
A Generic Architecture for SOAP Transaction
Management

Lyndal Kanagasabai 1,2, Wayne Brookes 1

'University of Technology, Sydney,
PO Box 123, Broadway NSW 2007, Australia

2Insession Technologies
Level 13, 234 George Street, Sydney NSW 2000, Australia

Lyndal.J.Kanagasabai@uts.edu.au, brookes@it.uts.edu.au

Abstract. Web Services and SOAP, the Simple Object Access Protocol, looks
set to become not only the cornerstone of transactions between businesses, but
SOAP is also is an emerging protocol for application interoperability within
organisations. A successful, standard, transaction management protocol for
SOAP is vital to its ongoing success, yet there is no single protocol standard
emerging. A generic transaction management architecture is proposed to solve
the problem of conflicting standards by concurrently supporting Web Service
partners which use different transaction management protocols. A prototype of
such an architecture was developed, for both the BTP and TIP protocols,
showing that not only is the proposal feasible, but that it can meet all of SOAP's
distributed transaction management requirements, without the need to wait for a
suitable, ubiquitous protocol to emerge.

1 Introduction

Web Services are emergmg as a key paradigm for supporting application
interoperability, primarily in a business-to-business (B2B) environment. Web
Services are based upon three core standards: SOAP (Simple Object Access
Protocol), WSDL (Web Services Description Language) and UDDI (Universal
Distribution, Discovery and Interoperability). However, these three basic Web
Services standards do not address all of the necessary requirements for successful
application interoperability. This paper focuses on one of the requirements that is
lacking - transaction management.

An electronic transaction is a well-established concept. It represents a set of basic
operations that must be treated as a single, indivisible activity to the user.
Traditionally, a transaction requires the ACID properties of atomicity, consistency
and isolation from other transactions, as well as being able to produce durable results.

Web Services are a unique concept in distributed transaction processing, because
they are intended for B2B communication between partners, without requiring a trust
relationship or prior arrangement. It is generally agreed that traditional distributed
transaction protocols, with an emphasis on strict ACID properties, are not suitable,

mailto:Lyndal.J.Kanagasabai@uts.edu.au,
mailto:brookes@it.uts.edu.au

96 97

because they require resources to be blocked for the duration of a transaction,
something that is not appropriate in an Internet environment.

However, the machine-independent nature of the Web Services protocols makes
them not only useful in a B2B scenario, but also for performing distributed
transaction processing within an organisation's intranet. Web Services in an intranet
environment may take one of two forms. In the simplest case, SOAP can be used as a
protocol to expose the existing interfaces of legacy applications as Web Services,
without fundamentally changing the applications themselves. Or in a more complex
scenario, Web Services can be used to enable Enterprise Application Integration
(EAI), by supporting interactions between existing heterogeneous systems. .

Here we characterise the use of Web Services into three different application
scenarios, each with differing transactional requirements:
- Legacy. In the more conservative legacy scenario, full ACID properties of

transactions normally must be preserved. The transaction will still occur within a
trust boundary, application logic remains the same, and hence full atomicity,
consistency, isolation and durability are required.

- B2B. For the other extreme, B2B, allowances must be made for long-running
transactions, so a "relaxed" version of ACID transaction management is required.
Transactions occur across trust boundaries (between organisations), and in a less
secure environment, so locking of transactional resources is not advisable.

- EAI. Between these two lies the EAI scenario, in which transactions may be short
or longer-lived, and depending on the organisation's structure, trust boundaries
mayor may not be crossed. Hence some mixture of support for ACID and relaxed
ACID transactions is a likely requirement.
The industry has not yet reached consensus on a protocol for Web Services

transaction management. Three important industry groups, to address the varied
requirements, have proposed three different protocols: TIP (Transaction Internet
Protocol), BTP (Business Transaction Protocol) and the combination of WS-
Coordination and WS-Transaction.

