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Abstract 
Cost-sensitive learning is one of the active research topics in data mining and machine 

learning, designed for dealing with the non-uniform cost of misclassification errors.  In 

the last ten to fifteen years, diverse learning methods and techniques were proposed to 

minimize the total cost of misclassification, test and other types. This thesis studies the 

up-to-date prevailing cost-sensitive learning methods and techniques, and proposes 

some new and efficient cost-sensitive learning methods and techniques in the following 

three areas: 

First, we focus on the data over-fitting issue. In an applied context of cost-sensitive 

learning, many existing data mining algorithms can generate good results on training 

data but normally do not produce an optimal model when applied to unseen data in real 

world applications. We deal with this issue by developing three simple and efficient 

strategies - feature selection, smoothing and threshold pruning to overcome data over-

fitting in cost-sensitive learning. This work sets up a solid foundation for our further 

research and analysis in this thesis in the other areas of cost-sensitive learning. 

Second, we design and develop an innovative and practical objective-resource cost-

sensitive learning framework for addressing a real world issue where multiple cost units 

are involved. A lazy cost-sensitive decision tree is built to minimize the objective cost 

subjecting to given budgets of other resource costs. 

Finally, we study semi-supervised learning approach in the context of cost-sensitive 

learning. Two new classification algorithms are proposed to learn cost-sensitive 

classifier from training datasets with a small amount of labelled data and plenty 

unlabelled data. We also analyse the impact of the different input parameters to the 

performance of our new algorithms. 
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Chapter 1 Introduction 

1.1 Motivation and Objectives 
 
Life is about making decisions.  Different decisions have different consequences.  When 

we make the decision very often we know the possible outcomes.  Our aim is to 

maximize the potential benefits and minimize the losses.  For example, we choose to 

buy insurance policies because we are willing to pay the cost of the insurance instead of 

having the risk of losing the entire property.  Different insurance companies have 

different types of insurance products.  Their costs are different and their protection 

levels are different too.  Before we decide what insurance policies we are going to buy, 

we also consider the probabilities of losing our property.  How much we would like to 

pay for the insurance policies and how much benefit we can get? 

In order to make our decisions as rational as possible, we have to answer these 

questions more accurately.  Today, with the rapid development of information 

technology and computer systems, on one hand, we have a large amount of data 

(labelled or unlabelled) available to help us make better decisions.   On the other hand, 

we are able to construct and evaluate systems that learn from these historical data to 

make the decisions that not only minimize the expected number of errors but also 

minimize the total cost associated with those decisions.  

There are a variety of reasons for studying cost and its impact to our decisions, and 

many cost-sensitive learning methods and algorithms were developed in the last 10 to 

15 years. The goal of this thesis is to present a set of new and efficient techniques to 

further improve the decision making process and minimize the total cost involved in 

cost-sensitive classification. More specifically, below are the three main objectives of 

this thesis: 

 Objective 1: Research the causes of data over-fitting issue in cost-sensitive 

learning, develop efficient strategies to reduce the impact of data over-

fitting in cost-sensitive learning algorithms, finally make these algorithms 

more stable and improve their overall performance. 
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 Objective 2: Propose an innovative Objective-Resource framework for 

resolving a real world issue in cost-sensitive learning where multiple costs 

are involved. These costs are often cannot be measured by the same cost 

unit. Our new framework minimizes the misclassification cost (referred to 

objective cost) subjecting to given budgets of other resource costs. 

 Objective 3: Propose new semi-supervised classification strategies to learn 
cost-sensitive classifier from training datasets with both labelled and 
unlabelled data. This addresses many real world cost-sensitive classification 
issues in which there are few labelled data and plentiful unlabelled data. 

1.2 Thesis Outline and Contributions 
 
The remainder of this dissertation is organized as follows: 

First, in Chapter 2, we review the previous cost-sensitive learning research which is 

related to the work in this thesis. Chapter 3 proposes several efficient techniques such as 

smoothing, feature selection and threshold pruning which address a common but very 

challenging issue in cost-sensitive classification, data over-fitting. In Chapter 4, we 

modify the popular K-Nearest Neighbour (KNN) algorithm to make it cost sensitive. 

Two new cost-sensitive KNN algorithms and several additional methods are developed 

to minimize the misclassification cost. Chapter 5 proposes an objective-resource 

framework to overcome the difficulty of handling multiple cost units in cost-sensitive 

learning, a novel multiple-unit lazy Cost-sensitive decision tree algorithm is developed 

to learn from real world medical data under the proposed new cost-sensitive learning 

framework. In Chapter 6, we attempt to utilize unlabelled training data to build cost-

sensitive classifiers, this addresses a real world issue in which labelled data is very 

difficult, time consuming and expensive to obtain, but unlabelled data is often freely 

available. At the end, Chapter 7 concludes the research in this thesis and points out our 

future work and directions. 
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Chapter 2 Background and Related 

Work 
Supervised learning is an important subarea in data mining and machine learning.  In 

supervised learning, the examples provided to the learning systems already have class 

labels.  The systems need learn to predict class labels for unseen examples based on the 

existing labelled examples.  When the set of possible predictions is discrete, the learning 

task is called classification.  In traditional classification systems, the task is to build a 

classifier aimed at improving predication accuracy.  This implicitly assumes that all 

classification errors involve the same cost.  

However, in most data mining and machine learning applications, different 

misclassification errors often involve different costs. Traditional data mining methods 

that aim at minimizing error rate will perform poorly in these areas, as they assume 

equal misclassification cost and relatively balanced class distributions. This leads to the 

development of domain-driven learning techniques, referred to cost-sensitive learning 

(Turney 1995), for addressing classification problems with non-uniform costs. 

2.1 Cost-sensitive Learning 
Cost-sensitive learning is an extension of traditional non-cost-sensitive data mining.  It 

is an important research area with many real world applications. For example, in 

medical diagnosis domain, diseases are not only very expensive but also rare; for a bank, 

an error of approving a home loan to a bad customer is more costly than an error of 

rejecting a home loan to a good customer.  Given a naturally much skewed class 

distribution and costly faulty predictions for the rare class, an error based classifier may 

very likely ends up building a useless model.  Cost-sensitive learning is an advanced 

form of data mining that satisfies these special needs. Research in cost-sensitive 

learning is still in an early stage and there are different methods to it. Most cost-

sensitive learning methods are developed based on the existing non-cost-sensitive data 

mining methods.  To make an error-based classifier cost-sensitive, a common method is 
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to introduce biases into an error based classification system in three ways: 1) by 

changing the class distribution of the training data, 2) by modifying the learning 

algorithms, 3) and by taking the boosting approach (Li et al. 2005). An alternative 

method is called direct cost-sensitive learning which uses the conditional probability 

estimates provided by error based classifiers to directly compute the optimal class label 

for each test example using cost function (Zadrozny and Elkan 2001). 

Other cost-sensitive learning methods such as cost-sensitive specification and cost-

sensitive genetic programming are also included in this Chapter.  The details of these 

methods are discussed in section 2.3. 

2.2 Settings and Definitions of Cost-sensitive Learning 

Problem 

 Types of Cost 
According to Turney (2000)’s paper, there are nine major types of cost involved in cost-

sensitive learning.  Some of these costs are listed below:  

 

Misclassification Costs: In data mining, different types of misclassification errors 

usually involve different costs.  These costs are the most important costs in cost-

sensitive learning.  They can either be stationary (represented as a cost matrix) or 

example dependent. 

 

Test Costs: In some domains, such as medical diagnosis, many tests involve costs.  

Some tests are more costly than other.  If the misclassification costs surpass the test 

costs greatly, then all tests should be performed.  If the test costs are much more than 

the misclassification costs, then it is rationale not to do any tests. 

 

Teacher Costs: Sometimes it is expensive to decide the correct class label of an 

example.  In this situation, a learning algorithm should consider the cost of teaching, 

and one way of doing it is actively selecting instances for the teacher, i.e., active 

learning. 
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Computation Costs: Size and structural complexity, time and space requirements of a 

classification algorithm both in training and test phases are considered under this 

category. 

In addition to the above costs, there are other types of costs - intervention costs, 

unwanted achievement costs, human-computer interaction costs, costs of cases and 

costs of instability.  In this research, we concentrate on the cost-sensitive learning 

methods which minimize the misclassification costs and the test costs. 

 

 Cost Matrix and Cost Function 
Most of the cost-sensitive learning methods surveyed in this paper assume that for an 

M-class problem, an M by M cost matrix C is available at learning time.  The value of 

C(i, j) is the cost involved when a test case is predicted to be class i but actually it 

belongs to class j. 

In reality, C(i, j) can be example dependent, can be represented by a function, but in 

this survey, most cost-sensitive learning methods assume that C(i, j) does not change 

during the learning or decision making process.  So the cost matrix C is static. 

A static cost matrix always has the following structure when there are only two 

classes: 

        Table 1. Two-Class Cost Matrix 
  Actual negative Actual positive 

Predict negative C(0, 0) = C00 C(0, 1) = C01 

Predict positive C(1, 0) = C10 C(1, 1) = C11 

 

As per above cost matrix, the cost of a false positive is C10 while the cost of a false 

negative is C01.  Conceptually, the cost of labelling an example incorrectly should 

always be greater than the cost of labelling it correctly.  Mathematically, it should 

always be the case that C10 > C00 and C01 > C11 (Elkan 2001). 

As we just mentioned, the cost values of a static cost matrix are always fixed, 

usually defined by dollar values associated with the correct or incorrect decisions.  The 

learning task is not altered if all the cost values are scaled by a constant factor. 

Cost values can represent either costs or benefits, or both, and a careful analysis is 

needed prior to designing the matrix so that all potential costs that are incurred by a 
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decision are captured.  Costs are represented by positive values, whereas benefits are 

represented by negative values (Margineantu 2001). 

As per Elkan (2001), if a cost matrix C is known in advance, let the (i, j) entry in C 

be the cost of predicting class i when the true class is j.  If i = j then the prediction is 

correct, while if the prediction is incorrect.  The optimal prediction for an example x is 

the class i that minimizes: 
n

j

jiCxjpixL
1

),()|(),(      (2.1) 

In this framework, a test example should always be predicted to have the class that 

leads to the lowest expected cost, where the expectation is computed using the 

conditional probability of each class given the example.   The role of a learning 

algorithm is to produce a classifier that for any example can estimate the probability 

P(j|x) of each class j being the true class of x.  For an example x, making the prediction i 

means acting as if i is the true class of x.  The essence of cost-sensitive decision-making 

is that it can be optimal to act as if one class is true even when some other class is more 

probable.   

2.3 Cost-sensitive Learning Methods 

2.3.1 By Changing the Class Distribution of the Training Data  
The first approach to cost-sensitive classification is to change the class distribution of 

the training data.  Re-sampling and instance weighting are the most common 

approaches.  MetaCost  (Domingos 1999) is also a popular algorithm in this category 

which employs a “meta-learning” procedure, bagging, to re-label training examples with 

their estimated minimal cost classes, and then apply the error based learner to the new 

training set to generate a final model.   

 Re-sampling and instance weighting 

One of the most common practical approaches to cost-sensitive classification is to 

change the class distribution of the training data with respect to the cost function and 

then present an error-based learning algorithm with those modified data.   A simple 

approach is stratification, which is, changing class distribution in the training data in 
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proportion to their cost (Li et al. 2005).  This is achievable either by over sampling the 

examples from the more costly class or by under sampling the examples from the less 

costly class.  

An alternative approach is the instance weighting method.  It assigns a weight to 

each instance of the training data. The weight reflects the influence of misclassifying the 

case in terms of the cost incurred.  Whilst the re-balancing method is applicable to any 

error-based classifiers, the re-weighting method is generally used by the classifiers that 

can handle instance weights, such as decision tree induction algorithm C4.5 (Quinlan 

1993) and Bayesian classifiers. 

In the past, many researchers have studied the effects of re-sampling and instance 

weighting methods in cost-sensitive learning, especially on imbalanced data sets.  In 

most of these studies, re-sampling (or instance weighting) methods are used as a 

comparison to other cost-sensitive learning approaches.  Some examples of these studies 

include: Kubat and Watwin (1997), Japkowicz (2000), Ting (2002), Maloof (2003), 

Zadrozny et al. (2003), Drummond and Holte (2003), Chawla (2003), Abe et al. (2004) 

and Zhou and Liu (2006). 

Stratification is simple and easy to implement for any two class problems.  

However, Elkan (2001) argues that changing the balance of negative and positive 

training examples has little effect on the classifier learned by standard decision tree 

learning methods.  He recommends that in cost-sensitive learning which considers 

various kinds of cost, a classifier should be learned from the training set as given, and 

then computes the optimal decision explicitly using the probability estimates given by 

the classifier.  We will discuss this approach in section 2.3.5. 

 

 MetaCost 

Domingos (1999) also found that stratification has several shortcomings: First, it 

distorts the distribution of examples, which may seriously affect the performance of 

some algorithms.  Second, it reduces the data available for learning, if stratification is 

carried out by under sampling.  It also increases learning time, if it is done by over 

sampling. Most seriously, it is only applicable to two class problems and to multi-class 

problems with a particular type of cost matrix.  Domingos (1999) proposes a more 

sophisticated method called MetaCost that employs a “meta-learning” procedure, 
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bagging, to re-label training examples with their estimated minimal cost classes, and 

then apply the error based learner to the new training set to generate a final model.  His 

experimental results show that MetaCost systematically reduces cost compared to error-

based classification and to stratification, often by large amounts, and that MetaCost can 

be efficiently applied to large databases and multi-class problems. 

All above methods make error-based classifiers cost-sensitive by changing the class 

distribution of training data.  This makes reduction of overall cost more likely, but not 

necessarily as there is a trade-off among errors with different costs.  The major 

advantages of these methods are the simplicity without any change in algorithms and 

the applicability to any existing error-based classification learning algorithms.  They 

generate better models in terms of overall costs, compared to the models derived from 

original sample data (Li et al. 2005). 

2.3.2 By Modifying the Learning Algorithms  
The second approach to cost-sensitive classification is to change classification 

algorithms directly.  They are implemented either by inducing various biases in the 

process of building models, or by adjusting thresholds or ordering rules generated.  

Decision tree and Naive Bayes are well known algorithms that have been mostly 

modified to make them cost-sensitive (Pazzani et al. 1994; Gama et al. 2000; Vadera 

2005; Abrahams et al. 2005).  Other popular algorithms that have been modified to be 

cost-sensitive include Neural Networks and Support Vector Machine (Kukar and 

Kononenko 1998; Fumera and Roli 2002; Brefeld et al. 2003). 

 

 Modifying Decision Tree Algorithm 

A standard decision tree algorithm normally has two phases:  decision tree growing and 

pruning.  It can be modified to be cost-sensitive in both phases.  In the decision tree 

growing phase, a typical approach is to change the split criterion which takes costs into 

account.  Pazzani et al. (1994) studied several methods of considering misclassification 

cost when selecting tests in decision tree splits.  One method uses the GINI criterion 

with the altered priors (suggested by Brieman et al. (1986)) methods, and another 

simply uses the cost of misclassification as a test selection metric.  They then compared 

these “cost-sensitive” decision tree algorithms to the original CARTS and C4.5 and 
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found the new “cost-sensitive” decision tree algorithms actually perform worse in terms 

of minimizing the misclassification cost.  Drummond and Holte (2000) also investigated 

how the split criterion of decision tree algorithms are influenced by misclassification 

cost.  Their experiment results show too that split criterion that are relatively insensitive 

to costs, and perform as well as or even better than split criterion that are cost sensitive. 

However, recently researchers moved away from traditional ways of building 

decision trees and presented some new decision tree algorithms which take 

misclassification costs into account when making splits: 

Vadera (2005) presented a new non-liner decision tree learning algorithm which 

takes account of misclassification cost. The algorithm is based on the hypothesis that 

non-linear decision nodes provide a better basis for cost-sensitive induction than axis-

parallel decision nodes and utilizes discriminant analysis to construct non-linear cost-

sensitive decision trees.  The new algorithm, called CSNL (Cost-sensitive Non-linear 

Decision Tree), takes advantage of existing work by statisticians who have developed a 

theory of multivariate discriminate analysis to make non-linear splits when building 

decision trees. 

Abrahams et al. (2005) proposed a framework for cost-sensitive classification under 

a generalized cost function.  By combining decision trees with sequential binary 

programming, the new framework can handle non-uniformed misclassification cost, 

constrained classification, and complex objective functions that other methods cannot.  

In their paper, Abrahams et al. use the term generalized partitioning optimization 

problem (GPOP) for problems in which the benefit of the generalized cost function is 

maximized.  A novel method called Sequential Binary Programming (SBP) is 

introduced.  Using SBP to solve GPOPs begins with the original set S and then 

iteratively solves this binary program for each available one-dimensional split on each 

existing partition. The split that yields the highest objective function value is then 

accepted, and further partitioning is evaluated until additional partitions fail to improve 

the objective function or an exit criterion is reached.  With each iteration, SBP allows us 

to select the partition that yields the optimal reclassification. In this way, the true 

objective function is used throughout the growing process.  The real power of SBP over 

other direct cost-sensitive methods is its ability to accommodate any objective function, 

not just a cost matrix. 
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Standard methods for pruning decision trees are highly sensitive to the prevalence 

of different classes among training examples.  If all classes except one are rare, C4.5 

often prunes the decision tree down to a single note.  Such a classifier is useless in cost-

sensitive learning because the misclassification of a rare class normally incurs very high 

cost (Elkan 2001).  Bradford et al. (1998) have studied decision tree pruning for 

minimizing misclassification cost through improved probability estimation.  They have 

extended existing pruning methods to involve cost-complexity characteristics and 

formed two variants of pruning based on Laplace corrections.  Their experimental 

results show that no method dominates the others in all datasets, and different pruning 

techniques are better for different cost matrices. They also show that Laplace correction 

performs well compared to others, for some cost matrices.  However, in Elkan (2001)’s 

paper, he showed that Laplace pruning is similar to no pruning and argued that in cost-

sensitive learning, growing a decision tree can be done in a cost-insensitive way.  When 

using a decision tree to estimate class probabilities, it is preferable to do no pruning, but 

use smoothed probabilities instead. 

 

 Modifying Naive Bayes Algorithm 

Cost-sensitivity learning techniques have also been researched extensively on Naive 

Bayes Classifier.  Pazzani et al. (1994) studied cost-sensitive decision making with 

Naive Bayesian algorithm among their decision tree approaches.  They call this cost-

sensitive Bayes classifier Bayes-Cost.  Bayes-Cost simply assigns a test example to the 

least expected cost class which is determined by function of the probability estimates 

returned by the classifier.  Their experiment results showed that on some data sets, the 

Bayes-Cost algorithm has costs that are much lower than the other algorithms, but on 

other data sets, its costs are considerably higher than the other algorithms.  They 

suggested that the reason behind this is due to feature interaction and irrelevant features 

in different data sets. 

Gama et al. (2000) presented an iterative approach to Naive Bayes classifier which 

is also sensitive to misclassification cost.  This approach builds distribution tables using 

Naive Bayesian algorithm at first, and then applies an optimization process. The 

optimization process updates the contingency tables iteratively and aims to improve the 

probability class distribution associated with each training example. When there are 
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unequal error costs in the domain, this iterative update can be guided by 

misclassification cost. 

 

 Modifying Neural Network Algorithm 

Artificial neural networks are very popular and useful tools in data mining and machine 

learning, where they are often used for classifications. 

Kukar and Kononenko (1998) conducted a comparative study of different 

approaches to cost-sensitive learning with neural networks, including cost-sensitive 

classification, adaptive output, adaptive learning rate and minimization of 

misclassification cost. Their results showed that neural networks trained using a back-

propagation version that minimizes the misclassification cost performs significantly 

better than the other methods. 

Normally, the back-propagation algorithm minimizes the squared error of the 

neural network.  Therefore, the original back-propagation learning procedure is not 

suitable for cost-sensitive learning.  In order to minimize the costs of the errors made, 

the misclassification cost method takes cost into account by changing the error function 

and introducing the cost factor C[i, j] (i = desired class, j = actual class).  Instead of 

minimizing the squared error, the modified back-propagation learning procedure 

minimizes the misclassification cost. 

Over-fitting of training data is a serious problem in the process of back-propagation 

learning. It is caused by an oversized network and results in loss of its generalization 

abilities. The approach Kukar and Kononenko used to tackle this problem is to stop the 

learning process in the moment when the generalization abilities of the network ceased 

to increase. 

 

 Modifying Support Vector Machine Algorithm 

The Support Vector Machine (SVM) learning method is based on the structural risk 

minimisation (SRM) induction principle, which was derived from the statistical learning 

theory.  SVMs have proven to be effective in many real-world applications.  However, 

SVMs are not cost-sensitive. 

Fumera and Roli (2002) proposed a cost-sensitive SVM classifier that directly 

embeds the reject option. This extension was derived by taking into account a 
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theoretical implication of the SRM induction principle when applied to classification 

with reject option, and by following Vapnik (1982)’s maximum margin approach to the 

derivation of standard SVMs. They devised a novel formulation of the training task as a 

non-convex optimisation problem, and developed a specific learning algorithm to solve 

it.  Their cost-sensitive learning method allows for a greater flexibility in defining the 

decision boundaries, with respect to the rejection technique used for standard SVMs. 

Their experimental results show that on the most of data sets, the cost-sensitive 

SVM with embedded reject option achieved a better error-reject trade-off than standard 

non cost-sensitive SVMs.  However, to allow the cost-sensitive learning SVM algorithm 

to scale up for larger data sets, its high computational cost must be addressed. 

Brefeld et al. (2003) presented a natural cost-sensitive extension of the SVM.  They 

considered the extension of SVMs by example dependent cost, and discussed its 

relationship to the cost- sensitive Bayes rule.  They showed that the Bayes rule only 

depends on differences between costs for correct and incorrect classification. This 

allows them simplify the learning problem by assigning the cost for correct 

classification to zero.  For the simplified problem, they stated a bound for the cost-

sensitive risk. A bound for the original problem with costs for correct classification can 

be obtained in a similar manner. 

Masnadi-Shirazi et al. (2010) proposed a new procedure for learning cost-sensitive 

SVM classifiers in which the SVM hinge loss is extended to the cost sensitive setting, 

and the cost-sensitive SVM is derived as the minimizer of the associated risk. The 

extension of the hinge loss draws on recent connections between risk minimization and 

probability elicitation. These connections are generalized to cost-sensitive classification, 

in a manner that guarantees consistency with the cost-sensitive Bayes risk, and 

associated Bayes decision rule. This ensures that optimal decision rules, under the new 

hinge loss, implement the Bayes-optimal cost-sensitive classification boundary. 

Minimization of the new hinge loss is shown to be a generalization of the classic SVM 

optimization problem, and can be solved by identical procedures. It enforces cost 

sensitivity for both separable and non-separable training data, enforcing a larger margin 

for the preferred class, independent of the choice of slack penalty. It also offers 

guarantees of optimality, namely classifiers that implement the cost-sensitive Bayes 

decision rule and approximate the cost-sensitive Bayes risk. 
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Other papers regarding learning cost-sensitive SVM methods include Lin et al. 

(2002), Geibel and Wysotzki (2003) and Xu et al. (2006). 

2.3.3 By Taking the Boosting Approach  
The third approach to cost-sensitive classification is to employ the boosting method. 

The algorithm generates a set of different weak classifiers in sequential trials due to 

each of the training data being re-weighted, and then constructs a composite classifier 

by voting them in terms of the accuracy of each weak classifier.  The boosting method 

is applicable to any kinds of base classifier such as decision trees, Bayesian networks or 

neural networks (Li et al. 2005). 

 

 AdaBoost and AdaCost 

AdaBoost (AdaptiveBoosting) is the most popular boosting algorithm used in practice 

and the terms Boosting and AdaBoost are therefore often used interchangeably.  

AdaCost (Fan et al. 1999) is a two-class cost-sensitive version of AdaBoost.  It 

introduced a misclassification cost adjustment function into the re-writing function of 

AdaBoost.  The function is capable of increasing the weights of costly misclassification 

instances more aggressively, but decreasing the weights of costly correct classification 

instances more conservatively.  In this way, each weak classifier correctly classifies 

more expensive examples more likely and the final voted ensemble will also correctly 

predict more costly instances with the hope of reduction in overall cost.  This method 

has been reported to reduce cost significantly.  

