
Task Allocation and Motion

Coordination of

Multiple Autonomous Vehicles

- With application in automated container terminals

by

Asela K. Kulatunga

A thesis submitted in fulfilment

of the requirements for the degree of

Doctor of Philosophy

University of Technology, Sydney

Faculty of Engineering

August, 2008

ii

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor

has it been submitted as part of requirement for a degree except as fully

acknowledged within the text.

I certify that the thesis has been written by me. Any help that I have received in my

research work and preparation of the thesis itself has been acknowledged. In addition,

I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

(Asela K. Kulatunga)

Sydney, August 2008

Production Note:
Signature removed prior to publication.

iii

ABSTRACT

This thesis focuses on developing an approach to solve the complex problem

of task allocation and motion coordination simultaneously for a large fleet of

autonomous vehicles in highly constrained operational environments. The multi-

vehicle task allocation and motion coordination problem consists of allocating

different tasks to different autonomous vehicles and intelligently coordinating motions

of the vehicles without human interaction. The motion coordination itself comprises

two sub-problems: path planning and collision / deadlock avoidance. Although a

number of research studies have attempted to solve one or two aspects of this

problem, it is rare to note that many have attempted to solve the task allocation, path

planning and collision avoidance simultaneously. Therefore, it cannot be conclusively

said that, optimal or near-optimal solutions generated based on one aspect of the

problem will be optimal or near optimal results for the whole problem. It is advisable

to solve the problem as one complete problem rather than decomposing it. This thesis

intends to solve the complex task allocation, path planning and collision avoidance

problem simultaneously.

A Simultaneous Task Allocation and Motion Coordination (STAMC)

approach is developed to solve the multi-vehicle task allocation and motion

coordination problem in a concurrent manner. Further, a novel algorithm called

Simultaneous Path and Motion Planning (SiPaMoP) is proposed for collision free

motion coordination. The main objective of this algorithm is to generate collision free

paths for autonomous vehicles, once they are assigned with tasks in a conventional

path topology of a material handling environment. The Dijkstra and A * shortest path

search algorithms are utilised in the proposed Simultaneous Path and Motion Planning

algorithm.

The multi-vehicle task allocation and motion coordination problem is first

studied in a static environment where all the tasks, vehicles and operating

environment information are assumed to be known. The multi-vehicle task allocation

and motion coordination problem in a dynamic environment, where tasks, vehicles

and operating environment change with time is then investigated. Furthermore, issues

like vehicle breakdowns, which are common in real world situations, are considered.

The computational cost of solving the multi-vehicle STAMC problem is also

iv

addressed by proposing a distributed computational architecture and implementing

that architecture in a cluster computing system. Finally, the proposed algorithms are

tested in a case study in an automated container terminal environment with a large

fleet of autonomous straddle carriers.

Since the multi-vehicle task allocation and motion coordination is an NP-hard

problem, it is almost impossible to find out the optimal solutions within a reasonable

time frame. Therefore, this research focuses on investigating the appropriateness of

heuristic and evolutionary algorithms for solving the STAMC problem. The

Simulated Annealing algorithm, Ant Colony and Auction algorithms have been

investigated. Commonly used dispatching rules such as first come first served, and

closest task first have also been applied for comparison. Simulation tests of the

proposed approach is conducted based on information from the Fishermen Island’s

container terminal of Patrick Corporation (Pty.) Ltd in Queensland, Australia where a

large fleet of autonomous straddle carriers operate. The results shows that the

proposed meta-heuristic techniques based simultaneous task allocation and motion

coordination approach can effectively solve the complex multi-vehicle task allocation

and motion coordination problem and it is capable of generating near optimal results

within an acceptable time frame.

v

ACKNOWLEDGEMENT

This PhD thesis could not have been successfully completed if not for the

tireless assistance and guidance with understanding of a list of academics throughout

my PhD candidature. It is with a high sense of gratitude that I wish to place on

record, the valuable guidance of my principal supervisor that I received throughout. I

would be failing in my duties if I do not purposely thank Professor Dikai Liu who has

given me valuable advice and encouragement, with understanding throughout the

course of study. A special word of thanks should necessarily go to Professor Gamini

Dissanayake for his support and guidance given throughout my candidature which

paved the way for me to realize my dream of successfully completing a PhD in one of

the leading Autonomous research groups.

I greatly acknowledge the financial assistance provided by the ARC Centre of

Excellence for Autonomous Systems at the University of Technology, Sydney,

Australia; the Faculty of Engineering, University of Technology, Sydney; and the

Presidential Fund of Sri Lanka for its financial support. Furthermore, I would like to

express my gratitude to Professor Sarath Siyambalapitiya of the Faculty of

Engineering, University of Peradeniya, Sri Lanka for all the support given as an

alternative supervisor during my stay in Sri Lanka. I would like to convey my

gratitude to Doctors Peter Wu, Brad Skinner, Haye Lau and Raymond Kwok for their

kind assistance and support.

I wish to express my sincere gratitude also to Dr. Fook Choon Choi and Ms.

Pui Yeng Wong for their whole hearted parental support rendered with understanding

during the difficult times that I had to encounter. My sincere thanks also go to Ms.

Iroshini Gunaratne, Ms. Erandi Wattegama and Mr. Mohan Samaranayake for their

support given to me in formatting and writing the thesis. The author wishes to express

his gratitude to the friends both at UTS and elsewhere for their support and

encouragement. I would fail in my duty if I do not thank Mr. Janitha Wijesinghe for

keeping company with me and often providing transport to travel in and around

Sydney. Furthermore, I would like to thank Mr. Tonmoy Dutta-Roy, Mr. Bashar

Ramadin, and Mr. Ashod Donikian who accompanied me in my stay in Australia. My

acknowledgements also are extended to CAS research students, Mr.Mashall Yuan

and Mr. Dalong Wang in particular for their kind-hearted support. I would also like to

vi

thank all the academics of the CAS centre, and my friends Mr. Manjula Gunaratne,

Mr. Sujeewa Fernando and Mr.Arjuna Dissanayake from Sri Lanka.

My abundant love must go to my parents for raising me and making my

education a priority in their lives, for my loving wife Nadeeka sacrificing many things

in her life to support my higher studies and to my loving new-born daughter Amaya

for giving the added strength to successfully complete thesis work.

Lastly, I would like to dedicate this thesis to my parents, grandparents, all the

good teachers who taught me from kindergarten to University entrance at St’

Anthony’s College, Kandy, and to all the lecturers who taught me at the

undergraduate level at the Faculty of Engineering, University of Peradeniya, Sri

Lanka for their encouragement to pursue postgraduate studies and to choose an

academic career.

With Metha !

Asela K. Kulatunga

University of Technology, Sydney

Australia

29/08/2008

vii

LIST OF PUBLICATIONS

Book chapters

1. A.K. Kulatunga, B. T. Skinner, D. K. Liu & H. T. Nguyen (2007),

‘Simultaneous task allocation and motion coordination of autonomous

vehicles using a parallel computing cluster’, Robotic Welding, Intelligence and

Automation, Volume 362/2007, 409-420, Springer, Berlin/Heidelberg.

2. D.K. Liu &A.K. Kulatunga, (2007) ‘Simultaneous Planning and Scheduling

for Multi-Autonomous Vehicles’, in Dahal, K., Tan, K.C. and Burke, E. (eds)

Evolutionary Scheduling, Studies in Computational Intelligence, Volume

49/2007, 437-464, Springer, Berlin/Heidelberg.

Refereed Conference papers

3. A. K. Kulatunga, D. K. Liu & G. Dissanayake (2004) ‘Simulated annealing

algorithm based multi-robot coordination’. Proceedings of the 3rd IFAC

Symposium on Mechatronic Systems, September 2004, Sydney, Australia,

(Paper No. 74), 411-416

4. A.K. Kulatunga, D. K. Liu & S. B. Siyambalapitiya (2006) ‘Ant colony

optimization technique for simultaneous task allocation and path planning of

autonomous vehicles.’ Proceedings of the IEEE International Conference on

Cybernetics and Intelligent Systems (CIS), 7-9 June, 2006, Bangkok, Thailand,

823-828

5. D.K. Liu, X. Wu, A. K. Kulatunga, G. Dissanayake (2006), ‘Motion

coordination of multiple autonomous vehicles in dynamic and strictly

constrained environments.’ Proceedings of the IEEE International Conference

on Cybernetics and Intelligent Systems (CIS), 7-9 June, 2006, Bangkok,

Thailand, 204-209

viii

CONTENTS

1ABSTRACT ... III
2ACKNOWLEDGEMENT ..V
3LIST OF PUBLICATIONS ...VII
4CONTENTS .. VIII
5LIST OF FIGURES...X
6LIST OF TABLES.. XIII
7ABBREVIATIONS……………………………………………………………………….................XIV
8CHAPTER 1 ...1
91INTRODUCTION ..1

1.1. BACKGROUND OF AUTONOMOUS VEHICLE OPERATIONS.. 1
1.2. PLANNING AND COORDINATION ... 3
1.3. SCOPE OF THE RESEARCH AND CONTRIBUTIONS ... 6
1.4. ORGANISATION OF THE THESIS ... 9

10CHAPTER 2 ...12
112LITERATURE SURVEY .. 12

2.1. INTRODUCTION .. 12
2.2. INTEGRATED APPROACHES FOR MULTI-VEHICLE TASK ALLOCATION AND MOTION
COORDINATION PROBLEM.. 13

2.2.1. EXACT APPROACHES.. 13
2.2.2. HEURISTIC / APPROXIMATION METHODS ... 14

2.3. TASK ALLOCATION FOR MULTIPLE AUTONOMOUS VEHICLES ... 17
2.4. VEHICLE ROUTING AND PATH / MOTION PLANNING.. 20
2.5. COLLISION AND DEADLOCK AVOIDANCE... 23
2.6. RESEARCH AND DEVELOPMENT CHALLENGES... 25
2.6.1. OVERALL EFFICIENCY AND SOLUTION QUALITY... 25
2.6.2. OPTIMISATION METHODOLOGIES... 26
2.6.3. PATH AND MOTION PLANNING ISSUES.. 27

2.7. SUMMARY.. 28

12CHAPTER 3 ...31
133.PROBLEM FORMULATION AND SIMULTANEOUS PATH AND MOTION PLANNING
ALGORITHM ..31

3.1. INTRODUCTION .. 31
3.2. TASK ALLOCATION AND MOTION COORDINATION PROBLEM.. 32
3.3. MOTION COORDINATION AND SIPAMOP ALGORITHM... 34
3.4. SIMULATION ENVIRONMENT.. 41
3.5. SIMULATION STUDIES .. 43
3.5.1. COLLISION AVOIDANCE CAPABILITY.. 43
3.5.2. EFFICIENT MOTION COORDINATION CAPABILITY ... 50

3.6. CONCLUSION AND REMARKS... 58

14CHAPTER 4 ...60
154.SIMULTANEOUS TASK ALLOCATION AND MOTION COORDINATION - STATIC
ENVIRONMENT ...60

4.1. INTRODUCTION .. 60
4.2. SIMULTANEOUS TASK ALLOCATION AND MOTION COORDINATION 62
4.3. MATHEMATICAL MODELLING.. 64
4.3.1. MATHEMATICALMODEL .. 67
4.3.2. OPTIMISATION CRITERION ... 71

ix

4.4. META-HEURISTIC ALGORITHMS FOR SIMULTANEOUS TASK ALLOCATION AND
MOTION COORDINATION... 74

4.4.1. SIMULATED ANNEALING ALGORITHM.. 74
4.4.2. ANT COLONY OPTIMISATION... 77
4.4.3. AUCTION ALGORITHM... 82

4.5. SIMULATION STUDIES .. 84
4.5.1. SIMULTANEOUS APPROACH VERSUS SEQUENTIAL APPROACH ... 85
4.5.2. COMPARISON OF THE SA, ACO AND AUCTION ALGORITHMS.. 92

4.6. DISCUSSION AND CONCLUSIONS... 102

16CHAPTER 5 ...105
175.STAMC APPROACH FOR A DYNAMIC ENVIRONMENT..105

5.1. INTRODUCTION .. 105
5.2. FORMULATION OF DYNAMIC MULTI-VEHICLE TASK ALLOCATION AND MOTION
COORDINATION PROBLEM.. 109
5.2.1. MATHEMATICALMODEL .. 109

5.3. THE DYNAMIC STAMC APPROACH.. 112
5.4. SIMULATION STUDIES AND RESULTS... 114
5.4.1. SIMULATION STUDY 1.. 114
5.4.2. SIMULATION STUDY 2.. 117
5.4.3. RE-PLANNING DUE TO UNEXPECTED EVENTS (SIMULATION STUDY 3)...................................... 126

5.5. CONCLUSIONS AND DISCUSSION... 131

18CHAPTER 6 ...133
196.DISTRIBUTED IMPLEMENTATION OF THE STAMC APPROACH.....................................133

6.1. INTRODUCTION .. 133
6.2. STAMC APPROACH IN DISTRIBUTED ENVIRONMENT .. 133
6.3. INTEGRATION OF MPITB IN THE MATLAB ENVIRONMENT... 138
6.4. EXPERIMENT DESCRIPTION .. 142
6.4.1. SIMULATION PARAMETERS.. 142
6.4.2. CLUSTER COMPUTING ENVIRONMENT.. 143

6.5. RESULTS AND DISCUSSION ... 143
6.6. CONCLUSION AND FURTHER INVESTIGATIONS .. 146

20CHAPTER 7 ...148
217.A CASE STUDY -APPLICATION OF THE STAMC APPROACH IN AN AUTOMATED
CONTAINER TERMINAL... 148

7.1. INTRODUCTION .. 148
7.2. REPRESENTATION OF THE AUTOMATED CONTAINER TERMINAL.................................. 149
7.3. CURRENT TASK ALLOCATION AND MOTION COORDINATION PROCESS 151
7.4. EXPERIMENTS WITH THE PROPOSED STAMC APPROACH ... 152
7.4.1 THE FIRST SIMULATION STUDY .. 153
7.4.2 SECOND SIMULATION STUDY.. 162

7.5 DISCUSSION.. 164

22CHAPTER 8 ...166
238.CONCLUSION...166

8.1. INTRODUCTION .. 166
8.2. RESEARCH OUTCOMES... 167
8.3. LIMITATIONS AND FUTURE OPPORTUNITIES FOR RESEARCH... 168

24REFERENCES ...170

APPENDICES..181

x

List of Figures

Figure 1-1: Two possible approaches to solve the multiple-vehicle task allocation and
motion coordination problem...5
Figure 1-2: Outline of the thesis ..11
Figure 2-1: Organisation of literature survey...13
Figure 3-1: Schematic representation of the multi-vehicle task allocation and motion
coordination problem with three key sub-problems ..33
Figure 3-2: Schematic representation of simultaneous path and motion planning
approach ...36
Figure 3-3: The connections of nodes for the given example......................................39
Figure 3-4: The flowchart of the SiPaMoP algorithm ...41
Figure 3-5: The plan view of the simulation environment ..42
Figure 3-6: The network map of the environment shown in Figure 3-5......................42
Figure 3-7: V1’s and V2’s Paths obtained without considering collisions by Dijkstra
algorithm (Example 1) ...44
Figure 3-8: V1’s and V2’s Paths obtained by the SiPaMoP algorithm: V2 wait till V1
passes node 34 to avoid collisions (Example 1) ..45
Figure 3-9: V1’s and V2’s Paths obtained without considering collisions by Dijkstra
algorithm (Example 2) ...46
Figure 3-10: V1’s and V2’s Paths obtained by the SiPaMoP algorithm: By changing
V2’s path to avoid collisions between nodes 37 and 57 (Example 2)47
Figure 3-11: Paths of all vehicles obtained by Dijkstra algorithm without considering
collisions (Example 3) ...49
Figure 3-12: Paths of all vehicles obtained by SiPaMoP algorithm by considering
collisions (Example 3) ...49
Figure 3-13: Vehicles V1 and V2 performing their first tasks (Path segments between
node 110 -117 of V1 and from nodes 130 –137 of V2 are shown here).....................51
Figure 3-14: Vehicles V1 and V2 towards the completion of their task 1 (both use the
same path segments from nodes 116 to node 95 and vehicle 2 travels behind the
vehicle 1)..51
Figure 3-15: Vehicles V1 and V2 travelling to pick-up their 2nd tasks (at node 111
and 130 respectively) in a loop path topology ...52
Figure 3-16: Vehicles V1 and V2 travelling to pick-up their 2nd tasks (Between loop
segment 71 - 111 and 89 -131 respectively) ..53
Figure 3-17: Vehicle 1 (from node 110 to 117) and Vehicle 2 (from node 130 to 60)
perform their first tasks by following the paths planned by the SiPaMoP algorithm..54
Figure 3-18: Vehicle 1 (from node 115 to node 96) and vehicle 2 (from node 135 to
node 60) perform their initial tasks planned by the SiPaMoP algorithm.....................55
Figure 3-19: Vehicle 1 returns to its 2nd task’s origin while vehicle 2 is reaching its
initial task’s drop-off node (from the SiPaMoP algorithm)...55
Figure 3-20: Vehicle 1 travels towards its 2nd task’s pick-up node of 111 while
vehicle 2 travels towards its 2nd task’s pick-up node of 13156

xi

Figure 3-21: Vehicles 1 and 2 performs their 2nd tasks by following the paths from
the SiPaMoP algorithm ..57
Figure 4-1: Schematic representation of the simultaneous approach63
Figure 4-2: The simultaneous approach and the sequential approach64
Figure 4-3: An example of tasks, vehicles’ start and drop-off nodes66
Figure 4-4: Task allocation process: selecting appropriate task-vehicle pairs69
Figure 4-5: Vehicle-task pair’s cost matrix ...70
Figure 4-6: Flow chart of the Simulated Annealing Algorithm...................................77
Figure 4-7: Flow chart of the ACO algorithm ...81
Figure 4-8: Simple Auction Process ..83
Figure 4-9: Flow chart of Auction Algorithm..84
Figure 4-10: Flow chart of the simultaneous approach with the SA algorithm...........88
Figure 4-11: Flow chart of the sequential approach with the SA algorithm................89
Figure 4-12: Variation of makespans obtained by simultaneous, sequential and SPS
(without collision avoidance) respectively ..91
Figure 4-13: Tasks allocation among vehicles, order of implementation and
completion time obtained by the simultaneous approach for 8n-4m-case 2: makespan
is 64.78 (stu)...92
Figure 4-14: Task allocation among vehicles, order of implementation and completion
time obtained by the sequential approach for 8n-4-case 2: makespan is 72.29 (stu)...92
Figure 4-15: Gantt chart of the ES based the task allocation.......................................95
Figure 4-16: Gantt chart of the ACO algorithm based task allocation95
Figure 4-17: Task allocation results obtained from the SA algorithm.........................98
Figure 4-18: Task allocation results obtained from the ACO......................................99
Figure 4-19: Task allocation results obtained from AA ..100
Figure 4-20: Summary of the simulation studies ...103
Figure 5-1: Typical rescheduling methods ..107
Figure 5-2: Flow chart of the priority based dynamic STAMC approach113
Figure 5-3: Variation of makespan, tardiness and late tasks in simulation 1115
Figure 5-4: Variation of makespan with re-scheduling intervals for different batch
sizes..116
Figure 5-5: Variation of Tardiness with re-scheduling intervals for different batch
sizes..116
Figure 5-6: Variation of number of late tasks with rescheduling intervals for different
batch sizes ..117
Figure 5-7: The completion time and tardiness of newly arrived tasks119
Figure 5-8: Gantt chart of the initial schedule at Time =0 (stu) based on the DR.....120
Figure 5-9: Gantt chart of initial schedule at Time = 0 (stu) based on AA121
Figure 5-10: Gantt chart of initial schedule at Time = 0 (stu) based on SA algorithm
..121
Figure 5-11: Gantt chart of 1st reschedule at Time =20 (stu) based on DR122
Figure 5-12: Gantt chart of 1st reschedule at Time = 20 (stu) based on AA.............123
Figure 5-13: Gantt chart of 1st reschedule at Time = 20 (stu) based on SA algorithm
..123
Figure 5-14: Gantt chart of 2nd reschedule at Time = 40 (stu) based on DR............124
Figure 5-15: Gantt chart of 2nd reschedule at Time = 40 (stu) based on AA............125
Figure 5-16: Gantt chart of 2nd reschedule at Time = 40 (stu) based on SA algorithm
..125

xii

Figure 5-17: Schematic representation of the re-planning Strategy of the STAMC
approach ...127
Figure 5-18: Gantt chart of the schedule before the vehicle breakdown128
Figure 5-19: Gantt chart after re-planning of the same example129
Figure 5-20: Path representations before and after the breakdown130
Figure 6-1: Flow diagram describing the simultaneous task allocation and motion
coordination (STAMC) approach in parallel mode ...135
Figure 6-2 : The data path of serial computation for the task allocation and motion
coordination algorithm for autonomous vehicles ..136
Figure 6-3 : The data path of parallel computation for the task allocation and motion
coordination algorithm for autonomous vehicles. ...137
Figure 6-4 : Software architecture showing the role of MPITB and other software
components. ...139
Figure 6-5 : Computation time (seconds) for the parallel/distributed and
serial/centralised STAMC approach using 4 vehicles ...144
Figure 6-6 : Computation time (seconds) for the parallel/distributed and
serial/centralised STAMC approach using 6 vehicles ...144
Figure 6-7 : Computation time (seconds) for the parallel/distributed and
serial/centralised STAMC approach using 8 vehicles ...145
Figure 6-8 : Computation time (seconds) for the parallel/distributed STAMC approach
using 4/6/8 vehicles..146
Figure 7-1: Container terminal at Fisherman Island (http://www.patrick.com.au) ...149
Figure 7-2: Arial view of the Fisherman Island Container terminal
(www.googlemaps.com) ..149
Figure 7-3: Different regions of the container yard at Fisherman's Island150
Figure 7-4: Vehicle movements screen short of the MATLAB simulation platform 151
Figure 7-5: Results of the 1st simulation ...154
Figure 7-6: Gantt chart of the 2nd hour schedule based on the AA............................155
Figure 7-7: Gantt chart of the 2nd hour schedule based on the SA algorithm............155
Figure 7-8: Gantt chart of the 2nd hour schedule based on the ACO algorithm.........156
Figure 7-9: Gantt chart of the 2nd hour schedule based on FCFS rule156
Figure 7-10: Gantt chart of the 2nd hour schedule based on COF rule157
Figure 7-11: Gantt chart of the 4th hour schedule based on the AA157
Figure 7-12: Gantt chart of the 4th hour schedule based on the SA algorithm158
Figure 7-13: Gantt chart of the 4th hour schedule based on the ACO algorithm158
Figure 7-14: Gantt chart of the 4th hour schedule based on COF rule159
Figure 7-15: Gantt chart of the 4th hour schedule based on FCFS rule159
Figure 7-16: Gantt chart of the 6th hour schedule based on the AA160
Figure 7-17: Gantt chart of the 6th hour schedule based on the SA algorithm160
Figure 7-18: Gantt chart of the 6th hour schedule based on the ACO algorithm161
Figure 7-19: Gantt chart of the 6th hour schedule based on COF rule161
Figure 7-20: Gantt chart of the 6th hour schedule based on FCFS rule162
Figure 7-21: Gantt chart of overall schedule for 8 hours based on FCFS rule163
Figure 7-22: Gantt chart of overall schedule for 8 hours based on COF rule............164

xiii

List of Tables

Table 3-1: Path selection of example 1(One vehicle waits till the other one passes
away the connection) ...44
Table 3-2: Path selection of the vehicles in example 2 (V2 changes its path to avoid
collision) ..47
Table 3-3: Task allocation information to four vehicles of example 3........................48
Table 3-4: Task allocation information and path details in loop based path topology 50
Table 3-5: Vehicles task allocation information and path details in conventional path
topology ...53
Table 3-6: Completion and empty travel times obtained from the two approaches57
Table 4-1: Different simulation problem sizes and makespan values91
Table 4-2: Makespan comparison of ACO algorithm with optimal Value..................93
Table 4-3: Empty travel times (stu) of 8T-4m-case 1..94
Table 4-4: Comparison of makespan, CPU time and empty travel times of ACO and
SA algorithms ..96
Table 4-5: Eight tasks’ pick-up and drop-off nodes ..97
Table 4-6: Four vehicles’ initial positions ...97
Table 4-7: Simulation results obtained by SA algorithm based STAMC approach97
Table 4-8: Simulation results obtained by ACO based STAMC approach98
Table 4-9: Simulation results obtained by AA based STAMC approach99
Table 4-10: Comparison of Makespan and vehicle utilisation of three methods100
Table 4-11: Makespan comparisons of ACO, SA and Auction algorithms...............101
Table 4-12: Hardware and Software Specification of Simulation Studies102
Table 4-13: Algorithms and parameter values...102
Table 5-1: Variation of rescheduling intervals with tardiness, late tasks and tasks
scheduled..115
Table 5-2: Task allocation among the four vehicles before and after vehicle 4 breaks
down...129
Table 6-1 : Algorithm and simulation parameters ...142
Table 6-2 : Cluster computing hardware and software environment.........................143
Table 7-1: Task allocation information of the existing method of one hour duration
..152
Table 7-2: The makespan and computational cost of the first scenario.....................154

xiv

Abbreviations

ACO Ant colony optimization
AGV Automated guided vehicle
AV Autonomous vehicle
BD Breakdown
BS Batch size
BSA Beam Search Algorithm
CIM Computer Integrated Manufacturing
COF Close proximity task first
CR Cooling rate
CT Container Terminals
DR Dispatching Rules
FCFS First-Come-First-Served
FMS Flexible Manufacturing Systems
GA Genetic algorithm
LAN Local area network
MC Motion Coordination
MPI Message-Passing Interface
MS Makespan
PP Path Planning
RSI Rescheduling interval
SA Simulated Annealing
SCs straddle carriers
SiPaMoP Simultaneous Path and Motion Planning
SPS Shortest Path Search
STAMC Simultaneous Task Allocation and Motion Coordination
stu simulation time units
TA Task Allocation
TEU Twenty feet Equivalent Units
TS Tabu Search

1

Chapter 1

1.Introduction

1.1. Background of Autonomous Vehicle Operations

Supply chain management, which includes all activities covering the flow and

transformation of goods from raw materials to end-user, has started to play an

important role in the growth of the global economy. With rapid developments in

technology over the past several decades, many improvements have taken place in

order to cope with “Just-In-Time” delivery and to reduce the lead-time delays. This

has been achieved by planning and scheduling all transportation activities using

information technology wisely, and automating some of the transportation activities

and the material handling in warehouses, inter-mode transportation terminals and

manufacturing systems. A material handling system consists of material handling

equipment such as trucks, forklifts and straddle carriers, and operational and

management staff, information, materials and related planning and control systems.

Transportation activities have steadily boomed in order to deal with the rapid

expansion of global trade. For example, in the container transportation sector, the

capacity of ships has recently increased from 400 TEU (Twenty feet Equivalent

Units) to the level 10,000 -12,000 TEU (Stahlbock and Vob, 2008). According to the

February, 2006 issue of Cargo News “the container terminal business has expanded

by more than 10 percent, annually, over the past 15 years. Fuelled by the globalisation

of the world economy, this rate of growth is likely to continue. Even cautious

forecasts indicate that the present demand will at least be doubled by 2015, with

around 650 million TEU handled in the world’s ports at that time” (CargoNews,

2006). Therefore, in order to deal with these trends, the performance of material

handling systems has to be improved. This can be achieved by introducing new

technologies such as automatic systems to increase the efficiency of material

handling. Better planning and coordination strategies can achieve efficient material

handling. According to Matson and White (1982), Operations Research concepts have

been utilised to an extent to overcome these issues. This is further reinforced by the

review of (Stahlbock and Vob, 2008).

2

Material handling systems are widely used in warehouses, manufacturing

centres and container terminals. Warehouses are used to store inventories of raw

materials and finished or semi-finished products. In manufacturing centres, material

or product components flow from one conveyor to another or from one work centre to

another. In container terminals, the 20 or 40 TEU boxes need to be loaded onto or

unloaded from ships, and sometimes to other modes of transport. In addition, the

boxes need to be stored until they are transported or transhipped.

The most attractive strategy to increase the operational efficiency of material

handling in warehouses, inter-mode transportation terminals and manufacturing plants

is to automate material handling systems. This is essential, since manually operated

systems cannot achieve a high rate of efficiency in modern day supply chains.

Furthermore, with the expectation of high levels of accuracy, human operators will

soon be subject to work-related-stress and fatigue. This will directly cause accidents,

hazardous situations and accidents ultimately leading to heavy financial losses. One of

the ways to automate material handling systems is replacing manually operated

vehicles and equipment with autonomous vehicles (AVs) such as automated guided

vehicles (AGVs) or automated straddle carriers (ASCs).

An autonomous vehicle is an operator-less vehicle, which traverses on its own

intelligent capabilities and other available information. The vehicle can usually carry

a unit load or, in some applications, multiple loads. In most cases, there are many

AVs working together as a group because of the high workload generated within a

stipulated time.

In addition, these vehicles are operated in strictly constrained environments

because the space is very limited in these applications. Due to these limitations,

guided paths are often used for AV’s to traverse in both directions (bi-directional).

Since many AVs operate at the same time in a constrained area, it is essential to plan

and coordinate them. Otherwise, it is impossible to achieve the expected productivity

levels. Therefore, it is essential to have a proper mechanism to address the planning

and coordination issues of multiple autonomous vehicles in material handling

environments.

3

1.2. Planning and Coordination

When multiple autonomous vehicles are operating simultaneously in the same

environment, there are many combinations or choices for allocating a task to a vehicle

and it has to be performed in a productive manner. As these AVs operate in a space-

constrained area and AVs traverse through planned paths, each AV should be given a

safe and shorter route to travel from its pick-up location to its drop-off location on the

path network. When AVs travel on these paths, it is essential to avoid collisions

between them and blockages. The selection of particular vehicle to undertake

particular task is known as Task Allocation (TA).Choosing the best possible path to

travel is known as Path Planning (PP). In addition to path planning, an efficient

collision and deadlock avoidance method also plays an important role. It is possible to

consider path planning, velocity control and collision avoidance together, which is

named Motion Coordination (MC). Planning and coordination of multiple

autonomous vehicles consist of the following key functions: task allocation, path

planning, and collision avoidance. Therefore, it is reasonable to formulate these issues

collectively as a multiple-vehicle task allocation and motion coordination problem.

Apart from the above operational aspects of material handling systems, good

layout design needs to be determined as well as the number of vehicles required to

transport all tasks between various areas. However, good layout design and the

number of vehicles required are beyond the scope of this research, and the focus of

this thesis is on the task allocation and coordination aspects of the vehicles. In

material handling environments, most of the tasks and vehicles (AGVs, SC, etc.) have

equal priority and features, such as capability and carrying capacity. Furthermore,

there will be many tasks to be performed within the same pre-defined time interval, or

there will be a group of tasks, which are available for allocation at the same time.

The vehicles should be provided with clearly defined paths or routes to travel

from one place to another. The commonly used method is to define the path edges by

separating the storage areas and travelling areas. In the case of fully automated

operation, metal strips or modern autonomous vehicle navigation systems guide these

paths. Depending on the layout of the material handling area, there will be many

possible routes to travel from one place to another in many instances; consequently,

each vehicle may get a chance to select the path in which it travels to perform a task.

When AVs travel on these paths, they maintain different speeds and accelerate or

4

decelerate at different path segments; this is especially needed in order to prevent

collisions when multiple vehicles travel on the same routes.

When multiple vehicles operate on the same network simultaneously, there

should be an efficient traffic management system to coordinate them. Otherwise, they

tend to collide with each other or meet with deadlocks or live-locks. Collision occurs

mainly in the following ways: when two or more vehicles travel on the same path

towards each other in a different or the same speed (head-on collision), when two or

more vehicles travel on the same path at the same direction at different speeds (catch-

up collision), or in a situation where different vehicles travel from different directions

towards the same intersection point. This problem is aggravated when route segments

are used for uni-directional movements. Therefore, it is essential to have an efficient

and effective method to avoid collisions and deadlocks or live-locks.

Some research studies (Corréa et al., 2007, Le-Anh and De Koster, 2006,

Meersmans, 2001a) have attempted to solve one aspect of the three issues highlighted

earlier. When the task allocation aspect is investigated, it is commonly assumed that

vehicles use the shortest paths from Pick-up locations to Drop-off locations. In

addition, it is also normally assumed that there will not be deadlocks or collisions in

the shortest paths. Similarly, when path planning or collision avoidance is discussed,

it is assumed that task allocation is being done in an efficient manner.

Currently, the sub-problems of task allocation, path planning and collision

avoidance of the multiple-vehicle task allocation and motion coordination problem are

considered in a sequential manner. The available tasks are allocated among the

available vehicles. Paths are then planned based on the AVs allocated tasks. Finally,

the vehicles traverse the paths while collisions are avoided using different

mechanisms. This scenario is shown in the Figure 1-1(a). Since task allocation, path

planning and collision avoidance are handled at different levels in a sequential

manner, it is difficult to guarantee the optimality of the results for the whole task

allocation and motion coordination problem. When attempting to optimise the

solution for one aspect and then for the other aspect consecutively, the optimal results

found for the first aspect may not match the final results. Therefore, it is important to

consider them simultaneously. This approach is shown in Figure 1-1(b). However,

this has not been widely attempted.

5

Input

Output

Task
allocation

Path
Planning

Deadlock/
collision
avoidance

Task Allocation

Path
Planning

Deadlock/
collision
avoidance

Input

Output

(a) Sequential Approach (b) Simultaneous approach

Figure 1-1: Two possible approaches to solve the multiple-vehicle task allocation and motion
coordination problem

Integrating task allocation and motion coordination of autonomous vehicles is

a challenging job. Task allocation itself becomes a tedious job due to nature of

complexity, because there will be many combinations to select a vehicle for a

particular task. Selection of the best or optimal combination requires the exploration

of all possibilities. Therefore, the task allocation problem is categorised as NP-hard in

mathematical terms. Path planning/routing part of the motion coordination problem is

a necessity to search for the best possible route. As with task allocation, path planning

is very time consuming. This problem is aggravated when it is necessary to avoid

collision prone paths out of all possible paths.

Solving such a problem amounts to making discrete choices so that an

optimal/near optimal solution is found among a finite or countable number of

alternatives. It is impossible to find an optimal solution without the use of an

essentially enumerative algorithm. This increases computational time exponentially

with the problem size.

6

1.3. Scope of the Research and Contributions

Efficiency and effectiveness are very important for the overall productivity of

the multiple autonomous vehicle system. Although there are different modes of

transportation activities, (e.g. in the case of a container terminal, loading/ unloading of

ships, moving containers inside the yard, and even responding to external

loading/unloading activities), are required to perform in an integrated way.

Collaboration among vehicles is very important for smooth functioning of the

multiple autonomous vehicle system. In order to synchronise these activities, efficient

task allocation or scheduling of autonomous vehicles and coordination of their

motions are paramount necessity. Therefore, any approach should address the issues

of task allocation and motion coordination in an integrated way.

There are many varieties of tasks, which require to be carried out at different

time intervals in material handling systems. For example in Container Terminals

(CT), the loading and unloading of containers from ships should be attended with

urgency in order to reduce the turnaround time of ships and to reduce the congestion

in crane areas. Loading/ unloading from external trucks and trains also needs to be

given certain priority, with lower priority allocated to the movement of containers

within yard.

Inefficient coordination can cause considerable traffic congestion near the

crane areas and stacking areas, or in the terminal yard. Efficient task allocation would

not solve all practical problems because there are a large number of vehicles working

with limited resources or at high speeds. Therefore, routing of vehicles is as vital as

good scheduling. Many congestion issues around quay crane areas as well as

stacking/yard areas can be minimised by efficient routing.

The potential collision or deadlock issues of vehicles have to be addressed

particularly when operating of large fleet of AVs. This is essential when vehicles

travel bi-directionally in a road network in order to minimise the travelling time

between two points and to reduce waiting times. Even uni-directional movement has

to confront this situation in congested areas such as quayside and the yard/stack. Path

planning should be done dynamically to facilitate smooth flow in the road segment

inside the terminal.

In addition, new tasks normally arrive irregularly, and some new tasks may

have higher priority. Therefore, it is necessary to accommodate new tasks within the

7

allocation process and perform them accordingly. Sometimes, there will be

uncompleted tasks, due to unavoidable circumstances such as vehicle breakdowns.

This research attempts to solve the multi-vehicle task allocation and motion

coordination problem in material handling environments, where operating space is

highly limited. This research work expects to consider task allocation, path planning

and collision avoidance simultaneously in order to improve the collective solution

quality of the multi-vehicle task allocation and motion coordination problem.

