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Abstract

Over 3000 microbial (bacterial and archaeal) genomes have been made publically available to date, providing an
unprecedented opportunity to examine evolutionary genomic trends and offering valuable reference data for a variety of
other studies such as metagenomics. The utility of these genome sequences is greatly enhanced when we have an
understanding of how they are phylogenetically related to each other. Therefore, we here describe our efforts to reconstruct
the phylogeny of all available bacterial and archaeal genomes. We identified 24, single-copy, ubiquitous genes suitable for
this phylogenetic analysis. We used two approaches to combine the data for the 24 genes. First, we concatenated
alignments of all genes into a single alignment from which a Maximum Likelihood (ML) tree was inferred using RAXML.
Second, we used a relatively new approach to combining gene data, Bayesian Concordance Analysis (BCA), as implemented
in the BUCKy software, in which the results of 24 single-gene phylogenetic analyses are used to generate a “primary
concordance” tree. A comparison of the concatenated ML tree and the primary concordance (BUCKYy) tree reveals that the
two approaches give similar results, relative to a phylogenetic tree inferred from the 16S rRNA gene. After comparing the
results and the methods used, we conclude that the current best approach for generating a single phylogenetic tree,
suitable for use as a reference phylogeny for comparative analyses, is to perform a maximum likelihood analysis of a
concatenated alignment of conserved, single-copy genes.
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Introduction/Background ecological trends [14-17]; inferring co-speciation [18,19], epide-
miological [20-22], and biogeographical [23,24] events; perform-
ing phylogenetic profiling analysis [25], and more.

More than 3000 bacterial and archaeal genomes have been
sequenced and deposited in public databases to date, including the
results of a large-scale effort to choose organisms for genome
sequencing based on their phylogenetic diversity [12]. The
phylogenetic relationships among many of the sequenced genomes
are unclear. When new species are described, it is commonplace to
use a phylogeny of the gene for the small-subunit ribosomal RNA
(in bacteria and archaea, this is known as the 16S rRNA gene, in
eukaryotes, it is known as the 185 rRNA gene) to place them in a
phylogenetic context. The 16S rRNA gene is a valuable tool for
this purpose because its sequence has regions of both low and high
conservation and because there are now hundreds of thousands of
sequences available from both cultured and environmental
organisms. However, it is likely that there will be differences
between a phylogenetic tree inferred using the 16S rRNA gene
versus other phylogenetic marker genes [26]. This is generally the
case when comparing phylogenies reconstructed from different
genes, because they may have different amounts of phylogenetic

Until relatively recently, the evolution of species was largely
assumed to be a strictly bifurcating, tree-like process [1-3].
However, many argue that such a tree-like depiction of the history
of species, especially for microbes, is not valid because the high
incidence of movement of genes from one lineage to another (i.e.,
horizontal gene transfer, or HGT) is thought to obscure a vertical
line of descent [4-7]. Though unquestionably HGT is of great
importance in understanding the biology and evolution of species,
many studies have found that some genes appear to be transferred
horizontally at a much lower rate than others [8]. Such genes can
thus potentially be used to reconstruct a framework of vertical
inheritance of microbial species [9,10]. Such a framework is
important, because even though it might not perfectly reflect the
evolutionary history of every gene within a given organism, or
even of each organism, it is useful as a first approximation to the
evolutionary history of organisms [11]. For example, it is from
within this framework that events like horizontal gene transfer can
be detected and understood as significant deviations from a first
approximation. Also, phylogenetic trees are useful tools for many
other applications. They can be used for guiding the selection of
genomes for sequencing [12]; assigning taxonomy to community
(metagenomic and 16S PCR) sequence data [13,14]; identifying

signal, evolutionary histories, or rates of evolution, and because
issues like convergence, long-branch attraction, and hidden
paralogy can lead to incorrect tree inference [1,27].

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | 62510



This work 1s motivated by the need for a single, fully resolved,
best estimate of the phylogeny of bacteria and archaea that will be
used to perform various comparative analyses in a phylogenetic
context. Here, we employ several phylogenetic methods to infer
the phylogeny of the bacteria and archaea for which genome
sequences are available, using a set of 24 single-copy, ubiquitous
genes (Table 1). Alignments generated for these genes can either
be concatenated for a single analysis (a supermatrix method), or used
individually to infer a tree for each gene and then combining the
gene trees to build a single organismal phylogeny (supertree and
simultaneous gene tree/species tree methods). Both approaches
have trade-offs and shortcomings that have been discussed
extensively elsewhere [28-33]. To summarize, the primary
drawback of the supermatrix approach is that a shared evolution-
ary history is assumed for all genes, and when this assumption is
violated, inaccurate trees with strong measures of support can be
obtained in some cases [33]. With supertree methods, important
information is often lost during the construction of a supertree,
including branch lengths and statistical measures of support for
individual clades, and the information content of a single gene
may not be sufficient to recover some relationships among
organisms [34].

Previous work on large-scale microbial phylogenetics has
primarily relied upon the supermatrix approach [35-37], but see
also [38-40], We desired to explore the use of a new supertree
approach (discussed below) that has not yet been applied to a
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dataset of this scale. We present the results of both concatenated
alignment supermatrix and single-gene supertree approaches. In
addition to the two different approaches to combining the
information from several genes, we employed several methods of
phylogenetic inference. We used RAxML to produce maximum
likelihood trees and we used MrBayes to produce Bayesian trees.
We attempted to use both RAXML and MrBayes for supermatrix
and supertree analyses.

