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Abstract. Formalising nearness has been the subject of extensive vembkt-
ing in many membership functions based on absolute distargtdcs, relative
distance metrics, and combinations of those. The possitdagths and weak-
nesses of these functions have been discussed and argaeadtht but strangely
enough, no experiment seems to have been conducted to #ssessrits and
shortcomings of competing approaches. Conducting sudtriexents can be ex-
pected not only to provide an objective evaluation of theower measures that
have been proposed, but also to suggest new measures tpetforurh all those
being analysed. This paper fulfills these expectations gares further evidence
that fuzzy logic provides fruitful and powerful methods twrhalise qualitative
reasoning and capture fundamental qualitative notions proposed fuzzy mem-
bership functions can be directly used in qualitative reagpabout spatial prox-
imity in Geographic Information Systems, which are becaymmore and more
important in software development for diverse purposeh siscTourist Informa-
tion Systems or property development.

1 Introduction

Love it or loathe it, fuzzy logic is, albeit its unfortunateaice of name, a very practi-
cal Artificial Intelligence technique that is used in apptions such as control systems
in washing machines, elevators, cars, etc. It is quite aalddumethod that can gen-
erate precise solutions from approximate data, and can beeat use for developing
computational models for vague concepts such as thoseildeddry natural language
expressions. In this paper, we propose and evaluate fuzeybership functions suit-
able to implement the notion of spatial proximity, gengraéépresented by linguistic
terms such asear or close, within Geographic Information Systems (GIS).

After a brief review of previous work, this paper will repoir studies conducted to
evaluate proximity membership functions against a datafsatdistance network and
predefined nearness information. We will conclude with neceendations for appro-
priate functions in the context of reachability across sagise network.

2 Factors that influence Spatial Proximity Perception

Several fuzzy approaches have been devised to represéat ppaximity based on dis-
tance. In order to determine what exactly influences thegmeian of spatial nearness
within GIS data, Gahegan [3] conducted psycho-metric erparts. The objective of



his experiments was to examine when or how people decidehwhebjects are near
a chosen reference object on a GIS map. The pseudo-metdgonese conducted on
a group of 50 subjects, who have all had some practical expdsuGeographic In-

formation Systems. The subjects were asked to rate objed®grams representing
geographic features on a map, according to how close theg teea given reference
object. While Gahegan [3] pointed out that his tests werenegessarily conclusive,
he could obtain some interesting results and make sevesalradtions that could be
helpful in modelling spatial proximity. A first observatias that if a scene is devoid
of additional objects, namely if only the reference objeud ¢he object to be located
inhabit the scene, geometrical reasoning is applied. Hewav the presence of other
objects of the same type, proximity is partially defined blatiee distance. Another
observation is that proximity perception is impacted by sbale of the scene, which
directly depends on the size of the area being consideres paper is set out to define
membership functions that address all of these points.

On the basis of his observations, Gahegan [3] suggestedextoal model of near-
ness relations in order to account for different influendagjors. Three kinds of met-
rics are considered in Gahegan’s model: an absolute destaetric, a relative distance
metric, and a combination of both. Using the absolute desganetric amounts to as-
suming that proximity is directly proportional to the Eutiin distance between the
reference object and the object to be localised. As the sdale area viewed by the
user of a GIS map also seems to have an impact on the percepgimximity, Gahegan
[3] further suggested that the bounding boxes of the ardeiGiS can be used as scale
indicator, the opposite corners of the bounding boxes pingithe maximum distance.
If the maximum possible distance between objects in theesisemsed to normalise the
distance between two objectsand B, it is then possible to represent the proximity be-
tweenA andB by a fuzzy value. Similarly, but not exclusively, we will ugee maximal
distance between objects on the map of a country or state.Wilienable proximity
evaluations across several GIS maps if needed. In this plggemaximal distance will
be the largest distance between any two places in the coomnstate being considered.
Absolute distance metrics result in continuous proximitshwfor exampleyery close
> close > far, but relations such adosest or farthest cannot be represented. For this
and other reasons, Gahegan [3] proposed to treat proximigrins of a relative dis-
tant metrics, in addition to the absolute distance methNtse precisely, he suggested
an ordinal approach to represent relative distance, byimgritke objects in the scene
with respect to their distance to the reference object aaddtal number of objects.
He pointed out that this approach could cause objects to h&idered close to a given
reference object, even though such objects might be separated fAdmy a large dis-
tance. As the objects are ranked on the basis of their distand, this approach seems
to be more absolute than relative in nature. Worboys [6]tdegh this problem in a
more efficient way by calculating for each place the mearmadist to all other places in
the scene.

Gahegan [3] suggested to combine both the absolute andl#tiwealistance. As
both metrics offer fuzzy representations, he defined the lbeeship function for ab-
solute distance metrics and assumed a distribution fuméionearness based on rel-
ative distance, and then combined these functions withuheyfunion operator. This



resulted in an object being considerolse just in case it is geometrically OR relatively
close.