Furthermore, there are many uncertainties involved in the multiple-vehicle task

allocation and motion coordination problem, such as new tasks, vehicle breakdowns,

or even unexpected operating environmental changes. The tasks also need to be

allocated based on their priority or urgency. The proposed approach also tries to

address these issues.

There are a number of approaches proposed in the literature of similar types of

optimal assignment problems. Branch and bound or dynamic programming algorithms

are often used to find exact solutions for such problems with the help of problem-

specific information to reduce search space. However, this is valid only to very

specific type of problems. Researchers have also come up with many greedy search

algorithms, which are again dependent on specific conditions in their applications.

Many variations of local search algorithms for solving NP-hard problems have

been proposed and investigated. Since the quality of the solutions obtained by local

search algorithms strongly depends on the initial conditions, these local algorithms

have the potential to perform poorly under some conditions.

Meta-heuristic and evolutionary techniques, which involve trial and error and

some contemplated intuition, can produce an approximate solution, which will be near

optimal. There is a clear trade-off between the solution quality and the computational

time. In many practical situations, it is necessary to be content with near optimal

solutions produced within reasonable time (Bagchi, 1999). This is acceptable and has

been a practice in many fields such as engineering, economics and management.

Therefore, this research will investigate the applicability of meta-heuristic and

evolutionary techniques for task allocation in the multi-vehicle task allocation and

motion coordination problem. The motion coordination (path planning and collision

avoidance) element of the main problem will be handled along with task allocation

problem simultaneously. The ways and means to reduce the computational time

8

necessary to generate the near optimal results will be investigated in this research as

well.

The principal objective of this research is to develop an integrated approach

and algorithms, which would solve the complex multi-vehicle task allocation and

motion coordination problem for a large fleet of autonomous vehicles operating in

strictly constrained environments. The original contributions of this thesis include:

1. Simultaneous task allocation and motion coordination approach

There are very few integrated approaches tackling task allocation and motion

coordination in a simultaneous manner for large fleet autonomous vehicles.

Furthermore, few have tried to address the solution quality of the available

methods for a large fleet of autonomous vehicle systems. This thesis proposes a

novel approach called the Simultaneous Task Allocation and Motion

Coordination (STAMC) to solve the complex multi-vehicle task allocation and

motion coordination problem for a large fleet of autonomous vehicles.

2. Simultaneous path and motion planning algorithm for path and motion planning

In order to solve the motion coordination sub-problem of the complex multi-

vehicle task allocation and motion coordination problem, a novel algorithm,

Simultaneous Path and Motion Planning (SiPaMoP) is proposed and verified.

The Dijkstra algorithm is used for the shortest path search while the path

topology’s node weights are changed dynamically to avoid potential collisions and

deadlocks.

3. Dynamic STAMC approach

In reality, there will be many unexpected events, which can create difficulties in

setting up a schedule. Furthermore, there will be new tasks arriving to be allocated

to vehicles from time to time. Therefore, a dynamic task allocation and motion

coordination approach is studied in this research to handle these issues.

4. Decentralised architecture of STAMC approach

In order to generate quality solutions to the complex multi-vehicle task allocation

and motion coordination problem more efficiently, a distributed computational

architecture is proposed in this research.

9

5. Case study – An application in a fully automated container terminal

The proposed approach and algorithms have been tested in a large-scale map (with

14949 nodes) where up to 25 vehicles are operating in the environment

simultaneously. The main purpose of this study was to investigate the

effectiveness of the proposed algorithms in a large-scale operating environment

with a large fleet of vehicles.

1.4. Organisation of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents a

comprehensive review on: (1) integrated approaches to solving the multi-vehicle task

allocation and motion coordination problem, including the exact method and

heuristic/approximation methods; (2) task allocation methods for multiple vehicle

problems; (3) routing methods for multiple vehicles; (4) deadlock and collision

avoidance mechanisms available in multiple autonomous vehicles. Drawbacks of

existing approaches are highlighted and possible avenues for research and

development are presented.

Chapter 3 presents the multiple autonomous vehicles task allocation and

motion coordination problem. This Chapter is dedicated to the motion coordination

aspect of the proposed approach and the SiPaMoP algorithm is presented including

simulation studies.

In Chapter 4, the simultaneous task allocation and motion coordination

approach is developed in addition to an extensive discussion of the task allocation

component of the task allocation and motion coordination problem. Furthermore,

simulation studies related to the STAMC approach are presented in this chapter.

The dynamic task allocation and motion coordination problem is presented

in Chapter 5. This chapter aims to highlight the dynamic characteristics of the

proposed simultaneous task allocation and motion coordination approach.

Rescheduling, when new tasks arrive or due to vehicle breakdowns or external

disturbances, is investigated in this chapter.

The implementation of the STAMC approach in distributed architecture is

presented in Chapter 6 along with architecture development steps and the simulation

results.

10

A case study of the proposed approach of an automated container terminal

is presented in Chapter 7 along with simulation results. This is followed by the

conclusions in Chapter 8. Further, outline of the thesis is given in Figure 1-2.

11

Task
Allocation

Background of multi-vehicle task
allocation & motion coordination problem

Motion
Coordination

Path
Planning

Collison
Avoidance

Simultaneous task allocation & motion coordination algorithm

Task allocationMotion coordination

Path planning
Collision

avoidance

CHAPTER 3

CHAPTER 1 & 2

Distributed architecture of the STAMC
algorithm

CHAPTER 6

Dynamic STAMC algorithm

Accommodate new
arrival of tasks

Replanning strategy to
accommodate breakdowns

CHAPTER 5

Case study (Container terminal environment)

Test in a large
complex platform

Performance evaluation
of STAMC algorithm

CHAPTER 7

Motion Coordination

CHAPTER 4

Figure 1-2: Outline of the thesis

12

Chapter 2

2.Literature Survey

2.1. Introduction

This chapter introduces the background of multi-vehicle task allocation,

motion coordination, path planning and deadlock/collision avoidance. It provides a

detailed review on previous research in relation to the integrated approaches used to

solve multiple autonomous vehicles task allocation and motion coordination problem.

Exact approaches and approximation/heuristic approaches are investigated and

reviewed. Detailed accounts on various methodologies found in the literature are

given. The research papers on automated material handling found in literature mainly

falls into two specific areas of manufacturing and transhipment terminals such as CTs.

However, scale of the problem and complexity differ in the two application areas. For

example, CT environments have large route networks compared to manufacturing

environments.

The Chapter 2 is organised as follows: Section 2.2 review the integrated

approaches related to multi-vehicle task allocation and motion coordination. Exact

and approximation approaches are discussed. Sections 2.3, 2.4 and 2.5 present

methods used for task allocation, routing and deadlock avoidance, respectively. In

Section 2.6, possible research and development issues are highlighted with respect to

overall efficiency and solution quality, optimisation techniques used to find solutions,

and path and motion planning. This is followed by conclusions in Section 2.7. The

structure of Chapter 2 is given in Figure 2-1.

13

Literature survey

Integrated approaches Routing / path planning
Collision / deadlock

avoidance

Exact approaches Heuristic approaches

Figure 2-1: Organisation of literature survey

2.2. Integrated Approaches for Multi-Vehicle Task Allocation and
Motion Coordination Problem

There are few attempts to solve the problem of task allocation, routing and

collision avoidance in an integrated manner in the literature. Furthermore, these

approaches can be subdivided based on the techniques used to solve the problem.

2.2.1. Exact Approaches

Exact approaches find the best or in mathematical terms, an optimal solution

within a reasonable computational time. There are few approaches in the literature,

which tried to find exact solutions for the multi-vehicle task allocation and motion

coordination problem. A hybrid approach presented by Corréa, Langevin, and

Rousseau (2007) for scheduling and routing of AGVs in a flexible manufacturing

system is one of them. A decomposition method was adopted, where the master

problem handles scheduling of AGVs and conflict free routing was considered as a

sub problem. Constraint programming and mix-integer programming were used for

the master and the sub problems, respectively. The optimal solution space of the

scheduling problem was pruned by the logic cuts generated by the sub problem. This

approach was capable of finding an exact solution for up to six AGVs and assumes

the speeds of AGVs to be constant and limited only to a static environment.

Le-Anh and DeKoster (2005) investigated on-line dispatch rules and the

behaviour of single and multi-attribute dispatch rules in internal transport systems.

The impact of reassignment of vehicles was also investigated. Three performance

14

criteria i.e. minimising average load waiting time, keeping the maximum load waiting

time as short as possible and better utilisation of vehicles were used to investigate the

efficiency of the approach. The results revealed that, the multi-attribute dispatch rules

and reassignment of vehicles provide better results. In this research, routes were

selected as shortest paths and collision issues were not considered. Furthermore, this

approach could be used to solve small-scale problems and the speeds of the vehicles

were assumed as constant.

A column generation method for scheduling of AGVs was proposed by

Desaulniers, et.al, (2003) along with the dynamic programming technique for

collision free route planning for a flexible manufacturing system. They used number

of simplifications and assumptions in this research: (1.) Constant speeds for the

AGVs,(2.) when one path is selected by an AGV, all nodes which were in the selected

path were locked until particular AGV finishes its task, so that others cannot use them

to plan their journeys, (3.)Simulations were limited to four AGVs.

2.2.2. Heuristic / Approximation Methods

Heuristic methods are the most common tool used for the problems when an

optimal solution cannot be found within a reasonable computational time (NP-hard

problems). There are a number of resource allocation related applications which were

solved using heuristics techniques (Czarnas, 2002, Kim and Moon, 2003, Baker and

Ayechew, 2003, Choi et al., 2003, Zhang et al., 2008, Seo et al., 2007, Chen et al.,

2007). In the case of multiple vehicle task allocation and motion coordination related

situations, there are few cases published in the literature. However, they were also

focused on solving one aspect of the main problem with the assistance of heuristic

techniques. The relevant research studies are presented below.

An integrated approach was proposed by Chen et al., (2007) to schedule the

entire container handling equipment in a terminal. The problem was formulated as a

Hybrid Flow Shop Scheduling problem with precedence and blocking constraints

(HFSS-B).Minimising the makespan, or the time taken to serve a given set of ships

was considered as the functional objective. A Tabu Search algorithm was used as the

heuristic technique to solve the problem. Certain mechanisms were developed along

with the Tabu Search algorithm to assure solution quality and efficiency. The

performance of the Tabu search algorithm was analysed from the point of view of the

computational cost. Meersmans and Wagelmans (2002) also proposed a similar kind

15

of method to solve the scheduling and routing of all containers handling equipment in

a terminal. The beam search algorithm was used as the heuristic technique. The path

planning and collision avoidance of the vehicles were done with the assistance of

traffic rules in a loop based path topology. The main schedule was prepared at the

beginning of each day with incomplete information of future tasks. Subsequently,

initial schedule was modified, when exact information of tasks arrives to the system.

Longer planning horizons of the scheduling problem were achieved due to the

strategy of scheduling with incomplete information. The main advantage of this

approach was that this could be used for a large fleet of vehicles and its ability to

solve the scheduling problem in an integrated manner. However, the vehicles’ speeds

and travelling times were considered as constant values. This study, further revealed

that there is an advantage in planning on a longer horizon with inaccurate data, rather

than doing it for shorter horizons and later to update the plan very frequently with

accurate data as they arrive. An integrated approach proposed by Hartmann (2004)to

schedule container terminal equipment, consisted of a general scheduling framework

which includes SCs, AGVs, stacking cranes and the workers who handle reefer

containers (containers which have a refrigeration facility). The priority rule based

heuristic method and GA were used to solve the scheduling problem. To test the

method, simulated data were used in this research. In the trial runs, the GA based

method has given better results than priority rule based method. The collision

avoidance and routing issues were not considered in this study and it was assumed

that vehicles travelled at constant speed in a static environment.

Lau, Wong and Lee (2007)have presented an immunity-based control

framework for a fleet of AGVs for material handling purposes of an automated

warehouse. This method had the ability to detect changes in a dynamic environment

and to coordinate AGV’s activities. A robust and flexible automated warehouse

system was developed through the self-organised and fully decentralised fleet of

AGVs.

Further, there are number of researches (Chen et al., 2007, Lau and Zhao,

2008) which were developed to solve one of the common and important problems of

integrated scheduling of all the equipment at container terminals. An intelligent

decision making mechanism for loading operations in the CT was proposed by Zeng

and Yang (2008). This approach generates an initial container loading sequence

according to a certain dispatching rule, which was then improved by GA. A

16

simulation study was carried out to evaluate the improved solution. Lau and Zhao

(2008) have proposed a Mixed Integer Programming model for scheduling of CT

equipment. A heuristic algorithm called multi-layer Genetic Algorithm (GA) was

developed to reduce the computational difficulty in solving the mathematical model.

The proposed method was tested in a fully automated CT environment with a cyclic

path topology. Chen et al., (2007), have proposed the Tabu Search algorithm for the

scheduling of CT equipment. The scheduling problem was modelled as a hybrid flow

shop-scheduling problem with precedence and blocking constraints. The loading and

unloading operations were considered separately. The AGVs were allocated for

different ships while sharing yard cranes between different blocks for loading

operations. The routing/path planning and collision avoidance related aspects were not

considered in this study.

A Tabu Search algorithm based fleet sizing and vehicle routing method was

proposed by Koo, Lee and Jang (2004) for container terminals with several yards. The

main objective of this study was to find the smallest fleet size and routes for vehicles

to fulfil all transportation requirements within a static planning horizon. The results

revealed that the proposed method delivers quality solutions when compared with the

existing method. Vehicle travelling time was considered as constant between two

points. Kim and Kim (1999) attempted to minimise the total container handling time

in a yard based on genetic and a beam search algorithms. Numerical experiments were

carried out to compare the performance of the proposed algorithms against the

optimal solution.

Langevin et al. (1996) presented a method for dispatching, conflict-free

routing, and scheduling of AGVs in a flexible manufacturing system. The problem

was solved optimally in an integrated manner, contrary to the traditional approach in

which the problem was decomposed in three steps, sequentially. Rolling time horizon

based solution was developed on dynamic programming technique. A heuristic

version of the algorithm was also proposed as an extension to a large fleet of vehicles.

In addition, few research studies have attempted to solve the scheduling of

machines and material handling AGVs of manufacturing systems simultaneously. One

of them was proposed by Ulusoy et.al., (1997), to address the problem occurring in a

flexible manufacturing system. The objective of the problem was to minimise the

makespan of the schedule. GA was used as the optimizing technique and results

revealed that for 60% of the problems, GA reached the lower bound indicating the

17

optimality. The average deviation from the lower bound over all problems was found

to be 2.53%. Additional comparison was made with a time window approach. In 59%

of the test problems, GA outperformed the time window approach where the reverse

was true in only up to 6% of the problems.

Further, one of the pioneering researches on multi-robot coordination was

done at the LAAS centre (Aguilar et al., 1995) to address the movement coordination

of a large fleet of ten or more robots in a network-like environment. Container

transhipment centres such as harbours, airports and marshalling yards were considered

as the application domains. Due to the complexity of the coordination problem,

optimality was not considered when generating solutions. Task allocation was

considered incrementally due to uncertainties in the dynamic environment.

2.3. Task Allocation for Multiple Autonomous Vehicles

Dispatching Rules (DR) has been used frequently for task allocation by many

researchers for both static and dynamic environments. Bose et.al, (2000) proposed

different dispatching strategies for straddle carriers which were dedicated to different

gantry cranes. The main objective of this research was to reduce a vessel’s turnaround

time at a port by maximising the productivity of gantry cranes. This was achieved by

an efficient schedule of given straddle carriers. Bish et.al, (2001) focused on the

vehicle-scheduling-location problem of assigning yard locations to import containers

and dispatching vehicles to the containers in order to minimize the total time for

unloading a vessel. A heuristic algorithm was presented and the algorithm’s

performance was tested. This research was further extended by Bish et.al, (2005) and

easily applicable heuristic algorithms were developed. According to their findings, in

simple settings, most of those algorithms were able to find an optimal solution. In

more generic settings, those algorithms were able to obtain near-optimal results for

the dispatching problem.

Grunow, et.al, (2006)presented a simulation study of AGV dispatching

strategies in a seaport container terminal, where AGVs could be used in the single or

dual-carrier mode. The dual carrier mode allowed transporting of two small-sized or

one large-sized container at a time, while in the single carrier mode, only one

container was loaded onto an AGV irrespective of the size of the container. In their

18

investigation, a typical on-line dispatching strategy adopted from flexible

manufacturing systems was compared with a more sophisticated, pattern-based off-

line heuristic approach. The performance of the dispatching strategy was evaluated

using a scalable simulation model. The design of the experimental study reflects

conditions, which were typical in a real automated terminal environment. Results of

the simulation study revealed that the pattern-based off-line heuristic approach

outperforms its on-line counterpart. For the most realistic scenario investigated, a

deviation from a lower bound of less than 5% was achieved when the dual-load

capability of the AGVs was utilised.

A solution topick up, dispatching and load-selection of multiple AGVs was

proposed by Ho and Liu (2006).Nine pickup-dispatching rules were proposed. The

impact of the proposed rules on each other's performance were also investigated. The

experimental results revealed that the rule that dispatches vehicles to machines with

the largest output queue length, was the best in all performance measures. Distance-

based or due-time-based rules did not perform as well as queue-based rules. It further

revealed that the performance of pickup-dispatching rules was affected by different

load-selection rules.

An inventory based dispatching method was proposed by Briskorn et.al,

(2006). The focus of this research was on the assignment of transportation jobs to

AGVs within a terminal control system operating in real time. First, a common

problem was formulated based on due times of the jobs. A greedy priority rule-based

heuristic strategy and an exact algorithm were used to solve this problem.

Subsequently, an alternative formulation of the assignment problem was proposed

without due times. This formulation was based on a rough analogy to inventory

management and which was solved using an exact algorithm. The idea behind this

alternative formulation was to avoid estimation of driving times, completion times,

due times, and tardiness because such estimation was often highly unreliable in

practice and does not allow for accurate planning. By means of simulation, different

approaches were analysed and it was shown that the inventory-based model leads to

better productivity on the terminal than the due-time-based formulation.

Das and Spasovic (2004) developed a terminal scheduler to schedule straddle

carriers in a container port. The objective was to minimise the empty travel of straddle

carriers, while at the same time minimising any delays in serving customers. An

assignment algorithm that dynamically matches straddle carriers and trucks conducted

19

the scheduling procedure. Using a simulation model of a real system, the superiority

of the proposed scheduler over two alternative scheduling strategies was justified.

Kim and Kim (2003) discussed approaches and decision rules for sequencing

pickup and delivery operations for yard cranes and trucks, respectively. Their goal

was to maximise the service level of trucks by minimising their turnaround time, both

for automated and conventional terminals. A dynamic programming model for a static

case (all arrivals of trucks are known in advance) was suggested. For a dynamic case

(new trucks arrive continuously), a learning-based method for deriving decision rules

was proposed alongside with several heuristic rules. Kim and Moon (2003) extended

the problem presented by Kim and Kim (2003) to general yard-side equipment, such

as gantry cranes or straddle carriers. Experiments revealed that the proposed Beam

Search algorithm outperformed GA.

Grunow et al., (2004) presented a dispatching strategy for multi-load AGVs. A

flexible priority rule was proposed and it compared with an alternative mix integer

programming formulation for different scenarios. The main objectives of the research

were to reduce lateness of AGVs in the multi-load mode and to improve the

terminal’s overall operational performance.

An auction algorithm based method was proposed by Lim et al., (2003) for

dispatching AGVs in a general context with the objective of minimising the total

empty travel time of AGVs. This method implemented a distributed decision making

process with the facility to communicate among related vehicles and machines for

matching multiple tasks with multiple vehicles. Future events were also taken into

account. The results revealed that the distributed dispatching method outperformed

shortest distance dispatching rule.

A vehicle management system was developed by van der Heijden et al.

(2002), for a Dutch pilot project on an underground cargo transportation system using

AGVs. Several rules and algorithms for empty vehicle management were developed,

varying from First-Come-First-Served (FCFS) via look-ahead rules to integral

planning. The various rules were embedded in a framework for logistics control of

automated transportation networks. The planning options were evaluated for their

performance in terms of customer service levels, AGV requirements and empty travel

distances. Based on the experiments, it was concluded that look-ahead rules had

significant advantages over FCFS and a more advanced serial scheduling method out-

performed the look-ahead rules.

20

Steenken (1992) investigated methods to optimize the straddle carrier

operation at the truck working area. The problem of assigning jobs to straddle carriers

was solved with a linear assignment procedure combining movements for export and

import containers. Different algorithmic approaches were used to solve the routing

problem. Solutions were implemented in a real time environment and resulted in

considerable gains of productivity.

2.4. Vehicle Routing and Path / Motion Planning

As discussed in Chapter 1, routing of vehicles in an effective and efficient

manner contributes greatly to the overall efficiency of multi-vehicle coordination.

There are many research studies conducted on vehicle routing problems (VRP), they

include Lau et al., (2003), Baker and Ayechew, (2003), Tan et al., (2001), Liu and

Shen, (1999), K.C. Tan, (1999), Barbarosoglu and Ozgur, (1999), Ochi et al., (1998),

Achuthan et al., (1997) and Renaud et al., (1996).However, there are many

differences of planning and coordinating requirements of vehicles in general VRPs

and autonomous vehicles such as AGVs and SCs. All the VRP problems discussed in

the literature are about situations where human operators (drivers) are involved.

Conversely, autonomous vehicles are operator-free. The deadlock and collision are

significant issues. Therefore, most of the findings related to driver driven vehicles

cannot be directly applied to AGV based systems. Initial research on routing of AGVs

came from manufacturing areas such as Flexible Manufacturing Systems (FMS) and

Computer Integrated Manufacturing (CIM) systems and so forth. During the last

decade, research works have been extended to areas like automated or semi-

automated container terminals and warehouses. The pioneering research works on

AGV routing can be found in Steenken et al. (1993), Dhouib and Kadi (1994),

Taghaboni-Dutta and Tanchoco (1995), Evers and Koppers (1996) and Langevin et al.

(1996).

Routing of AGVs largely depends on the path topology (route network layout)

of the operating environment. The path topologies can be divided into three groups

(Le-Anh and De Koster, 2006): single loop; tandem; and conventional. In some

applications in a manufacturing sector, only one or two AGVs can fulfil the tasks.

Frequently AGVs need to travel to different workstations in more or less the same

21

sequence, for example, in FMS or CIM. For these types of operations, single loop

path topology is suitable. In the case of automated container transhipment terminals,

there will be a number of gantry cranes operating at different berths for loading and

unloading of different ships. In order to cater for these cranes, a large fleet of AGVs is

needed. AGVs are normally dedicated to different cranes. Hence they operate in

different loops. In these instances, tandem path topology is used. In semi-automated

material handling environments, fleets of AGVs operate in uni- and bi-directional

paths in a complicated path topology with many crosses and path segments. The next

section presents the previous works done on AGV routing in the above three path

topologies.

Seifert (1998) presented a simulation model to analyse an AGV system

operating under selected vehicle routing strategies. The proposed model could handle

an arbitrary system layout as well as arbitrary numbers of AGVs and pedestrians

causing congestion in the system. A dynamic vehicle routing approach was introduced

and this was based on hierarchical simulation where, at the time of each AGV routing

decision in the main simulation, subordinate simulations were performed to evaluate a

limited set of alternative routes in succession until the current routing decision can be

finalised and the main simulation resumed.

Routing of straddle carriers for loading operations of export containers was

discussed by Kim and Kim (1999), with the objective of minimising the total travel

distance of straddle carriers in the yard. A Beam Search Algorithm (BSA) was used to

solve the routing problem and the proposed method was evaluated in numerical tests.

In Kim and Kim (1999), the number of containers picked up by a straddle carrier at

each bay and the sequence of bay visits were determined in order to minimise the total

travel distance/time. The proposed integer programming model was solved by a two

phase procedure.

Routing of AGVs in the presence of interruptions was studied by Narasimhan

and Batta, (1999). Re-routing due to interruptions was achieved by accessing a route

database to quickly obtain previously generated paths and using a flexible re-routing

strategy. A simulation experiment was conducted based on data collected from a large

manufacturing facility to justify the approach. Another dynamic conflict-free routing

approach was proposed by Oboth and Batta (1999), which addressed the design and

operational control issues of AGVs. In addition to design issues, operational control

22

factors such as demand selection and assignment, route planning and traffic

management, idle AGV positioning and AGV characteristics, were addressed.

The survey of scheduling and routing algorithms (Qiu et al., 2002) showed

similarities and differences between scheduling and routing of AGVs and related

problems such as VRP, the shortest path planning problem etc. The authors classified

algorithms into groups of general path topology (static/time-window based/dynamic

methods), of path optimisation (0-1-integer-programming model, intersection graph

method, and integer linear programming model), specific path topologies

(linear/loop/mesh topology) and dedicated scheduling algorithms.

The route planning method proposed by Sarker and Gurav (2005) suggested a

bi-directional path layout and a routing algorithm, which generated conflict-free,

shortest-time routes for AGVs in a manufacturing environment. Based on the path

layout, a routing algorithm and mathematical relationships were developed among

certain key parameters of vehicles and paths. A high degree of concurrency was

achieved in vehicle movement. Routing efficiency was analysed in terms of distance

and time required for AGVs to complete all pickup and drop-off jobs. The routing

algorithm assumed that each AGV travels at constant speed.

Two classes of routing algorithms were proposed by Maza and Castagna

(2005), namely optimised pre-planning algorithms and real-time routing algorithms. It

was revealed that pre-planning algorithms have the advantage of producing optimal

conflict-free routes, but cannot deal with changing situations such as vehicle delays

and failures. Real-time algorithms have the advantage of being reactive, but cannot

generate optimal path. In this paper, it was proposed to combine the advantages of

both, as a two-stage approach. In the first stage, a pre-planning method was used to

generate the fastest conflict-free routes for AGVs. In the second stage, conflicts were

avoided in a real-time manner when needed. The objective of the second was to avoid

deadlocks in the presence of interruptions while maintaining the established AGVs

routes. The efficiency of this approach was analysed using developed simulations.

Nishi et al., (2007) proposed a distributed routing method based on motion

delay to prevent disturbance for multiple AGVs. The proposed method has the

characteristic to derive its optimal route of each AGV to minimise the sum of the

transportation time and the penalties with respect to collision probability with other

AGVs. The proposed method was applied to a routing problem for transportation in

the semi-conductor fabrication bay with 143 nodes and 20 AGVs. The results showed

23

that the total transportation time obtained by the proposed method was shorter than

that of the conventional method. For dynamic transportation environments, an optimal

timing for re-routing multiple AGVs under motion delay was determined by the trade-

off between the total computation time and the uncertainties for re-routings. Markov

chain was used to represent uncertainty distribution for re-routings. The proposed

method was implemented in an experimental transportation system with 51 nodes and

5 AGVs.

A mathematical model for the unidirectional path design problem was

developed by Seo, et.al., (2007) for an AGV system. To obtain a near optimal solution

within a reasonable computation time, a TS algorithm was used to solve the routing

problem.

2.5. Collision and Deadlock Avoidance

One of the most important issues of multi-vehicle coordination is to avoid

deadlocks. Previous researchers answered this problem in different ways (Corréa et

al., 2007, Le-Anh and De Koster, 2005).Deadlock prevention can be incorporated into

either the integrated approach or the routing methods. These methods can be classified

into three categories: traffic control rule-based methods, zone control policies, and

collision-free best possible routes.

Traffic rule based collision avoidance can be applied in any path topology.

These rules act similar to normal traffic light systems in the intersections of each path,

but rules can be defined based on the priority and network congestion. In zone control

policies, network was partitioned into zones. Each zone was exclusively assigned to

one AGV to avoid collisions. In time-window based methods, the occupation times of

all connections were maintained in a database. When a new route was required to be

selected, free time slots of the selected path segments were checked. If there were no

free timeslots for the selected path segments, other feasible paths that contain free

time slots were selected.

Traffic rules were used for collision avoidance in Sarker and Gurav (2005),

Grossman (1998). Liu et al. (2004) used traffic rules to eliminate traffic jams in a

grid-based road network environment. In his research, restricted route selection was

compared with autonomous route selection and revealed that the proposed approach

24

produced near optimal results even for a large fleet size. Sarker and Gurav (2005),

proposed traffic rules to be used in the intersections of the bi-directional path topology

of a manufacturing facility. The routing efficiency was calculated in terms of the

AGVs travel distance and time required for an AGV to complete its tasks. Liu et al.

(2004) also used traffic rules in the intersections to avoid collisions in an automated

container terminal environment. In addition, Narasimhan and Batta (1999) and Qiu, et

al. (2001) also used traffic control rules in their routing approaches.

Kim et al. (2006) proposed a deadlock avoidance method for the AGVs. The

objective of this study was to develop an efficient deadlock prediction and prevention

algorithm for AGV systems in an automated container terminal. Since the size of an

AGV was much larger than the size of a grid-block on a guide path, this study

assumed that an AGV might occupy more than one grid-block at a time. This study

proposed a method for reserving grid-blocks in advance to prevent deadlocks. A

graphical representation method was suggested for a reservation schedule and a

priority table was suggested to maintain priority consistency among grid-blocks. It

was shown that the priority consistency guarantees deadlock-free reservation

schedules for AGVs. The proposed method was tested in a simulation study.

Moorthy et al. (2003) proposed a zone control-based collision avoidance

method. The main advantage of this method was that it could accommodate a fleet

size up to 80 AGVs. Here, the routes were divided into working and service lines. The

proposed method was implemented in AutoMod simulation software. A similar type

of method was proposed by Oboth and Batta (1999), which selected the shortest route

and blocked the selected path till the respective AGV finishes its job.

The agent-based technique developed by Singh and Tiwari (2002) and real

time AGV routing approach proposed by Mohring et al. (1998) use a time-window

approach to overcome collision issues.

The conflict-free routing scheme proposed by Zeng and Hsu (2008) varied

AGVs’ speeds in order to change the time for the AGV to reach a node where there

were possibilities of collisions. This was tested in a mesh like path topology of a

container yard layout.

25

2.6. Research and Development Challenges

2.6.1. Overall Efficiency and Solution Quality

The selection of best strategies for task allocation, path/route planning and

handling the single and dual cycle modes especially in container terminals directly

affects the overall quality of solution and the efficiency. For example, in some

instances, for task allocation, tasks are selected in a first-come first-served basis or

following a task sequence determined previously (Bish et al., 2005). However, there

can be many task sequences, which may be able to increase the overall efficiency.

Therefore, it is worthwhile to investigate the possible alternative task sequences.

Conversely, routing and deadlock/collision prevention strategies used in the literature

more often reserve either adjacent zones (Moorthy et al., 2003) or path segments for a

vehicle till it finishes its task (Desaulniers et al., 2003, Oboth and Batta, 1999).

Therefore, other vehicles cannot use those zones or path segments to deliver their

tasks and this reduce the solution quality.

In some of the fully automated material handling environments, AGVs are

guided through loops in order to prevent collisions and deadlocks. This especially

occurs in path layouts such as loop based systems and zone based systems. An

example for this instance is automated container terminals where vehicles are used for

either loading or unloading. This is achieved by traversing in loops. However, this

leads to more empty travels and thereby reducing the overall efficiency. In contrast,

though the dual cycle mode is complex to coordinate, higher overall efficiency can be

achieved by reducing empty travel times. Although dynamic schedule proposed by

Meersmans (2002) for the automated container terminal, they considered only loading

activity for the scheduling. However, in Das and Spasovic (2004), they did not

differentiate the allocation process based on cycle modes as they considered loading

of landside transportation. Whenever SC finishes its task, it would be allocated with a

new task available in the pool. Since this approach was not limited to one cycle, there

was not many empty travels of SCs. However, if they accommodate seaside

transportation to the terminal scheduler, there was a possibility to achieve overall high

transportation efficiency of the terminal. The general framework presented by

Hartmann (2004) for scheduling equipment and manpower only considered the

transportation of both sides of the terminal. Further, it was not narrowed down to

cycle modes of loading/unloading, though this system was not run on real data sets.

26

The approach used by Bose et al.,(2000), single and double cycle modes were

discussed. In a semi-dynamic assignment, a fixed number of SCs was allocated for

one/ gantry crane of one ship while in dynamic assignment. A fixed number of SCs

was assigned to all gantry cranes. Nevertheless, in order to simplify the problem, this

approach ignored the stacking and destination of discharge and assumes a constant

number of SCs and a constant velocity.

Based on the above research studies, Hartmann and Bose (2006) and (Bose et

al., 2000) consider a dual cycle mode without limit into loading or unloading.

However, Hartmann’s method did not use real data to evaluate his approach. Further,

this work did not take into account the velocity changes, the breakdowns of the

vehicles etc. The same comment applies for Bose et al. (2000), due to its assumptions.

2.6.2. Optimisation Methodologies

Three types of methodologies are commonly used for the task allocation in the

literature, namely: the heuristic and evolutionary approaches, mixed integer linear

programming, and the dispatching rules. Evolutionary algorithms such as GA have

been used in many studies (Bose et al., 2000, Lau and Zhao, 2008, Qingcheng and

Zhongzhen, 2008 and some cases as a comparison (Briskorn et al., 2006). Heuristic

approaches such as Beam Search Algorithm (BSA) (Meersmans, 2002, Kim et al.,

2004, Kim and Kim, 2003), Tabu Search (TS) (Koo et al., 2004, Seo et al., 2007,

Chen et al., 2007), Simulated Annealing (SA) (Kim and Moon, 2003) are also studied

by logistic/transportation researchers. However, according to our understanding, a

proper comparison has not been done about these techniques and that is a necessity.

GA was used as the general scheduling approach in (Briskorn et al., 2006),

which schedules SC, AGVs and workforce of a container terminal. The GA based

results have outperformed priority rule based heuristics with less computation time.

GA was used to improve the solutions of dispatching strategies in Bose et al. (2000).

The results revealed that GA has the potential to improve the solution quality. Ulusoy

et al., (1997) used GA to schedule machines and AGVs simultaneously in

manufacturing environment.

BSA was used by Meersmans (Meersmans, 2002) as a prime tool for

integrated scheduling in static and dynamic environments in an automated container

terminal. Further, BSA was used to minimise the total handling time of cranes and

trucks of a container terminal by Kim et al., (Kim et al., 2004a). Their results revealed

27

that the BSA outperforms the Ant algorithm and neighbourhood search. (Kim and

Kim, 1999) used BSA for loading operations of the SCs. The objective was to

minimise the total travelling time of the SCs in the yard. TS algorithm was used for

fleet sizing and vehicle routing by Koo et al. (2004) in a container terminal with

several yards. Their objective was to find the minimum fleet size and routes of

vehicles. This work was done for a static environment and assumed that the vehicles

travel times are fixed.

Scheduling/task allocation problems are also solved by linear assignment

procedures (Steenken, 1992), as an assignment problem by (Das and Spasovic,

2004b), by dispatch rules (Leong, 2001; Grunow et al., 2004b; Le-Anh and De

Koster, 2005; Bish et al., 2005; Corréa et al., 2007) and by auction algorithms (Lim et

al., 2003, Henesey et al., 2003).

2.6.3. Path and Motion Planning Issues

Some issues in this section have already been presented in previous sections. This

section focuses on issues that can arise when planning the paths for the transportation

tasks of vehicles. Most of the complexities arise due to path layouts or path topologies

of the environment. For example, it is easier to schedule and route the AGVs in loop-

based path topology than a conventional type path topology, which contains a grid

network environment where each path segment facilitates the bi-directional

movement. There is always a trade-off between transportation efficiency and path

topology of the system. Where the layout of the path is based on a uni-directional or a

loop system, then empty travel distances will be higher and transportation efficiency

will be less. Conversely, when routes are bi-directional, empty movements are

reduced and transportation efficiency goes up. Path planning issues are more complex

in bi-directional transportation systems. This is mostly due to the collisions among the

vehicles operating in such environments.

A traffic control system based on semaphore techniques was proposed by

Evers and Koppers (1996). In the semaphore based system, only one vehicle can be

used in certain segments of the path until it moves. In other words, the particular

segment is locked by the occupied vehicle. Path planning for a large fleet is not

practical with this method as transportation efficiency will be reduced when fleet size

increases.

28

In order to avoid deadlocks and collisions, many path and motion planning

approaches to locking the selected path segments or nodes until the respective vehicle

finishes its task have been proposed by many researchers (Corréa et al., 2007, Le-Anh

and De Koster, 2005, Narasimhan and Palekar, 2002 and Qiu et al., 2001). During the

locked period, none of the other vehicles can use those path segments or the nodes,

affecting the overall efficiency. The exception of Wallace’s (2001), all other zone-

based systems use exclusive zones in their routing or path planning. Therefore, it is

necessary to introduce path and motion planning methods, which have less usage

restrictions.

