Science Faculty Handbook 1995

The University attempts to ensure that the information contained in the handbook is correct as at 4 November 1994. The University reserves the right to vary any matter described in the handbook at any time without notice.
Equal opportunity
It is University policy to provide equal opportunity for all, regardless of race, sex, marital status, physical ability, sexual preference, age, political conviction or religious belief. The University also has an ethnic affairs policy to ensure that the University community is sensitive to the multicultural nature of Australian society and the cultural diversity within the University.

Free speech
The University supports the right to freedom of speech and the rights of its members to contribute to the diversity of views presented in our society.

Non-discriminatory language
UTS has adopted the use of non-discriminatory language as a key strategy in providing equal opportunity for all staff and students. Guidelines for the use of non-discriminatory language have been developed and all members of the University community are encouraged to use them.

Editorial and production:
Corporate Responsibilities Unit
University Secretary's Division

Design:
UTS News and Design Services
UNIVERSITY OF TECHNOLOGY, SYDNEY
ADRESSES AND TELEPHONE NUMBERS

POSTAL ADDRESS
PO Box 123
Broadway
NSW 2007 Australia
Telephone – all campuses except School
of Legal Practice: (02) 330 1990
International: +61 2 330 1990
Fax: (02) 330 1551
Telex: AA 75004

STREET ADDRESSES

City campus
• Broadway
 No. 1 Broadway, Ultimo
 702–730 Harris Street, Ultimo
• Haymarket
 Corner Quay Street and Ultimo
 Road, Haymarket, Sydney
• Blackfriars
 Blackfriars Street, Chippendale
• Small Street
 3 Small Street, Ultimo
• Wembley House
 839–847 George Street, Sydney
• 645 Harris Street, Ultimo
• Bulga Ngurra, 23–27 Mountain Street
 Ultimo
• 82–84 Ivy Street, Chippendale

Kuring-gai campus
Eton Road
Lindfield
(PO Box 222, Lindfield, NSW 2070)

St Leonards campus
• Dunbar Building
 Corner Pacific Highway and
 Westbourne Street, Gore Hill
• Clinical Studies, Centenary Lecture
 Theatre and West Wing
 Reserve Road, Royal North Shore
 Hospital
• Gore Hill Research Laboratories
 Royal North Shore Hospital
• School of Legal Practice (College of Law)
 Corner Chandos and Christie Streets
 St Leonards
 Telephone: (02) 965 7000

Yarrawood Conference and Research Centre
Hawkesbury Road
Yarramundi 2753

Stroud
Lot AFP 161894
The Bucketts Way
Booral 2425
CITY CAMPUS

City campus
- Broadway
 No.1 Broadway, Ultimo
 702–730 Harris Street, Ultimo
- Haymarket
 Corner Quay Street and Ultimo Road
 Haymarket, Sydney
- Smail Street
 3 Smail Street, Ultimo
- Wembley House
 839–847 George Street
 Sydney
- 645 Harris Street, Ultimo
- Bulga Ngarra, 23–27 Mountain Street
 Ultimo
- 82–84 Ivy Street, Chippendale
Kuring-gai campus
Eton Road
Lindfield

St Leonards campus
- School of Biological and Biomedical Sciences
 Dunbar Building
 Corner Pacific Highway and Westbourne Street
 Gore Hill
- Clinical Studies,
 Centenary Lecture Theatre and West Wing
 Reserve Road, Royal North Shore Hospital
- Gore Hill Research Laboratories
 Royal North Shore Hospital
- School of Legal Practice
 (College of Law)
 Corner Chandos and Christie Streets
 St Leonards
CONTENTS

CAMPUS MAPS iv
PREFACE 1
MESSAGE FROM THE DEAN 2
FACULTY MISSION STATEMENT 2
PRINCIPAL DATES FOR 1995 3
THE FACULTY OF SCIENCE 5
Prizes and scholarships 9
Courses offered by the Faculty 14

UNDERGRADUATE COURSES 15
Bachelor of Applied Science in Chemistry 17
Bachelor of Applied Science in Geology 20
Bachelor of Applied Science in Materials Science 22
Bachelor of Applied Science in Physics 25
Bachelor of Applied Science in Science Education 27
Bachelor of Applied Science (Honours) in Chemistry 29
Bachelor of Applied Science (Honours) in Geology 31
Bachelor of Applied Science (Honours) in Materials Science 32
Bachelor of Applied Science (Honours) in Physics 33
Bachelor of Health Science in Acupuncture 35
Bachelor of Science in Biomedical Science 36
Bachelor of Science in Biotechnology 40
Bachelor of Science in Environmental Biology 42
Bachelor of Science in Urban Horticulture 44
Bachelor of Science (Honours) 48
Bachelor of Science (Honours) in Applied Chemistry – Forensic Science 50
Bachelor of Science/Bachelor of Laws 51

UNDERGRADUATE SUBJECT DESCRIPTIONS 53
POSTGRADUATE COURSES 104
GRADUATE CERTIFICATE COURSES 104
Graduate Certificates in Biomedical Technology 105
Graduate Certificates in Coastal Resource Management 107
Graduate Certificate in Environmental Engineering and Management 107
Graduate Certificates in Environmental Toxicology and Ecotoxicology 108
Graduate Certificates in Occupational Health and Safety 109

GRADUATE DIPLOMA COURSES 109
Graduate Diploma in Clinical Acupuncture 109
Graduate Diploma in Clinical Biochemistry 111
Graduate Diploma in Coastal Resource Management 112
Graduate Diploma in Environmental Toxicology 113
Graduate Diploma in Hydrogeology and Groundwater Management 115
Graduate Diploma in Medical Microbiology 116
Graduate Diploma in Musculo-skeletal Acupuncture 117
Graduate Diploma in Occupational Health and Safety 118

MASTER'S DEGREES (BY COURSEWORK) 119
Master of Occupational Health and Safety 120
Master of Science in Clinical Biochemistry 120
Master of Science in Clinical Measurement 122
Master of Science in Coastal Resource Management 123
Master of Science in Environmental Toxicology 125
Master of Science in Hydrogeology and Groundwater Management 126
Master of Science in Medical Microbiology 127
Master of Science in Medical Physics 129

POSTGRADUATE DEGREES BY RESEARCH/THESIS 130
POSTGRADUATE SUBJECT DESCRIPTIONS 131
SUBJECT NAMES IN ALPHABETICAL ORDER 158
UNITS WITHIN THE FACULTY 165
CENTRES AND INSTITUTES WITHIN THE FACULTY 165
COLLEGE OF ACUPUNCTURE 168
FACULTY BOARD IN SCIENCE 169
COURSE ADVISORY COMMITTEES 170
STAFF LIST 173
INDEX 180
PREFACE

This handbook is one of a suite of twelve publications comprising the University Calendar, the Student Information Guide and ten handbooks: Business; Design, Architecture and Building; Education; Engineering; Humanities and Social Sciences; International Studies; Law and Legal Practice; Mathematical and Computing Sciences; Nursing; and Science. Each handbook provides general information about the faculty as well as detailed information on the courses and subjects offered.

The Calendar contains the University By-law, which all students should read. It also contains a list of the University's courses, giving the name, abbreviation and title as indicated on the testamur. Copies of the Calendar are held in the University Library and in faculty offices, and may be purchased at the Co-op Bookshop.

Copies of the Student Information Guide are provided free to students at enrolment. You should make sure that you read the student rules published in the guide. Information on the rights and responsibilities of students and on the services and facilities available is also given. The guide will assist you in your dealings with the University's administration and tell you whom to contact if you have a problem or need advice. Other publications providing information of a general nature are the UAC Guide, and the UTS Undergraduate and Postgraduate Studies Guides, all of which are available from the UTS Information Service.

For further information not provided in any of the publications mentioned e.g. additional information on courses, methods of assessment and book lists, you should contact the UTS Information Service or your Faculty office. If in doubt, don't hesitate to ask.

We hope you will enjoy your time as a student at UTS and wish you well in your studies.
MESSAGE FROM THE DEAN

The Faculty of Science comprises several departments in the biological and biomedical sciences and in the physical sciences. It is housed on two campuses, City and St Leonards.

The Faculty offers 17 undergraduate degree programs, Master’s and PhD programs by research, and several graduate coursework programs including eight Master’s degrees by coursework. The Faculty also provides teaching for several other faculties of the University. The Faculty further ensures that its educational services are available to students from a diversity of backgrounds and offers study patterns that facilitate progress through its courses.

Major course developments in the Faculty are in the areas of environmental management and forensic science. Teaching innovations include an enquiry/discovery approach to the teaching in several areas including biochemistry and physics.

The Faculty is proud of its strength in research. It wins over half of the competitive grants awarded to the University and is a major partner in two Cooperative Research Centres. Much of the Faculty’s research is focused on the activities of its research centres and units. This concentration of research has enabled the Faculty to significantly improve the quality of its laboratories and its major equipment in recent years, to the obvious benefit of our students.

If you are a new student I welcome you to the Faculty, and wish you a challenging, inspiring and rewarding stay with us as you undertake your studies. The graduates you will join in a few short years have a very high reputation with Australian industry and the professions.

Professor Tony Moon

FACULTY MISSION STATEMENT

The purpose of the Faculty is to provide the highest quality professional education and training of graduates and postgraduates in science to meet the needs of Australian industry and science; and to engage in research and other professional activities in science to bring economic and social benefits to the Australian and international community.

Its vision is to become a leading science faculty, recognised nationally and internationally for the quality of its teaching, research and community service programs. The Faculty has developed its reputation by producing graduates and postgraduates who meet the needs of Australian industry and the professions and by establishing strong links with Australian industry through cooperative research and development.
PRINCIPAL DATES FOR 1995 ¹
AUTUMN SEMESTER

January
3 Enrolment day for Summer schools
4 School of Legal Practice enrolment day at St Leonards campus
9 Release of HSC results
13 Formal supplementary examinations for 1994 Spring semester students
17 Closing date for changes of preference to the Universities Admissions Centre (UAC) from 1994 NSW HSC applicants (by 4.30 p.m.)
19–31 Enrolment of postgraduate students, continuing undergraduate students and new direct entry students at City campus
26 Australia Day – public holiday
27 Public school holidays end

February
1–6 Enrolment of new undergraduate (UAC) students at City campus
7–17 Enrolment of postgraduate students, continuing undergraduate students and new direct entry students at City campus
27 Classes begin

March
10 Last day to enrol in a course or add subjects
 Last day to change to ‘pay now/up-front’ HECS payment
24 Last day to apply for leave of absence without incurring student fees/charges
31 HECS Census Date
 Last day to withdraw from a subject without financial penalty

April
7 Last day to withdraw from a course or subject without academic penalty ²
14 Public school holidays begin
17 Easter Monday
18–21 Vice-Chancellors’ Week (non-teaching)
19 Graduation period begins
21 Public school holidays end
 Provisional examination timetable available
25 Anzac Day
28 Last day to apply to graduate in Spring semester 1995

May
5 Graduation period ends
12 Examination Masters due
26 Final examination timetable available
31 Closing date for undergraduate and postgraduate applications for Spring semester

June
12 Queen’s Birthday – public holiday
13–29 Formal examination period
30 Autumn semester ends

¹ Information is correct as at 15 November 1994. The University reserves the right to vary any information described in Principal Dates for 1995 without notice.

² HECS/Postgraduate course fees will apply after the HECS Census Date.
SPRING SEMESTER

July
- **3** Public school holidays begin
- **3-7** Vice-Chancellors’ Week (non-teaching)
- **10-14** Formal alternative examination period for Autumn semester students
- **14** Public school holidays end
- **21** Release of Autumn semester examination results
- **24** Formal supplementary examinations for Autumn semester students
- **24-28** Confirmation of Spring semester programs
- **25-26** Enrolment of new and readmitted students and students returning from leave/concurrent study
- **31** Classes begin

August
- **1** Applications available for undergraduate and postgraduate courses
- **4** Last day to withdraw from full year subjects without academic penalty
- **11** Last day to enrol in a course or add subjects
- **25** Last day to apply for leave of absence without incurring student fees/charges (Spring enrolments only)
- **31** HECS Census Date
- **13-30** Formal examination period

September
- **8** Last day to withdraw from a course or subject without academic penalty

2 HECS/Postgraduate course fees will apply after the HECS Census Date.
THE FACULTY OF SCIENCE

The Faculty of Science has established a sound tradition of providing quality teaching, research and consultancy. The Faculty consists of several departments in biological and biomedical sciences as well as in physical sciences.

The departments in physical sciences and the main faculty office are located at the City campus. While the majority of departments in biological and biomedical sciences and a Dean's office are located at the St Leonards campus, the Bioscience Unit is located in Building 1 of the City campus.

The Faculty is concerned with providing high quality professional education in physical, biological and biomedical sciences, and with engaging in high level research, scholarship and other community service activities in support of the UTS mission, with a view to bringing social and economic benefit to the Australian community.

The Faculty offers a number of graduate and Honours degree programs developed to produce graduates for professional and vocational practice with an ability to continue their studies by research and to contribute to the knowledge base of their scientific discipline.

- The combined Science/Education program was first introduced at UTS in 1991 and is offered jointly with the Faculty of Education. The course is unique in that it combines three-and-a-half years of full-time academic studies in science and education together with one-and-a-half years of industrial training in a scientific discipline. The combination of academic subjects together with the industrial training means that secondary school teachers will be far better equipped to advise students on career options in industry.

- The BSc LLB joint degree is offered in conjunction with the Faculty of Law and Legal Practice and is aimed primarily at producing law graduates with a strong background in science who wish to work in areas such as environmental law, patent law and mining law.

In the postgraduate area, the Faculty offers PhD and Master's degrees (by thesis), Master of Science programs (by coursework), Graduate Diplomas, and Graduate Certificates. Prospective students should discuss possible topics of research with the head of the appropriate department in the first instance. The research programs may be carried out on either a full-time or part-time basis and it is permissible for part-time students to undertake a portion of their research at a site external to UTS, provided an appropriate external supervisor can be appointed. Details of current research projects can be obtained from the Science Faculty office.

The Faculty has a strong record of research and development, essential to the strength of both undergraduate and postgraduate programs. The Faculty is therefore justifiably proud of its strength in research. Competitive research funding is obtained across a wide range of areas of expertise. The Faculty wins over half of the competitive grants awarded to the University and is a major partner in two Cooperative Research Centres, namely Cardiac Technology and Aquaculture. Much of
the Faculty's research is focused in the activities of its research centres and units including the Centre for Ecotoxicology (run jointly with the EPA), the Institute for Coastal Resource Management, the Centre for Materials Technology, the National Centre for Groundwater Management and the Centre for Biomedical Technology. This concentration of research has enabled the Faculty to improve significantly the quality of its major equipment in recent years, to the obvious benefit of its students. In research, the areas targeted for future development include forensic science and environmental management.

