
© 2002 IEEE. Reprinted, with permission, from Didar Zowghi, A study of the impact of requirements volatility on 
software project performance , Software Engineering Conference, 2002. Ninth Asia-Pacific, 2002. This material is 
posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement 
of any of the University of Technology, Sydney's products or services. Internal or personal use of this material is 
permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for 
creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-
permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting 
it



 1 

A Study of the Impact of Requirements Volatility on Software  
Project Performance 

 
 

Didar Zowghi, N Nurmuliani 
Faculty of Information Technology 
University of Technology, Sydney 

P O Box 123 Broadway 
NSW 2007, Australia 

{didar,nur}@it.uts.edu.au 
 
 

Abstract 
 
 

 Software development is considered to be a 
dynamic process where demands for changes seem to be 
inevitable. Modifications to software are prompted by all 
kinds of changes including changes to the requirements. 
This type of changes gives rise to an intrinsic volatility, 
which has several impacts on the software development 
lifecycle. This paper describes our findings of an extensive 
survey based empirical study of requirement volatility 
(RV) and its impact on software project performance. In 
particular, findings reveal that requirement volatility has 
a significant impact on schedule overrun and cost 
 overrun in software projects. Our investigation also 
examined factors that contribute to the extent of 
requirement volatility and found that variables such as 
frequent communications between users and developers 
and usage of a definable methodology in requirements 
analysis and modeling have impact on the stability of 
requirements. 
 
Keywords: changing requirements, software project 
performance, requirements volatility 
 

1. Introduction 

Software development is characterized by change. Not 
only software is considered malleable but also it appears 
that the deadlines for its delivery to its intended users are 
often treated as malleable. Recent studies in software 
development and information systems indicate that large 
and complex software projects still experience many 
changes throughout the project life cycle. The evolution of 
requirements during system development, among other 
issues, reflects the changing needs of system stakeholders, 
organization and work environment [1].  Since software 

development is a dynamic process and characterized by 
change, software requirements seem to expand while 
software development is still in progress [2].  As a result, 
software requirements become increasingly volatile. 
Software projects often begin with unclearly defined, 
fuzzy, and incomplete requirements [3][4]. Although an 
initial set of requirements may be well documented, 
requirements will change throughout the system 
development lifecycle. The sources of changes may come 
from dynamic environments, such as a changing work 
environment, changes in government regulations, 
organizational complexity, and conflict among 
stakeholders in deciding on a core set of requirements [2]. 
These changes may have significant impact on software 
project uncertainty, in particular the scope of requirements 
growth (scope creep). 

Although many acknowledge that requirement 
volatility is one of the risk factors for the success of 
project, there is no comprehensive empirical evidence that 
allows us to identify the important factors or diverse 
issues underlying requirement volatility. Recent empirical 
studies (e.g. [5] [6] [7] [8] [9]) have investigated the 
problem of changing requirements and its impact on 
software development. However, apart from [10] none has 
specifically focused on factors that contribute to volatility 
in requirements and on the impact of requirements 
volatility on software development life cycle. 

Previous studies of RV have only focused on the 
impact of requirements volatility on software productivity 
[9], software releases [7], or on its impact on isolated 
phases of development life cycle [6]. Our study focuses on 
what the previous studies fall short of coverage. That is, 
investigating factors that may contribute to changing 
requirements during software development and the impact 
of requirements volatility on software project 
performance, in particular software project schedule and 
project cost.  



 2 

In this paper we report our findings of a 
comprehensive survey on requirements volatility and its 
impact of software project performance. The main 
objective of this long-term research project is to 
characterize empirically the detailed impact of 
requirements volatility, on the diverse characteristics of 
the software development lifecycle.  Evaluating the 
impacts of requirements volatility on project cost and 
schedule are among the key issues under investigation.  
Our aim in the overall study is on investigating the effects 
of volatility, with the view of constructing a model/theory 
of requirements volatility and its diverse impacts.  This 
model will become the basis for recommendations on how 
to improve RE practices in order to effectively manage 
and control volatility and to assist in reducing effort and 
schedule variability in practice. 