Most of the researches discussed above have not considered motion aspects of

the transport vehicles in their approaches. They have assumed the speed of the

vehicles to be constant. However, this is not realistic. It would be preferable for speed

variations to be accommodated in the path planning process. Thus, they can be

referred to as either path or motion planning or motion coordination problems.

In considering all the aspects of the available methods, there remains a need

for an efficient path and motion planning technique, which could especially be useful

in conventional (bi-directional) types of path topology for a large fleet of vehicles.

2.7. Summary

Based on the findings in the literature, several important areas, which require

more investigation that is extensive, have been identified. These can be classified into

the following areas;

i. Efficiency of overall container terminal operation

A great deal of research has been done on one operational aspect of the

container handling problem, such as quay crane scheduling, prime mover

scheduling, deadlock and collision avoidance etc. Only a few attempts have

been made to integrate these sub-problems into a single problem. Therefore, it

is difficult to enhance the overall terminal efficiency.

ii. Solution quality

A number of past research papers have used dispatching rules for task

allocation. Only a few studies have focused on TA related solution quality

29

improvement. However, there are a number of ways to get at least near

optimal solutions within a reasonable time frame.

iii. Scalability and applicability

Most research studies have been conducted based on scaled down

environments with a number of assumptions, which limits their adaption in

large-scale real world material handling environments such as container

terminals.

iv. Uncertainty

The real world material handling systems have to face many unexpected

events such as sudden vehicle breakdowns, blockages in the routes, etc.

However, these issues have been extensively addressed in research studies.

Addressing these contingencies is essential to manage real world large-scale

material handling systems.

v. Computational efficiency

There is always a trade-off between the quality of solution and computational

efficiency needed to generate the optimal or near-optimal solution. Even if

there is a method that can find the optimal solution it will have to be

concerned with computational efficiency. Otherwise, it will not be possible to

be used in real world situations.

Several reviews (Vis and Koster, 2003, Qiu et al., 2002, Le-Anh, De Koster,

2006, Vis, I. F. A. 2006) have highlighted that more effective and efficient methods

are needed to address the breakdown, scheduling and routing issues of a large fleet of

autonomous vehicles. Therefore, this study aimed at developing a methodology,

which will address the overall efficiency of task allocation and motion coordination

while enhancing scalability.

The proposed way to address the efficiency and solution quality issue is to

develop an integrated approach to task allocation, path planning and collision

avoidance. Task allocation and motion coordination will be done simultaneously. In

addition, to reduce empty travel time and distances, the proposed method will use

conventional type path topology, which facilitates bi-directional movement.

30

Furthermore, in the motion coordination stage, where collision-free paths are planned,

the selected path segments will not be blocked for other vehicles. Thus, other vehicles

can use them with some safety constraints. This proposed approach will also have

provision to react to unexpected events such as vehicle breakdowns or sudden

environment changes like road blockages. A comprehensive comparison among

different methods in real applications is necessary. For example, when evolutionary

algorithms or generally applicable heuristics are used, it is always better to compare

them with other types of algorithms such as heuristic. Evolutionary methods are

dependent on the problem set up. It is rare to see many comparisons of different

approaches to this problem. Furthermore, studies have not covered the computational

efficiency-related issues under real world scenarios. The proposed simultaneous task

allocation and motion coordination approach will address this research gap.

31

Chapter 3

3.Problem Formulation and Simultaneous
Path and Motion Planning Algorithm

3.1. Introduction

This chapter presents the multi-vehicle task allocation and motion

coordination problem and the method proposed for motion coordination. The problem

is defined as a generic multi-vehicle task allocation and motion coordination problem,

which is applicable to automated CTs, warehouses and manufacturing systems. As

discussed previously, when multiple autonomous vehicles operate in a strictly

constrained environment, the space allocated for paths is very limited. Paths are,

therefore, designed to facilitate bi-directional movement. This type of path topology is

called a conventional path layout (Le-Anh and De Koster, 2006). However, this path

topology leads to more collisions and deadlock situations than other path topologies.

Efficient coordination techniques are required to coordinate motions of multiple

AGVs.

Most of the earlier research studies have focused on some aspects in task

allocation and motion coordination for specific applications such as container terminal

operation or manufacturing systems. It is possible to consider all transporting

operations in a container terminal as a set of tasks to be performed by a fleet of

vehicles in a prioritised or sequential manner.

The importance of tasks varies with time. For example, in a container terminal,

the tasks of loading and unloading of ships are of paramount importance. In contrast,

when there are no ships in the terminal, transporting containers within the yard or

loading to outside trailers might be more important. In general, it is justifiable to

assume different priority levels for transporting tasks at different time periods.

The rest of the chapter is organised as follows. The task allocation and motion

coordination problem is presented in Section 3.2. The mathematical representations

and modelling of the path and motion planning and collision avoidance sub-problems

and the proposed SiPaMoP algorithm is given in Section 3.3. The simulation

32

environment is presented in Section 3.4. Simulation and case study results that show

the performance of the approach are presented and discussed in Section 3.5. Finally,

Section 3.6 gives a discussion and concluding remarks.

3.2. Task Allocation and Motion Coordination Problem

In automated container terminals or manufacturing environments, a fleet of

AGVs or automated SCs are normally in operation concurrently. These vehicles can

carry unit loads (e.g. a box in a container terminal or a palette in a manufacturing

plant) at any instance. Therefore, the transportation operation can be modelled as a

constraint transportation problem. This problem consists of m number of vehicles and

n number of tasks. Task allocation (TA) decides which task is allocated to which

vehicle. If tasks are allocated to vehicles by using commonly used dispatching rules, it

is difficult to guarantee the optimality of the allocation. Selecting the most suitable

vehicle for a given task is a crucial decision, which significantly affects the overall

efficiency of the transportation system. This is categorised as an optimal assignment

problem, which is known to be NP-hard (Bagchi, 1999).

Simultaneously planning the appropriate path for a vehicle to undertake the

allocated task and avoiding possible collisions with other vehicles while travelling

make the complex allocation problem even more complicated. Multi-vehicle task

allocation and motion coordination problem consists of three main components,

namely, task allocation, path planning and collision/deadlock avoidance, as explained

in Chapter 1. Collisions occur mainly in the following ways:

i. When two or more vehicles travel on the same path towards each other at a

different or the same speed (head-on collision)

ii. When two or more vehicles travel on the same path in the same direction

at different speeds (catch-up collision)

iii. In a situation where different vehicles travel from different directions

towards the same intersection point at the same time.

The multi-robot path planning and collision/dead lock avoidance, in general

terms, can be referred to as motion coordination. These two aspects need to be

33

integrated in order to come up with a deadlock free optimal path, once a vehicle has

been chosen for a task. The multi-vehicle task allocation and motion coordination

problem is schematically represented in Figure 3-1. In the task allocation and motion

coordination problem, autonomous vehicles are handling transport operations where

task pick-up and destination positions are scattered around different locations. These

vehicles travel in a bi-directional path network to perform tasks. When one vehicle

finishes its current task, that vehicle will be given another task to perform unless the

entire available tasks are allocated. The main challenges of solving a multi-vehicle

task allocation and motion coordination problem are;

i. to allocate the most appropriate vehicle for a given task

ii. to select the best path (route) for a vehicle based on the current situation

iii. to avoid possible collisions among vehicles while travelling on a bi-directional

path network.

Usually these three challenges are addressed separately.

Task Allocation and Motion
Coordination of Multiple Autonomous

vehicles

Task Allocation
Path Planning

Collision Avoidance

Task_Vehicle Pairs
&

respective collision
free shortest paths

Task Allocation

Path Planning
Collision Avoidance

Figure 3-1: Schematic representation of the multi-vehicle task allocation and motion
coordination problem with three key sub-problems

34

The overall efficiency of the multi-vehicle system is expected to be increased

very considerably, if task allocation, path planning and collision avoidance are solved

simultaneously. In this chapter, path planning and collision avoidance issues are

addressed together as an integrated problem. A novel algorithm called Simultaneous

Path and Motion Planning (SiPaMoP) is proposed for motion coordination of

multiple AGVs in a strictly constraint environment.

The task allocation aspect integrated with motion coordination problem is

presented separately in Chapter 4, along with the proposed simultaneous task

allocation and motion coordination approach.

3.3. Motion Coordination and SiPaMoP Algorithm

Motion coordination plays an important role in the multi-vehicle task

allocation and motion coordination problem. Motion coordination consists of both

collision-free path and motion planning for multi-autonomous vehicles in various

environments and operating conditions. Unlike single autonomous vehicle motion

planning, motion planning for multiple autonomous vehicles not only requires getting

vehicles from pick-up to drop-off without colliding with obstacles either stationary or

moving, but also requires the achievement of a minimum level of congestion while

ensuring maximum productivity of the whole system.

Path planning algorithms have been studied for autonomous vehicles operating

in various (known, unknown or partially known) environments, for example, D*

(Stentz, 1994), Delayed D* (Ferguson and Stentz, 2005) and E* (Philippsen et.al,

2005) algorithms. Meta-heuristic and evolutionary algorithms have also been studied

for applications in path planning, examples include particle swarm optimisation (Qin

et.al, 2004), genetic algorithm (Chiba et.al, 2004) etc. For applications in known

environments such as road networks, path planning is usually solved in two steps: (1)

build a graph to represent the geometric structure of the environment and (2) perform

a graph search to find a connected path between the pick-up and destination points.

Finding shortest paths in known and dynamic environments appears to have

divergent approaches. Chabini (1997 and 1998) has classified dynamic shortest path

problems. Fu and Rilett (1996) have investigated the dynamic and stochastic shortest

35

path problem by modelling connection travel time as a continuous-time stochastic

process. The motion coordination of a fleet of autonomous vehicles in a strictly

constrained environment is a very hard problem to solve. The majority of published

research studies on shortest path planning algorithms, which are often used to find the

‘best’ paths for road vehicles in known environments, have dealt with static road

networks that have fixed topology and few constraints. The roadmap approach, which

is based on the concepts of configuration space and continuous path, is one of the

most common approaches to vehicle path planning in road networks. Zhan and Noon

(1996) presented a comprehensive study on shortest path planning algorithms on 21

real road networks in the U.S., with networks ranging from 1600/500 to

93000/264000 nodes/arcs. In this study, Dijkstra-based algorithms outperformed other

algorithms in one-to-one or one-to-all fastest path problems. Husdal (2000) reported

that the A* algorithm and Dijkstra-based algorithms have been preferred in most of

the literature.

Autonomous vehicle path planning in a known environment such as container

terminals has been attempted to provide more realistic and versatile solutions over the

last decade. However, the following issues still remain unresolved:

i. Most of the shortest path algorithms generate the shortest path without taking into

account the number of vehicles, and the vehicle speed/turning variations. Path

planning and scheduling are separated, and no generic search approach has been

reported to conduct planning, scheduling and collision avoidance simultaneously.

ii. Current approaches cannot efficiently manage congestion and bottleneck areas,

which cause the biggest difficulties in planning.

iii. How path and speed/turning planning algorithms accommodate dynamic traffic

conditions.

iv. Inefficiency and lower productivity caused by simple rules-based collision

avoidance methods.

Focusing on solving the above problems, this section presents a Simultaneous

Path and Motion Planning approach (Liu, Wu and Kulatunga, 2006) for multi-

autonomous vehicle motion coordination in strictly constrained environments. This

approach plans collision-free paths and speeds for all vehicles in an environment by

dynamically changing the vehicles’ path and/or travel time/speed between nodes to

36

minimise the completion time of a set of tasks, and as a result, maximise the

productivity.

Path and motion planning of autonomous vehicles in container terminals and

material handling environments strive to maximise the productivity of the whole

system in a given period of time, for example, one day or one week. Due to the

dynamics and uncertainties of operation, productivity is significantly affected by a

number of factors such as the environment, vehicle path and collision avoidance

strategy or bottleneck area. Figure 3-2 shows a schematic simultaneous approach for

path and speed planning and collision avoidance with the objective of minimising

travel time and avoiding collisions with any stationary or moving obstacles. Allocated

tasks, dynamic traffic information and static and dynamic obstacles (e.g. containers in

the terminal) previously located and new arrivals are the main inputs to the

simultaneous path and motion planning algorithm.

Path source &
Destination nodes

Path and motion planning
&

collision avoidance

Vehicle Control

Static & Dynamic obstacles

Dynamic environment

Figure 3-2: Schematic representation of simultaneous path and motion planning approach

The pick-up and drop-off nodes of a task define a task where an automated material

handling equipment (AGV or SC) picks-up a unit load (it can be a container or pallet)

from the source node and transports to its drop-off node via linked connections

(connected with adjacent nodes). The following assumptions are considered in

formulating the path and motion-planning problem:

i. Vehicles are running on time

ii. All transport orders are known in advance

iii. No expected delivery time applies to the transportation orders

iv. There are n tasks to be allocated to m vehicles

37

The main objective of the simultaneous path and motion-planning problem is

to minimize the total completion time of all the vehicles, which involve transportation

activities. The total completion time of vehicles can be given as:

௧௧ݐ ൌ ݂൫ ௦ܲǡǡ ௦ܸǡ ǡ ௦ǡǡݎ ௪ǡݐ ିǡݐ ൯ݐ ൌ σ σ ௦ǡݐ
ೞ

௦ୀଵ (3.1)

The total completion time is the function of path Ps,i, speed Vs,i, waiting time

tw and path replanning time tre-p needed to complete the tasks. And m is the number of

vehicles, ns is the number of tasks allocated to vehicle s, ts,i represents the travel time

for the vehicle s to complete its task i.

The ts,i, (time needed for a vehicle to complete a task), can be calculated by:

௦ǡݐ ൌ σ
ௌೞǡೕ

௩ೞ ǡೕ

 ೞ ǡ
ୀଵ หݒ௦ ǡஷ σ ௪หݐ

௩ೞ ǡ సబ

 ݐ ሺ͵Ǥʹሻ

ts,i has five components; time for vehicle s to perform task i is determined by

the number of connections ks,i among nodes in the path Ps,i the distance Ss,j between

nodes, average speed vs,j of the vehicle travelling Ss,j, sum of waiting time tw (when

the speed is zero) and loading or unloading time to. The parameters of ks,i, Ps,i, Ss,j, vs,j,

and tw, are undetermined at the planning stage and they vary with the change of

environment, traffic conditions, obstacles, planning strategies, etc.

A vehicle’s motion is expressed as:
],...,,[:

,,2,1,, isksssis pppP
path segments of

vehicle s for performing task i. The length of a path segment, ps,j is the Ss,j shown in

Equation (3.2), and
],...,,[:

,,2,1,, isksssis vvvV
is the average speed of vehicle s from the

first path segment to the last connection.

Based on the inputs, namely allocated tasks, dynamic environment changes

and the location of static and moving obstacles, the simultaneous path and motion

planning method finds the path Ps,i and speed Vs,i for all vehicles by minimizing the

total travel time for a set of tasks. This approach is further explained using an

example, which is given below.

Assume nodes i, j and k are nodes connected serially from node i, j and then to k,

and the weight for each connection, for example, connection between nodes i and j, is

the travel time for a vehicle at the given speed. While planning the motion (e.g. a path

38

and speed) of a vehicle to undertake a task, the SiPaMoP algorithm will change the

connection weight (travel time) between nodes i and j in the way of:

yjiw
d
jiw � ,,

(3.3)

where jiw , is the current connection weight which is equivalent to the travel time

between the two nodes; d
jiw ,
is the new connection weight between nodes i and j,y is

parameter which is determined as;

°̄

°
®

'�

otherwiseTT

freeisjandinodesbetweenconnection
y

0
(3.4)

Where, T is the time difference between two relevant vehicles when they approach the

same node j. T' is the minimal time difference between two vehicles according to

safety requirements.

Vehicle V1 is travelling from node d to a via intermediate nodes c, j and b, for

example, as shown in Figure 3-3. The SiPaMoP algorithm is planning vehicle V2’s

path from node h to node l, and finds that V1 and V2 will pass the same node j within

T'r . So the algorithm will automatically change the connection weight between node

i and node j by letting T= tcj and Ttww cjji
d
ji '�� ,,

.Because of this weight increase

between nodes i and j, V2 will either change its path, for example, travel from h to l

via i, b (or c) and k, or reduces its travel speed from i to j to allow V1 to pass node j

safely. This change in connection weight will automatically be removed after V2

leaves the node j towards node k, which allows other vehicles pass the connection

without change in speed if there is no collision in this connection.

This dynamic change of connection weight between nodes i and j can also solve

the collision problem in the case that V1’s path is from node d to l via c, j and k, and

V2 travels from node h to l. In this case, V2 will pass node j after V1 with a minimum

time difference of T' .

h

a

d

V1

tcj

b

c

lj ki

V2

39

Figure 3-3: The connections of nodes for the given example

The SiPaMoP algorithm is further illustrated as a flow chart in Figure 3-4. It

works as follows. Initially, a map is labelled with different node numbers and a

database is maintained which includes nodes and available connections. Then a task

pick-up node is set as labelled. Next step is to select the adjacent node and calculate

the arrival time. This is repeated for each adjacent node. If a labelled or adjacent node

is occupied at a point of time, then the weight of the labelled and adjacent nodes are

updated. This is repeated till all the adjacent nodes are scanned. Once this is finished,

shortest distance node is labelled. This is repeated until all nodes are labelled. Once

all the nodes are labelled, shortest path is registered with respect to travelling time.In

SiPaMoP algorithm, Dijkstra algorithm (Dijkstra 1959) is used to search the shortest

path by considering the updated node weights. Other algorithms such A* can be used

in the SiPaMoP algorithm as well. The path and motion coordination for the

autonomous vehicles are performed in a sequential manner in this approach.

Therefore, once a path is decided for a vehicle, the planned paths and connection

weights will be considered in the planning of the next path.

By changing the connection weight, the SiPaMoP algorithm is able to avoid

collisions by coordinating the motions of a coming vehicle with the previously

planned vehicles in following ways,

Method 1: Waiting until other vehicles pass the connection

In this method, a vehicle will be asked to wait until the other vehicles pass the

connection where collision may occur. (Example: between nodes j and kof Figure

3-3). This happens normally in bottleneck areas.

Method 2: Changing the path of the incoming vehicle

This method involves replacing a path planned without weight change by a better path

that takes less travel time, compared to the path with changed weight on current

environment and traffic conditions.

Method 3: Changing the vehicle speed

40

In this method, for example, from node i to node j, the same path is kept as planned

but travelling speed is changed. As we assume the paths planned previously have

higher priority than the current path being planned, and vehicles are running with the

set speed when there is no collision on their path, the change in weight, i.e. increase in

weight, will slow down the coming vehicle(s).

Method 4: Combinations of the above three methods

This is useful when more than two vehicles are involved in traffic congestion. In order

to avoid possible collisions, a combination of the above methods is adopted here.

Clearly, this weight change does not affect previously planned paths and vehicle

speeds. Nevertheless, it will affect the paths and speeds yet to be planned. The results

to be obtained from the SiPaMoP algorithm is the paths and speeds of all vehicles Vs,i

for their assigned tasks Ps,i, where s=1,2,…, m and i=1,2,…, ns.

41

Figure 3-4: The flowchart of the SiPaMoP algorithm

3.4. Simulation Environment

An indoor environment, which consists of a number of restricted areas for

movement of vehicles, is used for verification of the SiPaMoP algorithm. Figure 3-5

shows the environment in which a fleet of autonomous vehicles are designed to

deliver and collect materials from and to any place in the environment. This

environment is represented by a network map (Figure 3-6) which represents all

geometric relationships. The crosses (x) in the map represent the nodes that the

vehicles can reach, and the lines are the connections among nodes and the paths the

Start

Set Start Node as
labelled

Select Adjacent
Node

Calculate Arrival time
(t) at each adjacent

node

If Labelled or Adjacent
Node occupied at time (t)

Relaxation

Update weight of
labelled and adjacent

node

If all adjacent nodes
scanned

If all nodes labelled

Register shortest path
with travelling time

End

Select Unlabelled
Node

Y

N

Y

N

N

Y

42

vehicles have to follow. Each autonomous vehicle is supposed to move from node to

node following the connections between nodes. Each connection facilitates bi-

directional movement for the vehicles.

Figure 3-5: The plan view of the simulation environment

Figure 3-6: The network map of the environment shown in Figure 3-5

It can be seen from the map that there are many bottleneck areas. B1, B2, B3,

B4 and B5 are five examples of bottleneck areas (Figure 3-6). Traffic congestion is

unavoidable in these areas. This situation becomes worse when more autonomous

vehicles are employed. How to manage these areas efficiently becomes a crucial issue

B4

B5

B1

B2

B3

43

in path and motion planning for a fleet of vehicles. Commonly adopted method to

solve this problem is waiting and passing based on the allocated priority. Thus,

vehicles with lower priority have to give way to vehicles with higher priority. For

vehicles with the same priority level, the vehicle with the longest travel path will be

given higher priority.

3.5. Simulation Studies

The performance of the SiPaMoP algorithm was tested in two stages. At the

first stage, the main focus was to show the collision avoidance capabilities of the

SiPaMoP algorithm. This has been presented with the assistance of examples, which

show possible collisions in the simulation environment (Liu, Wu and Kulatunga

2006). In the second stage of the simulation study, the efficient route/path selection

capabilities were presented with comparisons to the loop-based path topology and

conventional bi-directional path topology with the SiPaMoP algorithm.

3.5.1. Collision Avoidance Capability

As stated before, the SiPaMoP algorithm is able to coordinate the motions of a

coming vehicle with the previously planned vehicles by either changing the coming

vehicle’s path, speed of the vehicle, or by waiting, until other vehicle passes the

respective connection where a collision may occur. These instances are elaborated in

the following examples for explanation purposes.

Example 1: One vehicle waits until the other one passes safely (Method-1)

In this example, vehicle V1 travels from node 50 to node 18 (Red), and vehicle V2

from node 35 to node 48 (Black). The paths for the two vehicles are first obtained by

applying the Dijkstra algorithm: the path of V1 starts from node 50 to node 18 via

node 34 and V2’s path starts from node 35 to 48 via nodes 34, 33, 54 and 49. Those

two vehicles collide at node 34 (Figure 3-7 and Table 3-1). By applying the SiPaMoP

algorithm, vehicle V1 does not change its path and travel speed (Figure 3-8), but V2

delays its travel by 4.2 simulation time units (stu) in order to avoid collision with V1.

With this extra waiting time, V2’s travel time increases from 20.7 stu to 24.9

stu(Table 3-1). In this case, waiting at V2’s pick-up node is better than decreasing

V2’s speed because of the requirement of safety distance between the two vehicles.

44

Table 3-1: Path selection of example 1(One vehicle waits till the other one passes away the
connection)

Vehicle 1 Vehicle 2

without collision avoidance From SiPaMoP without collision avoidance From SiPaMoP

P
ic
k
-

up no
de

E
nd

no
de

N
od
e

ti
m
e

T
ot
al

ti
m
e

P
ic
k
-

up E
nd

no
de

N
od
e

ti
m
e

T
ot
al

ti
m
e

P
ic
k
-

up no
de

E
nd

no
de

N
od
e

ti
m
e

T
ot
al

ti
m
e

P
ic
k
-

up E
nd

no
de

N
od
e

ti
m
e

T
ot
al

ti
m
e

50 34 3.2 3.2 50 34 3.2 3.2 35 34 5.0 5.0 35 34 8.8 9.2
34 18 3.8 7.0 34 18 3.8 7.0 34 33 5.0 10.0 34 33 5.0 14.2

33 54 4.8 14.8 33 54 4.8 19.0
54 49 2.4 17.2 54 49 2.4 21.4
49 48 3.5 20.7 49 48 3.5 24.9

V2

V1

48

49 54

50

35

33

18

V1 and V2 collide at node 34

34

Figure 3-7: V1’s and V2’s Paths obtained without considering collisions by Dijkstra algorithm
(Example 1)

45

V2

V1

48

49 54

50

35

33

18

V2 start late till V1 passes
node 34

34

Figure 3-8: V1’s and V2’s Paths obtained by the SiPaMoP algorithm: V2 wait till V1 passes node
34 to avoid collisions (Example 1)

Example 2: Two vehicles collide: one changes its path.

In this case, vehicle V1 travels from node 3 to node 89 (Red), and vehicle V2 from

node 112 to node 38 (Black). Similar to example 1, the paths for the two vehicles are

first planned by applying shortest path search mechanism: the Dijkstra algorithm. At

this stage, potential collisions are not considered when paths are planned. As shown in

Figure 3-9 and Figure 3-10, the path of V1 starts from node 3 to node 89 via nodes 4,

21, 37, 57 and 71, and the path of V2 starts from node 112 to 38 via nodes 90, 71, 57

and 37. Those two vehicles collide between nodes 37 and 57. When the proposed

SiPaMoP algorithm is used, vehicle V1 does not change its original path and travel

speed when its path is planned using SiPaMoP algorithm. There is no other vehicle

occupying the path segments V1 intends to use (Figure 3-10:).However, when V2

plans its path (that happens after V1 finalized its path), it has to avoid the collision

between nodes 112 and 57 (Figure 3-10). Therefore, V2 changes its path without

46

changing its speed. Due to the change of path, V2 travels a longer path than the

shortest path obtained from the Dijkstra algorithm in order to avoid a collision with

V1. As a result, V2’s travel time increases from 18.3 (stu) to 35 (stu) (Table 3-2). This

change in path in this case is better than a speed change because the two vehicles

collide in a bottleneck area and V2 needs to wait at least 18 (stu) (the travel time of

V1 from node 37 to node 71 plus the safety distance between the two vehicles).

V2
V1

34

21

37 38

89 90

71

112

V1 and V2 collide at
bottleneck nodes of 37

and 57

57

Figure 3-9: V1’s and V2’s Paths obtained without considering collisions by Dijkstra algorithm
(Example 2)

47

V2

V1

21

37 38

89 90

71

112

V2 changes its path till
V1 passes bottleneck

nods 37 & 57

57

3 4

Figure 3-10: V1’s and V2’s Paths obtained by the SiPaMoP algorithm: By changing V2’s path to
avoid collisions between nodes 37 and 57 (Example 2)

Table 3-2: Path selection of the vehicles in example 2 (V2 changes its path to avoid collision)

Vehicle 1 Vehicle 2

Without collision avoidance From SiPaMoP Without collision avoidance From SiPaMoP

P
ic
k
-

up no
de

E
nd

no
de

N
od
e

ti
m
e

T
ot
al

ti
m
e

P
ic
k
-

up no
de

E
nd

no
de

N
od
e

ti
m
e

T
ot
al

ti
m
e

P
ic
k
-

up no
de

E
nd

no
de

N
od
e

ti
m
e

T
ot
al

ti
m
e

P
ic
k
-

up
d

E
nd

no
de

N
od
e

ti
m
e

T
ot
al

ti
m
e

3 4 2.2 2.2 3 4 2.2 2.2 112 90 4.5 4.5 112 113 4.8 4.8
4 21 3.8 6.0 4 21 3.8 6.0 90 71 3.0 7.5 113 114 2.8 7.6
21 37 3.0 9.0 21 37 3.0 9.0 71 57 3.4 11.0 114 93 4.0 11.6
37 57 5.4 14.4 37 57 5.4 14.4 57 37 5.4 16.3 93 74 3.0 14.6
57 71 3.4 17.8 57 71 3.4 17.8 37 38 2.0 18.3 74 59 3.4 18.0
71 89 3.7 21.6 71 89 3.7 21.6 59 58 4.6 22.6

58 57 5.0 27.6
57 37 5.4 33.0
37 38 2.0 35.0

48

Example 3 :(Method 3)-This example shows how multiple vehicles select their own

paths without interfering with others and work simultaneously. In this example, there

are 13 tasks allocated to four vehicles, with vehicle V1 allocated four tasks and each

of the other three vehicles allocated three tasks (Table 3-3). The vehicles’ current

positions and the tasks’ pick-up and drop-off positions are also listed in Table 3-3.

The first four tasks start from time zero, all other tasks start immediately after their

preceding tasks.

The vehicles’ paths obtained by the Dijkstra algorithm without collision

avoidance and by the SiPaMoP algorithm are presented in Figure 3-11 and Figure 3-

12, respectively. The SiPaMoP algorithm avoided collisions in three ways (i.e.

changes in path, travel speed and waiting) and makes all the collisions automatically

in the planning stage depending on which one can reduce the completion time of all

tasks.

Those paths obtained by Dijkstra algorithm are not collision free, but the

makespan obtained for completing all the tasks is 151.8 (stu) which should be the

ideal target for the SiPaMoP algorithm. The closer the makespan obtained by the

SiPaMoP algorithm to the target time, the better the SiPaMoP performance. The

makespan obtained by the SiPaMoP algorithm is 158.6 (stu) which is very close to the

target value of 151.8 (stu).

Table 3-3: Task allocation information to four vehicles of example 3

Task
No

Vehicle
allocated

Vehicle current
position

Task pick-up
node

Task drop-off
node

Pick-up time
(stu)

1 V1 176 176 56 0
2 V2 3 3 172 0
3 V3 135 135 25 0
4 V4 143 143 74 0
5 V1 56 56 174 19.18
6 V2 172 172 20 60.20
7 V3 25 25 53 21.61
8 V4 74 74 18 36.59
9 V1 174 174 142 45.91
10 V2 20 20 68 94.72
11 V3 53 53 170 48.46
12 V4 18 18 20 84.71
13 V1 142 142 2 92.39

49

Figure 3-11: Paths of all vehicles obtained by Dijkstra algorithm without considering collisions
(Example 3)

Figure 3-12: Paths of all vehicles obtained by SiPaMoP algorithm by considering collisions
(Example 3)

50

3.5.2. Efficient Motion Coordination Capability

A number of different traffic handing and collision avoidance strategies have

been used by researchers and practitioners in different path topologies in material

handling systems in order to avoid collisions. Zone-based systems and looping or

cyclic systems have been used due to their simplicity. However, they are not always

applicable to some path topologies. Therefore, the second stage of simulation is

designed to investigate the overall efficiency of the SiPaMoP algorithm for bi-

directional path topology against the loop-based path topology. This is further

explained using an example. Four tasks and two vehicles are used in this simulation.

The task and vehicle information of the simulation example is given in Table 3-4 and

Table 3-5 along with task completion times and planned paths to accomplish those

tasks in the loop-based approach and the SiPaMoP algorithm, respectively.

Table 3-4: Task allocation information and path details in loop based path topology

Task
Allocated
Vehicle

Pick-up
node

End
node

Task finish
Time (stu)

Selected Path in loop based
topology

1 1 110 96 13.20 110-116-96

2 2 130 60 16.96 130-137-60

3 1 111 77 47.27 96-76-60-57-111-77

4 2 131 96 46.90 60-57-90-111-131-96

Furthermore, Figure 3-13 to Figure 3-16 illustrates the different travelling

segments of both vehicles to complete the allocated tasks in a loop-based path

topological scenario. In the first segment of the loop, vehicle V1 starts from the task

1’s pickup location of node 110 to its drop off location situated at node 96.

Conversely, vehicle V2 starts its journey from its first allocated task’s pickup location

of node 130 to drop off location of node 60 in the first segment of the loop. Figure 3-

13 shows these movements: from 110 – 117 of V 1 and 130 – 137 of V 2 on their way

to complete their first tasks assigned to them. Figure 3-14 shows the loop segments

from node 117 -96 and 137-60 of V1 and V2 respectively.

51

91

71

94

73

V2

V1

128

109

129

110

130

111

131 132 133

113 114112

134 135

115 116

136

117 118 119

137 138 139

70 72

9290

74 75

959389 9796 98

76 77 78 7969

88

55 56 57 58 59 60 61 62

Pick up
node of
task1 of
V1

Pick up
node of
task 1 of
v2

Figure 3-13: Vehicles V1 and V2 performing their first tasks (Path segments between node 110 -
117 of V1 and from nodes 130 –137 of V2 are shown here)

91

71

94

73

V2

V1

128

109

129

110

130

111

131 132 133

113 114112

134 135

115 116

136

117 118 119

137 138 139

70 72

9290

74 75

959389 9796 98

76 77 78 7969

88

55 56 57 58 59 60 61 62
Drop off
node of
task 1 of
V2

Drop off
node of
task 1 of
V1

Pick up
node of
task 1 of
V2

Pick up
node of
task 1 of
V1

Figure 3-14: Vehicles V1 and V2 towards the completion of their task 1 (both use the same path
segments from nodes 116 to node 95 and vehicle 2 travels behind the vehicle 1)

52

Figure 3-15 shows the V1 and V2’s movements along the loop from their first tasks

drop off nodes (nodes 96 and 60 respectively) to second tasks pick up nodes (node

111 and 131 respectively).

91

71

94

73

V2

V1

128

109

129

110

130

111

131 132 133

113 114112

134 135

115 116

136

117 118 119

137 138 139

70 72

9290

74 75

959389 9796 98

76 77 78 7969

88

55 56 57 58 59 60 61 62

Pick up
node of task
2 of V1

Pick up node
of task 2 of V2

Figure 3-15: Vehicles V1 and V2 travelling to pick-up their 2nd tasks (at node 111 and 130
respectively) in a loop path topology

Figure 3-16 shows the last loop segment of vehicles V1 and V2 travelling

from 71 to 111 of V1 and 89 to 131 of V2 to pick up their second tasks from nodes

111 and 131. Since the vehicles are travelling in a loop, they cannot design the

shortest path out of the all connections. This leads to extra travel time to undertake

tasks. However, the potential collision probability reduces in the loop based systems

since it facilitates uni-directional movement only. Between nodes, 71 and 90 there is a

potential collision. This is avoided by selecting an alternative route to reach node 90

by the vehicle 2 (node 71-89 90). The potential collision region is highlighted in the

Figure 3-16.

53

V2

V1

91

71

94

73

128

109

129

110

130

111

131 132 133

113 114112

134 135

115 116

136

117 118 119

137 138 139

70 72

9290

74 75

959389 9796 98

76 77 78 7969

88

55 56 57 58 59 60 61 62

V1

V2
Pick up
node of
task 2 of
V1

Pick up
node of
task 2 of
V2

Collision
potential
area

Figure 3-16: Vehicles V1 and V2 travelling to pick-up their 2nd tasks (Between loop segment 71 -
111 and 89 -131 respectively)

Table 3-5 presents the details of the simulation carried out to show the path

selection done by the SiPaMoP algorithm in conventional path topology. It shows the

task allocation information, pick up and drop off nodes of each task, task completion

time and the planned path to complete each tasks.

Table 3-5: Vehicles task allocation information and path details in conventional path topology

Task
Allocated
Vehicle

Pick-up
node

Drop off
node

Task
completed
time (stu)

The plannedpathin
conventional topology

1 1 110 96 12.20 110-116-95-96

2 2 130 60 15.30 130-135-115-95-60

3 1 111 77 35.10 96-116-111-77

4 2 131 96 38.90 60-59-74-93-113-131-113-96

54

91

71

94

73

128

109

129

110

130

111

131 132 133

113 114112

134 135

115 116

136

117 118 119

137 138 139

70 72

9290

74 75

959389 9796 98

76 77 78 7969

88

55 56 57 58 59 60 61 62

V2

V1
Pick up
node of
task 1 of
V1

Pick up
node of
task 1 of
V2

Drop off
node of
task 1 of
V1

Drop off
node of
task 1 of
V2

Figure 3-17: Vehicle 1 (from node 110 to 117)and Vehicle 2 (from node 130 to 60)perform their
first tasks by following the paths planned by the SiPaMoP algorithm

Figure 3-17 to Figure 3-21 shows how two vehicles selected their paths to

carry out four tasks in conventional path topology where the SiPaMoP algorithm is

used for the path planning and collision avoidance. Figure 3-18 shows the segment of

two vehicles’ movements to fulfil their first tasks. Vehicle V1 picks up its first task

from 111 and carried it up to the drop off node at 96. Conversely, vehicle 2 picks-up

its first task from node 130 and carries that to the drop off node of 60. Vehicle 1 and

vehicle 2 move in a parallel path up to nodes 114 and 135 and then vehicle 2 follows

the same path as vehicle 1 does up to node 95. This can be seen in Figure 3-18, and

the path segments are also shown in red and black separately for vehicle 1 and vehicle

2.

55

91

71

94

73

128

109

129

110

130

111

131 132 133

113 114112

134 135

115 116

136

117 118 119

137 138 139

70 72

9290

74 75

959389 9796 98

76 77 78 7969

88

55 56 57 58 59 60 61 62

V2V1Pick up node of
task 1 of V1

Pick up node
of task 1 of

V2

Drop off node
of task 1 of V1

Drop off node
of task 2 of v2

Figure 3-18: Vehicle 1 (from node 115 to node 96) and vehicle 2 (from node 135 to node 60)
perform their initial tasks planned by the SiPaMoP algorithm

91

71

94

73

128

109

129

110

130

111

131 132 133

113 114112

134 135

115 116

136

117 118 119

137 138 139

70 72

9290

74 75

959389 9796 98

76 77 78 7969

88

55 56 57 58 59 60 61 62

V2

V1

Pick up node of
task 1 of V1

Pick up node
of task of V2

Drop off
node of
task 1 of
V2

Drop off
node of
task 1 of
V1

Figure 3-19: Vehicle 1 returns to its 2nd task’s origin while vehicle 2 is reaching its initial task’s
drop-off node (from the SiPaMoP algorithm)

56

In Figure 3-20, vehicle 1 moves back from the same route it used to travel to

the first task’s drop-off node 96 to collect its second task from node 111. While

vehicle 2 moves from node 95 to node 60, vehicle 1 has travelled from node 96 to

node 116.