Many factors can contribute to the incongruence of phyloge-
netic trees inferred from different genes. In bacteria and archaea,
horizontal gene transfer is the most common explanation offered
in the literature, but incomplete lineage sorting, model violation,
convergence, long branch attraction, and lack of phylogenetic
signal can also contribute to phylogenetic incongruence. Several
methods, including *BEAST [41], BEST [42], STEM [43], and
BUCKYy [44], have been developed to estimate an organismal
phylogeny, given a collection of gene trees, the topologies of which
may not be known with certainty. MRP (Matrix Representation
Parsimony) [45,46] requires the input of a single tree for each
gene, a requirement we sought to avoid because we expected that
the high sequence divergence:sequence length ratio might result in
poorly resolved gene trees. MRP does not perform well in the
presence of uncertainty or discordance [47]. Most of these
methods were developed by researchers interested in plant and
animal phylogenetics, where the number of taxa are few (relative
to the number presented here), horizontal gene transfer is rare,
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Table 1. Genes used in this study.

gene ID gene name gene product length avg % identity avg RF  bootstrap reps
PMPROK00003 rpIN 50S ribosomal protein L14 118 39% 112418 500
PMPROK00015 rpsC 30S ribosomal protein S3 180 46% 947.92 400
PMPROK00019 rpsE 30S ribosomal protein S5 155 47% 1026.01 500
PMPROK00020 rplF 50S ribosomal protein L6 168 49% 1039.08 450
PMPROK00025 rpsS 30S ribosomal protein S19 91 50% 1194.08 550
PMPROK00028 rpsB 30S ribosomal protein S2 226 51% 903.61 450
PMPROK00029 rplK 50S ribosomal protein L11 141 51% 111234 450
PMPROK00034 rplD 50S ribosomal protein L4 196 52% 947.99 450
PMPROK00041 rpsQ 30S ribosomal protein S17 78 52% 122231 450
PMPROK00048 rplB 50S ribosomal protein L2 208 52% 1015.17 500
PMPROK00051 rpsl 30S ribosomal protein S9 128 53% 1098.84 450
PMPROK00053 rplE 50S ribosomal protein L5 176 53% 1027.25 500
PMPROK00054 rpsG 30S ribosomal protein S7 156 54% 1011.56 450
PMPROK00060 lepA GTP-binding protein LepA 598 56% 666.34 300
PMPROK00064 infB translation initiation factor IF-2 533 56% 701.37 300
PMPROK00068 rpsK 30S ribosomal protein S11 113 58% 1149.50 500
PMPROK00071 rplP 50S ribosomal protein L16 133 58% 1070.93 450
PMPROK00074 rpsH 30S ribosomal protein S8 125 59% 1083.00 450
PMPROK00075 rplC 50S ribosomal protein L3 202 60% 950.51 400
PMPROK00081 rpsM 30S ribosomal protein S13 118 61% 1129.42 450
PMPROK00087 pheS phenylalanyl-tRNA synthetase, alpha subunit 219 61% 920.66 450
PMPROK00092 rplO 50S ribosomal protein L15 138 62% 1128.83 400
PMPROK00093 rps) 30S ribosomal protein S10 101 65% 109434 400
PMPROK00094 rpsL 30S ribosomal protein S12 118 74% 1164.01 450
Data for the 24 genes used in this study, including the gene product, alignment length, average Robinson-Foulds (RF) distance among bootstrap replicates, the number
of rapid bootstrap replicates required to reach convergence, and the amino acid model with the highest Bayesian posterior probability.
doi:10.1371/journal.pone.0062510.t001
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and gene tree incongruence is more likely caused by variable rates
of evolution, hidden paralogy, and incomplete lineage sorting.
BUCKYy is the only currently available method that is agnostic
with respect to the cause of incongruence among gene trees.
BUCKYy implements Bayesian Concordance Analysis. It takes into
account the uncertainty within an individual gene tree, does not
assume that all genes share an evolutionary history, and provides a
statistical means by which a “dominant” topology, called a
primary concordance tree, can be obtained. Here, we employed
BUCKYy to calculate the primary concordance tree given the gene
trees for the 24 single-copy, universally-distributed genes.

Methods

Taxa and Marker Selection and Alignment

PhyloSift (manuscript in preparation, software available at
https://github.com/gjospin/PhyloSift) was run on the database of
all bacterial and archaecal draft and complete genomes available
from NCBI and IMG as of April 2011. PhyloSift (which is based
partly on AMPHORA [13]) performs a blastx [48] search of
genome nucleotide data and uses profile HMMs, built from high-
quality, manually curated sequence alignments, to align sequence
data for a set of phylogenetic marker genes. With PhyloSift, the set
of marker genes includes 38 genes that are mostly single-copy and
ubiquitous in the bacteria and archaea (Wu et. al., manuscript in
preparation). A multiple sequence alignment was generated for
each of the 38 genes with hmmalign [49] by aligning each
database hit to the profile HMM alignment. Only the 2966
organisms that had at least 18 of the 38 markers were used for
further analyses.

In order to successfully complete some of the more computa-
tionally intensive phylogenetic analyses, we found it useful to
remove all but one representative of sets of very closely related
taxa. These redundant taxa contribute a great deal of uncertainty
to the analysis near the tips of the phylogeny (because the
phylogenetic marker genes are very highly conserved at the amino
acid level, which is the level being analyzed here,) without
contributing useful information to the inference of relationships
among the closely-related species. Therefore, a subset of taxa was
chosen that is representative of the total organismal diversity. In
order to do this, we first built a phylogeny using FastTree [50] with
the default settings (see Figure S3 and Datafile S3). This tree was
used to guide an organism selection process based on the PD, or
phylogenetic diversity (branch length), that each organism
contributed to the tree. We applied the greedy max PD algorithm
of Steel, 2005 [51], stopping when new organisms were
contributing less than 2 substitutions per 100 sites. This resulted
in the inclusion of 800 taxa.

In addition to eliminating redundant taxa, a related concern
was one of minimizing the amount of missing data. Missing data
are particularly problematic for the implementation of BUCKy
because it requires that each taxon is present in every single-gene
analysis. In order to apply BUCKy to data where a taxon is
missing a gene, phylogenetic analysis for that gene must include
that taxon with all sites coded as missing data. If many taxa are
missing data, the result is a lot of uncertainty, causing a diffuse
posterior distribution of topologies and inaccurate results [52]. So,
an implementation [53] of an algorithm [54] that enumerates all
maximal bicliques was used to find the set of markers that were
present in all 800 taxa. This resulted in the selection of the 24
genes used for all analyses.

An additional 41 taxa were manually added to the initial list of
800 genomes. These additional genomes were either publicly
unavailable (not yet deposited into Genbank) or of particular
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interest (because they represent under-sampled lineages) and
missing one or more of the 24 marker genes. See Table S1 for a
complete list of organisms used for this study. A few of these
additional taxa were missing up to 14 marker genes, but no single
marker gene was missing data for more than 6 taxa. This limits the
degree of topological uncertainty that may be present in any gene
tree due to missing data effects.