The first research question addressed by this 
study was:  Is the degree of Requirements Volatility 
negatively associated with software project schedule and 
cost performance? There are three major dimensions that 
we exploited to investigate and explain requirements 
volatility. These dimensions are: potential for change 
(changes in business environment), requirements 
instability (the extent of fluctuation in user requirements), 
and requirements diversity (the extent to which 
stakeholders disagree among themselves deciding on 
requirements).  

The second research question this study 
addressed is: What are the requirements engineering 
practices that contribute to the volatility in software 
requirements? This study focused on the issues such as: 
the usage of definable requirements modeling methods, 
using requirements management tools, established 
traceability, performing requirements inspection, the 
number of user involved in the project, and the frequency 
of communication between users and development team.   

This paper is organized as follows. In the next 
section we look at the related work on defining RV, and 
identifying causes and effect of RV.  Then the overall 
research questions and their underlying conceptual model 
are described. This is followed by the description of data 
collection and analysis. The next section reports on the 
details of our findings. The paper ends with discussion 
and future work. 

2. Related Work 

2.1. Defining requirements volatility 

 Although the term ‘requirements volatility’ is 
frequently used to express the changing nature of 
requirements over the system development life cycle, it 
has not been well-defined in software engineering and 
information system research literature.  

Since software requirements are derived from 
constantly changing customer’s critical business needs, 
the tasks involved in Requirements Engineering (RE) 
process are characterized by a high degree of uncertainty. 
Nidumolu [12] described the uncertainty of requirements 
as the difference in the information needed to identify  
users needs and the information possessed by the 
developers. He identified three dimensions of uncertainty: 
requirements instability (which reflects the extent of 
changes in user requirements in entire project), 
requirements diversity (which reflects the degree of 
differences among users about requirements), and 
requirements analyzability (the extent to which the 
process of producing requirements specification can be 
reduced to objective procedures).  

In previous work we have distinguished between 
two types of requirements volatility: (1) pre-SRS RV 
which refers to the volatility of requirements during the 
early phases (i.e. elicitation, elaboration, analysis, and 
negotiations of requirements) of software development 
and before Software Requirements Specification (SRS) 
has been completed and signed off, (2) post-SRS RV 
which occurs during the later phases of software 
development (i.e. design, coding, testing, and deployment) 
and after the SRS has been completed [10]. We argued 
that the first type of RV is constructive, while the second 
type is possibly destructive because it is claimed that it 
affects the productivity of the software development 
process, scope creep and the quality of final product.  

Recent studies investigated the impact of 
requirements volatility on software development 
productivity [9][10][11] and proposed a concept of 
requirements volatility with respect to the characteristics 
of software development lifecycle. These studies found 
that among the proposed dimensions of RV, (such as 
potential for change in business environment, 
requirements instability, requirements diversity, and 
requirements analyzability), only two dimensions were 
consistent in the analysis, those are requirements 
instability and requirements diversity. 

2.2. Causes of Requirements Volatility 

Requirements volatility is a complex 
phenomenon and no investigation of RV will be complete 
if the factors that contribute to RV are not considered. 
There has been a number of factors identified in the 
literature that cause requirements to change [2][4][7]. 
These factors include the conciseness of initial 
requirements definition, the type of system development 
methodology used, the focus on particular software 
components, poor communications between users and 
development team, project size, organizational and 
environmental factors. 



 3 

2.3. Impact of requirements volatility  

The success of a software project, both 
functionality and financially, is directly related to the 
quality of its requirements. Constant changes to 
requirements during development life cycle significantly 
contribute to the quality of requirements specification. 
Further, the unstable requirements have been linked to 
project risk [5]. 

 Studies of the impact of requirement volatility 
on software project development lifecycle are rare. Stark 
et al [7] examined the effects of requirements change 
specifically on software releases and found that 
requirements volatility has a major impact on project 
schedule and cost. Hyatt et al [13] reported requirements 
volatility must be considered as a part of project risk 
assessments. Malaiya [6] investigated the relationship 
between changing requirements and defect density at code 
phase and found that RV has an impact on defect density.  

