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Abstract
For an energy-limited economy system, it is crucial to forecast load demand accurately. This paper devotes to one-week-ahead daily load forecasting approach in which load demand series are predicted by employing the information of days before being similar to that of the forecast day. As well as in many nonlinear systems, seasonal item and trend item are coexisting in load demand datasets. In this paper, the existing of the seasonal item in the load demand data series is firstly verified according to the Kendall 
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 correlation testing method. Then in the belief of the separate forecasting to the seasonal item and the trend item would improve the forecasting accuracy, hybrid models by combining seasonal exponential adjustment method (SEAM) with the regression methods are proposed in this paper, where SEAM and the regression models are employed to seasonal and trend items forecasting respectively. Comparisons of the quartile values as well as the mean absolute percentage error values demonstrate this forecasting technique can significantly improve the accuracy though models applied to the trend item forecasting are eleven different ones. This superior performance of this separate forecasting technique is further confirmed by the paired-sample T tests. 
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1. Introduction

Power grid collapse often occurs in small or big electric power systems, the daily life, basic service and public transport system would be greatly affected when the power grid collapse happened. As known, the interconnected power grid of the northeastern United States and eastern Canada suffered a serious large-area blackout event on August 14, 2003. The electricity consumption for about 50 million people was affected at that time, the basic city subways, airports, telecommunication facilities and the public transports trapped into a paralyzed situation. This power grid collapse led to a 61.8 million kilowatts loss in the cumulative load as well as billions of dollars loss [1]. Unfortunately, a serious power grid collapse accident happened recently in India. In the beginning, only the power grid in the northern region collapsed on July 30, 2012, and about 350 million people in nine Indian northern regions were affected by this power grid collapse. Badly, India suffered a more large-scale power outage on the second day, the repaired northern power grid collapsed again, and power system in the eastern and northeastern region broke down as well. These three major Indian power grid collapse on has caused electricity supply over regions which occupied half of the national territory was interrupted, some major cities such as the capital New Delhi and Calcutta have not been spared. Daily life of more than 600 million people, the basic service and the public transport system were greatly affected by this power grid collapse [2]. These serious power grid collapse inspired people to pay more attention to the maintenance scheduling of the power grid so as to avoid the unexpected accident as far as possible. Luckily, the future load forecasting can assist to solve this problem effectively.
Actually, except for offering the maintenance scheduling, load forecasting results are also required in many other scheduling programs like the generation, investment and fuel purchases scheduling [3], etc. According to the different time intervals, load forecasting can be classified into three types [4]: the short term, medium term and long term. And among these three types, the short term load forecasting (STLF) is the most common one. 

The forecasting horizon of the STLF is no longer than a week and the corresponding forecasting step is usually one hour or a fraction of hour [5]. Accurate STLF can assist the system operator to accomplish a variety of tasks such as the generation scheduling, and scheduling of the fuel purchasing, etc. Besides, precise STLF not only helps to produce increased secure operation conditions but also saves economic cost [6], thus, a great number of approaches have been adopted to improve the accuracy of STLF. The use of different neural network (NN) models in STLF has been a popular research topic for the recent few years. Hooshmand et al. [7] applied a hybrid intelligent algorithm which combined the wavelet transform, the artificial neural network (ANN) as well as the adaptive neural fuzzy inference (FI) system to forecast Iran’s load and New South Wales (NSW) of Australian’s load. And the real data of NSW was also used by Che et al. [8] to provide a STLF by using an adaptive fuzzy combination STLF model based on the self-organizing map NN, the support vector machine (SVM) and the FI method. Badri et al. [9] investigated the application of ANN and fuzzy logic as forecasting tools for predicting the load demand in short term category. As one of the recurrent NN paradigms, the echo state network was adopted by Deihimi and Showkati [10] to forecast the load belongs to an electric utility in North America. López et al. [11] presented the use of another type of NN named Kohonen’s self-organizing maps to STLF of the Spanish electricity market. Xia et al. [12] developed another STLF model using the radial basis function NN and the performance of this NN model was surveyed according to the load data of Hubei province in China. Niu et al. [13] presented a STLF model based on Bayesian NN learned by the Hybrid Monte Carlo algorithm. In addition, there are some forecasting models based on other methods, such as the largest Lyapunov exponent and non-linear fractal extrapolation algorithm [14], the autoregressive integrated moving average and the SVM [15], the Gaussian Process regression models [16], grey correlation contest modeling [17], models based on the moving average line of stock index and machine learning [18], etc. 
However, the seasonal item information is neglected in most time series modeling, whose fluctuation causes large deviation to the forecasting, to solve this, a separate forecasting strategy based on the seasonal exponential adjustment method (SEAM) and the regression model is presented in this paper for the purpose of the SEAM can deal with the seasonal item information in the data series well and the regression model is easy to understand and operate. Besides, whether the seasonal item exists in the data series is not judged according to effective approaches in the previous works. Thus, in this paper, Kendall 
[image: image3.wmf]t

