mixing degree (smaller μ+ − μ−), the local mode x
will be “pushed” more away from μ+ (i.e., x− μ+ is bigger). Also, the higher
density of negative points (i.e, a smaller σ−) will displace the x more.

5.2.2 Region-based image categorisation

The purpose of image categorisation is to assign images into predened categories.

Because the background noise and intra-class variability, the imagery features of a

category could only be dened by using a part of local regions. This region-based

image categorisation has been naturally formulated as a MIL problem.

5.2.2.1 Experiment setup

We test our method on the COREL dataset and compare the performance with

other MIL approaches. COREL is a benchmark dataset for region-based image

categorization, e.g., it has been used in [46] and [62]. Using such dataset can pro-

vide convenience to compare our method with other state-of-the-art approaches

as the same dataset is used. The dataset contains 20 dierent categories with

100 images in each category. Each image is segmented into several local regions

and features are extracted from each region. The dataset and extracted features

94

Figure 5.6: Unbalance of data points. In a local mixture area, with increasement
of negative points, the local mode condence will decrease. On the contrary, more
positive points will make the local mode become more condent.

are from http://www.cs.olemiss.edu/∼ychen/ddsvm.html. For detailed informa-

tion of image segmentation and feature extraction, interested readers are referred

to [59] and [46]. Figure 5.7 shows some image samples from the COREL image

database for region-based image categorisation.

Our tests are for the 10-category and the 20-category categorisations. Firstly,

the rst 10 categories are selected for training and testing, then all 20 categories

are used. For each category, we randomly select 50% of images of the category as

positive training data and the remaining 50% of images as testing data. The neg-

ative training data for the category pattern learning are all the other categories.

Training and testing are repeated for ve random partitions and the average re-

sults are reported. After the supervised mean shift to get the class patterns, the

multi-class SVM classiers are trained according to the description in Section

5.1.5.

95

Figure 5.7: Image samples from the COREL image database for region-based
image categorisation.

5.2.2.2 Image categorisation results

The average classication accuracy rates over ve random partitions with the

corresponding 95% condence intervals are listed in Table 5.2, with the compar-

ison with results in MILES [46] and MILIS [62], under the same experimental

enviornments.

Table 5.2 indicates that the proposed MIL-SKDE is very competitive for this

categorisation task compared with other approaches. MIL-SKDE outperforms

the other methods in both 10-category and 20-category categorisation. Unlike

other MIL approaches, the classication of our method is based on not only the

learned concepts but also the weights of concepts. By taking into account the

weights of concepts, the class features can be acquired more distinctively which

helps to achieve better classication performance.

96

Algorithms 10-category set 20-category set

MIL-SKDE 84.2:[83.3,85.1] 73.5:[72.1, 74.9]
MILIS [62] 83.8:[82.5,85.1] 70.1:[68.5,71.8]
MILISL1 [62] 82.5:[80.8,84.2] 67.4:[65.3,69.4]
MILES [46] 82.6:[81.4,83.7] 68.7:[67.3,70.1]
DD-SVM [59] 81.5:[78.5,84.5] 67.5:[66.1,68.9]
MI-SVM [60] 74.7:[74.1,75.3] 54.6:[53.1,56.1]
mi-SVM [60] 76.4:[75.3,775] 53.7:[52.2,55.2]

Table 5.2: Comparison of image categorisation accuracy rates (in %) for MIL-
SKDE and other methods. The values in each pair of brackets are the 95 percent
condence interval of the categorisation accuracy on the experiments for ve dif-
ferent random partitions. The condence intervals are computed on the assump-
tion that the experimental results for ve random partitions follow a Gaussian
distribution. The middle values of the condence intervals are treated as the
average accuracy rates.

5.2.2.3 Sensitivity to labeling noise

Now, we test and compare our method with other alternatives in terms of the

sensitivity to labeling noise. Labeling noise can be seen as the likelihood that

an image is mislabeled. The robustness to labeling noise is very important to

classiers because obtaining “pure” training data is often dicult because manual

label process is often subjective.

We perform the tests using binary classication. Category 2 (Historical build-

ings) and Category 7 (Horses) are selected and treated as positive and negative

training sets respectively. Both categories are distinctive and well classied in our

image categorisation, and they are good datasets for testing inuences of labeling

noise. The training and testing data are randomly split by 50% and 50% in each

category. To generate the “labeling noise”, we rstly select x% (up to 20%) of

training images from each of these two categories, then negate the original labels

of the selected images, i.e., changing positive (negative) to negative (positive),

and deeming those ‘mislabeled’ images as labeling noise. On each level of labeling

noise (0-20% with step size 2%), 5 rounds of classication are conducted. The av-

erage classication accuracies using MIL-SKDE and other methods are presented

97

in Figure 5.8.

Figure 5.8: Comparison of sensitivity to labeling noise among MIL-SKDE, MILIS
[62], MILES [46], DD-SVM [59] and MI-SVM [60] in terms of binary classication
(“Historical buildings” and “Horses”). The average classication accuracies are
computed over ve randomly generated datasets. For the best three approaches,
i.e., MIL-SKDE, MILES and MILIS, the corresponding 95% condence intervals
are also given.

Figure 5.8 shows that the MIL-SKDE is robust to labeling noise and it beats

all the other methods in the experiments. MIL-SKDE has the highest classica-

tion accuracy too. MILES is the second best. MILIS’ performance drops faster

compared with MILES because it has much less instance prototypes and the

labeling noise aects the prototypes selection signicantly. DD-SVM decreases

very quickly because it obtains concepts by diverse density which is very sensi-

tive to mislabeled instances. Finally, MI-SVM does not perform well because the

labeling noise causes large penalty in the optimisation of MI-SVM.

5.2.3 Object categorisation

The object categorisation (or object category recognition as called in some litera-

tures) is to determine whether or not an image contains a certain class of objects.

98

Specially, we treat object categorisation as a task that classies images according

to which objects these images contain. Due to the high intra-class variability,

the global appearance of the objects within the same category may be quite dif-

ferent. It demands that the category patterns should be representative to the

objects that belong to the same category and be exible enough to accommo-

date intra-class variability. An intuitive way is that one category is modeled as

collection of salient parts (i.e., representative regions) and these salient parts are

used for classier training. The MIL is a natural framework to learn category

patterns without explicitly labeling the local parts in training samples and its

applications on category recognition has been widely investigated as shown in

[44][62][45][52][46][106].

5.2.3.1 Experimental setup

We test MIL-SKDE on two well-known benchmark datasets, Caltech-4 [107] and

SIVAL (obtained from http://www.cse.wustl.edu/accio/). The two datasets are

popular for object categorization. Hence, the performance of our methods can

be compared fairly with other methods. Caltech-4 contains 5 categories, i.e.,

“face”, “motorbike”, “airplane”, “car” and “background”, with image numbers

ranging from around 450 to 1050 in each category. Figure 5.9 shows some image

samples from the Caltech-4 dataset for object categorisation. The other group

of training data is SIVAL dataset which includes 25 categories with 60 images in

each category and Figure 5.10 illustrates some image samples from the SIVAL

dataset. The objects of interest within the images of both datasets have not

been cropped out and aligned, and backgrounds are cluttered. All categories in

Caltech-4 and ve categories in SIVAL are chosen for experiments. The categories

chosen from SIVAL are “ajax detergent”, “apple”, “coke can”, “data mining

book” and “running shoes”. We repeat our experiments for ve rounds. At each

round, 50% images in each category are randomly selected as positive samples,

and the rest 50% in the category are used for testing. The negative data are all

the other categories in the same dataset as training data. The average results of

the ve rounds are reported.

In our experiments, each image is treated as a MIL bag, and SIFT feature

99

Figure 5.9: Some image samples from the Caltech-4 dataset for object categori-
sation.

Figure 5.10: Some image samples from the SIVAL dataset.

100

points [55] detected from the image are the instances inside the bag. The SIFT

feature points are represented as 128-dimensional descriptors. Those SIFT de-

scriptors are robust to scale and rotation changes and are good salient part candi-

dates. Our task is to nd those true salient parts to represent the object category.

Figure 5.11 is an example to match similar regions between two objects using Rob

Hess’s SIFT implementation with RANSAC1 [108]. Such phenomenon suggests

that the feature vectors of similar instances will be close to each other and the

clusters will be formed in the feature space using SIFT. To avoid that too many

SIFT points are detected, we resize the widths of all images to 225 pixels and

keep the original ratios between widths and heights. SKDE adopts the xed

bandwidth and the bandwidth h is estimated by Algorithm 3 as well. Figure 5.12

illustrates the bandwidth calculation on SIVAL dataset using Algorithm 3.

(a) SIFT points detection (b) Matches of SIFT points

Figure 5.11: An example of instances detection and matching using SIFT on
Caltech-4 [107]. (a) shows detected feature points (instances) using SIFT, and
(b) shows the robustness of SIFT features to match similar regions between two
dierent objects belonging to the same category.

5.2.3.2 Recognition results

The performance of our method is compared with DD-SVM [59], MILES [46]

and MILIS [62], these three methods have been reported to have outperformed

1Codes are downloaded from http://blogs.oregonstate.edu/hess/code/sift/

101

Figure 5.12: A gure shows bandwidth calculation on SIVAL dataset using Al-
gorithm 3. The horizontal axis represents the dierently chosen values of k and
the vertical axis represents the corresponding bandwidths. There are ve cate-
gories, “ajax detergent”, “apple”, “coke can”, “data mining book” and “running
shoes”, included. Here, the optimal value of k is 30 which equals to the number
of positive samples.

other existing MIL methods for object categorisation. The parameter selections

of DD-SVM, MILES and MILIS have been followed by the original publications

respectively. We repeat our experiments for ve rounds. At each round, 50%

images in each category are randomly selected as positive samples, and the rest

50% in the category are used for testing. The negative training data are the rest

categories in the same dataset. The recognition is a multiclass classication and

a confusion matrix is constructed for each round. Table 5.3 shows the Confusion

Matrices with average values over ve rounds on Caltech-4 and SIVAL data set

respectively using MIL-SKDE.