In the development of all of the above programs the Faculty is assisted by appropriate advisory committees having members drawn from the wider community. The courses are constantly kept under review to ensure currency and relevance to industrial and commercial practice.

The Faculty has always maintained strong links with industry. Staff maintain contact with industry by undertaking appropriate consulting activities, and in some of the above courses students spend six to 12 months working in a relevant industry. In cases where industrial training is a requirement of the course, the Faculty provides some assistance to students in finding these paid industrial training positions, but students are expected to source positions for themselves.

Most programs referred to above are available on either a full-time or part-time basis or a combination of both these attendance patterns.

Students in the Faculty of Science are strongly encouraged to read their copies of the 1995 Student Information Guide. The Student Information Guide contains valuable information about admission requirements, enrolment, examinations, exclusion, progression and a variety of other important information.

The 'Statement of good practice and ethics in informal assessments' can be found below and is especially included here for two reasons: firstly, because it is not included in the Student Information Guide and secondly, and most importantly, because the statement is taken very seriously by the Faculty and we encourage you, the student, to take it seriously too.

STATEMENT OF GOOD PRACTICE AND ETHICS IN INFORMAL ASSESSMENTS

I. Aims of informal assessments

The term 'informal assessment' at UTS is defined as any assessment task other than a final examination that is administered by the Academic Registrar and held in the official UTS Examination Weeks. Such assessment is in no other sense 'informal', if it contributes to the final assessment of the student in the subject.

Common forms of such assessment in the Faculty of Science include:

- practical reports
- computer programs
- essays and assignments (including reports of field work)
- tests and quizzes

The setting and assessing of these tasks is aimed at promoting the following educational aims:

- furthering each student’s learning of the subject
- the acquisition of practical skills of laboratory and field work, and its documentation
- providing a means for staff to assess each student’s learning
- providing feedback to the student on progress in learning
- providing feedback to staff on the effectiveness of their teaching

These aims will be subverted if students deceive staff about either the authenticity of results, or the authorship of their written work. Such behaviour is unethical, unprofessional and completely unacceptable. Within the Western tradition of scholarship it is regarded as a serious academic offence.
It is recognised that students may sometimes find themselves in positions of extreme stress, for reasons of illness or misadventure, when malpractice may seem tempting. In such circumstances, however, other solutions are available, for example, seeking extra time for the submission of an assignment, accompanied by medical certificate and/or other compelling explanation.

2. Unacceptable behaviour
Cheating in all its forms is unacceptable behaviour, and cannot be condoned. Cheating is a breach of the University Rules. Examples of cheating include:

2.1 Outright lying
This is never acceptable under any circumstances. Remember that lying, in science, includes inventing or falsifying results.

2.2 Plagiarism (copying)
The Oxford Dictionary defines plagiarism as the taking and using of another person’s thoughts, writings, inventions as one’s own. It includes unacknowledged quotations from other authors (books, journals, fellow students), or the copying out, perhaps with changes intended to disguise, of slabs of other people’s work. Don’t copy!

2.3 Collusion
Collusion is a fraudulent, secret understanding to deceive, for example, in ‘fixing’ results, or doing one essay together and rewording it slightly to pass it off as two independent efforts.

2.4 Use of unauthorised material or equipment
Only equipment or material specified by the coordinating examiner may be used by a student during examinations, class tests and quizzes. Don’t write on rulers, calculator cases etc.!

Don’t cheat! Don’t even think of cheating!

3. Acceptable practices

3.1 Acknowledging sources – referencing
Whenever any other person’s work is used in the formulation of a written piece of work, it must be clearly indicated where the source of the information lies. The ‘other person’ could be a published or unpublished author, your lecturer, or one of your fellow students. Consult the various guides to writing assignments that are held in the library (and any that your lecturers may provide). As you prepare the assignment, keep a detailed running record of your references in a notebook, and use a standard referencing system e.g. the Harvard system. Often references cannot be found again later.

3.2 Collaboration
In many cases, experiments and other means of data collection require students to cooperate. Some assignments may involve an ideas-gathering stage followed by the writing-up phase.

While collaboration is normally encouraged in the developmental and experimental stages, final data analysis and interpretation and writing-up must be strictly your own effort (except in any exceptional circumstances that would have to be spelt out in detail by your lecturer).

4. Guide for good practice in written work
(Adapted from the statement prepared by the Faculty of Humanities and Social Sciences.)

4.1 Writing essays or assignments
Developing the ability to express yourself and argue clearly and in your own words is an important part of your university studies. Students are often confused, however, about just what is expected of them in written work: on the one hand, they are asked to present their own original ideas and arguments yet, on the other, they are told to use and take account of ideas, concepts and theories etc., in the material they read.
In fact, an important element of a well-written piece of work is the way that a student meets these two, apparently conflicting, demands.

4.2 Originality

‘Being original’, in an essay, for instance, does not mean that you have to think up your own theories and concepts etc. Rather, it refers, in part, to the way you make use of – by critiquing, analysing, evaluating, synthesising, exemplifying, instancing – the ideas, theories, evidence etc. of other writers or of experimental or secondary data (e.g. census statistics) in constructing a coherent and plausible argument.

4.3 Arguing a case

Strictly speaking, an ‘argument’ refers to the reasoned advancement of a number of propositions leading to a particular conclusion. In an essay, it means that having read and considered the relevant literature, and on the basis of this and any other appropriate evidence, you come to a conclusion about the question. In writing the essay, you set out the argument, or a series of arguments, to support that conclusion. In doing so, you draw on relevant ideas etc. from your reading, using them to support your argument. In cases where experimental data form the basis of the written work, your task may be to argue the case of how the data support or falsify a hypothesis.

Whether you are asked to argue, discuss, evaluate, compare and contrast, analyse, critique, consider etc. you are still being asked to mount a reasoned argument, in one form or another, leading to a conclusion based on an evaluation of all the evidence presented in your reading or provided by the data. For example, some essay questions may ask you to discuss or evaluate two conflicting arguments; in this case you have to decide – on the basis of the arguments themselves, any other evidence, and perhaps with the help of what some other writers say – which is the stronger or more adequate of the two and then argue that, giving evidence in support.

In a sense, you could think of writing an essay, assignment or report (some of which might require different formats) rather like designing and erecting a building. All the possible and available building materials (bricks, timber, concrete, steel, roofing etc.) would be equivalent to all the reading you have done or experimental data acquired. You certainly cannot just throw a stack of materials on to a block of land and expect them to form the building. Rather, you would need to, firstly, get a general idea of the sort of building that is appropriate by considering all the relevant factors (such as size and lie of the land, accommodation required and building restrictions); secondly, design a structure which takes all of these factors into account, selecting materials to hold up the structure and rejecting these which would not. In a similar way you need to think carefully about all the information you have and decide what is relevant and what you can generally conclude from it; then design or plan it into a coherent and cogent argument supporting that position.

The actual argument (the design) is your original contribution; the support for that argument comes from all the data, ideas and theories etc. you considered and the evidence used (the materials). Hence, it is the way you critically analyse, evaluate, select and synthesise information and use it in your argument which is important in the work. You do not create something totally new, nor do you merely throw together other people’s ideas. Do not make the mistake of thinking that it is sufficient for you to merely compile into some coherent order other people’s referenced ideas etc. – the bulk of the essay has to be your own work.
PRIZES AND SCHOLARSHIPS

Prizes and scholarships are awarded each year to students in the Faculty for meritorious work. These are made available through the generosity of private individuals and public organisations. They are offered either each semester, annually or biennially. In rare instances, a prize or scholarship will be offered only when funds permit. Most prizes and scholarships are offered subject to the provision that they will be awarded only when a student has attained a mark or level of achievement considered by the Faculty Board to be sufficiently high. In addition to these official University prizes and scholarships it should be noted that there are available a number of scholarships and prizes from external sources for which University students can compete. Information about these scholarships and prizes appears from time to time on official noticeboards.

Faculty of Science Postgraduate Research Scholarship

A number of Postgraduate Research Scholarships are offered by the Faculty for full-time study towards a PhD. The awards which may be up to the value of $18,500 per annum over three years are available for study in the following areas:

- Materials technology
- Image processing and analysis
- Regional and resource geology
- Science education
- Cell and molecular biology
- Biomedical science and engineering
- Environmental biology and toxicology
- Groundwater management
- Biomedical technology
- Forensic and analytical chemistry
- Coastal resource management

Dean’s Merit List for Academic Excellence

The Faculty wishes to formally recognise outstanding performance by its students through the awarding of prizes, medals and the grading of degrees. The Dean’s Merit List endeavours to formally acknowledge academic achievement throughout a student’s course of study. From the end of 1993 and thereafter, the Faculty will each year publish a list of students who have been placed on the Dean’s Merit List. Each student will also receive a certificate to this effect. To be listed a student would usually need to undertake a normal load; achieve an average mark for the year of 85 or above; and be recommended by the relevant Examination Review Committee in December each year.

AC Hatrick Chemicals Prize

This prize was established in 1990. It is awarded to the full-time student enrolled in the Applied Chemistry course who obtains the highest aggregate mark in Chemical Process Control. The prize has a cash value of $250.

The Australian Ceramic Society Prize in Ceramics

This is a cash prize of $100, intended for the purchase of books, and is awarded annually to the final stage student in the Materials Science degree course who achieves the highest aggregate mark in the subjects Ceramics 1, 2 and 3 in the year for which the award is made. The prize, established in 1979 through the generosity of the NSW Branch of the Australian Ceramic Society, is intended as an encouragement to students studying in the field of ceramics.

The Australian Ceramic Society Scholarship

The Australian Ceramic Society Scholarship was established in 1986 and is awarded annually to the student enrolled in the Materials Science degree course who, when undertaking a research project in the area of ceramics, obtains the highest average mark in Stages 1, 2, 3 and 4. The cash value of the scholarship is $400.
Australian Institute of Medical Laboratory Scientists' Prize in Clinical Bacteriology and Parasitology

This prize was established in 1983 by the New South Wales Branch of the Australian Institute of Medical Laboratory Scientists. It is offered annually to students enrolled in the Biological and Biomedical Sciences courses and is awarded to the student who obtains the highest mark in the subject Clinical Bacteriology and Parasitology. The prize consists of a cash award of $200 and a suitably inscribed bronze medallion.

Australian Institute of Medical Laboratory Scientists' Prize in Haematology

This prize was established in 1983 by the New South Wales Branch of the Australian Institute of Medical Laboratory Scientists. It is offered annually to students enrolled in the Biological and Biomedical Sciences courses and is awarded to the student who obtains the highest mark in the subject Haematology 2. The prize consists of a cash award of $200 and a suitably inscribed bronze medallion.

Australian Institute of Physics Prize

The NSW Branch of the Australian Institute of Physics has made available an annual award to a student in the fourth year of the Physics degree, who obtains the best results in completing the final stage of the course. The prize is a cash award of $200 plus one year's free membership of the Australian Institute of Physics.

Boehringer Mannheim Prize for Biomedical Sciences

This prize was established in 1990. It is awarded annually to the student enrolled in the Biomedical Science degree course who achieves the highest average mark in Stage 3, obtaining at least a distinction average mark. The prize consists of a medal and a cash award of $250.

Chemistry Department Prize

This prize was established in 1986. It is awarded annually to the student enrolled in the Applied Chemistry degree course who, having completed Stage 2 of the course, obtains the best performance in the Stage 2 chemistry subjects Chemistry 2M or Chemistry 2 and Organic Chemistry 1. The prize is valued at $100.

Colin Field Prize

This prize was established in 1989 by Emeritus Professor Colin Field, former Dean of the Faculty of Life Sciences and Head of the School of Biological and Biomedical Sciences. The prize is awarded annually to the Biomedical Science, Environmental Biology or Biotechnology student who obtains the highest overall average mark from all subjects undertaken in Stages 1 and 2, with at least a credit average for the biology subjects offered in those stages. The prize has a cash value of $200.

CSL (Commonwealth Serum Laboratories) Prize

This prize was established in 1990. It is awarded to the graduating student from the Biological and Biomedical Sciences degrees who attains the highest aggregate mark in the subject Blood Bank, with a mark at distinction level or higher. The prize has a cash value of $200.

Department of Water Resources Prize

This prize was established in 1990. It is awarded annually to a student enrolled in the Biological and Biomedical Sciences courses, who obtains the highest average mark in the two subjects Aquatic Ecology and Terrestrial Ecology, provided that the average mark is of distinction grade. The prize has a cash value of $250.
Dr David Sugerman Prize in Pathology
This prize was established in 1982 by Dr David Sugerman. The prize is awarded annually to the student who obtains the highest aggregate in the subjects Anatomical Pathology, Immunology and Haematology, provided that the student reaching the highest aggregate has an average mark of not less than the standard of credit. The prize has a cash value of $500.

The Environmental Biology Prize
This prize was established anonymously in 1984. The prize has a cash value of $250 and is awarded to the student enrolled in the BSc Environmental Biology degree course who obtains the highest average mark in Stages 3 to 6 of the degree course.

Foseco Prize in Materials Science
This prize was established in 1982 by Foseco Pty Ltd as an incentive to students engaged in studies in the field of Materials Science. The prize is offered annually to students enrolled in the Materials Science degree course and is awarded to the student who achieves the highest aggregate mark in the subjects Materials Science 1 and Materials Science 2. The prize consists of a cash award of $200.

Francis E Feledy Memorial Prize
For information on the Francis E Feledy Memorial Prize, refer to the section on General Prizes and Scholarships.

Hatrick-Jotun Prize in Design and Materials Selection
This prize (formerly the Hatrick Fiberfil Prize in Design and Materials Selection) was re-established in 1986. It is awarded to the student in the Materials Science degree course who achieves the best performance in the subject Design and Materials Selection. The prize has a cash value of $250.

Hatrick Reichhold Prize in Polymer Technology
This prize was established in 1984 by A C Hatrick Chemicals Pty Ltd as an incentive to students studying in the field of polymers and resin technology. The prize is awarded to the student who achieves the best performance in the subject Polymers 3. The cash value of the prize is $250.

The Institute of Metals and Materials Australasia Prize
This prize, established in 1983, is offered annually to students in the Materials Science degree course, and will be awarded to the student who achieves the highest mark in the subject Physical Metallurgy 1. The prize consists of a cash award of $200 and one year’s membership of the Institute of Metals and Materials Australasia.

JOEL Prize for Electron Microscopy
This prize was established in 1991. It is awarded to the student who achieves the highest mark in the subject Electron Microscopy Techniques. The prize has a cash value of $250.