 

 Cost-sensitive Boosting 

Ting and Zheng (1998) proposed two other cost-sensitive boosting methods.  Their first 

approach is very similar to AdaBoost.  Only at the classification stage, it used the 

minimum expected cost criterion to select the predicted class.  The second approach 

called cost-boosting, entirely modifies the weight updating rule of AdaBoost.  

According to the new rule, if an instance is  misclassified,  its weight  is  replaced  with  

its  misclassification  cost;  otherwise  its  weight  remains unchanged.  In his further 

studies, Ting (2002) improved his boosting approaches by presenting two new variants.  

The new approaches relearn their models when misclassification cost changes. 
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Masnadi-Shirazi et al. (2011) proposed a new framework for the design of cost-

sensitive boosting algorithms. The framework is based on the identification of two 

necessary conditions for optimal cost-sensitive learning that 1) expected losses must be 

minimized by optimal cost-sensitive decision rules and 2) empirical loss minimization 

must emphasize the neighbourhood of the target cost-sensitive boundary. It is shown 

that these conditions enable the derivation of cost-sensitive losses that can be minimized 

by gradient descent, in the functional space of convex combinations of weak learners, to 

produce novel boosting algorithms. The proposed framework is applied to the derivation 

of cost-sensitive extensions of AdaBoost, RealBoost, and LogitBoost. 

Concept drift is a phenomenon typically experienced when data distributions 

change continuously over a period of time. Venkatesan et al. (2010) proposed a cost-

sensitive boosting approach for learning under concept drift. The proposed methodology 

estimates relevance costs of ‘old’ data samples with regard to ‘newer’ samples and 

integrates it into the boosting process. Their experiment results demonstrate that the 

cost-sensitive boosting approach significantly improves classification performance over 

existing algorithms.   

 

 Asymmetric Boosting 

Masnadi-Shirazi and Vasconcelos (2007) proposed a new cost-sensitive boosting 

algorithm, asymmetric boosting which is derived from sound decision-theoretic 

principles.  It exploits the statistical interpretation of boosting to determine a principled 

extension of the boosting cost. Similar to AdaBoost, the new asymmetric boosting 

algorithm minimizes the cost by gradient descent on the functional space of convex 

combinations of weak classifiers, and generate large margin detectors. The resulting 

asymmetric boosting algorithm provides a proper combination of cost-sensitive weight 

update rule, and cost-sensitive method for finding the gradient direction. 

In their paper, Masnadi-Shirazi and Vasconcelos showed that similar to AdaBoost, 

asymmetric boosting is a margin maximization method. It increases the margin of the 

detector even after the training error is exhausted. The only difference is that the 

margins in asymmetric boosting are unbalanced, reflecting the costs assigned to the 

different error types, as per the cost function. Their experimental results showed that 
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asymmetric boosting outperforms or comparable to those of various previous cost-

sensitive boosting methods. 

Other cost-sensitive boosting methods presented recently by researchers are 

Khoshgoftaar et al. (2002),  Viola and Jones (2002), Merler et al. (2003), Abe et al. 

(2004) and Sun et al. (2005). 

2.3.4 Cost-sensitive Stacking  
Stacking is a method of combining the outputs of multiple independent classifiers for 

multi-label classification. Lo et al. (2011) have proposed formulating the audio tagging 

task as a cost-sensitive multi-label classification problem and extended a multi-label 

classification method, namely stacking, to its cost-sensitive version to solve the problem. 

Inspired by the idea of stacking, they improved their MIREX 2009 classifier ensemble 

by using cost-sensitive stacking. They first train K SVM-based and K AdaBoost-based 

cost-sensitive binary tag classifiers by using the tag counts as costs independently. Then, 

they use stacking SVM to respectively process the outputs of the two sets of binary tag 

classifiers. Finally, the stacked SVM and AdaBoost scores are merged by using either a 

probability ensemble to classify test examples.  

2.3.5 Direct Cost-sensitive Learning Approach  
Any learned classifier that can provide conditional probability estimates for training 

examples can also provide conditional probability estimates for test examples.  In case 

of decision trees, the class probability distribution of an example can be estimated by 

the class distribution of the examples in the leaf that is reached by that example.  In case 

of neural networks, class ranking is usually done based on the activation values of the 

output units.  If the learned model does not explicitly compute these values, most 

classifiers can be modified to output some values that reflect the internal class 

probability estimate (Margineantu 2001).  Using these probability estimates we can 

directly compute the optimal class label for each test example using the cost function.  

This cost-sensitive learning method is called direct cost-sensitive learning (Zadrozny 

and Elkan 2001). 

All direct cost-sensitive learning algorithms have one thing in common: They do 

not manipulate the internal behaviour of the classifier nor do they manipulate the 
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training data in any way. They are based on the optimal cost-sensitive decision criterion 

that directly use the output produced by the classifiers in order to make an optimal cost-

sensitive prediction. 

An advantage of the direct cost-sensitive learning is that it does not require the 

models to be retrained every time the costs change, as costs are only introduced in the 

post learning phase.  However, the probability estimates output by classifiers from many 

error based learners are neither unbiased, nor well calibrated.  Decision tree learners 

such as C4.5 and ID3 are well known examples.  They focus primarily on 

discrimination between the classes and only produce posterior class membership 

probability estimates as by-product of classification.  Naive Bayes classifiers are based 

on the assumption that within each class, the values of the attributes of examples are 

independent.  It is well known that these classifiers tend to give inaccurate probability 

estimates.  Several methods have been proposed for obtaining better probability 

estimates from decision tree, Naive Bayes and SVM classifiers (Viaene and Dedene 

2004; Margineantu 2002, Zadrozny and Elkan 2002, 2001; Provost and Domingos 2003, 

1998; Platt 1999).  These probability estimation methods are listed here: 

 

 Laplace correction 

For decision trees in general and C4.5 in specific, there are two reasons why they can 

not provide accurate posterior probability estimation, as pointed out by Zadrozny and 

Elkan (2001): Firstly, there is a high bias because decision trees always try to create 

homogeneous leaves and the probabilities of classes are always close to zero or one.  

Secondly, the reliability of class probabilities is low if there are only a few instances in 

a leaf.  The later problem is usually eliminated by pruning algorithms, but those pruning 

algorithms are focused on accuracy maximization and are therefore not suited to 

estimate class probabilities, especially for datasets with an unbalanced class distribution.   

Using C4.5, Provost and Domingos (2003) evaluated different pruning methods and 

recommended not pruning the tree, instead, using Laplace correction to calculate class 

probabilities at leaves. The Laplace correction method basically corrects the 

probabilities by shifting them towards 0.5, in a two-class problem. 

 

 M-Smoothing 



Chapter 2     Background and Related Work 18 

 

Zadrozny and Elkan (2001) proposed to use an un-pruned decision tree and transform 

the scores of the leaves by smoothing them. They point out that the Laplace correction 

method doesn’t work well for datasets with a skewed class distribution. They suggest 

using a smoothing method called m-estimation. According to that method, the class 

probabilities are calculated as follow. 

mN
mbNxi i *)|(Pr

,
   

where b is the base rate of the class distribution and m is a parameter that controls the 

impact of this correction. The base rate is the relative frequency of the minority class.  

They recommended choosing the constant m so that b×m = 10.  The experiments 

conducted by Zadrozny and Elkan (2001) show that using C4.5 decision tree as the base 

learner, the direct cost-sensitive learning approach with m-estimation achieved less 

misclassification cost than that of MetaCost (Domingos 1999) on the KDD-98 data set. 

They call this method m-smoothing. For example, if a leaf contains three training 

examples, one is positive and the other two are negative, the raw C4.5 decision tree 

score of any test example assigned to this leaf is 0.33. The smoothed score with m = 200 

and b = 0.05 (the base rate of KDD-98 data set) is: 

  P’ = (1 + 0.05 × 200) / (3 + 200) = 11 / 203 = 0.0542. 
Therefore, the smoothed score is effectively shifted towards the base rate of KDD-98 

data set. 

Furthermore, Niculescu-Mizil and Caruana (2005) experimented two other ways of 

correcting the poor probability estimates predicted by decision tree, SVM and other 

error based classifiers: Platt Scaling (Platt 1999) and Isotonic Regression. These 

methods can also be used in directly cost-sensitive learning algorithms. 

 

 Curtailment 

Zadrozny and Elkan (2001) pointed out that without pruning decision tree learning 

methods tend to overfit training data and create leaves in which the number of examples 

is too small to induce conditional probability estimates that are statistically reliable.  

Smoothing attempts to correct these estimates by shifting them towards the overall 

average probability.  However, if the parent of a small leaf, i.e. a leaf with few training 
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examples, contains enough examples to induce a statistically reliable probability 

estimate, then assigning this estimate to a test example associated with the small leaf 

may be more accurate than assigning it a combination of the base rate and the observed 

leaf frequency, as done by smoothing. If the parent of a small leaf still contains too few 

examples, the score of the grandparent of the leaf can be used, and so on until the root 

of the tree is reached. At the root, of course, the observed frequency is the training set 

base rate.  They call this method of improving conditional probability estimates 

curtailment because when classifying an example, the searching stops as soon as the 

node reached has less than i examples, where i is a parameter of the method. The score 

of the parent of this node is then assigned to the example in question. 

 

 Binning NB 

Binning is a method suggested by Zadrozny and Elkan (2001).  It aims to make class 

probabilities computed by Naive Bayes classifier more accurate. As mentioned above, 

Naive Bayes classifier builds on the assumption that attributes are independent. 

Zadrozny and Elkan pointed out that this assumption leads to too drastic probabilities 

because usually attributes do somehow correlate positively. They argue that therefore 

the probability score computed by Naive Bayes classifier, is either too close to zero or 

too close to one.  Despite of that, Naive Bayes classifier has a high accuracy in ranking 

instances, so that instances with a higher score indeed have a higher probability to 

belong to that specific class than instances with a lower score. The binning algorithm, 

makes use of this “accuracy of ranking” to get calibrated probability estimation scores. 

 

 Platt Calibration 

Platt (1999) proposed a calibration method for transforming SVM predictions to 

posterior probabilities by passing them through a sigmoid.  A sigmoid transformation is 

also used for boosted decision trees and other classifiers. Let the output of a learning 

method be f(x). To get calibrated probabilities, pass the output through a sigmoid: 

P (y = 1 | f) = 1 / (1 + exp (Af + B)),  

where the parameters A and B are fitted using maximum likelihood estimation from a 

fitting training set (fi ; yi). Gradient descent is used to find A and B.  Platt Scaling is most 
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effective when the distortion in the predicted probabilities is sigmoid-shaped 

(Niculescu-Mizil and Caruana 2005).  

 

 Isotonic Regression 

Compared to Platt Calibration, Isotonic Regression is a more powerful calibration 

method which can correct any monotonic distortion (Niculescu-Mizil and Caruana, 

2005).  Zadrozny and Elkan (2002; 2001) successfully use this method to calibrate 

probability estimates from SVM, Naive Bayes and decision tree classifiers. Isotonic 

Regression is more general than other calibration methods we discussed above.  The 

only restriction is that the mapping function must be isotonic (monotonically increasing). 

This means that given the predictions fi from a model and the true targets yi, the basic 

assumption in Isotonic Regression is that: 

yi = m (fi) + Єi, 

where m is an isotonic function. Then given a train set (fi, yi), the Isotonic Regression 

problem is to find the isotonic function m’ that: 

2
))((minarg' fizyizm

 

2.3.6 Other Cost-sensitive Learning Methods  
 

 Cost-sensitive specification 

Cost-sensitive specialisation (Webb 1996) involves specializing aspects of a classifier 

associated with high misclassification cost and generalizing those associated with low 

misclassification cost, the aim is to reduce the total cost.  It is inspired by the theorem of 

decreasing inductive power which suggests that elements of a classifier having high 

misclassification cost should be specialized in order to minimize the proportion of false 

positives to true positives.  In terms of decision trees, the leaves associated with classes 

of high cost are specialized, leaves having lower cost are generalized.  One advantage of 

cost-sensitive specialization is that it does not require accurate misclassification cost.  

Only the relative ordering of them is required. 

In his paper, Webb suggested that cost-sensitive specialisation is widely applicable 

and simple to implement. It could be used to augment the effect of standard cost-
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sensitive induction techniques and directly extended to test application cost sensitive 

induction tasks.  It could also be applied in conjunction with alternative approaches to 

classification cost sensitive learning in the expectation of further boosting the effect of 

those approaches. 

 

 Cost-sensitive CBR System 

Wilke et al. (1996) presented a new algorithm, called KNNcost, for learning feature 

weights for CBR (case based reasoning) systems used for classification. Unlike other 

CBR algorithms, KNNcost considers the profit of a correct and the cost of an incorrect 

decision.  Their method is based on conjugate gradient and it uses an integrated decision 

value matrix within the error function.  They have shown that the method based on cost 

minimization is much more effective than the method based on accuracy, namely 

KNNacc and both provide improvements over initial CBR systems.  However, their 

evaluation has only covered one application domain of very limited size, and they did 

not compare their algorithm to other existing methods. 

 

 Cost-sensitive Genetic Programming  

Kwedlo and Kretowski (2001) proposed a new cost-sensitive approach consists in 

modifying the existing system called EDRL-MD (Evolutionary Decision Rule Learner 

with Multivariate Discretization).  EDRL-MD learns decision rules using a genetic 

algorithm.  It learns rules by simultaneously searching for threshold values for all 

continuous-valued attributes. This approach is called multi-variate discretization. 

To convert EDRL-MD for cost-sensitive learning they modified the fitness function 

used to guide the search process.  The changes allow the genetic algorithm to minimize 

the expected misclassification cost rather than the error rate.  They also presented the 

cost-sensitive methods for resolving conflicts between rules and for choosing a default 

class. 

Li et al. (2005) presented a constrained genetic programming method (CGP), which 

is a GP based cost-sensitive classifier.  Similar to EDRL-MD, CGP is capable of 

building decision trees to minimize not only the expected number of errors, but also the 

expected misclassification cost through a novel constraint fitness function. 
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2.3.7 Cost-sensitive Learning with Multiple Costs 
The cost-sensitive learning methods mentioned previously mainly focus on reducing the 

misclassification cost and ignore the test cost, which is not true in many real world 

applications.  Recently, researchers started to consider both test cost and 

misclassification cost (Turney 1995, 2000; Zubek and Dietterich 2002; Greiner et al. 

2002; Ling et al. 2004). The objective is to minimize the expected total costs of test and 

misclassification. 

Turney (1995) developed a learning system, called ICET, a cost-sensitive algorithm 

that employs genetic search to tune parameters used to construct decision trees. Each 

decision tree is built using Nunez' ICF criterion (described at the end of this section), 

which selects attributes greedily, based on their information gain and costs.  Turney's 

method adjusts the test costs to change the behavior of Nunez' heuristic so that it builds 

different trees. These trees are evaluated on an internal holdout data set using the real 

test cost and misclassification cost. After several trials, the best set of test cost found by 

the genetic search is used by the Nunez' heuristic to build the final decision tree on the 

entire training data set. Because Turney simply modifies the attribute selection in C4.5 

to add attribute costs when implementing the Nunez' criterion, his algorithm can deal 

with continuous attributes and with missing attribute values. Turney (1995) is also a 

seminal work laying the foundations of cost-sensitive learning with both attribute cost 

and misclassification cost. Turney compares his algorithm with C4.5 and with 

algorithms sensitive only to attribute cost (Norton, Nunez and Tan). He does not 

compare ICET with algorithms sensitive to misclassification cost only, because in his 

experiments he used simple misclassification cost matrices (equal costs on diagonal, 

equal costs off diagonal) which make algorithms sensitive only to misclassification cost 

equivalent to minimizing 0/1 loss. ICET outperformed the simpler greedy algorithms on 

several medical domains from the UCI repository. 

In Zubek and Dietterich (2002), the cost-sensitive learning problem is casted as a 

Markov Decision Process (MDP), and an optimal solution is given as a search in a state 

space for optimal policies.  For a given new case, depending on the values obtained so 

far, the optimal policy can suggest a best action to perform in order to minimize the 

misclassification cost and the test cost. While related to other work, their research 
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adopts an optimal search strategy, which may incur very high computational cost to 

conduct the search. 

Similar in the interest in constructing an optimal learner, Greiner et al. (2002) 

studied the theoretical aspects of active learning with test cost using a PAC learning 

framework. It is a theoretical work on a dynamic programming algorithm (value 

iteration) searching for best diagnostic policies measuring at most a constant number of 

attributes. Their theoretical bound is not applicable in practice, because it requires a 

specified amount of training data in order to obtain close-to-optimal policies. 

Ling et al. (2004) proposed a new method for building and testing decision trees 

involving misclassification cost and test cost.  The task is to minimize the expected total 

cost of test and misclassification. It assumes a static cost structure where the cost is not 

a function of time or cases. It also assumes the test cost and the misclassification cost 

have been defined on the same cost scale, such as the dollar cost incurred in a medical 

diagnosis. At the end of section 2.3.7, we will provide more details of this work.  

 Following the work in Ling et al. (2004), Qin et al. (2004) proposed a general 

framework for involving multiple costs in different cost scales. The task is to minimize 

one cost scale and control other cost scales as per specified budgets. Chai et al. (2004) 

proposed a test cost sensitive Naive Bayes network.  Ling and Yang worked on test 

strategies in test cost sensitive learning (Ling et al. 2005; Yang et al. 2006), and they 

aimed to find the best test attribute set for decision making.  Zhang et al. (2005) 

considered the cost-sensitive learning in data with missing values and concluded that 

some data are left as unknown in domain of test cost-sensitive learning and could be 

useful for better decisions. 

Some of these test cost-sensitive learning methods are discussed below: 

 

 EG2 

EG2 (Núñez 1991) is a decision tree induction algorithm that uses the Information Cost 

Function (ICF) for selection of attributes.  It is a modified version of ID3 (Quinlan 

1989), the predecessor of a popular decision tree induction algorithm C4.5.  ICF selects 

attributes based on both their information gain and their cost.  The ICF for the i-th 

attribute, ICFi, is defined as follow: 
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where Ii is the information gain associated with the i-th attribute at a given stage in 

the construction of the decision tree and Ci is the cost of measuring the i-th attribute, 

and w is an adjustable parameter between 0 and 1. 

EG2 is able to reduce the overall cost by selecting attributes with less test cost and 

larger information gain to split. 

 

 CS-ID3 

CS-ID3 (Tan 1993) is a decision tree algorithm that selects the split attribute which 

maximizes the following function: 

Ci
IiC

2
 

It is very similar to EG2, where Ii is the information gain associated with the i-th 

attribute at a given stage in the construction of the decision tree and Ci is the cost of 

measuring the i-th attribute.  However, CS-ID3 does not build a full decision tree then 

classify examples.  Instead, it only constructs a lazy ,ree (a decision path) for each test 

example to classify them. 

 

 IDX 

IDX (Norton, 1989) is also a decision tree algorithm that selects the split attribute that 

maximizes the following function: 

Ci
IiC  

Same as EG2 and CS-ID3, in the above function, Ii is the information gain 

associated with the i-th attribute at a given stage in the construction of the decision tree 

and Ci is the cost of measuring the i-th attribute.  In C4.5, at each step, a greedy search 

strategy is used to choose the attribute with the highest information gain ratio.  IDX uses 

a look-ahead strategy that looks n tests ahead, where n is a parameter that may be set by 

the user.  
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 ICET 

ICET is a hybrid of a genetic algorithm and a decision tree induction algorithm.  The 

genetic algorithm evolves a population of biases for the decision tree induction 

algorithm.  The genetic algorithm is GENESIS (Grefenstette 1986).  The decision tree 

induction algorithm is EG2.  ICET manipulates the bias of EG2 by adjusting the 

parameters Ci and w.  In the original design of EG2, Ci is the attribute test cost.  But in 

ICET, it is treated as a bias parameter. 

In ICET, the genetic algorithm GENESIS begins with a population of 50 

individuals.  EG2 is run on each one of them to build a corresponding decision tree.  

The “fitness” of the individual is the total of test and misclassifications costs averaged 

over the number of cases.  In the next generation, the population is replaced with new 

individuals generated from the previous generation.  The fittest individuals in the first 

generation have the most offspring in the second generation.  After a fixed number of 

generations, ICET stops and outputs the decision tree generated by the fittest individual. 

 

 MDP 

In Zubek and Dietterich (2002)’s paper, cost-sensitive learning problem is casted as a 

Markov Decision Process (MDP), and solutions are given as searching in a state space 

for optimal policies.  For a given new case, depending on the values obtained, the 

resulting policy can suggest an optimal action to perform in order to minimize both the 

misclassification and the test costs.  Their admissible search heuristic is shown to reduce 

the problem search space remarkably.  However, it may take very high computational 

cost to conduct the search process.  In addition, to reduce over-fitting, they have 

introduced a supplementary pruning heuristic named statistical pruning. 

 

 Cost-sensitive Naive Bayes 

Chai et al. (2005) presented a test Cost-sensitive Naive Bayes (CSNB) classifier which 

modifies the Naive Bayes classifier by including a test strategy which determines how 

unknown attributes are selected to perform test on in order to minimize the sum of 

misclassification cost and test cost.  In the framework of CSNB, attributes are 
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intelligently selected for testing to get both sequential test strategies and batch test 

strategies. 

 

 Test Cost-sensitive Decision Tree 
Ling et al. (2004) proposed a new method for building and testing decision trees 

involving misclassification cost and test cost, called the TCSDT classification. The task 

is to minimize the expected total cost of test and misclassification. It assumes a static 

cost structure where the cost is not a function of time or cases. The TCSDT 

classification is based on C4.5. When building a decision tree, at each step, instead of 

choosing an attribute that minimizes the entropy (as in C4.5), the TCSDT classification 

chooses an attribute that reduces and minimizes the total of misclassification cost and 

test cost, for the split.  Similar to C4.5, the TCSDT classification chooses a locally 

optimal attribute without backtracking. To make a decision tree cost-sensitive, the 

decision on which attribute to split on is determined by calculating the sum of 

misclassification and test cost for every possible split, and, of course, choosing the 

lowest.  

TCSDT can be applied to many real world applications.  For example, in medical 

diagnosis, it costs money to request a blood test, X-ray, or other types of test, some tests 

can be quite expensive. Doctors often have to balance the cost of a test and the accuracy 

of the diagnosis (prediction) to decide what tests should be performed.  If a test is too 

expensive compared to the potential reduction of misclassification cost, it is desirable to 

skip the test. TCSDT can automate this decision process and minimize the total cost of 

test and misclassification. 

Elkan (2001) points out that this decision tree approach may lead to a classification 

model that minimizes the cost of misclassification of the training set, but does not 

produce an optimal model when applied to unseen data, mainly because of over-fitting. 

That is, when a decision tree is built, some branches may be built reflecting anomalies 

in the training data due to noise or outliers. This will lead to the algorithms perform well 

only on the training data but poor on the test data. 

Recently, two pre-pruning methods have been proposed by Du et al. 2007 to avoid 

data over-fitting for the TCSDT classification. The first method is to build a decision 
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tree with maximum of two levels. The second method is when building the decision 

trees, setting a threshold of cost reduction (threshold = FP + FN) for the potential splits. 

If the cost reduction is less than the threshold, a leaf node is formed; no further split will 

be performed. Their experimental results show that the two pre-pruning methods 

perform better than the original TCSDT as well as C4.5 on the selected UCI data sets. 

However, the data over-fitting problem in the TCSDT classification is still not well 

studied.   Although the TCSDT classification extends C4.5 by using minimal cost as the 

splitting criterion, it has the same deficiencies as other decision tree algorithms when 

producing class probabilities.  For decision trees in general and TCSDT in specific, 

there are two reasons why they cannot provide accurate posterior probability estimation, 

as pointed out by Zadrozny and Elkan (2001). Firstly, there is a high bias because 

decision trees always try to create homogeneous leaves and the probabilities of classes 

are always close to zero or one.  Secondly, the reliability of class probabilities is low if 

there are only a few instances in a leaf. 