91

71

94

73

128

109

129

110

130

111

131 132 133

113 114112

134 135

115 116

136

117 118 119

137 138 139

70 72

9290

74 75

959389 9796 98

76 77 78 7969

88

55 56 57 58 59 60 61 62

V2

V1
Pick up
node of

task 2 of V1

Pick up
node of
task 2 of
V2

Drop off
node of
task 1 of
V1

Drop off
node of
task 1 of
V2

Figure 3-20: Vehicle 1 travels towards its 2nd task’spick-upnode of 111 while vehicle 2 travels
towards its 2nd task’s pick-up node of 131

Figure 3-21 shows that vehicle 1 undertakes its 2nd task from node 111

towards node 77 while vehicle 2 is still returning to pick-up node 131 of its 2nd task.

Vehicle 1 travels from node 111 to node 77, this time with a new set of nodes in order

to avoid a possible head-on collision with vehicle 2 between nodes 113 to 114.

Therefore, vehicle 1 takes node 133, 134, 135, then to 116, and from there to node 95

and 77.

57

91

71

94

73

128

109

129

110

130

111

131 132 133

113 114112

134 135

115 116

136

117 118 119

137 138 139

70 72

9290

74 75

959389 9796 98

76 77 78 7969

88

55 56 57 58 59 60 61 62

V2

V1
Pick up
node of
task 2 of
V1

Pick up
node of
task 2 of
V2

Drop off
node of
task 2 of
V1

Drop off
node of

task 2 of V2

Collision potential
region

Figure 3-21: Vehicles 1 and 2 perform their 2nd tasks by following the paths from the SiPaMoP
algorithm

Table 3-6 presents the completion time and empty travel time of two

approaches of each task separately. From the first task to the fourth task, the empty

travel time was increased along with the task completion time. However, there is a

significant difference with respect to the two measured parameters between the loop-

based approach against the SiPaMoP algorithm. In all the four tasks the SiPaMoP

algorithm has outperformed the Loop based approach in both aspects measured in the

simulations.

Table 3-6: Completion and empty travel times obtained from the two approaches

Task #
Loop-based approach SiPaMoP algorithm

Completion time
(stu)

Empty travel time
(stu)

Completion time
(stu)

Empty travel time
(stu)

1 13.20 4.51 12.20 4.78
2 16.96 7.31 15.30 6.22
3 47.27 12.09 35.10 10.67
4 46.90 14.35 38.90 12.99

As previously mentioned, many path-planning strategies have been used in all

sorts of material handling systems. However, these have been divided into three

categories: conventional, loop-based and zone based depending on the path topology.

58

Therefore, when validating the SiPaMoP algorithm, it was a necessity to investigate

the capabilities of the proposed algorithm against other path planning strategies.

However, since many material handling systems adopt loop-based systems due to its

capability to avoid collisions among the vehicles easily, it was decided to investigate

the proposed SiPaMoP algorithm against loop-based strategy for the same problem

set-up. A simulation study was done to fulfil this requirement.

Of these two approaches, it can be seen that the loop-based approach requires

more time to complete the tasks and it has taken longer empty travel time to reach the

pick-up node of next task. However, in the SiPaMoP algorithm, task completion times

are shorter and the empty travel times are less. This simple simulation demonstrates

that the SiPaMoP algorithm is capable of selecting efficient paths while avoiding

collisions among the vehicles.

3.6. Conclusion and Remarks

This chapter presented a novel path planning and motion coordination

algorithm named SiPaMoP. The main features of the SiPaMoP algorithm are its

capability to plan the shortest collision-free paths while coordinating the motion of a

fleet of vehicles simultaneously. This approach can avoid potential collisions

effectively. In order to select a shortest path, the Dijkstra algorithm is used. However,

other shortest path search algorithms such as A* or D* can be easily adapted to the

SiPaMoP algorithm. By changing the connection weight, the SiPaMoP algorithm

avoids collisions by coordinating the motions of the vehicles with previously planned

vehicles.

Simulation studies were carried out in this chapter, using different sets of tasks

whose pick-up and drop-off nodes are generated randomly, and in different

environments. The obtained simulation results demonstrate that the SiPaMoP

algorithm can plan multi-autonomous vehicles’ paths and speeds simultaneously,

avoid potential collisions with static obstacles, other moving vehicles and stopped

vehicles, and maximise the usage of bottleneck areas. It has been further revealed that

in conventional bi-directional path topology the SiPaMoP algorithm performs very

well. With the collision/dead lock avoidance capability embedded in the SiPaMoP

59

algorithm, potential collisions can be avoided effectively, without locking all the

planned paths.

There are limitations in this algorithm. The paths of different vehicles are

planned in a sequential manner. Due to this reason, most critical connections might be

occupied by previously planned vehicles, and then considerable waiting for new

vehicles is to be expected. Furthermore, connections from pick-up to drop-off nodes

of the paths are planned once, but if there is an unexpected event such as vehicle

breakdown or path blockage, replanning is required. In order to overcome this issue,

paths can be planned incrementally with frequent inter-communication between the

vehicles.

60

Chapter 4

4.Simultaneous Task allocation and
Motion Coordination - Static environment

4.1. Introduction

Vehicle/robot task allocation or dispatching refers to a strategy used to select a

vehicle to perform a task. Usually, it is a continuous and dynamic process as the

numbers of both vehicles and tasks could change continuously. Two ways can be used

for task allocation: work-centre-initiated task allocation and vehicle-initiated task

allocation (Egbelu and Tanchoco, 1984). In work-centre-initiated task allocation, an

AGV is selected from a set of competing idle AGVs. Various rules, for example, the

random vehicle rule, nearest vehicle rule and least utilised vehicle rule, can be

employed for assigning tasks to AGVs. Some of the task allocation policies in the

vehicle-initiated approach include the shortest travel time/distance rule, the maximum

outgoing queue size rule, and the modified first-come-first served rule (Srinivasan et

al., 1994, Yamashita, 2001). Evaluation on the performance of those rules and policies

has been conducted. For example, De Koster et al. (2004) evaluated the performance

of several real-time vehicle dispatching rules in three different environments, namely

a European distribution centre, a container terminal and a production site. Bish et al.

(2001) investigated the problem of dispatching vehicles to containers in combination

with the assignment of containers to locations in the storage area.

Various algorithms have been proposed and studied for task allocation. They

vary from simple dispatching rules, local search algorithms, heuristics and exact

methods. Branch and bound or dynamic programming algorithms are often used to

find solutions to them with the help of problem specific information to reduce search

space. However, this is valid only for specific types of problems and cannot always be

adopted. When the problem size increases, it is difficult to get an optimal solution

since computational time increases exponentially (Bagchi, 1999). In contrast, if

simple dispatch rules are used, it is difficult to find good quality solutions (optimal or

61

near optimal solutions). This difficulty has led to the development of greedy search

algorithms.

Many variations of local search algorithms for solving NP-hard problems have

been proposed and investigated. Since the quality of solutions obtained by local

search algorithms strongly depends on initial conditions, these local algorithms have

the potential to perform poorly for some sets of initial conditions. Heuristic

approaches, which involve trial and error and some contemplated intuition, can

produce an approximate solution to a task allocation problem. Although heuristic

approaches normally cannot find optimal solutions, they are capable of finding near-

optimal solutions within a reasonable time. Therefore, it is necessary to make a trade-

off decision on expected solution quality and computational time.

As discussed in Chapter 2, there are many examples in the literature on task

allocation of multi-vehicles. Examples include a dynamic deployment algorithm for

dispatching AGVs to a container in order to minimise the loading and unloading time

for a vessel (Leong, 2001), an Auction algorithm for dispatching AGVs (Lim et al.,

2003a); a dynamic model for real-time optimization of the flow of flatcars (Powell

et.al., 1998) and a mixed integer linear programming model to dispatch multi-load

AGVs (Grunow et al., 2004). Other heuristic and computational algorithms studied

for application in vehicle task allocation include Markov decision processes, fuzzy

logic and neural network approaches. For real life applications with a large number of

vehicles, more research into advanced heuristics and optimisation approaches is

required (Vis, 2006).

A few research studies have been conducted in respect of integrated task

allocation, path/motion planning and collision avoidance. The container-handling

method investigated by Meersmans and Wagelmans (2001) combines the task

allocation process with path planning. A heuristic search based Beam Search

Algorithm is applied for TA. Collisions among vehicles are avoided by a loop (uni-

directional) based path topology. This method results in more empty travels and

waiting time, and low efficiency. Bish et al. (2005) modelled a transportation system

for container terminals, which makes the assumptions of constant vehicle velocity and

uni-directional vehicle movement. Congestion is not taken into account in this

research. An algorithm proposed by Koo et al. (2004) does fleet sizing and vehicle

routing for container transportation based on the Tabu Search algorithm in a static

environment. This algorithm initially starts with a lower bound of fleet size and

62

increases it until the makespan criteria are satisfied. The vehicle travel time between

each segment is fixed and vehicle speed is assumed to be constant. The methodologies

presented by Qiu et al. (2001) gives collision- free routing for AGVs in a bi-

directional path layout. The path topology is created to suit a particular application.

The vehicle speed is also assumed to be constant in this work. Simultaneous machine

and AGV scheduling in a flexible manufacturing system have been introduced by

Ulusoy et. al.,(1997) in order to minimize the makespan. However, this research has

not taken routing into consideration.

Autonomous vehicle path planning in known environments such as container

terminals has attempted to provide more realistic solutions over the last decade.

However, all the research works done so far deal with the three stages of task

allocation, path planning and scheduling separately which results in low efficiency. It

is expected that integration of these three stages would be able to increase the

efficiency of planning and scheduling, and productivity.

4.2. Simultaneous Task Allocation and Motion Coordination

In order to overcome the issues identified in Chapter 2 and in the Section 4.1,

a STAMC approach is presented. This approach performs task allocation and motion

coordination simultaneously, to generate efficient schedule and collision free paths for

a large fleet of autonomous vehicles in strictly constrained environments such as fully

automated container terminals. It can efficiently manage congestion and bottleneck

areas, avoid collisions among and between vehicles and handle dynamic changes in

high traffic movements.

Figure 4-1 shows the schematic representation of the STAMC approach. It

shows that vehicle path planning and collision avoidance are taken into consideration

in task allocation. This simultaneous approach is totally different from the traditional

sequential approach shown in Figure 4-2, which deals with the task allocation, vehicle

path planning and collision avoidance separately at different stages.

The traditional sequential approach is capable of finding solutions for the three

separated sub-problems (task allocation, path planning and collision avoidance).

However, the overall solution quality suffers due to separation of the three sub-

problems. In contrast, the simultaneous approach takes into account all the three sub-

63

problem simultaneously when finding solutions to the task allocation and motion

coordination problem. Hence, the solution quality is significantly improved. As shown

in Figure 4-1, collision avoidance and path planning methodologies are embedded in

the task allocation process. That means, when STAMC approach allocates tasks, it

considers path planning and collision avoidance.

Task Allocation

Path
Planning

Collision
Avoidance

Input

Output

Figure 4-1: Schematic representation of the simultaneous approach

The traditional sequential approach and the simultaneous approach work as

follows (Figure 4-2 (a) and Figure 4-2 (b)).

Initially both approaches are fed with the information on tasks, vehicles and

map. Then in the sequential approach, tasks are allocated to appropriate vehicles and

then paths are planned to perform those tasks accordingly. While the paths are being

decided, potential collisions are handled. Tasks-vehicle pairs are selected finally. In

the simultaneous approach, when suitable vehicles for the given tasks are selected,

collision-free path planning is conducted. Therefore, in the simultaneous approach the

64

best possible task- vehicle pairs are selected at the same time by considering path

planning and avoiding collisions.

INPUT

(no. of tasks & no. of
vehicles, map information)

TASK ALLOCATION

Needs to check simulatenously-

x Availability of vehicles
x Parking locations
x Capacities
x Shortest paths
x Possible collisions

Decide best
task-vehicle pairs

Final allocation
includes

task-vehicle pairs
selected paths

INPUT

(no. of tasks & no. of
vehicles, map information)

TASK ALLOCATION

Needs to check -

x Availability of vehicles
x Parking locations
x Capacities

Decide
task-vehicle pairs

Final allocation
includes

task-vehicle pairs
selected paths

Select paths

Avoid Collisions

(a) Simultaneous
approach

(b) Sequential
approach

Figure 4-2: The simultaneous approach and the sequential approach

4.3. Mathematical Modelling

Bi-directional connections network topology is used for the material handling

model proposed in this chapter, which is a common feature in many material handling

environments such as fully automated container terminals. A task is defined as a

transport activity performed by a vehicle, which initially travels to the pickup location

from the vehicle’s current location and picks up a unit load (e.g. a container/

65

pallet)from the pick-up node of the task (original location)and transports the unit load

to the drop-off node of the task (destination location),through a set of connections

known as a path. Once a vehicle drops off its load at the destination, it travels to the

next allocated task pick up position. If there is no task allocated, it remains at the last

completed task’s drop-off location and this location is considered as the respective

vehicle’s current parking location. At the inception of the task allocation process, it is

assumed that all vehicles are parked at different locations of the map.

The time taken to complete the task is considered as a measurement for the decision-

making purposes. Time taken to complete a task consists of the following

components:

i. Task pre-processing time – the time taken for a vehicle to travel from its

currently parking location to a task’s pick up location(example: tAB or tCD in

Figure 4-3).

ii. Task processing time - the travelling time from the task pick up location to its

drop-off location (e.g. time taken for the vehicle to travel from B to C in

Figure 4-3)

iii. Loading time – the time taken to load the vehicle at the pickup location (Point

B in Figure 4-3)

iv. Unloading time – Time taken to unload the vehicle at drop-off location(Point

C in Figure 4.3)

v. Task time– the total time taken for a vehicle to reach task’s pickup location

(task pre-processing time), loading time, task processing time and unloading

time.

The task time is a function of velocity of the vehicle, travelling distances and

loading and unloading times. All vehicles available for material handling will be

working on their allocated tasks simultaneously in a material handling environment.

Soon after one vehicle completes a task, it travels to the next allocated task’s pick-up

location and so on. The task procession will continue until all the available tasks are

completed by the vehicles.

Figure 4-3 shows an example of what task processing means. In this example,

there are two tasks to be processed by a vehicle. The two task pick-up and drop-off

locations B, D and C, E, respectively.

66

F
ig
u
re
4-
3:
A
n
ex
am
p
le
of
ta
sk
s,
ve
h
ic
le
s’
st
ar
t
an
d
d
ro
p
-o
ff
n
od
es

67

At the inception of the task allocation process, the vehicle is parked at location

A. The task allocation sequence is task (1) and task (2). The vehicle starts from

location A and travels towards location B via connections and picks up task (1) and

carries that to the drop-off location C. Then, it travels towards location D, which is the

pickup location of the task (2) and carries that to the drop-off location E.

4.3.1. Mathematical Model

The mathematical model of multi-vehicle STAMC problem consists of three

main elements: map information; task information; and vehicle information. A map

consists of nodes and connections. Paths are generated by inter-linked connections.

The pickup and drop-off locations are considered as nodes of the map. Task

information consists of priority category, pickup and drop-off locations. Vehicle

information consists of vehicle class, loaded and unloaded speeds and vehicle

capacity. Following assumptions are made when developing the mathematical model.

i. At the inception of task processing, vehicles are parked at different locations

of the material handling environment

ii. Each vehicle can process one task (unit load) at a time

iii. The starting time of the first task of each vehicle is the same at the inception

iv. All tasks have equal priority

v. All vehicles have the same capacity

The nomenclature of the problem and the notations of the variables are as follows.

Number of tasks to be allocated : n

Number of available vehicles : m

Available tasks for allocation : T = [T1, T2, T3, . . .Tn]

Avalable véhicules : V = [V1, V2, V3 ...Vm]

Time taken to process all available the tasks : Makespan (MS)

Vehicle specific information

Initially parked location : PLVi

Mean travel speed of an empty vehicle : VE

68

Mean travelspeed of a loaded speed vehicle : VL

Loading time of a task : tL

Unloading time ofa task : tU

Total travelling and waiting time of vehicle Vi : TVi

Number of tasks allocated to vehicle Vj : Nj

Empty travel time of vehicle Vj :t i,(ett)

Task specific information:

Pick-uplocation : Ls

Drop-offlocation : Ld

Priority group : Pg

Expected starting time of task Ti : testi

Actual starting time of task Ti : tsi

Starting time of task Ti of j
th vehicle : tsij

Expected finishing time of task Ti : teft

The actual time of task Ti by vehicle Vj : TTij

The selection of the most appropriate vehicle for a given task is called task

allocation. The main objective of the task allocation is to decide the best task–vehicle

in such a way that the handling cost is minimized. However, this allocation process

cannot be considered individually. It has to be performed in such a way that the

overall cost function of the total allocation should be satisfied. The time taken to

complete a set of tasks is a crucial factor to define the overall efficiency of the

material handling terminals (ex. ship turnaround time is used to define container

terminal performance). Therefore, time taken to complete a set of given tasks was

taken as the cost function. In scheduling terminology, from the time when the vehicles

start to do their first task to the time when the last task is completed is called

makespan of the schedule or the allocation. Therefore, here onwards, in this research,

the time taken to complete a set of tasks is called the makespan of a given schedule.

69

The allocation decision has to be made by considering possible choices as

shown in Figure 4-4. For each task, there exits m number of alternatives /

combinations and each combination associates with a cost factor (for example, for

task Ti, vehicle Vj the cost factor is C i,j) which depends on Task time for vehicle Vj

task Ti combination. Each of these cost factors are embedded in the objective function

of the task allocation. For example, Task T1 can be performed by vehicle V2. Hence

the cost factor associated with this combination is C1,2. Similarly, other m-1 vehicles

can perform task T1. The cost factor for Task Ti and vehicle Vj combination is

represented by Ci,j. The respective cost components of vehicle–task combinations are

shown in Figure 4-5 as a matrix.

V1

V2

V3
.
.
Vj
.

Vm

T1

T2

T3
.
.
Ti
.
.
.
.
.
Tn

C1,2

C2,1

C3,m

Cn,1

Vehicle List

Task List

Ci,j

Figure 4-4: Task allocation process: selecting appropriate task-vehicle pairs

70

Vehicle / Task V1 V2 V3 Vj Vm

T1 C1, 1 C1,2 C1,3 --- --- --- C1,m

T2 C2, 1 C2,2 C3,3 --- --- --- C1,m

T3 C3, 1 C3,2 C3,3 --- --- --- C3,m

--- --- --- --- --- --- --- ---

Ti Ci, 1 Ci,2 Ci,3 --- Ci,j --- C4,m

--- --- --- --- --- --- --- ---

Tn Cn, 1 Cn,2 Cn,3 --- --- --- Cn,m

Figure 4-5: Vehicle-task pair’s cost matrix

The cost component is directly proportionate to the task time (TT ij-task time of task i

– vehicle j)that can be calculated as;

UijproLreach(ij)ij ttttTT ���)(
(4.1)

where treach(ij) is the travelling time to reach task’s pickup location and tpro(ij) is the time

taken to travel from a pickup location to a drop off location. Each task time consists

of these two travelling components, and the loading and unloading time as well.These

two path segments consist of a number of small path segments. Therefore, TT(ij)can be

given as;

ܶܶሺ݆݅ሻ ൌ σ
ோாுሺೕሻೖ

ಶ

ொோ
ୀଵ ݐ σ

ோைሺೕሻೖ

ಽ

ொ
ୀଵ ݐ (4.2)

where ሺ݆݅ሻ݇ܪܥܣܧܴ is the path connections vehicle Vj needs to travel through

from its parked location to reach the task Ti pickup location(e.g., A to B or C to D as

shown in Figure 4-3).ܴܱܲሺ݆݅ሻ݇ is the path segments vehicle Vj needs to travel through

from the task Ti pickup location to its drop-off location(e.g., B to C or D to E as

shown in Figure 4-3). The QR and QP are the number of connection segments

contained in ሺ݆݅ሻ݇ܪܥܣܧܴ and ܴܱܲሺ݆݅ሻ݇respectively.

If vehicle Vj completes Nj number of tasks in a given set of allocation, the total

travelling time of the vehicle Vj will ��Ǣ

(4.3)

71

4.3.2. Optimisation Criterion

Many criteria have been used in scheduling or resource allocation in the

literature. For job shop scheduling problems, minimising the makespan, job tardiness

and average flow time are commonly used. In vehicle routing problems and traveller

salesman problems, the overall tour cost has been used. In automated material

handling systems, the overall system’s efficiency and resource utilisation are sensible

criteria to be used. The performance measurements of the problem presented here are

based on several parameters, which are defined below.

4.3.2.1. Overall Efficiency

In this research, the overall efficiency of the system is calculated based on the

overall time required to complete the whole batch of tasks (makespan of the schedule)

and the lateness of individual tasks.

The total time taken by vehicle Vj (travel time) to complete the allocated tasks is given

by equation 4.3. Therefore, the makespan (MS) will be the largest one among the total

travelling time of all vehicles for the set of tasks. This can be calculated using

equation 4.4.

(4.4)

The starting time of the first task of each vehicle is the same and is equal to the

start time of the scheduling. This is set as zero in the mathematical from when

representing the task allocation.

1
1

0
m

j
j

ts

 ¦ (4.5)

Furthermore, starting times of the remaining tasks are subjected to the

following constraints:

The start time of task T iof the vehicle j (tsij) is less than the start time of task T (i+1) of

vehicle j.

(1)ij i jts ts ��
(4.6)

72

The expected start time of task Ti should be equal to or less than the actual starting

time.

iji tstest d
(4.7)

The expected starting time of task Ti should be equal to or less than expected finish

time.

ii tefttest d (4.8)

The expected starting time of task Ti should be equal to or less than the actual finish

time.

ii tafttest d (4.9)

Tardiness is defined as the lateness of a task Ti, that is the time difference between the

expected finish time (t i,(eft)) and the actual finish time (t i,(aft)). This can be calculated

from equation 4.10

> ,() ,()_]i i aft i eftTardiness T t t � (4.10)

Therefore, the overall tardiness of the whole batch of tasks can be defined as;

,() ,()
1

_ []
n

i aft i eft
i

Overall tardiness T T

 �¦ (4.11)

4.3.2.2. Vehicle Utilization

In order to utilise vehicles optimally, it is essential to minimise the time where

vehicles are not doing any useful work (idle times). To investigate the idle time, two

optimisation criteria, namely the percentage of the total empty travel time and the

overall idle time of vehicles, are used to measure the resource utilisation in the multi-

vehicle STAMC problem.

The empty travel time (ti,(ett))of vehicle Vj can be calculated as;

,()
1

(),

JN

ett
i

j ett itt

 ª º¬ ¼¦ (4.12)

73

Therefore, percentage total empty travel time can be found using the following

equation;

(4.13)

A vehicle will be in an idle state once the following condition has been met;

, (1),i ft i stt t �� (4.14)

where ti,ft and t(i+1),stare the finish time of task i and the start time of next task (i+1)

to be undertaken by the same vehicle.

Vehicle idle time is a very good measurement to understand the efficiency of

the task allocation process. If any vehicle needs to travel long distances empty in

order to undertake a task, during that time respective vehicle will not perform any

useful work. Conversely, if vehicles spend most of their operating times on

transportation operations on loaded mode, it is obvious that they are performing useful

work. The time difference between previously loaded tasks finish time and new tasks

loaded task is considered as idle time of the vehicle. Therefore, it can be calculated as;

(1), ,
1

_ _ ()
JN

j i st i ft
i

Idle time v t t�

 �¦ (4.15)

Furthermore, overall vehicle idle times also an important parameter to

understand the overall efficiency of the task allocation process. The total idle time

will be the summation of the idle times of all vehicles and it can be calculated as

1

_ _ _ _
m

j
i

Total Idle time Idle time v

 ¦ (4.16)

74

4.4. Meta-heuristic algorithms for Simultaneous Task Allocation
and Motion Coordination

The multi-vehicle task allocation and motion coordination problem, as

explained before, can be categorised as an NP-hard type problem. Hence, it is

impossible to find the optimal solution within a reasonable time-frame for a task

allocation and motion coordination problem in complex environments and with a

large fleet of autonomous vehicles. Therefore, some simple dispatching rules such as

first-come-first-served, or shortest processing time first or due date/time are

commonly used.These dispatching rules are unable to generate good solutions of near

optimal quality. In the last two decades, a new area called meta-heuristic and

evolutionary techniques has been studied in the operational research field, which were

mainly derived by studying nature patterns.

Generally, applicable heuristics and evolutionary algorithms are appropriate

for a wide range of combinatorial problems. Besides SA (Kirkpatrick et al., 1983),

other heuristic algorithms such as TS (Glover, 1989), Auction Algorithms (AA)

(Bertsekas, 1978) and evolutionary algorithms such as GA (Holland, 1975), Particle

Swarm Optimisation (Kennedy and Eberhart, 1995), Ant Colony Optimization (ACO)

algorithm (Dorigo, 1992, Dorigo et al., 1996) have been proposed and further

investigated in recent years.

These techniques have proven their capacity to generate feasible solutions to

many NP-hard problems such as TSP, VRP, etc.Therefore, it was decided to meta-

heuristic and evolutionary algorithms to generate near-optimal solutions to the multi-

vehicle task allocation and motion coordination problem,due to its NP–hard nature.Of

many heuristic and evolutionary algorithms in the literature, simulated annealing and

ant colony optimization algorithms, which are widely used in solving similar kinds of

problems, are extensively studied in this research. Furthermore, these two algorithms

are compared with a commonly used approach called Auction algorithm in the multi-

robot task allocation problem.

4.4.1. Simulated Annealing Algorithm

Once SA was introduced by Metropolis et. al.,(1953), it was first used for

solving optimisation problems by Kirkpatrick et. al., (1983). This algorithm has

proven its ability to find near optimal solutions to many NP-hard combinatorial

75

optimisation problems such as the travelling salesman problem, graph partitioning,

quadratic assignment and scheduling. SA algorithm based applications span over

diverse areas. The most recent works include: (1) Investigation of vehicle routing

problem with time windows using a parallel-simulated algorithm (Czarnas, 2002).

Excellent solutions were found for Solomon’s benchmark problems (Solomon, 1987).

(2) Kim and Moon (2003) used SA for berth scheduling in container port. (3) Melouk

et al. (2003) used SA for scheduling in a batch processing plant to improve solution

quality and reduce computation time. (4) Sadeh (1996) used a modified SA to solve a

job shop scheduling problem which was subjected to tardiness and inventory costs.

Two cost functions were used in different temperature ranges of the annealing

process. (5) Chiang (1996) worked on an SA-based vehicle routing problem with two

different neighbourhood structures. This work is a good example of an application of

SA for solving large-scale problems. Nevertheless, to the best of our knowledge,

fewhave tried to accommodate the dynamic behaviour of the scheduling problem.

The main feature of the simulated annealing algorithm is that it accepts not

only the solutions with improved cost, but also the limited extent of the solutions with

deteriorated cost. This feature gives the algorithm hill climbing capability. Initially,

the probability of accepting inferior solutions is large. However, this probability is

reduced with the search process proceeding. SA is effective, robust and relatively easy

to implement and to modify. Regardless of the initial configuration, it can produce

high quality solutions. There are several factors to be considered with the application

of SA. They are(1)concise description of a system configuration, (2) randomly

generating steps or rearrangement of elements, (3) a quantitative objective function;

and an annealing schedule of temperatures.

The flowchart of a standard simulated annealing algorithm is presented in

Figure 4-6. Application ofthe SA algorithm to solve the task allocation problem

consists of following steps:

Step 1: Set initial conditions: the number of tasks (n), the number of vehicles (m),

initial temperature θ0; and the stopping criteria, task list, vehicle states, etc.

Step 2: Generate an initial task sequence at random. The schedule generated (which

task to which vehicle) depends on this task sequence. The simulated annealing

algorithm effectively searches the space of schedule combination to find one

that minimises the objective function.

76

Step 3: Generate task-vehicle pairs using a first-come-first-served heuristics.

Calculate the initial scheduling time for the given sequence.

Step 4: Set a counter.

Step 5: Modify the task sequence (swapping) as dictated by the Metropolis algorithm

and generate S new schedule.

Step 6: Calculate the difference between the initial and the new solutions of makespan

(Δ).

Step 7:If the difference is negative, allocate a new value to the best solution and

reduce temperature (θ).

Step 8: If the difference is positive, then generate a random number (0<r<1) and

compare with P, (P= exp (-Δ/θ).)

Step 9: If P > r, accept the current solution as the best schedule time, update counters,

go to step 5, where P is calculated by the P= exp (-Δ/θ)

Step 10: Reduce temperature and check stop condition, if not repeat the process.

The pseudo code of the SA algorithm is given in Appendix 2.

77

Start

Generate task Sequence

Select task-vehicle pairs

If all tasks are
allocated to vehicle

Calculate makespan (MS) of the
allocation

If
MS new < MS best

Generate random
number R
(0<R<1)

Calculate Accept
probability (P accept)

If P accept < R

Update MS & paths

Reduce temperature

If stop conditions
met

j = j +1

Display
Results

End

Y

N

Y

N

Y

Y

N

Figure 4-6: Flow chart of the Simulated Annealing Algorithm

4.4.2. Ant Colony Optimisation

Ant colony algorithms are inspired by the observation of ant colonies. Ants are

social insects that live in colonies and whose behaviour is directed more to the

survival of the colony. As a whole, the behaviour of social insects has captured the

attention of many scientists because of the structural level their colonies can achieve,

especially when compared to the relative simplicity of the individuals. An important

and interesting behaviour of ant colonies is their foraging behaviour, and, in

78

particular, how ants can find the shortest paths between a food source and their nest. It

was found that ants are able to communicate information concerning food sources via

an aromatic essence called pheromone. While they are moving, ants lay down

pheromone in a quantity that depends on the quality of the food source discovered.

Other ants, observing the pheromone trail, are attracted to follow it. Therefore, the

path will be reinforced and will attract more ants. This behavioural mechanism can be

used to solve combinatorial optimisation problems by simulating with artificial ants

searching the solution space instead of ants searching their environment. Additionally,

the objective values corresponding to the quality of the searched food as an adaptive

memory is equivalent to the pheromone trails. Furthermore, to guide their search

through the set of feasible solutions, the artificial ants are equipped with a local

heuristic function.

Ant colony algorithms were first proposed by Dorigo and colleagues (Colorni

et al., 1991, Dorigo et. al., 1991) as a multi-agent approach to difficult combinatorial

optimisation problems such as the travelling salesman problem and the quadratic

assignment problem. There is currently much ongoing activity in the scientific

community to extend and apply ant-based algorithms to many different discrete

optimisation problems (Dorigo, 1992). Recent applications cover problems such as

vehicle routing (Bullnheimer et al., 1998), job shop scheduling (Maniezzo et al.,

1994), quadratic assignment problem (Maniezzo et al., 1994), and so on.

When an ant colony optimization algorithm is applied to task allocation for

multi-autonomous vehicles, an ant represents a vehicle and starts from its respective

vehicle pick-up node (depot). The first task of each ant is allocated randomly. Then

each ant selects the next task from the available task list until all tasks are selected.

For the selection of tasks, two aspects are taken into account: how good was the

choice of that task in previous runs and how promising is the choice of that task in

general. The first information is stored in the pheromone trails τij associated with each

task-vehicle pair, whereas the second is the local heuristic function. This measure of

desirability, called visibility, is denoted by ηij.

Each ant’s total travel time is calculated based on its selected tasks, planned

routes and travel speeds. The maximum travel time of all the ants (vehicles) is

considered as the makespan (MS).

79

In ACO, each ant selects its next task to be performed based on the probability

of the respective choice .If task list (TL)contains the feasible tasks to be allocated and

task Tj is to be allocated after task Ti, the probability function can be stated as;

> @ > @
L

ij ij

ij

iu iu
u T

P

D E

D E

W K

W K
�

ª º ª º° ¬ ¼ ¬ ¼ ®

°
¯
¦ (4.17)

This is valid when Ti is an element of task list (TL) otherwise Pijwill be zero.

The probability distribution is biased by the parameters α and β that determine the

relative influence of the trails and the visibility, respectively.

In this equation τij is equal to the amount of pheromone of selecting task ‘j’

after task ‘i’. The value of ηij is defined as the inverse of the complete travel time

which is the sum of the transient time (for the vehicle from its current position to the

pick-up node of the task), and the task processing time (the travelling time of the

vehicle from the task pick-up node to end node). Allocated tasks are removed from

the remaining task list.

In order to improve the quality of the solutions, the pheromone trails of ants

must be updated to reflect the ants’ performance. This update is a key element to the

adaptive learning technique of ACO and helps to ensure improvement of subsequent

solutions. The update is conducted by reducing the amount of pheromone elements in

the pheromone table of each task-ant combination of the respective schedule in order

to simulate the natural evaporation of pheromone and to ensure that no one task-

vehicle combination becomes dominant. This is achieved by the following equation:

0(1)ij ijW O W OW � � (4.18)

where: λ is a parameter that controls the speed of evaporation and τ0 is the

initial pheromone value assigned. In our algorithm τ0 is the inverse of the complete

tour cost of each ant (total travel time of respective ant for batch of tasks allocation

(one-schedule)). These travel times come from the collision-free path planning by the

SiPaMoP algorithm. Each ant calculates the probabilities to select the next task based

on Equation 4.1. The task, which gives highest probability, is selected as the next task

to perform. Then task selection opportunity moves to the next ant. Each ant selects

80

one task at a time until all the tasks in the feasible list are selected. After all the tasks

are allocated to vehicles (ants), makespan can be calculated and accordingly the best

makespan so far can be updated. This process repeats until the given number of cycles

is performed.

The flow chart of the ACO algorithm used in simultaneous TA and motion

coordination is given in Figure 4-7. The number of ants and the number of tasks

available in the task allocation problem represent the pheromone table. Initially, all

the elements of the pheromone table are set to one. The ACO parameters such asα, β,

λ are set to their respective values. At the start of each cycle, the first task for each ant

is assigned randomly. From that step onwards, each ant selects the next task based on

the probabilities calculated in Equation 4.17.

81

Start

Set Initial parameters
of algorithm

Update
pheromone table

Randomly select a
task for each ant

If No more
Remaining tasks

Calculate probabilities
to select remain tasks

If All ants
select task

Select best remain
task for ant

Remove selected
tasks from

remaining list

Calculate
Makespan

Update Results

Assign = Assign + 1

If stop criteria
met

Stop

N

Y

N

Y

N

Y

Figure 4-7: Flow chart of the ACO algorithm

82

The algorithmic representation of the ant colony algorithm based task allocation

approach is given below:

Step 1: Set initial conditions: the number of tasks (n); the number of vehicles/ants

(m),random state of the problem; other algorithmic constants and stopping

criteria

Step 2: Do while remaining tasks not equal to empty matrix

Step 3: Calculate probabilities for each task available to respective ants

Step 4: Sort out the probability table

Step 5: Select most suitable tasks for ants

Step 6: Remove selected tasks from the remaining task list

Step 7: Update ants’ new locations

Step 8: Go to step 3

Step 9: When allocation is finished

Step 10: Do a local search based on the best allocation for the cycle

Step 11: After completing the local search, update the pheromone table

Step 12: Repeat the above steps until stopping criteria (when number of cycles

equal to pre-defined number)is met

The pseudo code of the ACO algorithm is given in Appendix 3.

4.4.3. Auction Algorithm

The AA was introduced by Bertsekas (1979) for the classical assignment

problem. The motivation was to solve the problem by using parallelism in a natural

way. It turned out that the resulting method was very fast in a serial environment as

well. Subsequent work extended the auction algorithm to other linear network flow

problems. In particular, an extension to the minimum cost problem, the ε-relaxation

method, was proposed (Bertsekas, 1986). An auction algorithm for transportation

problems was studied by Bertsekas and Castanon (1989),and used for shortest path

planning by Bertsekas (1991).It was recently used for scheduling activities of JIT

production (Nishi et al., 2000) and in a decentralised environment (Takeda et al.,

2000) to increase the rate of production.

This algorithm is an intuitive method for solving the classical assignment

problem. It outperforms other algorithms in some problems and is also naturally well

83

suited for parallel computation. Even though there are several modified versions of

auction algorithms for the simultaneous task allocation and motion coordination

problem, the simplest version was used. Following are the steps used in the AA.

