
“© 2004 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.”

Developing a Requirements Management Toolset: Lessons Learned

Muhammad Ali Babar a, Didar Zowghi b

a National ICT Australia Ltd. and University of New South Wales, Australia , b University of
Technology – Sydney

malibaba@cse.unsw.edu.au, didar@it.uts.edu.au

Abstract

Requirements Engineering (RE) is a multi-faceted

discipline involving various methods, techniques and
tools. RE researchers and practitioners are
emphasizing the importance of having an integrated
RE process. The need for an integrated toolset to
support the effective management of such an
integrated RE process cannot be over-emphasized.
Tools integration has been identified as an important
next step toward the future of requirements
management tools. This paper reports on some of the
significant architectural and technical issues
encountered and the lessons learned in the process of
developing an integrated Requirements Management
(RM) Toolset: PARsed Natural language Input
Processor (PARSNIP) by integrating various
independent tools. This paper provides insights on
architectural and technological issues typical of these
types of projects, the approaches and techniques used
to address the architectural mismatches and the
technological incompatibilities.

1. Introduction

Requirements engineering (RE) is the process that
incorporates all the activities required to identify,
analyze, document, and manage the requirements of a
software-based system. RE is considered one of the
most complex and difficult activities and any
deficiency in this process may lead to project failures
[19]. It is a multi-faceted discipline involving various
methods, techniques and tools; and requirements
engineers are expected to have a wide variety of skills
drawing upon a number of disciplines. To enable
effective management of such a core and challenging
process, the importance of automated support has long
been realized [27-28]. Such tools are supposed to
facilitate the process of managing functional and non-
functional requirements of large and complex software

systems. Automated support for the RE process can be
of great benefit to a requirements engineer in
successfully performing a number of tasks throughout
the software development lifecycle; e.g. requirements
management, requirements structuring, consistency
checking, managing requirements creep, traceability,
and so forth [6, 17]. Commercial and research
organizations have developed a number of tools (For
example, RequisitePro, Reconcile, and DOORS to
name a few) that can assist in the various tasks of the
RE process.

RE researchers and practitioners have also been
pressing the need for an integrated RE process. It has
been argued that instead of applying different RE
methods, techniques and activities during various
development stages, an integrated approach to manage
the RE process is essential to gain the true benefits of
applying engineering principles to this domain [20].
The RE community is not only working continuously
on developing and validating various approaches to
manage and integrate a variety of RE methods,
techniques and activities in a coherent fashion, but it is
also pressing the need for an integrated toolset to
enable the effective management of an integrated RE
process. Such a toolset needs to incorporate as many of
the desirable functionalities provided by individual RE
tools as possible [1]. A user of such an integrated
toolset should be able to interact with the environment
through a uniform interface without facing each tool’s
idiosyncratic interface. An integrated toolset also
eliminates the need to keep the same or similar
information in multiple repositories and the need to
provide the same information multiple times to
different individual tools. Moreover, when there are so
many tools available, the development of an integrated
support environment by integrating existing tools is a
more plausible choice [13, 30].

We undertook a research and development project
to investigate the architectural issues, approaches, and
techniques required to successfully develop a RM

Figure 1The PARSNIP system as composed of various subsystems [22]

toolset by integrating a number of stand-alone RE
tools. The aim of the project was to design and develop
an integrated toolset that not only tightly integrates a
number of stand-alone systems developed to provide a
number of functionalities to support RE process (e.g.,
CARL, CARET etc.) but is also flexible and extensible
enough to support future enhancements. The available
standalone systems were fully functional and capable
of performing their respective functions independently.
To support the RE process in a coherent fashion, these
systems needed to be assembled into an integrated RM
toolset that could easily be maintained and enhanced.

This paper presents the insights we gained while
developing a component-based RM toolset. The paper
is organized as follows: section 2 provides a brief
overview of the toolset and its three components.
Section 3 talks about the architectural issues and our
approach to addressing them. Section 4 explains
PARSNIP’s architecture. Section 5 describes
integration approach. Section 6 presents the
technological choices. Section 7 describes the lessons
we learned and section 8 contains the conclusions.

2. An overview of the toolset and its
components

Being an integrated RM toolset, PARSNIP provides
a number of functions and features to support various
activities of the RE process (such as domain modeling,
requirements structuring, requirements management,
consistency checking etc.) in a coherent fashion. To
enable PARSNIP to support a wide range of RE
activities, it consists of a number of independent or
standalone tools. A high level view of PARSNIP has
been shown in figure 1 using package notation with
system and subsystem stereotypes of Unified Modeling
Language (UML) [22].

This high level representation of the structural
organization of PARSNIP shows that it can easily be
decomposed into a collection of sub-systems.
However, we have already mentioned that each of the
sub-systems incorporated into PARSNIP is an
independent system at different levels of abstraction.