Lane [9] investigated the impact of RV on 
effectiveness and efficiency of software development 
productivity and concluded that there was no direct impact 
of RV on these two concepts. Lane’s finding further 
suggested that factors such as project size and 
organization size strongly influence the impact of RV on 
software development productivity. In our previous works 
[10][11], we found no strong evidence to suggest that 
requirements volatility has direct impact on software 
development productivity (such as code quality, quality of 
project management and developers capability).  

In summary, while recent research has 
investigated various dimensions of RV in isolation, more 
evidence needs to be gathered about requirements 
volatility, its impact and consequences. Given the 
importance of the phenomenon and the paucity of 
conclusive empirical research available in this area, it is 
important to conduct further investigations to better 
understand the causes and effects of RV, to identify 
effective processes, techniques and tools to control and 
manage RV. The results of such studies can be used to 
develop recommendations to overcome difficulties 
encountered as a result of volatile requirements. 
Practitioners need to be aware of such findings in order to 
cope with requirements change when non-changing 
requirements are not really an option. 

3. Research Methodology 

 In this section, the conceptual model of the study 
is presented first. We then describe the survey and data 
collection methods to test the conceptual model. Finally, 
we describe the validity of data and the types of data 
analysis carried out for the model.    

 

3.1. Conceptual Model  

 The conceptual elements of our research model 
are presented in a schematic diagram as shown in Figure 
1.  The model addresses the research questions related to 
the direct relationship between requirements volatility and 
software project performance, the influence of project 
characteristics to this relationship, and the impact of 
requirements engineering practices to the requirements 
volatility. The solid arrows indicate direct impact and 
dotted arrow indicate indirect impact (i.e. control variable) 
 

 Figure 1 Conceptual Framework 
 
The following variables were used in the analysis: 

 
a) Requirements Volatility. This variable refers to 
potential for change in business environment, fluctuation 
in users’ requirements (instability), and disagreement 
among users/stakeholders on requirements (diversity). We 
developed an 8-item measurement to assess the degree to 
which volatility in requirements has been established. 
These items reflect the three dimensions of requirements 
volatility explained above. We measured this construct 
using a five-point Likert-type scale that ranged from 
strongly disagree to strongly agree for each of the items 
(Appendix 1). 
 
b) Software Project Performance: Performance of 
software project is measured by whether the project 
completed within scheduled and within budget. We 
specifically asked the respondents the questions as to 
whether their project completed on-time and/or on-budget. 
 
c) Requirements Engineering Practices:  These 
variables capture several RE practices including: 
methodology used in modeling and analyzing software 
requirements, performing requirements inspection, tool 
used in requirements management, and requirements 
traceability. These variables together with other variables 



 4 

(i.e. number of user representatives involved in RE and 
frequency of communication between users and 
developers) were examined and analyzed for their 
contribution to the volatility of requirements. 
 
d) Project Characteristics:  These variables cover the 
specific characteristics of the project under investigation 
including project size (measured in total development 
effort, project cost and number of user representatives 
involved) and organization size (i.e. business turn over). 
We investigated the impact of requirements volatility on 
software project performance, where project performance 
is defined with respect to the project being completed 
within schedule and within budget. We also considered 
that there might be other factors such as project size and 
organization size that may influence the impact of RV on 
software project performance.  We categorized these 
factors as project characteristics.   
 
3.2. Data Collection 
 
 The research model was tested using a cross-
sectional survey of 430 software development companies 
located across Australia. A survey instrument was 
designed, pre-tested and sent to the companies’ senior IS 
executives. The target of the survey was recently 
completed software development projects. The first 
question we asked the respondents was whether or not 
they (or their company) are involved in software 
development. If the answer was no, they did not answer 
any more questions. If the answer was affirmative, then 
they were asked to answer the questions with respect to a 
software project that they have been involved with in the 
last two years.  Our choice of 2-year project duration was 
based on our experience of a previous study [10]. We 
recognized that we had to rely on respondent’s memory 
for the answers rather than expecting them to refer to 
project archives to get the answers to our questions. 