 correlation testing method, a technique to test the variation consistency of two data series, is firstly utilized to verify the correlation between selected historical load demand data and the load demand data prepared to forecast to guarantee the validity of the data selection. Then a combined strategy by combining the SEAM and the regression model is adopted to produce 11 hybrid models, where SEAM is applied to seasonal item forecasting and the regression models are employed to forecast the trend item in load demand datasets. These combined models are used to one-week-ahead daily load forecasting. Comparisons through the quartile values and the mean absolute percentage error value as well as the paired-sample T test of using and without using the application of SEAM to STLF have been done in the end of the paper to show the performance of the combined models.

The remainder of this paper is organized as follows: In section 2, the related Kendall 
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 correlation testing method, SEAM and the regression models are introduced, section 3 presents the numerical examples and comparison results and the last section reports the main conclusions of this paper. 

2. Related algorithms

2.1. Kendall 
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 correlation testing method

Supposing there are two variables 
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 correlation testing method [19] is a technique uses the uniform value as well as the non-uniform value which are calculated according to the rank of the vector 
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It is obvious that if there is a strong positive correlation between 
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is small; the opposite situation appears when a strong negative correlation exists between 
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; however, in the case of there is a weak correlation 
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where 
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 is the number of the sample data. As seen, the positive correlation is the strongest in the case of 
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Fig.1. An example of calculating the values of 
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2.2. Seasonal exponential adjustment method (SEAM)

  Seasonal item and trend item are coexisting in many nonlinear systems. Generally speaking, they can be composited in the form of multiplication in most of the cases. 

The basic idea of the seasonal exponential adjustment method (SEAM) can be described as follows [20]:

Supposing that the data at time 
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Since the trend item 
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 is unknown before the forecasting, thus, the average in each cycle is used to instead it. First of all, the original data series 
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 EMBED Equation.3  [image: image59.wmf]ml

m

m

x

x

x

,

,

,

2

1

K

. Substituting 
[image: image60.wmf]l

x

x

x

x

kl

k

k

k

)

(

2

1

+

+

+

=

L

to
[image: image61.wmf]k

ks

ks

x

x

I

=



 EMBED Equation.3  [image: image62.wmf])

,

,

2

,

1

;

,

,

2

,

1

(

l

s

m

k

K

K

=

=

,           values of 
[image: image63.wmf]ks

I

 can be obtained. Then the seasonal index is denoted as follows:

                  
[image: image64.wmf]m

I

I

I

I

mj

j

j

j

+

+

+

=

L

2

1

  
[image: image65.wmf])

,

,

2

,

1

(

l

j

K

=

                 (6)

For

                      
[image: image66.wmf]å

å

å

=

=

=

=

m

k

l

s

ks

l

j

j

I

m

I

1

1

1

1


                           
[image: image67.wmf]å

å

=

=

=

m

k

k

l

s

ks

x

x

m

1

1

1


                           
[image: image68.wmf]å

=

=

m

k

l

m

1

1


                           
[image: image69.wmf]l

=

                                   (7)

so the definition of 
[image: image70.wmf]j

I

 conforms to the normalization.
   Using values of 
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Then by renumbering 
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2.3. Regression Theory

As a most commonly used type in regression analysis, the linear regression model is usually employed to for express the relationship between one or more explanatory variables and response. The least square of the residuals is adopted to determine the regression model in this paper. A brief introduction to the linear regression involving a single independent variable is presented as follows [21]:
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The least square of the residuals aims to find two estimation values of the coefficients 
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that is, 
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The multiple linear regression model [19] involving 
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where 
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In fact, many non-linear regression models can convert to linear ones by some variable transformations, for example, 10 non-linear regression models [19, 22] can be converted to linear ones are listed in Table 1 together with the linear regression model, abbreviations, expressions and linear models which they can be converted to are also provided in this table.