Like any other well-structured system, PARSNIP is
functionally, logically, and physically a cohesive
system, formed of loosely coupled subsystems. The
aggregation relationship between PARSNIP and its
sub-systems also demonstrates its extensibility by
incorporating other systems, which are designed and
developed to work as sub-systems if required.

The Computer-Assisted Requirements Evolution
toolset, CARET, has been developed to provide a
support environment to reason about inconsistencies
during requirements evolution [7]. Requirements are
entered as expressions in logical notation; each logical
expression must have a priority (a numerical value)
attached to it and it may also have a description of the
requirement in natural language (English only). The
algorithm for checking and reporting any inconsistency
between requirements of a requirement set has been
based on proven and well-known theories of classic
logic, non-monotonic reasoning, and belief revision.
CARET performs consistency checking on sets of
requirements based on theoretical concepts, which
have been extensively published in research literature
[7] so our paper does not elaborate on any of these
concepts.

The tool X1 supports requirements specification and
procurement process. It was developed by our
industry partners. This tool provides a Graphical User
Interface to structure and manage requirements, along
with a single repository to store requirements at
various stages of the software development process. It
also provides process support in developing and
managing requirement specifications and evaluating
responses to them. The process guidance is embedded
in its GUI and is reflected in its repository structure.

 The Computer-Assisted Reasoning in natural
Language (CARL) toolset was developed as a
prototype tool to apply the CARET framework to
natural language requirements and this work has been
reported in [6]. This component was using Cico as its
kernel for natural language parsing. Cico is a domain-
based parser that uses shallow parsing techniques and
exploits knowledge about domain specific properties

1 Because of contractual constraints, we call it tool X.

[15, 16]. This natural language processing application
was intended to provide an interface for entering a
requirement in controlled natural language and
translating that requirement into logical notation
acceptable to CARET. However, there were a number
of problems with this type of ad hoc arrangement
between these applications, e.g. data had to be
transferred between tools using text files and the
parsing of compound nouns was problematical.

3. Architectural Issues and Approach

Software architecture (SA) is one of the initial and
most important design artifacts in software
development process. It has been shown that an
architecture-based approach to developing software-
based systems either from scratch or from existing
components is quite effective in minimizing the project
cost and increasing the quality of the end product [8].
Recently, the architecture-based approach has emerged
as a successful means of developing component-based
systems and managing complex system integration
projects. Rigorous effort invested in architectural
design and evaluation activities results in increased
comprehension of the system, better communication
among stakeholders, effective project management,
controlled evolution, and rapid development [4, 10].

SA provides a high level view of various
components of a system, connectors for the interaction
of those components, and their topological description.
SA exposes certain properties of a system, while
hiding their implementation details. Such an abstract
description of the system enables the development
team to abstract away the irrelevant details and
complexity and focus on the overall structure of the
system. An architecture-based approach focuses on
analyzing and evaluating the architecture of the
existing component through architectural
documentation or architectural archaeology. It
identifies any mismatches amongst those components,
Moreover, it encourages designing a high level
architecture that can result in a system that fulfills
functional and quality requirements, documenting,
disseminating, and maintaining the architectural
description, reasoning about the detailed design in the
context of high level architecture, and so forth [3, 9,
and 10].

Our initial architectural analysis of the candidate
components (i.e., CARET, CARL, etc.) revealed
architectural mismatches caused by the fact that each
of the candidates were developed with a set of
assumptions about the required architecture based on
the anticipated use of the system and understanding of

the developers. Each of the components was designed
and developed as a closed system without providing
any entry point except a User Interface, (UI). Apart
from conflicting architectures, components may not fit
easily together because of low-level problems of
interoperability, i.e., different platforms, conflicting
repository schemas, or incompatible programming
languages [3]. The components to be integrated had
these interoperability problems. Moreover, each of the
components has its own proprietary process model and
was aimed at providing its services as an independent
system throughout the requirement management
process. Making matters worse, there was hardly any
documentation on architectural and implementation
decisions taken for those systems.

Developing software systems by composing a
number of independent components, each of which
was designed and developed without any thought of
reuse or potential integration, require a number of
fundamental and complex design decisions regarding
component interaction (e.g., communication,
coordination) and their structural composition. What
will be the respective role of each of the components in
the resulting integrated software system? Which
component will provide what service to other
components and in which sequence services will be
composed to provide an integrated service to the end-
user? Will service composition be visible to the end-
user or not? What integration techniques will be more
appropriate to accomplish the required tasks cost-
effectively and within available resources? Another
important issue was to make a decision regarding the
data repository of the integrated toolset. Each of the
components had a repository with a very peculiar
logical and physical structure. The two obvious options
were to keep a repository for each component separate
or develop a shared repository by reengineering the
data models of the existing repositories.