For comparison, we report the averages of the diagonals in the confusion ma-

trices and the corresponding 95% condence intervals computed over ve rounds

of experiments for the proposed method, DD-SVM, MILES and MILIS in Table

5.4.

Table 5.4 shows that the performance of our method is comparable with the-

state-of-the-art approaches in both challenging datasets. Overall, our method

has the best performances in experiments. The increase of recognition accuracy

102

Face Motor. Air. Car
Face 83.9 2.3 4.7 9.1
Motorbike 2.6 81.7 10.6 5.1
Airplane 6.4 9.9 76.1 7.6
Car 2.8 12.9 11.2 73.1

(a) Confusion matrix on Caltech-4 data set (in %).

Detergent Apple Coke C. R. shoe Book
Detergent 82.7 4.9 4.9 5.0 2.5
Apple 4.1 79.6 2.1 8.2 6.0
Coke can 3.7 3.7 90.7 1.9 0
R. shoe 6.0 8.1 2.0 81.9 2.0
Book 6.2 4.1 0 2.1 87.6

(b) Confusion matrix on SIVAL data set (in %).

Table 5.3: Confusion matrices of object categorisation on Caltech-4 and SIVAL
dataset respectively using MIL-SKDE. Each row of a table lists the average per-
centages (over ve rounds) of test images in one category classied to dierent
categories. The diagonal shows the recognition accuracies. The optimum would
be 100% only on the diagonal and zero elsewhere.

benets from the better concept learning of MIL-SKDE which is actually a feature

selection processing. Each of the concepts represents a truly distinctive salient

part of a category and the weight of a concept indicates the condence of a salient

part.

Finally, we would like to note that in this thesis, the issues of visual cate-

gorisation are tackled under an assumption that each image from a dataset only

contains one object. Such assumption is a common setting for many popular

benchmark datasets, e.g., Corel, Caltech-4 and SIVAL. Therefore, it is handy

to compare our work with other state-of-the-art approaches. Recognising image

containing multiple objects is beyond the scope of our work.

5.2.3.3 Feature selection

We utilise the SIFT descriptor to build the instances of each bag (image). Basi-

cally, there are a number of instances in a bag but only a tiny fraction of instances

(called concepts) are the representative features (salient parts) of target object

103

Algorithms Caltech-4 (in %) SIVAL (in %)

MIL-SKDE 78.7 : [77.6, 79.8] 84.5 : [82.7, 86.3]
DD-SVM [59] 72.3 : [71.0, 73.6] 77.5 : [76.1, 78.9]
MILIS [62] 74.2 : [73.0, 75.4] 81.2 : [79.1, 83.3]
MILES [46] 75.1 : [73.9, 76.3] 82.1 : [80.6, 83.6]

Table 5.4: The recognition rates for MIL-SKDE, DD-SVM, MILIS and MILES.
The middle values of the 95% condence intervals (in brackets) over ve rounds
of experiments are treated as the recognition rates. During each round, the
means of the diagonal values of confusion matrices are computed. To compute
the condence intervals, we assume that those means of diagonal values from
dierent rounds follow a Gaussian distribution.

category. Figure 5.13 shows that the stable features (salient parts) of correspond-

ing object categories are correctly selected via obtaining the patterns. We choose

“Motorbike” from Caltech-4, and “Coke can” and “Detergent” from SIVAL as

the examples to show the salient parts. Given a pattern M = {(φi, wi)}ti=1, we

circle out the regions that correspond to the nearest neighbors of φi’s in some

correctly recognised images. The radius of each circle indicates the weight wi.

Those circle areas illustrate the salient parts of the categories. We can see that

the majority of salient parts concentrate on the objects of interest. There are also

a small fraction of circles that are outside the target objects as some background

regions are also similar to the ‘salient parts’ of target category. However, those

“o-target” parts will not aect the recognition results much because as we can

see that both the quantity and the weights of the missing circles are small.

5.3 Discussion

We have presented a novel MIL algorithm, multiple-instance learning with super-

vised kernel density estimation (MIL-SKDE), and showed its nice performances

in the experiments. However, our approach is based on an extension of mean shift

called supervised mean shift, and the mean shift is often expensive for a large-scale

data set. Here, we give a brief discussion about the computational complexity

about the supervised mean shift. Given the data set D = {Bi, yi}mi=1, where m

104

(a) Motorbike (b) Coke can (c) Detergent (d) Running shoe

Figure 5.13: Some sample images that are recognised as containing a target
object. The circles in images represent the nearest neighbors of φi in the corre-
sponding pattern M = {(φi, wi)}ti=1. The radius of a circle indicates the weight
wi. Since the majority of circles concentrate on the objects of interest, the inter-
ference of background clutters has been suppressed.

105

is the number of MIL bags, the bag Bi = {xi,j}|Bi|
j=1, |Bi| is the size of Bi and the

label yi ∈ {0, 1}. The complexity of our algorithm is O(RST), where R is the

number of starting points for supervised mean shift, S =
∑m

i=1 |Bi| is the total

number of instances and T is the number of iterations until convergence. One can

see that the supervised mean shift has the same complexity as the conventional

mean shift. So the use of such an approach may be hampered in data set with

large-scale training samples. In our work, we tackle this issue as the following

ways:

• Our supervised mean shift algorithm has superlinear convergence, which is

fast for convergence. Therefore, T is not a major concern here. Only R

(the number of starting instances) and S (the total number of instances)

are related to the number of training samples.

• To reduce R, we develop a criterion to select starting points described in

Section 4.1. In terms of the nature of our application, the selecting criterion

can greatly reduce the number of starting points. For instance, without

the selecting criterion, R = S. However, after starting point selection,

R ≈ S/10 in our experiments.

• To reduce S, we perform a preprocessing operation on the data set described

in Section 3 (the second paragraph). In the preprocessing operation, we

cluster the instances {xi,j}|Bi|
j=1 of each Bi separately using mean shift, and

replace the instances of each bag Bi with the cluster centers, then resulted

concise bag corresponding to Bi is denoted by B′
i (|B′

i| ≤ |Bi|). This clus-

tering operation merges the similar instances together. It does not change

the nature of MIL at all but saves much computation later on by reducing

bag sizes from |Bi| to |B′
i|. After preprocessing, S =

∑m
i=1 |B′

i| ≤
∑m

i=1 |Bi|.
In our experiments, S is reduced by 50%.

So far, we have addressed the complexity issue by reducing the scale of nal

training data for our algorithm. However, conducting experiments on the whole

SIVAL dataset using MIL-SKDE is still expensive. To get results within a rea-

sonable period of time, we only chose part of the SIVAL dataset (5 out of all the

25 categories) for experiments. In the next chapter, we will further tackle the

106

complexity issue and propose a speed-up version of MIL-SKDE which uses an

approximation method for mode seeking.

5.4 Conclusion

In this chapter, we have presented a novel MIL algorithm based on proposed

SKDE and supervised mean shift (MIL-SKDE). Our method has extended the

feature space clustering in which the dataset is divided into positive and negative

points. The experiments on real-world datasets demonstrated that our approach

has superior performances over state-of-the-art alternatives.

107

Chapter 6

MIL-SS: Multiple-instance

learning with a speed-up

supervised kernel density

estimation

In previous chapter, we have presented a novel multiple-instance learning (MIL)

algorithm, multiple-instance learning with supervised kernel density estimation

(MIL-SKDE), and showed its excellent performances in experiments of visual

categorisation. The MIL-SKDE utilises a supervised mean shift clustering (de-

scribed in Section 5.1.3 of Chapter 5) to learn the visual concepts and those

concepts are used for later classication. Quickly and precisely learning those

visual concepts are critical for our MIL algorithm. However, facing a large-scale

dataset, i.e., a huge number of data points in the feature space, the supervised

mean shift clustering is often time-consuming for convergence, especially when

the training data are dominated by negative samples. In MIL-SKDE algorithm,

we have preliminarily addressed the complexity issue. In this chapter, we further

tackle reducing the computational complexity in concept learning and propose

the Multiple-instance Learning with a Speed-up SKDE (MIL-SS) which learns

concepts by approximately locating the multiple modes of SKDE function. The

new MIL approach can signicantly speed up the training process with little

108

accuracy sacrice.

6.1 MIL-SS algorithm

6.1.1 Revisit supervised kernel density estimation and mode

seeking

As described in Section 5.1.2, given the preprocessed dataset D′ = {xi, yi}ni=1,

where each xi ∈ R
d is an instance, i.e., xi represents a point in the feature space,

yi ∈ {0, 1} is a label and n is the total number of training instances, the supervised

kernel density estimator (SKDE) can be formulated as:

f̂ (x) =
c

nhd

n

i=1

(−1)1−yi k






x− xi

h






2


− 1

n

n

i=1

yi + 1, (6.1)

where h is a pre-dened bandwidth and c is a pre-dened constant (e.g., c =

1). Since we are interested in those modes (local maxima) of the above density

function (6.1), a supervised mean shift process has been proposed to locate those

modes from some selected initial points x’s by iteratively setting x = x̄ until

converge, where x̄ is calculated by

x̄ =

∑n
i=1



xyi
i (2x− xi)

1−yi g

x−xi

h



2


∑n
i=1 g


x−xi

h



2
 . (6.2)

Supervised mean shift iteration (6.2) can precisely locate modes of SKDE

function (6.1). However, precisely locating SKDE modes is often time-consuming

as even a medium dataset could lead to a huge instance space, i.e., the value of n

is large in (6.2), which causes each iteration of supervised mean shift is expensive.

Our intention is to replace n of Equation 6.1 with a new n∗ and get a new density

estimator:

f̂ ∗ (x) =
c

n∗hd

n∗



i=1

(−1)1−yi k






x− xi

h






2


− 1

n∗

n∗



i=1

yi + 1, (6.3)

109

such that f̂ ∗ (x) has the similar modes with original f̂ (x) but with a lot fewer

data points, i.e., n∗ << n, so the supervised mean shift iteration has much less

complexity, i.e.,

x̄ =

∑n∗

i=1



xyi
i (2x− xi)

1−yi g

x−xi

h



2


∑n∗

i=1 g

x−xi

h



2
 . (6.4)

To reduce the data scale without signicantly aecting the important modes, we

need to observe where those modes occur in the feature space. Here, we revisit

Figure 5.1 in Chapter 5 for an analysis of mode positions in the feature space.