Table 1

Abbreviations, expressions and related linear models about 11 regression models.

	Regression model
	Abbreviation 
	General expression
	Linear model can be converted to
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3. Numerical Examples and Comparison Results

3.1. Selection of load demand datasets 
The electricity load demand data are sampled in Victoria (VIC) grid in Australia at half an hour rate, so the total number of load demand in one day is 48. The purpose of this paper is to forecast the one-week-ahead daily load. From the sampled data it can be clearly seen that the load series exhibits marked seasonal patterns within the week. Load demand curves of VIC in May are shown in Fig. 2 to verify this. So using load demand on the same day but in different weeks to make a prediction is the best way. We extract load demand on May 1, May 8 and May 15 (curves in red in Fig. 2) to forecast the one on May 22 (curve in green in Fig. 2). This conclusion is further supported by the Kendall 
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 correlation results shown in Table 2. 
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Fig.2. Load demand of VIC in May.

Table 2

Kendall 
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 correlation results.

	Variables
	Load demand pairs used to test

	
	May 1 and May 8
	May 8 and May 15
	May 15 and May 22

	Kendall 
[image: image129.wmf]t

 correlation coefficient
	0.848 a
	0.832 a
	0.908 a


a: Correlation is significant at the 0.01 level (2-tailed).

As seen form Table 2, the Kendall 
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 correlation coefficients are located between 0.832 and 0.908. The smallest correlation coefficient appears in the Kendall 
[image: image131.wmf]t

 correlation test between the load demand on May 8 and that on May 15, while the correlation coefficient between the load demand on May 15 and that on May 22 is the largest. However, the correlations in all the testing groups are significant at the 0.01 level. All of the information demonstrates that it is reasonable to forecast the load demand on May 22 using the ones on May 1, May 8 and May 15. 

3.2. Forecasting results of the combined models 
As well as many nonlinear systems, seasonal item and trend item are coexisting in the electricity load demand datasets. In the belief of forecasting the two items separately will obtain better performance, SEAM introduced in section 2.2 is used to eliminate the seasonal item from the original load demand datasets. Actual load demand on May 1, 8 and 15 and load demand after eliminating seasonal item from the actual datasets are shown in Table 3, from which values of seasonal index can also be seen. Load behavior after eliminating the seasonal item from the actual datasets is shown in Fig. 3. As expected, no remarkable seasonal patterns can be found in Fig. 3.
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Fig.3. Load behavior after eliminating seasonal item from the actual datasets.

Table 3

Actual load demand and load demand after eliminating the seasonal item on May 01, 08 and 15.

	Time
	Actual load demand (MW)
	Seasonal index 
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	Load demand after eliminating the seasonal item