 

 Multiple Scale Cost-sensitive Decision Tree 

Qin et al. (2004, 2005) argue that cost sensitive decision tree algorithm must consider 

the resource budget when building trees and classifying test examples.  Based on the 

decision tree built by Ling et al. (2004), they propose a new decision tree algorithm 

which considers multiple cost scales in the tree building and testing process.  In their 

algorithm, misclassification cost and test cost can be on the same scale if both of them 

can be converted to dollar values.  They can be on different scales if one of them cannot 

be converted.  Other resource costs such as time cost are always on different scales.  

When building decision trees, instead of using total cost as the split criterion, they use 

cost gain ratio (cost gain / resource cost) to split.  In their paper, a resource budget is set 

for each resource.  During the testing, if an example is run out of resource, it has to stop 

at the internal node which represents the attribute.  Missing values are handled in the 

same way as that in Ling et al. (2004). 

The aim of Qin et al. (2004)’s decision tree algorithm is to minimize the 

misclassification cost in respect to limited resource budget.  In their framework, 

misclassification cost does not have a budget.  All other resources have limited budget.  

Multiple resource costs, such as test cost, time cost and computation cost, can be 
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involved in the decision process.  The decision tree built by Ling et al. (2004) becomes 

a special case of this more general cost sensitive decision tree building framework. 

2.4 Other Related Works 

2.4.1 Feature Selection 

Feature selection (also called attribute selection) is an important research area of data 

mining and machine learning.  It is a kind of data pre-processing strategy.  Many 

classification algorithms such as nearest neighbour and decision tree can be benefited 

from an effective feature selection process.  The reason is in practice, the real world 

data sets often contain noisy data and irrelevant/distracting/correlated attributes which 

often “confuse” classification algorithms, and results in data over-fitting and poor 

predication accuracy on unseen data. 

Many feature selection methods were developed over the years in practical data 

mining and machine learning research, such in Statistics and Pattern Recognition.  The 

two commonly used approaches are the filter approach and the wrapper approach.  The 

filter approach selects features using a pre-processing step which is independent of the 

induction algorithm.  The main disadvantage of this approach is that it totally ignores 

the effects of the selected feature subset on the performance of the induction algorithm.  

On the contrary, in the wrapper approach, the feature subset selection algorithm 

conducts a search for a good subset using the induction algorithm itself as a part of the 

evaluation function. The accuracy of the induced classifiers is estimated using accuracy 

estimation techniques (Kohavi and John 1997). 

Most previous feature selection research focuses on improving predication 

accuracy. To the best of our knowledge, the impact of using feature selection to improve 

cost-sensitive classifier performance is not well studied. We believe, due to the fact that 

if properly designed, the feature selection approach can effectively remove the noisy 

data and irrelevant/distracting/correlated attributes from training set so that our cost-

sensitive KNN algorithms can find “better” neighbours with the most relevant attributes 

which minimizes misclassification cost. 
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2.4.2 Ensemble Method 

Ensemble data mining method, also known as Committee Method or Model Combiner, 

is a data mining method that leverages the power of multiple models to achieve better 

prediction accuracy than any of the individual models could on their own. The 

algorithm works as below: 

Firstly, base models are built using many different data mining algorithms.  

Then a construction strategy such as forward stepwise selection, guided by some 

scoring function, extracts a well performing subset of all models. The simple 

forward model selection works as follows:  

 Start with an empty ensemble;  

 Add to the ensemble the model in the library that maximizes the 

ensemble's performance to the error (or cost) metric on a hill-climb set; 

 Repeat Step 2 until all models have been examined; 

 Return that subset of models that yields maximum performance on the 

hill-climb set. 

Ensemble learning methods generate multiple models. Given a new example, the 

ensemble passes it to each of its multiple base models, obtains their predictions, and 

then combines them in some appropriate manner (e.g., averaging or voting). Usually, 

compared with individual classifiers, ensemble methods are more accurate and stable. 

Some of the most popular ensemble learning algorithms are Bagging, Boosting and 

Stacking. 

Evaluating the prediction of an ensemble typically requires more computation than 

evaluating the prediction of a single model, so ensembles may be thought of as a way to 

compensate for poor learning algorithms by performing a lot of extra computation. 

2.5 Experiment Settings 
 
 Weka Workbench 



Chapter 2     Background and Related Work 30 

 

Weka workbench (Witten and Frank 2000) is a collection of data mining and machine 

learning algorithms and data processing tools.  It is an open source, java based software.  

It is designed so that you can quickly try out existing data mining methods on new data 

sets in flexible ways.  It provides extensive support for the end to end process of 

experimental data mining. 

All the experiments in this research will be conducted in Weka to validate the 

proposed methods and algorithms.  The experimental results are used in the next step to 

evaluate and improve the proposed methods and algorithms.  The methods and 

algorithms are evaluated from the aspects of both academic research and their 

usefulness in real world applications. 

 Data Sets 

Below is the list of data sets used in this thesis: 

Dataset No. of attributes No. of examples Class distribution 
(P/N) 

KDD-98 481 3000 164/2836 

Statlog (heart) 14 270 120/150 

Australia 16 653 296/357 

Breast 9 683 239/444 

Ecoli 6 332 102/230 

Heart 8 261 98/163 

Credit-g 21 1000 300/700 

Car 7 1728 134/1594 

Hypothyroid 30 3772 291/3481 

Sick 30 3772 231/3541 

Credit-a 15 690 307/383 

Diabetes 9 768 268/500 

kr-vs-kp 37 3196 1527/1699 

mushroom 23 8124 3916/4208 

nursery 9 12960 4320/8640 

optdigits 65 1143 571/572 

page-blocks 11 5473 560/4913 

spambase 58 4601 1813/2788 

splice 62 2423 768/1655 

vowel 14 990 90/900 
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waveform-

5000 

41 3347 1655/1692 

pendigits 17 2288 1144/1144 

 

 

These data sets are chosen based on the following criteria: 

 Data sets should be two-class because the new algorithms developed in this PhD 

study currently can only handle two-class data sets. This condition is hard to 

satisfy and we resorted to converting several multi-class data sets into two-class 

data sets by choosing the least prevalent class as the positive class and union all 

other classes as the negative class. For two-class data sets, we always assign the 

minority class as the positive class and the majority class as the negative class. 

 The experiments in this thesis do not focus on the data sets with many missing 

values, so all the data sets we selected do not have many missing values. If any 

examples have missing values, we either remove them from the data sets (for all 

the UCI data sets) or replace them using Weka’s “ReplacingMissingValues” 

filter (for the KDD-98 data set). 

 These data sets include both balanced and unbalanced class distributions.  The 

imbalance level (the ratio of major class size to minor class size) in these data 

sets varies from 1.0 (Pendigits) to 17.3 (KDD-98). 

 
 New Algorithms 

The main new algorithms we developed in this PhD study are described in the below 

table: 
# Name Category  Purpose of Design Platform 

Coded 

1 TCSDT-MS TCSDT Test Cost Sensitive Decision Tree with M-

Smoothing 

Weka 

2 TCSDT-FS TCSDT Test Cost Sensitive Decision Tree with 

Feature Selection 

Weka 

3 TCSDT-TP TCSDT Test Cost Sensitive Decision Tree with Weka 
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Threshold Pruning 

4 Direct-CS-KNN KNN Direct Cost Sensitive KNN Classification Weka 

5 Distance-CS-

KNN 

KNN KNN Classification with Cost Sensitive 

Distance Function 

Weka 

6 MSCSDT-PF Multiple 

Cost Units 

Multiple-Unit  Cost Sensitive Decision Tree 

with Test Resource Budget Constraint 

Weka 

7 MSCSDT-

PFAS 

Multiple 

Cost Units 

Attribute Selection Using Performance First 

Strategy And  Test Resource Budgets, Then 

Use The Selected Attributes To Build Cost 

Sensitive Decision Tree Directly 

Weka 

8 MSCSDT-

PFAS-Lazy 

Multiple 

Cost Units 

Attribute Selection Using Performance First 

Strategy And  Test Resource Budgets For 

Each Test Example, Then Use The Selected 

Attributes To Build Cost Sensitive Decision 

Tree Directly To Classify The Example 

Weka 

9 Direct-EM Semi-

supervised 

Direct Classification with Expectation 

Maximization 

Weka 

10 CS-EM Semi-

supervised 

Cost Sensitive Classification with 

Expectation Maximization 

Weka 

 

2.6 Summary  
In this Chapter, we brought an up-to-date review of the existing cost-sensitive learning 

framework and prevailing cost-sensitive learning methods.  There are three major 

categories of these cost-sensitive learning methods.  Each of them is implemented by 

changing one of the three components of the learning framework: the training data, the 

learning algorithm and the output of the learned model.   

By changing the training data or the output of the learned model, any error based 

classifier can be used to make cost-sensitive decisions.  This is the major benefit of the 

learning methods in these categories.  Compared to changing the output of the learned 

model, changing the training data is more straightforward and easier to implement.  

Some researchers found that on some data sets, normally with relatively balanced class 

distributions, simple methods such as resample perform surprisingly well.  However, 

the major drawback of changing the training data is that it can only apply to 2-class data 

sets or multi-class data sets with a particular type of cost matrix.  Most of methods of 
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changing the output of the learned model involve calculating the probability of a test 

example which belongs to a certain class.  As we discussed in section 2.3.5, popular 

data mining algorithms such as Decision tree and Naive Bayes tend to produce 

inaccurate class probability estimates, therefore cannot be used directly to generate cost-

sensitive learning models.  Several methods such as smoothing and binning are 

proposed by researchers to tackle this problem.  Some convincing results were found on 

certain test data sets. 

Changing individual learning algorithms to be cost-sensitive is also very popular 

and was explored by many researchers in recent years.  Decision tree, Naive Bayes, 

Neural Networks and SVM are among the most popular algorithms that were modified 

cost-sensitive.  However, since these modern algorithms are already very sensitive to 

different data sets and class distributions, adding an extra level of complexity, cost, 

makes them even more sensitive, especially when the misclassification costs or the class 

distributions are very unbalanced.  It is common that these methods perform very well 

on some data sets and poor on others.  Data over-fitting is also an issue with these 

modified algorithms. 

 Furthermore, we discussed the latest progress in test cost-sensitive learning which 

aims to reduce the total cost of the test and the misclassification.  C4.5 Decision tree is 

the mostly modified algorithm to consider both test cost and misclassification cost when 

making splits and classifying examples.  As we just mentioned above, modern 

algorithms such as C4.5 are very sensitive to different data sets and class distributions.  

Adding misclassification cost, test cost and other types of cost for the algorithms to 

handle makes them too sensitive to be used in real world applications.  They may 

generate good result on training data but normally does not produce an optimal model 

when applied to unseen data, mainly because of over-fitting.  It is still a challenging task 

to combine multiple types of costs in cost sensitive learning research. 

At the end, we specified the experiment settings of the tests we want to do as part of 

this PhD research, including the new methods and algorithms we are going to develop 

and all the data sets used in the experiment. 

 



 

 

Chapter 3 Handling Over-fitting in Test 

Cost-sensitive Decision Tree 

Learning 
Like other learning algorithms, cost-sensitive learning algorithms must face a 

significant challenge, over-fitting, in an applied context of cost-sensitive learning. 

Specifically speaking, they can generate good results on training data but normally do 

not produce an optimal model when applied to unseen data in real world applications.  It 

is called data over-fitting. In this Chapter we deal with the issue of data over-fitting by 

designing three simple and efficient strategies, feature selection, smoothing and 

threshold pruning, against the TCSDT (test cost-sensitive decision tree) method. The 

feature selection approach is used to pre-process the data set before applying the 

TCSDT algorithm. The smoothing and threshold pruning are used in a TCSDT 

algorithm before calculating the class probability estimate for each decision tree leaf. To 

evaluate our approaches, we conduct extensive experiments on the selected UCI data 

sets across different cost ratios, and on a real world data set, KDD-98 with real 

misclassification cost. The experimental results show that our algorithms outperform 

both the original TCSDT and other competing algorithms on reducing data over-fitting. 

3.1 Introduction 
Existing cost-sensitive classification  approaches incorporate the misclassification cost 

and other costs in the classification technique, thus provide practical classification result 

in a multiple-cost environment. However, they face a significant challenge, over-fitting, 

in an applied context of cost-sensitive learning. Specifically speaking, they can generate 

good results on training data but normally do not produce an optimal model when 

applied to unseen data in real world applications. 

If a decision tree induction algorithm generates a decision tree that depends too 

much on irrelevant features of the training instances, and performs well only on training 
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data but poorly on unseen data, the data over-fitting happens.  Many previous works 

have been done to tackle the over-fitting problem in traditional decision tree learning.  

These works fall into the following three main categories: 

 Pre-pruning – this involves a “termination condition” to determine when it is 

desirable to terminate some of the branches prematurely when a decision tree is 

generated. 

 Post-pruning – this approach generates a complete decision tree and then 

removes some of the branches with an aim of improving the classification 

accuracy on unseen data. 

 Data pre-processing – this approach does not try to simplify the resulting 

decision tree directly. It indirectly tries to reach a simplification through the 

training data used by the learning algorithm. The aim of the data pre-processing 

is to find an optimal number of characteristics in order to build a simpler 

decision tree. 

Among them, post-pruning is the most commonly used method. However, standard 

error based pruning methods are not suitable for cost-sensitive learning, because they 

are based on accuracy maximization. As mentioned in Elkan (2001), the overall 

conclusion of Bradford et al. (1998) is that the best option is either no pruning or what 

they called “Laplace pruning”.  Domingos and Provost (2003) showed that decision tree 

class probability estimates can be improved by skipping the pruning phase and 

smoothing the distributions by applying Laplace correction. Zadrozny and Elkan (2001) 

proposed to use an un-pruned decision tree and transform the scores of the leaves by 

smoothing them. They pointed out that the Laplace correction method doesn’t work 

well for datasets with a skewed class distribution. They suggested using a smoothing 

method called m-estimation. The above efforts are efficient for dealing with the data 

over-fitting in direct cost-sensitive learning (only considering the misclassification cost) 

applications.  

In this Chapter, we tackle the data over-fitting issue where multiple costs must be 

taken into account in a learning application. It is well-known that multiple-costs-

sensitive learning is different from direct cost-sensitive learning, and the above efforts 

cannot be simply applied to solve the data over-fitting for multiple-costs-sensitive 
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learning applications.  Therefore, Du et al. (2007) proposed two pre-pruning methods to 

reduce data over-fitting for the TCSDT classification. Different from the pre-pruning 

approach, in this research we deal with the issue of data over-fitting by designing three 

new, simple and efficient strategies, feature selection, smoothing and threshold pruning, 

against the TCSDT method. Briefly described, our strategies reduce data over-fitting by 

simplifying the final decision tree and improving the probability estimates produced by 

the TCSDT classification on the unseen data.  The feature selection method removes the 

noisy and less relevant features from training data, The smoothing method can provide 

much better, more calibrated posterior probability estimation on the unseen data, and the 

threshold pruning method makes the estimation statistically more reliable (by pruning a 

decision tree leaf with number of examples or cost reduction is less than a predefined 

threshold). The feature selection method is used to pre-process the training data before 

the TCSDT algorithm is applied.  The smoothing and the threshold pruning are used in 

the TCSDT algorithm before calculating the class probability estimate for each decision 

tree leaf. 

Among the three new methods we’ve just proposed, feature selection is a major 

research area in data mining and machine learning. Previous research mainly focuses on 

using the feature selection to improve classification accuracy (Kohavi and John, 1997). 

In this research, we explore the effectiveness of using feature selection to tackle TCSDT 

data over-fitting. Our expectation is that by removing the noisy and less relevant 

features from the training data, we can build a much simpler decision tree which not 

only reduces misclassification cost but also test cost on the unseen data.  Different from 

the m-estimation that Zadrozny and Elkan (2001) proposed, in the TCSDT classification, 

our smoothing method can also involve in the tree-building process.  The smoothed 

probability estimates are then used to calculate the potential misclassification cost for 

each split.  Some unnecessary splits will be avoided; hence we reduce test cost as well.  

Finally, we use cross validation to determine the m value in our smoothing approach.  

The threshold pruning method is different from any error based pruning or the “Laplace 

pruning” proposed by Bradford et al. (1998), it uses a set of predefined thresholds, some 

are cost related, to determine if a decision tree leaf is to be pruned or not.  These three 

methods can be applied to the TCSDT classification independently or together. 
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Our experimental results show that when test cost is considered, compared to the 

original TCSDT, Cost-sensitive C4.5, and the two TCSDT pre-pruning methods 

proposed by Du et al. (2007), our new methods, feature selection, smoothing and 

threshold pruning can reduce the total of misclassification and test cost on most of the 

UCI data sets we tested.  In addition, we evaluate our new methods on a real world data 

set, KDD-98, with real misclassification cost.  We compare our new methods with other 

competitors using AUC (Area under ROC curve), which is widely used by researchers 

to evaluate the effectiveness of cost-sensitive classification algorithms. The test results 

also in favour of our new methods especially feature selection and smoothing.  

3.2 TCSDT with Feature Selection, Smoothing and Threshold 

Pruning 

3.2.1 TCSDT Classification by Smoothing 
As we described in Chapter 2, several methods have been proposed for obtaining better 

probability estimates from decision tree classifiers in direct cost-sensitive learning. 

Zadrozny and Elkan (2001) proposed to use an un-pruned decision tree and transform 

the scores of the leaves by smoothing them.  They call this method m-estimation.  In 

order to reduce the total of misclassification and test cost, we propose two changes to 

the original m-estimation: First we use cross valuation to determine the m value for 

different data sets.  It is more proper than a fixed value.  Second, we use the smoothed 

probability estimate together with cost matrix to calculate the misclassification cost for 

each potential split.  

Now let’s look at the m-estimation formula we specified in Chapter 2 again. In order 

to explain the impact of m-estimation to the TCSDT data over-fitting issue, we 

represent the formula in a slightly different way: 

b
mN

m
N
N

mN
Nxi i)|(Pr  

As we can see from this formula, the value m controls the balance between relative 

frequency and prior probability. It has the following impacts to TCSDT: 

 In many real world data sets, noise is often expected in the training examples, 

and the noisy data is the main cause of the data over-fitting issue. With m-
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estimation, m can be set higher so that the noisy value for Ni/N plays less 

important role in the final estimation and data over-fitting is reduced. 

 In a decision tree leaf, if the number of examples (N) is small, without 

smoothing, the probability estimation provided by this leaf (Ni/N) is 

statistically unstable. This is another cause of the data over-fitting issue. 

However, with m-estimation, N/(N+m) is close to 0 and m/(N+m) is close to 1, 

so that the probability estimation is shifted towards the base rate (b). It works 

particularly well on data sets with skew class distribution. 

In the experiment section, we apply this smoothing method to the TCSDT 

classification, and compare this approach to the original TCSDT, Cost-sensitive C4.5 

and other cost-sensitive decision tree algorithms, as well as the threshold pruning and 

feature selection approach we described below. 

3.2.2 TCSDT Classification with Threshold Pruning 
For decision tree algorithms, a most common way to avoid data over-fitting is pruning 

technique. However, standard methods for pruning decision trees are highly sensitive to 

the prevalence of different classes among training examples. If all classes except one are 

rare, then C4.5 often prunes the decision tree down to a single node and classifies all 

examples as members of the common class. Such a classifier is useless for decision-

making if failing to recognize an example in a rare class is an expensive error (Elkan 

2001). Therefore, traditional error based pruning methods are inadequate for the 

TCSDT classification.  In this Chapter, we plan to use a new method, named threshold 

pruning to prune a TCSDT.  It uses the following thresholds to determine whether or 

not a decision leaf needs to be pruned. 

 Minimum number of examples in a leaf. This can be arbitrary number N (for 

example, 50) or a proportion P (for example, 10 percent) of the total examples in the 

data sets. In this paper, we set this threshold to min (N, P). This means we prune a 

decision tree leaf when it contains less than N examples and less than P percent of 

the total examples. 

 Cost reduction. We set  a threshold of cost reduction (ThresholdCR) to the sum of 

the FP cost, the FN cost and the test cost (TC1+TC2+…+TCn): 
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ThresholdCR = FP + FN + (TC1+TC2+…+TCn) 

The first threshold makes sure that there are enough examples in each decision tree 

leaf so that it can produce a reliable probability estimate.  The second threshold utilizes 

the misclassification cost and the test cost to make the cost reduction of each split more 

significant in order to reduce data over-fitting. 

3.2.3 TCSDT Classification with Cost-sensitive Feature Selection 
Most of real world data sets contain noisy data and irrelevant/disturbing features. For 

top down decision tree building algorithms, when you process further down the tree, 

less and less data is available to help make the selection decision. The impact of noisy 

data increases. At the some point, the irrelevant/disturbing attribute will look good and 

are selected. Then the data over-fitting happens and causes the poor classification 

performance on unseen data. Feature selection strategy can certainly help in this 

situation. 

As mentioned in Chapter 2, there are many different feature selection methods 

developed.  They fall into two categories: the filter approach and the wrapper approach. 

As per the study of Kohavi and John (1997), the wrapper approach generally perform 

better than the filter approach, and some significant improvement in accuracy was 

achieved on some data sets for decision tree algorithm and naive bayes algorithm using 

the wrapper approach. 

The wrapper approach proposed by Kohavi and John (1997) conducts a search in the 

space of possible parameters. Their search requires a state space, an initial state, a 

termination condition and a search engine.  The goal of the search is to find the state 

with the highest evaluation, using a heuristic function to guide it.  They use prediction 

accuracy estimation as both the heuristic function and the evaluation function.  They’ve 

compared two search engines, hill-climbing and best-first, and found that the best-first 

search engine is more robust, and generally performs better, both in accuracy and in 

comprehensibility as measured by the number of features selected. 

In this Chapter, we apply this wrapper approach to TCSDT algorithm to reduce its 

data over-fitting issue.  TCSDT is a cost-sensitive learning algorithm. The ultimate goal 

is to minimize the total cost. We cannot simply apply Kohavi and John’s wrapper 

approach directly on TCSDT.  Therefore, we propose two variations of Kohavi and 
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John’s feature selection wrapper to overcome TCSDT data over-fitting issue.  The main 

difference is using cost-sensitive estimation as both the heuristic function and the 

evaluation function. 

The first approach is using Total Cost: 

Total Cost = Misclassification Cost + Test Cost, 

where the Test Cost is defined in section 2.2. 

The second approach is using F-measure: 

F-measure = (2 x recall x precision) / (recall + precision), 

where precision is the fraction of retrieved instances that are relevant, while recall is 

the fraction of relevant instances that are retrieved. 

Our preliminary test shows that the “Total Cost” works well when the test cost is 

also considered. If only misclassification cost is considered, “F-measure” is a better 

choice. So for our feature selection method, we use “F-measure” in our first experiment 

(all test cost is set to 0) and “Total Cost” in our second experiment (test cost is set to 

between 0 and 100). 

The other settings in our experiment are similar: The search space we chose is that 

each state represents a feature subset. So there are n bits in each state for a data set with 

n features.  Each bit indicates whether a feature is selected (1) or not (0).  We always 

start with an empty set of features.  The main reason for this setup is computational. It is 

much faster to build a decision tree using only a few features in a data set. We chose the 

best-first search algorithm as our search engine.  The following summary shows the 

setup of our TCSDT feature selection problem for a simple data set with three features: 

 
TCSDT feature selection setup for data set with three features: 

State:    A Boolean vector, one bit per feature 

Initial state:   A empty set of features (0,0,0) 

Search space:   (0,0,0) (0,1,0) (1,0,0) (0,0,1)  

    (1,1,0) (0,1,1) (1,0,1) (1,1,1) 

Search engine:   Best first 

Evaluation function:  Total Cost or F-measure 
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3.3 Experimental Evaluation 

3.3.1 Experiment Setup 
The main purpose of this experiment is to evaluate the performance of the TCSDT 

classification with feature selection, smoothing and threshold pruning, named as 

TCSDT-FS, TCSDT-SM and TCSDT-TP, discussed above by comparing their average 

total (misclassification and test) cost and other key performance measurements such as 

AUC across different cost ratios (FN/FP) against the original TCSDT, C4.5 with 

Minimum Expected Cost and the two pre-pruning methods proposed by Du et al. (2007).  