Note that in the feature space, the data points are divided into positive and

negative sets.

Figure 5.1 is a simulation of mode positions in a feature space. Diering

from conventional feature space analysis, the data points in the feature space of

our case are divided into positive and negative sets. In the above image, the red

squares and solid blue dots represent positive and negative data respectively. One

can realise that in the areas like Area 1 and Area 2 (in red circles), the value of

f̂ (x) (6.1) will be small as negative points dominate those areas. This is easy to

be testied by (6.1) as the most terms k

x−xi

h



2


≥ 0 with high values have

-1 coecients. In contrast, the local maxima (modes) of SKDE (6.1) will only

occur in the high-dense positive areas like concept areas, e.g., the area in the dark

circle.

In practical MIL applications, the most of the instances are actually negative

which form minus terms of (6.1), and the mode (local maxima) are not likely to

occur in the area packed with negative instance points. This phenomenon can be

illustrated using Figure 5.1. The mode does not occur in Areas 1 and 2 because

there are too many negative points there. According to (6.1), any point x in

Areas 1 and 2 will lead to a low probability value. Since we are looking for the

modes (maxima) of (6.1), removing all the points (both negative and positive)

located in such areas will not signicantly aect the modes. Since most instances

of MIL are negative or false positive (e.g., positive points in Area 1 of Figure 5.1),

most of data points are actually unrelated for mode seeking. Here, we devise an

Instance Selection Process to remove unrelated instances.

110

6.1.2 Instance selection process

In our MIL algorithm, the complexity of supervised mean shift for seeking modes

of SKDE largely depends on the total number of instances. To improve the

eciency, here we come up with a criterion to remove false positive instances as

follows:

ffp (x) =
1

n

n

i=1

(−1)1−yi k






x− xi

α1−yih






2


< β, (6.5)

where α is a parameter controlling how much the negative points aect the in-

stance selection and is usually equal to 1, and β is a predened threshold and

is usually set to 0. By explicitly denoting positive and negative instances, i.e.,

D = {(xi, yi)}ni=1 =


x+
i , yi = 1

n+

i=1


x−
i , yi = 0

n−

i=1
, n = n+ + n−. The

instance selection process contains two steps:

1. Check all the positive instances x+
i using criterion (6.5). If x+

i suces (6.5),

i.e., if ffp

x+
i


< β, then such x+

i will be removed from the training set.

2. After checking all the positive instances and removing those false positive

data, further remove all the negative points

x−
i

n−

i=1
.

Instance selection using criterion (6.5) is able to remove those most likely false

positive points because if x is a false positive point in the feature space, x will

be either in a dense area of negative points or far away from any dense areas of

positive points. When x is in a dense area of negative points, its close neighbors

are mostly negative (yi = 0), so that the terms (−1)1−yi k

 x−xi

α1−yih



2


with high

values are negative numbers and ffp (x) should be smaller than a threshold β. It

means (6.5) holds and x will be removed. Likewise, if x is far away from any dense

areas of positive points (yi = 1), then the positive terms (−1)1−yi k

 x−xi

α1−yih



2


have low values, so ffp (x) should be small and hence be removed. Only those

likely true positive points which are in the dense areas of positive points will have

big ffp (x) values.

As we know from Section 5.1.2 of Chapter 5, the SKDE formula (6.1) has an

equivalent form by explicitly separating positive and negative instances as follows.

f̂ (x) =
c

nhd

n+


i=1

k






x− x+
i

h






2


− c

nhd

n−



i=1

k






x− x−
i

h






2


+
n−

n
. (6.6)

111

By applying instance selection, n+ reduces greatly and n− = 0 in (6.6), then

SKDE becomes a standard KDE (5.1) but those important modes of SKDE are

maintained. For the simulated feature space shown in Figure 5.1, after applying

instance selection process, the training data will be reduced as illustrated in

Figure 6.1. Now, since all the data points are positive, the supervised mean shift

will be reduced to a conventional mean shift. Therefore, the mean shift can be

applied to locate the modes on a much smaller dataset after instance selection.

Instance Selection Process is a key step to decrease runtime by reducing ex-

perimental data scales. How much runtime can be saved is largely dependent on

datasets. Basically, the higher ratio that negative instances take in a dataset, the

more runtime will be saved.

Figure 6.1: Remained training data after instance selection process. Compared
to Figure 5.1, only those instances staying in the high-density areas of positive
instances are remained, and all the other negative and false positive instances are
removed. After instance selection process, the scale of training data is greatly
reduced and the important modes areas are remained.

112

6.1.3 Bandwidth estimation

Bandwidth estimation is important for desirable kernel density estimation. Here,

we employ the same bandwidth estimation approach shown in Section 5.1.3.2 of

Chapter 5. Note that the bandwidth estimation should be performed before the

instance selection process.

6.1.4 MIL-SS algorithm summary

Given the training set D = {Bi, yi}mi=1, where bag Bi = {xij}|Bi|
j=1, with xij ∈ R

d,

label yi ∈ {0, 1} indicates whether or not the bag contains target object. The

procedures of learning modes of SKDE can be summed up as follows.

1. Pass the bag labels to the instances and reindex instances across all bags

to generate the training set D′ = {(xi, yi)}ni=1, xi ∈ R
d and n =

∑m
i=1 |Bi|.

2. Estimate a bandwidth h using the same approach as shown in Section 5.1.3.2

of Chapter 5.

3. Perform instance selection process (described in Section 6.1.2) and return

the remaining positive points, denoted as D′′ = {xi}n
∗

i=1. Empirically,

|D′′| << |D′|, i.e., n∗ << n.

4. Apply mean shift on D′′ to obtain the modes, denoted as φ = {φi}si=1,

where φi ∈ R
d.

5. For each mode φi ∈ φ, compute corresponding weight wi = f̂ (φi) using

(6.1), where wi ∈ [0, 1]. Return those modes φ′
is whose weights w′

is are

above average, i.e., those wi ≥ E[w] = 1
s

∑s
i=1 wi, to keep only important

modes. We call the nal set M = {(φi, wi)}ti=1, where wi ≥ E[w] and t < s,

the pattern of a category which is later used to map bags for classication.

For distinguishing from previous MIL-SKDE algorithm, the new speed-up

version of MIL-SKDE is denoted by MIL-SS.

113

6.1.5 Classication

For convenient comparisons, here we also use the same classication method, i.e.,

a Multi-Class Support Vector Machine (SVM) [105], as shown in Section 5.1.5 of

Chapter 5.

6.2 Experiments

Similar to MIL-SKDE, we evaluate the MIL-SS algorithm in the following ways.

Firstly, we test our method on region-based image categorisation and compare

the results against other approaches. Secondly, MIL-SS is applied for object

categorisation, and we also compare the performance among MIL algorithms, as

well as the eciency between MIL-SKDE and MIL-SS. Thirdly, the robustnesses

to labeling noise between our approach and other MIL methods are evaluated.

Finally, we show the regions of interest that are detected correctly using MIL-SS

on some categories.

The parameters for Instance Selection, see (6.5), are empirically chosen as

α = 1.1 and β = 0. The bandwidth h in SKDE (6.1) is chosen according to

Section 6.1.3. For the sake of clarity, we also list some MIL terms and their

corresponding counterparts as follows.

1. A bag is a single image in the datasets.

2. An instance is a small patch in an image. Here, we detect the SIFT points

as instances and each instance is represented as a 128-d SIFT descriptor.

3. A concept is the representation of a region (patch) of interest that really

represents the features of a category.

4. A pattern is a set of pairs. Each pair contains one concept and its weight.

All concepts within a pattern together depict the essence of a category and are

used to map images into a new feature space where the classiers are trained

using a multi-class SVM method (as described in Section 6.1.5).

6.2.1 Region-based image categorisation

The purpose of image categorisation is to assign images into predened categories.

Because the background noise and intra-class variability, the global imagery fea-

114

tures of a category are not reliable for classication. However, many local regions

may be stable among a category. Therefore, the region-based image categorisa-

tion has been naturally formulated as a MIL problem.

We test our method on the COREL dataset and compare the performance

with other MIL approaches. As stated in previous chapter, the dataset contains

20 dierent categories with 100 images in each category. Each image is segmented

into several local regions and features are extracted from each region. The dataset

and extracted features are from http://www.cs.olemiss.edu/∼ychen/ddsvm.html.

The detailed information of image segmentation and feature extraction can be

found in [59] and [46].

The same as those in last chapter, our tests are applied on the 10-category

and the 20-category categorisations respectively. For each category, we randomly

select 50% of images of a category as the positive training data and the remaining

50% of images as the testing data. The negative training data for the category

pattern learning are all other categories. Training and testing are repeated for

ve random partitions and the average results are listed in Table 6.1. MIL-SS

is compared with MIL-SKDE, MI/mi-SVM [60] 1, DD-SVM [59] 2, MILES [46]
3 and MILIS [62], that have been reported to have performed well for object

categorisation. The parameter selections of those MIL algorithms have been

followed by the original publications respectively. Table 6.1 indicates that the

proposed MIL-SS is also comparative with other approaches and it just has a

slight loss of performance compared with MIL-SKDE.