	
	May 01
	May 08
	May 15
	
	May 01
	May 08
	May 15

	0:30
	5537.37
	5518.94
	5592.02
	0.8920
	6207.70
	6187.00
	6269.00

	1:00
	5386.17
	5362.65
	5420.12
	0.8663
	6217.30
	6190.10
	6256.50

	1:30
	5709.54
	5681.64
	5769.76
	0.9195
	6209.50
	6179.20
	6275.00

	2:00
	5564.02
	5532.08
	5617.29
	0.8955
	6213.30
	6177.70
	6272.80

	2:30
	5343.39
	5324.21
	5421.44
	0.8621
	6198.40
	6176.10
	6288.90

	3:00
	5170.10
	5144.34
	5247.03
	0.8338
	6200.70
	6169.80
	6293.00

	3:30
	5023.9
	5004.14
	5121.61
	0.8117
	6189.10
	6164.70
	6309.40

	4:00
	4902.83
	4880.55
	5015.26
	0.7929
	6183.10
	6155.00
	6324.90

	4:30
	4880.69
	4844.91
	4987.14
	0.7883
	6191.20
	6145.90
	6326.30

	5:00
	4869.18
	4862.97
	5021.20
	0.7905
	6159.30
	6151.50
	6351.60

	5:30
	5005.82
	4996.32
	5155.73
	0.8122
	6163.20
	6151.50
	6347.80

	6:00
	5212.23
	5197.45
	5392.92
	0.8468
	6155.50
	6138.00
	6368.90

	6:30
	5656.21
	5606.72
	5847.30
	0.9168
	6169.50
	6115.50
	6377.90

	7:00
	6089.68
	6058.87
	6300.06
	0.9885
	6160.30
	6129.10
	6373.10

	7:30
	6365.69
	6261.67
	6597.66
	1.0301
	6179.70
	6078.70
	6404.90

	8:00
	6622.05
	6516.99
	6834.40
	1.0702
	6187.80
	6089.60
	6386.20

	8:30
	6776.18
	6600.22
	6898.97
	1.0863
	6238.00
	6076.00
	6351.00

	9:00
	6794.75
	6581.13
	6861.45
	1.0842
	6267.20
	6070.10
	6328.70

	9:30
	6960.62
	6645.56
	6844.18
	1.0955
	6354.10
	6066.50
	6247.80

	10:00
	6968.32
	6590.87
	6754.95
	1.0881
	6404.30
	6057.40
	6208.20

	10:30
	6959.99
	6553.82
	6690.68
	1.0821
	6431.60
	6056.30
	6182.80

	11:00
	6979.01
	6545.72
	6624.48
	1.0791
	6467.20
	6065.70
	6138.70

	11:30
	6991.21
	6539.82
	6599.84
	1.0781
	6484.60
	6065.90
	6121.60

	12:00
	6964.77
	6545.97
	6562.09
	1.075
	6478.70
	6089.10
	6104.10

	12:30
	6914.56
	6545.13
	6528.64
	1.0705
	6458.90
	6113.80
	6098.40

	13:00
	6935.4
	6535.22
	6477.58
	1.0683
	6491.70
	6117.20
	6063.20

	13:30
	6973.32
	6590.68
	6520.36
	1.0757
	6482.90
	6127.20
	6061.80

	14:00
	6968.56
	6556.68
	6507.37
	1.0729
	6495.30
	6111.40
	6065.50

	14:30
	6899.34
	6524.87
	6446.08
	1.0642
	6483.20
	6131.30
	6057.30

	15:00
	6890.48
	6428.35
	6353.86
	1.0535
	6540.50
	6101.90
	6031.20

	15:30
	6815.14
	6355.65
	6239.93
	1.0395
	6556.50
	6114.40
	6003.10

	16:00
	6774.2
	6431.19
	6361.92
	1.048
	6464.00
	6136.70
	6070.60

	16:30
	6838.29
	6476.73
	6386.22
	1.0551
	6480.90
	6138.30
	6052.50

	17:00
	6978.58
	6553.23
	6512.13
	1.0735
	6501.10
	6104.80
	6066.50

	17:30
	7110.54
	6698.96
	6656.92
	1.0961
	6487.10
	6111.60
	6073.30

	18:00
	7333.86
	6999.17
	7008.58
	1.1431
	6415.80
	6123.00
	6131.20

	18:30
	7432.98
	7104.79
	7076.62
	1.1577
	6420.40
	6136.90
	6112.60

	19:00
	7278.53
	7060.41
	6929.00
	1.1392
	6389.00
	6197.60
	6082.20

	19:30
	7127.94
	6925.20
	6777.53
	1.1158
	6388.20
	6206.50
	6074.10

	20:00
	7013.35
	6794.05
	6636.49
	1.0951
	6404.50
	6204.30
	6060.40

	20:30
	6825.89
	6674.93
	6517.78
	1.0724
	6365.40
	6224.60
	6078.00

	21:00
	6688.07
	6533.93
	6395.16
	1.0508
	6364.50
	6217.80
	6085.70

	21:30
	6463.06
	6282.24
	6180.20
	1.0138
	6375.30
	6196.90
	6096.20

	22:00
	6286.72
	6074.90
	5968.27
	0.9818
	6403.10
	6187.40
	6078.80

	22:30
	6026.61
	5876.60
	5718.15
	0.9439
	6384.70
	6225.80
	6058.00

	23:00
	5826.97
	5693.31
	5534.44
	0.9136
	6378.30
	6232.00
	6058.10

	23:30
	6030.12
	5940.78
	5771.88
	0.9505
	6344.30
	6250.30
	6072.60

	24:00
	5816.43
	5752.33
	5594.37
	0.9195
	6326.00
	6256.30
	6084.50


Then in this section, 11 regression models mentioned in section 2.3 are adopted to forecast the trend item of the load demand, where time is the independent variable and load demand obtained by eliminating seasonal item from the actual one is the dependent variable. Acquired expressions by these models are listed in Table 4. 

