Investigation of Polymers Used in Lithium

Oxygen Batteries as Electrolyte and

Cathode Materials

A thesis presented for the degree of Master by Research

By

Jinqiang Zhang, B. Sc.

University of Technology, Sydney

2013

Certificate of original authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Jinqiang Zhang

May 2013

Acknowledgements

Although it's only been one and half year since I started my Master research, I have received many help from many people who supported me finishing this Master degree project. First of all, I would like to express my sincere gratitude to my supervisor, Prof Guoxiu Wang, for the guidance, support, and encouragement. I cannot thank you enough for all the advice that leads to the improvement of me, all the patience when I made a mistake, and all the concern about my research and life. I'm really grateful to have you as my teacher and supervisor.

I wish to thank all my colleagues in the research team of Centre for Clean Energy Technology, Dr Hao Liu, Dr Xiaodan Huang, Dr Bei Wang, Dr Bing Sun, Dr Ying Wang, Mr Dawei Su, Mr Kefei Li, Mr Anjon Kumar Mondal, Mr Shuangqiang Chen, Mr Yiying Wei, and Mr Xiuqiang Xie for the help both in my research and life during my Master period. Special thanks would address to Dr Yueping (Jane) Yao, for the administrative assistance and lab management as well as the great support for our life. It is a great pleasure to work with all of you and I wish you all the best luck.

I wish to thank Rochelle Seneviratne for the assistance and patience during my study. I am also grateful for the training and support in Faculty of Science from Dr Ronald Shimmon, Dr Linda Xiao, and all the MAU staff. The help from all the teachers and professors from school of chemistry and forensic science are much appreciated.

Financial support provided by the Australian Research Council (ARC) through the ARC Linkage project (LP0989134), and ARC Discovery Project (DP1093855) is gratefully acknowledged.

Finally I would like to thank my family, my parents and my brother, for your help and support for me. You always have faith in me even when I was confused about my life and future in the toughest time. It is your loves that make me the person I am and allow me to chase my dreams. Thank you and I love you all.

Table of	Contents
----------	-----------------

Certificate of original authorship	i
Acknowledgements	ii
Table of Contents	iv
List of Figures	viii
List of Tables	xiii
Abstract	xiv
Introduction	1
Chapter 1 Literature Review	4
1.1 Li-O ₂ batteries	4
1.1.1 Anode	7
1.1.2 Electrolyte	8
1.1.3 Cathode	16
1.1.4 Catalyst	20
1.2 Polymer electrolyte	
1.2.1 Solid polymer electrolyte	
1.2.2 Gel polymer electrolyte	
1.3 Conducting polymer	
1.3.1 Synthesis method	
1.3.2 Application	
1.4 Summary	

Chapter 2 Experimental Methods	47
2.1 Overview	47
2.2 Materials and chemicals	48
2.3 Material preparation	49
2.3.1 <i>In situ</i> oxidation	50
2.3.2 Solution casting method	50
2.4 Material characterization	51
2.4.1 X-ray Diffraction (XRD)	51
2.4.2 Scanning electron microscope (SEM)	53
2.4.3 Fourier transform infrared spectroscopy (FT-IR)	53
2.4.4 Thermogravimetric Analysis (TGA)	54
2.5 Electrode preparation and cell assembly	55
2.5.1 Electrode preparation	55
2.5.2 Cell assembly	55
2.6 Electrochemical characterization	56
2.6.1 Cyclic Voltammetry (CV)	56
2.6.2 Electrochemical Impedance Spectroscopy (EIS)	57
2.6.3 Linear Sweep Voltammetry (LSV)	58
2.6.4 Galvanostatic Charge and Discharge	59
Chapter 3 Low Molecular Weight Polyethylene Glycol Based Gel Polymer Elec	trolyte
Used in Li-O ₂ Batteries	61
3.1 Introduction	61