KK & S Prize in Metallurgy
This prize was established in 1982 by KK & S Instruments Pty Ltd as an incentive to students engaged in studies in the field of Metallurgy. The prize is offered annually to students enrolled in the Materials Science degree course, and is awarded to the student who achieves the best performance in the subject Physical Metallurgy 3. The prize has a cash value of $150.

Leonard J Lawler Prize
This prize is presented by the Australian Institute of Medical Laboratory Scientists in dedication to the past services of Mr L J Lawler to the New South Wales Branch of the AIMLS. Over a long period Mr Lawler has shown great interest in the education of clinical chemists. The prize has been awarded annually since 1976. It is awarded to the student enrolled in the Biological and Biomedical Sciences courses who attains
the best aggregate in the subjects Clinical Biochemistry 1 and Clinical Biochemistry 2. The prize consists of a cash award of $200 and a suitably inscribed bronze medallion.

Loctite Australia Prize in Adhesion Science

This prize was established in 1983. It is awarded annually to the student enrolled in the Materials Science degree course who achieves the best performance in the subject Surface Properties of Materials. The prize has a cash value of $150.

Macquarie Pathology Services Prize in Biomedical Science

This prize was established in 1984 by Macquarie Pathology Services Pty Ltd. The prize is awarded annually to the student who obtains the highest average mark in Stages 3 to 6 of the degree course leading to the award of BSc in Biomedical Science. The prize includes a cash award of $500 and a medal.

M Y Ali Prize in Diagnostic Cytology

This prize was established in 1978 by Dr M Y Ali, former Head of the Department of Pathology and Immunology. The prize of approximately $100 is awarded annually to the student who achieves the highest aggregate in the Diagnostic Cytology subjects, provided that the student has an average mark in these subjects of not less than credit level.

National Safety Council of Australia Prize

The National Safety Council of Australia Prize was established in 1986 and is awarded to the student enrolled in the Applied Chemistry degree course who obtains the highest aggregate mark in the subject Chemical Safety. The prize is in the form of a book token to the value of $100.

Pasminco Prize in Extractive Metallurgy

This prize was established in 1990. It is awarded to the student enrolled in the Physical Sciences courses who obtains the highest aggregate mark in the subject Extractive Metallurgy. The prize has a cash value of $250.

Physics Staff Prize

This prize was established in 1985. It is awarded each year to the student in the Applied Physics degree course who obtains the highest average mark in the first three stages of the course. The prize has a cash value of $200.

Ratcliffe Prize

Awarded for the best aggregate result of the Graduate Diploma in Occupational Health and Safety course.

R F G MacMillan Award

This prize was established in 1991. It is awarded to a Materials Science degree student for participation and involvement in Materials Science activities beyond the normal academic requirements. The prize has a cash value of $500.

Robert K Murphy Research Fund

To perpetuate the name of Dr R K Murphy, who was for 25 years Lecturer-in-Charge of the Chemistry Department and subsequently Principal of Sydney Technical College, the Sydney Technical College Science Association sponsored a fund to be known as the Robert K Murphy Research Fund, to which a number of chemical industries also subscribed. The income from the fund has been applied to set up the following prizes and scholarship:

(i) **Robert K Murphy Research Prize**

This prize is awarded annually to the student in the Applied Chemistry degree course who submits the best original Chemistry project. The prize has a cash value of $250.
(ii) Robert K Murphy Prize
This prize is awarded annually to the student in the Applied Chemistry degree course who entered the course on completion of Chemistry Certificate of the TAFE Commission and who achieves the best overall performance in the Applied Chemistry degree. The prize has a cash value of $250.

(iii) Robert K Murphy Research Scholarship
This scholarship is awarded annually to the student in the Applied Chemistry degree course who satisfies the Trustees that such a scholarship is warranted to assist the student in research in investigation or advanced study. The prize has a cash value of $250.

Schering Plough Prize
This prize was established in 1990. It is awarded to the student enrolled in an Advanced Chemistry project in the Applied Chemistry course who presents the best project seminar (in terms of both technical merit and presentation). The prize has a cash value of $250.

SICPA Australia Award
This is a cash prize of $40, intended for the purchase of books, and is to be awarded annually to the student in the Materials Science degree course who achieves the highest aggregate mark in the subject Polymers 1 in the year for which the award is made. The prize, established in 1979 through the generosity of Collie Cooke Consolidated, is intended as an encouragement to students studying in the field of Organic Materials.

St Joe Mineral Deposits Prize
St Joe Australia Pty Ltd established this prize in 1984. The prize is awarded to the student who obtains the highest credit point average in the subject Mineral Deposits. The prize has a cash value of $50.

TICS Prize
This prize was established in 1983 by The Institute Chemistry Society (TICS). It is offered annually to students completing Stage 3 of the Applied Chemistry degree course and is awarded to the student who obtains the highest average mark in Stage 3. The prize consists of a cash award of $50.

Western Mining Corporation Prize
This prize was established in 1986. It is awarded annually to the student enrolled in the Applied Geology course who obtains the highest average mark of all students undertaking the Field Project in the year for which the award is made. The successful student will preferably demonstrate an interest in metalliferous exploration Geology. The prize has a cash value of $200.

Western Mining Corporation Junior Studies Prize
This is a cash prize of $150 awarded annually to the student who has shown the most significant improvement in the quality of academic work at the completion of Stage 4 in the Materials Science degree course. The prize was awarded for the first time in 1979.

Western Mining Corporation Senior Studies Prize
This is a cash prize of $150 awarded annually subject to a suitable recipient being nominated by the Head of the Department of Materials Science, for distinguished performance in the final year (Stages 5 and 6) of the Materials Science degree course. The prize was awarded for the first time in 1979.

Workcover Authority Prize
Awarded for the highest aggregate mark in the first year of study in the Graduate Diploma in Occupational Health and Safety or Master of Occupational Health and Safety course.
COURSES OFFERED BY THE FACULTY

The Faculty offers the following undergraduate degrees:

KB02 Bachelor of Science in Biomedical Science
KB03 Bachelor of Science in Urban Horticulture
KB04 Bachelor of Science (Honours) ¹
KB05 Bachelor of Science in Environmental Biology
KB06 Bachelor of Science in Biotechnology
LL04 Bachelor of Science/Bachelor of Laws
NC01 Bachelor of Applied Science (Chemistry)
NC02 Bachelor of Applied Science (Honours) (Chemistry)
NC04 Bachelor of Science (Honours) in Applied Chemistry – Forensic Science
NG01 Bachelor of Applied Science (Geology)
NG02 Bachelor of Applied Science (Honours) (Geology)
NM02 Bachelor of Applied Science (Materials Science)
NM03 Bachelor of Applied Science (Honours) (Materials Science)
N003 Bachelor of Applied Science in Science Education
NP01 Bachelor of Applied Science (Physics)
NP02 Bachelor of Applied Science (Honours) (Physics)
P005 Bachelor of Health Science in Acupuncture

Thirteen Graduate Certificates:

EC58 Environmental Engineering and Management ²
KB70 Coastal Resource Management ²
KB71 Computer Data Acquisition in the Life Sciences
KB72 Data Processing and Management in the Life Sciences
KB73 Electronics and Computing in the Life Sciences
KB74 Human Biology
KB75 Medical Instrumentation and Measurement
KB76 Physics in Medicine
KB77 Principles of Environmental Toxicology ³
KB78 Ecotoxicology ³
KB80 Coastal Zone Law and Economics ²
P053 Occupational Health and Safety
P054 Occupational Health and Safety Management

Eight Graduate Diplomas:

KB62 Environmental Toxicology ³
KB65 Clinical Biochemistry
KB67 Medical Microbiology
KB69 Coastal Resource Management ²
N061 Hydrogeology and Groundwater Management
P052 Occupational Health and Safety
P056 Clinical Acupuncture
P057 Musculo-skeletal Acupuncture

Eight Master’s degrees (by coursework):

KB52 Master of Science in Environmental Toxicology ³
KB53 Master of Science in Clinical Measurement
KB55 Master of Science in Clinical Biochemistry
KB57 Master of Science in Medical Microbiology
KB58 Master of Science in Medical Physics
KB59 Master of Science in Coastal Resource Management ²
N057 Master of Science in Hydrogeology and Groundwater Management
P055 Master of Occupational Health and Safety

Master’s degrees (by thesis):

KB51 Master of Science (Biological and Biomedical Sciences)
N053 Master of Science (Physical Sciences)
N056 Master of Applied Science (Groundwater Management)
Doctor of Philosophy:

KB56 PhD (Biological and Biomedical Sciences)

N054 PhD (Physical Sciences)

N055 PhD (Groundwater Management)

1 Offered to students who possess, or have fulfilled, all the requirements for a three-year Bachelor's degree in Biomedical Science, Biotechnology, Environmental Biology or Urban Horticulture from UTS, or equivalent, with at least an average credit grade in the final two stages of the undergraduate program.

2 Interdisciplinary course run by the Faculty of Science in collaboration with the Faculties of Engineering, Business, Law and Legal Practice, and Design, Architecture and Building.

3 In collaboration with the NSW Environment Protection Authority.

Most programs are available on a full-time and part-time basis or a combination of both these attendance patterns.

In 1995, the newly established Institute for International Studies will offer the first stages of its International Studies Program which will be open to all UTS students. The program will include language programs; the study of history, politics, economics and society; and opportunities for in-country study. Activities will start with a focus on China, Indonesia and Japan, and later expand to other parts of East and South-East Asia, South America and Western Europe. Subjects within the International Studies Program can be taken as electives within current degrees, or as part of the new combined degrees, integrating International Studies with a discipline.

While the University of Technology, Sydney maintains traditional university standards of scholarly excellence in the granting of its awards, it is continually seeking to instruct students in new and innovatory areas in keeping with the needs of our highly technological society.

UNDERGRADUATE COURSES

ADMISSION REQUIREMENTS

Applicants are considered for admission in accordance with the Rules and By-Law of UTS as set out in the UTS Calendar, and on the basis of meeting the general requirements in one of the following categories:

- the NSW Higher School Certificate
- an appropriate TAFE award – diploma, Associate Diploma or completion of a Tertiary Preparation Course (TPC)
- equivalent qualifications
- Mature age (see UTS Calendar for details)
- Accumulated Matriculation (see UTS Calendar for special circumstances)

ASSUMED KNOWLEDGE/COURSE PREREQUISITES

There are no mandatory prerequisite subjects from the Higher School Certificate; all science subjects taught in the first semester assume no HSC knowledge of the subject. However, it is assumed that all students entering the biological and biomedical sciences courses will have studied at least two-unit mathematics plus one two-unit science course. It is strongly recommended that they complete studies in two science subjects. Common combinations include chemistry/physics, chemistry/biology, or multistrand with biology. For students entering the physical sciences courses, it is assumed that they have studied two-unit mathematics plus two-unit physics, or two-unit chemistry or three/four-unit science. The minimum Tertiary Entrance Rank (TER) varies from year to year dependent upon the number of applications for entry and the number of places available.
REQUIREMENTS FOR AWARD OF BACHELOR’S DEGREE

A degree will be awarded to students satisfactorily completing the following requirements:

1. Credit points

A minimum of 144 credit points, accumulated by:

- full-time attendance in Bachelor’s degree courses involving satisfactory completion of the prescribed core subjects and approved elective subjects to the value of 48 credit points for each of three years;
- or

- part-time attendance in Bachelor’s degree courses involving satisfactory completion of the prescribed core subjects and approved elective subjects to the value of 24 credit points for each of six years;
- or

- any other approved combination of full-time and part-time attendance.

Students who have failed subjects cannot be guaranteed a complete program or normal progression. However, a subject failed with a mark of 40 per cent or more may allow progression into subjects for which the failed subject is a prerequisite. All failed subjects must be successfully completed for award of a degree.

Students having difficulty devising a program should consult the Student Administrative Officer or an academic adviser. Where a student experiences legitimate difficulty enrolling in sufficient credit points to make up a full-time load, a minimum of 75 per cent of a normal full-time program is deemed adequate to maintain designation as a full-time student provided the whole degree is completed within 150 per cent of the normal progression period i.e. a three-year full-time degree should be completed in or under four-and-a-half years. Similarly, there is no minimum number of credit points for a part-time program for any one semester, but the whole degree should be completed within 150 per cent of the normal progression period i.e. a six-year part-time degree should be completed in or under nine years.

2. Professional/work experience

Students who are enrolled in the physical sciences courses have industrial training as an integral part of the course. In most of these courses, students spend six to 12 months working in a relevant industry. This experience is to be gained prior to or concurrently with the final stage of the course depending on whether attendance is full-time (sandwich) or part-time.

For full-time students enrolled in the biological and biomedical sciences courses who desire to complete a period of work/industrial experience during their degree program, they may either insert a sandwich year of full-time employment between Stages 4 and 5 or may complete Stages 5 and 6 on a part-time basis. Students are required to inform the University officially if they intend not to appear for formal courses during a sandwich year, by enrolling for the subject 91997 Professional Experience (Biol/Biom) F/T.

Part-time students enrolled in the biological and biomedical sciences courses who are employed on a full-time basis in an area relevant to their course should enrol in the subject 91999 Professional Experience (Biol/Biom) P/T in every semester for which they are employed so that the experience gained is reflected on their academic record.
Bachelor of Applied Science in Chemistry

The purpose of this course is to provide a program of instruction, which, together with concurrent work experience, will prepare a student for entry to professional work in the field of applied chemistry. The course includes a firm foundation of study in the basic sciences, with in-depth development in the particular discipline of chemistry, emphasising its industrial applications.

By taking an appropriate selection from a range of subjects a student can prepare for laboratory, plant or sales work in industries concerned with plastics, paints, foods, metals and alloys, solvents or industrial chemicals.

The course consists of six stages and may be completed by a number of different patterns of attendance: two years of full-time attendance followed by one year in industry and one year of full-time attendance; or two years of full-time attendance followed by two years of part-time attendance; or six years of part-time attendance. Other patterns of attendance may also be permitted.

Full-time attendance involves approximately 24 hours each week at the University; this enables a full stage of the course to be completed in one semester.

Part-time attendance involves approximately 12 hours each week at the University; with this form of attendance a full stage may be completed in one year. It is normal practice for employers to release part-time students for at least one half-day per week for attendance at classes. Students commonly attend the University for one half-day and three evenings each week, or for two half-days and two evenings per week.

The award for successful completion of the course is Bachelor of Applied Science. The course has been designed to meet the academic requirements for entry to corporate membership of the Royal Australian Chemical Institute.

A new Honours program has been designed to introduce students to more advanced coursework and to research work in chemistry. It will allow selected students to continue on with postgraduate studies if desired and will generally enhance their employment prospects.