Although each of these protocols attempts to address some or all of the transaction
management requirements, they are not compatible with each other. The last protoc~1
pair, WS-Coordination and WS-Transaction, has only recently been proposed, and IS

not specified to an extent suitable for implementation. At this stage, it is not possible
to predict which protocol, if any, will eventually attain broad acceptance, although
BTP and WS-CoordinationlTransaction appear to be the more likely candidates.
Hence any vendor developing Web Services software is left in a quandary as to the
most appropriate protocol to implement. .,

This paper outlines a generic architecture for Web Services transaction
management, which can be used in a B2B, EAI or simple legacy application scenario,
using SOAP as the Web Services transport protocol. The architecture is intended to.be
suitable for concurrent implementation and use of any or all of the transaction
management protocols mentioned above, and hopefully, any future protocols that may
be introduced for distributed transaction management.

This paper first introduces the different transaction management protocols for
SOAP and discusses their suitability for the different usage scenarios (Legacy, B2B,
EAI). Then the proposed generic architecture is introduced, followed by an overview
of a prototype implementation demonstrating the feasibility of the approach.

2 Protocols for SOAP Transaction Management

There are currently three candidate protocols for Web Services transaction
management: TIP, BTP and WS-Coordination/WS-Transaction as outlined below.

2.1 Transaction Internet Protocol

The Transaction Internet Protocol 3.0 (TIP) is defmed in an RFC [IJ, and currently
has IETF "Proposed Standard" status. TIP dates from before the first proposals for
SOAP and Web Services, and is both application and transport protocol independent.

TIP was designed with the ACID principles of transactions in mind, and
consequently does not consider the case of long-running transactions.

Although TIP was originally intended for communication between traditional
transaction managers, it has been suggested for use between a client application and
transaction servers. Indeed, in 200 I, Keith Evans, one of the TIP authors, suggested
that TIP is ideal for "web agency type applications, which act as brokers for the
services of other providers." [2J. Vogler, et al. [3J also suggest use of TIP for WWW
applications, and describe an example implementation. Both papers however, still
focus on full ACID transaction properties and do not acknowledge any WWW need
for supporting long-running transactions and autonomous organisations.

TIP could be a suitable approach for transaction management wherever SOAP is
used as a direct replacement for a legacy front-end, and for EAI scenarios where long-
running transactions are not required. Also, without some modification of the protocol
to allow it to be used directly between transaction participants, trust and security
issues mean that TIP is unlikely to be popular where autonomous parties' transaction
managers must communicate directly.

2.2 Business Transaction Protocol

The Business Transaction Protocol (BTP) Version 1.0 [4J was developed by the
OASIS Business Transactions Technical Committee. Unlike TIP, BTP messages are
XML-based. A SOAP binding is defmed (for carrying BTP messages), however BTP
could be used with any application message protocol.

BTP's major design goal is to cater for loosely coupled, distributed, transaction
applications between autonomous organisations without assuming strict ACID
principles of transactions.

BTP transactions are categorised as either atoms or cohesions. An atom is a
transaction with all the ACID principles, except it relaxes the isolation principle [5].
A cohesion also relaxes ACID, by allowing the participants to negotiate the atomic
properties of the transaction. In a cohesion, consistency is maintained, the isolation
principle is relaxed as with atoms, and durability is also relaxed [5J.

The BTP protocol cannot achieve full ACID, due partly to its semantics and partly
to the heuristics used with its commit protocol.

The focus of all BTP development and discussion in the industry is towards true
B2B Web Services and solving the problem of managing long-running transactions

98 99

between autonomous participants. The BTP specification appears to accomplish this
goal by allowing transaction participants to themselves determine the degree of
ACIDity they will or must support, including a mechanism for dynamic negotiation,
but fails to explicitly cater for transactions with full ACID.

3 A Generic Transaction Gateway

2.3 WS-Coordination and WS-Transaction

Given that there is no single transaction management protocol that fulfils all of the
requirements of different applications of Web Services, this paper proposes a gateway
approach to allow SOAP applications to simultaneously support multiple transaction
management protocols using a single, protocol-agnostic API. Further, it theoretically
means that any single, nested transaction may in reality be implemented with different
transaction protocols between the various transaction participants.

Analysis of the transaction management protocols has shown several areas of
commonality between them that make the concept of a gateway architecture possible.
The most fundamental aspect of commonality is the basic model of interaction: in all
cases, applications "talk" to a transaction coordinator that implements the protocol.
The second area of commonality is the APls used between applications and the local
transaction coordinator. In TIP, BTP and WS-Coordination/Transaction, the APIs are
roughly equivalent in terms of abstract function, but the abstract functions are known
by different names in each protocol. In essence, the most significant difference
between the transaction management protocols is the "across the wire" messages and
states between transactional nodes.