3.2 Experiment	62
3.2.1 Preparation of PEG based GPEs	62
3.2.2 Material characterization	63
3.2.3 Electrochemical testing	63
3.3 Results and discussion	64
3.4 Summary	78
Chapter 4 Investigation of PVDF-HFP Based Gel Polymer Electrolyte Used in Li-O ₂	
Batteries	80
4.1 Introduction	80
4.2 Experiment	81
4.2.1 Preparation of PVDF-HFP based GPEs	81
4.2.2 Material characterization	82
4.2.3 Electrochemical testing	82
4.3 Results and discussion	83
4.4 Summary	93
Chapter 5 Conducting Polymer-Doped Polypyrrole as An Effective Cathode Catalyst	
for Li-O ₂ Batteries	94
5.1 Introduction	94
5.2 Experiment	95
5.2.1 Synthesis of materials	95
5.2.2 Characterization of samples	96
5.2.3 Electrochemical measurements	96

5.3 Results and discussion	
5.4 Summary	
Chapter 6 Conducting Polymer Coated CNT Used in Li-O ₂ Batte	eries with Enhanced
Electrochemical Performance	
6.1 Introduction	
6.2 Experiment	
6.2.1 Synthesis of materials	
6.2.2 Characterization of samples	
6.2.3 Electrochemical measurements	
6.3 Results and discussion	
6.4 Summary	116
Chapter 7 Conclusions	
7.1 General conclusion	
7.2 Outlook and future work	
References	

List of Figures

Figure 1-1 The gravimetric energy density of commonly used rechargeable batteries5
Figure 1- 2 Schematic mechanism of Li-O ₂ batteries during discharge and charge
process
Figure 1- 3 Different types of Li-O ₂ batteries based on different architectures9
Figure 1- 4 Two models of reaction mechanisms of Li-O ₂ batteries, (A) aqueous system
and (B) non-aqueous system10
Figure 1- 5 Three different types of electrolyte filling on cathodes, (A) flooding, (B) dry
and (C) wetting
Figure 1- 6 Schematic mechanism of decomposition of PC electrolyte in Li-O ₂ batteries
Figure 1- 7 Cycle performance of Li-O ₂ batteries with TEGDME as electrolytes
Figure 1- 8 Schematic mechanism of discharge process on porous carbon cathodes17
Figure 1- 9 The morphology study, discharge performance and discharge mechanism of
a hierarchical graphene
Figure 1- 10 Schematic mechanism of (a) side reactions of carbon cathode and
discharge products and (b) side reactions between electrolyte and carbon cathode 19
Figure 1- 11 Discharge/charge profiles (left) and cycle performance (right) of nano gold
cathode in DMSO based electrolyte
Figure 1- 12 Discharge/charge profile (left) and cycle performance (right) of graphene
cathode and carbon black cathode
Figure 1- 13 First galvanostatic charge of Li ₂ O ₂ oxidation for various Li–O ₂ cells23
Figure 1- 14 Schematic mechanism of Li ₂ O ₂ and Li ₂ O forming on MnO ₂ catalyst24
Figure 1- 15 Schematic mechanism of Li ⁺ movement through PEO based polymer
electrolyte

Figure 1- 16 Schematic mechanism of the addition of ceramic fillers and the effect of
different particle sizes, (a) macro-size and (b) nano-size
Figure 1- 17 Schematic presentation for functional role of PDMITFSI ionic liquid on
lithium deposition, (a) without and (b) with ionic liquid
Figure 1- 18 The structures of the most commonly used conducting polymers
Figure 1- 19 Conjugated orbitals formed in polyacetylene
Figure 1- 20 Schematic illustration of synthesis mechanism of PPy
Figure 1- 21 Schematic illustration of synthesis mechanism of (A) PPy nanotube and
(B) PANI nanowire
Figure 1- 22 Cycling performance of PPy/FC at (a) constant current density of 50 mAg ⁻¹
and (b) different current densities
Figure 1- 23 Discharge/charge profiles (left) and resistance (right) of the LiFePO ₄
cathode (a) coated with PEDOT, (b) coated with PPy, (c) coated with C, and (d) pristine
particles