The last method, TCSDT-Train, is the same as the original TCSDT, but utilizing full 

data set to build decision tree and classify examples.  All these algorithms are 

implemented in Weka (Witten and Frank 2000), and they are listed in Table 2. 

 
Table 3.1 List of Decision Tree Algorithms and Abbreviations 

 

Please note that we will be conducting three experiments using the above algorithms. 

As we mentioned in the previous section (section 3.2.3), There are two variations of our 

TCSDT Feature Selection strategy, the first is using the “Total Cost” (the sum of 

misclassification cost and test cost) to guide the feature selection process, the second is 

using the “F-measure”. 

We then conduct experiment on ten data sets chosen from UCI repository, and one 

real world data set, KDD-98. The details of these data sets are listed in Table 3.2. The 

# Method Abbreviation Base  Classifier 

1 Original TCSDT TCSDT TCSDT 

2 TCSDT M-Smoothing TCSDT-MS TCSDT 

3 TCSDT Threshold Pruning TCSDT-TP TCSDT 

4 TCSDT Feature Selection TCSDT-FS TCSDT 

5 C4.5 with Minimum Expected Cost C4.5-CS C4.5 

6 TCSDT 2 Level Tree - Du et al. (2007) TCSDT-2L TCSDT 

7 TCSDT Pruning - Du et al. (2007) TCSDT-Prune TCSDT 

8 Original TCSDT – Full Data Set as Training Set TCSDT-Train TCSDT 
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imbalance level (the ratio of major class size to minor class size) in these data sets 

varies from 1.2 (Australia) to 17.3 (KDD-98). 

 
Table 3.2. Summary of the Data set Characteristics 

Dataset No. of 
attributes 

No. of 
examples 

Class 
distribution 

(P/N) 
KDD-98 481 3000 164/2836 
Statlog (heart) 14 270 120/150 
Australia 16 653 296/357 
Breast 9 683 239/444 
Ecoli 6 332 102/230 
Heart 8 261 98/163 
Credit-g 21 1000 300/700 
Car 7 1728 134/1594 
Hypothyroid 30 3772 291/3481 
Sick 30 3772 231/3541 
Vowel 14 990 90/900 

 

We conduct three experiments on above datasets with different cost matrixes: 

In the first experiment, we use the real world data set, KDD-98 and the UCI 

Statlog(heart) data set.  Only misclassification cost is considered, all test costs are set to 

0. We then evaluate the classifier performance by calculating their misclassification cost, 

AUC and the size of the decision tree generated by different algorithms.   

 The Statlog(heart) data set is one of a few data sets in UCI library with 

recommended cost matrix. The cost matrix is normalized and the cost ratio 

(FN/FP) is set to 5.  The cost of TP and TN are both set to 0.  This data set has 

been used extensively in cost-sensitive learning research previously. 

 The KDD-98 data set is a real world data set from the direct marketing domain. 

It is a large and challenging data set which was first used in the 1998 KDD data 

mining contest, and later on it became very popular as a benchmark for the 

evaluation of cost-sensitive learning algorithms (Zadrozny and Elkan 2001). 

This data set contains information about people who donated to charity. The 

classification task is to choose which person to mail a request for a new 

donation.  The misclassification cost information in this data set is available for 

each example.  The original data set consists of 95412 training examples and 
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96367 test examples. The cost of sending out a request (including the mail cost) 

is $0.68.  The overall response rate is 5.1%. The average donation amount is 

$15.6.  In our experiment, we randomly select a subset of 3000 examples from 

the entire data set. In the subset, the response rate is 5.57%, and the average 

donation amount is $15.8. The initial cost matrix can be setup as below: 
 Table 3.3 Initial Cost Matrix for KDD-98 (positive: made donation, negative: no donation) 

  Actual positive Actual negative 

Predict positive 0.68 – 15.8 =  -15.12 0.68 

Predict negative  0 0 

 Then we can transform this cost matrix to the one below so that it is in the same 

format as all the other cost matrixes we used in this paper. This means the cost 

of FN is 15.12 and the cost of FP is 0.68. The cost ratio is FN/FP = 22.2. 
Table 3.4 Transformed Cost Matrix for KDD-98 (positive: made donation, negative: no   

donation) 
  Actual positive Actual negative 

Predict positive 0 0.68 

Predict negative  15.12 0 

 

In the second experiment, nine UCI data sets are used to perform the test.  The 

misclassification cost FP is always set to 100, and FN is set to an integer varying from 

200 to 2000 (200, 500, 1000, 2000 respectively).  We assume that the misclassification 

of the minority class always incurs a higher cost. This is to simulate real-world 

scenarios in which the less frequent class is the more important class. The cost of TP 

and TN are both set to 0. Both misclassification cost and test cost are considered in this 

experiment.  All test costs are randomly set between 0 and 100.  We then evaluate the 

classifier performance by calculating their average total cost (misclassification cost and 

test cost).  

Both the first and the second experiment are repeated for 10 times and ten-folder 

cross validation method is used in all tests to prevent over-fitting data. 

As you will see in the next section, our new methods perform really well on the 

selected real world data sets and many UCI data sets. However, compared to the 

original TCSDT algorithm, they did not always win. On some UCI data sets, such as 

Ecoli, the new methods actually increased the misclassification and the test cost. In the 

third experiment, we try to find out in what circumstance, our new methods do not 

perform well, and what is the reason behind this. 
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3.3.2 Experiment Results and Discussion 
In this section, we present an experimental comparison of the decision tree algorithms 

presented in the previous section.  

The first experiment results are listed in Table 3.5. It lists the key performance 

measurements such as average misclassification cost and AUC for the KDD-98 and 

Statlog(heart) data sets when test cost is set to 0. Since test cost is not considered in this 

experiment, we use “F-measure” to guide the feature selection process of our TCSDT-

FS algorithm. The aim of this experiment is to show that on real world data sets and 

with real misclassification cost, compared to the original TCSDT algorithm, our three 

new methods can successfully reduce data over-fitting. 

Table 3.5 Key performance measurements on KDD-98 and Statlog(heart) when 

test cost is set to 0 

Table 3.5.1  Average Misclassification Cost 
Data Set TCSDT TCSDT-SM TCSDT-TP TCSDT-FS 

KDD-98 0.8558 0.6428 0.7889 0.6569 

Statlog(heart) 1.0593 0.444 0.5185 0.3556 

 

Table 3.5.2  Area Under ROC (AUC) 
Data Set TCSDT TCSDT-SM TCSDT-TP TCSDT-FS 

KDD-98 0.503 0.535 0.515 0.527 

Statlog(heart) 0.674 0.717 0.699 0.768 

 

Table 3.5.3 No. of Leaves / Tree Size 
Data Set TCSDT TCSDT-SM TCSDT-TP TCSDT-

FS 
KDD-98 1653/1862 1653/1862 275/302 459/505 

Statlog(heart) 252/288 252/288 19/21 19/23 
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Table 3.5.4  Average Model Training Time (seconds) 
* The test was performed on a PC with Intel Pentium Dual Core 1.66G Hz CPU and 1GB memory 

Data Set TCSDT TCSDT-SM TCSDT-TP TCSDT-FS 

KDD-98 0.31 0.31 0.32 0.05 (plus 327 seconds feature selection time) 

Statlog(heart) 0.006 0.006 0.006 0.003 (plus 5 seconds feature selection time) 

 

From the first experiment, we can draw some conclusions. First, in term of reducing 

misclassification cost, all our three new methods have achieved lower cost than that of 

the original TCSDT algorithm. On the KDD-98 data set, TCSDT-SM achieved the 

lowest cost; TCSDT-FS comes closely the second.  Compared to original TCSDT, both 

of them reduced the misclassification cost by more than 20%.  On the Statlog(heart) 

data set, TCSDT-FS achieved the lowest cost, TCSDT-SM comes the second.  Both of 

them reduced the misclassification cost by more than 50%.  Second, by using AUC, a 

well-recognized measurement in cost-sensitive learning, we can see our three new 

methods always achieved higher AUC than the original TCSDT algorithm.  Third, our 

two methods, TCSDT-FS and TCSDT-TP have significantly reduced the decision tree 

size on both data sets. On KDD-98 data set, TCSDT-FS reduced the tree size by more 

than 70% and TCSDT-TP reduced the tree size by more than 80%. On Statlog(heart) 

data set, both TCSDT-FS and TCSDT-TP reduced the tree size by more than 90%. 

Fourth, in terms of the model training time, the proposed new methods, TCSDT-SM 

and TCSDT-TP are comparable to the original TCSDT algorithm, and TCSDT-FS is 

much faster because it builds decision trees based on a reduced number of attributes. 

However, TCSDT-FS takes a lot longer time on feature selection which is not required 

by other methods. Overall, TCSDT-FS uses more CPU time than other competing 

methods. 

The test results of our second experiment are shown in Table 3.6 and 3.7.  Table 3.8 

lists the average total cost on selected nine UCI data sets when test cost is set to 

between 0 and 100. Table 3.7 lists the corresponding results on the t-test. Each w/t/l in 

the table means our two new algorithms at each row wins in w data sets, ties in t data 

sets and loses in l data sets. 
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Table 3.6 Average total cost on selected UCI data sets when test cost is set to 

between 0 and 100 

Table 3.6.1 Cost Ratio (FP=100, FN=200) 

Data Set TCSDT C4.5-CS TCSDT-2L TCSDT-Prune TCSDT-SM TCSDT-TP TCSDT-FS 

australia 46.77 113.84 48.06 44.63 43.87 44.62 43.98 

breast 27.43 75.21 25.94 42.44 24.9 41 23.76 

ecoli 33.54 57.89 39.81 38.24 35.84 37.59 34.71 

heart 53.14 149.61 54.49 54.68 52.94 50.64 49.87 

german_credit 60 180.83 60 60 60 60 60 

car 15.51 107.63 15.51 15.51 15.51 15.51 15.51 

hypothyroid 14.63 75.84 13.86 15.22 14.08 14.65 14.32 

sick 11.85 86.41 11.05 11.52 11.8 11.91 11.42 

vowel 18.18 105.62 18.18 18.18 18.18 18.18 18.18 

 

Table 3.6.2  Cost Ratio (FP=100, FN=500) 

Data Set TCSDT C4.5-CS TCSDT-2L TCSDT-Prune TCSDT-SM TCSDT-TP TCSDT-FS 

australia 50.3 131.33 51.73 51.17 50 50.01 51.05 

breast 38.84 92.14 35.70 41.13 33.98 40.93 33.2 

ecoli 39.34 56.4 38.23 39.42 37.64 38.38 38.12 

heart 56.13 171.61 55.56 55.56 56.07 55.56 55.56 

german_credit 70 209.06 70 70 70 70 70 

car 38.42 105.1 38.77 38.77 38.66 37.56 37.14 

hypothyroid 32 76.88 28.26 31.54 29.87 30.2 29.98 

sick 27.2 85.87 27.43 27.33 26.49 27.2 26.32 

vowel 45.45 107.78 45.45 45.45 45.45 45.45 45.45 

 

Table 3.6.3  Cost Ratio (FP=100, FN=1000) 

Data Set TCSDT C4.5-CS TCSDT-2L TCSDT-Prune TCSDT-SM TCSDT-TP TCSDT-FS 

australia 54.85 144.82 54.69 54.71 54.33 54.59 54.22 

breast 49.1 96.65 47.91 46.95 41.14 46.16 43.15 

ecoli 35.9 59.89 44.64 47.04 39.31 44.14 41.57 

heart 55.56 189.56 55.56 55.56 55.56 55.56 55.56 

german_credit 70 225.31 70 70 70 70 70 

car 61.31 101.13 57.1 60.2 57.2 60.51 58.83 

hypothyroid 46.73 73.38 42.5 45.22 43.93 45.75 45.88 

sick 42.41 87.33 41.51 46.24 40.68 48.11 39.78 

vowel 90.91 110.33 90.91 90.91 90.91 90.91 90.91 
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Table 3.6.4  Cost Ratio (FP=100, FN=2000) 

Data Set TCSDT C4.5-CS TCSDT-2L TCSDT-Prune TCSDT-SM TCSDT-TP TCSDT-FS 

australia 54.67 171.99 54.67 54.67 54.67 54.67 54.67 

breast 70.59 119.29 54.25 57.94 51.02 51.24 50.3 

ecoli 43.95 61.59 45.62 49.67 42.2 42.75 43.64 

heart 56.98 209.86 55.56 55.56 55.68 55.56 54.24 

german_credit 70 236.35 70 70 70 70 70 

car 69.38 104.28 66.34 68.1 67.29 67.83 67.45 

hypothyroid 57.49 75.54 52.6 56.5 53.98 60.08 55.37 

sick 68.44 104.54 64.65 66.32 58.04 66.8 57.63 

vowel 90.91 114.85 90.91 90.91 90.91 90.91 90.91 

Table 3.7 Summary of t-test when test cost is set to between 0 and 100 

Cost Ratio (FP:FN)   TCSDT C4.5-CS TCSDT-2L TCSDT-Prune 
100:200 
  TCSDT-SM 5/3/1 9/0/0 4/3/2 5/3/1 

TCSDT-TP 4/3/2 9/0/0 3/3/3 5/3/1 

TCSDT-FS 5/3/1 9/0/0 4/3/2 6/3/0 
100:500 
  TCSDT-SM 7/2/0 9/0/0 4/2/3 6/2/1 

TCSDT-TP 5/3/1 9/0/0 3/3/3 5/3/1 

TCSDT-FS 6/3/0 9/0/0 4/3/1 6/3/0 
100:1000 
  TCSDT-SM 5/3/1 9/0/0 4/3/2 6/3/0 

TCSDT-TP 4/3/2 9/0/0 3/3/3 3/3/3 

TCSDT-FS 5/3/1 9/0/0 4/3/2 5/3/1 
100:2000 
  TCSDT-SM 6/3/0 9/0/0 3/3/3 5/3/1 

TCSDT-TP 5/3/1 9/0/0 2/4/3 3/4/2 

 TCSDT-FS 7/2/0 9/0/0 4/3/2 6/3/0 

 

From the second experiment, we can also draw several conclusions. First, for all the 

data sets we have tested, C4.5-CS always incurs higher cost. This is because when 

building decision trees, C4.5 totally ignores the test cost for each split, and is very likely 

to pick up an attribute with high test cost to split.  This also proves that error based 

pruning is not suitable for cost-sensitive classification which requires more accurate 

probability estimate. Second, our three new methods, TCSDT classification with feature 

selection, smoothing or threshold pruning outperform the original TCSDT classification 

on most of the selected UCI data sets across different cost ratios. Third, comparing our 

methods with Du et al. (2007)’s two pre-pruning methods, our methods outperform 

TCSDT-Prune, and comparable to TCSDT-2L. Forth, among our three new methods, 

feature selection and smoothing method generally perform better than threshold pruning 

on most of the data sets across different cost ratios in terms of reducing the total cost, 
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especially when cost ratios are high (for example, 20) and on data sets with more 

skewed class distribution (for example, sick), but no algorithm win all the time on all 

data sets. 

Why did not our new methods perform well on some UCI data sets? We try to 

answer this question in the next experiment. First we examine the test result on the UCI 

data sets. We take the test in Table 3.6.1 as an example. In this test, our two best 

performing methods, TCSDT-SM and TCSDT-FS won on 5 data sets, drew on 3 data 

sets (German_credit, Car and Vowel) and lost on 1 data set (Ecoli). 

On all the 3 data sets, German_credit, Car and Vowel, the original TCSDT 

algorithm generates a decision tree with a single node. This is caused by the limitation 

of the original TCSDT algorithm.  Our new methods are not designed to fix this 

limitation. 

Ecoli is a small, low-dimension data set. It contains 6 attributes and 332 examples. 

In this experiment, we select this data set, together with KDD-98, Statlog(heart) and 

Sick. We also include a new test method, TCSDT-Train, which is the original TCSDT 

algorithm but using the full data set (contrast to the other methods tested in this paper, 

which all use 10-folder cross validation) to build classification model and classify 

examples. The difference of test result between the original TCSDT and the TCSDT-

Train shows how much data over-fitting of the original TCSDT on a test data set. To 

make it consistent, we use the same test setting as the previous experiments. The cost 

ratio for Sick and Ecoli is set to FP=100, FN=200. We then measure the 

misclassification errors, the average total cost and the tree size.  The full test results are 

shown in Table 3.8.  

Table 3.8 Performance measurements on selected real world and UCI data sets 

Table 3.8.1 Misclassification Errors (Correct/Incorrect) 
Data Set TCSDT TCSDT-Train 

KDD-98 2537/463 2999/1 

Statlog(heart) 171/99 267/3 

Sick 2437/1335 2776/996 

Ecoli 320/12 321/11 
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Table 3.8.2  Average Total Cost 
Data Set TCSDT TCSDT-Train 

KDD-98 0.8558 0.0002 

Statlog(heart) 1.0593 0.0111 

Sick 11.85 10.97 

Ecoli 33.54 33.53 

 

Table 3.8.3  No. of Leaves / Tree Size / Tree Level 
Data Set TCSDT and TCSDT-Train 

KDD-98 1653/1862/6 

Statlog(heart) 252/288/7 

Sick 8/12/2 

Ecoli 6/8/2 

 

From this experiment, we can clearly see that on the real world data set, KDD-98 

and the Statlog(heart), the issue of TCSDT data over-fitting is very serious. On KDD-98, 

TCSDT generates a decision tree which misclassifies 463 test examples, and its average 

misclassification cost is 0.8558, while the TCSDT-Train generates a decision tree which 

only misclassifies 1 test example, and its average misclassification cost is 0.0002.  On 

Statlog(heart), TCSDT generates a decision tree which misclassifies 99 test examples, 

and its average misclassification cost is 1.0593, while the TCSDT-Train generates a 

decision tree which only misclassifies 3 test examples, and its average misclassification 

cost is 0.0111.  Since these two data sets contain large amount of noisy data and 

irrelevant attributes (for example, KDD-98 has 481 attributes!), the original TCSDT 

algorithm generates very large decision trees for these two data sets and they perform 

well on training data but badly on unseen instances. In this situation, our new methods, 

TCSDT-SM and TCSDT-FS can effectively reduce the data over-fitting by providing 

better, smoother probability estimation, removing irrelevant attributes and noisy data, 

and generating smaller, more stable decision trees.  

On KDD-98 data set, TCSDT generates a decision tree with 1653 leaves, on average 

there are only less than 2 examples in each leaf. Since the number of examples in each 

leaf is so small, the probability estimation provided by this decision tree on unseen data 

is very poor. TCSDT-SM can make a significant improvement in such a situation by 

providing smoother and much stable probability estimation. TCSDT-FS on the other 
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hand, removes most of the irrelevant/disturbing attributes and generates a much smaller 

and more stable decision tree which improves the classifier performance on unseen data. 

On Statlog(heart) data set, exactly the same scenario. TCSDT generates a decision 

tree with 252 leaves, on average there is only 1 example in each leaf.  Of course the 

probability estimation provided by this decision tree on unseen data is very poor too.  

Compared to the original TCSDT algorithm, our new methods made a significant 

improvement on this data set.  Both TCSDT-SM and TCSDT-FS reduced the average 

misclassification cost by more than 50%, and TCSDT-FS reduced the tree size by more 

than 90%. 

However, most of the UCI data sets are small, low-dimension and relatively clean. 

On these data sets, the TCSDT data over-fitting issue is not that obvious. Therefore, the 

space of improvement that our new methods can make is not as big as that we have 

achieved on KDD-98 and Statlog(heart). Sometime, our new methods actually 

downgrade the performance. For example, on Ecoli data set, TCSDT generates a 

decision tree which misclassifies 12 test examples, and its average misclassification cost 

is 33.54, while the TCSDT-Train generates a decision tree which misclassifies 11 test 

examples, and its average misclassification cost is 33.53. In this case, the performance 

of the TCSDT and the TCSDT-Train are almost the same. The TCSDT data over-fitting 

issue on Ecoli data set can be ignored. The size of the decision tree generated by 

TCSDT is quite small too. It has only 2 levels and 6 leaves. Therefore, our new methods 

did not make any improvements on this data set. However, on the other UCI data sets 

such as Sick, our new methods can make noticeable improvements in terms of reducing 

the total cost of misclassification and test. 

3.3.3 Experimental Analysis 
TCSDT, like other top down decision tree algorithms, suffers from the problem of over-

fitting to the training data. When applying it to some real world data sets which contain 

noisy data and a large number of attributes, the resulting trees are often very large and 

over-specified, with very low predictive power for unseen data. In addition, traditional 

error based pruning is not suitable to TCSDT. The two pre-pruning methods developed 

by Du et al. (2007) work well on some data sets but suffer from some common issues 

with the pre-pruning approach: the stopping threshold is not easy to get right for 



Chapter 3   Handling Over-fitting in Test Cost-sensitive Decision Tree Learning   51 

 

different data sets. If it is set too high, the decision tree may terminate division before 

the benefits of subsequent splits become evident. If it is set too low, little simplification 

can be achieved. 

In our experiments, we’ve demonstrated that our new methods can reduce TCSDT 

data over-fitting from the following perspectives: 

 Remove noisy data and irrelevant/disturbing attributes from the training 

data. For example, the KDD-98 data set has 481 attributes. Most of them are 

irrelevant or useless to making predictions.  Our TCSDT-FS algorithm 

removes most of these attributes and results in a much smaller and simpler 

tree with lower misclassification cost.  The tree size has been reduced by 

more than 70% and the misclassification cost has been reduced by more than 

20%. 

 Improve class membership probability estimation. Our TCSDT-SM 

algorithm performs extremely well on both KDD-98 data sets and other UCI 

data sets across different cost ratios. Our other two methods, TCSDT-FS and 

TCSDT-TP also indirectly improve the class membership probability 

estimation by reducing decision tree levels and number of leaves. One thing 

worth mentioning is the TCSDT-2L algorithm, developed by Du et al. 

(2007), can also effectively simplify the decision tree and improve the class 

membership probability estimation. It performs well on most of the selected 

UCI data sets. 

 Cost reduction. The major difference between TCSDT and other traditional 

decision tree algorithms is that TCSDT is cost-sensitive. Our new methods, 

specifically TCSDT-FS and TCSDT-TP, are designed to consider the cost of 

misclassification and test when selecting features and pruning tree. They are 

more effective than other cost-insensitive methods such as error based 

pruning when being applied on TCSDT. 

However, our experiments also show that on some small, low-dimension and 

relatively clean UCI data sets, the proposed new methods do not always make 

improvement.  Further tests and inspection uncover that the difference is caused by the 

following factors: 
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 Data sets. Real world data sets always contain noisy data and a large number 

of attributes. Most of these attributes are irrelevant and distractive to making 

a good decision. TCSDT algorithm is easily affected by the noise and tends 

to build decision trees which are over-specified. They usually perform 

extremely well on training data but poorly on unseen data. Our new methods 

can effectively tackle this issue and reduce data over-fitting.  On the other 

hand, some UCI data sets are small, low-dimension and clean. On these data 

sets, the TCSDT data over-fitting issue is not that serious. The original 

TCSDT algorithm can build decision trees which perform really well on 

unseen data too (for example, on Ecoli data set).  In this case, the space of 

improvement that our new methods can make is limited.  

 Resulting decision trees. For data sets with noise and many attributes, 

TCSDT tends to build very large decision trees which give a perfect fit for 

the training data, but lack of ability to generalize. For example, as we 

demonstrated in the last experiment, on Statlog(heart) data set, the original 

TCSDT algorithm builds a decision tree with 7 levels and 252 leaves, on 

average each leaf only contains 1 example. The probability estimation 

provided by this decision tree on unseen data is poor and not reliable. 

Compared to the original TCSDT algorithm, our new methods made some 

significant improvements in terms of providing better probability estimation, 

reducing tree size and misclassification cost.  However, on another data set, 

Ecoli, the original TCSDT algorithm builds a small and effective decision 

tree which only has 2 levels and 6 leaves. When applied to unseen data, this 

decision tree only misclassifies 12 examples and its average total cost is 

33.54. The result is very close to the test when applying this decision tree on 

the training data, in which it misclassifies 11 examples and its average total 

cost is 33.53. In this case, it is very hard for our new methods to make 

further improvement. 

