
1 INTRODUCTION 

Large-scale civil structures, such as bridges or multi-
storey buildings, continuously accumulate damage 
during their operational life spans. In order to ensure 
safety and reliability of these structures and to pre-
vent catastrophic failures, early and reliable damage 
detection and health assessment is critically impor-
tant. The concept of structural health monitoring was 
adopted in the 1960s and typically implies local and 
off-line assessments, such as visual inspection, ultra-
sounds, eddy-current and X- and Gamma-rays. These 
techniques, however, may involve high costs and in-
termittent exploration. During the last two decades, 
the focus of the investigations has been global and 
on-line evaluation with non-destructive techniques 
such as vibration analysis and imaging processing. 
One of the main objectives of using such techniques 
is to reach less costs and continuous monitoring of 
the structures (Maia et al. 2011). As such, vibration-
based techniques received much attention for its ef-
fectiveness and practicality. Typical vibration-based 
parameters for structural health monitoring are natu-
ral frequencies, mode shapes, frequency response 
functions (FRFs) and time-history data. While most 
developed vibration-based techniques require knowl-
edge of the excitation force during modal testing, 
ambient vibration based methods can operate solely 
on output-only response signals of the structure and 

thus making them very attractive for automated 
online health monitoring. Here, the structure is typi-
cally excited naturally by ambient loading from 
sources such as traffic, wind, or micro-earthquakes 
(Peeters, Maeck & De Roeck 2001). The advantage 
of using ambient sources is that once a monitoring 
system is installed, it continuously measures the 
structural response and records data without the need 
for interrupting operations such as traffic flow. A dis-
advantage of using ambient vibration excitation for 
structural health monitoring and damage detection is, 
however, that the excitation force can usually not be 
measured and therefore traditional methods of identi-
fying the modal characteristics of a structure, which 
require knowledge of the excitation force, cannot be 
applied. In recent years, transmissibility function 
analysis attracted considerable interest due to its ef-
fectiveness in damage detection, as well as the fact 
that the analysis does not require input force meas-
urements. Different aspects of transmissibility func-
tion analysis, such as the linearity of structures 
(Johnson et al. 2004), the nature of the input force 
(Devriendt et al. 2009), and the effect of operational 
and environmental variability (Kess & Adams 2007), 
have been explored (Yi et al. 2010).  

This paper explores the feasibility of using natural 
ambient vibration loading, such as wind excitation, 
for the detection of boundary damage in a multi-
storey building based on scalar transmissibility 
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ABSTRACT:  
This paper presents a damage identification technique that uses output-only scalar transmissibility measure-
ments of a structure to identify boundary conditions. A damage index is formulated based on output-only ac-
celeration response measurements from ambient floor vibration. The damage index is analysed by a system of 
artificial neural networks (ANNs) to predict boundary condition changes of the structure. Using the data 
compression and noise filtering capabilities of principal component analysis (PCA), the size of the damage 
index is reduced in order to obtain suitable patterns for ANN training. To test the proposed method, it is ap-
plied to different models of a numerical two-storey framed structure with varying boundary conditions. 
Boundary damage is simulated by changing the condition of individual joint elements of the structure from 
fixed to pinned. The results of the investigation show that the proposed method is effective in identifying 
boundary damage in structures based on output-only response measurements. 



measurements in conjunction with principal compo-
nent analysis (PCA) and artificial neural network 
(ANN) techniques. In a previous study conducted by 
the authors, a new damage detection algorithm based 
on FRFs, PCA and ANNs, was successfully applied 
to a numerical and experimental two-storey framed 
structure under forced impact excitation. From this 
investigation, it was found that the proposed damage 
detection algorithm was capable of accurately and re-
liably detecting damage using only measured floor 
vibration responses from impact loading 
(Dackermann, Li & Samali 2010) and (Samali, 
Dackermann & Li 2012). In this study, the method is 
now extended to ambient vibration excitation to al-
low for continuous online health monitoring. The fo-
cus of this investigation is to use output-only vibra-
tion measurements from floor members of a structure 
to detect damage. The reason for only using floor 
measurements is that in practice, it is usually more 
convenient to measure the floor vibration responses 
of multi-storey structures compared to measuring 
wall vibrations, especially under ambient excitation. 
To identify damage, it is proposed to use damage pat-
terns embedded in scalar transmissibility functions 
obtained by relating various response output meas-
urements captured along the floor members of the 
structure. To enhance damage patterns in the trans-
missibility functions, residual transmissibilities, 
which are differences in transmissibility functions 
between the undamaged structure and the damaged 
structure, are calculated. Neural networks are then 
trained to correlate the damage patterns in the resid-
ual transmissibilities to the damage characteristics. 
To obtain suitable input data for network training, the 
residual transmissibilities are compressed to a few 
principal components adopting PCA techniques. Be-
sides data compression, PCA transformation has fur-
ther the advantage of filtering noise. The most domi-
nant PCs are then fed to ANNs for damage 
identification. In order to analyse various correla-
tions of transmissibility relationships between differ-
ent output measurements obtained from different lo-
cations, a hierarchal system of neural network 
ensembles is trained to evaluate damage patterns in 
PCA-compressed residual transmissibilities.  

