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ABSTRACT

 Probabilistic safety assessment by fault tree analysis has been considered as an 

important tool to evaluate safety systems of nuclear power plants in the last two 

decades. However, since the estimation of failure probabilities of rare events with high 

consequences is the focus of this assessment, it is often very difficult to obtain 

component failure rates, which are specific to the nuclear power plant under evaluation. 

The motivation of this study is how to obtain basic event failure rates when basic events 

do not have historical failure data and expert subjective justifications, which are 

expressed in qualitative failure possibilities, are the only means to evaluate basic event 

failures. 

 This thesis describes a new intelligent hybrid fault tree analysis framework to 

overcome the weaknesses of conventional fault tree analysis, qualitative failure 

possibilities and their corresponding mathematical representations to articulate nuclear 

event failure likelihoods, an area defuzzification technique to decode the membership 

functions of fuzzy sets representing nuclear event failure possibilities into nuclear event 

reliability scores, and a fuzzy reliability approach to generate nuclear event quantitative 

fuzzy failure rates from the corresponding qualitative failure possibilities subjectively 

evaluated by experts. Seven qualitative linguistic terms have been defined to represent 

nuclear event failure possibilities, i.e. very low, low, reasonably low, moderate, 

reasonably high, high, and very high and the corresponding mathematical forms are 

represented by triangular fuzzy numbers, which are defined in the [0, 1] universe of 

discourse based on nuclear event failure data documented in literatures using inductive 

reasoning. Finally, an intelligent software system called InFaTAS-NuSA, which has 

been developed to realize the new intelligence hybrid fault tree analysis framework to 

overcome the limitations of the existing fault tree analysis software systems by 

accepting both quantitative failure probabilities and qualitative failure possibilities, is 

also described in this thesis. 

 The results of the InFaTAS-NuSA evaluation using a real world application 

confirm that InFaTAS-NuSA has yielded similar outputs as the outputs generated by a 
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well-known fault tree analysis software system, i.e. SAPHIRE, and therefore it can 

overcome the limitation of the existing fault tree analysis software system, which can 

accept only quantitative failure probabilities. The experiment results also show that the 

fuzzy reliability approach seems to be a sound alternative for conventional reliability

approach to deal with basic events which do not have historical failure data and expert 

subjective opinions are the only means to obtain their failure information. 