Industrial training is regarded as an integral part of the course. The minimum period of relevant employment is one year full-time, or its part-time equivalent. This experience is to be gained prior to or concurrently with the final stage of the course depending on whether attendance is full-time (sandwich) or part-time.

An Industrial Training Committee has been established within the Chemistry Department to provide guidance in the matter of appropriate vocational training. Students will be interviewed by this Committee after completing Stage 3 of the course. Each student will then be assigned to a member of staff who will maintain regular contact during subsequent periods of study and employment.

SANDWICH PROGRAM – PASS DEGREE

Each stage corresponds to one semester of full-time attendance. Credit point values are shown in brackets.

Stage 1

Autumn semester

- 31870 Introduction to Microcomputers (2cp)
- 33171 Science Mathematics 1 (4cp)
- 65101 Chemistry 1M (6cp)
- 68101 Physics 1 (6cp)
- 91388 Concepts in Biology (6cp)
 or
- 66011 Geology 1 (6cp)

Stage 2

Spring semester

- 33172 Science Mathematics 2 (3cp)
- 31871 Computing for Science (3cp)
- 65201 Chemistry 2M (6cp)
- 65202 Organic Chemistry 1 (6cp)
- 68201 Physics 2 (6cp)
Stage 3

Autumn semester
60301 Treatment of Scientific Data (3cp)
65301 Spectroscopy and Structure (7cp)
65302 Inorganic Chemistry (7cp)
65504 Chemical Safety (4cp)
66031 Technical Communication (4cp)

Spring semester
65401 Analytical Chemistry 1 (8cp)
65402 Organic Chemistry 2 (8cp)
65403 Electrochemistry (4cp)
65404 Chemical Thermodynamics (4cp)

Industrial requirements
65996 Industrial Training 1

Stage 4

Autumn semester
60301 Treatment of Scientific Data (3cp)
65302 Inorganic Chemistry (7cp)
66030 Technical Communication (2 sem) (2cp)

Spring semester
65401 Analytical Chemistry 1 (8cp)
65402 Organic Chemistry 2 (8cp)
65403 Electrochemistry (4cp)
65404 Chemical Thermodynamics (4cp)
66030 Technical Communication (2 sem) (2cp)

Stage 5

Autumn semester
33173 Science Mathematics 3 (3cp)
65501 Analytical Chemistry 2 (8cp)
65602 Reaction Kinetics (4cp)
Chemistry Elective(s)² (8cp)

Spring semester
Chemistry Elective(s)² (16cp)
Elective (8cp)

Stage 6

Spring semester
Chemistry Elective(s)² (16cp)
Elective (8cp)

PART-TIME PROGRAM – PASS DEGREE

Each stage corresponds to two semesters of part-time attendance.

Stage 1

Autumn semester
31870 Introduction to Microcomputers (2cp)
33171 Science Mathematics 1 (4cp)
91388 Concepts in Biology (6cp)
66011 Geology 1 (6cp)

Spring semester
65011 Chemistry 1 F/T (6cp)
68101 Physics 1 (6cp)
Stage 6

Academic requirements

Autumn semester

Chemistry Elective(s)² (12cp)

Spring semester

Chemistry Elective(s)² (4cp)
Elective² (8cp)

Industrial requirements

65998 Industrial Training P/T¹

¹ Industrial experience is an integral part of this course. The minimum period of relevant employment required is the equivalent of one year’s full-time employment. The Industrial Training Committee of the Chemistry Department provides guidance on this occupational requirement. The industrial training component in the sandwich program must be undertaken after the completion of the third or fourth semester of academic work. It must be undertaken before the last semester of academic work. The corresponding subject in the Honours degree program is 65995 Industrial Training (Honours).

² Chemistry electives offered in 1995 (subject to satisfactory enrolments):

Autumn semester

65503 Electronics and Instrumentation (5cp)
65702 Applied Organic Chemistry 2 (8cp)
65703 Metallurgical Chemistry (8cp)

Spring semester

65502 Chemical Process Control (8cp)
65601 Environmental Chemistry (8cp)
65704 Coordination and Organometallic Chemistry (8cp)

Program for holders of the Associate Diploma in Chemical Technology

A special program operates for students who have successfully completed the Associate Diploma in Chemical Technology of the Sydney Technical College and who are admitted into the Applied Chemistry degree course. Students may seek exemptions from some or all of the following subjects:

31870 Introduction to Microcomputers (2cp)
31871 Computing for Science (3cp)
65101 Chemistry 1M (6cp)
65202 Organic Chemistry 1 (6cp)
66031 Technical Communication (4cp)

The study pattern for Associate Diploma holders is set out below.

Semester 1 (for full-time) or Year 1 (for part-time)

33171 Science Mathematics 1 (4cp)
68101 Physics 1 (6cp)
65201 Chemistry 2M (6cp)
65301 Spectroscopy and Structure (7cp)

Semester 2 or Year 2

33172 Science Mathematics 2 (3cp)
60301 Treatment of Scientific Data (3cp)
65302 Inorganic Chemistry (7cp)
65504 Chemical Safety (4cp)
68201 Physics 2 (6cp)

Semester 3 or Year 3

65404 Chemical Thermodynamics (4cp)
65403 Electrochemistry (4cp)
65402 Organic Chemistry 2 (new) (8cp)
Chemistry Elective(s) (8cp)

Semester 4 or Year 4

33173 Science Mathematics 3 (3cp)
65401 Analytical Chemistry 1 (8cp)
65602 Reaction Kinetics (4cp)
Chemistry Elective(s) (8cp)

Semester 5 or Year 5

65501 Analytical Chemistry 2 (8cp)
Chemistry elective (8cp)
Elective (8cp)
Bachelor of Applied Science in Geology

This degree course is designed for students seeking careers as professional geologists. The basic award for successful completion of the course is Bachelor of Applied Science. At the end of Stage 4 of the course, better students may transfer to the new Honours degree program.

The Pass course consists of six stages of formal study and at least one year of full-time (or its equivalent) relevant industrial experience. The formal study includes basic study of chemistry, physics, mathematics and geology, followed by general training in lithology and geological mapping, computer science, the treatment of scientific data, geodynamics and sedimentary, igneous and metamorphic geology. In the middle and later stages of the course, structural geology, exploration geophysics, remote sensing and tectonics are studied in association with exploration, resource, engineering and environmental geology, mining law, and financial aspects of the mineral industry. In these stages the student also studies a range of subjects in preparation for field and laboratory work in metalliferous and non-metalliferous exploration, and the geology of fossil fuels.

Industrial training is an essential part of the degree program, and is normally completed in two six-month periods, one after completion of Stage 4 and one on completion of Stage 6. The Department of Applied Geology maintains close liaison with potential employers and assists students to obtain appropriate positions. The student may make his or her own arrangements, but the Head of Department must be satisfied as to the suitability of the employment.

The common course patterns are four years of full-time enrolment, including two six-month periods of industrial training; or six years of part-time1 attendance, while concurrently employed full-time in a relevant geological field; or alternating periods of full-time study with similar periods of full-time relevant employment.

Full-time attendance involves 24 hours each week at the University; this enables a full stage of the course to be completed in one semester.

Part-time attendance involves about 12 hours each week at the University; with this form of attendance the equivalent of a full stage may be completed in one year. It is normal practice for employers to release part-time students for at least one half-day per week for attendance at classes. Students commonly attend the University for one half-day and three evenings each week, or for two half-days and two evenings each week.

1 Industrial training can be achieved by concurrent suitable employment. The matter should be discussed with the Head, Department of Applied Geology.

SANDWICH PROGRAM—PASS DEGREE

In these programs, each stage corresponds to one semester spent in full-time attendance at the University. Credit point values are shown in brackets.

\begin{center}
\begin{tabular}{ll}
\textbf{Stage 1} & \\
\textit{Autumn semester} & \\
66101 & Geology 1M (6cp) \\
65011 & Chemistry 1 F/T (6cp) \\
68101 & Physics 1 (6cp) \\
\text{or} & \\
91388 & Concepts in Biology (6cp) \\
33170 & Basic Science Mathematics (3cp) \\
\text{or} & \\
33171 & Science Mathematics 1 (4cp) \\
31870 & Introduction to Microcomputers (2cp) \\
\textbf{Stage 2} & \\
\textit{Spring semester} & \\
66201 & Geological Mapping (4cp) \\
66202 & Lithology (2cp) \\
66203 & Geodynamics (3cp) \\
65021 & Chemistry 2 F/T (6cp) \\
68041 & Physics 1 (LS) (6cp) \\
\text{or} & \\
68201 & Physics 2 (6cp) \\
\end{tabular}
\end{center}
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>33171</td>
<td>Science Mathematics 1</td>
<td>4cp</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33172</td>
<td>Science Mathematics 2</td>
<td>3cp</td>
</tr>
</tbody>
</table>

Stage 3

Autumn semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>31871</td>
<td>Computing for Science</td>
<td>3cp</td>
</tr>
<tr>
<td>60301</td>
<td>Treatment of Scientific Data</td>
<td>3cp</td>
</tr>
<tr>
<td>66301</td>
<td>Mineralogy and Petrology (2 sem)</td>
<td>4cp</td>
</tr>
<tr>
<td>66302</td>
<td>Sedimentary Geology (2 sem)</td>
<td></td>
</tr>
<tr>
<td>66303</td>
<td>Geochemistry</td>
<td>3cp</td>
</tr>
<tr>
<td>66402</td>
<td>Structural Geology (2 sem)</td>
<td></td>
</tr>
<tr>
<td>66406</td>
<td>Exploration Geophysics</td>
<td>4cp</td>
</tr>
</tbody>
</table>

Spring semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>66301</td>
<td>Mineralogy and Petrology (2 sem)</td>
<td>4cp</td>
</tr>
<tr>
<td>66302</td>
<td>Sedimentary Geology (2 sem)</td>
<td>3cp</td>
</tr>
<tr>
<td>66401</td>
<td>Technical Communication</td>
<td>3cp</td>
</tr>
<tr>
<td>66402</td>
<td>Structural Geology (2 sem)</td>
<td>3½cp</td>
</tr>
<tr>
<td>66403</td>
<td>Economic Geology</td>
<td>4cp</td>
</tr>
<tr>
<td>66405</td>
<td>Basin Analysis</td>
<td>4cp</td>
</tr>
<tr>
<td>66603</td>
<td>Remote Sensing</td>
<td>3cp</td>
</tr>
</tbody>
</table>

Autumn semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>66996</td>
<td>Industrial Training 1</td>
<td></td>
</tr>
</tbody>
</table>

Stage 4

Spring semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>66404</td>
<td>Resource Management</td>
<td>3cp</td>
</tr>
<tr>
<td>66501</td>
<td>Engineering and Environmental Geology</td>
<td>5cp</td>
</tr>
<tr>
<td>66502</td>
<td>Advanced Petrology</td>
<td>4cp</td>
</tr>
<tr>
<td>66503</td>
<td>Fossil Fuels</td>
<td>4cp</td>
</tr>
<tr>
<td>66504</td>
<td>Exploration Geochemistry</td>
<td>2cp</td>
</tr>
<tr>
<td>66507</td>
<td>Project Seminar</td>
<td>3cp</td>
</tr>
<tr>
<td>66505</td>
<td>Advanced Structural Geology</td>
<td>4cp</td>
</tr>
<tr>
<td>66506</td>
<td>Advanced Geological Mapping</td>
<td>3cp</td>
</tr>
</tbody>
</table>

Autumn semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>66601</td>
<td>Exploration and Mining Geology</td>
<td>4cp</td>
</tr>
<tr>
<td>66604</td>
<td>Field Project</td>
<td>9cp</td>
</tr>
<tr>
<td>66602</td>
<td>Tectonics</td>
<td>3cp</td>
</tr>
</tbody>
</table>

Stage 5

Spring semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>66502</td>
<td>Advanced Petrology</td>
<td>4cp</td>
</tr>
<tr>
<td>66503</td>
<td>Fossil Fuels</td>
<td>4cp</td>
</tr>
<tr>
<td>66504</td>
<td>Exploration Geochemistry</td>
<td>2cp</td>
</tr>
<tr>
<td>66507</td>
<td>Project Seminar</td>
<td>3cp</td>
</tr>
<tr>
<td>66505</td>
<td>Advanced Structural Geology</td>
<td>4cp</td>
</tr>
<tr>
<td>66506</td>
<td>Advanced Geological Mapping</td>
<td>3cp</td>
</tr>
</tbody>
</table>

Autumn semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>66601</td>
<td>Exploration and Mining Geology</td>
<td>4cp</td>
</tr>
<tr>
<td>66604</td>
<td>Field Project</td>
<td>9cp</td>
</tr>
<tr>
<td>66602</td>
<td>Tectonics</td>
<td>3cp</td>
</tr>
</tbody>
</table>

Stage 6

Spring semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>66601</td>
<td>Exploration and Mining Geology</td>
<td>4cp</td>
</tr>
<tr>
<td>66604</td>
<td>Field Project</td>
<td>9cp</td>
</tr>
<tr>
<td>66602</td>
<td>Tectonics</td>
<td>3cp</td>
</tr>
</tbody>
</table>

Autumn semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>31871</td>
<td>Computing for Science</td>
<td>3cp</td>
</tr>
<tr>
<td>60301</td>
<td>Treatment of Scientific Data</td>
<td>3cp</td>
</tr>
<tr>
<td>66303</td>
<td>Geochemistry</td>
<td>3cp</td>
</tr>
<tr>
<td>66302</td>
<td>Sedimentary Geology (2 sem)</td>
<td>3cp</td>
</tr>
</tbody>
</table>

Spring semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>66301</td>
<td>Mineralogy and Petrology (8cp)</td>
<td>4cp</td>
</tr>
<tr>
<td>66302</td>
<td>Sedimentary Geology (6cp)</td>
<td></td>
</tr>
</tbody>
</table>

Part-time Program—Pass Degree

Stage 1

Autumn semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>66011</td>
<td>Geology 1</td>
<td>6cp</td>
</tr>
<tr>
<td>31870</td>
<td>Introduction to Microcomputers</td>
<td>2cp</td>
</tr>
<tr>
<td>33170</td>
<td>Basic Science Mathematics</td>
<td>3cp</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33171</td>
<td>Science Mathematics 1</td>
<td>4cp</td>
</tr>
</tbody>
</table>

Spring semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>65011</td>
<td>Chemistry 1 F/T</td>
<td>6cp</td>
</tr>
<tr>
<td>68101</td>
<td>Physics 1</td>
<td>6cp</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68041</td>
<td>Physics 1 (LS)</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Stage 2