6.2.2 Object categorisation

Object categorisation is a typical task of computer vision which involves determin-

ing whether or not an image contains some specic category of object. Specially,

we treat object categorisation as a task that classies images according to which

objects that these images contain. In this section, all of the experiments are con-

ducted on the popular Caltech-4 [107] and SIVAL 4 datasets. Caltech-4 contains

1Source code - http://www.cs.cmu.edu//∼juny/MILL/index.html
2Source code - http://www.cs.olemiss.edu/∼ychen/ddsvm.html
3Source code - http://cs.olemiss.edu/∼ychen/MILES.html
4http://www.cse.wustl.edu/accio/

115

Algorithms 10-category set 20-category set

MIL-SS 83.1:[81.4,84.8] 71.3:[69.9, 72.7]
MIL-SKDE 84.2:[83.3,85.1] 73.5:[72.1, 74.9]
MILIS [62] 83.8:[82.5,85.1] 70.1:[68.5,71.8]
MILISL1 [62] 82.5:[80.8,84.2] 67.4:[65.3,69.4]
MILES [46] 82.6:[81.4,83.7] 68.7:[67.3,70.1]
DD-SVM [59] 81.5:[78.5,84.5] 67.5:[66.1,68.9]
MI-SVM [60] 74.7:[74.1,75.3] 54.6:[53.1,56.1]
mi-SVM [60] 76.4:[75.3,775] 53.7:[52.2,55.2]

Table 6.1: Comparison of image categorisation accuracy rates (in %) for MIL-
SKDE and other methods. The values in each pair of brackets are the 95 percent
condence interval of the categorisation accuracy on the experiments for ve
dierent random partitions. The middle values of the condence intervals are
treated as the average accuracy rates.

5 categories, i.e., “face”, “motorbike”, “airplane”, “car” and “background”, with

image numbers ranged from around 450 to 1050 in each category. SIVAL dataset

includes 25 categories with 60 images in each category. The objects of interest

within the images of both datasets have not been cropped out and aligned and

backgrounds are cluttered. All categories in Caltech-4 and four categories in

SIVAL are chosen for experiments. The categories chosen from SIVAL are “ajax

detergent”, “apple”, “coke can” and “running shoes”. We compare our method

with DD-SVM [59], MILES [46] and MILIS [62], that have been reported to have

outperformed other existing MIL methods for object categorisation. We repeat

our experiments for ve rounds. At each round, 50% images in each category

are randomly selected as positive samples, and the rest 50% in the category are

used for testing. The negative training data are the rest categories in the same

dataset. The categorisation is a multiclass classication and a confusion matrix

is constructed for each round. The averages of the diagonals in the confusion ma-

trices and the corresponding 95% condence intervals computed over ve rounds

of experiments are listed in Table 6.2.

Table 6.2 shows that the overall performances of MIL-SS are also comparable

with the-state-of-the-art approaches in both Caltech-4 and SIVAL datasets. The

results show that the approximate mode locating of MIL-SS truly grasps the

116

Algorithms Caltech-4 (%) SIVAL (%)

MIL-SS 77.2 : [76.3, 78.1] 83.4 : [82.5, 84.3]
MIL-SKDE 78.7 : [77.6, 79.8] 84.5 : [82.7, 86.3]
DD-SVM [59] 72.3 : [71.0, 73.6] 77.5 : [76.1, 78.9]
MILIS [62] 74.2 : [73.0, 75.4] 82.2 : [81.1, 83.3]
MILES [46] 75.1 : [73.9, 76.3] 82.1 : [80.6, 83.6]

Table 6.2: The recognition rates for MIL-SS, MIL-SKDE, DD-SVM, MILIS and
MILES. The middle values of the 95% condence intervals (in brackets) over ve
rounds of experiments are treated as the recognition rates. During each round,
the means of the diagonal values of confusion matrices are computed.

underlying characteristics of the visual categories. One can see all the methods

perform better in SIVAL dataset. This is because the SIFT features are more

stable for object categories in SIVAL dataset.

The major advantage of MIL-SS over MIL-SKDE is the eciency. As we

have stated before, MIL-SS is able to eliminate those unrelated instances for mode

seeking from the training data, so the training speed will be signicantly increased

because the scale of training data, which is the main cause of computational

complexity of MIL-SKDE, will be greatly reduced. To verify this, we record

the training time of MIL-SS and MIL-SKDE for the above object categorisation

experiments 1. In Table 6.3, we show the training scales 2 for MIL-SS and MIL-

SKDE training, as well as the spent time for training the patterns of all the

categories of Caltech-4 and SIVAL datasets.

Table 6.3 indicates that MIL-SS signicantly reduces the time expense for

training the patters compared with MIL-SKDE. For training patters of Caltech-4

dataset, the data scale is reduced from 118,756 instances down to 31,753 in-

stances and MIL-SS takes around 6% of MIL-SKDE training time. For object

categorisation on SIVAL dataset, MIL-SS works even better, and it only takes

around 2% of MIL-SKDE training time. This is because for object recognition,

only the areas of target objects are our regions of interest (ROI), and other areas

1The conguration of the computer used for training is: Inter(R) Xeon(R) CPU 2.53GHz,
12.0GB RAM, 64-bit Window server 2008 R2 Enterprise.

2Here, the training scale means the aggregation number of training instances over all the
categories in a dataset.

117

Caltech-4 4 categories from SIVAL
Training scale Training time Training scale Training time

MIL-SS 31,753 76 mins 9,753 18 mins
MIL-SKDE 118,756 1,291 mins 63,861 753 mins

Table 6.3: The average training scales and time (over ve rounds) of MIL-SS
and MIL-SKDE for object categorisation corresponding to Table 6.2. Training
scale represents the number of total feature vectors (instances) extracted over all
categories in a dataset. Training time represents the total time consumption for
training all patterns in a dataset.

like backgrounds are unrelated for recognition. After instance selection process,

most of the instances extracted from unrelated areas will be removed. On the

other hand, MIL-SS has comparable recognition rates on object categorisation

with SKDE as shown in Table 6.2.

6.2.3 Sensitivity to labeling noise

In this section, we compare MIL-SS with other alternatives in terms of the sen-

sitivity to labeling noise. Labeling noise can be seen as the likelihood when an

image is mislabeled. The robustness to labeling noise is very important to clas-

siers because obtaining “pure” training data is often dicult. For instance, a

category of images retrieved from search engines by keywords may contain many

unrelated images, and manual label process is often subjective.

We perform the tests using binary classication. “ajax detergent” and “coke

can” in SIVAL dataset are selected and treated as positive and negative training

sets respectively. Both categories are distinctive and well classied in our object

categorisation, so they are good sets for testing inuences of labeling noise. The

training and testing data are randomly split into 50% and 50% in each category.

To generate the “labeling noise”, we rstly select x% (up to 20%) of training

images from each of these two categories, and negate the original labels of the

selected images, i.e., change positive (negative) to negative (positive), and deem

those ‘mislabeled’ images as labeling noise. On each level of labeling noise (0-

20% with step size 2%), 5 rounds of classication are conducted. The average

118

classication accuracies using SKDE for MIL and other methods are presented

in Figure 6.2. Figure 6.2 shows that, like MIL-SKDE, the MIL-SS is robust to

Figure 6.2: Comparisons of sensitivity to labeling noise among the proposed ap-
proach, MIL-SKDE, MILIS, MILES, DD-SVM and MI-SVM in terms of binary
classication (“ajax detergent” and “coke can”). The average classication ac-
curacies are computed over ve randomly generated datasets. For the best three
approaches (our method, MILES and MILIS), the corresponding 95% condence
intervals are given.

labeling noise as well and it is only slightly below MIL-SKDE but beats MILIS,

MILES, DD-SVM and MI-SVM in the experiments. Meanwhile, MIL-SS has high

classication accuracy too. MILES is the third best. MILIS’ performance drops

faster compared with MILES because it has a lot fewer instance concepts and

the labeling noise aects the concepts selection signicantly. DD-SVM decreases

very quickly because it obtains concepts by diverse density which is very sensitive

to mislabeled instances. Finally, MI-SVM1 does not perform well because the

labeling noise causes large penalty in the optimisation of MI-SVM.

1Source code - http://www.cs.cmu.edu/∼juny/MILL/index.html

119

6.2.4 Regions of interest detection

Figure 6.3 shows that the obtained patterns truly represent the stable features

within corresponding object categories. Given a pattern M = {(φi, wi)}ti=1, we

circle out the regions that correspond to the nearest neighbors of φi’s in some

correctly recognised images. Those circle areas reect the regions of interest

(ROIs) of the categories. We can see that the majority of ROIs concentrate

on the targeting objects themselves and the interference of background clutters

has been suppressed by using the SKDE. This is because those false positive

instances from positive bags that represent background are mostly mixed with

large amount of negative points (i.e., instances in negative bags). After instance

selection process, those false positive instances are eliminated. Therefore, the

nal ROIs mostly locate in the targeting objects. Although there are a small

quantity of circles outside the target objects (due to some background regions

have the similar feature as those of ROIs), these circles staying outside ROIs

hardly aect the overall categorisation decision because both the quantity and

the weights of the ‘missing’ circles are small as we can see in Figure 6.3.

6.3 MIL-SS for bag-of-words model

In the rest of the chapter, we present a software system implemented by C++ for

object categorisation. This system utilises the well-known bag-of-words (BoW)

model and MIL-SS algorithm is used to generate codebook. In a typical BoW

model, usually the whole area of an image is considered as the region of interest

(ROI) for visual codebook generation. This will introduce many noises for the -

nal codebook. In our implementation, we learn the visual keywords mainly from

the regions of target objects and the unrelated backgrounds will be excluded

for generating codebook. This is achieved by using the MIL-SS algorithm. In

addition, the MIL-SS has been proved to be very ecient, so the object categori-

sation task can be easily applied on the whole benchmark SIVAL dataset with

25 categories. In the classication stage, unlike previous work which utilised the

multiple-class Support Vector Machines (SVMs), here we utilise a maximum mar-

gin supervised topic model, Maximum Entropy Discrimination Latent Dirichlet

120

(a) Motorbike (b) Coke can (c) Detergent (d) Book

Figure 6.3: The regions of interest (ROIs) (illustrated by circles) detected by
our method. The radius of a circle indicates the weight wi in pattern M. Since
the majority of ROIs concentrate on the objects of interest, the interference of
background clutters has been suppressed by applying instance selection.

121

Allocation (MedLDA), for classication. The nal performance of our work is

quite encouraging.