The proposed method is verified by numerical 
models of a two-storey framed structure. Various 
types of boundary damage are simulated by changing 
the condition of individual joint elements of the 
structure from fixed to pinned. In total, ten different 
types of boundary damage are investigated, i.e. four 
single and six multiple joint changes. To consider 
real life applications and to investigate the robust-
ness of the method to noise, the ambient vibration re-
sponses obtained from the numerical model are pol-
luted with various levels of white Gaussian noise. 

2 BACKGROUND ON TRANSMISSIBILITY 
FUNCTION ANALYSIS 

The governing equations of motion for an n-degree-
of-freedom (n-DOF) finite-dimensional linear struc-
ture are given by: 

( t ) ( t ) ( t ) ( t )  Mx Cx Kx f  (1)

where x(t) is the n×1 displacement response, M is 
the n×n mass matrix, C is the n×n viscous damping 
matrix, K is the n×n stiffness matrix, and f(t) is the 
n×1 external force vector. If the external force is ap-
plied to only the k-th DOF, then f(t) = {01,02, …, 
fk(t), …, 0n}

T has only one non-zero entry.  
After Fourier transformation, Eq. (1) is given in 

the frequency domain by: 

( ) ( ) ( )   X H F  (2)

where ( )H  is the n×n frequency response function 
(FRF) matrix. Assuming the external force is applied 
to only the k-th DOF, the Fourier transform of the in-
put force vector f(t) is defined as: 

 0 0 0( ) , , , ( ), ,     T

1 2 k nF    F   (3)

The acceleration vector in the frequency domain 
can be calculated from Eq. (2) as: 

2( ) ( ) ( )    A H F  (4)

The scalar transmissibility function Tij ( )  be-
tween the output DOF i and reference-output DOF j 
is defined as the ratio between two frequency spectra 
Ai( )  and Aj( ) . With ih ( )  being the i-th row of 

( )H , the scalar transmissibility function Tij ( )  is 
given as: 
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By substituting Eq. (3) into Eq. (5) Tij ( )  is re-
duced to: 
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where ikH ( )  and jkH ( )  are entries of the FRF.  
The damage index defined in this paper is termed 

“residual transmissibility function” and is defined as 
differences between scalar transmissibility functions 
of the damaged structure and scalar transmissibility 
functions of the undamaged structure given as: 

ij ij

d ud
ijRe sT ( ) T ( ) T ( )    
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where Tij
ij

d ( )  is the scalar transmissibility function 
from the damaged structure and Tij

ij

ud ( )  the scalar 
transmissibility function from the undamaged struc-
ture. 



3 THE TEST STRUCTURE 

To validate the proposed damage identification 
method, it was tested on a numerical two-storey 
framed structure (the counterpart of an experimental 
structure, see (Dackermann, Li & Samali 2010)). The 
finite element model was created with ANSYS 
Workbench (ANSYS Inc 2007b) and consisted of 
two columns, two cross-beams and four interchange-
able joint elements (see Figure 1). The two columns 
were connected to the ground through a fixed base 
connection. They had a cross-section of 65 mm × 
5.5 mm and a height of 1600 mm. The crossbeams 
consisted of a box section of 150 mm × 50 mm and 
were located at a height of 700 mm and 1400 mm 
above the base connection, respectively. The struc-
ture was modelled in steel with a density of 
7,850 kg/m3, a Poisson’s ratio of 0.3 and a modulus 
of elasticity of 200,000×106 N/m2.  
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(c) (d) 
Figure 1.  Numerical two-storey framed structure (a) front 
view, (b) side view, (c) joint element and (d) crossbeam. 
 