Bayesian Inference of Phylogenies Using a Concatenated
Alignment

In order to ensure that the results from the supermatrix and
supertree approaches would be directly comparable, we used a
concatenated alignment of the same 24 marker genes with the
same 841 taxa as input for a Bayesian phylogenetic inference with
MrBayes v. 3.2.0 [55]. The alignment was partitioned by gene,
with the topology and branch lengths linked across partitions, but
the amino acid model and shape parameter of the gamma
distribution unlinked. Each partition was permitted to jump
between 10 fixed amino acid models and the gamma distribution
was approximated using 4 rate categories. The MCMC was run
with a temperature parameter of 0.2, sample frequency of 100,
swap frequency of 3, and 2 independent runs with 4 chains each
for 1000000 generations. Convergence was assessed using the
reported average standard deviation of split frequencies (ASDSF),
which is a measure of the difference among the tree samples
obtained in the different chains. The suggested value of this
statistic, when the runs converge upon a solution, should fall below
0.01. All analyses presented here were run on a 1.6 GHz Intel
Xeon CPU.

Bayesian Inference of Phylogenies Using Single-gene
Alignments

Alignments of the 24 marker genes selected to minimize the
amount of missing data (as described above) were analyzed with
MrBayes using the parameters above, for 1 million generations,
requiring approximately 9 months of CPU time for each marker.

Maximum Likelihood Inference of Phylogenies Using a
Concatenated Alignment

A concatenated alignment of 24 genes for 841 taxa was used as
mput for maximum likelihood inference with RAxML v 7.2.8 [56].
The alignment was partitioned by gene, and ProtTest [57] was
used to select the appropriate model of amino acid substitution for
each partition. We used the —f a option of RAxML to generate 100
rapid bootstrap replicates [58] followed by a search for the best-
scoring ML tree. We then assessed bootstrap convergence using
the —I autoMRE option in RAXxML and found that convergence
had not been achieved. We then initiated a new rapid boot-
strapping run, which was terminated upon convergence at 250
replicates (after 360 CPU days.).

Maximum Likelihood Inference of Phylogenies Using
Single-gene Alignments

Alignments of each of the 24 markers that were selected to
minimize the amount of missing data were analyzed with RAxML
as described above for the concatenated alignment. However,
because some taxa were composed entirely of missing data for
some of the single-gene analyses, the RAXML source code was
modified to permit the analysis to run with these taxa included.
We used the —f a option of RAXML to generate 100 rapid
bootstrap replicates [58] followed by a search for the best-scoring
ML tree for each gene. We then assessed bootstrap convergence
using the —I autoMRE option in RAxML and found that
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convergence had not been achieved. We then initiated a new rapid
bootstrapping run to generate 1000 replicates. Convergence was
assessed using the —I autoMRE option in RAxML. A majority-rule
consensus tree was calculated using the 24 best ML trees produced
by RAxML, using the -] MR option in RAxML.

16S rRNA Gene Phylogeny

16S rRNA sequences for each of 841 organisms were either
downloaded from NCBI or retrieved manually from the IMG
database [59]. For the cases in which multiple copies of the 16S
rRINA gene were present in a single genome, the longest sequence
was selected for further analysis. They were aligned using Infernal
using a covarion model built from a high-quality reference
alignment [60]. RAXxML was used with the —f a option and the
GTR+I" model of nucleotide substitution to generate 1000
bootstrap replicates followed by a search for the best-scoring ML
tree.

BUCKy

For reasons discussed below in the results, we did not use
BUCKYy with the results of the single-gene Bayesian phylogenetic
analyses. Instead, we used BUCKy to generate a primary
concordance tree (referred to hereafter as the “BUCKYy” tree)
from the single-gene RAxXxML bootstrap replicates. To convert
RAxML output into a format acceptable as input for BUCKy, a
custom perl script, dependent on R, is provided in Datafile S7. In
order to reduce the memory required to run BUCKy to a level
acceptable by currently available computational resources, the
population tree was not computed. In order to modify the code to
remove this functionality, the line:

bool buildPopulationTree = false;

was added immediately after the line:

string quartetTree, quartetTreeWithWts;

We evaluated the effect of choosing different prior values for the
alpha parameter on the results generated by BUCKy. We ran
BUCKYy using the default prior of 1, which for our data, centers
the prior distribution on the number of distinct gene trees around
3.5. We also used alphas of 10, 50, and 100, for which the prior
distribution is centered around 12.5, 18, and 22 trees, respectively.

Tree Comparison and Visualization

We used the Robinson-Foulds (RF) metric [61] to quantify the
distance between the concatenated ML tree topology and the
BUCKYy tree topology, and between each of them and the 16S
rRNA tree topology. The treedist algorithm available in the
PHYLIP software package [62] was used to compute the
symmetric distance (RF) between pairs of trees. While this metric
provides a means by which to state that one tree is more similar to
a second tree than it is to a third tree, given our data, there is no
means by which to state that two trees are significantly different
from each other at a given probability level. Dendroscope [63] was
used to visualize and annotate single phylogenetic trees and to
generate the majority-rule consensus tree.

Results and Discussion

Taxa/markers Used for Analysis

In large part because not every genome used in this analysis was
completely finished, if we had restricted our analysis to genes that
were universally present in all the genomes analyzed, we would
have been left with only four ribosomal proteins. Given the
amount of total phylogenetic diversity among these organisms, a
phylogeny reconstructed using only four ribosomal protein (i.e.
short) genes would certainly be too poorly resolved for our
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purposes. We did attempt to minimize the impact of missing genes
by limiting the number of missing sequences per gene to no more
than six.

841 organisms, including four plastid and three mitochondrial
genomes and a subset of 24 of the PhyloSift phylogenetic markers
were used for all initial analyses. In an attempt to minimize
artifacts due to long-branch attraction (discussed below) at the split
between the bacteria and archaea, we also built trees from
bacteria-only alignments of 761 taxa. See Table 1 and Table S1
for a list of genes and organisms used, respectively.