Table 4

Expressions acquired by the 11 regression models where the dependent variable is the load demand by eliminating seasonal item from the actual one.

	Model 
	Expression
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	Expression
	
	Model 
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Up to now, the trend item in load demand has been forecasted but not the final load demand. In order to obtain the final load demand, inverse SEAM should be used, that is to say, seasonal index obtained in Table 3 should multiply with the forecasted trend item values. The combined models are named by adding prefixes ‘SEAM’ to the corresponding models, for example, method of combining SEAM and RI is called SEAM-RI in this paper. Detailed flow chart of the combined models is shown in Fig. 4.[image: image146.png]o
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Fig.4. Flow chart of the SEAM and regression combined models.
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Fig.5. Actual load demand on May 22 and 11 forecasted load demand curves on the same day obtained by the combined models.                         

Fig. 5 provides plots of the actual load demand on May 22 and 11 forecasted load demand curves on the same day obtained by the 11 combined models, where the actual one is drawn with stars on the line and others none. The plots reveal that all the load demand curves have the similar trend as the actual one, even though linear regression is applied to construct a combined model. Generally speaking, curves obtained by linear regression models are simple straight lines, but after the combination, high agreement in trend with the actual nonlinear curve also has been acquired. 

3.3. Simulation results by the single regression models 

To provide better insight into the nature of the combined models discussed in the preceding section, simulations with the 11 single regression models have been done in this section. Expressions obtained by these single models and forecasted curves are presented in Table 5 and Fig. 6, respectively. As well as Fig. 5, here actual load demand curve is plotted with stars on the line and others none. 

Table 5

Expressions acquired by the 11 single regression models.

	Model 
	Expression
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	Expression
	
	Model 
	Expression
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Fig.6. Actual load demand and 11 forecasted load demand curves obtained by single regression models.

It can be seen from Fig. 6 that these single regression models are fail to follow the actual load demand closely, large deviations are produced compared with combined models mentioned in section 3.2.

3.4. Comparisons between the combined and the single models

3.4.1. Quartile values comparison

In this section, load demand forecasted by each of the 11 combined models are compared with the corresponding single one as well as the actual load demand according to three quartile values: the lower quartile, median and the upper quartile, which are marked as 
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 in this paper and defined as follows [23]:             
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Fig.7 produces box plots of the actual load demand and the ones forecasted by 11 single models and the corresponding 11 combined models. Each box has lines in the position of the lower quartile, median and the upper quartile values. 
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Fig.7. Box graph of the actual load demand and forecasted ones by the single and corresponding combined models. 


As seen from Fig.7, in addition to the fifth single regression model, all of the three quartiles produced by the other single models fluctuate in small ranges, which seem to differ a lot with the actual load demand. Besides, though the load demand forecasted by the fifth single regression model has a quartile value variation range with a similar length with the actual load demand, its lower quartile value nearly equal to the upper quartile value of the actual load demand. Different from the single models, all of the three quartiles calculated by the combined models have similar variation range length, furthermore, the common ranges produced by each of the load demand series forecasted using the combined models and the actual load demand are large. Thus, the combined models are more superior as compared with the corresponding single ones. 

3.4.2. Mean absolute percentage error (MAPE) value comparison

In this section the combined models described in section 3.2 are compared with models presented in section 3.3. As a judgment criterion, the mean absolute percentage error (MAPE) [24] defined as follows is employed to compare the accuracy of the single regression and the combined models:
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Table 6 and Fig. 8 show the MAPE value comparison results between the 11 single regression models and the corresponding combined models. 

Table 6

MAPE values obtained by the single regression models and the corresponding combined models. 
	Single model
	RI
	RII
	RIII
	RIV
	RV
	RVI
	RVII
	RVIII
	RIX
	RX
	RXI

	MAPE (%)
	10.01
	9.95
	10.34
	12.11
	23.70
	10.00
	10.01
	10.47
	10.00
	10.00
	10.00

	
	
	
	
	
	
	
	
	
	
	
	

	Combined model
	SEAM-RI
	SEAM-RII
	SEAM-RIII
	SEAM-RIV
	SEAM-RV
	SEAM-RVI
	SEAM-RVII
	SEAM-RVIII
	SEAM-RIX
	SEAM-RX
	SEAM-RXI

	MAPE (%)
	6.69
	5.23
	4.48
	7.77
	5.88
	6.68
	5.25
	4.51
	6.68
	6.68
	6.68

	
	
	
	
	
	
	
	
	
	
	
	

	Difference of MAPE (%) 
	3.32
	4.72
	5.86
	4.34
	17.82
	3.32
	4.76
	5.96
	3.32
	3.32
	3.32
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Fig.8. Bar graph of MAPE results.