To simulate boundary damage, the conditions of 
the joint elements were modified. In practice, boun-
dary changes are generally caused by environmental 
or ageing decay such as corrosion or loosening of 
connections and are a common and serious issue in 
aged civil engineering structure. In this numerical 
study, boundary damage was simulated by changing 
the conditions of the four joint elements (J1 to J4, see 
Figure 1) that connect the crossbeams with the col-
umns from fixed to pinned joints. For the modelling 
of a fixed joint element (undamaged boundary condi-
tion), the contact region between crossbeam and joint 

element was made rigid. For the pinned connection 
(damaged boundary condition), the horizontal shaft 
of the crossbeam was deleted and replaced by a revo-
lute joint connection. The revolute joint was con-
strained in five local degrees of freedom (UX, UY, 
UZ, ROTX, ROTY) and free in ROTZ, which allows 
free rotation around the longitudinal axis of the de-
leted horizontal shaft. For the undamaged state of the 
structure, fixed connections were modelled for all 
four joints (termed FFFF). Four scenarios of single 
joint changes were studied by changing one of the 
four fixed joints with a pinned joint at a time. In ad-
dition, six multiple joint alterations with two joints 
changed each from fixed to pinned were also investi-
gated. All boundary changes are listed in Table 1.  

Table 1  Boundary damage scenarios. 

Boundary 
case 

Boundary  
scenario 

Joint conditions 
J1 J2 J3 J4 

1 PFFF P F F F 
2 FPFF F P F F 
3 FFPF F F P F 
4 FFFP F F F P 
5 PPFF P P F F 
6 FFPP F F P P 
7 FPFP F P F P 
8 PFPF P F P F 
9 FPPF F P P F 

10 PFFP P F F P 
Note: F indicates a fixed joint and P a pinned joint 

To identify the dynamic properties, the undam-
aged and damaged models were subjected to ambient 
vibration loading using transient analysis in ANSYS 
Classic (ANSYS Inc 2007a). To simulate ambient 
vibration, such as excitation caused by wind loading, 
a random load ‘F’ of Gaussian distribution, with a 
mean of 0 and a standard deviation of 1, was applied 
in horizontal direction at the upper end of the poten-
tially damaged column indicated with an arrow in 
Figure 1 (a) at location ‘7’. The ambient loading was 
applied for 16.385 s with integration time steps of 
0.001 s. For the duration of the ambient loading, the 
displacement time history responses of the structure 
were recorded at the cross-beams at measurement lo-
cations ‘1’ to ‘6’ (in vertical direction).  

To simulate real testing conditions, the recorded 
time history data were polluted with white Gaussian 
noise to simulate measurement noise interferences 
experienced during experimental testing. Noise of 
four intensities (1 %, 2 %, 5 % and 10 % noise-to-
signal-ratio) was added to the input impact force sig-
nal and the response time histories using the ‘awgn’ 
function in Matlab (The MathWorks 2009). For each 
level of noise, five sets of noise-contaminated data 
were generated to simulate five repeated tests.  

J1 J2 

J3 J4 

800 mm 

70
0 

m
m

 
70

0 
m

m
 



4 DAMAGE IDENTIFICATION PROCEDURE 

4.1 Residual transmissibility functions 

For the derivation of the residual transmissibility 
functions (to be used as damage fingerprints for 
boundary damage identifications), first, different sca-
lar transmissibility functions Tij( )  of the undam-
aged and all damaged models were determined by 
cross-correlating various frequency-domain response 
output measurements of locations ‘1’ to ‘6’. There-
fore, first, the noise-contaminated acceleration re-
sponse time history data obtained from locations ‘1’ 
to ‘6’ were transformed into the frequency domain by 
estimating the power spectral density using Welch’s 
method. In Welch's method, the time history data is 
first split into overlapping segments and modified 
periodograms are computed. The resulting periodo-
grams are then averaged to produce the power spec-
tral density A( ) . Second, to calculate the scalar 
transmissibility functions Tij( ) =Ai( ) /Aj( ) , the 
frequency spectra A( )  of all measurement loca-
tions ‘1’ to ‘6’ were cross-correlated with each other 
resulting in a total of 30 scalar transmissibility func-
tions according to Table 2. The calculated scalar 
transmissibilities capture a frequency range of 0 to 
500 Hz with 8,192 spectral lines for a frequency 
resolution of 0.061 Hz per data point. 