Motivated by Gahegan’s work, Guesgen and Albrecht [4] satggkto associate
spatial binary relations such & from or close to, or unary relations such a®wn-
town, with fuzzy membership grades that could be calculated ftoerEuclidian dis-
tance between objects on a map. They did not test their stiggesgainst any data
and did not provide any membership function for relativeatise metrics. Guesgen
[5] proposed to define proximity without any measure of distaby using the notion
of fuzzy sets previously defined in Guesgen and AlbrechtThese fuzzy sets were
used to reason about the relationship between proximitpm®by means of transitive
closure on ternary proximity relations such asHfis closer toA thanC'is to A, and
if C'is closer toA thanD is to A, thenB is closer toA thanD is to A.” This is very
similar to van Benthem’s [1] approach in his logic of space.

There is no experimental data to give evidence that Gahgd@jhor Guesgen and
Albrecht’s [4] fuzyy membership functions can be of praatiose. None of their ap-
proaches bases fuzzy membership functions on truly reldtatance. We therefore find
it essential to evaluate Gahegan’s [3] absolute distandean@nd Worboys’ [6] rela-
tive distance metrics before considering whether and hawtobine them using fuzzy
logic operators.

Worboys [6] did some interesting studies on the qualitdtieation of cities and the
relative distances between them. His definition of reladiigance is not based on the
comparative concept without Euclidean distance, but itsdo@netheless incorporate
the context of all places under consideration. He used tad distances between 48
cities in Great Britain, which he called objective distasicand determined their rela-
tive distances to each other by first calculating for eaclireghe mean of the distances
to all remaining centres. The relative distance betweem&red and a centré3 was
then determined by dividing the objective distance betwéand B by A’'s mean. This
notion of relative distance is actually asymmetric: thigmoel will most likely produce
a different relative distance betwednand B than betweerB and A. The relative dis-
tance can then be used to calculate fuzzy nearness valueghsifollowing definition:
nearness(x,y) = (relative_distance(x,y) + 1)1

Places having high nearness values are therefore very afaséow ones are not
close. The greatest nearness is between a place and itgblfa walue of 1. This ap-
proach does not suffer from the same restriction as Gaheggproach. The objects
do not need to be fairly evenly distributed. In his more reéseork on environmental
space, Worboys [7] used the number of subjects and the nunfilyes or no votes to
calculate fuzzy membership values for nearness. This isaimteresting approach
given his experimental data. However it is not practicapiplecable to do such a kind
of data collection for every geographic area that GIS-useght need to work with.

A serious shortcoming of all the approaches that have besoribled is that none of
them does actually evaluate the membership functions sigamy real data, in order to
see how useful these functions are. As has been discusdgd gettion, we have been
conducting experiments with several membership functiosevaluated them against
proximity data. The following section introduces the fuoos we used.



3 Various Distance metrics

As previously mentioned, in order to address all of the olzgt@ns that Gahegan [3]
made in the context of GIS users perceiving proximity, we gibluate several spatial
proximity functions based on absolute distance, relatigtadce, and combinations of
both. Table 1 shows the fuzzy membership functions we eteduim terms of their
usefulness within GIS settings.

— 1 _ Dist(A,B)

Absolute Distance Metrics: | pabs(A, B) T

Relative Distance Metrics: | pirei(A, B) = tommpsn
Fuzzy Union: trcombu(A, B) = MAX (fiaps (A, B), pireit(A, B))
Fuzzy Intersection: teomb_i (A, B) = MIN(uabs (A, B), pret(A, B))

Table 1.Fuzzy Membership Functions

The fuzzy membership function based on absolute distanddcsiés a derivation
of Gahegan’s [3] function with the maximum valudaz being the maximum dis-
tance between all of the places in our data set; B being the distance between
placesA and B. For the fuzzy membership function based on relative digtanet-
rics, we borrowed Worboy'’s [6] membership function, as wenio that Gahegan’s or-
dinal ranking approach is insufficient. Relative distareealculated using the mean
of each placed in the data set, calculated from theplacesOP;, 1 < i < n,
distinct from A and available in the setnean(A) = LY, Dist(A, OF;). The re-
sult of this is then used to calculate the relative distanesvben each two places:
reldis(A, B) = Dist(A, B) * mean(A)~!. While Gahegan [3] only suggested to com-
bine the membership functions based on absolute and eel@istance by applying the
fuzzy union, we also investigated the application of thezfuintersection operator,
which yielded interesting results. The fuzzy union operatdl by definition always
return the maximum membership function value for each dateyeWhile the fuzzy
intersection operator will by definition always return theximum membership func-
tion value for each data entry. We applied these functiontheadata set described in
the following section.

4 Data Set and Experiments

We encoded 34 places in the Australian state of New Southd\ald the distances
between ther For each of the given places, we define the tourist regianrelion
and the regional area they are located in. For Sydney, aflisgions that are easily
accessible for short trips is also supplied, thereby giWwome indication of what is
perceived and generally accepted as near to Sydney. Thisdatvas collected from
the Tourism New South Wales site?. We will be able to use this information to evaluate
our membership functions to see how well they suit the dadda@arness” information
for the given places.