Apart from these integration issues, there were a
number of architectural, design, and implementation
problems in the available components. Having
analyzed the PARSNIP’s requirements, existing
components and available resources, it was obvious
that it may not be possible to implement all of the
components on a single platform using compatible
technologies. We needed an architecture that would
have interoperability and changeability embedded
within it; this architectural perspective was driven by
the requirement of developing a system that is easy to
use, maintain, modify, and integrate with other tools.
To answer all these fundamental questions and address
other complex issues it was decided to focus on
planning, designing, describing, evaluating and
documenting an appropriate architecture. Having

decided to make the architecture of the new system as
a cornerstone deliverable of our project, we planed,
designed and analyzed an architecture that could
ensure that the resulting system not only provides all
the functions of independent systems in an integrated
environment, but also meets a number of non-runtime
requirements such as maintainability, enhanceability,
and usability. As already mentioned we had to develop
our tool by assembling independently developed
components and that was why integrating those
components in an effective and efficient manner was
our primary concern. We attempted to design a new
architecture that complies with the constraints imposed
by those components; however, it also attempts to
compensate some of the architectural weaknesses
(such as inappropriate modularization, inflexible
repository structure, interface and business logic codes
intermingled and so on) found in the available
components. This architecture based approach to build
a software system by composing independent
subsystems paid off in terms of rapid development and
efficient use of project resources, which are some of
the major benefits of architecture-based development
reported in [12].

Figure 2 Logical Architecture of PARSNIP

4. The Software Architecture of PARSNIP

The most important goal of the project was to build
a flexible and extendable toolset by integrating
available independent tools. We decided to design an
initial high-level architecture and keep refining it
throughout the project lifecycle. We developed a
logical model of the integrated toolset based on our
understanding of the functionality required and
knowledge of components and code to be used during
implementation [18]. The high-level architecture of
PARSNIP is shown in Figure 2. This logical
architecture provides an abstract description of the

gross structure of the system, its components, their
organization and interaction with each other. The key
components of this architecture are the presentation,
computation and storage entities, i.e., GUI, integration
components, natural language parser and translator,
reasoning engine, share database, etc. These
components interact with each other using standard
connectors like client/server protocols, database
queries and request/reply.

Though we are presenting only a logical view of
our architectural description using package notation of
Unified Modeling Language (UML)[22], we also
developed other architectural views, e.g., development
view, deployment view etc. Each view captures a
specific set of concerns that are of interest to a given
group of stakeholders [11]. The logical architecture
provided the development team with a framework of
reasoning about the capability of the architecture to
satisfy quality requirements like maintainability,
modifiability and reliability.

The architecture of PARSNIP is designed so that it
not only allows a tight integration of the capabilities of
individual systems, but it also supports extensibility
and flexibility. During architectural archaeology of the
individual systems, we classified their functionalities
into two categories: unique services (consistency
checking, requirement structuring, natural language
processing, etc.) and generic functions (repository
management, requirements management, etc.). Two of
the systems being integrated also had their own models
of requirements process and of attaching attributes to a
requirement. The architecture of PARSNIP
encapsulates the unique services in self-contained
components. These self-contained components provide
their respective functionality through well-defined
interfaces whilst hiding implementation details [13].
We believe this modular approach will result in a
highly maintainable and easily extensible system.

The interface layer∗ provides a uniform means of
intering with the functions incorporated in the
integrated environment, i.e., managing requirements,
natural language processing, consistency checking,
domain modeling, etc. This layer combines and
enhances the functions provided by graphical and
command-line interfaces of each of the systems that
make up PARSNIP. This is one of the two components
(the integration component is the other) of our tool that
have almost been developed from scratch. The
presentation component is responsible fro ensuring that
the user’s experience with the environment is as
comfortable and uniform as possible. This component

∗ In this paper, we use Interface layer and presentation
component as synonyms.

also provides a more refined model of the requirements
process and the attaching of attributes to a
requirement. There is a certain process model
(described later) of managing requirements during
various stages of the software development process
using PARSNIP. The user is expected to adhere to this
process model to fully utilize the toolset; this process
control model is embedded in the interface layer and
provides the user sufficient process control guidance.
The reasoning engine component (previously CARET)
maintains different sets of requirements and identifies
a few semantically relevant operations that can be
performed on requirements of a particular set [7]. This
semantic model has been mapped onto the presentation
layer in a more flexible manner than the previous
implementation.