Autumn semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>65021</td>
<td>Chemistry 2 F/T</td>
<td>6cp</td>
</tr>
<tr>
<td>68201</td>
<td>Physics 2</td>
<td>6cp</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91388</td>
<td>Concepts in Biology</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Spring semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>66201</td>
<td>Geological Mapping</td>
<td>4cp</td>
</tr>
<tr>
<td>66202</td>
<td>Lithology</td>
<td>2cp</td>
</tr>
<tr>
<td>66203</td>
<td>Geodynamics</td>
<td>3cp</td>
</tr>
<tr>
<td>33171</td>
<td>Science Mathematics 1</td>
<td>4cp</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33172</td>
<td>Science Mathematics 2</td>
<td>3cp</td>
</tr>
</tbody>
</table>

Stage 3

Autumn semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>31871</td>
<td>Computing for Science</td>
<td>3cp</td>
</tr>
<tr>
<td>60301</td>
<td>Treatment of Scientific Data</td>
<td>3cp</td>
</tr>
<tr>
<td>66303</td>
<td>Geochemistry</td>
<td>3cp</td>
</tr>
<tr>
<td>66302</td>
<td>Sedimentary Geology (2 sem)</td>
<td>3cp</td>
</tr>
</tbody>
</table>

Spring semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>66301</td>
<td>Mineralogy and Petrology (8cp)</td>
<td>4cp</td>
</tr>
<tr>
<td>66302</td>
<td>Sedimentary Geology (6cp)</td>
<td></td>
</tr>
</tbody>
</table>

Industrial requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>66998</td>
<td>Industrial Training P/T</td>
<td></td>
</tr>
</tbody>
</table>

On one of

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>66605</td>
<td>Advanced Fossil Fuels</td>
<td>4cp</td>
</tr>
<tr>
<td>66606</td>
<td>Mineral Deposits</td>
<td>4cp</td>
</tr>
<tr>
<td>66607</td>
<td>Advanced Engineering Geology</td>
<td>4cp</td>
</tr>
</tbody>
</table>

Spring semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>66997</td>
<td>Industrial Training 2</td>
<td></td>
</tr>
</tbody>
</table>
Bachelor of Applied Science in Materials Science

With the development of technology has come an increasing demand for new, more specialised and more reliable materials. Modern engineering and scientific enterprises continue to involve larger and more complex structures or devices. Factors such as the operational behaviour, relative costs and the aesthetic appeal of different materials become more and more stringently specified. It is from this background that Materials Science has emerged as a separate field of study out of the traditional disciplines of physics, chemistry, metallurgy and engineering.

Materials Science deals with the scientific principles governing the engineering properties of materials and the application of these properties in modern technology. Metals, ceramics and organic materials are treated in an integrated manner to establish the criteria for materials selection in relation to service conditions, materials compatibility and material durability.

There are two degree programs available i.e. the Bachelor of Applied Science (Materials Science) and the Bachelor of Applied Science (Honours) in Materials Science. The first four stages of these degrees are the same. At the end of Stage 4 those students with an average mark of 65 or greater in Stages 3 and 4 may enrol in the Honours degree. Graduates from both these degrees will be well equipped to work in materials-science-related industry. The Honours degree graduates will, however, be able to undertake postgraduate research more readily.

ATTENDANCE PATTERNS

The Pass course consists of six stages which may be completed on a full- or part-time basis. For full-time students, three years of study are integrated with a 12-month period of employment in suitable industries. For part-time students, the course consists of six years of part-time study whilst employed in a relevant industry.
All students enrolled in the Materials Science Pass degree course are required to undertake one calendar year of full-time, or the part-time equivalent, industrial training of an approved nature. This industrial training is an integral and compulsory part of the degree program. A program of this type is called a cooperative education or sandwich program.

Under a full-time pattern of attendance, involving approximately 24 hours each week at the University, a full stage may be completed in one semester. Allowing for a minimum period of one year of vocational experience, the Pass course may be completed in four years.

Part-time attendance involves approximately 12 hours each week at the University, and with this form of attendance a full stage may be completed in one year. Students attending entirely on a part-time basis must satisfy the Head of Department that they are employed in an area relevant to their academic program. They would require a minimum of six years to complete the course. Part-time attendance normally requires attendance at the University on one afternoon and two to three evenings each week.

SANDWICH PROGRAM—PASS DEGREE

Each stage corresponds to one semester of full-time attendance at the University. Credit point values are shown in brackets.

Stage 1

Autumn semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>66011</td>
<td>Geology 1 (6cp)</td>
<td></td>
</tr>
<tr>
<td>91388</td>
<td>Concepts in Biology (6cp)</td>
<td></td>
</tr>
<tr>
<td>65011</td>
<td>Chemistry 1 F/T (6cp)</td>
<td></td>
</tr>
<tr>
<td>68101</td>
<td>Physics 1 (6cp)</td>
<td></td>
</tr>
<tr>
<td>31870</td>
<td>Introduction to Microcomputers (2cp)</td>
<td></td>
</tr>
<tr>
<td>33170</td>
<td>Basic Science Mathematics (3cp)</td>
<td></td>
</tr>
<tr>
<td>33171</td>
<td>Science Mathematics 1 (4cp)</td>
<td></td>
</tr>
</tbody>
</table>

Stage 2

Spring semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>65021</td>
<td>Chemistry 2 F/T (6cp)</td>
<td></td>
</tr>
<tr>
<td>68201</td>
<td>Physics 2 (6cp)</td>
<td></td>
</tr>
<tr>
<td>65024</td>
<td>Introductory Organic Chemistry (3cp)</td>
<td></td>
</tr>
<tr>
<td>67202</td>
<td>Introduction to Crystallography (2cp)</td>
<td></td>
</tr>
<tr>
<td>67201</td>
<td>Materials Science 1 (4cp)</td>
<td></td>
</tr>
<tr>
<td>33171</td>
<td>Science Mathematics 1 (4cp)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td>33172</td>
<td>Science Mathematics 2 (3cp)</td>
<td></td>
</tr>
</tbody>
</table>

Stage 3

Autumn semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>51368</td>
<td>Written and Oral Reporting (2cp)</td>
<td></td>
</tr>
<tr>
<td>60301</td>
<td>Treatment of Scientific Data (3cp)</td>
<td></td>
</tr>
<tr>
<td>65031</td>
<td>Thermodynamics (3cp)</td>
<td></td>
</tr>
<tr>
<td>67302</td>
<td>Polymers 1 (3cp)</td>
<td></td>
</tr>
<tr>
<td>67303</td>
<td>Mechanical Properties of Materials (6cp)</td>
<td></td>
</tr>
<tr>
<td>67301</td>
<td>Materials Science 2 (4cp)</td>
<td></td>
</tr>
<tr>
<td>33172</td>
<td>Science Mathematics 2 (3cp)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td>33173</td>
<td>Science Mathematics 3 (3cp)</td>
<td></td>
</tr>
</tbody>
</table>

Stage 4

Spring semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>31871</td>
<td>Computing for Science (3cp)</td>
<td></td>
</tr>
<tr>
<td>67404</td>
<td>Physical Metallurgy 1 (4cp)</td>
<td></td>
</tr>
<tr>
<td>67402</td>
<td>Polymers 2 (4cp)</td>
<td></td>
</tr>
<tr>
<td>67401</td>
<td>Materials Science 3 (3cp)</td>
<td></td>
</tr>
<tr>
<td>67405</td>
<td>Physical Metallurgy 2 (4cp)</td>
<td></td>
</tr>
<tr>
<td>67403</td>
<td>Ceramics 1 (4cp)</td>
<td></td>
</tr>
<tr>
<td>33173</td>
<td>Science Mathematics 3 (3cp)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td>67406</td>
<td>Instrumentation for Materials Scientists (2cp)</td>
<td></td>
</tr>
</tbody>
</table>

Autumn semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>67996</td>
<td>Industrial Training 1</td>
<td></td>
</tr>
</tbody>
</table>

Spring semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>67997</td>
<td>Industrial Training 2</td>
<td></td>
</tr>
</tbody>
</table>

Stage 5

Autumn semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>68071</td>
<td>Applied Physics (Materials) (4cp)</td>
<td></td>
</tr>
<tr>
<td>67504</td>
<td>Physical Metallurgy 3 (4cp)</td>
<td></td>
</tr>
<tr>
<td>67501</td>
<td>Ceramics 2 (4cp)</td>
<td></td>
</tr>
<tr>
<td>67502</td>
<td>Polymers 3 (4cp)</td>
<td></td>
</tr>
<tr>
<td>67503</td>
<td>Ceramics 3 (4cp)</td>
<td></td>
</tr>
<tr>
<td>67505</td>
<td>Project P/T (2 sem) (4cp)</td>
<td></td>
</tr>
</tbody>
</table>
Stage 6

Spring semester
65061 Corrosion Technology (4cp)
65062 Extractive Metallurgy (6cp)
67601 Materials Degradation (2cp)
67602 Surface Properties of Materials (4cp)
67603 Design and Materials Selection (2cp)
67604 Composites (2cp)
67505 Project P/T (2 sem) (4cp)

PART-TIME PROGRAM—PASS DEGREE
Each stage corresponds to two semesters of part-time attendance at the University. Credit point values are shown in brackets.

Stage 1

Autumn semester
31870 Introduction to Microcomputers (2cp)
33170 Basic Science Mathematics (3cp)
or
33171 Science Mathematics 1 (4cp)
66011 Geology 1 (6cp)
or
91388 Concepts in Biology (6cp)

Spring semester
65011 Chemistry 1 F/T (6cp)
68201 Physics 1 (6cp)

Stage 2

Autumn semester
65021 Chemistry 2 F/T (6cp)
68201 Physics 2 (6cp)

Spring semester
65024 Introductory Organic Chemistry (3cp)
67201 Materials Science 1 (4cp)
67202 Introduction to Crystallography (2cp)
33171 Science Mathematics 1 (4cp)
or
33172 Science Mathematics 2 (3cp)

Stage 3

Autumn semester
51368 Written and Oral Reporting (2cp)
65031 Thermodynamics (3cp)
67302 Polymers 1 (3cp)
67301 Materials Science 2 (4cp)

Spring semester
67402 Polymers 2 (4cp)
67405 Physical Metallurgy 2 (4cp)
31871 Computing for Science (3cp)
33173 Science Mathematics 3 (3cp)
or
21139 Business Organisation (2cp)
Industrial requirements
67998 Industrial Training P/T

Stage 4

Autumn semester
60301 Treatment of Scientific Data (3cp)
67303 Mechanical Properties of Materials (6cp)
33172 Science Mathematics 2 (3cp)
or
33173 Science Mathematics 3 (3cp)

Spring semester
67402 Polymers 2 (4cp)
67405 Physical Metallurgy 2 (4cp)
31871 Computing for Science (3cp)
33173 Science Mathematics 3 (3cp)
or
67998 Industrial Training P/T

Stage 5

Autumn semester
68071 Applied Physics (Materials) (4cp)
67504 Physical Metallurgy 3 (4cp)
67501 Ceramics 2 (4cp)

Spring semester
65061 Corrosion Technology (4cp)
65062 Extractive Metallurgy (6cp)
67603 Design and Materials Selection (2cp)
Industrial requirements
67998 Industrial Training P/T

Stage 6

Autumn semester
67502 Polymers 3 (4cp)
67503 Ceramics 3 (4cp)
67505 Project P/T (2 sem) (4cp)

Spring semester
67602 Surface Properties of Materials (4cp)
67601 Materials Degradation (2cp)
67604 Composites (2cp)
67505 Project P/T (2 sem) (4cp)
Industrial requirements
67998 Industrial Training P/T
Bachelor of Applied Science in Physics

The development of modern technology and its application in a wide variety of industries has created a demand for graduates who have a scientific approach to applied problem solving, a deep understanding of the physical principles underlying systems, who are able to utilise modern equipment for measurement and control and are flexible and adaptable to changing job needs. Such graduates are applied physicists. Employment is found by applied physicists in a wide range of private industries and public authorities.

Both a Pass course and an Honours course are offered. The first four stages of both courses are identical, with all students enrolling in the Pass course on commencing studies.

The first two stages of the course consist of the study of basic science subjects.

The course subjects emphasise measurement, and the use and design of instrumentation for measurement and control. There is thus an emphasis in the course on modern electronics and computers.

ATTENDANCE PATTERNS

The Pass course consists of six stages which may be completed on a full-time (sandwich) or part-time basis.

Under a sandwich pattern of attendance, involving 24 hours each week at the University, a full stage may be completed in one semester. Allowing for a minimum period of one year of vocational experience, the course may be completed in four years. The normal attendance pattern is the sandwich pattern which is as follows:

Year 1
Stage 1 – full-time at the University
Stage 2 – full-time at the University

Year 2
Stage 3 – full-time at the University
Stage 4 – full-time at the University

Year 3
First industrial period of six months
Second industrial period of six months

Year 4
Stage 5 – full-time at the University
Stage 6 – full-time at the University

Part-time attendance involves 12 hours each week at the University, and with this form of attendance a full stage may be completed in one year. A student attending entirely on a part-time basis must satisfy the Associate Dean that he/she is employed in an area which is relevant to his/her academic program. The student would require a minimum of six years to complete the course.

Being in full-time employment, the student would usually attend classes at the University for three evenings and one afternoon each week, assuming the commonly allowed day-release arrangements of one afternoon per week from employment.

Industrial training is regarded as an integral part of the course. All students, both full-time and part-time, must complete one year of relevant industrial experience.

SANDWICH PROGRAM – PASS DEGREE

Each stage corresponds to one semester of full-time attendance at the University. Credit point values are shown in brackets.