6.3.1 Bag-of-words model

In the past decade, the bag-of-words (BoW) model, originated from natural lan-

guage processing and information retrieval, has been well recognised as a state-

of-the-art method in various visual classication tasks. It has been adopted and

proved to work surprisingly well in various applications, e.g., object categorisa-

tion [109], scene classication [110][111], action recognition [112], human pose

estimation [113] and visual recognition [114].

In the textual cases, the training data for classication are documents con-

sisting of textual words. Analogically, in computer vision, each image is treated

as a document. However, the words within an image are not as straightforward

as those texts. A common solution is to break down each image into local regions

and extract descriptors such as the Scale Invariant Feature Transform (SIFT)

from those local regions. Then, the high-dimensional local descriptors are quan-

tised into discrete visual words (this step is called feature coding) by utilizing a

visual codebook. After the quantisation, each image is represented by the fre-

quency histogram of a bag of visual words (this step is called feature pooling) and

those histograms are the feature vectors for nal classication. The typical pro-

cedures of a bag-of-words model are illustrated using Figure 6.4. In this section,

we present a C++ implementation of the BoW model which follows the classic

steps: feature extraction, codebook generation, feature coding, feature pooling

and classication.

In codebook generation step, traditional approach often considers the whole

area of an image as the region of interest (ROI) and uses clustering (e.g. K-means)

to generate the a set of visual words (i.e., codebook) from training images. This

may be all right when the whole image area contains available clues, e.g., in

natural scene classication. However, for many other applications, e.g., object

categorisation which involves determining whether or not an image contains a

specic category of objects, only the regions of target objects are ROIs and the

backgrounds are unrelated areas. In this case, traditional clustering approach

122

Figure 6.4: General procedures for a bag-of-words model.

will generate many noise words from background to the nal codebook. Those

noise words will degrade the later classication especially when the backgrounds

of images in the training dataset are quite similar. To address this issue, we

utilise our MIL-SS algorithm which can generate codebook just from the target

object areas in an multiple-instance learning manner.

Another benet to use the MIL-SS is that learning codebook is quite time-

consuming especially for a large-scale dataset. This is because computation of

those visual words in a codebook requires clustering of a huge amount of data. In

previous experiments, we have proved that MIL-SS is very ecient for training,

which ensures that a codebook can be learned in a fast way.

In classication, we utilise the maximum entropy discrimination latent Dirich-

let allocation (MedLDA) [88][85] that has been reported being comparable with or

outperforming other LDA-based methods [88] and SVMs (with limited or medium

scale of training data) [115].

Our system is modularised and each of the steps can be extended easily. In our

system, we save the output of each of the steps and such output is the input for

next step. Therefore, every step of the BoW model can be checked and veried.

A sample experiment of object categorisation is conducted on SIVAL dataset and

accuracy is quite encouraging.

123

6.3.1.1 Feature extraction

Feature extraction is to get local region descriptors from the images. Our system

provides sparse and dense feature extractions.

• For spare feature extraction, we use Rob Hess’s SIFT [55] implementation1

to detect key points and get the descriptors of those key points for each

image. Loosely speaking, each of the SIFT descriptors can be seen as a

visual word.

• For dense feature extraction, we implement the HOG [116] to get descriptors

via a scanning window. The users can specify the number of cells per block,

the number of pixels per cell, the number of channels per cell histogram,

and the step length of scanning window. The default parameters are 3× 3

cell blocks of 6× 6 pixel cells with 9 histogram channels.

The extracted descriptors within each image form a matrix. Each column of the

matrix represents a word and such matrix is stored by means of an XML le.

6.3.1.2 Codebook generation

In this step, we rstly generate codebook for every single category, then combine

all the category codebooks into the nal codebook. To cluster all the feature

descriptors in a category, we treat the feature descriptors extracted from the

images containing target object as positive data and feature descriptors extracted

from other images as negative data, then utilise MIL-SS, which has been presented

in this chapter (a summary of MIL-SS algorithm is in Section 6.1.4), to generate

the category codebook.

Suppose that there are γ image categories and their corresponding patterns are

{Mi}γi=1. In terms of MIL-SS, each pattern can be denoted asMi =

(φj, wj)

ti

j=1
,

where φj ∈ R
d is the j-th concept in a pattern, wj is the weight and ti is the

concept number of pattern Mi. For codebook generation, the concepts for a

certain category are the visual words of such category, and the nal codebook

is generated by combining all the visual words across all categories. Let xj =

1Codes are downloaded from http://blogs.oregonstate.edu/hess/code/sift/

124

φj ∈ R
d be a visual word, then the codebook X = {x1,x2, . . . ,xM}, where

M =
∑γ

i=1 ti. For access convenience, the codebook X is saved as a matrix

(columns are words) through an XML le.

6.3.1.3 Feature coding and pooling

Our goal of this step is to convert an image I into a new feature vector W for

training classiers. Here, I = {v1,v2, . . . ,vN}, and vi is an extracted feature

descriptor, e.g., the SIFT descriptor. The feature vector W = {w1, w2, . . . , wM}
is normally a histogram in a BoW model, where wi represents the frequency of

codebook’s i-th word xi that occurs in the image I, and the integer M is the size

of codebook. Our demo provides two schemes for feature pooling and users can

choose either scheme according to the natures of training datasets.

1. Sum scheme:

wi =
N

j=1

Kσ (D(vj,xi)); (6.7)

2. Max scheme:

wi = max (Kσ (D(v1,xi)) , . . . , Kσ (D(vN ,xi))). (6.8)

In the schemes shown in (6.7) and (6.8), Kσ(x) is a normalised kernel, e.g.,

Kσ(x) = exp (−σx2) /C, where C is a normalisation factor, and D(v,x) is the

distance between v and x.

6.3.1.4 Classication

In the classication step, we use Maximum Entropy Discrimination Latent Dirich-

let Allocation (MedLDA), a topic model recently proposed by Jun et al. [88][85],

to train classiers because it has been reported outperforming other LDA-based

methods. To generate the document data, we rst calculate the feature vector (a

set of frequency of visual word occurrences) W for each image I using previous

steps. Secondly, we multiply eachW with an integerM (the size of the codebook)

and round up all the entries of M ·W . Then, all document data are fed into the

125

MedLDA model to train the parameters of this topic model. Finally, the learned

parameters of MedLDA model are used for classication. The classication re-

sults are stored in a text le showing the classication accuracy of the classied

labels against ground truth (if it is available).

6.3.2 Experiments on SIVAL dataset

We test the BoW system on the benchmark SIVAL dataset. As described before,

SIVAL dataset includes 25 dierent image categories with 60 images for each

category. The categories consist of images of single objects photographed against

diverse backgrounds. The objects may occur anywhere spatially in an image and

also may be photographed at a wide-angle or close up. To save the running time,

we adjust the image size to 300 pixels and keep the height ratio.

In feature extraction, we detect SIFT key points as the visual words and each

word is represented as a 128-d vector. In codebook generation, we use supervised

mean shift. We also use K-means to generate the codebook for experimental com-

parison. In feature coding and pooling, we choose the Max Scheme to generate

the features for images. Finally, the MedLDA model is learned for multi-class

classication. We repeatedly conduct experiments for 30 runs on the 25-category

dataset. The average of the experimental results are compared with other state-

of-the-art works on the same dataset. The comparison methods include GMIL

[117], RMISSL [118], SIMPLIcity [119], SBN (Single-bolb with Neighbors) [120],

aCCIO! [121] and ACCIO!+EM [118]. Table 6.4 indicates the accuracy compar-

ison among dierent methods over 30 runs on the SIVAL dataset.

6.4 Conclusion

Multiple-instance learning with a speed-up supervised kernel density estimation

(MIL-SS) proposed in this chapter is a speed-up version of MIL-SKDE. Com-

pared with MIL-SKDE, MIL-SS greatly increases the training eciency while

obtains comparable performance in image classication and object categorisa-

tion. Therefore, in a situation that classication accuracy is a priority and the

training time is not critical, MIL-SKDE would be the preference. Otherwise,

126

Demo Sa Demo Kb
GMIL
[117]

RMISSL
[118]

Average accuracy 78.6 51.1 82.0 74.8

ACCIO!
[121]

ACCIO!+EM
[118]

SIMPLIcity
[119]

SBN
[120]

Average accuracy 74.6 50.3 57.9 53.9

Table 6.4: Classication accuracy (in %) comparisons among dierent methods
over 30 runs on the SIVAL. Our demo using supervised mean shift outperforms
most methods except GMIL. However, GMIL utilised the manual segmentation
information and our demo does not need segmentation but detects interest points
automatically.

aOur demo with Supervised Mean Shift for codebook generation
bOur demo with K-means for codebook generation

when the training eciency is more concerned, MIL-SS is a good alternative. we

have also described an C++ implementation of BoW using MIL-SS for visual

categorisation. Our implementation is highly modularised and can be easily ex-

tended. The experiments have showed that our implementation is comparable

with the state-of-the-art methods.

127

Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, we have explored the visual categorisation using single-instance

learning and multiple-instance learning. Specically, we have concentrated on

two applications: facial expression recognition using SIL and object categorisation

using MIL.

For facial expression recognition, we have proposed a new feature, Histogram

Variances Face (HVF), in Chapter 3 to classify the videos of facial expressions.

Our experiments have demonstrated that HVF is an eective representation of

the dynamic and internal features of a face video or image sequence. HVF is

able to integrate well the dynamic features of a certain duration of expression

into a static image through which the static facial recognition approaches can be

utlised to recognise the dynamic expressions. The application of HVFs lls the

gap between the expression recognition and facial recognition.

In Chapter 4, we have extended our work of HVF to a hexagonal structure

in which we, for the rst time, apply LBPs dened on the hexagonal structure

[97] to extract the Hexagonal Histogram Variance Faces (HHVFs). This novel

approach not only greatly reduces the computation costs but also improves the

accuracy for facial expression recognition.