The integration component is a middleware layer
that tightly integrates all components to form an
integrated environment. This component is responsible
for seamlessly gluing all the components together and
for exposing the services of the shared repository,
natural language parser, and reasoning engine
components to a client component in a well-defined
and controlled fashion. This client component can
either be an interface layer as in PARSNIP or another
system that requires the services of any of the
components of PARSNIP. Apart from exposing the
functionalities of other components, the integration
component provides a number of housekeeping and
data processing functions such as data validation,
database connections, string parsing and manipulation,
assigning unique identifiers etc. When a client requests
a particular service, this component rigorously checks
and validates the data and service request before
forwarding them to the data repository or to an
appropriate component based on the nature of the
service required. It also receives the service failure or
success message from the serving component, sends an
appropriate database update request and informs the
client of the result.

The natural language processing component
processes the requirements and facilitates the process
of building a domain model for a particular project. It
accepts requirement sentences conforming to a
particular grammar. It uses Cico to generate a parse
tree for the sentence, and then translates that parse tree
into logical notation. It traces the usage of phrases in
requirement sentences, and prohibits the use of words
marked as impermissible. It also generates an English
paraphrase for the resulting logical form for user
confirmation. In PARSNIP, this component provides
its functionality in response to a message from the
integration component. Based on the nature of the
service request and the information arriving with the

message, it retrieves the required data from the shared
repository, processes it, stores the processed data back
in the shared repository, and informs the caller of the
results. We have developed our natural language
component by customizing Cico, a natural language
parser freely available to researchers, and by writing
code to translate the parse trees that Cico generates
into logical notation. Cico was developed primarily for
use with domain-based grammars, however, we use a
grammar based on English syntactic concepts instead.
Details about Cico have been published in [15, 16].

 The reasoning engine component is responsible for
detecting any inconsistency in the requirements set. It
also provides process support for managing
requirements by associating requirements to different
sets. Association with a particular set of requirements
has a semantic value that is stored along with the
requirement. The integration component reveals these
semantics to the user through the interface layer; it is
also used to mark the operations that are not
permissible in a particular context. For example, if the
reasoning engine has processed a requirement, general
requirements management operations (e.g., editing or
deleting) are not allowed unless the requirement is
rolled back to pre-reasoning engine stage. When the
integration component requires a service of the
reasoning engine, it uses an appropriate interface to
call the required service. The reasoning engine
retrieves the required data from the repository
component, performs the requested operations, stores
the processed requirement in the repository, and
informs the requester that the required operation has
been performed. If the reasoning engine detects any
inconsistency, it generates the maximal consistent
subsets and asks the user to select one of the consistent
subsets. An algorithm of checking and reporting any
inconsistency between requirements of a requirement
set has been based on proven and well-known theories
of classical logic, non-monotonic reasoning and belief
revision. The reasoning engine can only accept
requirements as expressions of non-monotonic
predicate logic; each logical expression must have a
priority (a numerical value) attached to it and it may
also have a description of the requirement in natural
language (English only) as an attribute. Theoretical
concepts used to develop the reasoning engine have
been reported in [7, 17].

The shared repository component provides a
centralized storage space to store the requirements, the
domain model and the attributes attached to the
requirements. It also provides centralized data
manipulation and management services. Data related
business rules have been implemented and stored on
the shared repository to provide high performance,

security and consistency in data access operations. The
shared repository component provides not only all of
the storage and related functions provided by the
individual components but also the functions required
to enforce data manipulation logic and to keep track of
the requirements when they are being processed by
different components. Since a requirement is
processed by different components throughout its
existence in the repository, it is an easy means of
sharing information between various components.

Instead of having a shared repository component, it
would have been quite straightforward to allow each
tool to retain its own original data repository, and
transfer requirements and metadata between tools
using a common data interchange format and an
appropriate IPC mechanism. Such an approach could
have saved a lot of effort required to reengineer the
individual repositories to design an integrated
repository. However, this solution would have required
far more effort to write code to generate and parse the
interchangeable files for each tool on each platform.
Moreover, this solution did not seem easily extensible
enough to accommodate any change in metadata or
relationships among requirements. We have already
mentioned that individual components had their
respective repository systems, relational or ASCII
files, with a very specific structure [17].

The shared repository has been designed to
combine the storage mechanism of individual
repositories of the components; and it emulates their
peculiar structures to minimize the required
modifications in each of the components. As a result of
this structural emulation, there is some data duplication
as the reasoning engine stores a requirement in logical
notation while its natural language equivalent already
exists in the repository. Keeping the data storage
requirements of the reasoning engine separate from the
other components of the tool required minimal code
modifications, which resulted in a much cleaner
solution and more rapid development.