Step 1: Set initial parameters such as number of tasks, the number of vehicles,

stopping criteria, etc.

Step 2: For each vehicle, compute its utility (shortest reaching time for a selected task)

Step 3: Vehicles bid for tasks based on their utility values

Step 4: Task allocation is done based on the first auction cycle for the descending

order of the respective bids

Step 5: Remove allocated tasks from the remaining task list

Step 6: Go to step 2

Step 7: Repeat the steps until all the tasks are allocated.

The auctioning process and the flow charts are given in Figure 4-8 and Figure 4-9.

The pseudo code of the AA is given in Appendix 4.

Vehicle 1
(Bid for Tasks)

B1,j

Bi,j B2,j

Vehicle i
(Bid for Tasks)

Vehicle 2
(Bid for Tasks)

Auctioneer
(Announce Tasks ,)Tj

j
Winner

T

Figure 4-8: Simple Auction Process

84

Start

Generate Task
Sequence

Broadcast available
tasks to vehicles

Calculate
Travel Path
(SiPaMoP)

Vehicle Bids for task

If all bids
received

Select best vehicle
for task

If all tasks
allocated

Stopping
Criteria Met

End

Display Results

Y

N

Y

N

N

Y

Figure 4-9: Flow chart of Auction Algorithm

4.5. Simulation Studies

In order to investigate the appropriateness of SA, ACO and Auction

algorithms with the proposed STAMC approach, a number of simulations were

performed. The first simulation study was done with the objective to demonstrate the

performance of the STAMC approach against the sequential approach and this is

presented in Section 4.5.1. Later in Section 4.5.2, a comparison study was performed

to decide the appropriateness of meta-heuristic algorithms for task allocation in the

STAMC approach. The rest of this section presents the simulation studies followed by

discussion and conclusions.

The following assumptions are made in the simulations:

85

i. Static task allocation problem is considered here: all information is known

before the allocation, no replanning, no vehicle breakdown and no new

coming tasks occur

ii. All tasks have equal priority

iii. All the tasks are available for allocation at the start of the task allocation

process

iv. Loading and unloading times are considered to be constant for all tasks

v. Speeds of the vehicles when loaded and empty are considered the same.All

vehicles have the capacity to undertake one task at a time.

4.5.1. Simultaneous Approach versus Sequential Approach

This simulation was designed to compare the difference between the

simultaneous approach (STAMC) and the sequential approach. Here, the multi-

vehicle task allocation and motion coordination problem was solved in simultaneous

and sequential manner separately. The SA algorithm was used for task allocation

purposes in both situations; however, there is no particular reason to select SA

algorithm over the other for this simulation.

In both approaches, the parameters of the numbers of tasks, the number of

available vehicles and vehicle motion parameters such as velocities, SA algorithm

parameters (start temperature θ0, cooling rate - CR, and stop temperature θEnd) and the

map information of the material handling environment were given initially. The task

allocation process started with a randomly selected task order of allocation.

The objective of the simultaneous approach was to find the best task-vehicle

pairs in order to minimise the overall completion time of all tasks, which is called the

makespan (MS) of the schedule generated by task allocation. The makespan varied

with different task selection sequences. The role of the SA algorithm was to find the

best task-vehicle pairs with best task allocation order while considering the collision-

free shortest paths given by the SiPaMoP module. In the task-vehicle pair selection

stage, the SiPaMoP module was called for each pair in the main algorithm, in order to

calculate collision-free shortest path from the vehicle’s present node to the pick-up

node and then to the drop-off node of the tasks. After all the task-vehicle pairs had

been planned in the initial selection stage, the SA algorithm decided whether to accept

86

the allocation or not, which depended on the best possible allocation made up to then.

If the SA algorithm based module accepted the results, this allocation was considered

as the best allocation. Then, the temperature in the SA algorithm was reduced, based

on the cooling ratio of the annealing process. If the solution generated was

unacceptable, then it tried to accept the generated solution with a probability. This

allocation process was continued until the stop criterion of the SA algorithm was met.

The flow chart of with the SA algorithm based STAMC approach is given in Figure

4-10.

The SA algorithm with the SiPaMoP algorithm was used as well for the

sequential approach. Here, task allocation was performed initially, based on the

information of the shortest path without considering collision avoidance. The Dijkstra

algorithm was used to find the shortest paths in this instance. Once all the task-vehicle

pairs were selected, the SiPaMoP module was called in order to find collision-free

paths for the selected task-vehicle pairs. The flow chart of this approach is given in

Figure 4-11.

Initially, problem parameters such as the number of vehicles and tasks and the

map information were confirmed. Then the task allocation process was started by

generating a task sequence randomly. Based on the task sequence, the most suitable

task-vehicle pairs were generated based on the shortest paths. This was done by using

the Dijkstra algorithm without considering dynamic change of the connection weights

as in the SiPaMoP algorithm. This approach was called the Shortest Path Search

(SPS) mechanism. Since this approach will not consider the dynamic changes of the

connection weights, the travelling times are shorter than any other approach. Hence

this will deliver the lowest makespan values and becomes the lower bound of the

makespan. When all the tasks had been allocated, the MS of this schedule was

calculated and it was compared with the current best makespan (MS best). If the new

MS was better than the current MS best then it was updated with the new value and the

respective allocation (task-vehicle pairs) and paths. Then the annealing temperature

was reduced based on the cooling ratio selected in the SA algorithm. If the stop

criterion was not met, then it continued searching for better task-vehicle pairs slightly

changing the initially generated task sequence. If the new MS was inferior to the best

MS (MS best), then the SA algorithm had a tendency to accept solutions with some

probability as explained Section 4.4.1. This allocation process was continued until the

stop criterion of the SA algorithm is met.

87

Different problem scenarios were created for the same number of tasks and the

same number of vehicles by changing the tasks pickup and drop-off locations

only(Figure 4-3). Furthermore, each problem scenario was differentiated from others

in the following format: number of tasks (n) – number of vehicles (m) – case instance.

For example, 8n-4m-case 3 means that eight tasks-four vehicles are available in task

allocation and the problem instance was case 3. That means that, for the same number

of tasks and vehicles combination, there are different situations (cases) where tasks’

pick-up and drop-off nodes and initially parked nodes of vehicles are different from

one case to another. These nodes were selected randomly, in order to avoid any bias

towards a particular area of the map. Due to this reason, different problem scenarios

with same task-vehicle combinations have different makespan values. Each of these

cases was run for a fixed number of iterations and the best solution reached up to that

time was selected. The results of this simulation are given in Table 4-1 and Figure 4-

12.

88

Input

Task Sequence
Generator

If All tasks are
selected?

SiPaMoP
algorithm

Select
Task-vehicle pair

Calculate
Makespan (MS) of the schedule

If MS<MS best

Generate
Random no r

P accept= e
(- /θ)

If P accept < r

= * CR

Update MS, paths

If End conditions
met?

j = j +1

Output

T T

'

SA Algorithm
Y

N

Y

Y

Y

N
N

N

Figure 4-10: Flow chart of the simultaneous approach with the SA algorithm

89

Input

Sequence
Generator

If All tasks are
finished?

SPS mechanism
Select

Task-vehicle pair

Calculate
Makespan (MS) of the schedule

If MS<MS best

Generate
Random no r

If P accept < r

= * CR

Update MS, paths

If End conditions
are met?

j = j +1

Output

T T

'

SA
algorithm

Y

N

Y

Y

Y

N N

N

New schedule and newly planned pathsSiPaMoP algorithm

P accept= e
(- Δ /θ)

Figure 4-11: Flow chart of the sequential approach with the SA algorithm

90

In Table 4-1, the makespan values from three approaches, SPS, simultaneous

and sequential are presented along with the percentage of improvement of the

solutions generated by the simultaneous approach against the sequential approach.

Further, the deviation of the makespan of the simultaneous approach against the lower

bound of the makespans (SPS approach) is given in the fifth and sixth columns of the

Table 4-1. Ideally, the SPS approach based makespan should have the smallest value

followed by the simultaneous approach and the sequential approach should give the

largest makespan for the same case. This variation is seen in eight out of the nine

cases, except in the 8n-4m-case 1. Five out of the nine cases show that the percentage

improvement was higher than 3 %of makespans of the simultaneous approach against

the sequential approach. The maximum variation of 3.7 (stu) can be seen in 8n-4m-

case 2. Seven out of nine cases show a deviation of less than 3.0 (stu) from the lower

bound of the makespans of each cases.

The variation of the results in Table 4-1 and Figure 4-12 is due to the

following reasons. In the SPS method, only the shortest paths were selected without

considering potential collisions among the vehicles during the path planning and

motion coordination. These paths were not executable. However, in the simultaneous

approach, path planning was integrated with the task allocation phase for each task-

vehicle combination by considering the possible collisions among the vehicles.

Hence, the STAMC approach was able to generate better solutions for makespans

since it could detect and avoid collisions in the early stages of the allocation process.

In the sequential approach, task allocation was done based on the shortest path

information without considering potential collisions. Later these paths were modified

by applying the SiPaMoP algorithm for each shortest path selected before. Due to this,

previously selected paths were slightly changed and respective task times were

increased considerably. Therefore, the simultaneous approach achieved a better

makespan than in the sequential approach.

91

Table 4-1: Different simulation problem sizes and makespan values

Problem

Makespan (stu)
Based on
SPS

Mechanism

Simultaneous
approach

Sequential
approach

Percentage
Improvement

(%)

Deviation
from lower
bound

8n-4m-case 1 46.0 46.8 46.8 0.0 0.8
8n-4m-case 2 49.0 52.7 53.2 0.9 3.7
8n-4m-case 3 64.2 64.9 72.3 10.2 0.7
8n-4m-case 4 53.4 56.5 57.1 1.1 3.1
8n-4m-case 5 60.9 61.7 63.6 3.0 0.8
12n-4m-case 6 71.8 74.8 82.9 9.8 3.0
12n-4m-case 7 92.9 94.8 95.6 0.8 1.9
12n-4m-case 8 92.2 93.5 101.9 8.2 1.3
16n-4m-case 9 107.7 108.9 114.0 4.5 1.2

Figure 4-12: Variation of makespans obtained by simultaneous, sequential and SPS (without
collision avoidance) respectively

Figure 4-13 and Figure 4-14 show the Gantt charts of task allocation using

simultaneous and sequential approaches for the 8n-4m-case 3. Tasks allocated for

each vehicle, the implementation order of tasks and the total completion time of each

vehicle are visible in Figure 4-13 and Figure 4-14. It can be seen that the simultaneous

approach has allocated tasks 6 and 4 to vehicle 1, tasks 7 and 3 to vehicle 2, tasks 1, 2

and 8 to vehicle 3 and task 5 to vehicle 4. The sequential approach has allocated

similar task orders as the simultaneous approach to vehicles 1 and 4, but different

tasks to vehicles 2 and 3. The makespan obtained in the simultaneous approach (64.78

stu), was less than that of the sequential approach (72.29 stu).The workloads among

the vehicles were fairly balanced in the simultaneous approach.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9
Problem scenarios

40

60

80

M
ak
es
p
an
(s
tu
)

SPS mechanism
STAMC approachpp
Sequential approach

92

Figure 4-13: Tasks allocation among vehicles, order of implementation and completion time
obtained by the simultaneous approach for 8n-4m-case 2: makespan is 64.78 (stu)

Figure 4-14: Task allocation among vehicles, order of implementation and completion time
obtained by the sequential approach for 8n-4-case 2: makespan is 72.29 (stu)

4.5.2. Comparison of the SA, ACO and Auction algorithms

This simulation was designed to investigate the solution quality of the

STAMC obtained by the meta-heuristic approaches. Initially, the solutions from

heuristic approaches were compared with the optimal results found from exhaustive

search for small-scale problems. Subsequently, comparison between the meta-

heuristics was investigated. In addition to quality of the solution, the computational

times of all the algorithms were investigated.

Task 6

Task 7

Task 1

Task 4

Task 3

Task 2 Task 8

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00

1

2

3

4

V
eh
ic
le

Travel Time (stu)

1st task
2nd task
3rd task

Task 5

MS

Task 6

Task 3

Task 1

Task 5

Task 4

Task 7 Task 2 Task 8

0 10 20 30 40 50 60 70 80

1

2

3

4

1

2

3

V
eh
ic
le
N
u
m
b
er

Travel Time (stu)

1st task
2nd task

3rd task
4th task

MS

93

Of the three meta-heuristic approaches, ACO was selected or comparison with

the optimal results generated by exhaustive search since ACO algorithm based

STAMC approach managed to deliver reasonably better quality results for small-scale

problems than SA and AA. Since exhaustive search evaluates all the possible

combinations of the task order considered for the allocation, only the problem size up

to four vehicles and eight tasks were compared with different initial settings as

explained in Section 4.5.1, which vary the task pickup and drop off locations and the

vehicles initial parked locations. The ACO algorithm based STAMC approach was

run for a pre-defined number of iterations based on the minimum number of iterations

required to saturate with best possible solution for a given problem. For example, 50

iterations used for 6n-2m, 60 iterations for 6n-3m and 75 iterations for 8n-4m

respectively. The best makespan generated out of the respective number of iterations

was considered as the best solution. The results of this comparison are presented in

Table 4-2. Furthermore, Figure 4-15 and Figure 4-16 show the Gantt charts of the

schedules generated by ACO algorithm and ES approaches respectively for 8n-4m

case.

Table 4-2: Makespan comparison of ACO algorithm with optimal Value

Problem Makespan (stu) Deviation from the optimal
solutionTasks-

vehicles
Optimal solution from
exhaustive search

ACO (best
solution)

6n-2m-case 1 75.6 80.1 4.5
6n-2m-case 2 55.3 62.8 7.5
6n-2m-case 3 90.9 102.5 11.6
6n-2m-case 4 99.1 109.3 10.2

6n-3m-case 1 54.5 66.6 12.1
6n-3m-case 2 40.7 42.4 1.7
6n-3m-case 3 72.9 72.9 0.0
6n-3m-case 4 68.1 70.8 2.7

8n-4m-case 1 45.3 59.9 14.6
8n-4m-case 2 43.8 49.8 5.9
8n-4m-case 3 60.3 73.0 12.7
8n-4m-case 4 53.4 60.2 6.9
8n-4m-case 5 56.9 64.2 7.2

94

The difference in makespan in 8n-4m-case1 was 14.6 (stu).This implied that

the schedule generated by the ACO algorithm-based STAMC approach takes 14.6

(stu) longer than the schedule generated by the ES method. Based on the comparison

of this approach with the optimal values presented in Table 4-2, the average

percentage difference of the ACO based solutions was 12.71 % while out of 13 cases,

4 showed less than 5% difference while 10 cases showed less than 10 % difference

and 12 out of 13 cases showed less than 25% difference.

Furthermore, each autonomous vehicle’s empty travel times (time taken to

reach the tasks’ pick-up nodes from the vehicles’ current positions) are presented in

Table 4-3. It can be seen that out of four vehicles only two showed more empty travel

time than the optimal schedules and in fact vehicle 3 and 4 showed less empty travel

time than the ES method. When considering all four vehicles, the ACO based

STAMC approach contains more empty travel time than the ES.

Table 4-3: Empty travel times (stu) of 8T-4m-case 1

Method Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Total
ES 19.47 5.48 26.9 22.52 69.17

ACO 30.77 20.9 23.53 14.28 89.48

Difference 11.3 15.42 -3.37 -8.24 20.31

However, based on the results shown in Table 4-2 and Table 4-3, it is evident

that the ACO algorithm-based STAMC approach has shown that itcan generate near-

optimal results for 31% within the accuracy of 5% difference and 77% fall within the

15% accuracy and 92% of the cases showed the accuracy of 25%. Furthermore, it is

evident that the ACO based STAMC approach has not shown large empty travel time

too.

95

Figure 4-15: Gantt chart of the ES based the task allocation

Figure 4-16: Gantt chart of the ACO algorithm based task allocation

Next, simulation was conducted to investigate the expandability of the

STAMC approach for larger task allocation and motion coordination problems.

However, due to the expensive computational cost, ES could not be used for

comparison purposes. Instead, the SA and ACO algorithms were compared in this

simulation. The problem size was expanded up to 40n-10m. Makespan, computational

time and total empty travel times were evaluated. The results are presented in Table

4-4. For smaller task-vehicle combinations, the ACO algorithm gave better

makespans compared to the SA algorithm with less computation time. However, with

respect to empty travel time, there was no significant variation. The SA algorithm

Task 8

Task 7

Task 2

Task 1

Task6

Task 4

Task4

Task 5

0 10 20 30 40 50 60

1

2

3

4

Travel time (stu)

V
eh
ic
le
N
u
m
b
er

Task 2

Task 1

Task 3

Task 5

Task 6

Task 4

Task 8

Task 7

0 10 20 30 40 50 60

1

2

3

4

Travel time (stu)

V
eh
ic
le
N
u
m
b
er

MS

MS

96

showed better makespan than the ACO algorithm when the task-vehicle combinations

increase (more than 20n-5m). Concerning computational time the SA approach shows

better results when the problem size is larger than 20n-5m and for empty travel time it

was better when the problem size is more than 10n-5m.

Table 4-4: Comparison of makespan, CPU time and empty travel times of ACO and SA
algorithms

Based on the simulations investigated, it was found that the ACO based

STAMC approach gives quality results for the simultaneous task allocation and

motion coordination of a multi-vehicle problem. The makespans of this approach for

small size task allocation and motion coordination problems showed 25% difference

from the optimal makespan for 95% of different cases with considerably less

computational time. In the case of the large-scale task, allocation and motion

coordination problems where the number of vehicles and tasks are higher (more than

10n-5m), the SA algorithm performs well against ACO algorithm. Hence, it has been

shown that the ACO is capable of providing near-optimal results for small size task

allocation and motion coordination.

In these simulation studies, different problem scenarios/cases were generated

randomly for the same number of tasks and the same number of vehicles. Here the

main reason to generate different problem scenarios / cases was to start the problem

based on different pickup and drop off locations for the tasks and vehicles. This is

further explained in detail with the example below. The same problem setting of 8

tasks and 4 vehicles (8m-4m) are solved by SA, AA and ACO algorithms for task

allocation. Here, he pick-up and drop-off nodes of the 8 tasks and the 4 vehicles’ pick-

up positions are listed in Table 4-5 and Table 4-6.

Problem
Makespan
(stu)

CPU time
(seconds)

Empty travel time
(stu)

Tasks-vehicle ACO SA ACO SA ACO SA
8n-4m-case 1 58.25 55.07 48.20 103.59 87.06 92.84
10n-5m-case 2 66.93 73.69 109.04 255.28 116.02 113.28
20n-5m-case 3 109.39 112.57 1031.97 773.22 341.54 311.38
30n-10m-case 4 103.20 102.00 3037.45 3430.50 353.05 442.15
40n-10m-case 5 124.90 115.50 6662.63 4908.88 650.07 557.36

97

Table 4-5: Eight tasks’ pick-up and drop-off nodes

Task No Pick-up
Node

Drop-off
node

1 177 153
2 43 83
3 113 115
4 91 148
5 166 172
6 142 138
7 85 33
8 4 76

Table 4-6: Four vehicles’ initial positions

Vehicle No Pick-up node

1 174
2 171
3 77
4 167

The simulation results of task allocation by the proposed SA algorithm-based

method are listed in Table 4-7 and Figure 4-17. For the 8n-4m problem, vehicle V1 is

assigned tasks 4 and 5, V2 task 7, V3 tasks 3, 6 and 2, and V4 tasks 1 and 8. The

Gantt chart of the allocated task-vehicle pairs are shown in Figure 4-17. The planning

order or the priority order of the 8 tasks is finally determined as 1, 7, 3, 6, 4, 5, 2 and

8. The task completion time of each task is also listed in the last column in Table 4-7.

The makespan obtained from this SA algorithm is 45.96 (stu).

Table 4-7: Simulation results obtained by SA algorithm based STAMC approach

Task No Pick-up
node

Drop-off node Allocated Vehicle Planning
order

Task completion
time (stu)

1 177 153 V4 1 15.02
7 85 33 V2 2 45.34
3 113 115 V3 3 10.90
6 142 138 V3 4 15.30
4 91 148 V1 5 19.62
5 166 172 V1 6 12.26
2 43 83 V3 7 19.49
8 4 76 V4 8 30.94

98

Figure 4-17: Task allocation results obtained from the SA algorithm

The simulation results obtained by the proposed ACO-based STAMC

approach are listed in Table 4-8 and Figure 4-18. For the 8n-4m problem, vehicle V1

is assigned tasks 2 and 6, V2 tasks 1 and 8, V3 tasks 3 and 4, and V4 tasks 5 and 7.

The Gantt chart of the allocated task and vehicle pairs are shown in Figure 4-18. The

planning order or the priority order of the 8 tasks is finally determined as 2, 1, 3, 5, 6,

8, 4 and 7. The processing time of each task is also listed in the last column in Table

4-8. The makespan obtained from the ACO-based STAMC approach was 59.94 (stu)

from V4.

Table 4-8: Simulation results obtained by ACO based STAMC approach

Task no Pick-up node Drop-off
node

Allocated
vehicle

Planning
order

Processing
time (stu)

2 43 83 V1 1 37.48
1 177 153 V2 2 19.66
3 113 115 V3 3 10.90
5 166 172 V4 4 14.32
6 142 138 V1 5 10.25
8 4 76 V2 6 30.94
4 91 148 V3 7 16.44
7 85 33 V4 8 45.62

Task 4

task 7

Task 3

task1

Task 5

Task 6

Task 8

Task 2

0 10 20 30 40 50 60

1

2

3

4

Travel time (stu)

V
eh
ic
le
s

1st task

2nd task

3rd task

99

Figure 4-18: Task allocation results obtained from the ACO

The simulation results of task allocation by the proposed AA based method are

listed in Figure 4-19 and Table 4-9. In the 8n-4m problem, vehicle V1 is assigned to

task 8, V2 to task 7, V3 to tasks 3, 2 and 6, and V4 tasks 1, 4 and 5. The Gantt chart of

the allocated task and vehicle pairs are shown in Figure 4-19. The planning order or

the priority order of the 8 tasks is finally determined as 8, 7, 3, 1, 2, 4, 5 and 6. The

processing time of each task is also listed in the last column in Table 4-9. The

makespan obtained from the ACO is 45.34 (stu) from V2.

Table 4-9: Simulation results obtained by AA based STAMC approach

Task no
Pick-
up
node

Drop-off
node

Allocated
vehicle

Planning
order

Processing time
(stu)

8 4 76 V1 1 35.37
7 85 33 V2 2 45.34
3 113 115 V3 3 10.90
1 177 153 V4 4 15.02
2 43 83 V3 5 23.42
4 91 148 V4 6 15.04
5 166 172 V5 7 12.26

6 142 138 V3 8 10.25

Task 2

Task 1

Task 3

Task 5

Task 6

Task 8

Task 4

Task 7

0 10 20 30 40 50 60

1

2

3

4

Travel time (stu)

V
eh
ic
le
s

1st task

2nd task

100

Figure 4-19: Task allocation results obtained from AA

It can be seen from the results and discussions above, that the task allocation

results are different. The vehicle utilisations (i.e., the total travel time of all 4 vehicles

for performing the 8 tasks) are also given in Table 4-10. Their makespans are within

the range of 45 stu to 60 stu as shown in Table 4-11. Vehicle utilization in the SA

algorithm-based STAMC approach (168.87 stu) was very close to that of the AA

(167.6 stu), while the ACO had more vehicle utilisation (185.6 stu).

Since the task processing time includes two components, namely the travel

time from a vehicle’s initial node to a task’s pick-up node and the time taken from the

task pick-up node to its drop-off node, task processing times vary even though the

same task is allocated to a different vehicle in the three approaches. In addition, the

processing time of the same task can also change due to traffic congestion. This is

clearly visible in task 8, where the SA and ACO algorithms take approximately 30

(stu) to process. The AA takes 35 (stu) to process the same task because different

vehicles are allocated to do the task number 8.

Table 4-10: Comparison of Makespan and vehicle utilisation of three methods

Parameter Method
SA ACO AA

Makespan 45.96 59.94 45.34
Vehicle utilisation 168.87 185.60 167.60

Task 8

Task 7

Task 3

Task 1

Task 2

Task 4

Task 6

Task 5

0 10 20 30 40 50 60

1

2

3

4

Travel time (stu)

V
eh
ic
le
s

1st task

2nd task

3rd task

101

Table 4-11: Makespan comparisons of ACO, SA and Auction algorithms

Problem
Tasks-Vehicles

No of iterations Makespan (stu)
ACO SA AA

8n-4m-case 1 75 59.9 46.0 45.3
8n-4m-case 2 75 49.8 54.7 46.5
8n-4m-case 3 75 73.0 66.5 66.3
8n-4m-case 4 75 60.2 55.1 55.1
8n-4m-case 5 75 64.2 66.6 58.2
8n-4m-case 6 75 52.8 52.7 52.7
12n-4m-case 1 200 84.6 85.6 86.4
12n-4m-case 2 200 82.4 84.0 80.0
12n-4m-case 3 200 95.1 104.5 96.5
12n-4m-case4 200 98.0 94.3 86.3
12n-4m-case 5 200 81.8 81.6 71.4
12n-4m-case 6 200 76.9 75.8 68.8
20n-5m-case 1 400 130.1 124.0 125.7
20n-5m-case 2 400 107.3 112.6 108.7
20n-5m-case 3 400 137.8 141.1 141.1
20n-5m-case 4 400 118.8 112.6 106.1
20n-5m-case 5 400 94.4 95.2 89.5
20n-5m-case 6 400 110.4 105.2 105.6
40n-10m-case 1 200 108.3 105.4 100.0
40n-10m-case 2 200 119.0 109.4 107.0
40n-10m-case 3 200 121.1 127.4 112.0
40n-10m-case 4 200 133.3 115.5 116.0
40n-10m-case 5 200 124.1 119.7 115.0
40n-10m-case 6 200 125.3 107.6 110.0

Furthermore, the three methods (SA, ACO and AA) were extensively tested

with different task-vehicle combinations while allowing each method to run a fixed

number of iterations before generating the final results (makespan). The simulation

results are shown in Table 4-11. Here, four task-vehicle pairs, i.e., 8 tasks and 4

vehicles (8n-4m), 12 tasks and 4 vehicles (12n-4m), 20 tasks and 5 vehicles (20n-5m),

and 40 tasks and 10 vehicles (40n-10m), were used. For each task-vehicle

combination, six different cases were generated by randomly generating the pickup

and drop down locations of each task and the initially parked locations of the vehicles

as explained previously. These results show that AA also generates competitive

results compared to meta-heuristic approaches, irrespective of the problem size.

In Table 4-12 and Table 4-13, respectively, the hardware and software

configurations used for the simulations and the parameter values of the heuristic

algorithm: ACO and SA are given. The parameter values were selected based on

separate test runs and the most suitable values in terms of solution quality and

102

computational time. Some of these findings were published in Kulatunga et. al.,

(2006).

Table 4-12: Hardware and Software Specification of Simulation Studies

Computing Environment
Component

Description

Processor Type and core Speed Pentium 4 Hyper threading @ 3.0Ghz
(Prescott)

Front-side Bus Bandwidth 800MHz
DRAM capacity and bandwidth 2GB DDR @ 400MHz
Network Type and Bandwidth 1000Mbps Ethernet
Network Switching Type Gigabit Switching Fabric
OS Kernel Type and Version Linux (2.4.21-20.EL)
MATLAB 7.0.4.352 (R14) Service Pack 2

Table 4-13: Algorithms and parameter values

ACO SA
Parameter Value Parameter Value

α - comparison integer 3 Annealing start Temperature 100

β - comparison integer 5 Cooling rate 0.9

λ -speed of evaporation 0.7 Annealing stopping temperature 1

4.6. Discussion and Conclusions

This chapter presented the complex multi-vehicle task allocation and motion

coordination problem and the STAMC approach with extensive simulations. The

mathematical model of the multi-vehicle task allocation and motion coordination

problem was first developed, and followed by optimisation criteria. Two types of

optimisation criteria namely, the resource utilisation and overall efficiency were

considered in the mathematical formulation. Subsequently, the proposed STAMC

approach to solving the multi-vehicle task allocation and motion coordination

problem was presented while emphasising the difference between the simultaneous

approach and the sequential approach.

Various simulations were done to emphasise different features of the proposed

approach. The summary of simulation studies is given in Figure 4-20.

103

Simulation Studies

Purpose: To test simultaneous & sequential
approaches

Outcome: Simultaneous approach outperform
sequential approach

Limitations: Only makespans were tested for a
number of problem instances

Subsequent simulations

Purpose: To investigate optimal results with meta-
heuristic approaches
Outcome: Heuristics Were able to generate near-
optimal results
Limitations: Small scale problems

Purpose: To investigate the expandability of
the problem and To improve solution quality
Outcome: SA outperforms meta-heuristics
irrespective of problem size
Limitations: Limited number of different
problem instances were tested

Purpose: To investigate the computational costs among different Task
allocation approaches and the expandability
Outcome: SA performs well against ACO

heuristics approachess can be used for large sizes
problems

Limitations: Only SA & ACO were tested

Initial simulations

Figure 4-20: Summary of the simulation studies

First, simulation was used to emphasise the advantages of the simultaneous

approach against the sequential approach. The results revealed that the simultaneous

approach can get results closer to the lower bound generated by the shortest path

search approach without considering collision avoidance. In the next stage of the

simulations, different meta-heuristic approaches were extensively investigated in the

STAMC approach. Two commonly used algorithms namely SA and ACO were used

with AA. A meta-heuristic, ACO was compared with the optimal results generated

from exhaustive search for small-scale problems. The results showed that ACO based

STAMC approach has shown that it can generate near-optimal results for 31% within

the accuracy of 5% difference and 77% fall within the 15% accuracy and 92% of the

cases showed the accuracy of 25%.

Next the proposed meta-heuristic techniques based STAMC approaches were

tested for large problem sizes. The SA algorithm based solutions outperformed the

ACO when the problem size increased to 40n-20m. Furthermore, empty travel times

were also compared with SA, ACO and Auction algorithms, in these simulations.

104

Based on all the simulations, it can be concluded that the proposed meta-

heuristics based STAMC approach is able to generate near optimal solutions for

complex multi-vehicle task allocation and motion coordination problem within a

reasonable time, even for large problem sizes. However, there are a number of issues

that were not considered in this chapter.

It was assumed that all problem-specific information (available tasks and

available vehicles and vehicles’ operating environment) is fully known before starting

the task allocation process. However, in real world situations this information is not

fully available before task allocation starts. Most of the time, new tasks arrive for

allocation while the allocation process is running and unexpected events such as

vehicle breakdowns may occur. Therefore, in Chapter 5, these issues will be taken

into account and the proposed approach for multi-vehicle task allocation and motion

coordination problem will be tested in dynamic conditions where task allocation and

motion coordination environment vary with time.

Furthermore, Chapter 4 has not paid much attention to the ways of improving

the computational efficiency. Only computational costs were compared at one stage of

the simulation between different task allocation methods. However, there is always a

trade-off between the quality of solutions and the computational time spent.

Therefore, if computations can be efficiently performed, then it is possible to find

better solutions within a shorter time. This issue will be taken into consideration in

Chapter 6.

In the real world outdoor material handling environments, the scale of the

problem and operational environment are normally large, compared to the simulation

environment used in Chapter 4. This was closer to an indoor material handling

environment, where the number of path segments and nodes in the map was in the

scale of hundreds. However, in outdoor material handling environments, these

parameters are comparatively large and the number of vehicles operating in such

environments is higher. These issues will be tested in Chapter 7, where a case study

will be conducted based on the information obtained from a fully automated container

terminal.

105

Chapter 5

5.STAMCApproach for a Dynamic
Environment

5.1. Introduction

It is quite often that many resource allocation problems need to be handled

without entire information of the problems. Some information may only be available

during the resource allocation process. In order to overcome this issue, the resources

have to be allocated or rescheduled with updated information. These types of resource

allocation or scheduling problems are known as dynamic scheduling problems. The

multi-vehicle task allocation and motion coordination problem is also similar to this.

There may be new tasks arriving for allocation once the allocation process is

proceeding or the road network where vehicles are operating can be changed due to a

blockage such as a vehicle breakdown.

As Kim and Gunther (2007) stated, it is very difficult to perform pre-planning

or scheduling in container terminals for longer time horizons. This is mainly due to

the fact that the problem’s specific information such as availability of vehicles, tasks

to be allocated, constraints in the operating environment are not available all at once.

The relevant information arrives at different time slots. In these situations, the

solutions generated with the available information will not be accurate. Therefore, it

would be difficult to find solutions in advance.

According to Bianchi (2000), there are two main characteristics in dynamic

scheduling: (1) the information required to solve a problem is time dependent, and

when new information is collected scheduling needs to be updated.(2) Solutions have

to be found concurrently with incoming information. This means that it is impossible

to find a-priori solutions. However, if problem-specific information varies over the

time but variation pattern is known in advance or problem specific information of the

schedule is non-deterministic, then it can be solved a-priori, with probabilistic

information. However, these types of problems may not be categorised into a dynamic

scheduling problem (Bianchi 2000).

106

In container terminals, containers arrive at different time intervals from

different sources such as cargo vessels, freight trains and container carrier trucks.

Planning and scheduling of a terminal is not limited to loading/unloading of

containers from/ to cargo vessels. It also includes handling of containers, which arrive

from other sources at the same time. These arrivals are always not known completely

a-priori. However, it is essential to handle these new containers, whenever they

arrive. Otherwise, the terminal management needs to bear the costs of keeping those

new containers waiting. Conversely, if these can be handled promptly, the overall

efficiency can be enhanced.

Arrival patterns of new tasks (containers to be handled in a CT) cannot be

easily predicted. Unexpected events such as vehicle breakdowns, road congestions,

interruptions can occur as well. Due to unexpected events and the unpredictable

nature of material handling, task allocation, path planning and collision avoidance in

attic environment are complicated. Because of the change of parameters and

environmental condition, it is necessary to modify or partially change the solution

already determined. This can be achieved by way of a dynamic task allocation /

scheduling and motion coordination.

There are mainly two ways of handling previously highlighted changes over

the scheduling time horizon. One method is to reschedule the whole problem at fixed

time intervals with updates of the variations taken into account from time to time. The

other method is to reschedule the whole problem or part of the problem whenever

variations occur in the environment or in the scheduling problem parameters. These

two methods are shown in Figure 5-1. If new tasks arrive or variations occur regularly

(as Task i to Task n+1 show in Figure 5-1(a)) the first method is suitable. However, the

task arriving between two adjacent rescheduling intervals has to wait until the next

rescheduling cycle. If task arrival occurs on a non-regular basis, the second method

can be used (Figure 5-1(b)).

.

107

08:00 12:00

09:00 10:00 11:00

08:00 12:00

09:00 10:00 11:00

08:20
Task i

08:53
Task i+1

09:28
Task i+2

10:25
Task n

08:30
Reschedule S

09:30
Reschedule S+1

10:30
Reschedule n

11:30
Reschedule n+1

08:10
Task i

09:59
Task n

08:25
Task I +1

08:46
Task i+2

08:53
Reschedule S+2

10:06
Reschedule n

11:06
Reschedule n+1

08:33
Reschedule S+1

08:16
Reschedule S

10:56
Task n+1

11:15
Task n+1

09:50
Task i+3

(a) Reschedule at regular intervals

(b) Reschedule when new a task arrives

Figure 5-1: Typical rescheduling methods

The time between two rescheduling intervals significantly affects the overall

performance of the material handling system. When the rescheduling interval is

stretched, the newly arrived tasks need to wait for a longer time. Further, frequent re-

scheduling is not advisable if computation cost for the rescheduling process is high.

Rescheduling has to be done when unexpected events or disruptions occur in the

system, such as vehicle breakdowns, or some disruptions occur in the available paths.

Although such unexpected events occur rarely, it is important to study and rectify

them. Otherwise, not all plans and schedules would be effective.

Therefore, it is necessary to address the multi vehicle task allocation and

motion coordination problem by considering dynamic characteristics. In order to

accommodate changes, it is rational to consider dynamic multi-vehicle task allocation

and motion coordination as a series of static scheduling sub-problems.

Dynamic Vehicle Routing Problem (DVRP) is the closest problem to the

dynamic version of multi-vehicle STAMC problem studied in the literature. This is

similar to VRP. However, rescheduling is done at different time intervals to

accommodate changes to the main problem over time interval. A comprehensive

analysis of DVRP can be found in Bianchi (2000). Most recent works of DVRP

include Yuan and Li (2007), Taniguchi and Shuimamoto (2004), Rizzoli et.al., (2007)

108

and Kytojoki et.al., (2007). A few of them have used heuristic or evolutionary

techniques as an optimization approach (Rizzoli et.al. 2007).