Figure 2- 6 A typical ESI Nyquist curve of a battery system
Figure 2- 7 A typical result of LSV measurement
Figure 2- 8 An example charge and discharge curve of a Li-O ₂ battery60
Figure 3-1 The typical molecular structure of PEG or PEO61
Figure 3- 2 Cyclic voltammetry results of Li/GPE/Li type cells with (a) PEG and (b)
PEG with SiO ₂ addition
Figure 3- 3 Linear sweep voltammetry results of (a) Li/GPE/SS and (b) Li/GPE/CB-air
type cells
Figure 3- 4 The impedance spectra of PEG at different temperatures. (b) The calculated
ionic conductivity of PEG at different temperatures
Figure 3- 5 (a) First discharge and charge profiles of Li-O ₂ batteries with PEG, PEG-
SiO ₂ , TEGDME as electrolytes. (b) Partial enlarged view of first discharge and charge
profiles from 0-1500 mAhg ⁻¹
Figure 3- 6 Discharge and charge profiles of Li-O ₂ batteries with (a) PEG, (b) PEG-
SiO ₂ , and (c) TEGDME as electrolytes at fixed capacity to 500 mAhg ⁻¹ 72
Figure 3- 7 Cycle profiles of Li-O ₂ batteries with PEG, PEG-SiO ₂ , and TEGDME as
electrolytes
Figure 3- 8 Structures of (a) PEG-based electrolyte and (b) PEG-SiO ₂ -based electrolyte
Figure 3- 9 XRD pattern of PEG before and after made into polymer electrolyte77
Figure 3- 10 XRD pattern of cathode after discharge in PEG polymer electrolyte78
Figure 4- 1 The typical structure of PVDF-HFP80
Figure 4-2 The cyclic voltammetry curve of Li/GPE/Li typed cell with TEGDME based
GPE as electrolyte

Figure 4- 3 Linear sweep voltammetry results of (a) Li/GPE/SS and (b) Li/GPE/CB-air
type cells
Figure 4- 4 The calculated ionic conductivity of PEG at different temperatures
Figure 4- 5 The discharge and charge profiles in the first cycle of Li-O ₂ batteries using
different electrolyte
Figure 4- 6 Discharge and charge profiles of Li-O ₂ batteries with TEGDME based GPE
as electrolytes at fixed capacity to 500 mAhg ⁻¹
Figure 4- 7 Cycle profiles of Li-O ₂ batteries with PVDF-HFP based GPE and TEGDME
as electrolytes
Figure 4- 8 Proposed structure of PVDF-HFP based GPE
Figure 4-9 The discharge and charge profiles in the first cycle of PC (a) and DMSO (c)
based GPEs and the cycling performance of PC (b) and DMSO (d) based GPEs
Figure 5- 1 The typical structure of PPy
Figure 5- 2 SEM images of the as-prepared (a) PPy-Cl and (b) PPy-ClO ₄ , and (c) FT-IR
spectra of both PPy polymers
Figure 5- 3 The discharge-charge profiles and (b) cycling performance of PPy-Cl, PPy-
ClO ₄ and carbon black electrodes
Figure 5- 4 The mechanism of (a) oxygen activation of PPy and (b) doping-undoping
process of PPy-Cl and PPy-ClO ₄
Figure 5- 5 FT-IR spectra of (a) PPy-Cl, (b) PPy-ClO ₄ , and (c) carbon black electrodes
before discharge, after discharge and after charge process
Figure 5- 6 (a) The charge-discharge profiles and (b) the cycling performance of carbon
black electrodes with and without LiCl additive104
Figure 5-7 Schematic mechanism of discharge process on cathode with LiCl addition