The total phylogenetic diversity (branch length) contained in a
tree of all 16S rRNA sequences maintained in the Greengenes
database [64] is 1766.27. A comparable tree of our subsample of
841 organisms (bacteriat+archaea) has a total branch length of
69.91. Therefore, our current phylogenetic analysis includes
approximately 4% of the known phylogenetic diversity found in
the Greengenes database [65].

Long Branch Attraction (LBA)

Long branch attraction (LBA) is a well-known phylogenetic
artifact that causes sequences that are on long branches (which can
occur because the lineages have accelerated evolutionary rates or
because they are on isolated evolutionary branches) to incorrectly
appear to be closely related [66]. This artifact was originally
thought to mainly affect maximum parisomy analyses, but recent
simulation studies have shown that, even when the correct model
of evolution is selected, maximum likelihood analyses are not
immune [67]. LBA can also cause organisms on long branches to
be pulled to the root of the tree (i.e., toward the outgroup) [68].
Therefore, when interpreting phylogenetic trees, it is important to
be particularly skeptical about the relationships of organisms that
are on long branches, especially when they appear to be sister taxa
or branch deeply in a rooted tree. The concatenated ML tree,
using the archaea as an outgroup to the bacteria, displays several
instances of likely LBA (Figure S4 and Datafile S4). In particular,
our tree has six suspicious bacterial branches that lead to
candidate division TM7 single cell isolate TM7c, candidate
division TM7 genomosp GTLI1, Mycoplasma suws, Candidatus
Carsonella  ruddii, and Candidatus Hodgkinia cicadicola. These
organisms are either missing up to 10 of the marker genes
(because they are intracellular symbionts with streamlined
genomes or single-cell isolates with incomplete genomes) or have
accelerated rates of sequence evolution, or both.

One way to reduce the impact of LBA, in terms of drawing long
branches to the root, is to remove the distantly-related outgroup
taxa. We repeated the RAXxML analysis with all of the archacal
species removed from the concatenated alignment. When we did
this, each of these six long branches moved to different locations in
the concatenated ML tree. The two Mycoplasma species moved,
with high bootstrap support (100%) to a clade with the other
Mycoplasma species. The two insect endosymbionts, Hodgkinia and
Carsonella, moved to within the Proteobacteria, but there they form
a poorly-supported clade with another long-branch taxon (candi-
date division TM7 genomosp. GTLI), suggesting that LBA may
still be an issue with the placement of these taxa. The two TM7
genomes were moved to different locations in the tree, as discussed
in the TM7 section. In the BUCKYy tree with only bacterial taxa,
the Mycoplasma species moved to the Mycoplasma clade; the two
TM7 genomes do have a sister relationship, and they form a
lineage basal to the Actinobacteria; Hodgkinia becomes the basal
lineage of the alpha-proteobacterial clade; and Carsonella is sister to
Candidatus inderia insecticola, a beta-proteobacterial insect endo-
symbiont. Carsonella+Zinderia form a clade with the mitochondrial

April 2013 | Volume 8 | Issue 4 | 62510



genomes, and that clade is sister to the alpha+beta-proteobacterial
clade.

Aside from the TM7 genomes, which have never been
phylogenetically placed with confidence, each of these moves
were to positions that were at least closer to expectation given the
16S rRNA tree and other, independent, physiological lines of
evidence [69-71]. It is likely that the bacteria-only trees may still
suffer from artifacts of phylogenetic reconstruction (LBA or
others), but because we assume that they represent a better
estimate of the bacterial phylogeny than the trees that include the
archaea, we will use bacteria-only trees for all further analyses and
tree comparisons. We note that in the trees presented here of
bacteriatarchaea, the relationships among the archaea are
congruent with recently published phylogenies of the archaea,
including a ML tree based on a concatenated alignment of 57
ribosomal proteins [72] that shows higher clade support values
than the concatenated ML tree presented here.

Bayesian Phylogenetic Analyses

For both the concatenated alignment and for all single-gene
alignments, after approximately 18 months of CPU time, two
million MCMC generations had completed in MrBayes. However,
the average standard deviation of split frequencies (ASDSF) for all
runs was > = 0.16, which is well above the level (0.01) suggested
by the authors of the software to be indicative of convergence.
And, in majority-rule consensus trees, generated after discarding
the first 25% of the trees sampled as burn-in, not a single node had
greater than the 0.5 posterior probability required for inclusion in
a majority rule consensus tree.

Because it is impossible to know if or when these analyses would
ever converge upon an answer, given our computational resources,
we opted to abandon them. Recent work in Bayesian phyloge-
netics has demonstrated new algorithms that can run several
orders of magnitude faster than MCMC on large datasets like ours
[73], but these are not currently available in high-quality
implementations.

Maximum Likelihood Phylogenetic Analyses

We concluded that the best approaches to reconstructing the
phylogeny of the bacteria and archaea, given our time limits and
computational resources were by 1) running a Maximum
Likelihood search using RAXML on a partitioned, concatenated
alignment of the 24 single-copy phylogenetic marker genes and 2)
using bootstrap replicates for each of the 24 phylogenetic marker
genes as input for a Bayesian Concordance Analysis using BUCKy
to produce a primary concordance tree [40].

We performed 1000 bootstrap replicates for each gene, and
assessed convergence using the —I autoMRE option in RAxML.
Bootstrapping converged for all genes after no more than 500
replicates (T'able 1).

The tree in Figure 1 is the result of the full ML search using the
concatenated alignment with clade support values obtained from
the rapid bootstrap replicates (also see Figure S1 for a horizontal
depiction of this tree, which some readers will find easier to
interpret, or Datafile S1 for a text representation of the tree in the
Newick format suitable for most tree-viewing applications). It
recovers most of the clades that are expected based on the 16S
rRNA phylogeny (Figure 2, Figure S2, and Datafile S2), but offers
greater clade support overall (Figure 3), and increased resolution
among phyla. There are some notable differences between the 16S
rRNA tree and the concatenated ML tree, which will be discussed
below.
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BUCKy

BUCKYy was designed to take as input the posterior distribution
of tree topologies generated by MrBayes for each gene. Because
the single-gene Bayesian analyses could not be run to convergence
due to computational limitations, we used an alternative approach
suggested by [40]. The rapid bootstrapping algorithm implement-
ed in RAXML was used to generate 1000 bootstrap replicates for
each of the 24 genes. These were used as input for BUCKYy.
BUCKY crashed when given 1000 bootstrap replicates, but ran
with 500 replicates, and because the rapid bootstrapping had
converged in all cases by 500 replicates, we used that number as
mput for BUCKy. Because BUCKYy typically takes MrBayes
output as input for analysis, a custom Perl script was required to
modify the RAXML output to serve this purpose (Datafile 7). We
generated a primary concordance (BUCKYy) tree using the single-
gene RAXML bootstrap replicate trees as input.