A reminder letter was sent 2 weeks after the 
initial mailing. A total of 92 responses were returned. 
After careful screening, 40 organizations indicated that 
they did not develop software in-house, while remaining 
52 responses completed the questionnaire. The response 
rate was calculated by dividing the responses returned by 
the sample size. The response rate of this survey was 21 
percent considered acceptable and is normal for such 
surveys. As Rogerberg [14] pointed out the typical return 
rate for a mailed questionnaire is 50% or less, and in 
recent years it has steadily declined. 
 Since the response rate is low, it was important to 
assess the external validity of the study. Non-response 
bias, if present can be a potential threat to the external 
validity. To check for non-response bias, we conducted a 
test on certain characteristic of organization (i.e. firm 
size). No significant difference was found in firm size 

between respondents and non-respondents. This suggested 
that external validity was unlikely to be a problem. In 
addition, the late respondents were compared against the 
early respondents. There was no significant difference 
detected between late and early respondents.  

3.3. Data Analysis Technique 

 Factor analysis followed by a Varimax rotation 
was used to assess the construct validity of RV item 
measures. The reliability of scale for each dimension was 
tested using the Cronbach alpha test. Principal Component 
Analysis was used to create the key variable, which is 
requirements volatility. This variable was given by the 
first principle component of the relevant RV dimensions. 

Simple Correlation and Logistic Regression 
Analysis were used to assess the impact of Requirements 
Volatility on software project performance. The strength 
of the relationship between RE Practices and requirements 
volatility was examined with Multiple Regression 
Analysis.  

4. Findings 

 In this section we present the main results of our 
analysis. Starting with the descriptive statistics of the 
projects across respondents, we summarize the most 
important variable distributions of the projects. This is 
followed by detailed results of analysis in relation to the 
impact of requirements volatility on software project 
performances. Finally, we discuss the impact of 
requirements engineering practices on changing 
requirements in the organizations.  

4.1. Descriptive Statistics 

 A profile of the software projects is summarized 
in Table 1, while Figure 2 and Figure 3 show the 
performance of software projects.  
  

Table1. Descriptive Statist ics for Project 
Characteristics 

a In person months 

 b In thousand dollars (AUS) 
N=52 projects 

Characteristics Mean S.D Min Max 
 
1. Project Efforta  
2. Project Costb  
3. Team Size 
4. Users  
5. Size of software: 
     KLOC (n=10) 
     FP (n=6) 
     Classes (n=8) 
 

 
202 

2,483 
15 

7 
 

232 
207 
123 

 
 

 
488 

7,848 
26.64 

12 
 

628 
395 
132 

 

 
1 
4 
1 
1 
 

3 
1 
2 
 
 

 
3,000 

45,000 
160 
60 

 
2,000 
1,000 
400 



 5 

Figure 2 and Figure 3 illustrate the proportion of 
projects by cost and schedule performance. These figures 
summarized the projects that completed or did not 
complete within their schedule and/or within their budget. 
It can be seen from both figures that 14% of projects that 
finished early (i.e. before their schedule) also completed 
under their budget. On average, most of software projects 
were completed behind the schedule in range between 
25% and 50%, and over-budget between 4% and 25%.  

 

 
Figure 2 Project Schedule Performance 

 

 

Figure 3 Project Cost Performance 

4.2. Construct Validity and Reliability 

 Construct validity describes the convergent and 
discriminant validity of the construct’s item measures [15] 
and can be assessed using factor analysis. A factor 
analysis using varimax rotation resulted in a two-factor 
solution or dimensions of requirements volatility (see 
Appendix 2): requirements instability and requirements 
diversity. An additional dimension (i.e. potential for 
change) that was proposed initially, did not load 
significantly in separate construct. Therefore, this 
dimension was deleted from subsequent analysis. Also, 
one item from requirements instability dimension was 
deleted because it loaded less than 0.5 (See Appendix 2 
part a). 