There are several studies related to material handling in dynamic

environments. Meersman (2002) has studied an integrated scheduling problem for

various types of handling equipment at an automated container terminal. The handling

times were not known exactly in advance. Instead, schedules were done based on the

partially available information and schedules were updated when new information on

realizations of handling times became available. Among the BSA and several

dispatching rules (DR), the BSA performed best on average, and in some situations,

simple dispatching rules had performed almost as well as the BSA. Furthermore, this

study has shown that it is important to have a plan on a longer horizon with inaccurate

data, rather than to update the planning anticipating emergence of new data for

updating.

Le-Anh and De Koster (2005) proposed an on-line vehicle-dispatching rule for

warehouses and manufacturing facilities. Multi-attribute dispatching rules and the

single attribute rules were tested. The results revealed that the multi-attribute DR

performs well against single attribute DRs. Furthermore, the impact of reassigning

moving vehicles based on both single and multi-attribute, were investigated and the

results suggested that reassigning of moving-to-park vehicles has a significant

positive effect on reducing the average load waiting time.

In addition to dynamic task allocation / scheduling problems due to new

arrivals in material handling, uncertainties such as vehicle breakdown and path

blockages in the already planned/scheduled tasks also frequently happen in practical

situations. Due to the complexity of the problem, limited research is found in the

literature dealing with vehicle breakdowns (Paul and Liu, 2006, Li et al., 2008).

Different replanning approaches were presented in Paul and Liu (2006) for

unexpected situations such as vehicle breakdown and path blockages. Mirchandani

and Borenstein (2008) proposed a real-time VRP with time windows which is

applicable to delivery and/or pick-up services that undergo service disruptions due to

vehicle breakdowns. A Lagrangian relaxation based-heuristic is developed, which

includes an insertion based algorithm to obtain a feasible solution.

The facts discussed so far reveal that the nature of multiple autonomous

vehicles STAMC problem is dynamic. Therefore, any solution to this problem should

address the dynamic nature of the problem. The rest of the chapter is structured as

109

follows: Section 5.2 presents the formulation of dynamic multi-vehicle task allocation

and motion coordination problem. Section 5.3 presents the STAMC approach for the

dynamic multi-vehicle task allocation and motion coordination problem. Section 5.4

presents the simulation studies and the results. This is followed by conclusions in

Section 5.5.

5.2. Formulation of Dynamic Multi-Vehicle Task Allocation and
Motion Coordination Problem

There are two significant differences between the dynamic and the static

versions of the multiple vehicle task allocation and motion coordination problem. In

the dynamic version, tasks’ arrival time and priority are considered as two important

factors. However, in the static version, it is assumed that all the tasks are available at

the time of scheduling. Different types of tasks can be categorized into groups based

on their priorities. Tasks within a priority group have equal priority. The group of

tasks with highest priority should be allocated first. The group of tasks with least

priority is allocated last.

Furthermore, in the dynamic scheduling problem, rescheduling is to be

performed at regular time intervals over the operational time horizon to accommodate

a number of new tasks. However, it is not mandatory to reschedule at fixed intervals

but this is decided by the arrival pattern of the new tasks for the schedule.

5.2.1. Mathematical Model

It is assumed that tasks have different priorities based on their importance.

They can be categorised into priority groups in descending order. Further, the number

of tasks and vehicles available at each scheduling or rescheduling interval varies since

the task arrival pattern and vehicle breakdowns cannot be predicted.

Problem specific information

Rescheduling interval : RSI

Time between two adjacent rescheduling intervals : t int

110

Rescheduling intervals : [0, 1, 2, 3 …e ...f]

Where, e is the intermediate arbitrary rescheduling interval and f is the final interval

Number of Priority groups : [1, 2, 3,...,p,...l]

Where p and l are arbitrary and least priority groups

Number of tasks of each priority group at eth interval: [N1,e, N2,e , N3,e…NL,e]

In addition to the information on tasks and vehicles presented in Chapter 4, the

following information is needed in the dynamic multi-vehicle task allocation and

motion coordination problem.

Additional task and vehicle specific information

Task arrival time : tari

Task priority : p

Batch size of the tasks : BS

Remaining travel time of the previously allocated tasks : ttpre

The same simulation environment used in Chapters 3 and Chapter 4 is

considered for this chapter too. Hence, definitions and equations used in Chapters 3

and 4 are valid. However, slight modifications have been made to equation (4.1) in

order to match it with the dynamic scheduling problem. Since rescheduling is done at

different time intervals, the available tasks and vehicles are checked before each

rescheduling instances.

The number of available tasks for rescheduling at rescheduling interval e is

taken as Ten. However, only a limited number of tasks (Batch of tasks) is considered

for allocation in a given rescheduling interval with a batch size of BS. The number of

available vehicles at eth interval is considered as Vem

Available task list and the vehicle list at interval e can be given as;

Te = [T1, T2, T3 ...Ten]

Ve = [V1, V2, V3 ...Vem]

The loaded and empty speeds of the vehicles and loading/unloading times

to/from vehicles are considered the same as in Section 4.5 of Chapter 4. Therefore, the

111

total completion time of task Tiby vehicle Vj can be calculated using Equation (4.3) in

Chapter 4. Starting time of the first allocated tasks for all vehicles is assumed to be the

same, at the beginning of the scheduling process (at the initial schedule when t =

0).Furthermore, it is assumed that the absolute time at eth rescheduling instance is t e

and the absolute time at the last rescheduling instance is tf. Therefore, the total

completion time of the task Ti by vehicle Vjat time interval e can be calculated based

on Equation (4.1) as follows;

� � UijproLijreachaviij tttttTT ����)(
(5.1)

where tavi is the available time of vehicle Vj to undertake new tasks assigned to it

at e rescheduling interval. If vehicle Vj completes n number of tasks at the

rescheduling interval of e, the total travelling time of the vehicle Vjwill be:

݈ܽݐܶ ݈݃݊݅݁ݒܽݎܶ ݁݉݅ݐ ݂ ܸ ൌ ܶ ܶ ሺͷǤʹሻ

ୀଵ

Therefore, makespan of the reschedule at time interval e is:

݊ܽݏ݁݇ܽܯ ൌ ୀଵݔܽ݉
௦ ݈ܽݐܶ ݈݃݊݅݁ݒܽݎܶ ݁݉݅ݐ ݂ ܸ ሺͷǤ͵ሻ

Where s is the number of available vehicles.

For each rescheduling interval, tardiness can be calculated based on Equation

(4.10)and total tardiness as in Equation (4.11) since at each rescheduling interval one

schedule (Gantt chart) will be generated and conditions governing tardiness are not

differ from the conditions used for Equation (4.10) and Equation (4.11).

112

5.3. The Dynamic STAMC Approach

As previously stated, newly arrived tasks should be allocated for appropriate

vehicles as quickly as possible. Moreover, usually at the beginning of the scheduling

process, there will be a pool of tasks available for scheduling. Generally, new tasks

arrive to the pool in an arbitrary manner. As stated previously, these tasks have

different priorities, which have to be considered when scheduling them. In the

proposed system, rescheduling is done at fixed time intervals in order to make the

rescheduling problem simple. The new arrivals during a rescheduling interval are

grouped together with the tasks that have not been started in the current rescheduling

interval. It is assumed that the number of tasks arriving within a rescheduling has an

upper bound and lower bound.

The scheduling at each rescheduling interval is done in stepwise manner based

on the priority levels. In each rescheduling interval, the highest priority task group is

considered first, followed by the intermediate priority task group and last the lowest

priority group.

The flow chart of the proposed algorithm is given in Figure 5-2. The absolute

time at the beginning of the scheduling process is taken as zero (t = 0).At the

beginning of rescheduling, map information, available tasks and vehicle information

are collected. Then, tasks are sorted, based on their priorities and expected start times.

Later batches of tasks are selected from the sorted task list for scheduling. Once the

allocation of all the tasks within a batch is completed, the schedule generated is

released for the vehicles. This process is continued until the next rescheduling interval

(t = tint). These steps are continued until the final reschedule interval (tf) is reached.

113

Start (t = 0)

New
Tasks
arrive to
system

Initialize map and
task List

If t = Tstart

Scheduling Process

Select currently
processing tasks

Select remaining
allocated tasks

Select new batch
for scheduling

Schedule Group 1

Schedule Group 2

Schedule Group 3

Task
allocation
Algorithm

SiPaMoP
module

Output (New
schedule and route

plan)

End

If t < tf

Continue with
new schedule

t = t +1

If t = tint
No

Yes
No

Yes

Select batch from
task list

Sort tasks
according to
priorities

Update task list
with new arrivals

Schedule Group N

No

yes

Figure 5-2: Flow chart of the priority based dynamic STAMC approach

114

5.4. Simulation Studies and Results

A number of simulation studies were carried out in order to investigate the

performance of the STAMC approach in a dynamic environment. In the first

simulation study, the appropriate batch size (BS) and rescheduling interval (RSI) for

dynamic scheduling has been investigated by varying the batch and rescheduling

intervals with the solution quality by trial and error method. In the second simulation

study, different task allocation algorithms have been tested with the identical task

allocation problem scenarios. The main purpose of this study was to investigate the

different approaches adopted in Chapter 4. The third simulation study was used to

investigate the replanning capabilities due to vehicle breakdowns and path blockages.

5.4.1. Simulation study 1

Tasks with equal priorities were considered in this simulation study. The

number of new tasks arriving for scheduling was set to a fixed number in order to

determine suitable values for BS and RSI. The batch size varied from 12 to 24 and

RSI varied from 10 (stu) to 50 (stu) at 10 (stu) steps. The number of vehicles in the

simulations was set to be four and the Auction algorithm was used in task allocation.

The number of tasks scheduled in each trial was varied with different RSIs and the

new task arrival frequency was set to be fixed. The total tardiness was calculated

based on Equation 4-10. Altogether, 12 trials were done by varying the batch size and

rescheduling intervals. The makespan values, the total tardiness and the number of

late tasks of each schedule were presented in Table 5-1 while the variation of these

parameters was shown in Figure 5-3 to Figure 5-6.

Based on the results presented in Table 5-1, Figure 5-3 and Figure 5-4, it can

be seen that the total tardiness is comparatively higher from trails 5 to 15, than those

in other trials. However, it is evident that trials 11 and 12 have considerably lower

makespan values, total tardiness and even a lower number of late tasks. The average

and the standard deviation of the makespans are 128.80 (stu) and 16.58 (stu),

respectively.

115

Table 5-1: Variation of rescheduling intervals with tardiness, late tasks and tasks scheduled

Trail
number

Schedule interval Batch size Makespan Tardiness Late tasks

1 10 12 101.55 36.45 5
2 20 12 104.06 66.62 11
3 30 12 166.72 174.45 12
4 40 12 130.99 165.51 10
5 50 12 141.49 245.51 10
6 10 16 123.44 80.02 8
7 20 16 132.76 155.75 11
8 30 16 139.88 231.79 11
9 40 16 144.63 163.68 11
10 50 16 146.09 321.34 14
11 10 20 116.10 77.78 6
12 20 20 119.25 105.56 8
13 30 20 118.08 251.33 11
14 40 20 126.64 200.53 11
15 50 20 141.74 267.47 12
16 10 24 97.66 137.89 10
17 20 24 122.91 99.51 10
18 30 24 126.09 184.54 10
19 40 24 144.26 174.02 10
20 50 24 131.58 155.52 9

Figure 5-3: Variation of makespan, tardiness and late tasks in simulation 1

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Trial number

Makespan Tardiness Late tasks

116

Figure 5-4: Variation of makespan with re-scheduling intervals for different batch sizes

Figure 5-5: Variation of Tardiness with re-scheduling intervals for different batch sizes

80

100

120

140

160

180

10 20 30 40 50

M
ak
es
pa
n
(s
tu
)

Rescheduling Interval (stu)

Batch size is 12 Batch Size is 16

Batch size is 20 Batch size is 24

0

50

100

150

200

250

300

350

10 20 30 40 50

T
ra
d
in
es
s
(s
tu
)

Rescheduling Interval (stu)

Batch size is 12 Batch Size is 16

Batch Size is 20 Batch size is 24

117

Figure 5-6: Variation of number of late tasks with rescheduling intervals for different batch sizes

The BS and RSI values were selected as 24 (tasks) and 20 (stu), respectively

based on Figure 5-3 to Figure 5-6. The main reasons behind the section is that the first

simulation study gave results statistically closer to the average values (Average

Makespan 128.80 stu, standard deviation 16.58 stu, tardiness, and number of tasks

delayed). However, these values will depend on the task allocation problem and

environmental constraints such as vehicle speeds, distances of the paths and traffic

congestions etc. Therefore, it would be useful to carry out different simulation studies

by considering the constraints highlighted above as a future work.

5.4.2. Simulation study 2

The second simulation study was to investigate the behaviour of the STAMC

approach in dynamic environment with different task allocation techniques presented

in Chapter 4. Here tasks with different priorities were investigated. The SA and AA

techniques were compared with general dispatching rules (DR) which performs close

proximity task first (COF), and then goes to the next closest task from its current

position. For example: each vehicle looks for the closest tasks out of the available

tasks based on task priorities. After one vehicle completes its initially selected task, it

looks for the next available task, which is closest to the vehicle’s current location. The

dynamic task allocation problem was modelled in such a way that new tasks are

generated in an arbitrary manner (with the assistance of random number generation in

Matlab environment). These tasks were introduced to the scheduling at the same time

4

6

8

10

12

14

16

10 20 30 40 50

N
u
m
b
er
of
la
te
ta
sk
s

Rescheduling Interval (stu)

Batch size 12 Batch size 16 Batch size 20 Batch size 24

118

as prior scheduled tasks were in progress. In order to schedule the new tasks,

rescheduling was performed at regular time intervals. Therefore, the schedule horizon

for each schedule or reschedule was the time between two RSIs. In the rescheduling a

task’s priority was taken into consideration. Tasks were allocated to three priority

groups as highest, medium and lowest, based on the urgency to be performed. A fixed

scheduling horizon was considered in the simulations. New tasks are considered at the

next earliest rescheduling interval. At each rescheduling interval in the simulation,

Gantt charts were generated in order to visualize the schedules generated from the

three techniques, namely SA, AA and DR.

For simplicity in the simulation, if a task belongs to the highest priority group,

its expected completion time was taken as 20 (stu). This means that, once a high

priority task was considered for scheduling it has to be completed within 20 stu’s

from its available time. Similarly, for medium and lowest priority tasks, expected

completion times were taken as 40 (stu) and 60 (stu) from respective tasks available

time .The tardiness of each task was calculated based on the Equation 4.10 and

cumulative tardiness (Equation 4.11) was used to decide the overall efficiency of the

dynamic STAMC approach.

The dynamic task allocation problem was run for five re-scheduling instances

starting from 0 (stu) to 100 (stu) at a scheduling interval of 20 (stu). Gantt charts of

these three techniques up to 3rd RSI are shown from Figure 5-5 to Figure 5-16.

Furthermore, the task time, priorities, task available time, expected completion times

and tardiness obtained from each algorithm are given in Figure 5-4. In addition, each

task’s schedule related information are given in Appendix 5.

Figure 5-4 shows that the completion times obtained from the SA algorithm

are always below the expected completion time. Hence, there is no tardiness.

However, tasks 37, 38 and 39 were not considered for scheduling in the 3rd reschedule

since this algorithm based task allocations could not complete many tasks as in the

AA . Similar performance was shown in the AA-based solutions but tasks 37, 38 and

39 were considered in the 3rd reschedule. Meanwhile DR-based schedules, three tasks

finished with some delay out of the 15 tasks arrived between the start of the

scheduling and the 3rd rescheduling interval.

.

119

Figure 5-7: The completion time and tardiness of newly arrived tasks

The Gantt charts of schedules generated by the three task allocation techniques

at the start of (0 stu) the scheduling process are shown from Figure 5-8 to Figure 5-10.

In each Gantt chart, task processing times for each vehicle are shown as horizontal

bars. The numerical numbers shown on each of the bars represent the task number and

priority group(task no/priority group) it falls into: the highest priority, the

intermediate priority and the lowest priority groups, which are represented by 1, 2 and

3 respectively. The priorities were considered as a dominant factor when tasks were

allocated. This means that initially, highest priority tasks are allocated followed by the

medium priority tasks and lastly by lowest priority tasks. There are certain tasks with

lower priority which had started before higher priority tasks, for example, task 12 in

Figure 5-8 or task 14 in Figure 5-9. However, if another vehicle completes these tasks,

then, the task completion times or the makespan of the schedule would be higher due

to the changes in task pre-processing times since pre-processing times are dependent

on the initial locations of the vehicles before they undertake new tasks. The changes

of task time can even grow due to the potential collisions between the initial locations

of the vehicles and the pick-up locations. The task time bars shown in Gantt charts

includes all four segments (time taken to reach tasks initial node, loading time, task

processing time and unloading time) of task related times as a single entity. Therefore,

different vehicles initiate to reach a task from different locations. The length of the bar

of a selected task will vary depending on the vehicle that undertakes the task.

0
20
40
60
80
100
120
140
160
180

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

S
im
ul
at
io
n
ti
m
e
un
it
s
(s
tu
)

Newly arrived Tasks

Expected finish times Completion time (DR) Tardiness (DR) Completion time (AA)

Tardiness (AA) Completion time (SA) Tardiness (SA)

120

It can be seen from Figure 5-8, which most of the tasks were allocated to

Vehicle 3 in the DR based method and only one task was allocated to Vehicle 1. The

makespan obtained from the DR is almost double those obtained from other

algorithms. Furthermore, the SA and Auction algorithms achieved a better tasks

distribution among the vehicles compared to the DR.

Figure 5-8: Gantt chart of the initial schedule at Time =0 (stu) based on the DR

121

Figure 5-9: Gantt chart of initial schedule at Time = 0 (stu) based on AA

Figure 5-10: Gantt chart of initial schedule at Time = 0 (stu) based on SA algorithm

122

The same results can be seen in the first rescheduling interval (at 20 (stu) after

the initial schedule) as in the initial schedule with regard to vehicle utilisation and task

distribution among the vehicles. However, there is a slight improvement with respect

to the makespan from the DR. In the case of the SA and Auction algorithms, the AA

showed a good distribution of tasks among the vehicles and a shorter makespan than

in the SA. The Gantt charts generated by the three task allocation algorithms are

shown from Figure 5-11 to Figure 5-13.

Figure 5-11: Gantt chart of 1st reschedule at Time =20 (stu) based on DR

123

Figure 5-12: Gantt chart of 1st reschedule at Time = 20 (stu) based on AA

Figure 5-13: Gantt chart of 1st reschedule at Time = 20 (stu) based on SA algorithm

124

It can be seen that there is a slight improvement in the DR with respect to

vehicle utilisation in the second reschedule interval (i.e. when t = 40 (stu)), however,

even in this rescheduling the AA and SA algorithms outperformed with the minimum

makespans then in the DR. Of the SA and AA, the SA has delivered shorter

makespan, better vehicle utilisation and task distribution than in the AA. The Gantt

charts generated at the second rescheduling interval are given in Figure 5-14 to Figure

5-16. It can be noticed from the Gantt charts shown in Figure 5-14 to Figure 5-16, the

number of tasks considered for rescheduling differ from one another. This is mainly

due to the fact that different task allocation algorithms generate different task-vehicle

pairs at different time intervals (starting and finishing time interval of a task) and this

leads to quicker task completion than in the other algorithms.

Figure 5-14: Gantt chart of 2nd reschedule at Time = 40 (stu) based on DR

125

Figure 5-15: Gantt chart of 2nd reschedule at Time = 40 (stu) based on AA

Figure 5-16: Gantt chart of 2nd reschedule at Time = 40 (stu) based on SA algorithm

126

From the three schedules / reschedules presented in this section in the form of

Gantt charts from Figure 5-8 to Figure 5-16, it is evident that the SA and AA can

generate better schedules than those of the DR. The schedule quality was determined

based on vehicle utilisation and the task distribution among the vehicles and the

makespan value. For vehicle utilization, the SA outperforms the AA and the DR. In

the case of task distribution, the SA gave the best results when compared to the AA

and DR. The DR gave the worst results with respect to the makespan value, the SA

and AA generated similar results. Therefore, the SA is the best method among the

three methods and DR is the worst method.

5.4.3. Re-planning Due to Unexpected Events (Simulation study 3)

In practical operation, there may be some unexpected and unavoidable instances such

as vehicle breakdowns and path / route blockages, which directly affects the already

generated schedules and plans. Predicting the events of this nature is difficult. There

are some studies which attempted to address similar types of problems in Material

handling (Narasimhan and Batta 1999, Paul and Liu 2006, Li et al., 2008) as

extensively discussed in Chapter 2 and in the Introduction section of this chapter. Any

approach for multiple vehicle planning and coordination should have the capability to

accommodate unexpected events. The dynamic STAMC approach overcomes this

issue by adopting a re-planning strategy when these unexpected events occur. This

scenario is explained with a simulation study. The re-planning strategy is illustrated in

Figure 5-17.

The re-planning strategy works as follows. When an unexpected event occurs,

the location of the event is detected and the information is updated in the database.

Accordingly, the STAMC approach will update its database and re-plan the

previously allocated but not completed tasks. In this case, priority is given to the tasks

which are being processed at the time of the stoppage. These tasks are assumed to be

performed by the vehicles allocated before, but new routes will be planned. The rest

of the tasks will be rescheduled with the remaining vehicles, based on the updated

map information and operation condition.

127

Identify the
Breakdown

Update the map, task
and vehicle pool

database

Re-plan the remaining
vehicles and tasks
based on updated

information

Allow the allocation to
run on updated map

Figure 5-17: Schematic representation of the re-planning Strategy of the STAMC approach

In the simulation, a scenario of vehicle breakdown is randomly generated and

the response to this unexpected event is explained below. Here, the vehicle number 4

broke down in the connection between nodes 98 and 79 (Figure 5-18 and Figure 5-20)

at 30 (stu), after it started finishing tasks. Due to this event, the rest of the tasks

allocated to other vehicles need to be re- planned. This can be seen in Figure 5-19.

Vehicle 1 has two tasks that are (11 and 12) to be completed (Figure 5-20). Similarly,

for vehicle 2 ,tasks no 6 and 9 are not completed, and for vehicle 3, task no 8 and task

no 10 need to be completed. The Gantt charts of the schedules before and after the

breakdown are given in Figure 5-18 and Figure 5-19, respectively. Furthermore, the

task allocation summary before and after the breakdown is shown in Table 5-2.

128

Figure 5-18: Gantt chart of the schedule before the vehicle breakdown

The information after re-planning due to the breakdown is given in Appendix

5. This information includes complete route and vehicle details before and after the

breakdown. It can be seen that from 30 (stu) onwards, Vehicle 4 is not operating.

However, there were none of the other vehicles already planned to use the blocked

path caused by the breakdown based on the travel information shown in the tables of

Appendix 5 .In addition, the travelling information of all four vehicles before the

breakdown and after the breakdown have been shown Appendix 5.

It can be noted that the 4th vehicle slot in the Gantt chart in Figure 5-19 is

empty in the re-planned schedule. Furthermore, in the replanning stage, new tasks

waiting in the list also were considered for the allocation. Therefore, it can be seen in

Figure 5-19 that Vehicle 1 has two more tasks that are new: T-11 and T-12. Similarly

for Vehicle 2: T-6, T-9 and Vehicle 3: T-8, T-10.

.

129

Figure 5-19: Gantt chart after re-planning of the same example

Table 5-2: Task allocation among the four vehicles before and after vehicle 4 breaks down

Vehicle Task allocation before breakdown Task allocation after breakdown

Finished Processing
To be

finished
Finished Processing

To be

finished

New

Tasks

1 - 3 4 - 3 4 11, 12

2 - 1 6 - 1 6 9

3 - 2 5 - 2 5, 8 10

4 - 7 8 Broken down -

130

Vehicle 1

Path selection before and the breakdown of vehicle 4

Vehicle 3
Vehicle 2

Vehicle 4

139

140

156

141

178

135

136

137

154

142

133

118

164

186

164

98

134

137

98

136

79

135

134

135

119
118

118

132

128

129

133

130

127

131

178

154

133

134

135

120

121

139

138

122

154

133

132

Link where vehicle
4 breakdowns

138

136

137

180

164

142

102

123

122 New route taken by
Vehicle 3 after replanning

New route taken by
Vehicle 2 after
replanning

127

128

129

New route taken
by vehicle 1 after
replanning

Figure 5-20: Path representations before and after the breakdown

Figure 5-20 shows the paths of the four vehicles before the breakdown (BD)

and the remaining vehicles’ paths after the breakdown of Vehicle 4. Figure 5-20 show

st hat Vehicle 1 and Vehicle 3 have not changed paths even after the breakdown of

Vehicle 4. Nevertheless, the path of Vehicle 2 has changedslightly after the

breakdown. The dotted arrows of all four paths indicate the respective connections of

the four vehicles when the breakdown occurred. It can be seen, from Table 5-2 that,

task 8, allocated to Vehicle 4 before the breakdown is now allocated to Vehicle 3

since Vehicle 4 is not available due to the breakdown. Furthermore, none of the

vehicles had completed any tasks as they were transporting at the time of the

breakdown. All four vehicles were carrying out their initially allocated tasks before

the breakdown.

131

5.5. Conclusions and Discussion

The focus of this chapter is to investigate the performance of the STAMC

approach in dynamic environments. Two aspects are emphasised in the dynamic

STAMC approach. The first aspect is to demonstrate its adaptability for rescheduling

to accommodate new tasks that arrive while vehicles are operating. The second aspect

is to demonstrate its re-planning capabilities in situations where vehicles breakdown,

and path blockages or other unexpected events occur.

The performance of the dynamic STAMC approach was evaluated with three

task allocation methods: DR, AA and SA algorithms. Of them the AA based method

gave minimum tardiness and makespan for a majority of Rescheduling intervals. The

SA and AA achieved similar makespans at all RSIs. In addition, the SA and AA based

methods gave better performance with respect to vehicle utilisation and task

distribution among the vehicles. Hence, it can be concluded from the simulation

results that SA and AA can be used to solve complex scheduling and routing

problems in dynamic environments.

The computational time taken to generate results in a dynamic environment

plays an important role. In the dynamic task allocation and motion coordination

problem, solutions were generated within a short time interval by the STAMC

approach. This was achieved by fine-tuning the task allocation algorithm’s parameters

to generate solutions more efficiently. However, during this process, solution quality

suffered to a certain extent. This was done by setting cooling rate of the annealing

process to 0.6 instead of 0.9 used in Chapter 4. The upper bound of the computational

time was set to 60 seconds to generate results with the STAMC approach with the

hardware specified in Table 4.12 in Chapter 4.

The computational cost to generate solutions plays a crucial role in dynamic

scheduling since it affects the rescheduling intervals. This will be discussed in

Chapter 6. Furthermore, it revealed that the STAMC approach is capable of re-

planning in unexpected situations such as vehicle breakdowns or route blockages. The

proposed re-planning strategy of the STAMC approach can reschedule the remaining

tasks to be performed at the time of the breakdown in addition to the re-routing of

uninterrupted vehicles.

However, this approach has its limitations. It cannot reschedule the task,

which was affected due to the vehicle breakdown. Practically, human intervention is

132

needed to sort out this kind of work even in fully automated material handling

systems. Furthermore, in our replanning strategy, the exact locations of the other

vehicles, which are not directly affected by the breakdown, are approximated to the

ending points of the respective connections they were travelling at the time of the

vehicle breakdown.

133

Chapter 6

6.Distributed implementation of the
STAMC approach

6.1. Introduction

As shown in the previous chapters, the simultaneous task allocation and

motion coordination approach for solving the multi-vehicle task allocation and motion

coordination problem is implemented in a single serial computing node with the

MATLAB software computing platform. Due to the nature of the problem and its

complexity, it takes considerable computation time to generate results. In order to

achieve a reduction in the computation time of the STAMC approach, this chapter

investigates a distributed control topology for implementing the proposed STAMC

approach.

The integration and encapsulation of the Message-Passing Interface (MPI)

specification into the existing MATLAB environment makes it possible to implement

the STAMC approach in a distributed architecture by using the MPI Toolbox

(MPITB) (Baldomero,2001).This enables coarse-grain and out-of-loop parallelisation

of the expensive SiPaMoP algorithm on distributed nodes of a Linux computing

cluster. The rest of this chapter is organised as follows. Section 6.2 describes the

parallel/distributed architecture of the STAMC approach, Section 6.3 describes the

details of parallelisation under MATLA Busing MPITB and Section 6.4 presents the

description of the experiments conducted. The results followed by conclusions are

given in Section 6.5.

6.2. STAMC Approach in Distributed Environment

In the distributed architecture, the motion coordination component of the

STAMC approach is allowed to run on different workstations while the task allocation

component is running on one workstation. That means the STAMC approach as a

whole is a parallel algorithm enabling distributed computation of the expensive

motion coordination sections. Furthermore, the STAMC approach is completely

134

amenable to serial computation as described in Section 6.5 for the purpose of

empirical comparison.

The auction algorithm is selected for the task allocation purposes in this

chapter to explain the distributed architecture. However, other meta-heuristic

algorithms can also be adopted for the task allocation purpose with the distributed

architecture of the STAMC approach. The auctioning procedure used for the task

allocation is presented in Section 4.4.3 and illustrated in Figure 4-9 of chapter 4. The

remainder of the section presents how it is being modified in the distributed manner.

Initially, the task sequence is generated randomly by the task generator in the

master workstation, which is responsible mainly for the task allocation phase of the

STAMC approach. The first task is broadcast to all autonomous vehicles allowing

them to place a future bid for the task by the master workstation. Each vehicle

calculates their respective bids based on the collision-free paths generated by the

motion coordination component of the STAMC approach in their own workstations

and announces it back to the master workstation. After all the vehicles have returned

their bids, a winner is determined and is allocated the first task by the master

workstation. The second task is then broadcast, followed by bids from each vehicle,

and a winner is selected. This auction process of broadcast task, followed by bidding

and the selection of a winner continues until all tasks have been allocated.

For each vehicle, the calculation of bids is based on the travelling time to

complete the current broadcasted task and any previously allocated tasks. Once the

travel time has been calculated, it is used to post bids (B1,j to Bi,j). The travelling time

of collision-free paths is calculated using the SiPaMoP algorithm. A winner is then

determined, based on the lowest travel time to finish the respective task (completion

time). When calculating the completion time of a task for each autonomous vehicle,

the previous task commitments of each vehicle are also considered. This will help to

reduce the chance of allocating too many tasks to one vehicle and therefore balance

the usage of vehicles. For example, if a previous task is allocated to a particular

vehicle, then there will be fewer tendencies for the same vehicle to win the next task.

In addition, load balancing of the vehicles can be achieved partially. After all tasks of

the current task sequence are allocated, the makespan is calculated. This process

continues for a fixed number of cycles with a different task sequence generated

randomly in each cycle. Eventually, the best task sequence is selected, which provides

the minimum makespan. The flow diagram of the simultaneous task allocation and

135

path-planning algorithm is illustrated in Figure 6-1. The parallel computation of the

SiPaMoP algorithm (motion coordination aspects) occurs towards the middle of the

flow diagram. It is during this stage that the motion and path is calculated for each

vehicle independently using different computing nodes.

Figure 6-1: Flow diagram describing the simultaneous task allocation and motion coordination
(STAMC) approach in parallel mode

The travel path and resulting travel time to complete the path is calculated

using the SiPaMoP algorithm. This portion of the STAMC approach is distributed and

computed in parallel for each autonomous vehicle. If there exists n autonomous

vehicles requiring computation of a travel path, which takes tpath time to compute, the

Start

Generate Task
Sequence

Broadcast available
tasks to vehicles

Calculate
Travel Path
(SiPaMoP)

Vehicle Bids for task

If all bids
received

Select best vehicle
for task

If all tasks
allocated

Stopping
Criteria Met

End

Display Results

Y

N

Y

N

N

Y

Parallel
Computation

136

serial STAMC approach requires ntpath time to compute all paths for all vehicles. The

parallel STAMC approach requires only tpath time to compute the travel path for all

autonomous vehicles.

A Master-Worker topology is used to distribute the STAMC approach. The

Master node takes on the role of ‘Auctioneer’, by issuing tasks, receiving bids for

tasks and determining the winning bid from each worker node. The worker nodes

perform parallel computation of the path and motion planning using the SiPaMoP

algorithm. The distributed computing environment and master-worker topology

introduce a necessary communication time (tcomm), but tcomm<<tpath.

Partitioning of the STAMC approach onto a parallel computing architecture is

illustrated in Figure 6-3 and the serial architecture is illustrated in Figure 6-2.

Figure 6-2 : The data path of serial computation for the task allocation and motion coordination
algorithm for autonomous vehicles

Calculate Path
Vehicle1

Calculate Path
Vehicle2

Calculate Path
Vehicle3

Calculate Path
Vehicle4

Task
Allocation

Determine
Winner

Issue
Task

Path
Solutions

More
Tasks

Node0

137

Figure 6-3 : The data path of parallel computation for the task allocation and motion
coordination algorithm for autonomous vehicles.

In this chapter, the STAMC approach is implemented on a distributed memory

computing system known as a compute cluster, which is discussed further in Section

6.4.2. The combined arrangement of hardware and software of the compute cluster

provides a platform for coarse-grained parallelisation of the complete SiPaMoP

algorithm on each of its computing nodes as illustrated in Section 6.2.

The cluster computing architecture and master-slave topology mutually

provide for two possible mappings between the number of computing nodes and

number of vehicles requiring motion and path planning. The first mapping is 1:1 and

is used exclusively in this paper. Here, a single node computes the motion and path

for a single vehicle. The second mapping, 1:n allows a single node to compute the

motion and path for multiple vehicles. For example, if there exist three computing

nodes and nine vehicles, only three vehicles can be computed in parallel at one

instance. As a result, three groups would be computed sequentially. In this case a

single node would perform the motion and path computation for three vehicles, a 1:3

mapping. A third mapping of n:1 allows the motion and path computation to be

further distributed across spare nodes. For example, if there exist nine computing

nodes and three vehicles it would be ideal to further distribute the path and motion

computation for each vehicle across the spare six nodes, thus allocating all

computational resources of the compute cluster to the calculations. The STAMC

approach encapsulates the complete SiPaMoP algorithm into a coarse-grained

Calculate
Path

Task
Allocation

Determine
Winner

Issue
Task

Path
Solutions

More
Tasks

Calculate
Path

Calculate
Path

Calculate
Path

Master Vehicle1 Vehicle2 Vehicle3 Vehicle n

Node0 Node1 Node2 Node3 Node n

138

implementation, preventing any further decomposition into finer-grained portions for

execution on separate processors.

6.3. Integration of MPITB in the MATLAB Environment

The STAMC approach is implemented in the interpretive MATLAB

environment, which has no native support for distributed computing. In order to

arrange the STAMC approach into a Master-Worker topology on a distributed

computing architecture, a Message-Passing Interface (MPI) was required.

The integration of the Message-Passing Interface specification (MPI.Forum,

2005) and the interpretive MATLAB environment allows researchers to achieve coarse-

grained and out-of-loop parallelisation of scientific and engineering applications

developed in MATLAB. Developed at the University of Granada in Spain, MPITB for

MATLAB allows researchers to include MPI function calls in a MATLAB application, in

a way similar to the bindings offered for C, C++ and Fortran. Decomposition and

coding of a serial problem into a parallel problem is still the responsibility of the

researcher, as there is no automatic parallelisation method in MPITB. This method of

explicit parallelisation coupled with user knowledge of the application provides a

good chance for sub-linear or linear computational speedup. Furthermore, the onus is

placed upon the researcher to develop safe distributed code free of livelocks and

deadlocks, which occur due to the loss of message synchronisation between

distributed computing nodes.

Baldomero, (2001) provides a summary of several other parallel libraries that

achieve coarse-grain parallelisation for MATLAB applications. The toolboxes differ in

the number of commands implemented from the MPI specification and the level of

integration with existing MATLAB data types.

The level of computational performance provided to a parallel MATLAB

application is dependent upon the underlying communication method implemented in

the toolbox. Toolboxes using the file system to exchange messages between

computers tend to be slow due to the explicit read/write latency of rotating hard disks.

Conversely, toolboxes using a message-passing daemon to provide communication

between computers provide much better performance due to the small latencies and

large bandwidth capabilities of local area networks (LANs). In the latter case,

139

messages (data) are transferred between the primary memories of parallel computers,

without buffering them using the file system prior to transmission over the LAN.

The design of MPITB includes nearly all functions defined in the MPI-2

specification. The MPI functions are written in C source code and dynamically

compiled into MATLAB MEX-files. The MEX-files encapsulate the functionality of

the message-passing routines, allowing them to be directly called within the MATLAB

environment, thus making the parallelisation of the application possible. With both

MATLAB and a message-passing library installed, such as LAM-MPI, the precompiled

MEX-files can perform both MATLAB API calls and message-passing calls from

within the MATLAB environment as illustrated in Figure 6-4.