The trees produced using alpha=10, 50, and 100 were
identical, both in topology and the values of the concordance
factors at every node. Because we know that there is considerable
uncertainty in the single-gene trees, we chose to use the primary
concordance tree that was generated using a larger prior than the
default of 1. The RF distance between the alpha=1 and
alpha =10 primary concordance trees was (72/4.76%) and the
average concordance factor value was (0.360) in the alpha =1 tree,
versus (0.368) in the alpha =10 tree. The main (minor) difference
between the two trees is the degree of resolution: the alpha =1 tree
has 1508 splits and the alpha=10 tree has 1512 splits. For
reference, a fully resolved tree has 1522 splits.

The BUCKYy tree (Figure 4, Figure S5, and Datafile S5) showed
a lack of resolution of the relationships deep in the bacteria, as
evidenced by the fact that the relationships among phyla are
represented by a large polytomy. It also exhibited, for the most
part, very low concordance factors (Figure 3D), relative to the
bootstrap support values obtained for the concatenated alignment.
Concordance factors represent an estimate of the proportion of
gene trees that have a particular clade. The method by which the
primary concordance tree is computed is to rank clades based on
their concordance factors, from high to low, and then assemble the
tree such that none of the clades present conflict with clades
having a higher concordance factor [44]. While it is possible that
the 24 genes do have conflicting evolutionary histories, we
conclude that the low concordance factors observed in our
BUCKYy tree, in particular at the nodes that are well-supported by
the concatenated analysis, are due instead to the lack of
phylogenetic signal of individual genes. It is known (Cecile Ane,
pers. comm.) that BUCKy will underestimate concordance factors
when there are large numbers of taxa and poorly resolved gene
trees, but that the inference of topology is robust to these
conditions. Examination of the majority-rule consensus trees for all
of the single gene analyses (see Figure 5 for an example) reveals
that there is very little resolution beyond grouping a few species of
the same genera. A marjority-rule consensus tree of the 24 best
ML single-gene trees reveals the same lack of resolution (Figure S6
and Datafile S6). This lack of resolution explains the low
concordance factors, and suggests that they are low, not because
there is a lot of conflicting signal between the genes, but that the
signal for each gene is very weak. Further evidence for this
interpretation comes from a comparison of the Robinson-Foulds
distance metric computed for all pairwise comparisons of
bootstrap replicate trees for each gene (Figure 6). The average
RF distance among these bootstrap replicates is closer to the
average distance among 100 random trees than it is to the average
RF distance among bootstrap replicates of the concatenated
alignment. There is also a significant negative correlation between
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Figure 1. Concatenated Maximum Likelihood tree. Phylogenetic tree inferred from a concatenated, partitioned alignment of 24 genes using
RAXML. The branches of phyla with at least 5 representatives are colored, other lineages are all drawn with black lines. Support values are calculated
from 100 rapid bootstrap replicates. This representation is a radial cladogram, in which branch length is not proportional to time, and some branches
may be elongated so that the names of the taxa appear on the circumference of the circle. The original version of this figure is available in the

Supporting Information: Figure S7.
doi:10.1371/journal.pone.0062510.g001

the length of the single-gene alignments and the RF distance
among bootstrap replicates, suggesting that it is a reduction in
information content of the genes that is leading to an increase in
the variance of the phylogenetic inference. The average percent
identity, however, is similar for all genes, including the two longest
genes, which also are the only two protein-encoding genes
included that are not known to operate in the ribosome (see
Figure 7). Unfortunately, there is no way to increase the
information content of a single gene. Nevertheless, the BUCKy
tree is remarkably similar in topology to the concatenated ML
tree. The RF distance between the BUCKy tree and the

PLOS ONE | www.plosone.org

concatenated ML tree is 318, and the average RF among
bootstrap replicates for the concatenated ML tree is 322. While
it has been suggested that concatenating single-gene alignments
can result in the emergence of phylogenetic signal that is missing
from single genes [34], our results suggest that BUCKy can
effectively be used to extract this signal without resorting to
concatenation. Unfortunately, the preponderance of low concor-
dance factors makes tree interpretation and comparisons difficult,
as it is unclear as to what should be considered a “well-supported”
clade. Also, the BUCKYy tree does not include branch lengths,
limiting its utility for some applications.
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Figure 2. 16S rRNA Maximum Likelihood tree. Phylogenetic tree inferred from an alignment of the 165 rRNA gene using RAXML. The branches of
phyla with at least 5 representatives are colored, other lineages are all drawn with black lines. Support values are calculated from 100 bootstrap
replicates. This representation is a radial cladogram, in which branch length is not proportional to time, and some branches may be elongated so that
the names of the taxa appear on the circumference of the circle. The original version of this figure is available in the Supporting Information: Figure S8.

doi:10.1371/journal.pone.0062510.g002

Placement of Interesting Taxa in the Tree

For many organisms, especially those that have been selected for
genome sequencing due to their phylogenetic novelty or are
otherwise from relatively under-sampled clades, the best estimate
of their phylogenetic history has been derived from their position
in the 16S rRNA gene phylogeny. Our results show that there is a
great deal of congruence/agreement between the phylogenetic
trees obtained by analysis of the 16S rRINA gene and that of the 24
genes used here, especially in terms of recovering known phyla (see
Figures 1 and 2). However, there are a few noteworthy differences,

PLOS ONE | www.plosone.org

including an increased resolution of the relationships among phyla
in the concatenated ML tree, which is not surprising, given the
additional data. Because most relationships between bacterial
phyla have historically been entirely unresolved, it was our thought
that any move towards resolution was noteworthy, and we
therefore used a fairly permissive threshold to define an increase
in resolution. We define this increase in phylogenetic resolution as
the appearance of at least moderately well-supported (>50%
bootstrap) clades in the concatenated ML tree that are not found
(with at least 50% bootstrap support) in the 16S rRNA tree. For
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genes, (C) best ML tree inferred from the 16S rRNA gene, and (D) primary concordance (“BUCKy") tree.

doi:10.1371/journal.pone.0062510.9003

the purposes of this discussion, we will only be comparing the 16S
rRNA tree to the concatenated ML tree. The BUCKy tree will be
mentioned only when it is in conflict (with a high concordance
factor) with the concatenated ML tree.