 Reliability analysis provides a measure of the 
internal consistency of scales. It can be measured by the 
Cronbach’s alpha test, which is treated as correlation 
coefficient (ranges from 0 to 1), with higher score 
indicating greater reliability. A value of 0.7 or above is 
generally recommended [16]. The reliability coefficients 
of the scales for requirements are given in Appendix1. 
The test result suggests that the scale reliabilities of the 
two dimensions are high (greater than 0.7). This means 
that the scales for these dimensions are reliable. 

4.3. Requirements Volatility and its Impact on 
Software Project Performance 

  
The instability of requirements is characterized 

by the significant fluctuation of user’s requirements in the 
later stages of development and the differences between 
requirements that were identified at the beginning of the 
project and requirements that existed at the end.  The 
latter aspect of requirements volatility is characterized by 
the differences or disagreement and conflict among 
users/stakeholders on requirements.  
 
 

 

Figure 4 The level of requirements volatility from the 
respondents' perspective 

 
The respondents were asked to rate the level of 

requirements change for each stage of software 
development or during a specific software development 
activity. The result in Figure 4 shows that most of the 
respondents indicate the level of changes during 
requirements analysis is high. This is what we expected 
because at this stage of software development 
requirements are being explored, elaborated and fleshed 
out while new requirements are being discovered as a 
result of analysis. We have argued elsewhere that this so-
called pre-SRS RV is in fact constructive and should be 
encouraged [10]. At the end of prototyping stage,  not 
surprisingly, the requirements fluctuated as users change 
their mind after they were shown early prototypes. The 



 6 

level of volatility seems to be getting lower as the project 
progresses and near the end of the life cycle, but rose 
slightly again during code and in-house testing. 

The relationship between requirements volatility 
and software project performances is summarized in Table 
2. Software project performance is characterized by 
whether or not the project completed on time (within 
original scheduled) and if the final project cost was 
according to the budgeted amount. The correlation 
coefficient between requirements volatility and project 
schedule performance (on time) was negative and 
significant (p<0.004), which gives support to the first 
research question; i.e. the degree of requirements 
volatility is negatively associated with project schedule 
performance. Also, the correlation coefficient between 
requirements volatility and project cost performance (on 
budget) was negative and significant (p<0.05), which also 
support the research question:  i.e. the degree of 
requirements volatility is negatively associated with 
project cost performance. 
   

Table 2. Matrix Correlation 
 

Variables 1 2 3 
1. Project on time 
2. Project on budget 
3. Requirements 

Volatility  

1.00 
0.30* 

-0.41** 

 
1.00 

-0.31* 

 
 

1.00 

 

*Significant at the 0.05 level, 
 **Significant at the 0.01 level (2-tailed) 
 

Logistic regression analysis was used to test the 
strength of association between requirements volatility 
and software project performance measures (i.e. project 
on time and on budget). In this analysis requirements 
volatility is treated as independent variable and software 
project performance (i.e. project on time or on budget) as 
dependent variable. The reason to use logistics regression 
analysis was because the response variables were 
dichotomous (have two values. 1=Yes and 0=No, for the 
project completed on time or on budget).  

The logistic regression model is similar to the 
linear regression model. The main difference is that the 
logistic regression model requires the response variable be 
dichotomous or binary, whereas in linear regression we 
assume continuous response [17]. Logistic regression is 
used to predict the binary response variable, using a set of 
predictors that can be either interval or categorical 
 We first fitted the logistic model into the data: an 
independent variable RV and dependent variable project 
schedule on time. Then we fitted the model of an 
independent variable RV and dependent variable project 
cost.  The results in Appendix 2 indicate that RV is a 
significant risk factor that contributes to the performance 
of software project, the project to meet its schedule and its 

budget. This is consistent with direct relationships result 
we found from the correlation coefficients mentioned 
earlier. These logistics regression estimates indicated that 
an increase in requirements volatility resulted in 
decreasing the probability of project to complete on time 
as well as on budget.  