 TCSDT algorithm. On some UCI data sets (for example, German_credit, 

Car and Vowel), the TCSDT algorithm generates decision trees which 

contains only a single node. This is caused by the limitation of the TCSDT 
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algorithm itself.  Like other top down decision tree build algorithms, for each 

potential split, TCSDT chooses a locally optimal attribute without 

backtracking. It is very efficient but the resulting tree may not be globally 

optimal. When data set is small and test cost is high (compared to 

misclassification cost), quite often it cannot find any suitable attributes to 

split and only generates a decision tree with a single node. The proposed new 

methods are not designed to fix this issue. In our future work, we plan to 

further develop the TCSDT algorithm to make it more robust. For example, 

adding backtracking function to the tree building process. 

3.4 Conclusions 
In this Chapter, we applied three simple and efficient methods, feature selection, 

smoothing and threshold pruning, on the TCSDT algorithm to reduce data over-fitting.  

Our methods modify the TCSDT algorithm by introducing feature selection process 

before building decision tree, smoothing and pruning process before calculating the 

class probability estimate for each decision tree leaf.  Our experiments show that the 

modified algorithms outperform the original TCSDT and other competing algorithms on 

the selected data sets (including a real world data set, KDD-98 and ten UCI data sets) 

across different cost ratios.  

 



 

 

Chapter 4 Cost-sensitive K-Nearest 

Neighbours Classification 
K-Nearest Neighbors (KNN) classification finds the K nearest neighbours of a test 

example in training data and then predicts the class of the example as the most frequent 

one among the neighbours. KNN is one of the most popular and well-studied 

classification algorithms in data mining and machine learning. Although in recent years 

cost-sensitive learning attracted significant attention from data mining researchers, and 

lots of research had been done to make many traditional error based classifiers cost-

sensitive. Most of these research focused on model based classifiers, such as Decision 

Tree, Naïve Bayes and Support Vector Machine (SVM), little research was conducted to 

thoroughly investigate the effective approaches which make instance based classifiers, 

such as KNN, cost-sensitive. In this Chapter we propose two simple and effective 

approaches, Direct-CS-KNN and Distance-CS-KNN to build cost-sensitive KNN 

classifiers. In order to deal with some practical issues on Direct-CS-KNN and Distance-

CS-KNN, we also propose several additional enhancements (smoothing, minimum-cost 

K value selection, feature selection and ensemble selection) to improve the performance 

of the new algorithms.  Our experiment results show that the proposed new cost-

sensitive KNN algorithms can effectively reduce misclassification cost, often by a large 

margin. And they consistently outperform CS-4.5 (cost-sensitive C4.5) on the UCI data 

sets we tested.  

4.1 Introduction  

KNN classification is one of the most popular and widely used instance-based 

learning algorithms. Different from model-based classification algorithms (i.e. training 

models from a given dataset and then predicting test examples with the models), it 

needs to store the training data in memory in order to find the “nearest neighbours” to 

answer a given query. To make KNN cost-sensitive, in this Chapter, we propose two 

simple but effective approaches, Direct-CS-KNN and Distance-CS-KNN aimed at 
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minimising the misclassification cost. In order to handle some challenges and 

difficulties encountered in our new algorithms, we also propose several additional 

methods - smoothing, minimum-cost K value selection, feature selection and ensemble 

selection, to further improve the performance of our new cost-sensitive KNN algorithms. 

These improvements can apply to both Direct-CS-KNN and Distance-CS-KNN.  

Our experiment results show that the proposed new cost-sensitive KNN algorithms 

can effectively reduce misclassification cost, often by a large margin. And they 

consistently outperform CS-4.5 (cost-sensitive C4.5) on the selected UCI data sets. 

4.2 KNN Classification 

KNN classification is an instance based learning algorithm which stores the whole 

training data in memory to compute the most relevant data to answer a given query. The 

answer to the query is the class represented by a majority of the K nearest neighbours. 

There are three key elements of this approach: a set of labelled examples, a distance 

function for computing the distance between examples, and the value of K - the number 

of nearest neighbours. To classify an unlabelled example, the distance of this example 

to the labelled examples is calculated, its K-nearest neighbours are identified, and the 

class labels of these nearest neighbours are then used to classify the unlabelled example 

(Wu et al. 2008). 

The choice of the distance function is an important consideration in KNN. 

Although there are other options, most instance based learners use Euclidean distance 

which is defined as below: 

 

 

, where X and Y are the two examples in data set, and Xi and Yi (i = 1 .. D) are their 

attributes. 

Once the nearest-neighbour list is selected, the test example can be classified based 

on the following two voting methods: 

1. Majority voting: 
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2. Distance-Weighted Voting:  
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where 2),'(/1 xixdwi  

There are several key issues that affect the performance of KNN. One is the choice 

of K. If K is too small, then the result could be sensitive to noisy data. If K is too large, 

then the selected neighbours might include too many examples from other classes. 

Another issue is how to determine the class labels, the simplest method is to take a 

majority vote (method 1), but this could be an issue if the nearest neighbours vary 

widely in their distance and the closer neighbours more reliably indicate the class of the 

test example. The other issue of method 1 is that it is hard to deal with cost-sensitive 

learning and imbalanced data sets. A more sophisticated approach, which is less 

sensitive to the choice of K, weights each example’s vote by its distance (method 2), 

where the weight factor is often taken to be the reciprocal of the squared distance 

( 2),'(/1 xixdwi
). 

KNN classifiers are lazy learners, unlike eager learners (e.g. Decision Tree and 

SVM), KNN models are not built explicitly. Thus, building the model is cheap, but 

classifying unknown data is relatively expensive since it requires the computation of the 

K-nearest neighbours of the examples to be labelled. This, in general, requires 

computing the distance of the test examples to all the examples in the labelled set, 

which can be expensive particularly for large training sets.  

4.3 Making KNN Cost-sensitive - the Proposed Approach  
In this Chapter, we focus on binary classification problems. We propose two approaches 

to make KNN classifier sensitive to misclassification cost, and several additional 

methods to further improve the cost-sensitive KNN classifier performance. 
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4.3.1 Direct Cost-sensitive KNN  
Our first approach is quite simple. We use KNN algorithm to train a traditional non-

cost-sensitive classifier. After the K nearest neighbours is selected, we calculate class 

probability estimate using the below formula: 

K
Kixi )|(Pr

,
        

where Ki is the number of selected neighbours whose class label is i.  Using the above 

probability estimate and formula (2.1) specified in Chapter 2, we can directly compute 

the optimal class label for each test example.  We call this approach DirectCS-KNN. 

 

In traditional cost-blind KNN classification, the K value is either fixed or selected 

using cross validation. When the K value is fixed, most of times it is quite small, such as 

3, 5, 7 etc. The KNN classifier performance is not impacted a lot by the variation of the 

K value.  However, the aim of our DirectCS-KNN is minimizing misclassification cost, 

the probability estimate (not the error rate) generated by the original KNN classifier is 

more important. In this case, the selection of an appropriate K value plays a critical role 

in terms of building a statistically stable cost-sensitive KNN classifier which can 

produce better probability estimate and reduce misclassification cost.  

 

In this Chapter, we will test the following three ways of selecting the K value: 

 Fixed value 

 Cross validation 

 Choose the K value which minimizes the misclassification cost in 

training set 

 

Although our DirectCS-KNN approach is straightforward and easy to implement, it 

has the following shortcomings: 

 If the K value selected is too small, the probability estimation provided 

by the KNN (Ki/K) is statistically unstable, it will cause data over-fitting 

and increase the misclassification cost to the test examples 
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 In many real world data sets, noise is often expected in the training 

examples, and KNN algorithm is particularly sensitive to the noisy data, 

therefore generates very poor probability estimate 

As we described in Chapter 2, several methods have been proposed for obtaining 

better probability estimate from traditional cost-blind classifiers in direct cost-sensitive 

learning. Zadrozny and Elkan (2001) proposed to use an un-pruned decision tree and 

transform the scores of the leaves by smoothing them.  They call this method m-

estimation.  The similar method can be applied to our DirectCS-KNN approach. In 

order to make DirectCS-KNN more stable and further reduce misclassification cost, in 

this Chapter, we propose two changes to the original m-estimation: First we use cross 

valuation to determine the m value for different data sets.  It is more proper than a fixed 

value.  Second, we use the smoothed probability estimate (together with cost matrix) at 

the step of determining the K value.  

Now let’s look at the m-estimation formula we specified in Chapter 2 again. In 

order to explain the impact of m-estimation to the performance of DirectCS-KNN 

approach, we represent the formula in a slightly different way: 

b
mK

m
K
K

mK
Kxi i)|(Pr  

As we can see from this formula, the value m controls the balance between relative 

frequency and prior probability. It has the following impacts: 

 To the noisy data, with m-estimation, m can be set higher so that the noisy 

value for Ki/K plays a less important role in the final estimation and the 

impact of noisy data is reduced. 

 When the K value is small, without smoothing, the probability estimation 

provided by the selected neighbors (Ki/K) is statistically unstable. However, 

with m-estimation, K/(K+m) closes to 0 and m/(K+m) closes to 1, so that the 

probability estimation is shifted towards the base rate b. It works particularly 

well on data sets with skew class distribution. 
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In the experiment section, we apply this smoothing method to the Direct-CS-KNN 

and Distance-CS-KNN (specified in section 4.3.2), and compare this approach to the 

other proposed variations of Cost-sensitive KNN algorithms. 

4.3.2 KNN with Cost-sensitive Distance Function  
The second approach involves modifying the distance function of the KNN algorithm. 

Let’s review the distance-weighted voting function in section 4.2: 
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where 2),'(/1 xixdwi  

Based on the second formula, in a binary decision case, we assume that the 

distance-weight of a test example to a positive training example is Wp, and the distance-

weight of the same test example to a negative training example is Wn. 

When misclassification cost is not considered, the training examples with the 

highest W values will be selected as the nearest neighbors regardless of their class labels. 

However, in a cost-sensitive situation, the cost of false positive (FP) and the cost of 

false negative (FN) might be very different. Selecting a nearest neighbor with different 

class labels incurs different potential cost.  To simplify the case, we assume that the cost 

of true positive (TP) and true negative (TN) are both 0. In cost-sensitive learning, the 

purpose is to minimize the misclassification cost instead of errors. Now we calculate the 

potential cost (Cp) of selecting a positive nearest neighbor is FP * Wn. And the potential 

cost (Cn) of selecting a negative nearest neighbor is FN * Wp. The training examples 

with the lowest potential cost should be selected as the nearest neighbors. 

We replace the distance-weighted voting function in the original KNN algorithm 

with this new cost-sensitive approach. The last step is to use the modified classifier to 

predict class labels for all test examples.  Be aware that for each test example, after all 

its nearest neighbors are selected, the above cost-sensitive distance-weighted voting 

approach and the cost matrix will still be used to calculate the class label which 

minimizes the misclassification cost. The detail of the algorithm is described below: 
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For each test example, the total distance-weight of all positive neighbors is Wpa, 

and the total distance-weight of all negative neighbors is Wna, where:  

 

Wpa = W1 + W2 + W3 + …… + Wk (k is the number of positive neighbors) 

Wna = W1 + W2 + W3 + …… + Wj (j is the number of negative neighbors) 

 

In this case we can define the probability of labeling an unlabelled example to P is: 

 

 Pp = Wpa/(Wpa+Wna) 

 

And the probability of labeling an unlabelled example to N is: 

 

Pn = Wna/(Wpa+Wna), 

 

where Pp + Pn = 1.  Now we calculate the potential cost (Cp) of labeling this test 

example to P is FP * Pn. And the potential cost (Cn) of labeling this test example to N is 

FN * Pp. 

If Cp > Cn, the unlabelled example is classified as N, and the probability of this 

prediction is Cp/(Cp + Cn). Otherwise, the unlabelled example is classified as P, and the 

probability of this prediction is Cn/(Cp + Cn). We call this approach Distance-CS-KNN. 

4.3.3 KNN with Cost-sensitive Feature Selection  
Most of real world data sets contain noisy data and irrelevant/disturbing features. One of 

the shortcomings of instance based learning algorithm such as KNN is that they are 

quite sensitive to noisy data and irrelevant/disturbing features, especially when the 

training data set is small. This issue can cause poor classification performance on 

unseen data.  Feature selection strategy can certainly help in this situation. 

As mentioned in Chapter 2, there are many different feature selection methods 

developed.  They fall into two categories: the filter approach and the wrapper approach. 

As per the study of Kohavi and John (1997), the wrapper approach generally perform 

better than the filter approach, and some significant improvement in accuracy was 
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achieved on some data sets for Decision Tree algorithm and Naïve Bayes algorithm 

using the wrapper approach. 

The wrapper approach proposed by Kohavi and John (1997) conducts a search in the 

space of possible parameters. Their search requires a state space, an initial state, a 

termination condition and a search engine.  The goal of the search is to find the state 

with the highest evaluation, using a heuristic function to guide it.  They use prediction 

accuracy estimation as both the heuristic function and the evaluation function.  They’ve 

compared two search engines, hill-climbing and best-first, and found that the best-first 

search engine is more robust, and generally performs better, both in accuracy and in 

comprehensibility as measured by the number of features selected. 

In this Chapter, we apply this wrapper approach to both of our Direct-CS-KNN and 

Distance-CS-KNN algorithm to improve classifier performance.  In cost-sensitive 

learning, the ultimate goal is to minimize the misclassification cost. We cannot simply 

apply Kohavi and John’s wrapper approach directly to our cost-sensitive KNN 

algorithms. Therefore, we propose a variation of Kohavi and John’s feature selection 

wrapper.  The main difference is using misclassification cost instead of error rate as 

both the heuristic function and the evaluation function. 

The other settings in our experiment are similar: The search space we chose is that 

each state represents a feature subset. So there are n bits in each state for a data set with 

n features.  Each bit indicates whether a feature is selected (1) or not (0).  We always 

start with an empty set of features.  The main reason for this setup is computational. It is 

much faster to find nearest neighbours using only a few features in a data set. We chose 

the best-first search algorithm as our search engine.  The following summary shows the 

setup of our cost-sensitive feature selection problem for a simple data set with three 

features: 

 

Cost-sensitive KNN feature selection setup for data set with three features: 

State:    A Boolean vector, one bit per feature 

Initial state:   A empty set of features (0,0,0) 

Search space:   (0,0,0) (0,1,0) (1,0,0) (0,0,1)  

    (1,1,0) (0,1,1) (1,0,1) (1,1,1) 
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Search engine:   Best first 

Evaluation function:  Misclassification Cost 

 

 

4.3.4 KNN with Cost-sensitive Stacking  
KNN classifier is very popular in many real world applications. The main reason is that 

the idea is straightforward and easy to implement. It is simple to define a dissimilarity 

measure on the set of observations.  However, handling the parameter K could be tricky 

and difficult, especially in cost-sensitive learning.  In this Chapter, we propose an 

ensemble based method, more specific, Cost-sensitive Stacking, to handle the 

parameter K. 

As we mentioned in Chapter 2, ensemble selection is a well-developed and very 

popular meta learning algorithm. It tends to produce a better result when there is a 

significant diversity among the classification models and parameters. Stacking is an 

ensemble technique whose purpose is to achieve a generalization accuracy (as opposed 

to learning accuracy) , and make it as high as possible. The central idea is that one can 

do better than simply list all predictions as to the parent functions which are consistent 

with a learning set. One can also use in-sample/out-of-sample techniques to find a best 

guesser of parent functions. There are many different ways to implement stacking. Its 

primary implementation is as a technique for combining generaliser, but it can also be 

used when one has only a single generaliser, as a technique to improve that single 

generaliser (Wolpert 1992). 

Our proposed Cost-sensitive Stacking algorithm works as below: 

Adding multiple cost-sensitive KNN classifiers with different K values to the stack, 

and learning a classification model on each; estimating class probability for each 

example by the fraction of votes that it receives from the ensemble; using formula (2.1) 

to re-label each training example with the estimated optimal class; and reapplying the 

classifier to the relabeled training set. The idea is similar to bagging approach used in 

MetaCost (Domingos 1999).  
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4.4 Experimental Evaluation 
4.4.1 Experiment Setup 
The main purpose of this experiment is to evaluate the performance of the proposed 

cost-sensitive KNN classification algorithms with feature selection and stacking, by 

comparing their misclassification cost and other key performance measurements such as 

AUC across different cost ratios (FN/FP) against another popular classification 

algorithm, C4.5 with Minimum Expected Cost.  All these algorithms are implemented 

in Weka (Witten and Frank 2000), and they are listed in Table 4.1 below. 

 

Table 4.1 List of Cost-sensitive Algorithms and Abbreviations 

 

Please note that we will be conducting three experiments using the above algorithms 

and six data sets chosen from UCI repository.  The details of these data sets are listed in 

Table 4.2. The imbalance level (the ratio of major class size to minor class size) in these 

data sets varies from 1.02 (Waveform-5000) to 8.8 (Page-blocks). 

 

# Method Abbreviation 
Base  

Classifier 

1 Direct Cost-sensitive KNN DirectCS-KNN KNN 

2 Direct Cost-sensitive KNN with Smoothing DirectCS-KNN-SM KNN 

3 Direct Cost-sensitive KNN with K value selection DirectCS-KNN-CSK KNN 

4 Distance Cost-sensitive KNN DistanceCS-KNN KNN 

5 Distance Cost-sensitive KNN with Feature Selection DistanceCS-KNN-FS KNN 

6 Distance Cost-sensitive KNN with Stacking DistanceCS-KNN-STK KNN 

7 C4.5 with Minimum Expected Cost CS-C4.5 C4.5 
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Table 4.2 Summary of the Data set Characteristics 

Dataset No. of attributes No. of examples 
Class distribution 

(P/N) 

Statlog (heart) 14 270 120/150 
Credit-g 21 1000 300/700 
Diabetes 9 768 268/500 
Page-blocks 11 5473 560/4913 
Spambase 58 4601 1813/2788 
Waveform-5000 41 3347 1655/1692 
   

We conduct three experiments on above datasets with different cost matrixes: 

In the first experiment, we use the UCI Statlog(heart) data set.  We evaluate the 

classifier performance by calculating the misclassification cost and AUC generated by 

the different variations of the Direct Cost-sensitive KNN algorithm and CS-C4.5.  

Below is a brief description of the Statlog(heart) data set: 

 The Statlog(heart) data set is one of a few data sets in UCI library with 

recommended cost matrix. The cost matrix is normalized and the cost ratio 

(FN/FP) is set to 5.  The cost of TP and TN are both set to 0.  This data set has 

been used extensively in cost-sensitive learning research previously. 

In the second experiment, we still use the Statlog(heart) data set to conduct the test.  

We evaluate the performance of our two new cost-sensitive algorithms, DirectCS-KNN 

and DistanceCS-KNN by calculating their misclassification cost and AUC.   

In the third experiment, five UCI data sets are used to perform the test.  The 

misclassification cost FP is always set to 1, and FN is set to an integer varying from 2 to 

20 (2, 5, 10, 20 respectively).  We assume that the misclassification of the minority 

class always incurs a higher cost. This is to simulate real-world scenarios in which the 

less frequent class is the more important class. The cost of TP and TN are both set to 0. 

We evaluate our DistanceCS-KNN classifier (and its variations) performance against 

CS-C4.5 by comparing their average misclassification cost.  

All of the three experiments are repeated for 10 times and ten-folder cross validation 

method is used in all tests to prevent over-fitting data. 

4.4.2 Experiment Results and Discussion 
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In this section, we present an experimental comparison of the cost-sensitive KNN and 

other competing algorithms presented in the previous section.  

The first experiment results are listed in Table 4.3. It lists the key performance 

measurements such as average misclassification cost and AUC for the Statlog(heart) 

data set. The aim of this experiment is to show that on this popular UCI data set and 

with the recommended misclassification cost, we can achieve better performance on 

DirectCS-KNN algorithm through smoothing (DirectCS-KNN-SM) and K-value 

selection with minimum-cost (DirectCS-KNN-CSK) approach. In this experiment, we 

chose a fixed K value (K=5) for both DirectCS-KNN and DirectCS-KNN-SM, and 

automatically select K value with minimum-cost (on training data) for DirectCS-KNN-

CSK. 

Table 4.3 Key performance measurements on Statlog(heart)  

Table 4.3.1 Average Misclassification Cost 
Data Set CS-C4.5 DirectCS-KNN DirectCS-KNN-SM DirectCS-KNN-CSK 

Statlog(heart) 0.6704 0.3815 0.3605 0.3556 

 

Table 4.3.2  Area Under ROC (AUC) 
Data Set CS-C4.5 DirectCS-KNN DirectCS-KNN-SM DirectCS-KNN-CSK 

Statlog(heart) 0.759 0.744 0.763 0.768 

 

From the first experiment, we can draw some conclusions. First, in term of reducing 

misclassification cost, our three new methods have achieved lower cost than CS-C4.5, 

all by a large margin. Compared to CS-C4.5, DirectCS-KNN reduced the 

misclassification cost by 43%, and both DirectCS-KNN-SM and DirectCS-KNN-CSK 

reduced the misclassification cost by more than 46%.  Second, by using AUC, a well-

recognized measurement in cost-sensitive learning, we can see our two new methods, 

DirectCS-KNN-SM and DirectCS-KNN-CSK achieved higher AUC than CS-C4.5, but 

the AUC of our DirectCS-KNN is slightly lower than CS-C4.5.  Third, among the four 

algorithms we tested, DirectCS-KNN-SM and DirectCS-KNN-CSK always perform 

better in terms of achieving lower misclassification cost and higher AUC. Overall, 

DirectCS-KNN-CSK is the best of the four algorithms. 

In the second experiment, we still use Statlog(heart) data set with the recommend 

cost matrix. This time we focus on our two new algorithms, DirectCS-KNN and 



Chapter 4     Cost-sensitive K-Nearest Neighbours Classification 66 

 

DistanceCS-KNN. We evaluate their performance by comparing their misclassification 

cost and AUC. Since the first experiment showed that smoothing and K-value selection 

with minimum-cost methods can reduce the misclassification cost of the DirectCS-KNN 

classifier, we apply both methods to the new cost-sensitive KNN algorithms, DirectCS-

KNN and DistanceCS-KNN to achieve better performance. The test results are shown in 

Table 4.4 below.  

Table 4.4 Key performance measurements on Statlog(heart)  

Table 4.4.1 Average Misclassification Cost 
Data Set DirectCS-KNN DistanceCS-KNN 

Statlog(heart) 0.3512 0.344 

 

Table 4.4.2 Area under ROC (AUC) 
Data Set DirectCS-KNN DistanceCS-KNN 

Statlog(heart) 0.7642 0.7688 

The second experiment is simple and straightforward, it shows that our modified 

cost-sensitive KNN algorithm, DistanceCS-KNN performs better than the more naïve, 

straightforward DirectCS-KNN algorithm. It reduces misclassification cost and 

increases AUC. This experiment sets up a good foundation for the next experiment in 

this chapter. In our last experiment, we will mainly focus on the DistanceCS-KNN 

algorithm and its variations. 

The test results of our last experiment are shown in Table 4.5 and 5.6.  Table 4.5 

lists the average misclassification cost on selected five UCI data sets. Table 4.6 lists the 

corresponding results on the t-test. Each w/t/l in the table means our new algorithm, 

DistanceCS-KNN and its variations, at each row wins in w data sets, ties in t data sets 

and loses in l data sets, against CS-C4.5. Similar to the second experiment, we applied 

both smoothing and K-value selection with minimum-cost methods on our DistanceCS-

KNN algorithm and its variations. 