Table 2  Scalar transmissibility functions Tij(ω) 

  Output Frequency Spectra Ai(ω) 

  A1 A2 A3 A4 A5 A6 
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) A1 × T2-1 T3-1 T4-1 T5-1 T6-1

A2 T1-2 × T3-2 T4-2 T5-2 T6-2

A3 T1-3 T2-3 × T4-3 T5-3 T6-3

A4 T1-4 T2-4 T3-4 × T5-4 T6-4

A5 T1-5 T2-5 T3-5 T4-5 × T6-5

A6 T1-6 T2-6 T3-6 T4-6 T5-6 × 

 

For a frequency range from 0 to 150 Hz, the de-
rived scalar transmissibilities T2-3( )  of output 
measurements at location ‘2’ with reference-outputs 
of location ‘3’ are depicted in Figure 2 for various 
boundary damage cases. From the figure, clear 
changes in the scalar transmissibilities related to the 
different boundary damage condition can be observed, 
i.e. changes in amplitude, shape and position of the 
frequency peaks. These changes in the transmissibil-
ity functions form the basis of the damage identifica-
tion approach. 

Next, to enhance the damage fingerprints embed-
ded in the transmissibilities, residual transmissibility 
functions were determined by calculating the differ-

ences between the scalar transmissibility functions of 
the undamaged and the various damaged models of 
the structure following Eq. 7. These residual trans-
missibility functions form the damage index used 
subsequently by ANNs for pattern recognition and 
boundary damage identification. 

 

Figure 2.  Scalar transmissibilities T2-3(ω) of various boundary 
damage cases of 1 % noise pollution. 

4.2 Data compression with PCA 

Using full-size residual transmissibility functions as 
inputs for ANN training is not efficient and can also 
lead to convergence problems due to the large data 
size. A full-size residual transmissibility function 
generated from ambient vibration analysis contains 
8,192 spectral lines and covers a frequency range of 
0 to 500 Hz. This corresponds to 8,192 input nodes 
in the neural network, which would cause severe 
problems in training convergence in addition to 
computational inefficiency. Even a reduced size re-
sidual FRF, which covers a frequency range from 0 
to 150 Hz still contains 2,458 spectral lines. There-
fore, Principal Component Analysis (PCA) is pro-
posed in this study to reduce the size of the residual 
transmissibility functions. PCA was developed by 
Pearson (Pearson 1901) and is one of the most pow-
erful statistical multivariate data analysis techniques 
for achieving dimensionality reduction. Besides the 
benefit of data reduction, PCA is also a powerful tool 
for disregarding unwanted measurement noise. In 
this investigation, the MATLAB function ‘princomp’ 
was used to reduce the size of the residual transmis-
sibility functions. Therefore, for each of the 30 de-
rived transmissibility correlations, the reduced resid-
ual transmissibility functions ResTij(ω) of all 
investigated boundary damage cases and all noise 
pollution levels were combined to form 30 different 
PCA matrices. While the columns of the matrices 
were formed of the 2,458 spectral lines of the re-
duced residual transmissibility functions, the rows 
comprised 1000 captured samples (10 boundary con-
dition scenarios × 5 boundary damage data sets × 5 
undamaged data sets × 4 levels of noise pollution). 
After PCA transformation, the 2,458 spectral lines of 



the reduced residual transmissibility functions were 
projected onto their 2,458 PCs. To compress the size 
of the PCA transformed reduced residual transmissi-
bility functions, the most dominant PCs that contain 
sufficient enough information to allow the identifica-
tion of damage had to be determined. Therefore, the 
PCs of higher power were plotted in graphs for vis-
ual evaluation. As example, Figure 3 displays the 
first 18 PCs of reduced residual transmissibility func-
tions of various boundary damage cases of 1 % noise 
pollution of data derived from transmissibility corre-
lation T2-3(ω). For each depicted scenario, three dif-
ferent data sets are displayed, each generated from 
different sets of noise pollution. From the figure, it 
can be seen that the first 10 PCs show clear distin-
guishable patterns for the different boundary damage 
cases. The PC values of the 11th component onwards 
are small, indicating their insignificant contribution 
for the investigated cases. Further, the three data sets 
of each scenario group together, and thus they are 
represented by the same/similar PCs. Such clustering 
behaviour and the distinct PC patterns of the differ-
ent boundary conditions are ideal conditions for neu-
ral network based pattern recognition. From these 
findings it was concluded that it was sufficient to use 
the first 10 PCs as input parameters for the ANN 
training. 

 

Figure 3. The first 18 PCs of reduced residual transmissibility 
functions of various boundary damage cases for transmissibility 
correlation T2-3(ω) of 1 % noise pollution. 