As seen from Table 6 and Fig. 8, all of the combined models work better than the single ones for values of MAPE since all the 11 combined models are lower than those obtained in the corresponding single regression models. Among all the single models, the RII has the best performance with the reach of the MAPE value to 9.95%, and RV the worst with a reach to 23.70%, while MAPE after the combination of SEAM with these two models are reduced to 5.23% and 5.88%, respectively. When combined models are used for STLF, SEAM-RIII is the most effectiveness model because a minimum error of 4.48% is achieved. Even though SEAM-RIV is the worst model among all the combined models, it still has higher accuracy than the best one RII in the single models. 

3.4.3. Paired-samples T test
To incarnate the superiority of the SEAM, paired-samples T test [19] is utilized to give a judgment whether there is remarkable difference between forecasted values obtained by the single regression model and the corresponding combined model. The test hypothesis is defined as 
                
[image: image182.wmf]0

:

2

1

0

=

-

m

m

H

,
[image: image183.wmf]0

:

2

1

1

¹

-

m

m

H

                  (15)             

where 
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 are the average estimates of the forecasted load demand by single regression model and corresponding combined model, respectively. A total of 11 tests are done for further comparison, the results are shown in Table 7.

Table 7

Paired-sample T test results.

	
	Paired Differences ( load demand obtained by the single regression minus load demand obtained by the corresponding combined model )
	Probability (2-tailed)

	
	Mean
	95% Confidence Interval of the Difference
	

	
	
	Lower
	Upper
	

	Pair 1
	264.6863
	78.8338
	450.53894
	0.006

	Pair 2
	201.3153
	9.3042
	393.3264
	0.040

	Pair 3
	49.6830
	-146.0703
	245.4363
	0.612

	Pair 4
	53.3341
	-141.5745
	248.2426
	0.585

	Pair 5
	1881.4812
	1621.5411
	2141.4213
	0.000

	Pair 6
	257.3746
	72.1528
	442.5964
	0.007

	Pair 7
	180.7834
	-10.9608
	372.5276
	0.064

	Pair 8
	13.5769
	-182.1225
	209.2764
	0.890

	Pair 9
	257.3746
	72.1528
	442.5964
	0.007

	Pair 10
	257.3746
	72.1528
	442.5964
	0.007

	Pair 11
	257.3746
	72.1528
	442.5964
	0.007


From Table 7 it can be seen that probabilities in pair 1, pair 2, pair 5, pair 6, pair 9, pair 10 and pair 11 are smaller than the significant level 0.05 (for the level of the confidence Interval is 95%), which means that 
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is true for the seven pairs and the null hypothesis should be rejected, so the inference there is a significant difference between the mean estimates of load demand obtained by single regression model and corresponding combined model for each of the seven tests can be drawn. The majority of the values forecasted by single models and combined models differ significantly reveals that tremendous change appear in the process of forecasting the seasonal item and trend item separately.    
4. Conclusions

Overestimation to the future load leads to an unnecessary spinning reserve, and an excess supply is also unwelcome [25], so accurate load forecasting plays more and more important role in power distribution systems. This paper demonstrates a new STLF technique for forecasting one-week-ahead daily load. Unlike many previous research works for STLF, trend and seasonal items are treated as two separate forecast processes here with the aim of getting higher accuracy and better outcomes. By the use of SEAM, seasonal item in the original load demand has been eliminated. Then regression model is used to forecast the trend item. Finally, the short term load is predicted by multiplying the seasonal index obtained in seasonal item forecasting process and the forecasted trend item. As can be seen from comparisons of the quartile values as well as the MAPE values this forecasting technique can significantly improve the accuracy even though models applied to the trend item forecasting are 11 different ones. The superior performance of this separate forecasting technique is further confirmed by the paired-sample T tests. In our view, forecasting researchers can greatly benefit from this separate forecasting technique as it really provides high improvement in accuracy. 
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