Figure 6-4 : Software architecture showing the role of MPITB and other software components.

The MPITB makes MPI calls to the LAM-MPI daemon and Matlab API. This

method enables message-passing between Matlab processes executed in distributed

computing nodes (Baldomero, 2001). Transmission of data between the master-

worker MATLAB processes and execution of the STAMC approach can occur after

booting and initialisation of the LAM-MPI library from the master process using:

LAM_Init(nworkers,rpi,hosts)

Where nworkersis the number of cluster nodes designated as worker nodes,

rpi is the LAM MPI SSI setting which is set to either tcp or lamd in our experiments,

hosts is the list of host names on the Linux cluster. Once the underlying MPI library

has been initialised, MATLAB instances must be spawned on worker nodes. This is

achieved using the following command on the master process:

MPI_Recv(data,0,TAG,NEWORLD)

NETWORK

LINUX OS

LAMD MATLAB

MPITB

MPI_Send(data,1,TAG,NEWORLD)

NETWORK

LINUX OS

LAMD MATLAB

MPITB

Node 0 Node 1

140

MPI_Comm_spawn(‘matnojvm’,args,nworkers,NULL,0,MPI_COMM_SELF)

where matnojvm is a script containing the matlab UNIX command with the –

nosplash and –nojvm inline switches. The switches disable the splash screen and

JAVA virtual machine for headless operation of distributed MATLAB processes on the

master node. The nworkers parameter is the number of cluster nodes designated as

worker nodes, and the remaining are typical MPI parameters.

Finally, establishing an MPI communication domain, called a

communicator,defines a set of processes that can be contacted. This is done using the

following commands on the master process:

MPI_Comm_remote_size(processrank)

MPI_Intercomm_merge(processrank,0)

global NEWORLD

where processrank is an integer greater than zero assigned to each worker

node in the MPI communicator; the master node has a processrank equal to zero. The

global variable NEWORLD is the name of the MPI communicator. Transmission of

messages between MATLAB processes can now be accomplished, permitting the

arrangement of cluster nodes into any useful topology. The master-worker topology

used in the experiments employs the fundamental point-to-point communication

mechanism between master and worker nodes, with one side sending, and the other,

receiving. The following commands perform the standard-mode blocking send and

receive operations:

MPI_Send(buf,processrank,TAG,NEWORLD)

MPI_Recv(buf,processrank,TAG,NEWORLD)

where, processrank is the MPI rank assigned to each MATLAB process. When

messages are sent processrank is the MPI rank value of the receiving process and

when messages are received processrank is the value of the sending process. The

parameter buf represents the MATLAB data to be sent or received, TAG is an integer

associated with the message providing selectivity at the receiving node, and

NEWORLD is the MPITB communicator.

141

Any valid MATLAB data type can be transmitted directly without being pre-

packed into a temporary buffer, unless the message contains different data types. If

the data to be sent is larger than a single variable, such as a matrix, then its size must

be determined and sent prior to sending the matrix. The approach taken in this paper,

is to calculate the size of the matrix in the sender using the MATLABsize() command,

then send the size value to the receiver prior to sending the actual matrix, as illustrated

by the following pseudo code:

Master pseudo code:

numrows=sizeof(uwvpmat)

for all vehicles(n)

MPI_Send(numrows,vehicle(n),TAG,NEWORLD)

MPI_Send(uwvpmat,vehicle(n),TAG,NEWORLD)

Vehicle (worker) pseudo code:

MPI_Recv(numrows,master,TAG,NEWORLD)

uwvpmatrix=zeros(numrows,numcols)

MPI_Recv(uwvpmatrix,master,TAG,NEWORLD)

Another method uses the MPI_Probe() command to probe for incoming

messages on the receiving side, assert the size of the incoming message, create a

buffer of the corresponding size to receive the message and then receive the actual

message in the buffer. A complete tutorial written by Sebastien Goasguen is available

at http://falcon.ecn.purdue.edu:8080/cluster/.

The distribution and parallel computation of the STAMC approach requires

the transmission of data between master and worker nodes. The size of the

PATH_REGISTER matrix is dynamic between each task allocation cycle of the

SiPaMoP algorithm. Pseudo code describing the parallel and distributed approach

used for parallel task allocation and path planning is given in Appendix 6.

142

6.4. Experiment Description

The experiments involve execution of the task allocation and path-planning

algorithm on a single serial computing node and in parallel on the distributed

computing cluster. The serial computation uses a single node of the Linux cluster,

whereas the parallel computation uses multiple cluster nodes.

The computation time for algorithms is often a measure of the number of

objective function evaluations, because different algorithms may be compared

regardless of their particular implementation. However, this often disregards

communication times for parallel implementations of the same algorithm. In this

study, the performance was measured by recording the wall-clock time, so all

components of the execution time, including communications, are included. The wall-

clock time is a fair measure of performance that is frequently used. Furthermore, the

establishment of the MPI topology under MATLAB is not a part of the task allocation

and path-planning algorithm and is not included in the computation times presented in

this chapter.

6.4.1. Simulation Parameters

The set of algorithm and simulation parameters remained constant to

encourage a meaningful empirical comparison between the parallel/distributed

approach and the serial/centralised method. Table 6-1 presents the settings of the

SiPaMoP algorithm and simulation parameters

Table 6-1 : Algorithm and simulation parameters

Parameter Name Parameter Value
Num Master 1
Num Vehicles 4, 6 ,8
Num Tasks 24, 48, 72, 96, 120, 144, 168, 192, 216, 240
Num Map Nodes 187
Weights Update Dynamic
Vehicle speed 100 cm/stu
scheduling time 1 batch
vturningspeed 1c m/stu
Safety time 0 sec
Turning rate 1.0
Number of cycles 25

In order to investigate the performance of the distributed implementation of

the STAMC approach, four different sets of simulations were performed, The number

of allocated tasks varied from 24 to 240 in steps of 24, while the number of vehicles

143

remained fixed at either 4, 6, or 8 for each simulation respectively. The STAMC

approach was executed for 25 cycles with the average computation time taken as the

final result.

6.4.2. Cluster Computing Environment

All experiments were performed on a Linux computing cluster with

specifications provided in Table 6-2. The serial and parallel versions of the task

allocation and path planning algorithm were coded in MATLAB. Communications

between cluster nodes employing the Message Passing Interface ver2.0 were

implemented using the MPITB (Baldomero, 2001).

Table 6-2 : Cluster computing hardware and software environment

Computing Environment
Component

Description

Number of Nodes Utilised 1,4,8
Processor Type and core Speed Pentium 4 Hyper threading @ 3.0Ghz

(Prescott)
Front-side Bus Bandwidth 800MHz
DRAM capacity and bandwidth 2GB DDR @ 400MHz
Network Type and Bandwidth 1000Mbps Ethernet
Network Switching Type Gigabit Switching Fabric
Network Protocol TCP/IP V4
OS Kernel Type and Version Linux (2.4.21-20.EL)
MPI Type and Version LAM 7.1.1 / MPI 2
MATLAB 7.0.4.352 (R14) Service Pack 2
MPITB mpitb-FC3-R14SP1-LAM711.tgz

6.5. Results and Discussion

The average computation times for the parallel/distributed STAMC approach

and the serial/centralised STAMC approach are illustrated from Figure 6-5 to Figure

6-8.

144

0

200

400

600

800

1000

1200

24 48 72 96 120 144 168 192 216 240

Number of tasks (4 vehicles)

C
om
pu
ta
ti
on
T
im
e
(s
ec
) Centralised

Distributed

Figure 6-5 : Computation time (seconds) for the parallel/distributed and serial/centralised
STAMC approach using 4 vehicles

0

200

400

600

800

1000

1200

1400

1600

1800

24 48 72 96 120 144 168 192 216 240

Number of tasks (6 vehicles)

C
om
p
u
ta
ti
on
T
im
e
(s
ec
) Centralised

Distributed

Figure 6-6 : Computation time (seconds) for the parallel/distributed and serial/centralised
STAMC approach using 6 vehicles

145

0

500

1000

1500

2000

2500

24 48 72 96 120 144 168 192 216 240

Number of tasks (8 vehicles)

C
om
pu
ta
tio
n
T
im
e
(s
ec
)

Centralised

Distributed

Figure 6-7 : Computation time (seconds) for the parallel/distributed and serial/centralised

STAMC approach using 8 vehicles

From the three simulations using 4, 6, and 8 vehicles, there is a clear

performance increase (less computation time) with the parallel/distributed STAMC

approach compared to the serial/centralised STAMC approach. As the numbers of

tasks are increased from 24 to 240, the difference in performance becomes even more

significant between the two versions of the STAMC approach. In general, when the

number of tasks of the simulation study increases, the computation time increases

exponentially, but the rate of change of the gradient in the serial/centralised algorithm

is much larger than the rate of change of the gradient in the parallel/distributed

algorithm, because the STAMC approach is evenly distributed among cluster

processors (1:1 mapping) and computed in parallel in the latter case.

Figure 6-8 illustrates the results of the parallel and distributed STAMC

approach using 4, 6 and 8 vehicles. Results for the single vehicle situation are also

given to provide a baseline for comparison against multi-vehicle simulations. For the

multi-vehicle simulations, the computation time is similar from 24 to 240 tasks, with a

maximum variation of approximately 14.3% between 8 and 4 vehicles at 216 tasks.

This suggests a useful scalability property of the parallel and distributed STAMC

approach arranged in a master-worker topology for an increasing number of vehicles.

146

0

50

100

150

200

250

300

350

400

450

500

24 48 72 96 120 144 168 192 216 240

Number of tasks

C
om
pu
ta
tio
n
T
im
e
(s
ec
)

1 vehicle

4 vehicles

6 vehicles

8 vehicles

Figure 6-8 : Computation time (seconds) for the parallel/distributed STAMC approach using
4/6/8 vehicles

The STAMC approach attempts to find an optimal (minimum) schedule for the

allocation of all tasks to available vehicles, whilst guaranteeing collision-free paths.

This is a typical NP-hard problem, requiring time, which is exponential in log n, the

number of tasks to be scheduled. As a consequence, the results are exponential in the

number of tasks to be scheduled and not the number of vehicles. Because of the

coarse-grained parallelisation of the SiPaMoP algorithm, variations between 4, 6, and

8 vehicles is small, even with 240 tasks as illustrated in Figure 6-8.

6.6. Conclusion and Further Investigations

The use of MPITB for MATLAB provides effective integration and

encapsulation of a message-passing system like MPI into the interpretive environment

of MATLAB. This enables the existing MATLAB code to be distributed and computed in

parallel using clustered computing power. Scientific and engineering applications

continue to maintain the interactive, debugging and graphics capabilities offered by

the MATLAB environment, and can now reduce the computation time by taking

advantage of clustered computing.

Due to the high granularity of the STAMC approach, the distributed and

parallel versions achieved near-linear computational speedup over the serial STAMC

approach. This result was achieved using 4, 6 and 8 cluster nodes for a number of

tasks ranging from 24 to 240. The results also suggest good scalability of the parallel

147

STAMC approach, which becomes more important as the number of vehicles and

number of tasks increase.

The simulation results show that by adapting the distributed architecture of the

computation, the computational time taken by the STAMC approach can be reduced

considerably. This can be even further improved with the introduction of more

computers, or use of high performance computers. Furthermore, overall system

reliability can be increased by the retirement of the master node to remove the single

point of failure from the system and coupled with a fully-connected topology where

redundancy is increased by allowing any cluster-computing node to adopt the master

role of task allocation. In the practical scenarios with automated material handling

systems, this can be achieved by allocating individual workstations’ computations

among the autonomous vehicles while maintaining one centralized workstation to

coordinate all the activities. The outcomes of this chapter have already been published

Kulatunga et.al.,(2007).

148

Chapter 7

7.ACase Study -Application of the
STAMCApproach in an Automated
Container Terminal

7.1. Introduction

So far, the proposed STAMC approach was tested in a scaled down, indoor

material-handling environment where the number of nodes was 189 and the total area

covered was 15m X 30m. However, in many real world material handling systems,

especially outdoor environments such as container terminals, the number of tasks to

be handled at a given time interval, and the route network, the staking / storage areas

are comparatively large. Further, the operational area of container terminals is spread

in a large area and the overall footprint of the material handling systems will be higher

than indoor environments. Therefore, it is essential to validate the applicability of the

proposed STAMC approach in a scaled up operational environment.

The Patrick Autostrad Container terminal was selected for the validation

purpose. This terminal is located at Fisherman Island, Brisbane, Australia that covers

the land area of about 40 hectares and owned by Patrick Corporation, a leader in

freight transportation in Australia. This is known as the first fully automated container

terminal on Australian soil and currently possesses a fleet of 25 automated straddle

carriers and 12 Quay cranes and 3 forklifts with terminal yard capacity of 1.2M TEUs

(http://www.patrick.com.au) . A snapshot of the terminal is shown in Figure 7-1.

149

Figure 7-1: Container terminal at FishermanIsland (http://www.patrick.com.au)

7.2. Representation of the Automated Container Terminal

The container yard is divided into different sections: stacking areas, exchange

areas and travelling zones. The stacking areas are categorised into two groups where

normal containers stack in A, B, C, D, X, Y and Z zones while reefer containers stack

at zone re. The travelling areas next to the crane operating area is represented as r1

and other common road areas as r2 and r3. These sections can be compared with the

aerial view of the terminal is shown in Figure 7-2 against the different regions

demarcated in Figure 7-3.

Figure 7-2: Arial view of the FishermanIsland Container terminal (www.googlemaps.com)

150

Figure 7-3: Different regions of the container yard at Fisherman's Island

Nodes and links connecting nodes are used to represent the terminal. The

complete map of the terminal is consisted of 14949 nodes. The terminal yard is

divided into grids of 8m x 4.4m in the stacking area and 4.4m x 7.0m in roadways.

For each node, connections were established between the node and its adjacent nodes,

thus creating a graph to represent the terminal. These connections signified the valid

paths that could be executed by a straddle carrier, and pick up or drop-down tasks

were defined based on these nodes and the connections between the nodes. Example

vehicle paths in the terminal are represented in the MATLAB platform as shown in

Figure 7-4.

The berthing facilities for container vessels were located on the water side of

terminal next to the Quay Cane operating area. There were two forms of container

arrival to the terminal: containers arrived from vessels(from the water side) or from

the exchange area (from the land side).The space between water and land sides was

used as a yard to stack containers until they were transferred or transhipped again to

their respective destinations. The dedicated routes were kept in x and y directions of

the map shown in Figure 7-4 in order to facilitate straddle carriers’ movement

between each of these zones.

151

Figure 7-4: Vehicle movements screen short of the MATLAB simulation platform

7.3. Current Task Allocation and Motion Coordination Process

The current terminal planning was performed in a hierarchical manner with

three different layers. Tasks to be completed were decided by the top layer and those

instructions were transferred to an intermediate layer. At this layer, equipment

(cranes and straddle carriers) allocation to different tasks has taken place. Once tasks

were allocated to straddle carriers in the next layer, path planning (routing) and

collision avoidance were performed. These planning activities were done with

general purpose scheduling software.

Once all the decisions related to planning have been made in the three different

layers, related information on the plan was transferred to SCs. SCs followed the

instructions in order to complete the allocated tasks. An example task allocation is

shown in Table 7-1. It shows the containers handled by respective straddle carrier,

pick-up location and zone, drop-off off location and types of tasks (example: landside

– LS outward or waterside –WS-outward). Based on the origin and destination, tasks

were categorised into five types. Furthermore, the rehandling tasks such as shuffling

from one location to another in the same or different zones were categorised into

rehandling tasks.

152

Table 7-1: Task allocation information of the existing method of one hour duration

Vehicle
ID

Task
sequence ID

Container
ID

Pick up
zone

Pick up
node

Drop-off
zone

Drop-off
node

Task
category

16 X234 AB1 y 2041 TIP 14671 LS_outward

5 X238 AB2 c 7060 TIP 14239 LS_outward

2 X233 AB3 c 12531 TIP 14670 LS_outward

7 X231 AB4 d 5445 TIP 14228 LS_outward

2 X244 AB5 TIP 14670 TIP 14670 LS_outward

23 X239 AB6 TIP 14141 b 5093 LS_inward

5 X252 AB7 y 9188 TIP 14627 LS_outward

21 X248 AB8 c 8118 r1 1535 WS_outward

7 X247 AB9 c 5863 r2 13256 Rehandling

11 X258 AB10 x 6534 x 7134 Rehandling

13 X265 AB11 c 5128 c 14061 Rehandling

18 X282 AB12 b 9193 r1 203 WS_outward

16 X269 AB13 c 2597 TIP 14765 LS_outward

20 X278 AB14 b 12242 r1 4178 WS_outward

6 X287 AB15 TIP 14763 c 5428 LS_inward

1 X286 AB16 b 5107 TIP 14621 LS_outward

18 X297 AB17 c 2151 r1 1538 WS_outward

20 X299 AB18 c 2587 r1 203 WS_outward

19 X306 AB19 c 6468 r1 1538 WS_outward

2 X312 AB20 TIP 14766 c 5421 LS_inward

15 X302 AB21 b 12555 b 10658 Rehandling

11 X295 AB22 b 11504 b 10658 Rehandling

16 X300 AB23 c 12521 c 2151 Rehandling

1 X313 AB24 c 2161 c 2161 Rehandling

18 X310 AB25 b 7652 r1 502 WS_outward

20 X314 AB26 c 1085 r1 1085 WS_outward

21 X311 AB27 b 5554 r1 502 WS_outward

15 X317 AB28 b 7656 TIP 14756 LS_outward

11 X318 AB29 b 10658 b 10543 Rehandling

23 X315 AB30 b 11104 r1 282 WS_outward

15 X329 AB31 b 7201 TIP 14763 LS_outward

7 X323 AB32 b 12555 TIP 14761 LS_outward

6 X333 AB33 c 12521 TIP 14759 LS_outward

10 X328 AB34 TIP 14441 r1 1920 WS_outward

7.4. Experiments with the proposed STAMC approach

Simulations were done in two stages in order to show two key aspects of the

STAMC approach in a large-scale outdoor material handling problem. The proposed

STAMC approach was tested with a number of cases with different vehicle–task

combinations in these stages. Meta-heuristic and evolutionary algorithms of SA, AA,

ACO and commonly used two dispatching rules namely, First-Come-First-Serve

(FCFS rule) and Closest-One-First (COF rule) were used in the simulations. The

153

given task order was considered as task allocation sequence for the straddle carriers in

the two dispatching rules. This is given in the second column of the Table 7-1. The

best possible straddle carrier was selected based on the availably for the given task of

the sequence. In the case of the FCFS rule, a straddle carrier which could reach the

pick-up location of the task first (earliest reach time) was awarded the task. In the

COF rule, the straddle carrier which is closest to the next task pick-up position is

given the job. Here each straddle carrier looked for the closest available next task

once it finished a task. All simulations were done in MATLAB environment with the

software and hardware configurations being same as in the specifications given in

Table 4-12 and Table 4-13.

7.4.1 The First Simulation Study

In the first simulation, the proposed approach was used alongside the

previously discussed task allocation approaches, AA, ACO, SA, FCFS rule and COF

rule. Tasks in the case study were selected from the schedules prepared with the

existing system of the terminal for an eight-hour shift. A section of these schedules is

shown in Table 7-1. The original schedule for eight-hour shift was divided into

different segments as sub problems on an hourly basis. Later, these sub problems were

solved separately on an hourly basis. Then, these problems were scheduled by the

STAMC approach with different task allocation methods. During these experiments, it

was possible to identify variations of the results from different task allocation

approaches (makespans in these experiments)and straddle carrier utilisations, task

distribution among the straddle carriers and variation of computational times for each

method.

The scale of the scheduling problem (Number of vehicles – number of tasks

combination) was different from hour to hour due to the availability of tasks in the

respective time intervals. The AA, ACO, SA based STAMC approaches were run on a

fixed number of iterations (each iteration generates a complete schedule for a

scheduling problem) and of them the best schedules were selected as solutions.

However, when dispatching rules were used schedules were selected from the first

iteration itself since solution quality does not depend on the number of iterations. The

results of these experiments are given in Table 7-2 and Figure 7-5.

154

Table 7-2: The makespan and computational cost of the first scenario

Time
interval

Problem Makespan (stu) Computation time (seconds)
AA ACO SA FCFS rule COF rule AA ACO SA FCFS rule COF rule

1st hour 19V-34T 93 127 118 122 127 8616 3697 11926 326 3224

2nd hour 19V-33T 93 115 116 121 117 8194 3163 13901 312 6423

3rd hour 19V-68T 133 220 154 164 216 16984 28765 31949 644 18339

4th hour 19V-68T 130 217 142 162 165 16152 28812 33058 663 30392

5th hour 19V-63T 134 163 149 159 172 13880 16696 30882 523 38263

6th hour 19V-57T 146 166 161 171 163 14036 16581 34542 529 46409

7th hour 19V-34T 91 126 117 121 140 9488 6219 25503 375 50745

8th hour 19V-34T 93 130 117 124 125 9463 6052 26915 373 54962

Figure 7-5: Results of the 1st simulation

The results of the first set of experiments show that AA out-performed all the

other task allocation algorithms and dispatch rules as shown in Table 7-2 and Figure

7-5. In four scheduling sub-problems (1st, 2nd 7th and 8th hour schedules),the SA

algorithm shows second best results. The third best solutions were generated by ACO

algorithm except in two cases (3rd and 4th).Between the two dispatching rules, FCFS

shows better results than the COF rule in all the cases. With respect to computational

time, the FCFS approach shows the least, while the SA algorithm shows significantly

more computation time than the others do. However, AA shows considerably less

computational time than the meta-heuristics approaches.

0

50

100

150

200

250

19V-34T 19V-33T 19V-68T 19V-68T 19V-63T 19V-57T 19V-34T 19V-34T

1st hour 2nd hour 3rd hour 4th hour 5th hour 6th hour 7th hour 8th hour

250

Makespan (stu) AA Makespan (stu) ACO

Makespan (stu) SA Makespan (stu) DR_FCFS

Makespan (stu) DR_COF

155

Gantt chart representations of the best schedules generated by AA, SA, ACO,

FCFS rule and COF rule for the 2nd(19V-33T), 4th(19V-68T) and 6th(19V-57T) hour

scheduling problems are given from Figure 7-6 to Figure 7-18.

Figure 7-6: Gantt chart of the 2nd hour schedule based on the AA

Figure 7-7: Gantt chart of the 2nd hour schedule based on the SA algorithm

156

Figure 7-8: Gantt chart of the 2nd hour schedule based on the ACOalgorithm

Figure 7-9: Gantt chart of the 2nd hour schedule based on FCFS rule

157

Figure 7-10: Gantt chart of the 2nd hour schedule based on COF rule

Among the Gantt charts, the AA showed the best makespan value of 93 (stu).

Even the task distribution among the vehicles from AA was better than that of the

other algorithms and dispatch rules.

Figure 7-11: Gantt chart of the 4th hour schedule based on the AA

158

Figure 7-12: Gantt chart of the 4th hour schedule based on the SA algorithm

Figure 7-13: Gantt chart of the 4th hour schedule based on the ACO algorithm

159

Figure 7-14: Gantt chart of the 4th hour schedule based on COF rule

Figure 7-15: Gantt chart of the 4th hour schedule based on FCFS rule

In the 4th hour schedule, the AA gave the shortest makespan out of the five

approaches and the task distribution among the vehicles was better than that of the

others.

160

Figure 7-16: Gantt chart of the 6th hour schedule based on the AA

Figure 7-17: Gantt chart of the 6th hour schedule based on the SA algorithm

161

Figure 7-18: Gantt chart of the 6th hour schedule based on the ACO algorithm

Figure 7-19: Gantt chart of the 6th hour schedule based on COF rule

162

Figure 7-20: Gantt chart of the 6th hour schedule based on FCFS rule

In the 6th hour schedule, The AA out-performed all the other approaches in

giving a better makespan.

Of all the schedules, AA usually out-performed the two meta-heuristics and

dispatching rules. As far as computational times were concerned, AA was able to

generate better results with less computational cost than two meta-heuristics.

Furthermore, the FCFS rule generated the schedules within a lesser time than all the

other approaches and the results it generated with this computation time were

reasonable to acceptable.

However, there is always a trade-off between the quality of the solution and

the computational time spent to generate solutions. It was possible to improve the

solution quality if more time was spent for search. As previously highlighted, if this

were tested in the distributed architecture discussed in Chapter 6, he computational

times could be cut down considerably.

7.4.2 Second Simulation Study

In the second simulation study, the schedule of the eight-hour period was

performed using two dispatching rules while maintaining the task priority list intact.

The schedules from these two dispatching rules were represented in Gantt charts

(Figure 7-21 and Figure 7-22). The main objective of this simulation was to

investigate the behaviour of the proposed approach in a large scale problem setting.

163

Of the two dispatching rules, as in the other problem scenarios, the FCFS rule again

outperformed the COF rule. The makespan of the FCFS rule was nearly half of the

makespan of the COF rule. Further, the task distribution among the vehicles also

showed that the FCFS rule gives better results than the COF rule since most of the

vehicles had the same number of tasks to perform and all the vehicles were going to

finish their respective tasks at approximately the same time. The AA and the other

two meta-heuristic approaches could not be tested in this problem scenario due to the

excessive computational times required to generate the results.

Figure 7-21: Gantt chart of overall schedule for 8 hours based on FCFS rule

164

Figure 7-22: Gantt chart of overall schedule for 8 hours based on COF rule

7.5 Discussion

Based on the case studies done with different problem scenarios, it can be

admitted that the STAMC approach can be used even for large scale outdoor material

handling environments. Furthermore, the AA-based results show that the solution

quality can be improved by sacrificing the computational time. However, this burden

can be improved by adopting the distributed architecture presented in Chapter 6. The

hardware platform used for the simulation studies in Chapter 6 has some limitations.

In the distributed computational architecture, each workstation was allocated for path

and motion planning of a straddle carrier. Because the number of workstations

available is less than the number of straddle carriers in the case studies in Chapter 7

testing on this platform was not possible in this case.

Once the scale of the map (number of nodes and number of connections)

increases, the computation time increases drastically. This is mainly caused by the

path planning component in the STAMC approach. The Dijkstra algorithm is used in

the SiPaMoP algorithm for collision-free path planning in the STAMC approach. The

Dijkstra algorithm searches all the available nodes when it generates a path in the

network of the map. Therefore it is very time consuming. In order to overcome this

problem, other comparatively faster path planning algorithms such as A*can be used

165

with the SiPaMoP algorithm in the proposed STAMC approach. Since A* is based on

heuristic information and does not search all the nodes in the map it helps to reduce

the computational time considerably. However, the collision-avoidance mechanism

consumes a reasonable time out of the overall time taken to plan one path since it

looks for possible collisions at each node of the selected path. Furthermore, all these

simulations were done in a MATLAB software environment, which is quite slow

compared to other programming software such as C/C++.

In these case studies, the proposed STAMC approach could not be compared

with the currently used scheduling method in the terminal due to numerous reasons.

One main reason is that many of the features and constraints in the terminal could not

be incorporated into the problem scenarios due to the restrictions imposed on the

information of the terminal. Some features are hard to model in the problem due to the

complexity. Furthermore, for some situations in the terminal, human intervention is

still being used.

166

Chapter 8

8.Conclusion

8.1. Introduction

This thesis presented a novel approach to the complex multiple autonomous

vehicle task allocation and motion coordination problem. The rest of this chapter

presents the summary of contributions, methodologies and techniques proposed,

limitations of the proposed approaches and future extensions of this research.

The main objective of this research was to develop a novel approach to solve

the complex multiple autonomous vehicle task allocation and motion coordination

problem, which is categorized as NP-hard in mathematical terms. As stated in Chapter

2, this problem is an important problem in many material-handling environments.

This aspect has been highlighted in a number of research papers and reviews Qiu et.

al., (2002), Vis and Harika (2004), and Vis (2006).There is a scarcity of approaches

which solve the integrated problem of scheduling and routing for a large fleet of

autonomous vehicles in complex and dynamic material-handling environments.

A novel STMAC approach was developed to solve the multi-vehicle task

allocation and motion coordination problem in this research. This approach was then

extensively investigated in two scenarios: static task allocation and dynamic task

allocation. Meta-heuristic and evolutionary techniques were tested for task allocation

in the STMAC approach. A new collision-free pathfinder, the SiPaMoP algorithm,

was developed for simultaneous path planning and motion coordination in the

STAMC approach. A number of simulation studies were conducted to test and

validate the proposed STAMC approach along with different task allocation

mechanisms. Furthermore, the proposed STAMC approach was tested with widely

used dispatching rules.

The STAMC approach was first implemented in centralized computational

architecture and then in distributed architecture in order to reduce the computational

time. Simulation studies were performed on the distributed architecture with different

task allocation problem settings in a computer cluster environment. Finally, the

STAMC approach was tested in a large-scale material handling environment, an

167

automated container terminal where all the container movements were done by the

autonomous straddle carriers.

8.2. Research Outcomes

The research outcomes achieved include:

(1) Simultaneous task allocation and motion coordination approach

This is a novel approach that integrates the three main components of autonomous

vehicle scheduling and planning in material handling: task allocation, path

planning and collision avoidance in constraint environment with bi-directional

path topology. Itcan be used with meta-heuristic algorithms such as SA and ACO

and with AA to generate near–optimal solutions. Furthermore, this approach can

be used with general dispatching rules such as FCFS and COF. The results of the

simulation and case studies reveal that the STAMC approach can be used to solve

the task allocation and motion coordination problem of a large fleet of

autonomous vehicles deployed in a constraint environment with bi-directional

path topology.

(2) Simultaneous path and motion coordination algorithm

In order to coordinate the motion (path planning and collision/deadlock

avoidance) of a large fleet of autonomous vehicles in the multiple vehicle task

allocation and motion coordination problem, a novel simultaneous path and

motion coordination algorithm (SiPaMoP) was developed. The Dijkstra algorithm

was used for small-scale maps and the A* algorithm was used for large maps for

the shortest path search. The connection weights were changed dynamically based

on traffic condition in order to avoid collision and deadlock among the

autonomous vehicles.

(3) Dynamic task allocation and motion coordination with re-planning strategy

The STAMC approach was extended and evaluated in a dynamic task allocation

scenario where new tasks arrive at different times. In order to accommodate new

tasks, ,the STAMC approach was applied at fixed time intervals thereby

previously assigned yet not started tasks are reassigned along with newly arrived

tasks. Furthermore, the STAMC approach uses meta-heuristic techniques to

168

improve the quality of the schedule considerably. This approach was further

experimented in situations where re-planning was essential due to unexpected

events such as vehicle breakdowns and path blockages.

(4) Distributed computational architecture for the STAMC approach

The STAMC approach was implemented in a distributed architecture using high

performance computer cluster in order to reduce the high computational time. This

implementation was tested with case studies; results showed that the

computational time could be considerably reduced by adopting this architecture.

Finally, the STAMC approach was tested with a fully automated container

terminal’s simulation model, in order to investigate its applicability to large-scale

material handling problems. Overall results show that the proposed approach can

be used in large-scale automated material handling environments to improve

efficiency.

8.3. Limitations and Future Opportunities for Research

Previously stated outcomes were achieved with some limitations. Areas for further

improvement are presented below.

x Planning and motion coordination under uncertainty and with incomplete

information. The travelling times were calculated in this research

deterministically. However, travelling times cannot be predicted very

accurately due to numerous unforeseen circumstances in a real world

environment. It would be better to accommodate uncertainty in the STAMC

approach.

x In order to cater to quay cranes and yard cranes efficiently in container

terminal queues of vehicles can be maintained. This can be further streamlined

by queuing techniques. Thus, the real systems can be modelled in a more

realistic way, and accurate and just in time delivery / pick up mechanisms can

be developed.

x The autonomous operations of the vehicles was beyond the scope of this

research. However, this is an interesting area for investigation since most of

169

the processes in supply chain management are rapidly being automated with

the help of information technology.

x It will be worthwhile to investigate effective approaches and algorithms for

multi-objective optimisation based task allocation and motion coordination.

x The distributed/parallel architecture can be further extended to a large fleet of

autonomous vehicles.

x Incremental path planning

The paths were planned for the whole journey from pick-up node to finish

node at once by considering possible collisions. This increases the overall

computation time considerably and sometimes it is not worth doing in

situations where re-planning situations arise. However, if path planning is

done in an incremental mode, computational time taken to find a collision-free

path can be reduced.

170

REFERENCES

Achuthan, N. R., Caccetta, L. & Hill, S. P. (1997) ‘On the vehicle routing problem’

Nonlinear Analysis, 30, 4277-4288.

Aguilar, L., Alami, S., Fleury, S., Herrb, M., Ingrand, F. & Robert, F. (1995) ‘Ten

autonomous mobile robots (and even more) in a route network like

environment’ Proceedings of the IEEE Conference on Robotics and

Automation, 260 - 267.

Asef-Vaziri, A. &Laporte, G. (2005) ‘Loop based facility planning and material

handling’ European Journal of Operational Research, 164, Issue 1, 1-11.

Bagchi, T. P. (1999) Multi objective scheduling by Genetic Algorithm Kluwer

Academic, Boston.

Baker, B. M. &Ayechew, M. A. (2003) ‘A genetic algorithm for the vehicle routing

problem’ Computers & Operations Research, 30, 787-800.

Baldomero, J. F. (2001) ‘Message Passing under MATLAB.’ Paper presented at the

Advanced Simulation Technologies Conference,SeattleWashington, 2001.

Barbarosoglu, G. &OzguR, D. (1999) ‘A tabu search algorithm for the vehicle routing

problem.’ Computers & Operations Research, 26, 255-270.

Bertsekas, D. P. (1978) Auction Algorithms, http://citeseer.nj.nec.com/374581.html

Bertsekas, D. P. (1979) ‘A distributed algorithm for the assignment problem.’

Laboratory for Information and Decision Systems working paper,

Massachusetts Institute of Technology.

Bertsekas, D. P. (1986) ‘Distributed relaxation methods for linear network flow

problems.’ Proceedings of the 25th IEEE Conference on Decision and

Control, 1986, 2101-2106.

Bertsekas, D. P. (1991) ‘The auction algorithm for shortest paths.’ SIAM Journal on

Optimization, 1, 425-447.

Bertsekas, D. P. &Castanon, D. A. (1989) ‘The auction algorithm for transportation

problems.’ Annals of Operations Research, 20, 67-96.

Bianchi, L. (2000) ‘Notes on dynamic vehicle routing - the state of the art.’

Proceedings of ANTS 2000 From Ant Colonies to Artificial Ants: Second

International Workshop on Ant Algorithms,59-62.

171

Bish, E. K., Chen , F. Y., Leong, Y. T., Nelson, B. L., Ng, J. W. C. &Simchi-Levi, D.

(2005) ‘Dispatching vehicles in a mega container terminal.’ OR Spectrum 27,

Number 4, 491 - 506

Bish, E. K., Yin, T., Li, L. C. L., Ng, J. W. C. &Simchi-Levi, D. (2001) ‘Analysis of a

new vehicle scheduling and location problem.’ Naval Research Logistics, 48,

363-385.

Bose, J., Reiners, T., Steenken, D. &Voß, S. (2000) ‘Vehicle dispatching at seaport

container terminals using evolutionary algorithms.’ In Sprague, R. H. (ed),

Proceedings of the 33rd Annual Hawaii International Conference on System

Sciences, IEEE Piscataway,2000, DTM-IT, 1-10.

Briskorn, D., Drexl, A. & Hartmann, S. (2006) ‘Inventory-based dispatching of

automated guided vehicles on container terminals.’ OR Spectrum, 28,611-630.

Bullnheimer, B., Hartl, R. F. & Strauss, C. (1998), ‘Applying the ant system to the

vehicle routing problem.’ In Voß, S., Martello, S., Osman, I. and Roucairol, C.

(eds) Meta-heuristics: advances and trends in local search paradigms for

optimization, Kluwer, Boston.

Buriol LS, Ressende MGC, Thorup, M (2003) Speeding up Dynamic Shortest Path

Algorithms. At&T Labs Research Technical Report TD-5RJ8B

Cargonews (2006) February 2006. http://www.worldcargonews.com/

Chabini, I., (1997),“A new algorithm for shortest paths in discrete dynamic

Networks”, “8th IFAC/IFIP/IFORS Symposium on Transportation systems, Tech

Univ Crete, Greece, 16-18 June 1997

Chabini, I. (1998), “Discrete dynamic shortest path problems in transportation

Applications”, Transportation Research Record 1645, 1998

Chen, L., Bostel, N., Dejax, P., Cai, J. & Xi, L. (2007) ‘A tabu search algorithm for

the integrated scheduling problem of container handling systems in a maritime

terminal.’ European Journal of Operational Research, 181, 40-58.