After examining the currently available transaction management protocols for
SOAP, a generic transaction gateway would need to meet the following requirements:
- Concurrently support multiple transaction management protocols, and interoperate

with any standard-conforming implementation of each protocol it supports;
TIP and BTP must be supported at a minimum;

- Be extensible for any future protocols that may become prominent, especially WS-
Transaction and WS-Coordination;

- Be portable across different platforms and able to be integrated into different
transaction processing architectures;

- Allow a node to simultaneously take the role of transaction participant and/or
coordinator;

- Support the nonnal architectural requirements of distributed transaction processing
systems, such as scalability, reliability, short response times, high availability and
cost-efficiency;

- Be compatible with SOAP when applied to legacy, B2B and EAI scenarios.

WS-Coordination and WS-Transaction are sister specifications for Web Services
transaction management, published by IBM, Microsoft and BEA in [6] and [7].

WS-Transaction defmes the protocol sets that can be used for transaction
management and includes options for both atomic and long-running transactions. WS-
Coordination is described in its specification as "an extensible framework for
providing protocols that coordinate the actions of distributed applications." It could
also be defmed as an XML-message-based API for transaction participants to create
transaction contexts and to register for the various transaction management protocol
options provided by WS-Transaction.

WS-Coordination and WS-Transaction provide support for SOAP's major
transactional requirements by supporting both ACID and long-running transactions.

The WS-Coordination and WS-Transaction specifications have been published for
"review and evaluation only." As such, they are not rigorous specifications, omitting
some details such as error recovery procedures and message formats (other than in
external schemas). Therefore, the specifications are not at a stage where a third party
could accurately implement them - an implementation could only be built from these
specifications by making assumptions about the missing details.

However, from the details that have been published, it appears that these protocols
will be suitable to all of the scenarios where SOAP could be used, in legacy, B2B and
EAI scenarios, due to their support for both atomic and long-running transactions.

2.4 Summary of Candidate Protocols

Of the three protocols presented, WS-CoordinationiTransaction is promising but still
immature, therefore at the present time, BTP and TIP are left as the two most suitable
contenders for SOAP transaction management.

However, considering the legacy, B2B and EAI scenarios, neither protocol
completely meets the requirements of each. BTP caters only for relaxed isolation and
atomic principles, which is not suitable for legacy scenarios. TIP provides full ACID
support, but does not directly satisfy the requirements of long-running transactions.

The most ideal implementation would use a combination of both TIP and BTP and
be extensible to WS-CoordinationiTransaction. This is possible given the similarities
in architecture between the three protocols. An additional benefit of such a solution is
that the resulting implementation would be compatible with solutions from multiple
vendors, regardless of which of these three transaction management protocols they
eventually choose for use in their products.

3.1 Transaction Gateway Architecture

At a high level, the architecture consists of two main parts, as shown in Fig I:
- Transaction Gateway API (TGAPI) that provides an interface for applications

using the Gateway;
- The Transaction Gateway component itself.

100 101

Application Transaction
- Gateway

(TGAPI ••
3.2 Prototype and Results

(Not Implemented
for this project)

For this project, a prototype of the Transaction Gateway architecture was
implemented, as a proof of concept. Both the Transaction Gateway API (used by
clients) and a Transaction Gateway itself were implemented.

Only limited transaction management functionality was implemented for this
project, but sufficient to demonstrate the architecture's feasibility, namely:

Begin a TIP "push" transaction;
Begin a BTP transaction;
Begin a BTP transaction with context.
These functions included implementation of the applicableprotocol-levelmessages

required to facilitate these, e.g. TIP PUSH command and BTP ENROLcommand.
The tests conducted demonstrate that the Transaction Gateway architecture meets

the following requirements:
TIP and BTP can be concurrently supported, and the architecture is theoretically
extensible to WS-CoordinationlTransaction;
It is possible to create a generic API that encompasses functions from the different
transaction management protocols (and supporting both ACID and relaxed ACID
requirements);
Allows a node to act in transaction participant and/or coordinator roles;
Is compatible with SOAP;
Supports geographically distant nodes.