Planctomycetes. The placement of the Planctomycetes has
been somewhat controversial [74,75], and in the 16S rRNA tree,
they are part of a basal polytomy in the bacteria. In our multi-gene
phylogeny, they are sister to the Chlamydiae/ Verrumicrobia group
with 86% bootstrap support.

Thermodesulfobium narugense and coprothermobacter
proteolyticus. The published description of Thermodesulfobium
narugense [76] describes it as a representative novel lineage of
sulfate-reducing thermophiles, most closely related to the candi-
date phylum OP9, but less than 81% similar to any 16S rRNA

PLOS ONE | www.plosone.org

sequences (from either isolate or environmental clones). In that
study, the authors generated trees based on two genes involved in
sulfate reduction, dstAB and apsA. These two genes are found in
only a few bacterial and archaeal clades, so they were not useful
for confirming the phylogenetic placement of 7. narugense, but they
do have conflicting topologies that the authors state may be due to
HGT of the sulfate reduction genes (which has been proposed to
be frequent). It appeared to have a “distinctive” dsrA gene, while
its ApsA gene appeared to have been most closely related to that of
D. hydrogenovorans (a delta-proteobacterium). In our 16S rRNA tree
of all sequenced genomes, it is a part of a basal polytomy of the
bacteria. In the concatenated ML tree, it is sister to Dictyglomus
(boostrap support=60%) and those two are sister to the
Thermotogae+Coprothermobacter with moderate (53%) bootstrap sup-
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Figure 4. BUCKYy tree. Primary concordance (“BUCKy") tree constructed using Bayesian Concordance Analysis of RAXML bootstrap replicates for
each of the 24 phylogenetic marker genes. Values at the nodes are concordance factors. The branches of phyla with at least 5 representatives are
colored, other lineages are all drawn with black lines. This representation is a radial cladogram, in which branch length is not proportional to time,
and some branches may be elongated so that the names of the taxa appear on the circumference of the circle. The original version of this figure is

available in the Supporting Information: Figure S9.
doi:10.1371/journal.pone.0062510.g004

port. This corroborated a recently published anlysis of 44
orthologous protein sequences, which demonstrated a sister
relationship between Dictyglomus and Thermotogea, but did not
include Thermodesulfobium [77]. The clade consisting of (Thermo-
desulfobium+Dictyglomus) and (Thermotogae+Coprothermobacter) have a
strongly-supported (bootstrap = 83%) sister relationship to a clade
containing the Deinococcus-Thermus group and the Aquificaceae.
Hippea. Hippea maritima is a thermophilic, sulfur-reducing
bacterium that was isolated from shallow submarine hot vents
[78]. It was previously placed in the family Desulfurellaceae based on
its 16S rRNA sequence similarity (89.6%) to Desulfurella multipotens
and placement as sister to the Desulfurella clade of the delta-

PLOS ONE | www.plosone.org

proteobacteria [79]. However, our concatenated ML tree shows
strong (bootstrap = 100%) support for its placement as a lineage
basal to the rest of the epsilon-proteobacteria, thus we propose that
it be reclassified as an epsilon-proteobacteria.
Acidithiobacillus. In all trees presented here, the gamma-
proteobacteria is a paraphyletic group. In the concatenated ML
tree, with the exception of Candidatus Carsonella rudii, which is on a
long, unstable branch (see discussion of LBA above), the
Acidithiobacillus species are the only gamma-protobacterial taxa
that are not contained within a well-supported (bootstrap
support = 70%), monophyletic clade. The two Acdithiobacillus
species instead represent a distinct lineage, basal to the clade
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Figure 5. A majority-rule consensus tree calculated from the bootstrap replicates of one of the 24 genes. Majority-rule consensus tree
computed from the bootstrap replicates for the 30S ribosomal protein S3. This gene has an alignment length of 180 sites, which is the average length
for the 24 marker genes used in this study. This representation is a radial cladogram, in which branch length is not proportional to time, and some
branches may be elongated so that the taxa appear on the circumference of the circle. The original version of this figure is available in the Supporting

Information: Figure S10.
doi:10.1371/journal.pone.0062510.g005

(bootstrap = 48%) containing the beta+alpha-proteobacteria. In
the BUCKYy tree, they are the basal lineage of the beta-
proteobacterial clade. The placement of this group has historically
been problematic [80], and we propose that it be classified as a
lineage, distinct from the gammaproteobacteria, called the eta-
proteobacteria.

Thermodesulfobacterium.  Thermodesulfobacterium has been
proposed to represent a deeply-diverging division-level lineage
[81,82]. Lateral transfer of the genes involved in dissimilatory
sulfite reduction has been proposed because the dssAB genes of
Thermodesulfobacterium species are most closely related to those of the
delta-proteobacteria. The concatenated ML tree provides strong
support (bootstrap = 100%) for the sister relationship of Thermo-
desulfobacterium commune+Thermodesulfatator indicus to the Desulfovibrio-

PLOS ONE | www.plosone.org
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nales, a family within the delta-proteobacteria. This result, along
with the fact that these organisms have a similar metabolism to
other Desulfovibrionales [81,83], suggests that the topological
discordance between the 16S rRNA tree and the drsAB tree that
was Interpreted in [82] as evidence for lateral transfer of the dsrAB
gene, is in fact due to an incorrect placement of 7. commune in the
16S rRNA tree.