5. Integration Techniques

Having designed and analyzed an architecture that
can result in a system capable of meeting the
functional requirements (Standard RM tool functions
and inconsistency management) and non-functional
requirements (maintainability and modifiability), we
started evaluating various options of implementing the
architecture. Again the logical architecture made a
number of design decisions quite easy. As it is obvious
from the logical architecture, we decided that our
integrated environment would incorporate the GUI and

requirement management functionalities of the tool X
and consistency checking functionality of CARET; and
the natural language parsing component would be used
to help the user build a domain model and translate the
requirements into a logical notation that is acceptable
to the reasoning engine. That means the focus of our
integration and development efforts was at three out of
four levels of Enterprise Application Integration
identified by D. Linthincum [5]: Data level, API level,
and UI level. Having evaluated different approaches to
make these components communicate with each other
despite incompatible technologies and platforms, we
narrowed our options to Data Integration and Control
Integration techniques [14, 17].

Data Integration is a technique of developing shared
data repositories to hold information that is shared by
different systems [14]. This is a simple and well-
established technique for integrating disparate
organizational systems as long as all systems store,
retrieve, and manipulate the information in a standard
format. We needed to have a high level of integration
among our tools to have them share their work to
provide the user a coherent service. It was necessary to
use a standard data format and structure. In this case,
implementing a data integration technique was a very
challenging issue as all the components to be
integrated were using different database schemas and
various types of software.

Control Integration is an approach to make different
systems interoperate using a message passing
technique. Tools integrated using this technique send
messages to each other whenever they need to share
some information or whenever a command is invoked
from a tool that requires the services of another tool
[14]. Message passing can be implemented either using
a centralized server or point-to-point messaging. We
decided to use a point-to-point message passing
technique because of its simplicity and ease of
development. We clearly defined the message
protocols that tools would use to communicate with
each other. Whenever a tool needs a service of another
tool, it sends a request message along with a required
service name and parameters to the tool, which can
provide that service; in this scenario, the service seeker
is called the client and service provider is called the
server. When the server tool receives a service request,
it processes the request and informs the client tool
through a response message.

Our logical architecture and integration approach
resulted in a flexible and scalable application whose
components have a minimum amount of knowledge of
the implementation details of each other. For example,
the presentation layer has almost no knowledge about
how data are validated, stored, and manipulated during

Figure 3 Deployment architecture of PARSNIP

the progression of requirements through various stages
of their life cycle. Thus, it focuses on what its main
responsibility is: providing the user with a uniform
interface to perform a number of RM tasks. The
integration component can easily be modified to access
data sources of other requirement management tools
that need natural language processing or consistency
checking services.

The logical tiers of PARSNIP can be deployed on
one or more physical tiers depending on the
organizational requirements. A small organization with
a modest number of projects, each with a few hundred
requirements, can easily deploy PARSNIP on one or
two machines. However, for large numbers of
requirements, deploying the natural language parser
and reasoning engine on dedicated machines will
certainly result in reduced processing time. We have
demonstrated that logical tiers of PARSNIP can
successfully be deployed on one or more machines.
Figure 3 shows one of the deployment options of
logical tiers. In this deployment, PARNIP has been
deployed on three machines: a Windows platform
containing the presentation, integration, reasoning
engine and shared repository components, a Unix
cloned platform with the natural language parser and
translator and another Windows platform hosting the
database server and data management logic
component.

6. Technological Choices

Given the time and resources available to the
project team, we chose relatively inexpensive and less
complicated techniques for integrating existing
components or developing new ones. As mentioned,
we felt that integrating all the components by using a
shared data repository was a more appropriate
technique to integrate the services of all the tools into
an integrated environment. We re-engineered the
individual data models of CARET and CASCAPS and

develop a data model that not only serves the needs of
the two tools, but also provides an integrated
repository. A data model has been implemented using
Microsoft Data Engine (MSDE) 2000. Since we
decided to store data manipulation logic on the data
service tier, MSDE seems quite natural progression
from Microsoft Access. The natural language parsing
component deployed on a Linux machine accesses the
windows based data repository over the network. The
database is used both to persistently store the data
along with any metadata used by the application and to
transfer the data and metadata between components
deployed on the windows and Linux platforms.

Once we implemented a common repository for all
tools, our next problem was to decide how to access
the Windows-based database from a Linux platform.
We considered two of the most reliable technologies
being used for this purpose: Easysoft’s Unix-ODBC
Bridge and DBD::Proxy [24, 25]. We experimented
with each, and decided on DBD::Proxy, since it was
cost effective and appeared to do all that we required.
Easysoft’s Unix-ODBC Bridge may have advantages
when dealing with a higher volume of transactions or
more complex applications, but for PARSNIP, we
decided to implement an open source solution rather
than a commercial one as a number of research
projects may not have the funds to buy commercial
products. Additionally, we intended to port our Linux-
based natual language component to Windows so that
the whole toolset would be deployed and managed on
a single platform.