Choi, I.-C., Kim, S.-I. & Kim, H.-S. (2003) ‘A genetic algorithm with a mixed region

search for the asymmetric travelling salesman problem.’ Computers &

Operations Research, 30, 773-786.

Colorni, A., Dorigo, M. &Maniezzo, V. (1991) ‘Distributed optimization by ant

colonies.’ Proceedings of the First European Conference on Artificial Life

(ECAL 91), 1991, 134-142.

172

Corréa, A. I., Langevin, A. & Rousseau, L.-M. (2007) ‘Scheduling and routing of

automated guided vehicles: a hybrid approach.’ International Journal on

Computers & Operations Research, Volume 34, 1688-1707.

Corréa , A. I., Langevin, A. & Rousseau, L. M. (2004) ‘Dispatching and conflict-free

routing of automated guided vehicles: a hybrid approach.’ Combining

Constraint Programming and Mixed Integer Programming Lecture, Lecture

Notes in Computer Science, 3011 / 2004, 370 - 379

Czarnas, Z. J. C. A. P. (2002) ‘Parallel simulated annealing for the vehicle routing

problem with time windows.’ Proceedings of the 10th Euromicro Workshop

on Parallel, Distributed and Network-based Processing, Canary Islands,

Spain,2002, 376-383.

Das, S. K. &Spasovic, L. (2004) ‘Scheduling material handling vehicles in a container

terminal”,Production Planning & Control 14, Number 7, 623 - 633.

Desaulniers, G., Langevin, A., Riopel, D. & Villeneuve, B. (2003) ‘Dispatching and

conflict-free routing of automated guided vehicles: an exact approach”,

International Journal of Flexible Manufacturing Systems, 15, Number 4, 309 -

331

Dijkstra, E. (1959). “A note on two problems in connexion with

graphs”, NumerischeMathematik, 1 (1), 269-271 DOI: 10.1007/BF01386390

Dhouib, K. &Kadi, D. A. (1994) ‘Expert system for AGV managing in bidirectional

networks: KADS methodology based approach.’ International Journal of

Production Economics, 33, 31-43.

Dorigo, M. (1992) ‘Optimization, learning and natural algorithms’ (translated from

the Italian). Unpublished doctoral dissertation, Politecnico di Milano,

Dipartimento di Elettronica, Milan, Italy.

Dorigo, M. & Gambardella, L. M. (1997) ‘Ant Colony system: a cooperative learning

approach to the travelling salesman problem.’ IEEE Transactions on

Evolutionary Computation, 1(1), 53-66.

Dorigo, M., Maniezzo, V. &Colorni, A. (1991) ‘Positive feedback as a search

strategy.’ Tech. Rep. 91-016, Politecnico di Milano, Dipartimento di

Elettronica, Milan, Italy.

Dorigo, M., Maniezzo, V. &Colorni, A. (1996) ‘The ant system: optimization by a

colony of cooperating agents.’ IEEE Transactions on Systems, Man, and

Cybernetics, 26(1), 29-42.

173

Evers, J. J. M. &Koppers, S. A. J. (1996) ‘Automated guided vehicle traffic control at

a container terminal.’ Transportation Research-A, 30, 21-34.

Ferguson, D. &Stentz, A. (2005), “The Delayed D* algorithm for efficient path

Replanning”, Proceedings of the 2005 IEEE International Conference on

Robotics and AutomationBarcelona, Spain, 2057-2062

Fu, L. &Rilett, L.R. (1996) ‘Expected shortest paths in dynamic andstochastic traffic

networks’, Transportation Research, Part B:Methodological, vol. 32, no. 7, pp.

499-516

Gamberi, M., Manzini, R. &Regattieri, A. (2008) ‘A new approach for the automatic

analysis and control of material handling systems: integrated layout flow

analysis (ILFA).’ International Journal of Advancements of Manufcturing

Technologies, DOI 10.1007/s00170-008-1466-9.

Glover, F. (1989) ‘Tabu search - part I.’ ORSA Journal on Computing, 1, 190-206.

Goasguen, S. http://falcon.ecn.purdue.edu:8080/cluster

Grossman, D.D. (1998) ‘Traffic control of multiple robot vehicles.’ IEEE Journal of

Robotics and Automation,Vol 4, 491-497.

Grunow , M., Günther, H. & Lehmann, M. (2004) ‘Dispatching multi-load AGVs in

highly automated seaport container terminals.’ OR Spectrum 26, Number 2,

211 - 235

Grunow, M., Günther, H. O. & Lehmann, M. (2006) ‘Strategies for dispatching AGVs

at automated seaport container terminals.’ OR Spectrum, 28, 587-610.

Hartmann, S. (2004) ‘General framework for scheduling equipment and manpower at

container terminals.’ OR Spectrum, 51 - 74

Henesey, L., Wernstedt, F. &Davidsson, P. (2003) ‘Market-driven control in container

terminal management.’ Proceedings of the 2nd International Conference on

Computer Applications and Information Technology in the Maritime

Industries, 2003.

Ho, Y. C. & Liu, H. C. (2006) ‘A simulation study on the performance of pickup-

dispatching rules for multiple-load AGVs’. Computers & Industrial

Engineering, 51, 445-463.

Holland, J. H. (1975) Adaptation in natural and artificial systems.University of

Michigan Press, Ann Arbor.

174

Husdal, J., 2000, “An investigation into fastest path problems in dynamic

transportation networks”, Unpublished, coursework for the MSc in GIS,

University of Leicester.

Kennedy, J. &Eberhart, R. (1995) Particle swarm optimization,

http://ieeexplore.ieee.org

Kim, K. H. & Gunther, H.-O. (eds) (2007) Container terminals and cargo systems:

design, operations management and logistic control issues. Springer, Berlin /

HeidelbergNew York.

Kim, K. H., Jeon, S. M. &Ryu, K. R. (2006) ‘Deadlock prevention for automated

guided vehicles in automated container terminals.’ OR Spectrum, 28, Number

4, 659-679.

Kim, K. H., Kang, J. S. &Ryu , K. R. (2004) ‘A beam search algorithm for the load

sequencing of outbound containers in port container terminals.’ OR Spectrum,

26, Number 1, 93 - 116

Kim, K. H. & Kim, K. Y. (1999) ‘Routing straddle carriers for the loading operation

of containers using a beam search algorithm.’ Computers & Industrial

Engineering, 36, Issue 1, 109-136.

Kim, K. H. & Moon, K. C. (2003) ‘Berth scheduling by simulated annealing.’

Transportation Research Part B: Methodological, 37, 541-560.

Kim, K. H., Won, S. H., Lim, J. K. & Takahashi, T. (2004b) ‘An architectural design

of control software for automated container terminals.’ Computers &

Industrial Engineering, 46, 741-754.

Kim, K. Y. & Kim, K. H. (2003) ‘Heuristic algorithms for routing yard-side

equipment for minimizing loading times in container terminals.’ Naval

Research Logistics, 50, 498-514.

Kirkpatrick , S., Gelatt, C. D. &Vecchi, M. P. (1983) ‘Optimization by simulated

annealing.’ Science, 671--680.

Koo, P. H., Lee, W. S. & Jang, D. W. (2004) ‘Fleet sizing and vehicle routing for

container transportation in a static environment.’ OR Spectrum, 26, Number 2,

193 - 209

Kulatunga, A. K., Liu, D. K., Dissanayake, G. &Siyambalapitiya, S. B. (2006) ‘Ant

colony optimization technique for simultaneous task allocation and path

planning of autonomous vehicles.’ Proceedings of the IEEE International

175

Conference on Cybernetics and Intelligent Systems (CIS), 7-9 June, 2006,

Bangkok, Thailand, 823-828

Kulatunga, A. K., Skinner, B. T., Liu, D. K. & Nguyen, H. T. (2007) ‘Simultaneous

task allocation and motion coordination of autonomous vehicles using a

parallel computing cluster.’ Robotic Welding, Intelligence and Automation.

362/2007, pp 409-420, Springer, Berlin/Heidelberg

Langevin, A., Lauzon, D. &Riopel, D. (1996) ‘Dispatching, routing, and scheduling

of two automated guided vehicles in a flexible manufacturing system.’

International Journal of Flexible Manufacturing Systems, 8, Number 3, 247 -

262

Lau, H. C., Sim, M. &Teo, K. M. (2003) ‘Vehicle routing problem with time

windows and a limited number of vehicles.’ European Journal of Operational

Research, 148, 559-569.

Lau, H. Y. K., Wong, V. W. K. & Lee, I. S. K. (2007) ‘Immunity-based autonomous

guided vehicles control.’ Applied Soft Computing, 7, 41-57.

Lau, H. Y. K. & Zhao, Y. (2008) ‘Integrated scheduling of handling equipment at

automated container terminals.’ International Journal of Production

Economics, 112, 665-682.

Le-Anh, T. & De Koster, M. B. M. (2005) ‘On-line dispatching rules for vehicle-

based internal transport systems.’ International Journal of Production

Research, 43, Number 8 / April 15, 2005 1711 - 1728

Le-Anh , T. & De Koster, M. B. M. (2006) ‘A review of design and control of

automated guided vehicle systems.’ European Journal of Operational

Research, 171 (2006), 1–23.

Leong, C. Y. (2001) ‘Simulation study of dynamic AGV-container job deployment

scheme.’ Master’s thesis, National University of Singapore.

Li, J.-Q., Mirchandani, P. B. &Borenstein, D. (2008) ‘Real-time vehicle rerouting

problems with time windows.’ European Journal of Operational Research,

due for publication 2008.

Lim, J. K., Kim, K. H., Yoshimoto, K., Lee, J. H. & Takahashi, T. (2003) ‘A

dispatching method for automated guided vehicles by using a bidding

concept.’ OR Spectrum, 25, 25-44.

176

Liu, C. I., Jula, H., Vukadinovic, K. &Ioannou, P. (2004a) ‘Automated guided vehicle

system for two container yard layouts.’ Transportation Research Part C:

Emerging Technologies, 12, Issue 5, 349-368.

Liu, C. I., Jula, H., Vukadinovic, K. &Ioannou, P. (2004b) ‘Automated guided vehicle

system for two container yard layouts.’ Transportation Research Part C:

Emerging Technologies, 12, 349-368.

Liu, D. K., Wu, X., Kulatunga, A. K. & Dissanayake, G. (2006) ‘Motion coordination

of multiple autonomous vehicles in dynamic and strictly constrained

environments.’ Proceedings of the IEEE International Conference on

Cybernetics and Intelligent Systems (CIS), 7-9 June, 2006, Bangkok, Thailand,

204-209.

Liu, D. K. &Kulatunga, A. K. (2007) ‘Simultaneous Planning and Scheduling for

Multi-Autonomous Vehicles’, in Dahal, K., Tan, K.C. and Burke, E. (eds)

Evolutionary Scheduling, Studies in Computational Intelligence, Volume

49/2007, 437-464, Springer, Berlin/Heidelberg.

Liu, F.-H. F. &Shen, S.-Y. (1999) ‘An overview of a heuristic for vehicle routing

problem with time windows.’ Computers & Industrial Engineering, 37, 331-

334.

Matson, J. O. & White, J. A. (1982) Operational research and material handling.

European Journal of Operational Research, 11, 309-318.

Maza, S. &Castagna, P. (2005) ‘A performance-based structural policy for conflict-

free routing of bi-directional automated guided vehicles.’ Computers in

Industry, 56, 719-733.

Meersmans, P. J. M. (2002) Optimization of container handling systems,

https://ep.eur.nl/handle/1765/1855.

Meersmans, P. J. M., &Wagelmans, A. P. M. (2001) Dynamic scheduling of handling

equipment at automated container terminals, Technical Report EI 2001-33,

Erasmus University Rotterdam, Econometric Institute,

http://www.eur.nl/WebDOC/doc/econometrie/feweco20011128140514.pdf.

Meersmans, P. J. M. D., R. (2001a) Operations research supports container handling

http://hdl.handle.net/1765/1689

Meersmans, P. J. M. &Wagelmans, A. P. M. (2001b) Effective algorithms for

integrated scheduling of handling equipment at automated container terminals,

https://ep.eur.nl/handle/1765/95.

177

Melouk, S., Damodaran, P. & Chang, P.-Y. (2003) ‘Minimizing makespan for single

machine batch processing with non-identical job sizes using simulated

annealing.’ International Journal of Production Economics, corrected proof,

due for publication

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E.

(1953) ‘Equation of state calculation by fast computing machines.’ Journal of

Chemical Physics, 21, 1087-1091.

Mohring, R. H., Kohler, E., Gawrilow, E. &Stenzel, B. (1998) Conflict-free real-time

AGV routing. http:/citeseer.edu.

Moorthy, R. L., Hock-Guan, W., Ng, W.-C. & Chung-Piaw, T. (2003a) ‘Cyclic

deadlock prediction and avoidance for zone-controlled AGV system.

International Journal of Production Economics, 83, Issue 3, 309-324.

MPI.FORUM (2005) MPI-2: Extensions to the Message-Passing Interface. Message

Passing Interface Specification. November 15, 2003 ed., NSF and DARPA.

Narasimhan, A.&Palekar, U. S. (2002) ‘Analysis and algorithms for the transtainer

routing problem in container port operations.’ Transportation Science, 36(1),

63-78.

Narasimhan, R. &Batta, M. R. K., H. (1999) ‘Routing automated guided vehicles in

the presence of interruptions.’ International Journal of Production Research,

37 Issue 3, 653-682.

Nishi, T., Morinaka, S. &Konishi, M. (2007) ‘A distributed routing method for AGVs

under motion delay disturbance.’ Robotics and Computer-Integrated

Manufacturing, 23, 517-532.

Nishi, T., Sakata, A., Hasebe, S. & Hashimoto, I. (2000) ‘Autonomous decentralized

scheduling system for just-in-time production.’ Computers & Chemical

Engineering, 24, 345-351.

Oboth, C. &Batta, R. K., M (1999) ‘Dynamic conflict-free routing of automated

guided vehicles.’ International Journal of Production Research, 37 Issue 9,

2003-2031.

Ochi, L. S., Vianna, D. S., Drummond, L. M. A. & Victor, A. O. (1998) ‘A parallel

evolutionary algorithm for the vehicle routing problem with heterogeneous

fleet.’ Future Generation Computer Systems, 14, 285-292.

178

Paul, G. & Liu, D. K. (2006) ‘Replanning of Multiple Autonomous Vehicles in

Material Handling.’ Proceedings of the IEEE International Conference on

Cybernetics and Intelligent Systems (CIS), 7-9 June, 2006, Bangkok, Thailand

Patrick_Corporation_Website (2007)

http://www.patrick.com.au/IRM/Content/default.aspx

Philippsen, R. &Siegwart, R. (2005), “An interpolated dynamic navigationfunction”,

Proceedings of the 2005 IEEE International Conference onRobotics and

Automation Barcelona, Spain, April 2005, 3793-3800

Qin, Y. , Sun, D., Li, N. & Cen, Y. (2004), “Path planning for mobile robot usingthe

particle swarm optimization with mutation Operator”, Proceedingsof 2004

International Conference on Machine Learning and Cybernetics,2004,

Volume: 4, 26-29 Aug. 2004, 2473 – 2478

Qingcheng, Z. &Zhongzhen, Y. (2008) ‘Integrating simulation and optimization to

schedule loading operations in container terminals.’ Computers & Operations

Research, doi:10.1016/j.cor.2008.06.010.

Qiu, L. Hsu, W. J., Huang, S. Y. & Wang, H. (2002) ‘Scheduling and routing

algorithms for AGVs: a survey.’ International Journal of Production

Research, 40, Number 3, 745 - 760

Qiu, L. & Hsu, W. J. (2001) ‘Scheduling of AGVs in a mesh-like path topology: a

case study in a container terminal.’ Technical Report CAIS-TR-01-35,Nanyang

Technological University, School of Computer Engineering, Centre for

Advanced Information Systems.

Renaud, J., Laporte, G. &Boctor, F. F. (1996) ‘A tabu search heuristic for the multi-

depot vehicle routing problem.’ Computers & Operations Research, 23, 229-

235.

Sadeh, N. M. (1996) ‘Focused simulated annealing search: an application to job shop

scheduling.’ Annals of Operations Research, 63(1996), 77-103.

Sarker, B. R. &Gurav, S. S. (2005) ‘Route planning for automated guided vehicles in

a manufacturing facility.’ International Journal of Production Research 43,

Number 21, 4659 – 4683.

Seifert, R. W. K. & M. G. Wilson, J. R. (1998) ‘Evaluation of AGV routing strategies

using hierarchical simulation.’ International Journal of Production Research

2003 - 2030.

179

Seo, Y., Lee, C. & Moon, C. (2007) ‘Tabu search algorithm for flexible flow path

design of unidirectional automated-guided vehicle systems.’ OR Spectrum, 29,

471-487.

Shintani, K., Imai, A., Nishimura, E. & Papadimitriou, S. (2007) ‘The container

shipping network design problem with empty container repositioning.’

Transportation Research Part E: Logistics and Transportation Review, 43,

39-59.

Singh, S. P. &Tiwari, M. K. (2002) ‘Intelligent agent framework to determine the

optimal conflict-free path for an automated guided vehicles system.’

International journal of Production Research, Vol. 40, 4195-4223.

Solomon, M. M. (1987) ‘Algorithms for vehicle routing and scheduling problems

with time window constraints.’ Operations Research Letters, 35,(1987), 254-

265.

Stahlbock, R. &Voß, S. (2008) ‘Operation research at container terminals: a literature

update.’ OR Spectrum, 30, 1-52.

Steenken, D. (1992) ‘Fahrwegoptimierung am

ContainerterminalunterEchtzeitbedingungen.’ OR Spektrum, 14, 161-168.

Steenken, D., Henning, A., Freigang, S. &Voß, S. (1993) ‘Routing of straddle carriers

at a container terminal with the special aspect of internal moves.’ OR

Spektrum, 15, 167-172.

Stentz, A. (1994), “Optimal and efficient path planning for partially-

knownenvironments”, Proceedings of the IEEE International Conference on

Robotics and Automation, May 1994

Taghaboni-Dutta, F. &Tanchoco, J. M. (1995) ‘Comparison of dynamic routing

techniques for automated guided vehicle systems.’ International Journal of

Production Research. 33 Issue 10, 2653.

Taillard, E. D., Gambardella, L. M., Gendreau, M. &Potvin, J.-Y. (2001) ‘Adaptive

memory programming: a unified view of meta-heuristics.’ European Journal

of Operational Research, 135, 1-16.

Takeda, K., Tsuge, Y. &Matsuyama, H. (2000) ‘Decentralized scheduling algorithm

to improve the rate of production without increase of stocks of intermediates.’

Computers & Chemical Engineering, 24, 1619-1624.

180

Tan, K. C., Lee, L. H., Zhu, Q. L. &Ou, K. (2001) ‘Heuristic methods for vehicle

routing problem with time windows.’ Artificial Intelligence in Engineering,

15, 281-295.

Ulusoy, G., Sivrikaya-Serifoglu, F. & Bilge, U. (1997) ‘A genetic algorithm approach

to the simultaneous scheduling of machines and automated guided vehicles.’

Computers & Operations Research, 24, 335-351.

Van Der Heijden, M., Ebben , M., Gademann, N. & Van-Harten, A. (2002)

‘Scheduling vehicles in automated transportation systems: algorithms and case

study.’ OR Spectrum, 24, Number 1, 31 - 58

Vis, I. F. A. (2002) Planning and control concepts for material handling systems.

ERIM PhD. Series Research in Management 14, Erasmus University

Rotterdam, Netherlands. http://www.irisvis.nl/ivis/

Vis, I. F. A. &Koster, R. D. (2003) ‘Transshipment of containers at a container

terminal: an overview.’ European Journal of Operational Research 147(1), 1-

16

Vis, I. F. A. (2006) ‘Survey of research in the design and control of automated guided

vehicle systems.’ European Journal of Operational Research, available online

2 November 2004. http://www.irisvis.nl/ivis/

Wagner D, Willhalm T, Zaroliagis C (2003) Dynamic Shortest Paths Containers.

Theoretical Computer Science, 92. available online

http://www.elsevier.nl/locate/entcs/volume92.html

Wallace, A. (2001) ‘Application of AI to AGV control - agent control of AGVs.’

International Journal of Production Research, 39(4), 709-726

Wen-Chyuan Chiang, R. A. R. (1996) ‘Simulated annealing meta-heuristics for the

vehicle routing with time windows’. Annals of Operation Research, 63(1996),

3-27.

Zeng, J. & Hsu, W. J. (2008) ‘Conflict-free container routing in mesh yard layouts.’

Robotics and Autonomous Systems, 56, 451-460.

Zhan, F. B. ,Noon, C. E. (1996), “ Shortest Path Algorithms: An Evaluation using

Real Road”, Transportation Science vol. 32, no. 1, pp. 65-73

Zhang, C. Y., Li, P. G., Rao, Y. Q. & Guan, Z. L. (2008) ‘A very fast TS/SA

algorithm for the jobshop scheduling problem.’ International Journal of

Computers & Operations Research, 35, 282-294.

181

APPENDICES

Appendix 1

Pseudo code of SiPaMoP algorithm

Set pick-up node as labelled

Select adjacent node

Calculate arrival time (t) at adjacent node

If labelled or adjacent node occupied at time (t)

Update weight of labelled and adjacent node

Else

Relaxation

End

If all nodes scanned

If all nodes labelled

Register the shortest path with travelling time

Else

Select unlabelled node

Select adjacent node

End

End

182

Appendix 2

Pseudo code of Simulated Annealing Algorithm

Step 1: Generate an initial random or heuristic solution S.
Set an initial temperature T, and other cooling schedule parameters

Step 2: Choose randomly S’ є N(S) and compute ∆ = C (S') – C(S)

Step 3: If:
(i) S' is better than S(∆ < 0) , or
(ii) S' is worse than Sbut “accepted” by the randomization process at the

present temperature T, i.e. e(-∆/T) > θ, (where 0 < θ < 1 is a random
number).

Then replace S by S'.
Else Retain the current solution S.

Step 4: Update the temperature T depending on a set of rules, including:
(i) The cooling schedule used
(ii) Whether an improvement was obtained in Step 3 above,
(iii) Whether the neighborhood N(S) has been completely searched.

Step 5: If a “stopping test” is successful stop, else go to Step 2.

183

Appendix 3

Pseudo code of Ant Colony Algorithm

Initialize Data
While (not terminate) do

ConstructSolutions
LocalSearch
UpdateStatistics
UpdatePheromoneTrails

end-while
end-procedure

(Procedure to initialize the algorithm)

Procedure
InitializeData

ReadInstance
ComputeDistances
ComputeNearestNeighborLists
ComputeChoiceInformation
InitializeAnts
InitializeParameters
InitializeStatistics

end-procedure

Appendix 4

Pseudo code of Auction Algorithm

Generate task sequence

For i = 1 to total no. of tasks

Broadcast task to vehicles
For j = 1 to No. of vehicles

Calculate respective task completion times using SiPaMoP algorithm
Each vehicle bid for respective task

If all bids received
Select best vehicle for task

End

If all tasks allocated
Then

Display results
End

End
End

184

Appendix 5

Simulation 1

Variation of rescheduling intervals with tardiness, late tasks and tasks scheduled

Trail
number

Schedule interval Batch size Makespan Tardiness Late tasks

1 10 12 101.55 36.45 5
2 20 12 104.06 66.62 11
3 30 12 166.72 174.45 12
4 40 12 130.99 165.51 10
5 50 12 141.49 245.51 10
6 10 16 123.44 80.02 8
7 20 16 132.76 155.75 11
8 30 16 139.88 231.79 11
9 40 16 144.63 163.68 11
10 50 16 146.09 321.34 14
11 10 20 116.10 77.78 6
12 20 20 119.25 105.56 8
13 30 20 118.08 251.33 11
14 40 20 126.64 200.53 11
15 50 20 141.74 267.47 12
16 10 24 97.66 137.89 10
17 20 24 122.91 99.51 10
18 30 24 126.09 184.54 10
19 40 24 144.26 174.02 10
20 50 24 131.58 155.52 9

185

Simulation 2

Completion times and tardiness of tasks up to four reschedules using dispatch rule

Task
number

Task
priority
level

Scheduled
interval

Available
time (stu)

Expected
completion time (stu)

Completion
time (stu)

Tardiness
(stu)

1 Highest Start At start 20 9.02 0.00

2 Highest Start At start 20 6.35 0.00

3 Highest Start At start 20 12.39 0.00

4 Highest Start At start 20 9.42 0.00

5 Highest Start At start 20 15.65 0.00

6 Highest Start At start 20 23.40 3.40

7 Highest Start At start 20 4.57 0.00

8 Highest Start At start 20 20.38 0.38

9 Medium Start At start 40 44.74 4.74

10 Medium Start At start 40 48.94 8.94

11 Medium Start At start 40 20.36 0.00

12 Medium Start At start 40 31.62 0.00

13 Medium Start At start 40 21.36 0.00

14 Medium Start At start 40 40.52 0.52

15 Medium Start At start 40 35.90 0.00

16 Medium Start At start 40 32.13 0.00

17 Highest Start At start 60 55.49 0.00

18 Low Start At start 60 66.02 6.02

19 Low Start At start 60 82.08 22.08

20 Low Start At start 60 62.38 2.38

21 Low Start At start 60 55.01 0.00

22 Low Start At start 60 55.78 0.00

23 Low Start At start 60 65.89 5.89

24 Low Start At start 60 88.12 28.12

25 Low 1st 20 80 52.86 0.00

26 Medium 1st 20 60 35.19 0.00

27 Highest 1st 20 40 30.37 0.00

28 Low 1st 20 80 44.89 0.00

29 Low 2nd 40 100 66.93 0.00

30 Medium 2nd 40 80 46.54 0.00

31 Low 3rd 60 120 79.92 0.00

32 Medium 3rd 60 100 71.31 0.00

33 Highest 3rd 60 80 73.45 0.00

34 Low 3rd 60 120 83.77 0.00

35 Highest 3rd 60 80 76.97 0.00

36 Low 4th 80 140 89.64 0.00

37 Low 5th 100 160 107.97 0.00

38 Medium 5th 100 140 107.45 0.00

39 Highest 5th 100 120 111.12 0.00

Total tardiness 82.47

186

Completion times and tardiness of tasks up to four reschedules using AA

Task
number

Task
priority
level

Scheduled
interval

Available
time (stu)

Expected
Completion time (stu)

Completion
time (stu)

Tardiness
(stu)

1 Highest Start At start 20 11.64 0.00

2 Highest Start At start 20 6.35 0.00

3 Highest Start At start 20 25.24 0.00

4 Highest Start At start 20 17.06 0.00

5 Highest Start At start 20 33.27 3.27

6 Highest Start At start 20 11.05 0.00

7 Highest Start At start 20 4.57 0.00

8 Highest Start At start 20 11.86 0.00

9 Medium Start At start 40 57.97 0.00

10 Medium Start At start 40 29.99 0.00

11 Medium Start At start 40 62.71 2.71

12 Medium Start At start 40 8.48 0.00

13 Medium Start At start 40 22.59 0.00

14 Medium Start At start 40 38.83 0.00

15 Medium Start At start 40 55.07 0.00

16 Medium Start At start 40 52.34 0.00

17 Highest Start At start 60 87.23 0.00

18 Low Start At start 60 63.83 0.00

19 Low Start At start 60 35.64 0.00

20 Low Start At start 60 20.12 0.00

21 Low Start At start 60 42.65 0.00

22 Low Start At start 60 66.44 0.00

23 Low Start At start 60 72.65 0.00

24 Low Start At start 60 33.28 0.00

25 Low 1st 20 80 50.67 0.00

26 Medium 1st 20 60 44.86 0.00

27 Highest 1st 20 40 43.98 0.00

28 Low 1st 20 80 75.14 0.00

29 Low 2nd 40 100 106.99 6.99

30 Medium 2nd 40 80 48.33 0.00

31 Low 3rd 60 120 91.38 0.00

32 Medium 3rd 60 100 87.05 0.00

33 Highest 3rd 60 80 73.56 0.00

34 Low 3rd 60 120 83.41 0.00

35 Highest 3rd 60 80 83.46 3.46

36 Low 4th 80 140 96.11 0.00

37 Low 5th 100 160 134.56 0.00

38 Medium 5th 100 140 125.96 0.00

39 Highest 5th 100 120 121.61 1.61

Total Tardiness 5.98

187

Completion times and tardiness of tasks up to four reschedules using SA algorithm

Task
number

Task
priority
level

Scheduled
interval

Available
time (stu)

Expected
completion time (stu)

Completion
time (stu)

Tardiness
(stu)

1 Highest Start At start 20 7.03 0.00

2 Highest Start At start 20 8.48 0.00

3 Highest Start At start 20 10.77 0.00

4 Highest Start At start 20 15.03 0.00

5 Highest Start At start 20 17.82 0.00

6 Highest Start At start 20 21.41 1.41

7 Highest Start At start 20 9.56 0.00

8 Highest Start At start 20 18.76 0.00

9 Medium Start At start 40 27.23 0.00

10 Medium Start At start 40 29.43 0.00

11 Medium Start At start 40 24.28 0.00

12 Medium Start At start 40 41.44 1.44

13 Medium Start At start 40 34.15 0.00

14 Medium Start At start 40 35.39 0.00

15 Medium Start At start 40 41.39 1.39

16 Medium Start At start 40 40.22 0.22

17 Highest Start At start 60 54.38 0.00

18 Low Start At start 60 51.40 0.00

19 Low Start At start 60 71.33 11.33

20 Low Start At start 60 53.73 0.00

21 Low Start At start 60 51.12 0.00

22 Low Start At start 60 79.57 19.57

23 Low Start At start 60 64.10 4.10

24 Low Start At start 60 67.83 7.83

25 Low 1st 20 80 44.22 0.00

26 Medium 1st 20 60 45.01 0.00

27 Highest 1st 20 40 32.15 0.00

28 Low 1st 20 80 58.14 0.00

29 Low 2nd 40 100 66.11 0.00

30 Medium 2nd 40 80 49.86 0.00

31 Low 3rd 60 120 89.29 0.00

32 Medium 3rd 60 100 70.33 0.00

33 Highest 3rd 60 80 80.73 0.73

34 Low 3rd 60 120 83.97 0.00

35 Highest 3rd 60 80 77.03 0.00

36 Low 4th 80 140 90.23 0.00

37 Low 5th 100 160 0.00 0.00

38 Medium 5th 100 140 0.00 0.00

39 Highest 5th 100 120 0.00 0.00

Total Tardiness 48.01

188

Simulation 3

Planned from/To nodes information and assigned vehicles before the breakdown

Travel time between connections From node To node Task number Vehicle number
1.0 174 173 201 2
36.2 102 82 1 2
1.9 4 21 202 3
32.8 164 186 2 3
2.5 25 42 203 1
36.2 127 105 3 1
1.9 12 29 207 4
39.4 45 44 7 4
37.3 82 83 206 2
52.8 41 40 6 2
36.0 186 164 205 3
61.4 97 78 5 3
38.5 105 127 204 1
54.8 106 87 4 1
40.3 44 45 208 4
55.3 61 60 8 4

189

The travelling information of vehicle 1 before the breakdown instance of vehicle 4

Time between nodes From node To node Task number
2.50 25 42

Reach task 3

5.20 42 61

6.90 61 78

8.40 78 97

10.40 97 118

12.90 118 137

13.30 137 136

15.50 136 135

16.60 135 134

18.00 134 133

19.50 133 154

21.20 154 178

22.90 178 154

Perform task 3

24.40 154 133

26.80 133 132

27.80 132 131

29.10 131 130

30.40 130 129

31.64 129 128

33.78 128 127

36.18 127 105

38.51 105 127

Reach task 4

40.64 127 128

41.94 128 129

43.18 129 110

44.44 110 111

45.44 111 112

46.44 112 111

Perform task 4

47.74 111 110

49.04 110 129

50.31 129 109

52.47 109 108

53.77 108 106

54.77 106 87

190

The travelling information of vehicle 2 before the breakdown instance of vehicle 4

Time between nodes From node To node Task number
1.00 174 173

Reach task 1

2.00 173 167

2.92 167 148

4.37 148 128

5.67 128 129

6.90 129 130

8.14 130 131

9.14 131 132

11.54 132 133

13.04 133 154

14.74 154 178

16.44 178 154

Perform task 1

17.94 154 133

19.34 133 134

20.44 134 135

22.64 135 136

23.14 136 137

25.64 137 118

26.34 118 119

28.34 119 120

29.24 120 121

30.74 121 122

32.34 122 123

34.34 123 102

36.24 102 82

37.30 82 83 Reach task 6

39.00 83 65

Perform task 6

42.10 65 64

43.00 64 63

45.00 63 62

47.90 62 42

49.82 42 41

52.82 41 40

191

The travelling information of vehicle 3 before the breakdown instance of vehicle 4

Time between nodes From node To node Task number
1.90 4 21

Reach task 2

3.40 21 37

6.10 37 57

7.80 57 71

9.30 71 90

11.30 90 111

12.00 111 131

13.00 131 132

Perform task 2

15.40 132 133

16.80 133 134

17.90 134 135

20.10 135 136

20.60 136 137

23.10 137 138

23.70 138 139

25.70 139 140

26.60 140 141

28.10 141 142

29.60 142 164

32.80 164 186

35.99 186 164

Reach task 5

37.48 164 142

38.98 142 141

39.88 141 140

41.88 140 139

42.48 139 138

44.98 138 137

45.48 137 136

47.68 136 135

49.18 135 156

50.18 156 157

51.18 157 156

Perform task 5

52.68 156 135

54.88 135 136

55.38 136 137

57.88 137 118

59.79 118 97

61.39 97 78

192

The travelling information of vehicle 4 before the breakdown instance of vehicle 4

Time between nodes From node To node Task number
1.90 12 29

Reach task 7

3.40 29 45

6.10 45 64

7.00 64 63

9.00 63 62

10.70 62 79

12.20 79 98

14.40 98 118

16.85 118 137

17.26 137 136

19.46 136 135

20.96 135 156

22.46 156 135

Perform task 7

24.66 135 136

25.16 136 137

27.66 137 118

29.76 118 98

31.32 98 79

32.92 79 62

34.92 62 63

35.82 63 64

38.52 64 45

39.42 45 44

40.32 44 45

Reach task 8

43.02 45 64

43.92 64 63

45.92 63 62

47.82 62 78

49.30 78 97

50.80 97 78
Perform task 852.50 78 61

55.30 61 60

193

Travelling information of the 1st vehicle after the breakdown instance of vehicle 4

Time between nodes From node To node Task number
31.30 129 128

Task 3
continuation

33.44 128 127

35.84 127 105

38.51 105 127

Reach
Task 4

40.64 127 128

41.94 128 129

43.18 129 110

44.44 110 111

45.44 111 112

46.44 112 111

Perform
Task 4

47.74 111 110

49.04 110 129

50.31 129 109

52.47 109 108

53.77 108 106

54.77 106 87

Travelling information of the 2nd vehicle after the breakdown instance of vehicle 4

Time between nodes From node To node Task number
31.60 122 123

Task 1
continuation

33.60 123 102

35.50 102 82

37.30 82 83 Reach task 6

39.00 83 65

Task 6
performing

42.10 65 64

43.00 64 63

45.00 63 62

47.90 62 42

49.82 42 41

52.82 41 40

194

Travelling information of the 3rd vehicle after the breakdown instance of vehicle 4

Time between nodes From node To node Task number
33.20 186 164

Continuation
of task 2

34.69 164 142

36.49 142 123

38.44 123 102

39.94 102 83

41.74 83 65

44.84 65 49

46.00 49 54

48.40 54 33

50.90 33 34

52.50 34 50

35.99 186 164

Reach
Task 5

37.48 164 142

38.98 142 141

39.88 141 140

41.88 140 139

42.48 139 138

44.98 138 137

45.48 137 136

47.68 136 135

49.18 135 156

50.18 156 157

51.18 157 156

Perform
Task 5

52.68 156 135

54.88 135 136

55.38 136 137

57.88 137 118

59.79 118 97

61.39 97 78

62.79 78 97 Reach task 8

64.29 97 78
Perform
Task 8

65.99 78 61

68.79 61 60

195

Appendix 6

Master pseudo code:
numrows=sizeof(uwvpmat)
for all vehicles(n)
MPI_Send(numrows,vehicle(n),TAG,NEWORLD)
MPI_Send(uwvpmat,vehicle(n),TAG,NEWORLD)

Vehicle (worker) pseudo code:
MPI_Recv(numrows,master,TAG,NEWORLD)
uwvpmatrix=zeros(numrows,numcols)
MPI_Recv(uwvpmatrix,master,TAG,NEWORLD)