Acidobacteria, nitrospirae, and poribacteria. In the
concatenated ML tree, there is strong support for the sister
relationship of the Acidobacteria and the Nitrospirae (boot-
strap =89%). The strongly-supported Nitrospirae clade (boot-
strap = 95%) contains Thermodesulfovibrio yellowstonii, Candidatus
Nitrospira defluvii, and Candidatus Poribacteria. These two clades
(Acidobacteria+Nutrospira)  are, with moderate support (boot-
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strap = 55%), sister to the delta-proteobacteria. The inclusion of
Candidatus Poribacteria in the Nitrospirae clade is in conflict with its
placement in the 16S rRNA tree. In the 16S rRNA tree,
Poribacteria is at the base of the Planctomycetes (bootstrap = 43%), and
that clade is sister to the Verrucomicrobiat+ Chlamydia clade
(bootstrap = 54%). This “Poribacteria genome was sequenced
using a single-cell whole genome amplification (WGA) approach
[84]. Contamination is a concern with this approach, and the
authors took care to convince themselves that there was no
contamination (other than from Delflia, which is a common beta-
proteobacterial reagent contaminant) from other genomes in their
sequence. Their evidence for lack of contamination was 1) a single
copy of the 16SrRNA gene, 2) single copies of 29 of 55 known
single-copy genes [85], and 3) a unimodal %GC distribution of the
reads. The conflict between the 16S rRNA and concatenated ML
phylogenies may be due to reasons other than contamination in
the WGA product in cases like this. Nevertheless, we suggest that
an additional check for contamination should be the phylogenetic
analysis of other phylogenetic marker genes found in the genome
sequence.

TMT7 single-cell isolates. There are two TM7 genomes that
were sequenced with the WGA approach. Using the 16S rRNA
sequence from the WGA data, these two are sister taxa with
bootstrap support of 100%, and they are placed, with weak
support, as sister to the Chloroflexi. In the concatenated ML tree,
they are not sister taxa. TMT7c is placed with weak support
(bootstrap = 38%) as sister to Anaerolina thermophilia, within the
Chloroflexi. 'The other candidate division TM7 genomosp. GTLI
isolate is placed with very weak support within a clade containing
three insect symbionts, basal to the gamma-+beta-proteobacterial
clade. This placement is possibly the result of an LBA artifact.
While the true placement of these two genomes is unclear based on
the concatenated ML tree, it is noteworthy that they do not have
the strongly-supported sister relationship that we see in the 16S
rRNA tree.

Summary/Conclusion

We were interested in generating a single, fully resolved
phylogenetic tree to be used in comparative analyses. We chose
24 highly-conserved, single-copy genes to be used for phylogenetic
analysis. We wanted to use an approach that avoids some of the
(unrealistic) assumptions about how genes evolve, especially in
microbes. In particular, we wanted to use an approach that does
not assume that every gene shares a single phylogenetic history,
i.e., a supertree approach. A review of available methods (as well
practical difficulties with Bayesian approaches) led us to believe
that the best strategy, given our data, was to use Bayesian
Concordance Analysis (as implemented in BUCKYy) with RAxML
bootstrap replicates as input. We were interested in how a tree
produced by BUCKYy in this way compared to a ML analysis of a
concatenated alignment. Our analyses including both bacteria and
archaea revealed obvious long branch attraction artifacts within
the bacteria. We therefore opted to focus all of our tree (method)
comparisons on trees that contained only bacterial taxa, in which
the long branch attraction artifact was ameliorated.

For the Bayesian Concordance Analysis, we first attempted to
use Bayesian phylogenetic inference, but current methods were
unable to mix and converge on our data after many months of
CPU time. Instead, we opted to employ a maximum likelihood
approach using RAxML. We used two approaches to combine the
data from the 24 phylogenetic marker genes. The first approach
was to concatenate alignments of all 24 genes and run a single ML
analysis, with bootstrap replicates. The second approach was to
generate many bootstrap replicates from an alignment of each
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gene, and then combine the information from the single gene trees
using BUCKy. We also performed ML analysis of an alignment of
16S rRNA sequences for each of the taxa included in the other two
trees. This 16S rRNA tree was used as a standard to which to
compare the phylogenetic placement of particular taxa in our
concatenated ML and BUCKYy trees.

The concatenated ML tree and the BUCKYy tree were more
similar to each other than either was to the 16S rRNA tree. There
are differences between the arrangements of taxa in all three trees,
but most of the major bacterial groupings (phylum-level) were
shared among all three. The ML tree based on the concatenated
alignment was better-supported overall than the 16S rRNA tree
(Figure 3) and the topological variance among bootstrap replicates
inferred from the concatenated alignment was lower than among
the 16S rRINA bootstrap replicates.

As has been observed in previous, similar simulations, a
Bayesian approach to the reconstruction of phylogenies of this
size 1s currently computationally infeasible [40]. The computation
time for the maximum likelihood analyses run here was more
reasonable, especially when using cluster or cloud computing. The
run time for the concatenated alignment was approximately 2
weeks (distributed over 8 cores), and the single-gene analyses took
approximately 1 day per gene (again, distributed over 8 cores).
The runtime for BUCKy to produce the primary concordance
tree was approximately 4 hours.

From among the trees we generated during this process, we
would choose the concatenated ML tree as our working
representation of the relationships among bacterial genomes for
4 reasons: 1) it produced a fully resolved tree, which is essential for
many of the downstream analyses that we intend to do; 2) it
provides an estimate of branch lengths, which is not only generally
informative, but also essential for many downstream analyses; 3) it
is accompanied by support values that are meaningful, if for no
other reason, than the community at large is accustomed to an
intuitive interpretation of bootstrap support values, where as the
concordance factors produced by BUCKy, when this large
number of taxa are analyzed, are currently difficult to interpret,
(Cecile Ane, pers. comm.); and 4) because it is much simpler and
less time-consuming to run than any of the other methods we
tested here.

All alignments and trees produced in this study are freely
available via Figshare (www.figshare.com).