Stage 1

Autumn semester
68101 Physics 1 (6cp)
65011 Chemistry 1 F/T (6cp)
66011 Geology 1 (6cp)

or
91388 Concepts in Biology (6cp)
31870 Introduction to Microcomputers (2cp)
33171 Science Mathematics 1 (4cp)

Spring semester
68201 Physics 2 (6cp)
65021 Chemistry 2 F/T (6cp)
67202 Introduction to Crystallography (2cp)
67201 Materials Science 1 (4cp)
33172 Science Mathematics 2 (3cp)
33173 Science Mathematics 3 (3cp)

Stage 3

Autumn semester
31871 Computing for Science (3cp)
33221 Engineering Mathematics 2A (3cp)
60301 Treatment of Scientific Data (3cp)
68301 Physics 3 (3cp)
68302 Applied Optics (3cp)
68303 Electrotechnology (3cp)
68304 Electronics 1 (6cp)

Spring semester
33330 Physical Mathematics (3cp)
51368 Written and Oral Reporting (2cp)
68403 Thermodynamics and Energy (3cp)
68405 Vacuum and Thin Film Physics (3cp)
68406 Computational Physics (4cp)
68401 Quantum Physics 1 (3cp)
68402 Applied Mechanics (3cp)
68404 Electronics 2 (3cp)

Autumn semester
68996 Industrial Training 1

Spring semester
68997 Industrial Training 2

Stage 4

Autumn semester
68503 Materials Physics (3cp)
68505 Solid-state Physics (3cp)
68516 Techniques of Materials Analysis (6cp)
68502 Field Theory (3cp)
68504 Microprocessors in Instrumentation (3cp)
68508 Project A (2 sem) (3cp)

Spring semester
68501 Nuclear Physics (3cp)
68603 Applied Thermodynamics (3cp)
68605 Transducers and Devices (3cp)

68604 Principles of Instrumentation (3cp)
68601 Quantum Physics 2 (3cp)
68602 Physical Optics (3cp)
68508 Project A (2 sem) (3cp)
68608 Project B (3cp)

Note
With the agreement of the Head of Department, up to six credit points may be varied to allow students to develop individual interests.

PART-TIME PROGRAM – PASS DEGREE
Each stage corresponds to two semesters of part-time attendance at the University. Credit point values are shown in brackets.

Stage 1

Autumn semester
31870 Introduction to Microcomputers (2cp)
33171 Science Mathematics 1 (4cp)
66011 Geology 1 (6cp)

or
91388 Concepts in Biology (6cp)

Spring semester
65011 Chemistry 1 F/T (6cp)
68101 Physics 1 (6cp)

Stage 2

Autumn semester
65021 Chemistry 2 F/T (6cp)
68201 Physics 2 (6cp)

Spring semester
33172 Science Mathematics 2 (3cp)
33173 Science Mathematics 3 (3cp)
60301 Treatment of Scientific Data (3cp)
67202 Introduction to Crystallography (2cp)

Stage 3

Autumn semester
31871 Computing for Science (3cp)
33221 Engineering Mathematics 2A (3cp)
68302 Applied Optics (3cp)
67201 Materials Science 1 (4cp)

Spring semester
33330 Physical Mathematics (3cp)
60301 Treatment of Scientific Data (3cp)
Bachelor of Applied Science in Science Education

This course provides students with a degree in Science and a professional qualification in Education. The degree can be completed in four years, and comprises three-and-a-half years' full-time academic studies in science and education, and one-half year's industrial training in a scientific discipline.

The course is a preparation for secondary school science teachers of chemistry, physics and geology. Graduates find employment in private and public secondary schools. The opportunity to seek employment in the relevant scientific discipline also exists.

The degree is fully recognised by the NSW Department of School Education and by professional scientific bodies.

COURSE PROGRAM—CHEMISTRY MAJOR

Year 1

Autumn semester
65101 Chemistry 1M (6cp)
68101 Physics 1 (6cp)
31870 Introduction to Microcomputers (2cp)
33171 Science Mathematics 1 (4cp)

Spring semester
65201 Chemistry 2M (6cp)
65202 Organic Chemistry 1 (6cp)
68201 Physics 2 (6cp)
31871 Computing for Science (3cp)
33172 Science Mathematics 2 (3cp)

or
91388 Concepts in Biology (6cp)

Stage 6

Autumn semester
68502 Field Theory (3cp)
68504 Microprocessors in Instrumentation (3cp)
68508 Project A (2 sem) (3cp)
Elective (3cp)

Spring semester
68601 Quantum Physics 2 (3cp)
68602 Physical Optics (3cp)
68508 Project A (2 sem) (3cp)
68608 Project B (3cp)

Note

With the agreement of the Head of Department, up to six credit points may be varied to allow students to develop individual interests.
Spring semester
- **65401** Analytical Chemistry 1 (8cp)
- **65402** Organic Chemistry 2 (8cp)
- **65403** Electrochemistry (4cp)
- **65404** Chemical Thermodynamics (4cp)

Year 3

Autumn semester
- Education Studies 1 (24cp)

Spring semester
- Industrial Training 1 (24cp)

COURSE PROGRAM - PHYSICS MAJOR

Year 1

Autumn semester
- **65011** Chemistry 1 F/T (6cp)
- **68101** Physics 1 (6cp)
- **31870** Introduction to Microcomputers (2cp)
- **33171** Science Mathematics 1 (4cp)
- **66011** Geology 1 (6cp)

 or

- **91388** Concepts in Biology (6cp)

Spring semester
- **65021** Chemistry 2 F/T (6cp)
- **68201** Physics 2 (6cp)
- **67201** Materials Science 1 (4cp)
- **67202** Introduction to Crystallography (2cp)
- **33172** Science Mathematics 2 (3cp)
- **33173** Science Mathematics 3 (3cp)

Year 2

Autumn semester
- **31871** Computing for Science (3cp)
- **33221** Engineering Mathematics 2A (3cp)
- **60301** Treatment of Scientific Data (3cp)
- **68301** Physics 3 (3cp)
- **68302** Applied Optics (3cp)
- **68303** Electrotechnology (3cp)
- **68304** Electronics 1 (6cp)

Spring semester
- **33330** Physical Mathematics (3cp)
- **51368** Written and Oral Reporting (2cp)
- **68401** Quantum Physics 1 (3cp)
- **68402** Applied Mechanics (3cp)
- **68403** Thermodynamics and Energy (3cp)
- **68404** Electronics 2 (3cp)
- **68405** Vacuum and Thin Film Physics (3cp)
- **68406** Computational Physics (4cp)

Year 4

Autumn semester
- Electives (24cp)

Spring semester
- Education Studies 2 (24cp)

COURSE PROGRAM - GEOLOGY MAJOR

Year 1

Autumn semester
- **66101** Geology 1M (6cp)
- **65011** Chemistry 1 F/T (6cp)
- **31870** Introduction to Microcomputers (2cp)
- **68101** Physics 1 (6cp)

 or

- **91388** Concepts in Biology (6cp)

Spring semester
- **66201** Geologic Mapping (4cp)
- **66202** Lithology (2cp)
- **66203** Geodynamics (3cp)
- **65021** Chemistry 2 F/T (6cp)
- **68101** Physics 1 (6cp)

 or

- **91388** Concepts in Biology (6cp)
- **33170** Basic Science Mathematics (3cp)

 or

- **33171** Science Mathematics 1 (4cp)

Spring semester
- **66201** Geological Mapping (4cp)
- **66202** Lithology (2cp)
- **66203** Geodynamics (3cp)
- **65021** Chemistry 2 F/T (6cp)
- **68041** Physics 1 (LS) (6cp)

 or

- **68201** Physics 2 (6cp)
- **33171** Science Mathematics 1 (4cp)

 or

- **33172** Science Mathematics 2 (3cp)
Bachelor of Applied Science (Honours) in Chemistry

The Bachelor of Applied Science Honours degree in Chemistry is a four-year full-time program (seven years part-time). The first two years are the same as the Pass degree program. To be eligible for transfer to the Honours degree program students must have a Weighted Average Mark (WAM) of at least 65 for subjects in Stages 3 and 4.

Stage 5 and subsequent stages include a total of 24 credit points of advanced level coursework in addition to the coursework undertaken in common with Pass students. These subjects involve the study of additional advanced material for Honours students and their assessment includes an additional Honours examination in each case.

Honours students undertake a substantial research project which is worth 24 credit points. This project also involves informal lectures and/or tutorials on topics relating to the student's research project plus discussion group activities concerning research methods. Honours students are required to deliver an Honours seminar to all academic staff and other senior students within the Department.

Special arrangements will be made with employers to ensure that Honours students are given more demanding work and have their industrial training assessed at a higher level.

Students wishing to undertake Honours in 1995 should contact Dr Ashby (330 1732) or Associate Professor Norton (330 1764) for advice concerning projects available and the pattern of Honours most suitable for them, or consult the Chemistry noticeboards for details of available projects and supervisors.

SANDWICH PROGRAM – HONOURS DEGREE

Years 1 and 2

As for Stages 1 to 4 of the Pass course.
PART-TIME PROGRAM – HONOURS DEGREE

Years 1 to 4

As for Stages 1 to 4 of the Pass course.

Year 5

Autumn semester
33173 Science Mathematics 3 (3cp)
65551 Analytical Chemistry 2 (Advanced) (8cp)
65995 Industrial Training (Honours)

Spring semester
65602 Reaction Kinetics 1 (4cp)
65995 Industrial Training (Honours)
Honours Elective 2 (8cp)

Honours students who elect not to study while on Industrial Training will require an extra semester of attendance to complete the course. A suitable study pattern is shown below.

Year 6

Autumn semester
Chemistry Elective 2 (4cp)
Honours Elective 2 (8cp)
65858 Honours Research Project (2 sem) (12cp)

Spring semester
Chemistry Elective 2 (4cp)
Honours Elective 2 (8cp)

Year 7

Autumn semester
65858 Honours Research Project (2 sem) (12cp)

Spring semester
65858 Honours Research Project (2 sem) (12cp)

1 Interchangeable
2 Chemistry Electives to be offered in 1995 (subject to satisfactory enrolments):

Autumn semester
6503 Electronics and Instrumentation (5cp)

Spring semester
65502 Chemical Process Control (8cp)
65603 Surface Chemistry (4cp)

Honours electives to be offered in 1995 (subject to satisfactory enrolments):

Autumn semester
65752 Applied Organic Chemistry 2 (Advanced) (8cp)
65753 Metallurgical Chemistry (Advanced) (8cp)

Spring semester
65754 Coordination and Organometallic Chemistry (Advanced) (8cp)
65651 Environmental Chemistry (Advanced) (8cp)
Bachelor of Applied Science (Honours) in Geology

Those students who wish to obtain an Honours degree will be offered entry to a new course structure (the Honours 'strand'). This strand diverges from the Pass degree strand at the end of Stage 4 coursework. To obtain entry to this strand, students will be expected to have an average mark of 65 or greater in their Stages 3 and 4 Geology subjects, and to be making satisfactory progress through their degree. Students accepting entry will, like students following the Pass course, go on Industrial Training in their fifth semester of enrolment. They will subsequently undertake three semesters of work at UTS but will not be required to do a second period of Industrial Training. Most of the final semesters in the Honours strand will be devoted to a research project, which will be of substantially greater scope than the Field Project in the Pass degree.

HONOURS PROGRAM

Years 1 to 2
As for Stages 1 to 4 of the Pass course.

Stage 5

<table>
<thead>
<tr>
<th>Autumn semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>66995 Industrial Training (Hons)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>66404 Resource Management (3cp)</td>
</tr>
<tr>
<td>66501 Engineering and Environmental Geology (5cp)</td>
</tr>
<tr>
<td>66504 Exploration Geochemistry (2cp)</td>
</tr>
<tr>
<td>66506 Advanced Geological Mapping (3cp)</td>
</tr>
<tr>
<td>66551 Advanced Structural Geology (Hons) (5cp)</td>
</tr>
<tr>
<td>66552 Advanced Petrology (Hons) (5cp)</td>
</tr>
<tr>
<td>66553 Fossil Fuels (Hons) (5cp)</td>
</tr>
</tbody>
</table>

Stage 6

<table>
<thead>
<tr>
<th>Autumn semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>66602 Tectonics (3cp)</td>
</tr>
<tr>
<td>66858 Project (Hons) (2 sem) (8cp)</td>
</tr>
<tr>
<td>Two of</td>
</tr>
<tr>
<td>66651 Convergent Margin Tectonics (Hons) (3cp)</td>
</tr>
<tr>
<td>66655 Structural Geology of Ore Deposits (Hons) (3cp)</td>
</tr>
<tr>
<td>66653 Applied Clastic Basin Analysis (Hons) (3cp)</td>
</tr>
<tr>
<td>External SUCOGG Elective</td>
</tr>
</tbody>
</table>

Stage 7

<table>
<thead>
<tr>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>66858 Project (Hons) (2 sem) (14cp)</td>
</tr>
<tr>
<td>One of</td>
</tr>
<tr>
<td>66654 Research Developments in Geoscience (3cp)</td>
</tr>
<tr>
<td>External SUCOGG elective</td>
</tr>
</tbody>
</table>

Note
Where appropriate, and with the permission of the Head of Department, other subjects may be substituted for particular subjects in Stages 5 to 7.
Bachelor of Applied Science (Honours) in Materials Science

ATTENDANCE PATTERNS

The Honours course consists of eight stages which may be completed on a full- or part-time basis. For full-time students the course includes a six-month period of employment in suitable industries. For part-time students, the course consists of seven years of part-time study whilst employed in a relevant industry.

Students have flexibility of choice and may complete portions of their course on a full-time or part-time basis.

All students enrolled in the Materials Science Honours degree course are required to undertake six months full-time or the part-time equivalent industrial training of an approved nature. This industrial training is an integral and compulsory part of the degree program. A program of this type is called a cooperative education or sandwich program.

Under a full-time pattern of attendance, involving approximately 24 hours each week at the University, a full stage may be completed in one semester.

Part-time attendance involves approximately 12 hours each week at the University, and with this form of attendance a full stage may be completed in one year. Students attending entirely on a part-time basis must satisfy the Head of Department that they are employed in an area relevant to their academic program. They would require a minimum of six years to complete the course. Part-time attendance normally requires attendance at the University on one afternoon and two to three evenings each week.

SANDWICH PROGRAM – HONOURS DEGREE

Stages 1 to 4 are identical to the Materials Science Pass degree program.

Stage 5

Autumn semester

- 68071 Applied Physics (Materials) (4cp)
- 67501 Ceramics 2 (4cp)
- 67551 Materials Characterisation (4cp)
- 67552 Polymers 3 (Honours) (4cp)
- 67553 Ceramics 3 (Honours) (4cp)
- 67554 Physical Metallurgy 3 (Honours) (4cp)

Stage 6

Spring semester

- 65061 Corrosion Technology (4cp)
- 65062 Extractive Metallurgy (6cp)
- 67601 Materials Degradation (2cp)
- 67602 Surface Properties of Materials (4cp)
- 67603 Design and Materials Selection (2cp)
- 67604 Composites (2cp)
- 67651 Advanced Materials (4cp)

Stage 7

Autumn semester

- 67995 Industrial Training (Honours)
- 67858 Honours Project (2 sem) (12cp)

Stage 8

Spring semester

- 67858 Honours Project (2 sem) (12cp)

PART-TIME PROGRAM – HONOURS DEGREE

Years 1 to 4 are identical to Stages 1 to 4 of the Pass degree course.