4.4. Requirements Engineering Practices and its 
Relationship to Requirements Volatility 

In this study we were interested to investigate 
which of the current practices in requirements engineering 
(RE) may contribute to volatility in requirements. We 
asked the respondents specific questions regarding various 
aspects of the RE practice. These include the use of a 
specific methodology in analyzing and modeling 
requirements, performing requirements inspection, use of 
requirements management tool, and extent of 
requirements traceability. These variables together with 
other variables (i.e. number of user representatives in the 
project and frequency of communication between users 
and developers), and their contribution to requirements 
volatility were analyzed. Multiple regression analysis was 
used to test the relationship between dependent variable 
requirements volatility and multiple independent variables 
(i.e. the variables related to requirements engineering 
practices mentioned above). We examined linearity, 
homoscedasticity, independence of the residuals and 
normality of the data, and we found the data did not 
violate the assumptions underlying multiple regression 
analysis. The regression estimates are summarized and 
shown in Table 3. 
 

Table 3. The impact of RE Practices on 
Requirements Volati l i ty (OLS Regression 

Estimates) 
 

Independent Variables Require-
ments 

Volatility  
Usage of RE methods(1=yes, 0=No) 
Perform Reqs. Inspection (1=yes, 0=no) 
Traceability in place(1=yes, 0=no) 
Usage of RM tool (1=yes, 0=no) 
User representatives (Logarithm) 
Frequency communication (Logarithm) 
 
R2 
Adjusted R2 
F 

-0.827** 
-0.770* 

0.438  
0.823 

0.512** 
-2.096*** 

 
0.556 
0.444 

5.000*** 
 

* Significant at the 0.1 level,  
** Significant at the 0.05 level,  
***Significant at the 0.01 level (1-tailed) 
    

Table 3 shows the results of multiple regression 
analysis for the effect of RE practices on requirements 



 7 

volatility. The practices such as a definable methodology 
used in modeling and analyzing requirements, frequency 
of communication between users and developers, and 
performing requirements inspection had significant 
negative impact on requirements volatility. Number of 
user representatives had a significant positive effect, while 
established requirements traceability and the usage of 
requirements management tool also had positive 
coefficients, though they were not statistically significant.  
We found only 44.4% (Adjusted R2) of the variation in 
requirements volatility (increases or decreases) can be 
explained with those significant RE practices. Although 
requirements traceability and the use of requirements 
management (RM) tools can be removed from the model 
due to statistical insignificance, we concede that they are 
both important issues in requirements management. It is 
commonly believed that having effective traceability in 
place and using a RM tool enhances requirements 
management practices significantly [19]. 

5. Discussion 

We now revisit the research questions posed in the 
introduction and discuss the findings. 

The findings indicate that there is a negative 
relationship between requirements volatility and software 
project performance, measured by project completing on 
time and on budget. There is a clear indication that the 
more unstable requirements become the more likely it is 
that the project will be completed behind schedule and 
over budget. We contend that requirements volatility is 
not the only factor that would affect the project delays or 
project cost overruns. We felt that additional investigation 
was required to examine the influence of other factors. 
Hence, we tested the impact of factors (as control 
variables) such as organization size (i.e. business turn-
over) and project size (i.e. project cost, total effort, and 
number of user). We added these control variables into the 
logistic model. However, the regression analysis 
suggested none of the control variables were significant. 

For the second research question under 
investigation in this study, we examined the impact of 
several RE activities and related issues of requirements 
practice on RV. The findings indicate that using a 
definable methodology for requirements analysis and 
modeling has negative impact on RV. This is exactly what 
we expected since the stability of requirements bound to 
be affected by rigorous procedures imposed on analyzing 
requirements. The specific question we asked here was: 

Which of the following approaches did you use 
in analyzing and modeling software 
requirements:  
a) structured analysis and design techniques,  
b) b) object oriented analysis,  
c) c) no methodology”.  