For object categorisation, we have presented a novel MIL algorithm, MIL-

SKDE, in Chapter 5 which utilises the proposed density function, supervised

kernel density estimation (SKDE), to model the MIL problem. Compared with

128

commonly-adopted Diverse Density Estimation (DDE), SKDE is able to learn

multiple concepts eciently through a supervised mean shift and better tolerate

the labeling noise. SKDE and supervised mean shift can be seen as the extensions

of conventional kernel density estimation and mean shift respectively by consid-

ering the class labels of the sample data. The experiments on synthetic data have

shown the characteristics of our method. In addition, the experiments conducted

on real-world datasets demonstrate that our approach has superior performance

over the state-of-the-art approaches in terms of accuracy of content-based image

classication and object category recognition, as well as robustness to labeling

noise.

To speed up the mode seeking of SKDE function, a fast method has been given

in Chapter 6 to obtain the approximation of modes without sacricing accuracy.

The experiments show that the speed-up approach has comparable performance

and is more robust to labeling noise than the state-of-the-art alternatives.

Finally, we have presented an C++ implementation of Bag-of-words applica-

tion in Chapter 6 for visual categorisation. Our implementation is highly mod-

ularised and can be easily extended. The experiments have showed that our

implementation is comparable with the state-of-the-art methods.

7.2 Future work

There are a few directions for future work about MIL-SKDE and MIL-SS. Here,

we list two of those directions:

1. For the supervised kernel density shown in (5.12) and supervised mean

shift shown in (5.21), the bandwidth h is set to a xed value in this thesis.

However, adopting variable bandwidth in SKDE and the supervised mean

shift may be able to better harmonise the inuence between positive and

negative data to obtain better performances. This work can be explored in

the future.

2. To seek modes of supervised kernel density (5.12) more eciently, some

existing fast mean shift and approximate mode seeking algorithms may

129

be modied for the supervised mean shift to greatly quicken the pattern

acquisition in MIL-SKDE and MIL-SS.

130

References

[1] Maja Pantic, Student Member, and Leon J. M. Rothkrantz. Automatic

analysis of facial expressions: The state of the art. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22:1424–1445, 2000. 3

[2] Beat Fasel and Juergen Luettin. Automatic facial expression analysis: A

survey. PATTERN RECOGNITION, 36(1):259–275, 2003. 3

[3] Zhihong Zeng, M. Pantic, G.I. Roisman, and T.S. Huang. A survey of

aect recognition methods: Audio, visual, and spontaneous expressions.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(1):

39–58, January 2009. ISSN 0162-8828. doi: 10.1109/TPAMI.2008.52. 3

[4] Michel Valstar, Marcello Mehu, Maja Pantic, and Klaus Scherer. Meta-

analysis of the rst facial expression recognition and analysis challenge.

IEEE Transactions on Systems, Man and Cybernetics (to appear), 2012. 3

[5] P. Ekman and W. Friesen. Facial action coding system. In Palo Alto, CA:

Consulting Psychologists Press, 1978. 3

[6] Yan Tong, Wenhui Liao, and Qiang Ji. Facial action unit

recognition by exploiting their dynamic and semantic relationships.

IEEE Trans. Pattern Anal. Mach. Intell., 29(10):1683–1699, October

2007. ISSN 0162-8828. doi: 10.1109/TPAMI.2007.1094. URL

http://dx.doi.org/10.1109/TPAMI.2007.1094. 3, 4

[7] Y.-I. Tian, T. Kanade, and J.F. Cohn. Recognizing action units for

facial expression analysis. Pattern Analysis and Machine Intelligence,

131

REFERENCES

IEEE Transactions on, 23(2):97–115, feb 2001. ISSN 0162-8828. doi:

10.1109/34.908962. 4, 5

[8] Jenn-Jier James Lien, Takeo Kanade, Jerey Cohn, and C. Li. Detection,

tracking, and classication of action units in facial expression. Journal of

Robotics and Autonomous Systems, July 1999. 5

[9] Gianluca Donato, Marian Stewart Bartlett, Joseph C. Hager, Paul Ekman,

and Terrence J. Sejnowski. Classifying facial actions. IEEE Trans. Pattern

Anal. Mach. Intell., 21(10):974–989, October 1999. ISSN 0162-8828. doi:

10.1109/34.799905. URL http://dx.doi.org/10.1109/34.799905. 5

[10] Beat Fasel and Jrgen Lttin. Recognition of asymmetric facial ac-

tion unit activities and intensities. In Proceedings of the In-

ternational Conference on Pattern Recognition, ICPR, pages 1100–

1103, Washington, DC, USA, 2000. IEEE Computer Society. URL

http://dl.acm.org/citation.cfm?id=876866.877382. 5

[11] Evan Smith, Marian Stewart Bartlett, and Javier Movellan. Computer

recognition of facial actions: A study of co-articulation eects. In Pro-

ceedings of the 8th Annual Joint Symposium on Neural Computation, 2001.

5

[12] J.J. Bazzo and M.V. Lamar. Recognizing facial actions using gabor wavelets

with neutral face average dierence. In Proceedings. Sixth IEEE Interna-

tional Conference on Automatic Face and Gesture Recognition, pages 505–

510, May 2004. doi: 10.1109/AFGR.2004.1301583. 5

[13] M.S. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel, and J. Movel-

lan. Recognizing facial expression: machine learning and application to

spontaneous behavior. In Computer Vision and Pattern Recognition, vol-

ume 2, pages 568–573, june 2005. doi: 10.1109/CVPR.2005.297. 5

[14] A. Lanitis, C.J. Taylor, and T.F. Cootes. Automatic interpretation and

coding of face images using exible models. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 19(7):743–756, July 1997. ISSN 0162-

8828. doi: 10.1109/34.598231. 5

132

REFERENCES

[15] Ira Cohen, Nicu Sebe, Ashutosh Garg, Lawrence S. Chen, and Thomas S.

Huang. Facial expression recognition from video sequences: temporal

and static modeling. Comput. Vis. Image Underst., 91(1-2):160–187, July

2003. ISSN 1077-3142. doi: 10.1016/S1077-3142(03)00081-X. URL

http://dx.doi.org/10.1016/S1077-3142(03)00081-X. 5

[16] Jerey Cohn, L.I. Reed, Zara Ambadar, Jing Xiao, and Tsuyoshi Moriyama.

Automatic analysis and recognition of brow actions and head motion in

spontaneous facial behavior. In Proceedings of the IEEE Conference on

Systems, Man, and Cybernetics, volume 1, pages 610–616, October 2004. 5

[17] Ying-li Tian, Takeo Kanade, and Jerey F. Cohn. Evaluation of gabor-

wavelet-based facial action unit recognition in image sequences of increasing

complexity. In Proceedings of the Fifth IEEE International Conference on

Automatic Face and Gesture Recognition, FGR ’02, pages 218–223, Wash-

ington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1602-5. URL

http://dl.acm.org/citation.cfm?id=874061.875419. 5

[18] M.F. Valstar, I. Patras, and M. Pantic. Facial action unit detection us-

ing probabilistic actively learned support vector machines on tracked facial

point data. In Computer Vision and Pattern Recognition - Workshops,

2005. CVPR Workshops. IEEE Computer Society Conference on, page 76,

June 2005. doi: 10.1109/CVPR.2005.457. 5

[19] Maja Pantic and Leon J. M. Rothkrantz. Facial action recognition for facial

expression analysis from static face images. IEEE Trans. Systems, Man,

and CyberneticsCPart B: Cybernetics, 34(3):1449–1461, June 2004. 5

[20] M.F. Valstar and M. Pantic. Fully automatic recognition of the temporal

phases of facial actions. Systems, Man, and Cybernetics, Part B: Cybernet-

ics, IEEE Transactions on, 42(1):28 –43, feb. 2012. ISSN 1083-4419. doi:

10.1109/TSMCB.2011.2163710. 5

[21] Bihan Jiang, Michel Fran04ois Valstar, and Maja Pantic. Action unit de-

tection using sparse appearance descriptors in space-time video volumes.

133

REFERENCES

In In Proc. IEEE Conf. Automatic Face and Gesture Recognition, pages

314–321, 2011. 5

[22] Timo Ojala, Matti Pietikäinen, and Topi Mäenpää. Gray scale and rotation

invariant texture classication with local binary patterns. In ECCV, pages

404–420, 2000. 5, 51, 52, 67

[23] M. Bartlett, G. Littlewort, Tingfan Wu, and J. Movellan. Computer

expression recognition toolbox. In Automatic Face Gesture Recognition,

8th IEEE International Conference on, pages 1 –2, sept. 2008. doi:

10.1109/AFGR.2008.4813406. 6

[24] Michel Valstar and Maja Pantic. Fully automatic facial action unit detec-

tion and temporal analysis. In Computer Vision and Pattern Recognition

Workshop, volume 17-22 June, page 149, 2006. 6

[25] M.F. Valstar, I. Patras, and M. Pantic. Facial action unit detection us-

ing probabilistic actively learned support vector machines on tracked facial

point data. In Computer Vision and Pattern Recognition, 2005. 6

[26] Danijela Vukadinovic and Maja Pantic. Fully automatic facial feature point

detection using gabor feature based boosted classiers. In Systems, Man

and Cybernetics(ICSMC), volume 2, pages 1692–1698, 2005. 6

[27] J. Whitehill and C.W. Omlin. Haar features for facs au recognition. In

Automatic Face and Gesture Recognition, 7th International Conference on,

pages 5 pp. –101, april 2006. doi: 10.1109/FGR.2006.61. 6

[28] S. Koelstra, M. Pantic, and I. Patras. A dynamic texture-based approach

to recognition of facial actions and their temporal models. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 32(11):1940–1954, nov.