Year 5

Autumn semester

- 67501 Ceramics 2 (4cp)
- 67554 Physical Metallurgy 3 (Honours) (4cp)
- 68071 Applied Physics (Materials) (4cp)

Spring semester

- 65061 Corrosion Technology (4cp)
- 65062 Extractive Metallurgy (6cp)
- 67603 Design and Materials Selection (2cp)
Bachelor of Applied Science (Honours) in Physics

INTRODUCTION
Students studying for the Applied Physics degree at UTS have the opportunity of undertaking an Honours degree after four semesters of study. Many Honours students go on to postgraduate studies and embark on a career in research.

COURSE
On commencing studies at UTS, all Applied Physics students enrol in the Pass degree. For the first four semesters all students undertake the same program of study. Those students who perform well over this period may then transfer into the Honours program. Such students then undertake either two years of full-time study or three years of part-time study to complete the degree. Both Pass and Honours degrees are of four years’ duration. The Honours degree however, involves higher assessment standards, more advanced academic work, an industrial project and a substantial final year research project.

ADMISSION
Students are normally admitted to the course if they have achieved an average mark of 65 or better for subjects in Stages 3 and 4 in the Applied Physics degree course.

PROGRESS
Students admitted to the Honours course are required to maintain an average mark of at least 65 in both the academic component and the industrial Honours project. Students who do not maintain this standard, or do not wish to continue in the Honours course, revert to the Pass course.

ASSESSMENT OF HONOURS
The overall Honours mark at the end of the course is a weighted mark according to the following scheme:

- Honours Research Project 40%
- Honours Industrial Project 15%
- Advanced subjects 30%

Subjects (above Stage 4) which are taken in common with Pass students 15%
The class of Honours awarded is normally determined as follows:

<table>
<thead>
<tr>
<th>Class</th>
<th>Honours mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>mark of 80 or greater</td>
</tr>
<tr>
<td>Class 2 Division 1</td>
<td>between 70 and 79</td>
</tr>
<tr>
<td>Class 2 Division 2</td>
<td>between 60 and 69</td>
</tr>
<tr>
<td>Class 3</td>
<td>between 50 and 59</td>
</tr>
</tbody>
</table>

FULL-TIME PROGRAM

Credit point values are shown in brackets.

Years 1 to 2

As for Stages 1 to 4 of the Pass course.

Year 3

Autumn semester

- 68502 Field Theory\(^1\) (3cp)
- 68995 Industrial Training (Honours)

Spring semester

- 68501 Nuclear Physics (3cp)
- 68503 Materials Physics (3cp)
- 68601 Quantum Physics 2\(^1\) (3cp)
- 68602 Physical Optics\(^1\) (3cp)
- 68603 Applied Thermodynamics\(^1\) (3cp)
- 68604 Principles of Instrumentation (3cp)

Year 4

Autumn semester

- 68504 Microprocessors in Instrumentation (3cp)
- 68505 Solid-state Physics\(^1\) (3cp)
- 68556 Advanced X-ray Techniques (4cp)
- 68557 Advanced Electron Microscopy Techniques (4cp)
- 68858 Project (Honours) (2 sem) (12cp)

Spring semester

- 68553 Computer Modelling of Physical Systems (3cp)
- 68603 Applied Thermodynamics\(^1\) (3cp)
- 68858 Project (Honours) (2 sem) (12cp)

PART-TIME PROGRAM

Credit point values are shown in brackets.

Years 1 to 4

As for Stages 1 to 4 of the Pass course.

Year 5

Autumn semester

- 68502 Field Theory\(^1\) (3cp)
- 68504 Microprocessors in Instrumentation\(^1\) (3cp)
- 68505 Solid-state Physics\(^1\) (3cp)
- 68995 Industrial Training (Honours)

Spring semester

- 68503 Materials Physics\(^1\) (3cp)
- 68601 Quantum Physics 2\(^1\) (3cp)
- 68602 Physical Optics\(^1\) (3cp)
- 68604 Principles of Instrumentation\(^1\) (3cp)

Year 6

Autumn semester

- 68553 Computer Modelling of Physical Systems (3cp)
- 68556 Advanced X-ray Techniques (4cp)
- 68557 Advanced Electron Microscopy Techniques (4cp)

Spring semester

- 68501 Nuclear Physics (3cp)
- 68652 Device Physics (6cp)
- 68655 Advanced Solid-state Physics (4cp)

Year 7

Autumn semester

- 68858 Project (Honours) (2 sem) (12cp)

Spring semester

- 68603 Applied Thermodynamics\(^1\) (3cp)
- 68858 Project (Honours) (2 sem) (12cp)

\(^1\) Subjects taken in common with Pass students.

Note

With the agreement of the Head of Department, up to six credit points may be varied to allow students to develop individual interests.

Note

With the agreement of the Head of Department, up to six credit points may be varied to allow students to develop individual interests.
Bachelor of Health Science in Acupuncture

ADMISSION

All applicants to the degree program will apply through the Universities Admission Centre (UAC). Mature-age applicants will be required to provide additional information and may be required to attend an interview as part of the selection process undertaken by the College of Acupuncture.

COURSE STRUCTURE

Stage 1

Spring semester
91601 Anatomy and Physiology 1 (6cp)
92167 Foundations of Helping and Caring (4cp)
99501 Introduction to Acupuncture, Channel, Point and Organ Physiology (5cp)
99502 Theoretical and Philosophical Foundations of Traditional Acupuncture (6cp)
99503 Clinical Theory, Practice and Observation and Clinic – Level 1 (3cp)

Stage 2

Spring semester
91602 Anatomy and Physiology 2 (6cp)
91607 Research Methods 1 (4cp)
99504 The Physiology of Energy and its Pathways (3cp)
99505 Point Location 1 and Acupressure Workshops (5cp)
99506 Needle and Moxibustion Techniques and Clinic – Level 2 (3cp)
51389 Professional Writing and Communication (3cp)

Stage 3

Autumn semester
91603 Anatomy and Physiology 3 (4cp)
91608 Research Methods 2 (4cp)
99508 Chinese Diagnostic System and Advanced Pulse Diagnosis (6cp)
99509 Special Points and Systems (5cp)
99510 Introduction to Chinese Massage, Point Location 2 and Clinic – Level 3 (5cp)

Stage 4

Spring semester
91604 Introductory Pharmacology and Microbiology (4cp)
99511 Historical and Advanced Theoretical Foundations of Acupuncture (6cp)
99512 Advanced Chinese Diagnosis (7cp)
99513 Point Location 3 and Clinic – Level 4 (4cp)
Elective (3cp)

Stage 5

Autumn semester
91605 Pathophysiology (4cp)
99514 Microsystems and Special Methods of Treatment (5cp)
99515 Advanced Chinese Massage (3cp)
99516 Advanced Needle Technique with Ex-channel Point Location and Clinic – Level 5 (5cp)
99517 Independent Research Project Workshops (3cp)
99518 Clinical Features of Disease (4cp)

Stage 6

Spring semester
99519 Advanced Acupuncture Principles (4cp)
99520 Disease States 1 and 2 (8cp)
99521 Combined Acupuncture Therapy and Diagnostic Practice (5cp)
99522 Clinical Theory (Outpatient Clinic) and Clinic – Level 6 (4cp)
99536 First Aid Certificate Course (no cp)
Elective (3cp)

Stage 7

Autumn semester
99523 Disease States 3 (4cp)
99524 Specialist Lecture Topics (4cp)
99525 Supervised Practice (2 sem) (12cp)
99526 Independent Research Project (2 sem) (13cp)
21816 Practice Management (3cp)
Stage 8

Spring semester

99525 Supervised Practice (2 sem) (12cp)
99526 Independent Research Project (2 sem) (13cp)

1 In Stage 8, 99527 Hospital Training in China (6cp) which is a one month hospital internship in China is offered as an alternative to 99525 Supervised Practice.

Electives are designed to broaden the student's cognitive and analytical skills as well as to introduce a wider experiential professional background. Students are required to take one elective in second year and one elective in third year.

The following elective subjects have been approved for Acupuncture students but students may choose course subjects from any UTS Faculty, subject to the approval of the Head of School offering the subject and the Director of the College of Acupuncture. Elective subjects for the acupuncture course are allocated three credit points but students may select subjects with six credit points or more.

Not all elective subjects are offered every year but, subject to availability of places, students may select electives from the following:

99528 An Introduction to Tai Qi Chuan
99529 A Systems View of Life
99530 Philosophy, Religion and Culture
99531 The Subtle Dimensions of Healing
99532 Social Crisis
99533 Acupuncture Health Politics in Australia
99535 Nutrition in a Traditional Chinese Medical Context
99543 Qi Gong: Its Use in Acupuncture

Bachelor of Science in Biomedical Science

The Biomedical Science degree consists of an initial program of biology, chemistry, physics, mathematics, statistics and computing followed by microbiology, biochemistry, pathology, immunology and bioinstrumentation. Students then complete the third year of the course by undertaking a number of elective subjects, totalling a minimum of 48 credit points. Some of these electives cover more advanced biomedical aspects of the second year core subjects while others introduce a range of important areas of applied biomedical science.

The undergraduate training provides a solid background in the physical sciences and emphasises practical experimentation. In the final stages of the course, research activities are encouraged through project assignments. Students acquire familiarity with advanced instruments and technology. They are encouraged to participate in seminar activities. The purpose of the course is to educate people in a number of interface areas between modern technology, biology and medicine.

EMPLOYMENT OPPORTUNITIES

A wide range of employment opportunities is available to graduates. Biomedical scientists work closely with clinical pathologists, surgeons and other medical specialists in the control and elimination of disease. There is a demand for biomedical scientists in the Commonwealth and State health departments, the Repatriation Department, CSIRO, universities, pharmaceutical firms, veterinary laboratories and private pathology laboratories.

COURSE STRUCTURE

Students can complete the degree in three years full-time or six years part-time or by a combination of both these attendance patterns. Subjects are divided into core subjects and elective subjects. All students enrolled in the
degree must satisfactorily complete all core subjects for award of the degree and, in addition, must satisfactorily complete the required number of credit points of elective subjects. Students generally choose elective subjects with a particular theme or area of expertise in mind. Recommended electives are given in the Elective Options Table, and recommended combinations of subjects are listed for the guidance of students. It should be noted that timetable constraints may prevent the undertaking of some elective combinations.

FULL-TIME PROGRAM

Stage 1

Autumn semester
33101 Mathematics 1 (LS) (3cp)
33103 Statistics for Life Sciences (3cp)
65012 Chemistry 1 (LS) (6cp)
68041 Physics 1 (LS) (6cp)
91311 Biology 1 (6cp)

Stage 2

Spring semester
33105 Introductory Biometrics (3cp)
65022 Chemistry 2 (LS) (6cp)
91312 Biology 2 (6cp)
91317 Human Biology (6cp)
91395 Biocomputing (3cp)

Stage 3

Autumn semester
91313 Biochemistry 1 (6cp)
91314 Microbiology 1 (6cp)
91316 Bioinstrumentation (6cp)
91354 Anatomical Pathology (6cp)

Stage 4

Spring semester
91320 Biochemistry 2 (6cp)
91326 Analytical Biochemistry (6cp)
91330 Microbiology 2 (6cp)
91351 Immunology 1 (3cp)
91355 Haematology 1 (3cp)

Stage 5

Autumn semester
91334 Molecular Biology 1 (4cp)
Electives1 (20cp)

Stage 6

Spring semester
Electives1 (24cp)

1 For details of electives available for the Biomedical Science degree, see Elective Options Table.

PART-TIME PROGRAM

Stage 1

Autumn semester
65012 Chemistry 1 (LS) (6cp)
91311 Biology 1 (6cp)

Spring semester
91312 Biology 2 (6cp)
65022 Chemistry 2 (LS) (6cp)

Stage 2

Autumn semester
68041 Physics 1 (LS) (6cp)
33101 Mathematics 1 (LS) (3cp)
33103 Statistics for Life Sciences (3cp)

Spring semester
33105 Introductory Biometrics (3cp)
91395 Biocomputing (3cp)
91317 Human Biology (6cp)

Stages 3 and 4 – in 1995 and odd years

Autumn semester
91314 Microbiology 1 (6cp)
91354 Anatomical Pathology (6cp)

Spring semester
91330 Microbiology 2 (6cp)
91351 Immunology 1 (3cp)
91355 Haematology 1 (3cp)

Stages 3 and 4 – in 1996 and even years

Autumn semester
91313 Biochemistry 1 (6cp)
91316 Bioinstrumentation (6cp)

Spring semester
91320 Biochemistry 2 (6cp)
91326 Analytical Biochemistry (6cp)

Stage 5

Autumn semester
91334 Molecular Biology 1 (4cp)
Electives1 (8cp)

Spring semester
Electives1 (12cp)
Stage 6

Autumn semester
Electives\(^1\) (12cp)

Spring semester
Electives\(^1\) (12cp)

\(^1\) For details of electives available for the Biomedical Science degree, see Elective Options Table.

Notes
The order in which part-time students undertake Stage 3, 4, 5 and 6 subjects, is determined by the fact that subjects are offered in appropriate time slots in alternate years only. Students entering the program in even and odd years will take their preferred combination of subjects in different sequence.

ELECTIVE OPTIONS TABLE FOR BIOMEDICAL SCIENCE COURSE

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credit points</th>
<th>Sem A/S</th>
<th>Recommended subject for stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>91321</td>
<td>Biochemistry 3</td>
<td>8</td>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>91322</td>
<td>Biochemistry 4</td>
<td>8</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>91331</td>
<td>Microbiology 3</td>
<td>8</td>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>91335</td>
<td>Molecular Biology 2</td>
<td>8</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>91337</td>
<td>Virology</td>
<td>4</td>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>91341</td>
<td>Blood Bank</td>
<td>4</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>91342</td>
<td>Clinical Biochemistry 1</td>
<td>4</td>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>91343</td>
<td>Clinical Biochemistry 2</td>
<td>4</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>91350</td>
<td>Principles of Pharmacology and Toxicology</td>
<td>4</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>91358</td>
<td>Haematology 2</td>
<td>8</td>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>91359</td>
<td>Immunology 2</td>
<td>8</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>91372</td>
<td>Clinical Bacteriology and Parasitology</td>
<td>12</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>91383</td>
<td>Clinical Mycology</td>
<td>4</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>91374</td>
<td>Tissue Culture</td>
<td>4</td>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>91377</td>
<td>Cytopathology</td>
<td>16</td>
<td>Full Year</td>
<td>5 and 6</td>
</tr>
<tr>
<td>91396</td>
<td>Advanced Biocomputing</td>
<td>4</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>91398</td>
<td>Special Reading Assignment LS(^1)</td>
<td>4</td>
<td>A&S</td>
<td>5 or 6</td>
</tr>
<tr>
<td>91399</td>
<td>Individual Project LS(^1)</td>
<td>8</td>
<td>A&S</td>
<td>5 or 6</td>
</tr>
<tr>
<td>xxxxx</td>
<td>Miscellaneous elective(^2)</td>
<td>4</td>
<td>A&S</td>
<td>5 or 6</td>
</tr>
</tbody>
</table>

Key:
A = Timetabled in Autumn semester
S = Timetabled in Spring semester
LS = Life Sciences
\(^1\) = Supervision Form must be completed
\(^2\) = This may include subjects from other courses within the biological and biomedical sciences; subjects from another UTS school or faculty; or subjects from another university undertaken on a cross-institution enrolment basis. Programs that include more than 4cp of miscellaneous subjects require approval of the Associate Dean.