4.3 Artificial neural network design 

To extract the damage patterns in the derived PCA 
transformed reduced residual transmissibility func-
tions, a number of multi-layer back propagation neu-
ral networks were created. The design and operation 
of all neural networks was performed with the soft-
ware Alyuda NeuroIntelligence version 2.2 from 
Alyuda Research Inc (Alyuda Research Inc 2006). In 
total 30 individual networks and one network en-
semble (fusing the outcomes of the individual net-
works) were designed. The individual networks were 
trained with the first ten PCs of the reduced residual 
transmissibility functions obtained from the 30 dif-

ferent transmissibility correlations. The network en-
semble was trained with the outcomes of the 30 indi-
vidual networks. The results of the individual net-
works were then compared against the results of the 
neural network ensemble to demonstrate the advan-
tage of the network ensemble. For the network out-
comes, the networks were designed to categorise the 
conditions of the four joint elements as either fixed 
or pinned in a winner-takes-all fashion. As such, the 
network outputs comprised four output nodes. As ex-
ample, the desired network output for boundary con-
dition PFFF was {1,0,0,0}. To avoid over fitting, the 
input data were separated into training, validation 
and testing sets. While the network was trained with 
the training samples, its performance was supervised 
utilising the validation set to avoid over fitting. 
Therefore, for each of the 30 different transmissibil-
ity correlations, the 1000 available samples were di-
vided into three sets of 600 samples for training, and 
200 samples each for validation and testing.  

5 RESULTS AND DISCUSSIONS 

The testing set outcomes of the 30 individual neural 
networks are shown in Figure 4. The outcomes are 
given in mean correct classification rate error 
(MCCRE), which is defined as the error of the num-
ber of correctly predicted boundary condition cases 
normalised by the total number of cases.  

 
  

Figure 4. Testing set outcomes (in MCCRE) of the 30 trained 
individual networks. 

From the figure, it can be observed that the net-
works trained with data from transmissibilities of 
reference-outputs from locations ‘1’, ‘3’, ‘4’ and ‘6’ 
correctly identify all boundary damage cases, while 
some networks of reference-outputs from locations 
‘2’ and ‘5’ give error values of around 50 %. The 
reason for this phenomenon is that locations ‘2’ and 
‘5’ are located on the symmetry axis of the two-
storey framed structure and are therefore less sensi-
tive to transmissibility function changes due to sym-
metric boundary condition modifications. The final 
boundary identification results of the network en-
semble, that fuses the outcomes of the 30 individual 



networks, give precise boundary damage classifica-
tions with 0 % MCCRE for all investigated boundary 
scenarios and all noise pollution levels. These out-
comes demonstrated that network training in a hier-
archical network ensemble is highly efficient in fil-
tering poor results from underperforming networks 
and in delivering results that are at least as good as 
the best outcomes of any of the individual networks. 
The outcomes further show that it is feasible to iden-
tify boundary damage in a multi-storey build-
ing/structure based on ambient floor/cross-beam 
measurements. This has great benefits for practical 
applications as it is usually very challenging to in-
stall measurement equipment at wall elements of 
multi-storey buildings, while measurements of ambi-
ent floor vibrations are easier to obtain. 

6 CONCLUSIONS 

This paper presented an output-only damage identifi-
cation method that uses scalar transmissibility func-
tions obtained from ambient floor vibration meas-
urements to identify boundary damage in a multi-
storey framed structure. In the proposed method, 
embedded damage patterns in scalar transmissibility 
functions are extracted using a hierarchical system of 
network ensembles to identify different boundary 
condition scenarios in a numerical two-storey framed 
structure. In the network ensemble, first, a number of 
individual networks were trained with data separated 
by various transmissibility correlations and then, the 
outcomes of the individual networks were fused in 
the network ensemble to give final damage predic-
tions. PCA techniques were adopted to extract dam-
age features from residual transmissibility functions 
and to compress large-size FRF data to make them 
suitable for neural network training. White Gaussian 
noise of up to 10% noise-to-signal-ratio was added to 
data of the numerical structure to simulate field-
testing conditions. The results showed that the pro-
posed method is capable of accurately and reliably 
identifying boundary damage in complex multi-
storey structures based on output-only ambient floor 
vibration measurements. The final damage identifica-
tion outcomes obtained from the network ensembles 
precisely estimated the boundary conditions of all 
investigated damage cases. These positive outcomes 
demonstrated the efficiency of the proposed hierar-
chical network ensemble approach. Further, the pre-
sented study showed that the proposed damage iden-
tification approach, which uses scalar 
transmissibility function data from only vertical am-
bient floor vibration response measurements com-
bined with PCA and ANN techniques, has great po-
tential to be used for online structural health 
monitoring. 
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