Most importantly, the gateway allows a client (the transaction coordinator)to begin
a transaction using any of the transaction management protocols supported by the
gateway merely by specifying the required protocol at the time the connection to the
gateway is opened. The same API for creating and managing transactions is used
regardless of which protocol is selected, reducing both the complexity of the client
code and removing the need to install protocol-specific libraries on the client. A
single client can even participate in transactions using multiple protocols
simultaneously, by opening multiple connections to the gateway.

Fig. 1. Transaction gateway relationships

The Transaction Gateway API provides a consistent interface for programmatic
users (applications and/or a SOAP service component and/or a higher level wrapper
API) to initiate, control or participate in distributed transactions, independent of the
transaction management protocol being used. It provides the means for the user to
choose the transaction management protocol that will apply to the transaction for its
duration, if the user is a transaction coordinator (client).

The Transaction Gateway component bridges in both directions between requests
and responses delivered by the API and the transaction management protocol that is
being used for a particular transaction. It implements the fmite state machines of the
protocols it supports, implements persistence where required and performs other tasks
as required for conformance with the appropriate specifications and standards. It is
responsible for interfacing to the lower layer protocols (SOAP, HTTP, TCP, etc.) and
uses the services of the local transaction manager provided by the operating system to
start, stop and abort transactions locally, on behalf of the application.

Internally, the Transaction Gateway consists of sub-components for processing
API requests and sending API responses, for implementing the various transaction
protocols, and for interfacing to lower layer transport networks, as shown in Fig 2.

API Management 4 Conclusion

SOAP Transport

TCP Transport

This paper has investigated the field of transaction management, from the viewpoint
of business-to-business, legacy and EAI applications of the SOAPprotocol.

It has found that all three types of SOAP applications have much in commonwith
traditional management of distributed transactions. However, the business-to-business
nature of Web Services, and to some extent, EAI applications, is likely to require
relaxed ACID semantics, in order to accommodate long lived transactions, an
unstable environment and the spanning of trust boundaries by transactions.

Although the theoretical basis for addressing these issues is well-established,new,
standardised, transaction management protocols are required to apply this theory, as
well as support the traditional full-ACID properties for legacy applications,so that
heterogeneous transaction management environments can interoperate.

~----''')(JOpen or proprietary TM

Fig. 2. Transaction gateway internal structure

102

There has been significant industry activity towards various aspects of this goal.
Three distributed transaction management protocols have received the main industry
focus: TIP, an IETF protocol, BTP, proposed by the OASIS consortium and WS-
Coordination/Transaction which was put forward by BEA, Microsoft and IBM.

Despite these efforts, no technology yet appears to be emerging to become the
ubiquitous solution that is required. It leaves the industry in a situation where the
interoperability promises of SOAP and its associated standards are compromised due
to the lack of a single distributed transaction management protocol that can be relied
upon as a standard, de facto or otherwise.

To address this interoperability problem for distributed SOAP transaction
management, this paper proposes a generic transaction management architecture as a
solution. The intention is to work around the problem of conflicting standards, by
allowing an application to participate in transactions with other applications, even if
multiple heterogeneous transaction management protocols are used by those other
applications. The Transaction Gateway approach is designed to concurrently support
any or all distributed transaction management protocols that may conceivably be
required for SOAP, yet provide a single, protocol-independent API for use by
transaction participants.

The design, development and prototype development of the proposed Transaction
Gateway, and the subsequent tests run against it, have demonstrated that it is a viable
concept. It is capable of using existing infrastructure facilities for communications,
and most importantly multiple distributed transaction management protocols can co-
exist in the one product, sharing a common API.

References

1. Lyon, J., Evans, K., Klein, J.: Transaction Internet Protocol Version 3.0. Internet
Engineering Task Force RFC 2371 (1998)

2. Evans, K.: Transaction Internet Protocol: Facilitating Distributed Internet Applications. In:
W3C Workshop on Web Services, San Jose, CA, USA (2001)

3. Vogler, H., Moschgath, M. L., Kunkelmann, T., Grunewald, J.: The Transaction Internet
Protocol in practice: reliability for WWW applications. In: Internet Workshop '99 (IWS'99)
(1999) 189-194