Supporting Information

Figure S1 Maximum likelihood tree of bacteria from
concatenated alignment (horizontal format). Phylogenetic
tree of 761 bacterial taxa, inferred from a concatenated,
partitioned alignment of 24 genes using RAxML. The branches
of phyla with at least 5 representatives are colored, other lineages
are all drawn with black lines. Support values are calculated from
100 rapid bootstrap replicates. This is the same tree as Figure 1
from the main text, shown in a horizontal format.

(PDF)

Figure S2 Maximum likelihood tree of bacteria from
16S rRNA genes (horizontal format). Phylogenetic tree of
761 bacterial taxa, inferred from an alignment of the 16S rRNA
gene using RAXML. The branches of phyla with at least 5
representatives are colored, other lineages are all drawn with black
lines. Support values are calculated from 100 bootstrap replicates.
This is the same tree as Figure 2 from the main text, shown in a
horizontal format.

(PDF)
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Figure S3 FastTree of all bacteria and archaea analyzed
(2966 taxa) from 38 concatenated genes. Phylogenctic tree
of 2966 bacterial and archaeal taxa, inferred from a concatenated
alignment of 38 marker genes (Wu et al, in prep) using FastTree.
(SVG)

Figure S4 Maximum likelihood tree of bacteria and
archaea from concatenated alignment. Phylogenetic tree of
841 bacterial and archaeal taxa, inferred from an alignment of 24
marker genes using RAXxML. Support values are calculated from
100 bootstrap replicates.

(PDF)

Figure S5 BUCKy tree (horizontal format). Primary
concordance (“BUCKY”) tree constructed using Bayesian Con-
cordance Analysis of RAxXML bootstrap replicates for each of the
24 phylogenetic marker genes. Values at the nodes are
concordance factors. The branches of phyla with at least 5
representatives are colored, other lineages are all drawn with black
lines. This is the same tree as Figure 4 from the main text, shown
in a horizontal format.

(PDF)

Figure S6 50% majority rule consensus computed from
the 24 best ML single-gene trees generated by RAxML.
(PDF)

Figure 87 Concatenated Maximum Likelihood tree.
Phylogenetic tree inferred from a concatenated, partitioned
alignment of 24 genes using RAXML. The branches of phyla
with at least 5 representatives are colored, other lineages are all
drawn with black lines. Support values are calculated from 100
rapid bootstrap replicates. This representation is a radial
cladogram, in which branch length is not proportional to time,
and some branches may be clongated so that the names of the taxa
appear on the circumference of the circle.

(EPS)

Figure S8 16S rRNA Maximum Likelihood tree. Phylo-
genetic tree inferred from an alignment of the 16S rRNA gene
using RAXML. The branches of phyla with at least 5
representatives are colored, other lineages are all drawn with
black lines. Support values are calculated from 100 bootstrap
replicates. This representation is a radial cladogram, in which
branch length is not proportional to time, and some branches
may be elongated so that the names of the taxa appear on the
circumference of the circle.

(EPS)

Figure 89 BUCKy tree. Primary concordance (“BUCKy”)
tree constructed using Bayesian Concordance Analysis of RAxML
bootstrap replicates for each of the 24 phylogenetic marker genes.
Values at the nodes are concordance factors. The branches of
phyla with at least 5 representatives are colored, other lineages are
all drawn with black lines. This representation is a radial
cladogram, in which branch length is not proportional to time,
and some branches may be elongated so that the names of the taxa
appear on the circumference of the circle.

(EPS)

Figure S10 A majority-rule consensus tree calculated
from the bootstrap replicates of one of the 24 genes.
Majority-rule consensus tree computed from the bootstrap
replicates for the 30S ribosomal protein S3. This gene has an
alignment length of 180 sites, which is the average length for the
24 marker genes used in this study. This representation is a radial
cladogram, in which branch length is not proportional to time,
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and some branches may be elongated so that the taxa appear on
the circumference of the circle.

(EPS)

Table S1 Organisms used in this study. List of organisms
used 1in this study, with (when available) NCBI accession numbers
and IMG taxon ID numbers.

(XLS)

Datafile S1 Maximum likelihood tree of bacteria from
concatenated alignment (Newick format). Phylogenetic
tree of 761 bacterial taxa, inferred from a concatenated,
partitioned alignment of 24 genes using RAXML. Support values
are calculated from 100 rapid bootstrap replicates. This is the
same tree as Figure 1 from the main text, shown in the Newick
format, suitable for use in most tree-viewing programs.

(TXT)

Datafile S2 Maximum likelihood tree of bacteria from
16S rRNA genes (Newick format). Phylogenetic tree of 761
bacterial taxa, inferred from an alignment of the 16S rRNA gene
using RAXML. Support values are calculated from 100 bootstrap
replicates. This is the same tree as Figure 2 from the main text,
shown in the Newick format, suitable for use in most tree-viewing
programs.

(TXT)

Datafile S3 FastTree of all bacteria and archaea
analyzed (2966 taxa) from 38 concatenated genes (New-
ick format). Phylogenetic tree of 2966 bacterial and archaeal
taxa, inferred from a concatenated alignment of 38 marker genes
(Wu et al., in prep) using FastTree. This Newick format is suitable
for use in most tree-viewing programs.

(TXT)

Datafile S4 Maximum likelihood tree of bacteria and
archaea from concatenated alignment (Newick format).
Phylogenetic tree of 841 bacterial and archaeal taxa, inferred from
an alignment of 24 marker genes using RAxML. Support values
are calculated from 100 bootstrap replicates. This Newick format
is suitable for use in most tree-viewing programs.

(TXT)

Datafile S5 BUCKy tree (Newick format). Primary con-
cordance (“BUCKYy”) tree constructed using Bayesian Concor-
dance Analysis of RAXML bootstrap replicates for each of the 24
phylogenetic marker genes. Values at the nodes are concordance
factors. This is the same tree as Figure 4 from the main text, shown
in the Newick format, suitable for use in most tree-viewing
programs.

(TXT)

Datafile $6 50% majority rule consensus computed
from the 24 best ML single-gene trees generated by
RAxML (Newick format). This is the same tree as Figure S6,
shown in the Newick format, suitable for use in most tree-viewing
programs.

(TXT)

Datafile S7 Perl script that can be used (upon installa-
tion of R) to convert RAaML bootstrap replicates into a

format that can be used as input for BUCKy.
(TXT)
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