L as given by “The Official Road Directory of New South Wales” tye Land Information
Centre in Bathurst, The New South Wales Government
2 www.visitnsw.com.au



5 Results and Evaluation

The membership function based on absolute distance asalled in the left graph in
Figure 1 shows a linear distribution, as expected from thetfon used. The maximum
distance in the dataset is 1710 km. However, the relative Imeeship function as il-
lustrated in the right graph in Figure 1 shows quite a varisttidution, which is very
different to Gahegan’s more or less linear proposal of @dianking. The issue arising
from his kind of approach, that objects could possibly &dlconsidered close to one
another even when they are separated by a very large disiamz a problem for the
membership function we used, because ours is a functioreadigtance between the
two places being considered.

/

Fuzzy Membership

Fig. 1. Fuzzy Distribution Functions for Absolute and RelativetBire Metrics

The two combined membership functions give quite intengstésults. On one hand
they do support Gahegan’s [3] suggestion that absoluteunesare more appropriate
for non-clustered objects, and relative measures for tbj@tthin clusters of same
“kinded” objects. On the other hand, the results do contta@ahegan’s suggestion to
use the union fuzzy operator for an efficient combined fuamctBecause, when com-
bining absolute and relative distance metrics functionsibipn we do get a linear
distribution for distances until about 800km, where it ojpem into a more clustered
distribution (see left graph in Figure 3).

This is even contradicting Gahegan’s own terms that absalistance metrics i.e.,
linear distributions in his case, are more suited for prasirassignments between ob-
jects that are located in virtually devoid areas. Figure @whthat the greater the dis-
tances between the places, the fewer places are withinglewhich can be explained
by the fairly isolated character of the Australian non-roptiitan areas. In order to
comply with Gahegan’s suggestion to use absolute distaetéan for only lightly and
relative distance metrics for heavily populated areasmtambership function distribu-
tion should be the reverse of the result we obtained for tingbdwed function using the
fuzzy union operator.

When we applied the fuzzy intersection operator to our detavee attained pre-
cisely such a distribution. The fuzzy intersection chanfges a clustered to a linear
distribution between 1000 and 1200 km. The right graph infeéd shows this clearly.
This is even contradicting Gahegan’s own terms that absalistance metrics i.e., lin-
ear distributions in his case, are more suited for proxim#tyignments between objects
that are located in virtually devoid areas. Figure 2 showstie greater the distances



Number of Entries for Distance between Places

Fig. 2. Distance Distribution in the Data Set

between the places, the fewer places are within the areahwhin be explained by the
fairly isolated character of the Australian non-metrofasiiareas. In order to comply
with Gahegan'’s suggestion to use absolute distance mébriasly lightly and rela-
tive distance metrics for heavily populated areas, the neegftip function distribution
should be the reverse of the result we obtained for the cosabinnction using the
fuzzy union operator.

When we applied the fuzzy intersection operator to our detavee attained pre-
cisely such a distribution. The fuzzy intersection charfges a clustered to a linear
distribution between 1000 and 1200 km. The right graph iuféd shows this clearly.
The clustered distribution is more appropriate for smalistances, as there are more
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Fig. 3. Combined Fuzzy Distribution Functions using Union and isgetion Operator

places within a smaller area, and the linear distributiol suiit areas with fewer ob-
jects, which are to be found at greater distances in the glags set. This is perfectly
consistent with Gahegan'’s [3] observations, althoughatdgferent combination oper-
ator that gives the desired result.

We evaluated our membership distribution function valugairgst the proximity
information, namelySydney Surrounds and regions, to appraise the usefulness of the
functions and their combinations in the context of readitgithin a road network.

For all the places that are within regions which are gengealtepted to be in the
Sydney surrounding area, all membership function values wet only well above the
usual crossover point of 0.5, but also above 0.7. We testedli8tances between all
places in our dataset that are in the same region using thie aa the crossover point.



As geographic regions are generally defined with the peiaepf “everything” within

a region being close to “everything” within this region. 1t @f 94 matches had two
membership values that were below 0.7. These membershipsralere always the re-
sult of the membership function based on relative distanegios and the combined
function that returned the former one. When the thresholsl iwaered to the normal
crossover point (0.5), all matches complied. This is a gowlitation that the investi-
gated membership functions are useful in the context of d distance network and
the associated reachability of the places within it.

6 Conclusions and Future Work

In this paper, we have shown that while the membership fanstbased on absolute
distance metrics and relative distance metrics, as prapogésahegan [3] and Wor-
boys [6] respectively, do evaluate well against distanda,dhe combined membership
function that proves useful in this context is the fuzzy iséetion of the two former,
and not their union as Gahegan [3] suggested. We will impietiese proposed mem-
bership functions as part of our already existing qualieateasoning extension to the
Geographic Information SysteAtcuGlobe, to further assess the benefits of fuzzy logic
as a descriptor for spatial proximity notions.

We also plan to extend our data by including more informasibaut regions and
places within the regions that surround major places in #te det. This will allow to
analyse further membership functions and to get more ceiveluesults for asymmetric
relative distance relations. Moreover, we will use the exjeal data set to automatically
learn appropriate membership functions and then evalhate against a data collection
of another geographic area, such as another Australias atat state within another
country of a similar spatial distribution of places.
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