 
Interestingly, 38% of respondents indicated they 

do not use a methodology. We wondered why that is the 
case but this is a question that could not be answered from 
this survey and we leave it for future study.  
 Another activity of RE process that we 
investigated with respect to the second research question 
was the impact of performing requirements inspection on 
RV. The findings indicate that performing requirements 
inspection reduces the extent of RV. Formal requirements 
inspection are claimed to be a cost-effective technique to 
discover requirements defects [17]. However, because 
inspection needs people from different skills and 
organizations to get together, it is reported that most 
project teams do not carry our formal inspection of 
requirements before design begins. We believe that this is 
an important finding for motivating practitioners to spend 
adequate time for validating requirements. 
 Frequency of communication between developer 
and customers was yet another issue that we investigated 
in relation to its impact on RV. The findings suggest that 
the more frequent developers and customers communicate 
with each other during RE, the less volatile their 
requirements will be. A related issue under investigation 
was  to do with the number of user representatives 
involved in the development team. The findings suggest 
that the more user representatives involved in the 
development team the more volatile the requirements 
were. These two contributing factors seem to be 
competing and we feel that it requires further 
investigation. The choice of whether to have more 
meetings with the stakeholders versus involving a number 
of users in the development team is not an easy one to 
make and we leave it for future work to investigate this 
issue possibly with case studies. 
 Finally the other two related factors we examined 
were the impact of using requirements management tools 
and established traceability. The findings did not suggest 
any significant impact on requirements volatility. 

6. Conclusion 

In this paper, we have reported the results of a 
survey-based study of the impact of requirements 
volatility on software project performance as well as the 
impact of various RE practices on requirements volatility.  

Studying requirements volatility provides an 
important insight for software developers, so that they can 
pay due attention to RV and its associated risks. This 
increased understanding will then allow them to control 
and manage RV as well as reducing its potentially 
damaging impact on software development process and 
product. This will further facilitate a more effective 
handling and management of the impact of RV thus 
resulting in better estimates, better risk management and 



 8 

better quality software while reducing schedule overruns 
and cost overruns. 
 In that this study is one of a number of 
longitudinal investigations of requirements volatility, as 
part of a long-term investigation of this phenomenon, it 
helps to set the scene for what is planned to follow.  The 
next stages of the research involve additional analysis of 
the survey questionnaire data and specifically targeted 
industry interviews and field studies, both with the aim of 
refining our understanding of impacts of requirements 
volatility, especially from the point of view of establishing 
verifiable causal relationships. 
 
Appendix 1. Measurement Details for 
Requirements Volati l i ty Constructs 
 
Response Scale: 
 “Please indicate what degree you feel the 
following statements describe the volatility of software 
requirements” 
 Five-point scale: 1=strongly disagree, 3=neutral, 
and 5=strongly agree. 
 
Potential for Change (Cronbach’s Alpha = 0.28) 
1. The changes in business environment for this project 

were high. 
2. The analyst’s knowledge of the business environment 

was excellent. 
 
Requirements Instabil i ty (Cronbach’s Alpha = 
0.74) 
1. Requirements fluctuated in the earlier stages 
2. Requirements fluctuated in the later stages 
3. Difference in requirements identified at the start of the 

project from the final requirements 
 
Requirements Diversity (Cronbach’s Alpha = 
0.77) 
1. It was difficult for stakeholders to reach agreement 

among themselves on requirements. 
2. A lot of effort had to be spent in incorporating the 

requirements of various users 
3. It was difficult to customize software to one set of 

users without reducing support for other users 
 
Appendix 2. Statistical Analysis 
a. Factor Analysis output 
 

Measurement Items Instability Diversity 
1. Business-change1* 
2. Business-change2* 
3. Instability1* 
4. Instability2 
5. Instability3 
6. Diversity1 
7. Diveristy2 
8. Diversity3 
 

.867 

.315 

.173 
.744 
.742 
.390 
.001 
.497 

-.090 
-.507 
.216 
.096 
.447 

.729 

.882 

.600 

Eigenvalue 2.384 2.178 

% of total variance 52.3% 48.0% 
   * items deleted for subsequent analysis 
b. Logistics Regression Estimates 
 

Response variables  
Independent variable Project 

on time 
Project 

on 
budget 

Requirements Volatility 
   β 
  Exp(β) 
  S.E 
  p-value 
Constant 
  α 
  p-value 
 