The basic service, which the Linux-based
component provides to the Windows-based component
with, is the conversion of requirements sentences
expressed in natural language (i.e. English) into the
corresponding logic. Given a requirement ID, the
Linux-based natural language component reads the
requirement from the database, parses it, and then
stores the requirement in logical notation back in the
database. This communication is performed using the
same table the Windows components use to store data
persistently. Another issue was how to transmit the
requirement ID to the Linux-based component and
instruct it to retrieve the data from the shared
repository and commence processing. We could have
stored the parsing request and the requirement ID in
the database, but how then would the Linux
component know that it was there? It could poll the
database at regular intervals-but regular polling would
have resulted in a high number of accesses to the
database and communications across the network,
while infrequent polling would have made the
application non-responsive to the user. We needed
some kind of remote procedure call, so that the

Windows component could inform the Linux
component that its services are required. We decided
to use a Perl based technique called DBI as one of the
team members had expertise in quickly implementing
this technology.

DBI::Proxy uses a pair of Perl packages,
RPC::PlServer and RPC::PlClient, part of the PlRPC
distribution by Jochen Weidmann, to communicate
between the Linux and Windows components. These
packages implement a simple and Perl-specific remote
procedure call protocol. Although it is more limited,
has lower performance, and is less language-neutral
than a more advanced RPC mechanism (such as ONC
RPC, or CORBA) it is more than adequate for our
application. Since we were already using
RPC::PlServer and RPC::PlClient indirectly through
DBD::Proxy, we might as well use it for this task also.
The main program on the Linux side is called parsnip-
server.This uses RPC::PlServer to listen for incoming
network connections, and provides a procedure that
can be called from the Windows machine to read a
requirement sentence from the database, parse it and
store the results back into the database. The client
program, called parsnip-client, is located on the
Windows machine (although it can be run under Linux
also, where it was originally developed). Both of these
programs have been written in Perl. The parsnip-client
program takes a requirement ID as an argument and
calls the parse procedure on the Linux machine
running parsnip-server. It then saves to a temporary
text file the status of the parsing processing (either
"DONE" to indicate success, or an error message)
returned by the remote procedure call.
When a client component, e.g. presentation layer needs
to access the services provided by the natural language
component, e.g. glossary generation, translation etc, it
forwards its request through the integration component
using a message communication technique to inform
the parsnip-server. When the natural language
component finishes processing the request it sends a
message to the parsnip-client, which writes the
appropriate message to a text file and finishes. The
PARSNIP application reads the content of the text file
and takes appropriate action based on the result of the
parsing operation [23].

7. Lessons Learned

Requirements compromises may be inevitable -
when building a system out of available components,
all the stakeholders should be prepared for requirement
compromises. The specifications of the system may
need to be modified by taking into account the

architectural capabilities and functionality of the
components to be integrated. It may mean that some
requirements compromises may have to be made. The
functionality of the available components may not be a
precise fit for the user requirements or there may be
architectural tension between available components. In
such situations, it is very important that user
requirements are flexible and renegotiable.
An architecture-based approach to development
pays substantial dividends - we decided to focus on
the architecture of the new toolset and plan our
integration activities around that architecture. Our
experience with the architecture-based approach to
manage a project was quite positive. Focusing on the
architecture resulted in more refined and complete
requirements for the integrated toolset. Discussions on
the structure of the systems, its components and inter-
component communication resulted in increased
communication between stakeholders that caused
better comprehension of the requirements. We
designed our first cut architecture based on the domain
model, knowledge of the functionality provided by
each available system and analysis of the data models
and application code. Then we successively refined our
architecture as the interfaces of each component and
the requirements for the integrated toolset became
more comprehensible and clear. Our approach to focus
on the architecture of the system resulted in a system
that satisfies the required functional requirements as
well as quality requirements like maintainability and
modifiability. We demonstrated that the PARSNIP is
easily modifiable by replacing the reason engine's
original theorem-prover with another open source
thermo-prover in just one man day effort.
Recognize the role of architectural documentation -
a non-existence or lack of appropriate architectural
documentation makes the application integration or
system enhancement task very difficult and it may be
the single greatest impediment to modifiability or
maintainability of a system [29]. A clear and well
written architectural documentation is considered one
of the vital artifacts of a software project as it provides
the basis for architectural reviews, implementation
guidance, system evolution, and testing [31]. When we
began analyzing the independent systems to be
integrated, we found no documentation regarding the
architectural or implementation rationale; a situation
described as a common problem in [26]. We had to
perform architectural archaeology by studying and
analyzing the source code and functionality of the
available components and by locating and discussing
with the original architects/developers to find out the
rationale for their design decisions. It was a
painstaking process. Since we focused on the