2010. ISSN 0162-8828. doi: 10.1109/TPAMI.2010.50. 6

[29] K. Scherer and P. Ekman. Handbook of Methods in Nonverbal Behavior

Research. Cambridge Univ. Press, 1982. 6

134

REFERENCES

[30] Caifeng Shan, Shaogang Gong, and Peter W. McOwan. Facial ex-

pression recognition based on local binary patterns: A comprehen-

sive study. Image and Vision Computing Journal, 27(6):803–816, may

2009. ISSN 0262-8856. doi: 10.1016/j.imavis.2008.08.005. URL

http://dx.doi.org/10.1016/j.imavis.2008.08.005. 6

[31] Guoying Zhao and Matti Pietikainen. Dynamic texture recogni-

tion using local binary patterns with an application to facial ex-

pressions. IEEE Trans. Pattern Anal. Mach. Intell., 29(6):915–928,

June 2007. ISSN 0162-8828. doi: 10.1109/TPAMI.2007.1110. URL

http://dx.doi.org/10.1109/TPAMI.2007.1110. 6

[32] S. Moore and R. Bowden. Local binary patterns for multi-view facial

expression recognition. Comput. Vis. Image Underst., 115(4):541–558,

April 2011. ISSN 1077-3142. doi: 10.1016/j.cviu.2010.12.001. URL

http://dx.doi.org/10.1016/j.cviu.2010.12.001. 6

[33] A. Dhall, A. Asthana, R. Goecke, and T. Gedeon. Emotion recognition

using phog and lpq features. In Automatic Face Gesture Recognition and

Workshops (FG 2011), IEEE International Conference on, pages 878–883,

march 2011. doi: 10.1109/FG.2011.5771366. 6

[34] Stefanos Zafeiriou and Maria Petrou. Nonlinear non-negative component

analysis algorithms. Trans. Img. Proc., 19(4):1050–1066, April 2010. ISSN

1057-7149. doi: 10.1109/TIP.2009.203http://bbs.ci123.com/post/101486.

html/0ble8816. URL http://dx.doi.org/10.1109/TIP.2009.2038816. 6

[35] T. Kanade, J. F. Cohn, and Y. Tian. Comprehensive database for fa-

cial expression analysis. In Proceedings of the Fourth IEEE International

Conference on Automatic Face and Gesture Recognition, Grenoble, France,

pages 46–53, 2000. 6, 51, 58, 61, 66, 70, 71

[36] Ruicong Zhi, Markus Flierl, Qiuqi Ruan, and W Bastiaan Kleijn.

Graph-preserving sparse nonnegative matrix factorization with appli-

cation to facial expression recognition. IEEE transactions on sys-

tems man and cybernetics Part B Cybernetics a publication of the

135

REFERENCES

IEEE Systems Man and Cybernetics Society, 41(1):38–52, 2011. URL

http://www.ncbi.nlm.nih.gov/pubmed/20403788. 6

[37] A. Asthana, J. Saragih, M. Wagner, and R. Goecke. Evaluating aam t-

ting methods for facial expression recognition. In Aective Computing and

Intelligent Interaction and Workshops, 2009. ACII 2009. 3rd International

Conference on, pages 1 –8, sept. 2009. doi: 10.1109/ACII.2009.5349489. 7

[38] Jaewon Sung and Daijin Kim. Real-time facial expression recognition using

staam and layered gda classier. Image Vision Comput., 27(9):1313–1325,

August 2009. ISSN 0262-8856. doi: 10.1016/j.imavis.2008.11.010. URL

http://dx.doi.org/10.1016/j.imavis.2008.11.010. 7

[39] N. Sebe, M. S. Lew, Y. Sun, I. Cohen, T. Gevers, and T. S. Huang. Au-

thentic facial expression analysis. Image Vision Comput., 25(12):1856–

1863, Dec. 2007. ISSN 0262-8856. doi: 10.1016/j.imavis.2005.12.021. URL

http://dx.doi.org/10.1016/j.imavis.2005.12.021. 7

[40] Timo Ojala, Pietikäinen M, and Topi Mäenpää. Multiresolution gray-scale

and rotation invariant texture classication with local binary patterns. In

PATTERN ANALYSIS AND MACHINE INTELLIGENCE, volume 24,

pages 971–987, 2002. 7, 51, 52, 67

[41] YOSSI RUBNER, CARLO TOMASI, and LEONIDAS J. GUIBAS. The

earth mover’s distance as a metric for image retrieval. In International

Journal of Computer Vision, volume 40(2), pages 99–121, 2000. 7, 54

[42] Li Fei-Fei. The short course of recognizing and learn-

ing object categories. Short Course on ICCV, 2009. URL

http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html.

9

[43] Thomas G. Dietterich, Richard H. Lathrop, Tomas Lozano-Perez, and Arris

Pharmaceutical. Solving the multiple-instance problem with axis-parallel

rectangles. Articial Intelligence, 89:31–71, 1997. 9, 11

136

REFERENCES

[44] Zhouyu Fu and Antonio Robles-Kelly. An instance selection approach to

multiple instance learning. In Computer Vision and Pattern Recognition

(CVPR), pages 911–918, 2009. 10, 12, 99

[45] Sudheendra Vijayanarasimhan and Kristen Grauman. Keywords to visual

categories: Multiple-instance learning forweakly supervised object catego-

rization. In Computer Vision and Pattern Recognition (CVPR), pages 1–8,

2008. 10, 99

[46] Yixin Chen, Jinbo Bi, and James Z. Wang. Miles: Multiple-instance learn-

ing via embedded instance selection. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 28:1931–1947, 2006. 10, 12, 91, 94, 95, 96,

97, 98, 99, 101, 104, 115, 116, 117

[47] Zheng-Jun Zha, Xian-Sheng Hua, Tao Mei, Jingdong Wang, Guo-Jun Qi,

and Zengfu Wang. Joint multi-label multi-instance learning for image clas-

sication. In Computer Vision and Pattern Recognition (CVPR), pages

1–8, 2008. 10

[48] Qi Zhang, Sally A. Goldman, Wei Yu, and Jason E. Fritts. Content-based

image retrieval using multiple-instance learning. In International Confer-

ence on Machine Learning (ICML), pages 682–689. Morgan Kaufmann,

2002. 10

[49] Cheng Yang. Image database retrieval with multiple-instance learning tech-

niques. In International Conference on Data Engineering (ICDE), pages

233–243, 2000. 10

[50] Alexander Vezhnevets and Joachim M. Buhmann. Towards weakly su-

pervised semantic segmentation by means of multiple instance and multi-

task learning. In Computer Vision and Pattern Recognition (CVPR), pages

3249–3256, 2010. 10

[51] Mu Li, James T. Kwok, and Bao-Liang Lu. Online multiple instance learn-

ing with no regret. In Computer Vision and Pattern Recognition (CVPR),

pages 1395–1401, 2010. 10

137

REFERENCES

[52] Zhe Lin, Gang Hua, and Larry S. Davis. Multiple instance feature for robust

part-based object detection. In Computer Vision and Pattern Recognition

(CVPR), page 405, 2009. 10, 99

[53] Vikas C. Raykar, Balaji Krishnapuram, Jinbo Bi, Murat Dundar, and

R. Bharat Rao. Bayesian multiple instance learning: automatic feature

selection and inductive transfer. In International Conference on Machine

Learning (ICML), pages 808–815. ACM, 2008. 10, 12

[54] Dijia Wu, Jinbo Bi, and Kim Boyer. A min-max framework of cascaded

classier with multiple instance learning for computer aided diagnosis. In

Computer Vision and Pattern Recognition (CVPR), pages 1359–1366, 2009.

10

[55] David G. Lowe. Distinctive image features from scale-invariant key-

points. International Journal of Computer Vision, 60(2):91–110, November

2004. ISSN 0920-5691. doi: 10.1023/B:VISI.0000029664.99615.94. URL

http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94. 11, 22, 24,

25, 26, 27, 28, 101, 124

[56] Oded Maron and Toms Lozano-Prez. A framework for multiple-instance

learning. In Advances in Neural Information Processing Systems (NIPS),

pages 570–576. MIT Press, 1998. 11, 13

[57] Qi Zhang and Sally A. Goldman. Em-dd: An improved multiple-instance

learning technique. In Advances in Neural Information Processing Systems

(NIPS), pages 1073–1080. MIT Press, 2001. 12

[58] Rouhollah Rahmani, Sally A. Goldman, Hui Zhang, Sharath R. Cholleti,

and Jason E. Fritts. Localized content based image retrieval. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 30(11):1902–2002,

2008. 12, 82

[59] Y. Chen and J. Z. Wang. Image categorization by learning and reasoning

with regions. Journal of Machine Learning Research, 5:913–939, 2004. 12,

82, 91, 95, 97, 98, 101, 104, 115, 116, 117

138

REFERENCES

[60] Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support

vector machines for multiple-instance learning. In Advances in Neural In-

formation Processing Systems (NIPS), pages 561–568. MIT Press, 2003. 12,

91, 97, 98, 115, 116

[61] Razvan C. Bunescu and Raymond J. Mooney. Multiple instance learning

for sparse positive bags. In Proceedings of the 24th Annual International

Conference on Machine Learning (ICML), pages 105–112, 2007. 12

[62] Zhouyu Fu, Antonio Robles-Kelly, and Jun Zhou. Milis: Multiple instance

learning with instance selection. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 33:958–977, May 2011. 12, 91, 94, 96, 97, 98, 99,

101, 104, 115, 116, 117

[63] Jun Wang and Jean-Daniel Zucker. Solving the multiple-instance problem:

A lazy learning approach. In International Conference on Machine Learning

(ICML), pages 1119–1125. Morgan Kaufmann, 2000. 12

[64] Y. Chevaleyre and J. D. Zucker. Solving multiple-instance and multiple-

part learning problems with decision trees and rule sets. application to the

mutagenesis problem. Lecture Notes in Articial Intelligence, 2056:204–214,

2001. 12

[65] Paul Viola, John C. Platt, and Cha Zhang. Multiple instance boosting for

object detection. In Advances in Neural Information Processing Systems

(NIPS), pages 1419–1426. MIT Press, 2006. 12

[66] Christian Leistner, Amir Saari, and Horst Bischof. Miforests: Multiple-

instance learning with randomized trees. In European Conference on Com-

puter Vision (ECCV), volume 6316, pages 29–42, 2010. 12

[67] Burr Settles, Mark Craven, and Soumya Ray. Multiple-instance active

learning. In Advances in Neural Information Processing Systems (NIPS),

pages 1289–1296. MIT Press, 2008. 12

[68] Paul Viola and Michael Jones. Rapid object detection using a boosted

cascade of simple features. In CVPR, pages 511–518, 2001. xiv, 17, 18, 19

139

REFERENCES

[69] M.A. Turk and A.P. Pentland. Face recognition using eigenfaces. In

Computer Vision and Pattern Recognition, 1991. Proceedings CVPR ’91.,

IEEE Computer Society Conference on, pages 586 –591, jun 1991. doi:

10.1109/CVPR.1991.139758. 20

[70] David Lowe. Object recognition from local scale-invariant features. ICCV,

pages 1150–1157, 1999. 22, 24

[71] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust

features. In In ECCV, pages 404–417, 2006. 27

[72] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human

detection. Computer Vision and Pattern Recognition, 1(25):886–893, June

2005. 27, 28

[73] Krystian Mikolajczyk and Cordelia Schmid. A performance eval-

uation of local descriptors. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 27(10):1615–1630, 2005. URL

http://lear.inrialpes.fr/pubs/2005/MS05. 27

[74] D. W. Scott. Multivariate density estimation: Theory, practice, and visu-

alization. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2008. 31, 76

[75] M. Rosenblatt. Remarks on some nonparametric estimates of a density

function. Annals of Mathematical Statistics, 27:832–837, 1956. 31

[76] Emanuel Parzen. On estimation of a probability density function and mode.