Figure 6- 1 The typical structure of PEDOT
Figure 6- 2 The SEM images of (a) the bare CNT, the as-prepared (b) $PPy/CNT_{1:2}$, (c)
PPy/CNT _{1:1} , (d) PPy/CNT _{2:1} , (e) PEDOT/CNT _{1:1} , and (f) FT-IR spectra112
Figure 6- 3 The TGA spectra of as-prepared (a) $PPy/CNT_{1:2}$, (b)PPy/CNT _{1:1} , (c)
PPy/CNT _{2:1} , and (d) PEDOT/CNT _{1:1}
Figure 6- 4 (a) The discharge and charge profiles of as-prepared $PPy/CNT_{1:2}$,
PPy/CNT _{1:1} , PPy/CNT _{2:1} , PEDOT/CNT _{1:1} , and CNT electrodes. (b) Partially enlarged
profiles of as-prepared electrodes with capacity of 500 mAh g ⁻¹ 114
Figure 6- 5 The cycling performance of as-prepared prepared PPy/CNT _{1:2} , PPy/CNT _{1:1} ,
PPy/CNT _{2:1} , PEDOT/CNT _{1:1} , and CNT electrodes
Figure 6- 6 6 The schematic mechanism of (a) PPy/CNT during cycling, and (b) the
block of O ₂ from PEDOT structure

List of Tables

Table 2-1 Materials and chemicals used in the research project	.49
Table 5-1 EDS results of PPy-Cl and PPy-ClO ₄ electrodes after cycling	103

Abstract

It has been well established that the electrolytes and cathodes have a significant effect on the electrochemical performance of lithium oxygen batteries. In this Master project, polymers were employed as electrolyte and cathode materials due to their unique superior properties. Using different methods, we synthesized suitable gel polymer electrolytes and conducting polymer catalysts for lithium oxygen batteries. Techniques such as field emission gun scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used to characterize the physical properties. Electrochemical analyses including the galvanostatic discharge and charge method, the cyclic voltammetry, the linear sweep voltammetry and the impedance spectra were conducted to determine the electrochemical performance for the as-prepared materials.

Gel polymer electrolytes based on low molecular weight polyethylene glycol were prepared and used as electrolyte in lithium oxygen batteries. The as-prepared polymer electrolytes showed improved stability compared with liquid electrolytes and exhibited good performance in lithium oxygen batteries. Additionally, the addition of ceramic filler SiO₂ was found to reduce the stability of polymer electrolyte towards oxygen reduction reaction although higher ionic conductivity was obtained. Polyethylene glycol based gel polymer electrolyte without SiO₂ addition exhibited excellent cycling performance and it could be used for achieving long-life lithium oxygen batteries.

Poly(vinylidene fluoride-co-hexafluoropropylene) based gel polymer electrolytes were prepared by solvent casting and employed as electrolytes in lithium oxygen batteries. The stability of the gelled electrolyte with tetraethylene glycol dimethyl ether has been greatly increased than the liquid one. The as-prepared polymer electrolyte was demonstrated excellent cycling performances. This thesis also investigated the effect of different plasticizers on the performance of lithium oxygen batteries. The reason could lie on the interactions among the components when the gelled structure was set. The tetraethylene glycol dimethyl ether based gel polymer electrolyte showed the best electrochemical performance and can be used for long-life lithium oxygen batteries.

Polypyrrole conducting polymers with different dopants have been synthesized and applied as the cathode catalysts in lithium oxygen batteries. Polypyrrole polymers exhibited an effective catalytic activity for oxygen reduction in lithium oxygen batteries. It was discovered that dopant significantly influenced the electrochemical performance of polypyrrole. The polypyrrole doped with Cl⁻ demonstrated higher capacity and more stable cyclability than that doped with ClO₄⁻. Polypyrrole conducting polymers also exhibited higher capacity and better cycling performance than that of carbon catalyst.

Conducting polymer coated carbon nanotubes were synthesized and used as catalysts in lithium oxygen batteries. It was found that both polypyrrole and poly(3,4ethylenedioxythiophene) coated carbon nanotubes could provide high cycling performance while polypyrrole based one exhibited higher capacities. The ratio of conducting polymer coating also affected the electrochemical performance of lithium oxygen batteries. The conducting polymer coated carbon nanotubes also showed better performance than the bare carbon nanotubes.

хv