architecture of the desired system, we documented our
architectural decisions and their rationale using
appropriate diagrams and models and kept this
documentation in step with the system implementation
decisions. The rigor in documenting the architecture
resulted in improved architectural documentation that,
we believe, will greatly facilitate the future
modification or integration efforts.
Be ready to carry forward some of the wrong
architectural decisions - when developing a system
using available components or legacy systems, it is
often easy and cost effective to carry forward some of
the wrong design decisions made by the component
developers. However, the effects of such decisions on
the overall functionality of the integrated toolset must
be carefully analyzed and documented along with the
architectural documentation. Our experience has
shown that it easy and less time consuming to
workaround the rigid design decisions reflected in the
source code of the components. Any attempt to correct
the bad design may require a huge effort for code
modifications and the gains may not be worth the
effort. We saved a lot of time and effort by not
attempting to correct the data model and class structure
of the reasoning component. We decided to change
only those parts of this component that required
minimum code modifications.
Evaluate and choose open source and commercial
technologies based on their appropriateness - We
used open source and commercial technologies
according to their capabilities to provide the
functionality required for our integration project. For
most of our implementations decisions, we evaluated
both open source and commercially available
alternatives and chose the one that promised to provide
ease of modification, deployment and management
within the time and monetary resources allocated to the
project. For example, we decided to implement the
tool's data repository on MSDE 2000 platform. We
considered the original implementation on Access
97/2000, open source solutions like MySQL and
Oracle9i as alternatives. However, we found MSDE
2000 more functionality-rich and scalable compared to
open source solutions like MySQL and easy to deploy
and manage compared to enterprise-level solutions like
Oracle. Other reasons for using MSDE2000 were that
it was a natural progression from MS Access97/2000,
it was compatiable with operating system (Windows)
and component infrastructure (COM+), and it can be
freely distributed with applications built using
Microsoft Technologies.
Learn from experiences and mistakes of others -
Through literature reviews and peer discussions we
found that there were a number of projects similar to

our project that had been successfully completed. We
realized that a number of aspects of a project could
benefit from discussions with system integrators and
architects of those projects. We gained very useful
insights by discussing our design decisions and
implementation alternative with them without
compromising the confidentiality or commercial
interests of our project. This lesson is especially
important for projects undertaken in research and
development institutes where budgetary and resource
constraints are a norm of the workplace. Keeping close
ties with the industry partners involved in the project
and other peers who had already worked extensively
with component technologies on integration projects
proved quite beneficial.
Use prototyping to elicit and clarify requirements-
It is quite possible that the customers or end-users may
not be able to anticipate all the possible uses of the
new system. Especially for large complex systems
being developed either from scratch or through
integration efforts, it is almost impossible to get clearly
specified requirements upfront. In such situations
prototyping is a useful technique to elicit and clarify
the end-user requirements [21]. In particular, user
interface prototyping is considered one of the most
effective means of eliciting user requirements to
improve the usability of an application [32]. At the
beginning of our project, there were some uncertainties
about the functions and features to be included in the
integrated toolset; that was why we relied heavily on
evolutionary prototyping, particularly in designing and
implementing the user interface component and data
model, and refining the parsing component. In this
way, we not only accelerated the delivery of the
application but also evaluated the side effects of any
new function or feature to allow us accept or reject
proposed changes in a cost effective manner.

8. Conclusions

This paper presents our experience of developing a
component-based RM toolset, PARSNIP. We have
shown how we successfully managed a number of
issues caused by architectural mismatch,
heterogeneous platforms, incompatible programming
languages, and component specific repository
structures by applying disciplined and proven
architectural-centric integration approaches. The high
level description of the SA not only provided a
reasoning framework for detailed design and
configuration of components but also guided the
development process. The integrated toolset developed

using an architecture-centric approach is highly
maintainable and easily modifiable.

9. Acknowledgements

This project was funded by an ARC SPIRT grant
held by Prof. Offen and A/P Zowghi. The authors
would also like to acknowledge the valuable insight
provided by Vincenzo Gervasi and Simon Kissane on
the natural language parser and translator component.