Chapter 4     Cost-sensitive K-Nearest Neighbours Classification 67 

 

Table 4.5 Average misclassification cost on selected UCI data sets 

Table 4.5.1  Cost Ratio (FP=1, FN=2) 
Data Set DistanceCS-KNN DistanceCS-KNN-FS DistanceCS-KNN-STK CS-C4.5 

Diabetes 0.3758 0.3596 0.3633 0.3828 

Credit-g 0.428 0.417 0.402 0.435 

Page-blocks 0.0607 0.0592 0.0585 0.0422 

Spambase 0.1091 0.1044 0.0993 0.1052 

Waveform-5000 0.1341 0.1315 0.1298 0.1951 

 

Table 4.5.2  Cost Ratio (FP=1, FN=5) 
Data Set DistanceCS-KNN DistanceCS-KNN-FS DistanceCS-KNN-STK CS-C4.5 

Diabetes 0.5573 0.536 0.5352 0.6003 

Credit-g 0.598 0.5815 0.582 0.77 

Page-blocks 0.0965 0.0896 0.0838 0.0846 

Spambase 0.2006 0.1937 0.1864 0.2121 

Waveform-5000 0.1637 0.1596 0.1562 0.3756 

 

Table 4.5.3  Cost Ratio (FP=1, FN=10) 
Data Set DistanceCS-KNN DistanceCS-KNN-FS DistanceCS-KNN-STK CS-C4.5 

Diabetes 0.5898 0.5832 0.5869 0.8268 

Credit-g 0.717 0.6756 0.62 1.043 

Page-blocks 0.1214 0.1163 0.1031 0.1297 

Spambase 0.3019 0.2836 0.2712 0.3512 

Waveform-5000 0.1933 0.1896 0.1815 0.611 

 

Table 4.5.4  Cost Ratio (FP=1, FN=20) 
Data Set DistanceCS-KNN DistanceCS-KNN-FS DistanceCS-KNN-STK CS-C4.5 

Diabetes 0.7591 0.725 0.717 0.9635 

Credit-g 0.939 0.822 0.8161 1.258 

Page-blocks 0.1782 0.1665 0.1546 0.1838 

Spambase 0.4027 0.3817 0.3552 0.5781 

Waveform-5000 0.1963 0.1915 0.1848 1.0678 
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Table 4.6 Summary of t-test 
Cost Ratio (FP:FN)   CS-4.5-CS 

1:2 

  
DistanceCS-KNN 3/0/2 

DistanceCS-KNN-FS 4/0/1 

DistanceCS-KNN-STK 4/0/1 

1:5 

  
DistanceCS-KNN 4/0/1 

DistanceCS-KNN-FS 4/0/1 

DistanceCS-KNN-STK 5/0/0 

1:10 

  
DistanceCS-KNN 5/0/0 

DistanceCS-KNN-FS 5/0/0 

DistanceCS-KNN-STK 5/0/0 

1:20 

  
DistanceCS-KNN 5/0/0 

DistanceCS-KNN-FS 5/0/0 

 DistanceCS-KNN-STK 5/0/0 

 

From the last experiment, we can also draw several conclusions. First, for all the 

data sets we have tested, our cost-sensitive KNN algorithms generally perform better 

than CS-C4.5, the higher the cost ratio, the better our new algorithms perform. This is 

because CS-C4.5 ignores misclassification cost when building decision tree, it only 

considers cost at classification stage, while our cost-sensitive KNN algorithms consider 

misclassification cost at both classification stage and the stage of calculating distance 

weight.  Second, our two new improvements, DistanceCS-KNN-FS and DistanceCS-

KNN-STK outperform the original DistanceCS-KNN algorithm on most of the selected 

UCI data sets across different cost ratios.  Third, DistanceCS-KNN-STK is the best 

among all the four algorithms we tested, it is very stable and performs better than other 

competing algorithms across different cost ratios. 

4.5 Conclusions 

In this Chapter, we studied the KNN classification algorithm in the context of cost-

sensitive learning. We proposed two approaches, DirectCS-KNN and DistanceCS-KNN, 

to make KNN classifier sensitive to misclassification cost. We also proposed several 

methods (smoothing, minimum-cost K value selection, cost-sensitive feature selection 

and cost-sensitive stacking) to further improve the performance of our cost-sensitive 

KNN classifiers. We designed three experiments to demonstrate the effectiveness and 



Chapter 4     Cost-sensitive K-Nearest Neighbours Classification 69 

 

performance of our new approaches step by step. The experimental results show that 

compared to CS-C4.5, our new cost-sensitive KNN algorithms can effectively reduce 

the misclassification cost on the selected UCI data across different cost ratios. 

 



 

 

Chapter 5 Cost-Sensitive Classification 

with Multiple Cost Units 
Existing test cost-sensitive learning algorithms simply minimize the sum of 

misclassification cost and test cost. This makes the test cost always a dominant factor if 

it is not well set with suitable units. In this Chapter we propose an objective-resource 

framework for minimizing the misclassification cost (referred to objective cost) 

subjecting to given budgets for other costs (referred to resource costs), and apply the 

objective-resource framework to train a cost-sensitive decision tree by utilizing 

historical data. We conduct experiments for evaluating our algorithms with six 

benchmark UCI datasets, and demonstrate that our proposed approach outperform a 

group of existing cost-sensitive learning algorithms in a cost/budget-changing 

environment which mirrors the pressing demand of minimizing the objective cost while 

controlling the resource costs in medical diagnosis domain. 

5.1 Introduction  

Cost-sensitive learning is powerful for capturing the importance of the minority class in, 

such as medical diagnosis, modelling imbalanced/skewed data, resource-bounded 

problem solving, and enhancing the distinguishability of minority classes from majority 

ones. 

From an applied context of clinical diagnosis domain, the goal is to obtain a 

satisfied accuracy with minimal test cost. However, existing cost-sensitive learning 

algorithms simply minimize the sum of misclassification cost and test cost. It brings two 

problems: (1) How to convert those diverted costs into a unified unit/scale? (2) The test 

costs can always dominate the minimization cost if the test costs are not well set with a 

unified unit. Qin et al. (2004) raised these problems and proposed a general target-

resource framework involving multiple-unit costs, but their approach still aims to 

minimize the sum of misclassification cost and test cost. Here we redesign the 
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framework which minimizes the misclassification cost (in a unique cost unit, referred to 

objective cost) subjecting to given budgets of the test costs (referred to resource costs). 

Specifically, we train a cost-sensitive decision tree by distinguishing misclassification 

cost from resource costs. The new framework is useful in resource-bounded 

classification problem solving, and enhance the distinguishability of minority classes 

from the majority ones. 

As per Turney (2000), there are nine major types of cost involved in cost-sensitive 

learning, including misclassification cost, test cost, teacher cost, computation cost, 

intervention cost, unwanted achievement cost, human-computer interaction cost, cost of 

cases, and cost of instability. With the objective-resource framework, the objective cost 

is the misclassification cost and others are the resource costs. In real world applications, 

resource costs may include other costs such as the test cost, the teacher cost, the 

computation cost etc. 

In addition to the objective-resource framework, we also develop a cost-sensitive 

decision tree algorithm which utilizes historical data. In many real world applications, 

historical data can assist on minimizing different resource costs. However, it is difficult 

to incorporate the historical data into an existing cost-sensitive learning method. 

When dealing with complex and versatile medical data, different attributes may 

have different measurements and usage requirements. The scenario in Example 1 below 

highlights a new setting of cost-sensitive learning. 

Example 1: Assuming there are some medical tests for a medical diagnosis: test X 

needs 1 day and $3000; and Y needs 5 days and $1000. The test costs are valued in 

distinct units (test fee and test time). If the patient needs an urgent decision within 3 

days, then test X should be more suitable for him/her. On the other hand, if the patient 

holds a valid test result of X in his/her medical history, the doctor can certainly reset 

X’s test costs to zero before considering further tests.  

This setting in cost-sensitive learning brings us two new challenging issues: (1) The 

constraint of multiple-unit cost should be satisfied. (2) How to efficiently combine test 

data and medical history to the learning process. To address these issues, in this Chapter, 

we propose an objective-resource framework and a new lazy decision tree learning 
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algorithm. The proposed framework has some new concepts, such as objective cost and 

resource costs. With the new concepts, an attribute selection strategy is incorporated 

into a lazy decision tree algorithm to utilize the different resource costs with multiple 

cost units more efficiently when medical history is dynamically utilized in the tests.  

5.2 Preliminary  

5.2.1 Test-Cost-Sensitive Learning Framework with Unified Cost Unit 

For example, in the medical diagnosis domain, some medical tests, such as blood and 

urine tests, are quick and simple, but may not provide sufficient information for patients 

in complex conditions; some other tests, are crucial for the quality of diagnosis but cost 

much more.  Latest research effort (Turney 1995; Greiner, et al. 2002; Zubek and 

Dietterich 2002; Ling, et al. 2004; Sheng and Ling 2006; Sheng, Ling, Ni, and Zhang 

2006; Ling, Sheng, Yang 2006) aims to minimize the total cost of test and 

misclassification by assuming the two costs are measured with a unified unit, and any 

tests could be chosen with a predefined cost for the diagnosis. 

Test cost is the cost of obtaining the value of an attribute. Current test-cost-sensitive 

learning framework combines both the misclassification cost and the test cost in the 

learning process. It aims at minimizing the sum of the two costs. Table 5.1 is an 

example which shows the test costs for 6 test candidates. 

Table 5.1 Test costs for 6 test candidates 

When combining the test cost and the misclassification cost in the classification 

framework above, we often add test cost using Formula (2.1) in Chapter 2, i.e. total cost 

is the sum of all tested attributes for making a decision. Assuming there are m attributes 

for a test and each attribute k has a test cost tk, the cost set is set to T = {t1, t2, … tm}. 

Following Formula (2.1), the optimal prediction for an example x in test-cost-sensitive 

learning is class i that is a procedure of minimizing L’(x, i) in Formula (5.1) as follows. 

Test candidate A1 A2 A3 A4 A5 A6 

Test cost 50 20 10 10 5 5 
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, where L(x, i) is the misclassification cost as same as it is in Formula (2.1); p(k) is the 

probability of performing k-th test while estimating the true class distribution 

probability P(j|x); and C(x, T) is the sum of total test cost.   

A test-cost-sensitive learning framework is an extension of the classical cost-

sensitive learning framework, and it takes into account the test cost in learning process. 

Therefore, we have a property as follows: 

Property 1. L(x, i) in classical cost-sensitive learning framework is a special case 

of L’(x, i) in test-cost-sensitive learning framework. 

Proof: This property is obvious. We need only to set all the attributes’ test costs to 

zero and obtain the following result: 
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In other words, the objective of test-cost-sensitive learning framework is the same 

as classical cost-sensitive learning when all the test costs are set to 0. And classical cost-

sensitive learning framework is only a special case of test-cost-sensitive learning 

framework. 

While the previous research is useful for many real world applications, the above 

assumption failed to model the complex and versatile medical environment. This is 

because medical tests may require multiple costs on many distinct cost units and they 

might have to comply with specific constraints on each unit. As shown in Example 1, 

test X needs $3000 and 3 days and test Y needs $1000 and 10 days. It is hard to treat the 

two cost units (time and money) in a unified unit. Therefore, in this research we design 

an objective-resource framework for distinguishing misclassification cost from resource 

costs which is described in Section 5.3.  
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5.2.2 Lazy strategy for decision tree building  

The previous test cost-sensitive learning research we described in the last section 

assumes that all the patients do not have any history records, i.e. all test results are 

unknown before performing relative tests. To handle the issue of existing history 

records, we introduce a lazy strategy which is designed to handle this situation.  

LazyDT (Friedman, Yun and Kohavi 1996) is a decision tree algorithm with a lazy 

building strategy which doesn’t build a general tree for all test instances to be classified, 

but build an ad hoc decision tree for each unlabelled instance. It constructs the best 

decision tree for each test instance. In practice, only a path needs to be constructed. A 

caching scheme makes the algorithm run fast (Rokach and Maimon 2008).  

We briefly describe the general steps of the LazyDT algorithm below (Friedman, 

Yun and Kohavi 1996). Given a unlabelled instance y, the core part of the algorithm is 

to get the test instance as part of input, follows a separate-and-classify methodology: a 

test is selected, only those instances with same test outcome as given instance is then 

solved recursively.  

The generic lazyDT algorithm: 
_____________________________________________________________________ 

Inputs:  S is the training set; 

               y is the test instance to be classified; 

Output: class label for the test instance y; 

1. If all instances in S are from a single class l, return l;. 

2. If all instances in S have same features, return the majority class of S;  

3. Otherwise, select a test T and let t be the value of the test on instance y, Let S0 be the 

set of training instances satisfying T = t and apply the algorithm to S0 and y. 

______________________________________________________________________ 

 

The LazyDT has some distinctive merits in comparison with regular decision tree 

algorithms. First, the decision paths built by LazyDT are often shorter and therefore 

more comprehensible than paths of regular decision trees. Second, it is well known that 

given limited training data, regular decision tree algorithms may suffer from the data 
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fragmentation problem (Pagallo and Haussler 1990). Traditional decision tree 

algorithms select a test for the root of each sub-tree based on the average improvement 

of the test selection criterion (such as entropy). Because the choice is based on average 

improvement, a particular child branch of the test may see a decrease in the value of the 

criterion or remain the same. For instances that take such a branch, the test may be 

detrimental since it fragments the data unnecessarily. This can cause the resulting path 

to be less accurate because the remaining tests are selected based on fewer training 

instances. In contrast, the LazyDT constructs a customized “tree” for each test instance, 

which consists of only a single path from the root to a labelled leaf node. Given a test 

instance, the LazyDT selects a test by focusing on the branch that will be taken by the 

test instance. In this way, it can avoid unnecessary data fragmentation and produce a 

more accurate classifier for the specific instance.  

Given the above strengths of the LazyDT, we are interested in further extending it 

to build a dynamic cost-sensitive decision tree for a test instance with partial known 

information (medical history). This extension is difficult because the setting addressed 

here is new and complicated. It needs a new strategy to well utilize the known 

information. In our setting, the unknown values in test instances could be obtained after 

spending a resource cost, whereas the LazyDT just ignores the attributes with unknown 

values during tree building phase. In next section, we will study how to utilize the 

known information when building a lazy CSDT for each test example to reduce cost.  

5.3 Lazy Cost-Sensitive Learning Based on Objective-

Resource Framework  

5.3.1 Objective-resource framework  

In our objective-resource framework for cost-sensitive learning, misclassification cost is 

measured by a unique unit, referred to objective cost. And other costs, such as test cost, 

are referred to resource costs. As showed in Example 1, different tests may be measured 

with costs of different units. For an unclassified instance, a positive constant value is 

assigned to each type of test resource cost, referred to test resource budget.  
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Example 2: For test X and Y in Example 1, the objective cost, misclassification 

cost, is measured by its own unit, and resource costs, including test prices and testing 

time,  are measured by “dollar” and “day” respectively. For a new patient, David, we 

could define his three resource budgets as $5000 and 3 days respectively. This means 

that he can pay $5000 and wait for 3 days to get the test results for supporting a 

decision-making by his doctor.  

We could extend the test costs in Table 5.2 to multiple-unit costs as shown in Table 

5.3. For test A1, it costs 50 dollars and 5 days to obtain the class value.  To make a 

decision, a doctor can select any tests from the 6 test candidates as long as the test costs 

are within the resource budgets. 

Table 5.2 Resource costs for 6 test candidates 

Test candidate A1 A2 A3 A4 A5 A6 

Class Value ? ? ? ? ? ? 

Test fee (dollar) 50 20 10 10 5 5 

Test time (days) 5 2 3 2 1 2 

In real medical examinations, some tests could have been carried out earlier and 

recorded in patients’ medical history. Very often, these test results are directly applied 

to their current diagnoses if they are still valid. In other words, we only need to reassign 

the costs of the known attributes to 0 while others remain unchanged. Consequently, 

this small change can significantly reduce the misclassification cost and the test cost.  

Example 3: In Table 5.2, assume the values of test candidate A4 and A5 are known 

before this diagnosis and are still valid. Accordingly, Table 5.2 can be modified to 

Table 5.3 below.  The resource costs of the known attributes are set to 0. In addition, the 

resource budget of each test attribute is included in this table. 
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Table 5.3 Resource costs and budgets of test candidates with some known values 

Test candidate A1 A2 A3 A4 A5 A6 RESOURCE 

BUDGET 

Class Value ? ? ? 2 2 ?  

Test fee (dollar) 50 20 10 0 0 5 60 (60%) 

Test time (days) 5 2 3 0 0 2 4 (40%) 

With Table 5.3, we can design a new LazyDT to utilize historical data as much as 

possible, to save test costs significantly. This means that different decision trees are 

built with different known test attributes. Our new LazyDT is based on objective-

resource framework, aiming to minimize the misclassification cost and control the 

resource costs within the specified resource budgets. We now formally state the 

objective-resource framework as follows: 

Assuming there are n test candidates, to obtain the value of each test result, we need 

to spend m kinds of costs on different test attributes with cost units { ls  | l = 1,…, m}, 

where the objective cost unit is 0s . For ith test candidate, )( 0sti  is the objective cost and 

)( ii st  is the resource cost. For the m test attributes, we assume )( isB  are their resource 

budgets, where )( isB  ≥ 0. 

Similar to Formula (2.1) in Chapter 2, the optimal prediction, the class i for an 

example x, is to minimize the objective cost in Formula (5.3) and subject to test 

resource constraints in Formula (5.4).  
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, where MC(x, i) is the total cost of misclassification with a test candidate, RC(x, i) is the 

total cost of candidate test resources, p(k) is the probability of performing kth test to 

obtain the value before making a decision. 

5.3.2 Lazy Decision Tree Sensitive to Multiple-Unit Costs 

We now present a lazy algorithm for building test-cost-sensitive decision trees based on 

the objective-resource framework in Formula (5.2) and (5.3) as follows: 

Lazy cost-sensitive decision tree algorithm: 
____________________________________________________________________ 

MS-CSDT-Lazy 

Inputs:   

D —a data set of samples {x1; x2;  . . . ; xn}, 

A —a set of attributes {A1; A2; . . .; Am},  

CL —predefined classes {c1; c2; . . . ; cp },  

R —misclassification cost matrix, 

CT —a test cost vector on objective unit,  

CR1..CRn  —test cost vectors on resource unit, 

  AS(D, A, CL, R, CT, CR1..CRn) — splitting formula for internal nodes, result is an 

attribute 

LM(D, A, CL, R, CT, CR1..CRn) — leaf marking formula, result is a class, 

Output: class label for the test instance y 

1. If there is no attribute satisfy the AS(D, A, CL, R, CT, CR1..CRn) 

return LM(D, A, CL, R, CT, CR1..CRn) 

2. Otherwise, select attribute Ai = AS(D, A, CL, R, CT, CR1..CRn), and let t be the 

value of the attribute on instance y 

Let D0 be the set of training instances satisfying T = t and recursively apply the 

Algorithm MS-CSDT-Lazy on D0 

______________________________________________________________________ 

We will use the above MS-CSDT-Lazy algorithm to build cost-sensitive decision 

trees and classify test examples.  
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5.3.3 Building Cost-sensitive Decision Trees Based on Resource 

Budgets 
In Chapter 2, we reviewed a novel cost-sensitive decision tree building and testing 

algorithm, CSDT. Here we extend CSDT to work with our new multiple-unit cost-

sensitive learning framework. The first step is to extend the test cost table. For easy 

description and implementation, we only consider 3 resource cost units. Our task is to 

build a cost-sensitive decision which utilizes the limited test resources and minimizes 

the misclassification cost. There are two basic operations in decision tree building: leaf 

marking and node attribute selection.  

 
Leaf marking criteria  
To minimize the objective cost, we use the same leaf marking criteria proposed in (Ling, 

et al. 2004).  A leaf y which contains m examples is marked as class j which minimizes 

the objective cost T: 
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Considering Example 2 in a binary decision problem, we assume a candidate note 

contains P positive and N negative examples. If there are no further splits, we will label 

the node as a leaf. We calculate the objective cost using Formula (5.3):  

            L(x, P) = P 0 + N FP = N FP 

             L(x, N) = P FN + N 0 = P FN 

T = Min{L(x, P), L(x, N)} 

= Min{N FP, P FN} 

We will mark the leaf as positive if P FN > N FP, otherwise it would be marked 

as negative.  

 
Attribute selection criteria for internal node 
Attribute selection (also called feature selection) is an important research area of data 

mining and machine learning.  It is a kind of data pre-processing strategy.  Many 

classification algorithms such as decision tree and nearest neighbor can be benefited 

from an effective attribute selection process. We expect that by combining the attribute 
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selection strategy and the lazy CSDT algorithm, we can utilize the limited resource 

budgets to build more efficient decision trees for each test example which minimize the 

objective cost. 

There are many potential splitting strategies and they have different impacts on 

objective cost reduction with limited resources. Here we only introduce two simple and 

intuitive strategies (called the objective-first and the performance-first strategy) to select 

an attribute (feature) for each tree node. Both of them have resource budget constraint 

during the building phase. 

The objective-first strategy is actually the same as the general lazy CSDT in Ling, 

et al. (2004) which only uses objective cost  to select attributes to build the lazy general 

tree. It counts on resource consumption and stops at a node when any resources are 

exhausted; and makes a prediction according the cost matrix and classification 

distribution of the node.   

The performance-first strategy is different which selects attribute for each node 

according to a heuristic measurement function on resource budgets. After making a 

node, it modifies the resource budgets to remaining resources and recursively builds the 

child node accordingly.  

Assume the training set in a candidate node is Y, attribute A is a candidate attribute 

for splitting Y, and A is a discrete random variable with range D = {a1, a2, …, an}, the 

test resource cost is t'A.  A resource budget B is specified prior to tree building, and B’ is 

the remaining resource which is equal to B minuses the sum of test resource costs of all 

the parents nodes. T is the minimal objective cost calculated using Formula (5.2).  

Object-first strategy 

We call the first approach objective-first strategy. It assumes that the objective cost is 

the most important cost and totally ignores the resource issue. This approach attempts to 

minimize the total objective cost on misclassification.  We could imagine this case as 

we have unlimited test resources or set all resource costs to 0. Objective-first strategy 

builds the same decision tree as that in Ling, et al. (2004) because only the objective 

cost is used in tree building phase.  Before we decide if a candidate node is a leaf, we 
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need to check all the candidate attributes for further splitting. The objective cost 

reduction for choosing attribute A to split is defined as below:  

 ))|()((T(A)- T  
Da

A aAYTxpTG              (5.5) 

The node will be marked as a leaf if the cost reductions of all these potential splits 

are less than 0, otherwise the attribute with the maximum cost reduction will be selected 

to further splitting the node. 

This approach totally ignores resource cost in tree building phase and only 

considers the resource budget at testing phase. Given a test example, we explore the tree 

and perform all needed tests alone the tree. Once any of the resource budgets are 

exhausted, we stop at the current node and give a result.  

Performance-first strategy based on resource budget  

This strategy considers the trade-off between objective cost and resource costs. It uses 

the “performance gain” to choose potential splitting attributes. Assuming the objective 

cost reduction is AG  = costRedu(A),  the resource consumption of attribute A is shown 

in Formula (5.6).  

')( t A
Da

A xpR     (5.6) 

To combine the resource budget B in the tree building phase, we define the 

remaining resource B’ as resource budget minuses all the parent nodes’ test resource 

costs. Attribute A will not be selected as splitting attributes if B’- RA < 0, because the 

remaining resource cannot afford to obtain the value of attribute A. In case of B’- RA ≥ 0 

and B is less than 100%, we define the performance gain of choosing A as the splitting 

attribute as following: 
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, where, i (1..n) is the number i resource, B’i is the remaining resource budget for the 

number i resource, w is a weight specified by domain expert. The attribute with the 
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maximum performance gain will be selected as the splitting attribute. We can see that 

the ratio of objective cost gain ( AG ) and resource consumption is used to select the best 

attribute.  If B is equal or more than 100% we will use the objective-first attribute 

selection strategy specified in Formula (5.5) instead. On another word, we will focus on 

objective cost when we have enough resource.  

Since performance-first strategy utilizes resource costs and resource budgets during 

the decision tree building phase, it is expected to outperform the objective-first strategy 

when the resource budgets are limited.  

5.4 Experimental Evaluation 
5.4.1 Experiment Setup 

We conduct experiments on six UCI datasets (Blake and Merz 1998) and compare the 

performance of our proposed multiple-unit CSDT building and testing methods 

including attribute selection, performance-first strategy and LazyCSDT, to the original 

CSDT with or without test resource budget constraint. We compare their average 

objective cost and other key performance measurements such as AUC and test resource 

consumption across different cost ratios (FN/FP).    All these algorithms are 

implemented in Weka. M-smoothing (specified in Chapter 2) is implemented for all the 

algorithms to reduce data over-fitting. These algorithms are listed in Table 5.4. 