4. Ceponkus, A., Dalal, S., Fletcher, T., Furniss, P., Green, A., Pope, 8.: Business Transaction
Protocol [Online). Organization for the Advancement of Structured Information Systems
(2002) Available: http://www .oasis-open.org/committeesldownload. php/I 184/2002-06-
03.BTP _cttee_spec_l.0.pdf [Accessed 12 Dec 2003]

5. Potts, M., Cox, 8., Pope, 8.: Business Transaction Protocol Primer [Online). Organization
for the Advancement of Structured Information Systems (2002) Available:
http://www .oasis-open.org/committees/business-
transactionsidocuments/primerlBTP _Primer_ vl.0.20020603.pdf [Accessed 12 Dec 2003]

6. Cabrera, L. F., Copeland, G., Cox, W., Feingold, M., Freund, T., Johnson, J., Kaler, c.,
Klein, J., Langworthy, D., Nadalin, A., Orchard, D., Robinson, I., Shewchuk, J., Storey, T.:
Web Services Coordination (WS-Coordination) [Online]. IBM developerWorks (2003)
Available: http://www.ibm.com/developerworks/library/ws-coor/ [Accessed 12 Dec 2003]

7. Cabrera, F., Copeland, G., Cox, 8., Freund, T., Klein, J., Storey, T., Thatte, S.: Web
Services Transaction (WS-Transaction) [Online). IBM developerWorks (2002) Available:
http://www.ibm.com/developerworks/library/ws-transpec/ [Accessed 12 Dec 2003]

http://www.ibm.com/developerworks/library/ws-coor/
http://www.ibm.com/developerworks/library/ws-transpec/

Savitri Bevinakoppa and
Jiankun Hu (Eds.)

Web Services: Modeling,
Architecture and Infrastructure

Proceedings of the
2nd International Workshop on
Web Services: Modeling, Architecture and Infrastructure
WSMAI2004
In conjunction with Ions 2004
Porto, Portugal, April 2004

INSTICC PRESS
Portugal

Workshop Chairs
Savitri Bevinakoppa (savitti@cs.nnit.edu.au)
Royal Melbourne Institute of Technology
Australia

Table of Contents

Foreword.. ill

And Table of Contents v

Jiankun Hu Giankun.hu@nnit.edu.au)
Royale Melbourne Institut of Technology
Australia

Invited Speakers

Program Committee
Albert Y. Zomaya, CISCO, USYD (Australia)
Alex Delis, Polytec University (USA)
Boualem Benatallah, University of New South Wales (Australia)
Jean-Jacques Moreau, Canon (France)
Jen-Yao Chung, IBM (USA)
Jorge Cardoso, University of Georgia (USA)
Steve Vinoski, IONA (USA)
Sumi Helal, University of Florida (USA)
Yetongnon Kokou, Universite de Bourgogne (France)
Jin Song DONG, NUS (Singapore)
Jose Miguel Baptista Nunes, Sheffield (UK)

Extending Web Services Bindings for Real-world Enterprise
Computing Systems 1
Steve Vinoski

Full Papers

Development Life Cycle of Web Service-Based Business Processes.
Enabling dynamic invocation of Web service at run time.......... 9
Dimka Karastoyanoua and .Aleiandro Buchmann

Giving Meaning to GI Web Service Descriptions 23
Florian Probst and Michael Lutz

A Comparison of UML and OWL in the Travel Domain 36
Jennifer Sampson

Compositional Construction of Web Services Using Reo 49
Nikolqy Diakov and Farhad Arbab

Scalable Continuous Query System for Web Databases 59
Ather Saeed and S avitri Bevinakoppa

Towards Modeling Web Service Composition in UML 72
Rqy Gronmo and Ida Solheim

Posters

Integration of Heterogeneous Web Service Components................. 87
Xi'!iian Xu and Peter Bertok

A Generic Architecture for SOAP Transaction Management 95
Lynda! Kanagasabai and W ~ne Brookes

Implementation of a Web Services Based Recruitment Platform
for Student Jobs 103
Rami Hansenne, Veerle Van der S!1!YSand Bartel Van de Walle

Author Index .. 121

Design Framework for Domain-Specific Service Interfaces 109
George Feuerlicht and Sooksathit Meesathit

A Mobile Adaptive Web Services Environment 116
Celso Maciel da Costa and G1!Y Bernard