10. References

 [1] A. Finkelstein and W. Emmerich. The future of
Requirements Management Tools. An invited paper.
Information Systems in Public Administration and Law.
Austrian Computer Society, 2000.
[2] A. Wasserman. Toward a Discipline of Software
Engineering. IEEE Software, November, 1996.
[3] D. Garlan, et al. Architectural Mismatch or, Why It’s
Hard to Build Systems Out of Existing Parts. Proceeding,
17th int. Conf. Software engineering, ICSE-17, April 1995.
[4] D. Garlan. Software Architecture: a Roadmap. The future
of Software Engineering, A. Finkekstein (Ed), ACM Press,
2000.
[5] D. Linthicum, Enterprise Application Integration.
Addison-Wesley, 2000.
[6] D. Zowghi, V. Gervasi, and A. McRae. Using Default
Reasoning to Discover Inconsistencies in Natural Language
Requirements. Proceedings of the8th Asia Pacific Software
Engineering Conference (APSEC2001), Macau, China,
December 2001.
[7] D. Zowghi. A logic-based framework for the
management of changing software requirements, PhD Thesis,
Macquarie University, Sydney, Australia, 1999.
[8] L. Bass, P. Clement, and R. Kazman. Software
Architecture in Practice. Addison Wesley, Reading,
Massachusetts, 1998.
[9] L. Bass, R. Kazman. Architecture-Based Development.
Technical Report, CMU/SEI-99-TR-007, ESC-TR-99-007.
SEI, Carnegie Mellon University, April 1999.
[10] N. Medvidovic, D. Rosenblum, and R. Taylor. An
Architecture-Based Approach to Software Evolution,
IWPSE, 98, Kyoto, Japan, April 1999.
[11] P. Clements, L. Northorp. Software Architecture: An
Executive Overview. Technical Report, CMU/SEI-96-TR-
003. SEI, Carnegie Mellon University, 1996.
[12] P. Clements. Coming Attractions in Software
Architecture. Technical Report, CMU/SEI-96-TR-008. SEI,
Carnegie Mellon University, 1996.
[13] R. N. Taylor, et al., Foundations for the Arcadia
Environment Architecture. 3rd ACM SIGSOFT/SIGPLAN
Symp. Practical Software Development Environments. 1988.
[14] S. Reiss. Software Tools and Environment, ACM

Communication Surveys. Vol.28, No. 1, March 1996
[15] V. Ambriola and V. Gervasi. Experiences with domain-
based parsing of natural language requirements. In G. Fliedl
and H. C. Mayr, editors, Proceedings of the Fourth
international Conference on Applications of Natural
Language to Information Systems, number 129 in OCG
Schriftenreihe (Lecture Notes), 1999.
[16] V. Gervasi. Environment Support for Requirements
Writing and Analysis. PhD thesis, University of Pisa, 2000.
[17] V. Gervasi. On the integration of CASAPS and CARET.
Personal Communication, June, 2001.
[18] P. Clements et. al. Constructing Superior Software. ed.
S.Q.I. Series. 2000, Macmillan Technical Publishing, U.S.A.
[19] B. Boeham, and P. Grunbacher, and R. O. Briggs,
Developing Groupware for Requirements Negotiation:
Lesson Learned, IEEE Software, May/June 2001 18(3)
[20] B. Nuseibeh and S. Easterbrook. Requirements
Engineering: A Roadmap. in The Future of Software
Engineering, 22nd International Software Engineering
Conference. 2000: ACM-IEEE.
[21] I. Sommerville. Software Engineering. 6th ed. 2001:
Addison-Wesley.
[22] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide. 1999: Addison-Wesley.
[23] Microsoft Knowledge Base article # 191, Shelling to
Other Applications http://msdn.microsoft.com, accessed 20th
June, 2001
[24] Perl DBI/DBD FAQ on the Web
http://tlowery.hypermart.net/perl_dbi_dbd_faq.html,
accessed on 20th August, 2001
[25] Easysoft Unix-ODBC Bridge Documentation,
http://www.easysoft.com, accessed 20th August, 2001.
[26] R. Kazman et al. Experience with Performing
Architecture Tradoff Analysis. in Proceedings of the 21th
International Conference on Software Engineering. 1999.
New York, USA: ACM Press.
[27] K. E. Wiegers. Automating Requirements Management,
Software Development, July 1999,
http://www.sdbestpractices.com accessed 28th Sep., 2002.
[28] A. Fuggetta. A Classification of CASE Technology,
IEEE Computer, 1993. 26(12).
[29] N. Lassing, D. Rijsenbrij, and H. V. Vliet., The goal of
Software Architecture Analysis: Confidence Building or
Risk Assessment, in Proceedings of the First BeNeLux
Conferencde on Software Architecture, 1999.
[30] B. Gautier, C. Loftus, and E. Sherratt, Tool Integration:
Experiences and Directions, in Proceedings of the 17th
International Conference on Software Engineering. Apr.,
1995, Seattle, Washington, U.S.A., ACM Press.
[31] D. Garlan, and J. P. Sousa. Documenting Software
Architectures: Recommendations for Industrial Practice.
Technical Report, CMU-CS-00-169 School of Computer
Science, Carnegie Mellon University, Oct., 2000.
[32] Wasserman, A. I., Toward a Discipline of Software
Engineering, IEEE Software, 1996. 13(6).