 
Table 5.4 List of Decision Tree Algorithms and Abbreviations 

# Method Abbreviation 

1 CSDT without test resource budget constraint CSDT 

2 CSDT with test resource budget constraint 
(Objective-first strategy) CSDT-TF 

3 Multiple-unit  CSDT with test resource budget constraint  
(Performance-first strategy) MSCSDT-PF 

4 Attribute selection using Performance first strategy and  test resource 
budgets, then use the selected attributes to build CSDT directly MSCSDT-PFAS 

5 
Attribute selection using Performance first strategy and  test resource 
budgets for each test example, then use the selected attributes to build 
CSDT directly to classify the example 

MSCSDT-PFAS-Lazy 
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We then conduct experiment on six data sets chosen from UCI library.  The details 

of these data sets are listed in Table 5.5. The imbalance level (the ratio of major class 

size to minor class size) in these data sets varies from 1.2 (Australia) to 11.9 (Car). 

Table 5.5  Summary of the Data set Characteristics 

Dataset No. of attributes No. of examples 
Class distribution 

(P/N) 

Statlog (heart) 14 270 120/150 

Australia 15 653 296/357 

Breast 9 683 239/444 

Ecoli 6 332 102/230 

Credit-a 15 690 307/383 

Car 6 1728 134/1594 
 

We conduct three experiments on the above datasets with different cost matrixes: 

In the first experiment, we use the data set Statlog(heart).  Statlog(heart) is one of a 

few data sets in UCI library with recommended cost matrix. The cost matrix is 

normalized and the cost ratio (FN/FP) is set to 5.  The cost of TP and TN are both set to 

0.  This data set has been used extensively in cost-sensitive learning research 

previously. To better illustrate the effectiveness of the proposed multiple-unit CSDT 

algorithms, we only select the first 6 attributes from the Statlog (heart) data set to build 

decision trees. The test fee and test time are set as the Table 5.6 below. The budgets for 

both test resources are set to 50% of the total cost.  

Table 5.6  Test resource costs and budgets 

ATTRIBUTE A1 A2 A3 A4 A5 A6 RESOURCE 
BUDGET 

TEST TIME (DAYS) 3 1 1 5 2 2 7 (50%) 

TEST FEE (DOLLAR) 100 50 200 100 40 10 250(50%) 

 We then evaluate the classifier performance of CSDT, CSDT-TF, MSCSDT-PF 

and MSCSDT-PFAS by calculating their objective cost, AUC and test resource usage.   

In the second experiment, the rest five UCI data sets are used to perform the test.  

The misclassification cost FP is always set to 1, and FN is set to an integer varying from 
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2 to 8 (2, 4, 8 respectively).  We did not test with cost ratio more than 8 because when 

misclassification cost ratio is set too high, on many data sets, CSDT generates decision 

trees with only a single node. These decision trees are useless for evaluating our new 

multiple-unit CSDT algorithms.  We assume that the misclassification of the minority 

class always incurs a higher cost. This is to simulate real-world scenarios in which the 

less frequent class is the more important class. The cost of TP and TN are both set to 0. 

All test fees are randomly set between 0 and 100, and all test time is randomly set 

between 0 and 10.  We have two tests here.  In the first test, the test budgets for both 

resources are set to 20% of the total test cost. In the second test, the test budgets are set 

to 60%. We then evaluate the classifier performance by calculating the average 

objective cost of the CSDT-TF, MSCSDT-PF and MSCSDT-PFAS algorithms. 

In the last experiment, all the six UCI data sets are used to perform the test. Same as 

the second experiment, we always set the misclassification cost FP to 1, and FN to an 

integer varying from 2 to 8 (2, 4, 8 respectively).  The cost of TP and TN are both set to 

0. All test fees are randomly set between 0 and 100, and all test time is randomly set 

between 0 and 10.  In this experiment, we focus on the example dependent resource 

budget, so the test budgets for both resources are randomly set between 20% and 100% 

for each example. We then evaluate the classifier performance by calculating the 

average objective cost of the CSDT-TF and MSCSDT-PFAS-Lazy algorithms.  

All experiments are repeated for 10 times and ten-folder cross validation method is 

used in all tests to prevent over-fitting data. 

5.4.2 Experiment Results and Discussion 

In this section, we present an experimental comparison of the CSDT and the multiple-

unit CSDT algorithms presented in the previous section.  

The first experiment results are listed in Table 5.7. It lists the key performance 

measurements such as average objective cost, AUC and test resource usage for the 

Statlog(heart) data set. The aim of this experiment is to show that with imbalanced 

misclassification cost and limited test resources, compared to the naive CSDT-TF 

algorithm, our new methods can better utilize the limited test resources and build 

optimal decision trees which minimize the objective cost. 
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Table 5.7 Key performance measurements on Statlog(heart) 

Table 5.7.1.  Average Objective Cost 

CSDT CSDT-TF MSCSDT-
PF 

MSCSDT-
PFAS 

0.555 0.889 0.646 0.592 

Table 5.7.2.  Area Under ROC (AUC) 

CSDT CSDT-TF MSCSDT-PF MSCSDT-PFAS 

0.835 0.627 0.703 0.782 

Table 5.7.3.  Test Resource Usage (%) 

Resource 
Usage CSDT CSDT-

TF 
MSCSDT-
PF 

MSCSDT-
PFAS 

Test fee 83% 50% 48% 48% 

Test time 79% 30% 47% 47% 
 

From the first experiment, we can draw some conclusions. First, in term of reducing 

objective cost, both of our new methods, MSCSDT-PF and MSCSDT-PFAS have 

achieved lower cost than CSDT-TF. MSCSDT-PFAS is the best among the three 

competing methods. Compared to CSDT-TF, it reduced the objective cost by more than 

30%.  Even when compared with the original CSDT method (without resource budget 

constraint), the average objective cost of MSCSDT-PFAS is very close, only increased 

by less than 10%.  Second, by using AUC, a well-recognized measurement in cost-

sensitive learning, we can see our two new methods always achieved higher AUC than 

CSDT-TF, and MSCSDT-PFAS is still the best.  Third, in term of test resource usage, 

our two new methods can utilize the limited resource budgets on both test cost units. 

The test fee and test time resource budgets in this experiment are both set to 50%, 

MSCSDT-PF and MSCSDT-PFAS used most of test resources available (47% - 48%) 

to build more effective decision trees which minimizes the objective cost.  However, the 

naive CSDT-TF used all 50% of test fee budget but only 30% of test time budget to 

build the decision tree. It cannot utilize all the test resources available, because it does 

not select tests based on test resource costs and budgets. Therefore, its objective cost is 

the highest among the four methods we tested. There is no surprise that the resource 
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usage of the original CSDT is the highest (30% more than that of MSCSDT-PF and 

MSCSDT-PFAS) because it totally ignores the test resource costs and budgets during 

the decision tree building and test phase. 

The test results of our second experiment are shown in Table 5.8 (with 20% test 

resource budget) and Table 5.9 (with 60% test resource budget). 

Table 5.8 Average objective cost on selected UCI data sets (with 20% test resource 

budget) 

Table 5.8.1.  Cost Ratio (FP=1, FN=2) 

Data Set CSDT-TF MSCSDT-
PF 

MSCSDT-
PFAS 

Australia 0.332 0.298 0.292 

Breast 0.185 0.154 0.151 

Ecoli 0.112 0.091 0.087 

Credit_a 0.508 0.45 0.443 

Car 0.48 0.432 0.421 

Table 5.8.2.  Cost Ratio (FP=1, FN=4) 

Data Set CSDT-TF MSCSDT-
PF 

MSCSDT-
PFAS 

Australia 0.461 0.402 0.389 

Breast 0.276 0.223 0.214 

Ecoli 0.13 0.102 0.09 

Credit_a 0.73 0.54 0.52 

Car 0.594 0.503 0.499 

Table 5.8.3.  Cost Ratio (FP=1, FN=8) 

Data Set CSDT-TF MSCSDT-
PF 

MSCSDT-
PFAS 

Australia 0.576 0.519 0.502 

Breast 0.325 0.288 0.282 

Ecoli 0.144 0.112 0.1 

Credit_a 0.851 0.736 0.732 

Car 0.69 0.561 0.513 
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Table 5.9 Average objective cost on selected UCI data sets (with 60% test resource 

budget) 

Table 5.9.1.  Cost Ratio (FP=1, FN=2) 

Data Set CSDT-TF MSCSDT-
PF 

MSCSDT-
PFAS 

Australia 0.207 0.202 0.195 

Breast 0.146 0.142 0.136 

Ecoli 0.07 0.066 0.062 

Credit_a 0.42 0.392 0.377 

Car 0.306 0.288 0.286 

Table 5.9.2.  Cost Ratio (FP=1, FN=4) 

Data Set CSDT-TF MSCSDT-
PF 

MSCSDT-
PFAS 

Australia 0.294 0.262 0.235 

Breast 0.22 0.211 0.2 

Ecoli 0.118 0.098 0.086 

Credit_a 0.66 0.631 0.588 

Car 0.489 0.435 0.384 

Table 5.9.3.  Cost Ratio (FP=1, FN=8) 

Data Set CSDT-TF MSCSDT-
PF 

MSCSDT-
PFAS 

Australia 0.498 0.476 0.465 

Breast 0.287 0.252 0.236 

Ecoli 0.132 0.102 0.876 

Credit_a 0.81 0.764 0.675 

Car 0.654 0.543 0.452 
 

From the second experiment we can draw the following conclusions: First our new 

method MSCSDT-PF and MSCSDT-PFAS consistently reduce the objective cost on all 

five selected data sets across different cost ratios. This approves that the “Performance 

First” strategy is better than the “Objective-First” strategy in multiple-unit decision tree 

learning.  Second, our two new methods make more improvement in the test with only 

20% resource budget, on all five data sets.  The objective cost is reduced by more than 
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10%. When the test resource budget increases to 60%, the objective cost reduction that 

our new methods can make is much less, which means although our new methods can 

make improvement on tests with different resource budgets, they perform better when 

the test resource budget is low.  Third, MSCSDT-PFAS always performs the best 

among the three competing methods. The improvement is made due to the introduction 

of the attribute selection strategy in the MSCSDT-PFAS algorithm. 

The test results of our third experiment are shown in Table 5.10.  It lists the average 

objective cost on the selected six UCI data sets when both test resource costs (test fee 

and test time) and budgets are randomly generated for each example. Among them, we 

deliberately set 20% of the test resource costs (both test fee and test time) to 0 which 

means these attribute values are known before the test. 

Table 5.10 Average objective cost on selected UCI data sets 

Table 5.10.1.  Cost Ratio (FP=1, FN=2) 

Data Set CSDT-TF 
MSCSDT-PFAS-
Lazy 

Australia 0.246 0.204 

Breast 0.142 0.113 

Ecoli 0.077 0.065 

Credit_a 0.412 0.332 

Car 0.321 0.195 

Table 5.10.2.  Cost Ratio (FP=1, FN=4) 

Data Set CSDT-TF 
MSCSDT-PFAS-
Lazy 

Australia 0.395 0.356 

Breast 0.223 0.195 

Ecoli 0.114 0.095 

Credit_a 0.677 0.52 

Car 0.522 0.36 
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Table 5.10.3.  Cost Ratio (FP=1, FN=8) 

Data Set CSDT-TF 
MSCSDT-PFAS-
Lazy 

Australia 0.518 0.435 

Breast 0.301 0.254 

Ecoli 0.139 0.105 

Credit_a 0.794 0.655 

Car 0.66 0.372 
 

The third experiment clearly shows that our new method, MSCSDT-PFAS-Lazy 

outperformed the CSDT-TF method on all six tested data sets across different cost ratios, 

often by a large margin.  Compared to CSDT-TF, the objective cost reduction achieved 

by MSCSDT-PFAS-Lazy varies between 10% and 40%.  Our new method works 

particularly well on the more imbalanced data set – Car. Also in this experiment, we can 

see that the higher the cost ratio, the more cost reduction achieved by the MSCSDT-

PFAS-Lazy method. However, during our pre-test we noticed that when the cost ratio is 

set too high (more than 8), on many data sets, the original CSDT method only generates 

decision trees with a single node.  In this case, our new method can not make any 

further improvement.  We would like to extend our multiple-unit cost-sensitive learning 

framework to work with other classification algorithms in our future work to overcome 

this issue. 

5.5 Conclusions 

In this Chapter, we designed an efficient objective-resource framework to overcome the 

difficulty of handling multiple-cost-unit in cost-sensitive learning. We applied the 

framework with both a novel multiple-unit lazy CSDT algorithm and an attribute 

selection strategy to learn from real world medical data. With the two types of cost 

(objective and resource), this framework aims at minimizing the objective cost while 

controlling the resource costs within given resource budgets. Our experiments showed 

that the resource-budget-based performance-first strategy outperformed the naive 

objective-first strategy on all the UCI data sets we tested. The experiments also 

demonstrated that our proposed approach has outperformed a group of existing cost-

sensitive learning algorithms in a cost/budget-changing environment, which mirrors the 
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pressing demand of minimizing the objective cost while controlling the resource costs in 

the medical diagnosis domain. 

 



 

 

Chapter 6 Cost-sensitive Classification 

with Inadequate Labelled 

Data 
It is an actual and challenging issue to learn cost-sensitive models from datasets with 

few labelled data and plentiful unlabelled data, because some time labelled data are very 

difficult, time consuming and/or expensive to obtain. To solve this issue, in this Chapter 

we proposed two classification strategies to learn cost-sensitive classifier from training 

datasets with both labelled and unlabelled data, based on Expectation Maximization 

(EM). The first method, Direct-EM, uses EM to build a semi-supervised classifier, then 

directly compute the optimal class label for each test example using the class probability 

produced by the learning model. The second method, CS-EM, modifies EM by 

incorporating misclassification cost into the probability estimation process. We 

conducted extensive experiments to evaluate the efficiency, and results show that when 

using only a small number of labelled training examples, the CS-EM outperforms the 

other competing methods on majority of the selected UCI data sets across different cost 

ratios, especially when cost ratio is high.   

6.1 Introduction 

Cost-sensitive learning methods (Margineantu 2001) are developed based on the 

existing non-cost-sensitive learning methods. To make an error-based classifier cost-

sensitive, a common method is to introduce biases into an error based classification 

system in three ways: (1) by changing the class distribution of the training data, (2) by 

modifying the learning algorithms, (3) and by taking the boosting approach (Li et al. 

2005). An alternative method is called direct cost-sensitive learning which uses the 

conditional probability estimates provided by error based classifiers to directly compute 

the optimal class label for each test example using cost function (Zadrozny and Elkan 

2001).  
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Existing cost-sensitive learning techniques work well when there are adequate 

labelled data in training datasets. It is undeveloped to learn cost-sensitive models from 

those datasets that are with few labelled data and plentiful unlabelled data. Many real 

world classification applications are facing the problem of inadequately labelled data, 

for example, spam email filtering and text classification applications. This is because 

labelled data are often very difficult, time consuming and/or expensive to obtain. In 

contrast with this, unlabelled data is often easy to be collected. Semi-supervised 

learning addresses this problem by using large amount of unlabelled data, together with 

the labelled data, to build classifiers with higher accuracy and less cost (Zhu 2005). It 

aims at training models from inadequate labelled data by utilizing large amount of 

unlabelled data, in order to reduce training costs and classification errors. Because of 

the potential to reduce need for expensive labelled data, semi-supervised learning has 

attracted an increasing amount of interest in recent years (Forman and Cohen 2004; 

Seeger, 2001). Many different methods (and algorithms) have been developed.  Among 

them, Expectation Maximization (EM) (Dempster et al. 1977), self-training, co-training 

and transductive SVMs are the most commonly used methods. Applications such as text 

classification, web search and genetic research are examples where cheap unlabelled 

data can be used together with a group of labelled samples to build semi-supervised 

classifiers. They have illustrated the power of the semi-supervised classification as a 

new data mining tool aimed at improving the prediction accuracy and reducing costs. 

For the example of spam email filtering, on one side, correctly identifying spam 

email requires human annotation, and collecting a large amount of spam email training 

data is time consuming and expensive. However, there are plenty unlabelled email data 

freely available. On the other side, the cost of misclassifying a spam email is very little. 

The email recipient can easily identify the spam email and delete it. However, the cost 

of misclassifying a non-spam email could be very expensive. For example, a company 

could lose a big business opportunity therefore a large amount of money because an 

important email is incorrectly filtered out. In addition, like computer virus, spam emails 

are also evolving over the time, spam email filters need to be very robust to handle any 

new types of spam emails. Utilizing the latest and unlabelled data can certainly reduce 

the on-going training cost and improve prediction accuracy, hence reduce the total cost. 
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Therefore, in this Chapter we study the issue of applying semi-supervised learning 

techniques to train cost-sensitive models from datasets with inadequate labelled data. 

However, to the best of our knowledge, the semi-supervised classification has not 

been well studied to dealing with the inadequate labelled data in cost-sensitive learning. 

Some recent work includes Chen et al. (2010); Liu et al. (2008; 2009; 2010); and Qin et 

al. (2008). This research is among these first attempts to utilize unlabelled training data 

directly in cost-sensitive classification tasks. Two methods are presented, and both of 

them use EM as the base semi-supervised classification method.  The first approach (we 

call it Direct-EM) is simple and straightforward, it uses EM (with both labelled and 

unlabelled training data) to build the classification model, then applies the cost function 

(Formula 2.1) directly to the model to classify the test examples.  The second approach 

(we call it CS-EM, i.e. Cost-sensitive EM) involves modifying the EM algorithm so that 

it can use the labelled data and the cost matrix to assign “Cost-sensitive” 

probabilistically-weighted class labels to unlabelled training examples in the process of 

building the semi-supervised classification model. Extensive experiments are conducted 

for evaluating the efficiency, and show that when using only a small number of labelled 

training examples, the CS-EM outperforms the other competing methods on majority of 

the selected UCI data sets across different cost ratios, especially when cost ratio is high.  

The main contributions of this paper are: 

 Addressing real world cost-sensitive classification issues in which there are 

few labelled data and plentiful unlabelled data 

 Developing methods and algorithms for learning cost-sensitive classification 

model with small amount of labelled data and large amount of unlabelled 

data 

6.2 Semi-supervised Learning  
As per Seeger (2001), given an unknown probabilistic relationship P(x; t) between input 
points x and class labels t in T = {1,…,c}, the problem is to predict t from x, i.e. to find a 
predictor ^t = ^t(x) such that the generalization error of  ^t, 

})({^, txtP tx  (6.1) 

 Where ^t is small, ideally close to the Bayes error, being the minimum of the 
generalization errors of all predictors. The aim of a semi-supervised learning 
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algorithm is to compute ^t from: A labelled sample set Dl = {(xi, ti) | I = 
1,…,n}, where the (xi, ti) are drawn independently from P(x, t). 

 An unlabelled sample set Du = {xi | I = n+1, …, n+m}, where the xi are 

drawn independently from the marginal input distribution c

t
txpxP

1
),()( .  

Du is sampled independently from Dl. 

 Prior knowledge (or assumptions) about the unknown relationship. 

6.3 Expectation Maximization (EM)  
Given a set Dl (usually, small) of labelled data, and a set Du (usually, large) of 

unlabelled data, semi-supervised classification methods aim to design classifiers using 

both sets (Roli 2005). Some often-used methods include: EM, self-training and co-

training. In this paper, we are interested in EM. The cost-sensitive method we developed 

either directly using EM as the base semi-supervised learner, or modifying it to make it 

sensitive to cost matrix. 

EM is a class of iterative algorithms for maximum likelihood or maximum a 

posteriori estimation in problems with incomplete data (Dempster et al. 1977).  In case 

of semi-supervised classification tasks, the unlabelled data are considered incomplete 

because they come without class labels.  The basic EM approach first designs a 

probabilistic classifier (such as Naïve Bayes or Decision Tree in Bradford et al. 1998) 

with the labelled data set Dl.  Then, use this classifier to assign probabilistically-

weighted class labels to the unlabelled data.  Then use both the original labelled data 

and the formerly unlabelled data to build a new classifier, and the process is iterated 

until the classifier does not change.  This process is guaranteed to find model 

parameters that have equal or higher likelihood than at the previous iteration, as shown 

by Dempster et al. (1977).  The main advantage of EM approach is that it allows 

exploiting labelled and unlabelled data in a theoretically well grounded way.  Therefore, 

naturally it meets the main requirement of semi-supervised classification (Roli 2005). 

Nigam et al. (2000) introduced a new parameter  (0    1) into the Basic EM.  

They term the resulting method EM- .  Note that  is the weight parameter of the 

unlabelled data.  When  is close to zero, the unlabelled data will have little influence 

on the shape of EM’s hill-climbing surface. When λ = 1, each unlabelled data will be 



Chapter 6    Cost-sensitive Classification with Inadequate Labelled Data 95 

 

weighted the same as a labelled data, and the algorithm is the same as the basic EM. 

The details of the EM-λ algorithm are described below. 

 

EM-λ algorithm: 
______________________________________________________________________ 

 

1. Inputs: Collections Dl of labelled training data and Du of unlabelled training data. 

2. Set the weight factor of the unlabelled data, λ, by cross-validation. 

3. Build an initial probabilistic classifier, Ө, from the labelled training data only. Use 

maximum posteriori parameter estimation to find Ө = arg maxθ P(D|θ)P(θ). 

4. Loop while classifier parameters improve (the change in complete probability of 

the labelled and unlabelled data, and the prior): 

(E-step) Use the current classifier, Ө, to estimate the class membership of unlabelled 

data. 

(M-step) Re-estimate the classifier, Ө, given the estimated class membership of each 

unlabelled data. Use maximum a posteriori parameter estimation to find Ө = arg 

maxθ P(D|θ)P(θ). 

When counting event for parameter estimation, weights from unlabelled training 

data are reduced by a factor λ. 

5. Output: classifier, Ө, which takes an unlabelled test example and predicts its class 

label. 

 

Results on different classification tasks showed that EM methods allow utilizing 

unlabelled data effectively.  For instance, Nigam et al. (2000) showed that unlabelled 

data used with EM-λ method in a document categorization problem can improve 

classification accuracy by up to 30%.  

6.4 Making Semi-supervised Classification Cost-sensitive  
In this Chapter, we focus on binary classification problems. We propose two approaches 

to making semi-supervised learners sensitive to misclassification cost. 
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The first approach is quite simple. We use EM-λ algorithm (together with both 

labelled and unlabelled data) to train a semi-supervised classifier. Since the learned 

classifier can produce conditional probability estimates, using these probability 

estimates and formula (2.1) specified in Chapter 2, we can directly compute the optimal 

class label for each test example.  We call this approach Direct-EM. 

The second approach involves modifying the EM-λ algorithm. In a binary decision 

case, suppose that the probability of labelling an unlabelled example to P is Pp, and the 

probability of labelling this unlabelled example to N is Pn. If Pp > Pn, the unlabelled 

example is assigned to P, and the probability of this prediction is Pp.  Otherwise, the 

unlabelled example is assigned to N, and the probability of this prediction is Pn.  Note 

that here Pp + Pn = 1. 

Suppose that in this situation, the cost of false positive (FP) and the cost of false 

negative (FN) are very different.  To simplify the case, we assume that the cost of true 

positive (TP) and true negative (TN) are both 0. In cost-sensitive learning, the purpose 

is to minimize the misclassification cost instead of errors. Now we calculate the 

potential cost (Cp) of labeling this leaf to P is FP * Pn. And the potential cost (Cn) of 

labeling this leaf to N is FN * Pp. 

If Cp > Cn, the unlabelled data is assigned to N, and the probability of this prediction 

is Cp/(Cp + Cn). Otherwise, the unlabelled data is assigned to P, and the probability of 

this prediction is Cn/(Cp + Cn). 

We replace the probability estimate in the original EM-λ algorithm with this new 

probability estimate which is sensitive to the misclassification cost. The last step is 

using the learned classifier to predict class labels for all test examples.  Since the cost 

has already been incorporated in the model building process, they will not be used again 

in the classification process. We call this approach CS-EM.  Below are the modified 

steps (to the original EM-λ) in our new CS-EM algorithm. 