The Annals of Mathematical Statistics, 33:1065–1076, 1962. 31, 76

[77] D. Comaniciu. Variable bandwidth density-based fusion. Computer Vision

and Pattern Recognition (CVPR), 1:56–66, 2003. 32

[78] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Mean shift, mode

seeking, and clustering. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 17:790–799, 1995. 34, 77

140

REFERENCES

[79] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward

feature space analysis. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 24(5):603–619, 2002. 34, 77, 78

[80] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of

on-line learning and an application to boosting. In Proceedings of the Second

European Conference on Computational Learning Theory, EuroCOLT ’95,

pages 23–37, London, UK, UK, 1995. Springer-Verlag. ISBN 3-540-59119-2.

URL http://dl.acm.org/citation.cfm?id=646943.712093. 34

[81] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet

allocation. J. Mach. Learn. Res., 3:993–1022, March 2003. ISSN 1532-

4435. URL http://dl.acm.org/citation.cfm?id=944919.944937. 38,

40, 41

[82] David Blei and Jon McAulie. Supervised topic models. In J.C. Platt,

D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Informa-

tion Processing Systems, pages 121–128, Cambridge, MA, 2008. MIT Press.

38, 42, 43, 45

[83] Simon Lacoste-julien, Fei Sha, and Michael I. Jordan. Disclda: Discrimi-

native learning for dimensionality reduction and classication. In Advances

in Neural Information Processing Systems, 2008. 38, 44

[84] Daniel Ramage, David Hall, Ramesh Nallapati, and Christopher D. Man-

ning. Labeled lda: a supervised topic model for credit attribution in

multi-labeled corpora. In Proceedings of the 2009 Conference on Em-

pirical Methods in Natural Language Processing: Volume 1 - Volume

1, EMNLP ’09, pages 248–256, Stroudsburg, PA, USA, 2009. Associ-

ation for Computational Linguistics. ISBN 978-1-932432-59-6. URL

http://dl.acm.org/citation.cfm?id=1699510.1699543. 38

[85] Jun Zhu, Amr Ahmed, and Eric P. Xing. Medlda: Maximum margin super-

vised topic models. Journal of Machine Learning Research, page in press,

2012. 38, 43, 44, 45, 46, 123, 125

141

REFERENCES

[86] T. L. Griths and M. Steyvers. Finding scientic topics. Proceedings of

the National Academy of Sciences, 101(Suppl. 1):5228–5235, April 2004. 40

[87] Peter McCullagh and John A. Nelder. Generalized Linear Models. Chapman

and Hall, 1989. 42

[88] Jun Zhu, Amr Ahmed, and Eric P. Xing. Medlda: maximum margin su-

pervised topic models for regression and classication. In ICML, pages

1257–1264, 2009. 43, 44, 45, 46, 123, 125

[89] Paul Viola and Michael J. Jones. Robust real-time object detection. In

ICCV, 2001. 51, 66

[90] M. Turk and A. Pentland. Face recognition using eigenfaces. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 586–591,

1991. 57

[91] Boser B., Guyon I., and V. Vapnik. An training algorithm for optimal

margin classiers. In Fifth Annual Workshop on Computational Learning

Theory, pages 144–152, 1992. 57

[92] Vladimir Vapnik. The nature of statistical learning theory. In Springer-

Verlag, 1995. 57

[93] V. N Vapnik. Statistical learning theory. wiley interscience. In Wiley In-

terscience, 1998. 57

[94] Tang Jinghai, Ying Zilu, and Zhang Youwei. The contrast analysis of facial

expression recognition by human and computer. In ICSP, pages 1649–1653,

2006. 61, 63, 71, 72

[95] Ruo Du, Qiang Wu, Xiangjian He, Wenjing Jia, and Daming Wei. Lo-

cal binary patterns for human detection on hexagonal structure. In IEEE

Workshop on Applications of Computer Vision, pages 341–347, 2009. 66

[96] Xiangjian He, Daming Wei, Kin-Man Lam, Jianmin Li, Lin Wang, Wenjing

Jia, and Qiang Wu. Local binary patterns for human detection on hexagonal

142

REFERENCES

structure. In Advanced Concepts for Intelligent Vision Systems, page to

appear, 2010. 66, 67

[97] Xiangjian He, Jianmin Li, Yan Chen, Qiang Wu, and Wenjing Jia. Lo-

cal binary patterns for human detection on hexagonal structure. In IEEE

International Symposium in Multimedia, pages 65–71, 2007. 67, 68, 128

[98] T. Ojala, M. Pietikäinen, and D. Harwood. A comparative study of tex-

ture measures with classication based on feature distributions. Pattern

Recognition, 29:51–59, 1996. 67

[99] Xiangru Li, Zhanyi Hu, and Fuchao Wu. A note on the convergence of the

mean shift. Journal Pattern Recognition, 40:1756–1762, 2007. 77

[100] Mark Fashing and Carlo Tomasi. Mean shift is a bound optimization. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 27:471–474,

2005. 77

[101] Miguel A Carreira-perpiñán. Gaussian mean shift is an em algorithm. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 29:2007, 2005. 78

[102] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Kernel-based

object tracking. IEEE Transactions on Pattern Analysis and Machine In-

telligence, pages 564–577, 2003. 78

[103] Meng Wang, Xian-Sheng Hua, Tao Mei, Richang Hong, Guojun Qi, Yan

Song, and Li-Rong Dai. Semi-supervised kernel density estimation for

video annotation. Computer Vision and Image Understanding, 113:384–

396, March 2009. 78

[104] Oncel Tuzel, Fatih Porikli, and Peter Meer. Kernel methods for weakly

supervised mean shift clustering. In International Conference on Computer

Vision (ICCV), pages 48–55, 2009. 78

[105] Koby Crammer, Yoram Singer, Nello Cristianini, John Shawe-taylor, and

Bob Williamson. On the algorithmic implementation of multiclass kernel-

based vector machines. Journal of Machine Learning Research, 2:2001,

2001. 90, 114

143

REFERENCES

[106] R. Fergus, P. Perona, and A. Zisserman. Weakly supervised scale-invariant

learning of models for visual recognition. International Journal of Computer

Vision, 71:273–303, 2007. 99

[107] D. Liu, Gang Hua, P. Viola, and Tsuhan Chen. Integrated feature selection

and higher-order spatial feature extraction for object categorization. In

Computer Vision and Pattern Recognition (CVPR), pages 1 –8, june 2008.

doi: 10.1109/CVPR.2008.4587403. 99, 101, 115

[108] Rob Hess. An open source sift library. In ACM Multimedia, pages 25–29,

2010. 101

[109] Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Willamowski,

and Cédric Bray. Visual categorization with bags of keypoints. In ECCV,

pages 1–22, 2004. 122

[110] Li Fei-fei and Pietro Perona. A bayesian hierarchical model for learning

natural scene categories. In CVPR, pages 524–531, 2005. 122

[111] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural scene categories.

In CVPR, pages 2169–2178, 2006. 122

[112] Ivan Laptev, Marcin Marszalek, Cordelia Schmid, Benjamin Rozenfeld, In-

ria Rennes, Irisa Inria Grenoble, and Lear Ljk. Learning realistic human

actions from movies. In CVPR, 2008. 122

[113] Huazhong Ning, Wei Xu, Yihong Gong, and T. Huang. Discriminative

learning of visual words for 3d human pose estimation. In CVPR, pages

1–8, june 2008. 122

[114] Je Donahue and Kristen Grauman. Annotator rationales for visual recog-

nition. In ICCV, pages 1395–1402, 2011. 122

[115] T. N. Rubin, A. Chambers, P. Smyth, and M. Steyvers. Statistical topic

models for multi-label document classication. Machine Learning, in press,

pages 48–55, 2012. 123

144

REFERENCES

[116] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human

detection. In CVPR, pages 886–893, 2005. 124

[117] Changhu Wang, Lei Zhang, and Hong-Jiang Zhang. Graph-based multiple-

instance learning for object-based image retrieval. In ACM MIR, pages

156–163, 2008. 126, 127

[118] Rouhollah Rahmani and Sally A. Goldman. Missl: Multiple-instance semi-

supervised learning. In ICML, pages 705–712, 2006. 126, 127

[119] James Z. Wang, Jia Li, and Gio Wiederhold. Simplicity: Semantics-

sensitive integrated matching for picture libraries. TPAMI, 23:947–963,

2001. 126, 127

[120] Oded Maron and Aparna Lakshmi Ratan. Multiple-instance learning for

natural scene classication. In ICML, pages 341–349, 1998. 126, 127

[121] Rouhollah Rahmani, Sally A. Goldman, Hui Zhang, John Krettek, and

Jason E. Fritts. Localized content based image retrieval. In ACM SIGMM

international workshop on Multimedia information retrieval, MIR ’05, pages

227–236, 2005. 126, 127

145