Goodness of fit test 
(Chi-square) 
 
N 

 
-1.001 
0.368 
0.367 
0.006 

 
0.394 
0.209 

 
5.786 
(0.67) 

 
52 

 
-.682 
0.043 
0.337 
0.043 

 
0.192 
0.538 

 
2.885 
(0.89) 

 
46 

 
 

References 

[1] J. Van Buren and D. Cook, "Experiences in the 
Adoption of Requirements Engineering Technologies," 
CROSSTALK, The Journal of Defence Software Engineering, 
December 1998, pp.3-10 
 
[2] E. J. Barry, T. Mukhopadhyay, and S. A. Slaughter, 
"Software Project Duration and Effort: An Empirical Study," 
Information Technology and Management, vol. 3, pp. 113-136, 
2002. 
 
[3] H. Krasner, "Requirements Dynamics in Large 
Software Projects," proceedings of the 11th World Computer 
Congress (IFIP89), Amsterdam, The Netherlands, 1989. 
 
[4] M. Christel and K. Kang, Issues in Requirements 
Elicitation, Carnegie Mellon University, Pittsburgh September 
1992. 
 
[5] T. Hammer, L. Huffman, and L. Rosenberg, "Doing 
Requirements Right the First Time," CROSSTALK, The Journal 
of Defence Software Engineering, December 1998, pp. 20-25 
 
[6] Y. Malaiya and J. Denton, "Requirements Volatility 
and Defect Density," proceedings of the 10th International 
Symposium on Software Reliability Engineering, Fort Collins, 
1998. 
 
[7] G. Stark, A. Skillicorn, and R. Ameele, "An 
Examination of the Effects of Requirements Changes on 
Software Releases," CROSSTALK, The Journal of Defence 
Software Engineering, December 1998. 
 



 9 

[8] D. Pfahl and K. Lebsanft, "Using simulation to analyse 
the impact of software requirements volatility on project 
performance," Information and Software Technology, vol. 42, 
pp. 1001-1008, 2000. 
 
[9] M. Lane and A. L. M. Cavaye, "Management of 
Requirements Volatility Enhances Software Development 
Productivity," proceedings of the 3rd Australian Conference on 
Requirements Engineering (ACRE 98), Geelong, Australia, 
1998. 
 
[10] D. Zowghi, and  Nurmuliani, "Investigating 
Requirements Volatility During Software Development: 
Research in Progress", Proceedings of the 3rd Australian 
Conference on Requirements Engineering (ACRE98), Geelong, 
Australia, 1998 
 
[11] D. Zowghi, R. Offen, and N. Nurmuliani, "The Impact 
of Requirements Volatility on Software Development 
Lifecycle," proceedings of the International Conference on 
Software, Theory and Practice (ICS2000), Beijing, China, 2000. 
 
[12] S. Nidumolu, "Standardization, Requirements 
Uncertainty and Software Project Performance," Information & 
Management, vol. 31, pp. 135-150, 1996 
 
[13] L. Hyatt and L. Rosenberg, "Software Metric for Risk 
Assessment," proceedings of the 26th Safety and Rescue 
Symposium, Risk Management and Assessment Session, Beijing, 
China, 1996. 
 
[14] S. G. Rogelberg and A. Luong, Nonresponse to mailed 
surveys: A review and guide, Current Direction in Psychological 
Science, vol. 7, pp. 60-65, 1998. 
 
[15] K. A. Bollen, , Structural Equations with Latent Variables, 
Wiley Series in Probability and Mathematical Statistics. John 
Wiley and Sons, Inc. NY, 1989 
 
[16] J. C. Nunnally, Psychometric Theory, McGraw-Hill, 
New York, 1978 
 
[17] D. McNeil,, Epidemiological Research Methods, 
Wiley, 1996 
 
[18] I. Sommerville, P. Sawyer, Requirements 
Engineering, A good practice guide, Wiley, 1997 
 
[19] K. E. Wiegers, “Software requirements”, Microsoft 
press 1999. 