 

 

CS-EM algorithm:  
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1. Build an initial cost-sensitive classifier, Ө, from the labelled training data only. Ө is 

a direct cost-sensitive classifier which can directly use any error based probabilistic 

classifiers and cost matrix to compute class memberships for unlabelled data. 

2. Loop while classifier parameters improve (the change in complete probability of the 

labelled and unlabelled data, and the prior): 

E-step: Use the current classifier, Ө, to estimate the class membership of unlabelled 

data. Note the class membership is calculated based on our new approach which 

takes the misclassification cost into account. 

M-step: Re-estimate the classifier, Ө, given the estimated class membership of each 

unlabelled data. In this step, the probability estimates calculated are also based on 

our new approach which takes the misclassification cost into account. 

 

 

We expect that the two new approaches can reduce the misclassification cost 

compared to the similar direct cost-sensitive learning method which only uses the 

labelled training data.  We call this simple method Direct-LBL. 

6.5 Experimental Evaluation 
The main purpose of this experiment is to evaluate the performance of the two new 

cost-sensitive semi-supervised learning approaches (Direct-EM and CS-EM) we 

discussed in Section 6.4 by comparing their average misclassification cost to the Direct-

LBL method. C4.5 decision tree and Naive Bayes are chosen as the base probabilistic 

classifier. Laplace correction is turned on for C4.5 to avoid data over-fitting. All these 

algorithms are implemented in Weka (a popular data mining software), and they are 

listed in Table 6.1. 
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Table 6.1 List of Algorithms and Abbreviations 

We then conduct experiments on 14 real world data sets chosen from UCI repository 

in Blake and Merz (1998). The details of these data sets are listed in Table 6.2. The 

imbalance level (the ratio of major class size to minor class size) in these data sets 

varies from 1.0 (Pendigits) to 15.3 (Sick). 

 

# Method Abbreviation 
Base  

Classifier 

1 Cost-sensitive C4.5 Direct-LBL-C4.5 C4.5 

2 Cost-sensitive Naive Bayes Direct-LBL-NB Naive Bayes 

3 Direct EM with C4.5 Direct-EM-C4.5 C4.5 

4 Cost-sensitive EM with C4.5 CS-EM-C4.5 C4.5 

5 Direct EM with  Naive Bayes Direct-EM-NB Naive Bayes 

6 
Cost-sensitive EM with Naive 

Bayes 
CS-EM-NB Naive Bayes 
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Table 6.2 Summary of the Data set Characteristics 

Dataset No. of 

attributes 

No. of examples Class distribution 

(P/N) 

car 7 1728 134/1594 

creidt-g 21 1000 300/700 

hypothyroid 30 3772 291/3481 

kr-vs-kp 37 3196 1527/1699 

mushroom 23 8124 3916/4208 

nursery 9 12960 4320/8640 

optdigits 65 1143 571/572 

page-blocks 11 5473 560/4913 

pendigits 17 2288 1144/1144 

sick 30 3772 231/3541 

spambase 58 4601 1813/2788 

splice 62 2423 768/1655 

vowel 14 990 90/900 

waveform-5000 41 3347 1655/1692 

 

We conduct experiments on all above datasets with different cost ratios. The 

misclassification cost FP is always set to 1, and FN is set to an integer varying from 2 to 

20 (2, 5, 10, 20 respectively).  We assume that the misclassification of the minority 

class always incurs a higher cost.  This is to simulate real-world scenarios in which the 

less frequent class is the more important class.  The cost of TP and TN are both set to 0.    

All the selected data sets are randomly split into two sub sets: 60% for training and 

40% for testing. Each test is repeated for 10 times, we then measure the performance of 

our cost-sensitive semi-supervised learning methods by calculating the average of the 

misclassification cost.  

6.5.1 Evaluating the new cost-sensitive semi-supervised learning 

algorithms 
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In the first experiment, we choose 50 examples from the training set as the labelled data, 

and the rest of the examples in the training set as unlabelled data. The λ value is 

dynamically determined by cross validation. We then perform test on all the 14 data sets 

listed in Table 6.2 using all the algorithms listed in Table 6.1 with different cost ratios 

(2, 5, 10, 20 respectively). The aim of this experiment is to evaluate the performance of 

our new algorithms on different data sets with different cost ratios. 

Table 6.3 lists the average misclassification cost on the selected UCI data sets when 

the number of labelled training examples is set to 50. Table 6.4 lists the corresponding 

results on the t-test. Each w/t/l in the table means our new algorithms at each row wins 

in w data sets, ties in t data sets and loses in l data sets. 

From this kind of experimental result, we can draw several conclusions as follows.  

 First, our new method, CS-EM works well as per our expectation. It achieved 

the lowest average misclassification cost on majority of the data sets, especially 

when cost ratio is high, and it does not increase a lot when the cost ratio 

increases. This is mainly because CS-EM takes the misclassification cost into 

account when assigning probabilistically-weighted class labels to the unlabelled 

data in the modified EM-λ algorithm. So the examples with lower potential 

misclassification cost are assigned higher weights in the final model. This 

method effectively reduces the misclassification cost, especially when cost ratio 

is high.  

 Second, it is not a surprise to us that the Direct-LBL method, did not performs 

very well, because it only utilizes the labelled training data which contains only 

50 examples. It is very hard to use such a small set of training data to build a 

classifier which can provide good class probability estimate. In cost-sensitive 

classification tasks, a classification model with good class probability estimate 

is critical to the success of reducing the misclassification cost.   

 Third, the performance of another new method, Direct-EM is disappointing. 

Compared to CS-EM and Direct-LBL, its average misclassification cost is the 

highest on most of the data sets. The cause of this poor performance may be due 

to the inaccurate probability estimate generated by the final model. The 

probability estimate is hurt by using the unlabelled training data without 

considering the misclassification cost.  
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 Forth, the performance of our new algorithm, CS-EM, is not affected much by 

the base probabilistic classifier. For example, when the cost ratio is 20, both 

CS-EM-C4.5 and CS-EM-NB beat Direct-LBL-C4.5 and Direct-LBL-NB, the 

w/t/l values are 11/1/2 and 11/0/3 respectively. The similar results have been 

achieved on other cost ratios too. 

Table 6.3 Average misclassification cost on selected UCI data sets 

Table 6.3.1 C4.5 as the base classifier when Cost Ratio =  2 
Data set Direct-LBL-C4.5 Direct-EM-C4.5 CS-EM-C4.5 

car 0.16 0.16 0.16 

credit-g 0.56 0.55 0.55 

hypothyroid 0.08 0.15 0.15 

kr-vs-kp 0.16 0.16 0.14 

mushroom 0.06 0.06 0.43 

nursery 0 0.67 0.67 

optdigits 0.14 0.15 0.11 

page-blocks 0.15 0.2 0.2 

pendigits 0.07 0.07 0.05 

sick 0.1 0.1 0.09 

spambase 0.3 0.6 0.27 

splice 0.14 0.58 0.35 

vowel 0.09 0.17 0.15 

waveform-5000 0.34 0.31 0.31 
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Table 6.3.2 C4.5 as the base classifier when Cost Ratio =  5 
 

Data set Direct-LBL-C4.5 Direct-EM-C4.5 CS-EM-C4.5 

car 0.39 0.39 0.39 

credit-g 0.77 1.5 1.27 

hypothyroid 0.15 0.39 0.38 

kr-vs-kp 0.35 0.31 0.27 

mushroom 0.19 0.15 0.52 

nursery 0 1.67 0 

optdigits 0.29 0.25 0.22 

page-blocks 0.29 0.51 0.5 

pendigits 0.16 0.16 0.15 

sick 0.21 0.21 0.19 

spambase 0.57 1.46 0.54 

splice 0.22 1.45 0.44 

vowel 0.21 0.41 0.15 

waveform-5000 0.63 0.5 0.49 

Table 6.3.3 C4.5 as the base classifier when Cost Ratio =  10 

Data set Direct-LBL-C4.5 Direct-EM-C4.5 CS-EM-C4.5 

car 0.85 0.78 0.76 

credit-g 0.7 3 2.25 

hypothyroid 0.28 0.77 0.76 

kr-vs-kp 0.5 0.68 0.5 

mushroom 0.4 0.3 0.37 

nursery 0 3.33 0 

optdigits 0.52 0.5 0.47 

page-blocks 0.49 1.02 1 

pendigits 0.32 0.32 0.29 

sick 0.43 0.61 0.4 

spambase 0.84 2.91 0.61 

splice 0.59 2.9 0.53 

vowel 0.37 0.82 0.31 

waveform-5000 0.87 0.71 0.51 
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Table 6.3.4 C4.5 as the base classifier when Cost Ratio =  20 
 

Data set Direct-LBL-C4.5 Direct-EM-C4.5 CS-EM-C4.5 

car 1.11 1.55 0.93 

credit-g 0.7 6 2.23 

hypothyroid 0.56 1.54 0.51 

kr-vs-kp 0.52 1.33 0.52 

mushroom 0.6 0.6 0.52 

nursery 0.57 6.67 0.27 

optdigits 0.92 0.75 0.53 

page-blocks 0.95 2.05 2 

pendigits 0.63 0.63 0.5 

sick 0.76 1.23 0.71 

spambase 0.86 5.8 0.61 

splice 0.68 5.8 0.63 

vowel 0.71 1.63 0.62 

waveform-5000 1.43 1.12 0.51 

Table 6.3.5 Naïve Bayes as the base classifier when Cost Ratio =  2 

Data set Direct-LBL-NB Direct-EM-NB CS-EM-NB 

car 0.14 0.16 0.13 

credit-g 0.5 0.49 0.47 

hypothyroid 0.11 0.15 0.15 

kr-vs-kp 0.34 0.55 0.46 

mushroom 0.15 0.2 0.2 

nursery 0.02 0.67 0.64 

optdigits 0.05 0.06 0.06 

page-blocks 0.2 0.29 0.17 

pendigits 0.01 0.01 0.01 

sick 0.12 0.12 0.11 

spambase 0.2 0.28 0.17 

splice 0.18 0.47 0.23 

vowel 0.12 0.12 0.07 

waveform-5000 0.15 0.14 0.13 
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Table 6.3.6 Naïve Bayes as the base classifier when Cost Ratio =  5 
 

Data set Direct-LBL-NB Direct-EM-NB CS-EM-NB 

car 0.28 0.39 0.37 

credit-g 0.8 1.26 0.15 

hypothyroid 0.24 0.36 0.36 

kr-vs-kp 0.5 1.17 0.56 

mushroom 0.31 0.5 0.43 

nursery 0.09 1.67 0.05 

optdigits 0.11 0.1 0.09 

page-blocks 0.32 0.48 0.53 

pendigits 0.01 0.01 0.01 

sick 0.27 0.29 0.27 

spambase 0.31 0.3 0.28 

splice 0.32 1.16 0.29 

vowel 0.22 0.2 0.18 

waveform-5000 0.19 0.16 0.17 

Table 6.3.7 Naïve Bayes as the base classifier when Cost Ratio =  10 

Data set Direct-LBL-NB Direct-EM-NB CS-EM-NB 

car 0.44 0.78 0.71 

credit-g 1.09 2.47 1.06 

hypothyroid 0.47 0.72 0.72 

kr-vs-kp 0.59 2.2 0.41 

mushroom 0.53 0.99 0.47 

nursery 0.19 3.33 0.1 

optdigits 0.2 0.2 0.18 

page-blocks 0.52 0.8 0.85 

pendigits 0.01 0.01 0.01 

sick 0.5 0.47 0.4 

spambase 0.47 0.41 0.42 

splice 0.47 2.32 0.46 

vowel 0.36 0.54 0.65 

waveform-5000 0.24 0.16 0.17 



Chapter 6    Cost-sensitive Classification with Inadequate Labelled Data 105 

 

Table 6.3.8 Naïve Bayes as the base classifier when Cost Ratio =  20 
 

Data set Direct-LBL-NB Direct-EM-NB CS-EM-NB 

car 0.66 1.55 1.41 

credit-g 1.42 4.88 1.1 

hypothyroid 0.9 1.44 1.45 

kr-vs-kp 0.66 4.27 0.65 

mushroom 0.9 1.97 0.72 

nursery 0.32 6.66 0.18 

optdigits 0.37 0.51 0.32 

page-blocks 0.9 1.43 0.87 

pendigits 0.02 0.02 0.01 

sick 0.95 0.92 0.89 

spambase 0.78 0.58 0.65 

splice 0.71 4.64 0.65 

vowel 0.64 1.07 1.34 

waveform-5000 0.29 0.16 0.18 

Table 6.4 Summary of t-test 

Table 6.4.1 C4.5 as the base classifier 

Cost Ratio (FN:FP)   Direct-LBL-C4.5 

2 

  

Direct-EM-C4.5 2/4/8 

CS-EM-C4.5 7/1/6 

5 

  

Direct-EM-C4.5 4/3/7 

CS-EM-C4.5 7/2/5 

10 

  

Direct-EM-C4.5 4/1/9 

CS-EM-C4.5 9/2/3 

20 

  

Direct-EM-C4.5 2/2/10 

CS-EM-C4.5 11/1/2 
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Table 6.4.2 Naïve Bayes as the base classifier 

Cost Ratio (FN:FP)   Direct-LBL-NB 

2 

  

Direct-EM-NB 2/3/9 

CS-EM-NB 7/1/6 

5 

  

Direct-EM-NB 4/1/9 

CS-EM-NB 7/2/5 

10 

  

Direct-EM-NB 3/2/9 

CS-EM-NB 9/1/4 

20 

  

Direct-EM-NB 3/1/10 

CS-EM-NB 11/0/3 

 

We also conducted the similar tests using different sizes of labelled training examples. 

The detailed analysis is in Section 6.5.2. 

6.5.2 Evaluating the impact of the size of labelled examples 

In the second experiment, we perform test on data set waveform-5000 using algorithms 

Direct-LBL-C4.5 and CS-EM-C4.5. The cost ratio is set to 10 and the λ value is still 

dynamically determined by cross validation. The aim of this experiment is to evaluate 

the impact of labelled training example size to CS-EM algorithm. So we conduct test 

with different number of labelled training examples: 5, 10, 20, 50, 100, 200, 400 

respectively. 

Figure 6.3 shows the average misclassification cost on the waveform-5000 data set 

for algorithms Direct-LBL-C4.5 and CS-EM-C4.5.  From this figure, we can see that 

the performance of our new algorithm, CS-EM, is affected by the size of the labelled 

training examples. It performed well when the size of the labelled training examples is 

10, 20, 50 and 100, but not 5, 200 and 400. The test results on other data sets vary but 

the trend is similar. This means that our new algorithm, CS-EM does not work well with 

too few or too many labelled training examples. The reasons are as follows. First, when 

the initial classifier is built only using a few labelled training examples, it can not 

generate good probability estimate for the unlabelled training examples at the first place, 

hence the final model suffers. Second, when there are many labelled training examples 

available, a good classification model can be generated from the base probabilistic 
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classifier using only labelled data. The use of unlabelled training examples may actually 

reduce the classifier performance in cost-sensitive learning. 
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Figure 6.1 Comparing the average misclassification cost for different sizes of 

labelled training examples 

6.5.3 Evaluating the impact of sample selection bias 

In the third experiment, we extend the test in Section 6.5.2. We still use the same data 

sets, the same algorithms and the same experiment settings. The aim of this experiment 

is to evaluate the impact of sample selection bias to CS-EM algorithm. Therefore, 

instead of randomly selecting labelled examples (as we did in Section 6.5.2), this time 

we deliberately select our labelled examples with P/N ratio which is different from the 

class distribution. Two tests were performed, in the first test, the labelled example P/N 

ratio is set to 1/2, and in the second test, the ratio is set to 2/1. As you can see in Table 

6.2, the actual P/N ratio of waveform-5000 data set is around 1. 

Figures 6.4 and 6.5 show the average misclassification cost on the waveform-5000 

data set for algorithms Direct-LBL-C4.5 and CS-EM-C4.5 with different P/N ratios.  

From these two figures you can see that with sample selection bias, the CS-EM-C4.5 

outperforms Direct-LBL-C4.5 on all tests conducted.  In both cases (P/N set to 1/2 or 

2/1), CS-EM-C4.5 achieved significant lower cost than Direct-LBL-C4.5 with different 

sizes of labelled examples. Therefore, we can make a clear conclusion that if the sample 
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selection bias does exist in the labelled examples, by using unlabelled data and applying 

semi-supervised learning techniques, we can build better cost-sensitive classification 

models with lower misclassification cost. 

 

 

Figure 6.2 Comparing the average misclassification cost for different sizes of 

labelled training examples. The labelled example P/N ratio is 1/2 

 

Figure 6.3 Comparing the average misclassification cost for different sizes of 

labelled training examples. The labelled example P/N ratio is 2/1 
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6.5.4 Evaluating the impact of feature selection strategy 

In the third experiment, we perform test on data set waveform-5000 using only CS-EM-

C4.5, with different feature selection strategies. In the first test, we randomly select 

labelled examples, and we call it CS-EM (Random). In the second test, we select 

labelled examples with the highest information gain, we all this strategy CS-EM (IG). 

The cost ratio is still set to 10 and the λ value is still dynamically determined by cross 

validation. The aim of this experiment is to evaluate the impact feature selection 

strategy to our CS-EM algorithm. 

Figure 6.6 shows the average misclassification cost on the waveform-5000 data set 

for algorithm CS-EM-C4.5 with random and information gain feature selection strategy.  

From this figure, we can see that the performance of our new algorithm, CS-EM, is 

improved consistently by the introduction of the information gain feature selection 

strategy, especially when the size of labelled examples increases. Feature selection is an 

important component of any data mining and machine learning model, as it often 

accounts for big difference in performance. The test result in this experiment is exactly 

what we expected. By introducing a good feature selection strategy we increased the 

value of labelled examples and improved the performance of our new CS-EM algorithm. 

As a result, the misclassification cost was reduced significantly. In the future, we would 

like to apply other feature selection strategies to our cost-sensitive semi-supervised 

learning algorithms to maximize the benefit of this approach. 
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Figure 6.4 Comparing the average misclassification cost for different sizes of 

labelled training examples 

6.5.5 Evaluating the impact of λ value 

In the last experiment, we still perform test on data set waveform-5000 using algorithms 

Direct-LBL-C4.5 and CS-EM-C4.5. The size of labelled training examples is set to 50 

and the cost ratio is set to 10. The aim of this experiment is to evaluate the impact of λ 

value. So we conduct test with different λ values: 0, 0.2, 0.4, 0.6, 0.8, 1.0 respectively. 

Figure 6.7 shows the average misclassification cost on the waveform-5000 data set 

for algorithms Direct-LBL-C4.5 and CS-EM-C4.5.  From this figure, we can see that 

the average misclassification cost is the highest when λ is set to 0 (no utilization of 

unlabelled training data).  The average misclassification cost is also high when λ is set 

to too high, for example, 1.0.  CS-EM works well when λ is set in the middle of 0 and 

1.0. When λ is set to 0.2, it achieved the lowest average misclassification cost, 0.45, 

better than the average misclassification cost we achieved in Section 6.5.1 using cross 

validation. 
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Figure 6.5 Comparing the average misclassification cost for different λ values 

6.6 Conclusions 
In this Chapter, we have studied the issue of learning cost-sensitive classifier from 

training datasets with few labelled data and plentiful unlabelled data. We designed two 

simple and effective methods, Direct-EM and CS-EM, for learning cost-sensitive 

classifiers using both the labelled and unlabelled training data. The CS-EM modifies the 

popular semi-supervised learning method, EM-based algorithm, by incorporating the 

misclassification cost into the class probability estimation process. The experiments 

have shown that when using only a small number of labelled training examples, the CS-

EM outperforms the other competing methods on most of the selected UCI data sets 

across different cost ratios.  We also analysed the impact of λ value and the size of 

labelled training examples to the CS-EM algorithm in the experiments. The results show 

that the CS-EM does not work well with λ value closing to either 0 or 1.0. And 

compared to the Direct-LBL method, the CS-EM cannot reduce much of 

misclassification cost when working with too few or too many labelled training 

examples. 

 



 

 

Chapter 7 Conclusions and Future Work 

7.1 Contributions 

The main goal of this thesis was to develop a set of new and efficient techniques to 

improve the cost-sensitive decision making process and minimize the total cost involved 

in cost-sensitive classification. Based on the work specified in Chapter 3, 4, 5 and 6, we 

have achieved the following outcomes: 

 We developed three simple but efficient methods - feature selection, smoothing and 

threshold pruning, on the TCSDT algorithm to reduce data over-fitting in cost-

sensitive classification. Our new methods modify the TCSDT algorithm by 

introducing feature selection process before building decision tree, applying 

smoothing and pruning process before calculating the class probability estimate for 

each decision tree leaf. These methods removed noisy data and irrelevant/disturbing 

attributes from the training data, improved class membership probability estimation 

of the TCSDT algorithm, and eventually reduced the total cost of the classification. 

 We modified the distance function of the popular KNN classifier to make it cost-

sensitive. We also enhanced the modified cost-sensitive KNN classifier by applying 

the smoothing, minimum-cost K value selection, cost-sensitive feature selection and 

cost-sensitive stacking method to it. We demonstrated the effectiveness and 

performance our new cost-sensitive KNN algorithms. 

 We designed an Objective-Resource cost-sensitive learning framework which 

addresses a real world issue where multiple cost units are considered. The 

Objective-Resource  framework resolves this issue by defining two types cost, 

objective cost and resource cost, and building a lazy cost-sensitive decision tree 

which minimizes the objective cost subjecting to given budgets of other resource 

costs. 

 We studied the issue of learning cost-sensitive classifier from training datasets with 

few labelled data and plentiful unlabelled data. We proposed a simple but effective 
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method (CS-EM) for learning cost-sensitive classifiers using a small number of 

labelled data and large amount unlabelled data. The proposed method modifies the 

popular EM algorithm, by incorporating the misclassification cost into the class 

probability estimation process. We also analysed the impact of the λ value, the size 

of labelled examples, the sample selection bias and the different feature selection 

strategies to the performance of our new semi-supervised cost-sensitive 

classification algorithm. 

7.2 Directions for Future Research 
 

The research and the outcomes described in this thesis can be extended in many 

different directions.  

7.2.1 Cost-sensitive Classification on Multi-class Data Sets 

In the future, we plan to test the new methods on more real world data sets which are 

relative to test cost-sensitive learning, and compare them to more cost-sensitive learning 

algorithms.  We also would like to extend our new cost-sensitive classification 

algorithms to handle multi-class data sets and evaluate the effectiveness of our new 

methods on real world multi-class data sets. 

7.2.2 Improving Objective-resource Cost-sensitive Learning 

Framework 

Our new Objective-resource cost-sensitive learning framework (and algorithms), 

although is innovative and practical, it also has some shortcomings. For example, 

currently it only works with cost-sensitive decision tree, and does not handle cost 

matrixs with very high FN/FP cost ratio well. In the future, we would like to extend it to 

work with other classification algorithms to overcome those issues. 

7.2.3 Semi-supervised Cost-sensitive Learning 

In the future, we plan to test our new semi-supervised cost-sensitive classification 

methods (Direct-EM and CS-EM) on more real world data sets which are relative to 

both cost-sensitive and semi-supervised learning, and check if the result we achieved in 
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this paper is consistent. It will be very beneficial to find out in which situation Direct-

EM performs well (or worse) and why. Because if we had answered this question, we 

will be able to utilize all the existing semi-supervised learning methods (as long as they 

can provide conditional probability estimates) to build better cost-sensitive 

classification models with additional large amount of cheap unlabelled data. We also 

would like to investigate the possible improvements of the CS-EM including 

automatically determining the best λ value and the best size of labelled training 

examples, and applying new feature selection strategies to CS-EM. 

7.2.4 Active Learning 
Active learning is a data mining area in which training data is acquired incrementally. In 

many real world situations the costs of collecting and labelling training examples are 

very high. Both active learning and the semi-supervised learning can help in these 

situations. In the future, we plan to improve our new semi-supervised cost-sensitive 

classification algorithms by applying some active learning techniques, such as using 

Query by Committee method to select the most informative labelled training data before 

building the final classifiers. 
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