Notes
Subjects marked 5 and 6 can be undertaken by part-time students when programmable provided the prerequisite requirements are met.

Owing to timetabling constraints, not all electives may be available to all students in any given semester.

Subjects not marked may be able to be taken as electives following discussion with an appropriate member of academic staff.
RECOMMENDED SUBJECT STRANDS

Completion of any combination of subjects totalling a minimum of 48 credit points from the table of approved electives will fulfil the requirements of Stages 5 and 6 of the Biomedical Science degree course. However, students are strongly recommended to include in their programs at least one of the following combinations of subjects. Each combination constitutes a cohesive strand of study in a particular discipline or related disciplines.

Biochemistry strand

Stage 5
91321 Biochemistry 3 (8cp)
91334 Molecular Biology 1 (4cp)
91342 Clinical Biochemistry 1 (4cp)
plus additional electives (8cp)

Stage 6
91322 Biochemistry 4 (8cp)
91343 Clinical Biochemistry 2 (4cp)
plus additional electives (12cp)

Microbiology strand

Stage 5
91331 Microbiology 3 (8cp)
91334 Molecular Biology 1 (4cp)
91337 Virology (4cp)
plus additional electives (8cp)

Stage 6
91372 Clinical Bacteriology and Parasitology (12cp)
plus additional electives (12cp)

Pathology strand

Stage 5
91334 Molecular Biology 1 (4cp)
91358 Haematology 2 (8cp)
91377 Cytology (2 sem) (16cp)
plus additional electives (4cp)

Stage 6
91341 Blood Bank (4cp)
91359 Immunology 2 (8cp)
91377 Cytology (2 sem) (16cp)
plus additional electives (4cp)

Immunology strand

Stage 5
91334 Molecular Biology 1 (4cp)
91358 Haematology 2 (8cp)
91374 Tissue Culture (4cp)
plus additional electives (8cp)

Stage 6
91335 Molecular Biology 2 (8cp)
91341 Blood Bank (4cp)
91359 Immunology 2 (8cp)
plus additional electives (4cp)

FORMER MAJORS AND DOUBLE MAJORS IN BIOMEDICAL SCIENCE

Prior to 1994 it was a requirement for students in the Bachelor of Science in Biomedical Science degree course to complete in Stages 5 and 6 one of several prescribed sets of subjects designated as a major. In response to changes in requirements of the biomedical science and related professional areas, and the need of students for greater flexibility in subject selection, this degree now offers recommended subject combinations, or strands, which are for the guidance of students but are not mandatory requirements.

Previously, it was possible to undertake a double major by completing a combination of prescribed subjects for two majors. Although this formal structure no longer exists, it remains possible for students who wish to broaden their knowledge base to complete additional subjects, as the requirement for award of the degree is now a ‘minimum’ of 144 credit points. All subjects undertaken will be shown on a student’s official University transcript.
Bachelor of Science in Biotechnology

The Bachelor of Science in Biotechnology is fully recognised for membership of both the Australian Institute of Biology Inc. and the Australian Society for Microbiology as well as being a professional qualification with emphasis on DNA technology and its applications. The course encompasses basic sciences plus microbiology, biochemistry, immunology, industrial biotechnology and molecular biology. At the completion of the course students will have acquired a sound background in industrial microbiology, and competence in a wide range of standard biological, microbiological and biochemical laboratory techniques.

EMPLOYMENT OPPORTUNITIES

Today’s biotechnologist has an expanding variety of career opportunities, and graduates from this degree can expect to find employment opportunities in the food, beverage, chemical, pharmaceutical and fermentation industries, particularly in production, quality control, or research and development areas. These industries depend on a high level of professional competence in standard techniques of microbiology and biochemistry. An increasing number of products involve the application of some of the molecular or other aspects of biotechnology in their manufacture. A variety of research and development opportunities exist e.g. AIDS research, or the production of transformed plants or animals with designer genes. Good employment opportunities also exist with State and federal government scientific instrumentalities, and in research and other laboratories in tertiary institutions, hospitals and industry. In recent years a number of smaller, specialised development and consulting companies have developed from biotechnology research programs. These organisations require graduates with a strong basis in biotechnology and applied microbiology. Many employers in the biotechnology field, being themselves active in research and development, have close links with tertiary education institutions, and can offer graduates the possibility of higher degree studies in conjunction with employment.

COURSE STRUCTURE

Students can complete the degree in three years full-time or six years part-time or by a combination of both these attendance patterns. Subjects are divided into core subjects and elective subjects. All students enrolled in the degree must satisfactorily complete all core subjects for award of the degree and, in addition, must satisfactorily complete a total of 12 credit points of elective subjects. Students generally choose elective subjects with a particular theme or area of expertise in mind. Examples of recommended electives are given in the Elective Options Table; however, it should be noted that timetable constraints may prevent the undertaking of some elective combinations.

Elective combinations include a particular area of study via subjects available from within the biological and biomedical sciences, or via subjects from other faculties of UTS and other individual elective sequences as may be approved by the Associate Dean, including subjects offered by other universities.

FULL-TIME PROGRAM

Stage 1

Autumn semester
33101 Mathematics 1 (LS) (3cp)
33103 Statistics for Life Sciences (3cp)
65012 Chemistry 1 (LS) (6cp)
68041 Physics 1 (LS) (6cp)
91311 Biology 1 (6cp)

Stage 2

Spring semester
33105 Introductory Biometrics (3cp)
65022 Chemistry 2 (LS) (6cp)
91312 Biology 2 (6cp)
91317 Human Biology (6cp)
91395 Biocomputing (3cp)
Stage 3

Autumn semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91313</td>
<td>Biochemistry 1</td>
<td>6cp</td>
</tr>
<tr>
<td>91314</td>
<td>Microbiology 1</td>
<td>6cp</td>
</tr>
<tr>
<td>91315</td>
<td>Bioinstrumentation</td>
<td>3cp</td>
</tr>
<tr>
<td>91316</td>
<td>Biomonitoring</td>
<td>6cp</td>
</tr>
<tr>
<td>91376</td>
<td>Environmental Measurement</td>
<td>3cp</td>
</tr>
</tbody>
</table>

Stage 4

Spring semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91320</td>
<td>Biochemistry 2</td>
<td>6cp</td>
</tr>
<tr>
<td>91326</td>
<td>Analytical Biochemistry</td>
<td>6cp</td>
</tr>
<tr>
<td>91330</td>
<td>Microbiology 2</td>
<td>6cp</td>
</tr>
<tr>
<td>91351</td>
<td>Immunology 1</td>
<td>3cp</td>
</tr>
<tr>
<td>91373</td>
<td>Applied Mycology</td>
<td>3cp</td>
</tr>
</tbody>
</table>

Stage 5

Autumn semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91331</td>
<td>Microbiology 3</td>
<td>8cp</td>
</tr>
<tr>
<td>91334</td>
<td>Molecular Biology 1</td>
<td>4cp</td>
</tr>
<tr>
<td>91369</td>
<td>Applied and Environmental Microbiology</td>
<td>8cp</td>
</tr>
</tbody>
</table>

plus Electives (4cp)

Stage 6

Spring semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91335</td>
<td>Molecular Biology 2</td>
<td>8cp</td>
</tr>
<tr>
<td>91368</td>
<td>Bioprocessing</td>
<td>8cp</td>
</tr>
</tbody>
</table>

plus Electives (4cp)

1 For details of the electives available for the Biotechnology degree, see Elective Options Table.

Note

Total elective credit points to be completed: 12

PART-TIME PROGRAM

Stage 1

Autumn semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>65012</td>
<td>Chemistry 1 (LS)</td>
<td>6cp</td>
</tr>
<tr>
<td>91311</td>
<td>Biology 1</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Spring semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>65022</td>
<td>Chemistry 2 (LS)</td>
<td>6cp</td>
</tr>
<tr>
<td>91312</td>
<td>Biology 2</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Stage 2

Autumn semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>33101</td>
<td>Mathematics 1 (LS)</td>
<td>3cp</td>
</tr>
<tr>
<td>33103</td>
<td>Statistics for Life Sciences</td>
<td>3cp</td>
</tr>
<tr>
<td>68041</td>
<td>Physics 1 (LS)</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Spring semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>33105</td>
<td>Introductory Biometrics</td>
<td>3cp</td>
</tr>
<tr>
<td>91317</td>
<td>Human Biology</td>
<td>6cp</td>
</tr>
<tr>
<td>91395</td>
<td>Biocomputing</td>
<td>3cp</td>
</tr>
</tbody>
</table>

Stages 3 and 4 – in 1995 and odd years

Autumn semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91314</td>
<td>Microbiology 1</td>
<td>6cp</td>
</tr>
<tr>
<td>91315</td>
<td>Biomonitoring</td>
<td>3cp</td>
</tr>
<tr>
<td>91376</td>
<td>Environmental Measurement</td>
<td>3cp</td>
</tr>
</tbody>
</table>

Spring semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91330</td>
<td>Microbiology 2</td>
<td>6cp</td>
</tr>
<tr>
<td>91351</td>
<td>Immunology 1</td>
<td>3cp</td>
</tr>
<tr>
<td>91373</td>
<td>Applied Mycology</td>
<td>3cp</td>
</tr>
</tbody>
</table>

Stages 3 and 4 – in 1996 and even years

Autumn semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91313</td>
<td>Biochemistry 1</td>
<td>6cp</td>
</tr>
<tr>
<td>91316</td>
<td>Bioinstrumentation</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Spring semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91320</td>
<td>Biochemistry 2</td>
<td>6cp</td>
</tr>
<tr>
<td>91326</td>
<td>Analytical Biochemistry</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Stages 5 and 6 – in 1995 and odd years

Autumn semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91331</td>
<td>Microbiology 3</td>
<td>8cp</td>
</tr>
<tr>
<td>91334</td>
<td>Molecular Biology 1</td>
<td>4cp</td>
</tr>
</tbody>
</table>

Spring semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91335</td>
<td>Molecular Biology 2</td>
<td>8cp</td>
</tr>
</tbody>
</table>

plus Electives (4cp)

Stages 5 and 6 – in 1996 and even years

Autumn semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91369</td>
<td>Applied and Environmental Microbiology</td>
<td>8cp</td>
</tr>
</tbody>
</table>

plus Electives (4cp)

1 For details of the electives available for the Biotechnology degree, see Elective Options Table.

Notes

Total elective credit points to be completed: 12

Some electives for part-time students are offered in alternate years only. Students entering the program in even and odd years will take their preferred combination of electives in different sequence.

The order in which part-time students undertake Stage 3, 4, 5 and 6 subjects, is determined by the fact that subjects are offered in appropriate time slots in alternate years only.
Bachelor of Science in Environmental Biology

The Bachelor of Science in Environmental Biology is fully recognised for membership of the Australian Institute of Biology Inc. and fully qualifies graduates as biological scientists with specialisation in environmental science.

The course provides a degree in biological science and the advanced technological skills to tackle complex environmental problems such as an ability to apply sampling and measurement methods for such purposes as pollution monitoring or the preparation of environmental assessments. After foundation studies in the basic sciences, students will specialise in the ecology and physiology of plants, animals and micro-organisms, and in freshwater, marine and terrestrial eco-systems. Students will also have the opportunity to take part in field trips to many parts of the State, for example north and south coastal areas, Snowy Mountains, the Murrumbidgee Irrigation Area, the far west and Jervis Bay.

Students should note that excursions for field study elective subjects may be held in the weeks prior to semester and in other non-teaching weeks during the year. In 1995, the excursions for Stage 5 subjects, Terrestrial Ecology and Aquatic Ecology will be held in February. An excursion to Jervis Bay (as part of Field Studies: Marine Sciences) is also offered during February and/or July of each year. Students should consult with lecturers before annual recess.

EMPLOYMENT OPPORTUNITIES

Graduates of the course may be employed as scientific officers with government agencies such as the Water Board, Environment Protection Authority, Departments of Environment, Fisheries, CaLM Planning, National Parks and Wildlife Service, museums and herbaria; with local government authorities; or as technical and research officers with universities and colleges, or as environmental consultants, or environmental, toxicological or biological scientists in private enterprise. Many organisations provide opportunities for graduates to undertake research projects for a higher degree in the Faculty.

COURSE STRUCTURE

Students can complete the degree in three years full-time or six years part-time or by a combination of both attendance patterns. Subjects are divided into core subjects and elective subjects. All students enrolled in the degree must satisfactorily complete all core subjects for award of the degree, and, in addition, must satisfactorily complete a total of 16 credit points of elective subjects. Students generally choose elective subjects with a particular theme or area of expertise in mind. Examples of recommended electives are given in the Elective Options Table; however, it should be noted that timetable constraints may prevent the undertaking of some elective combinations.

Elective combinations include a particular area of study via subjects available from within the biological and biomedical sciences, and other individual electives as may be approved by the Associate Dean, for example, from another faculty or university.

FULL-TIME PROGRAM

Stage 1

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>33101 Mathematics 1 (LS) (3cp)</td>
<td>33105 Introductory Biometrics (3cp)</td>
</tr>
<tr>
<td>33103 Statistics for Life Sciences (3cp)</td>
<td>65022 Chemistry 2 (LS) (6cp)</td>
</tr>
<tr>
<td>65012 Chemistry 1 (LS) (6cp)</td>
<td>91312 Biology 2 (6cp)</td>
</tr>
<tr>
<td>68041 Physics 1 (LS) (6cp)</td>
<td>91317 Human Biology (6cp)</td>
</tr>
<tr>
<td>91311 Biology 1 (6cp)</td>
<td>91395 Biocomputing (3cp)</td>
</tr>
</tbody>
</table>

Stage 2

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>91313 Biochemistry 1 (6cp)</td>
<td></td>
</tr>
<tr>
<td>91314 Microbiology 1 (6cp)</td>
<td>91316 Bioinstrumentation (6cp)</td>
</tr>
<tr>
<td>91360 Quantitative Ecology (6cp)</td>
<td></td>
</tr>
</tbody>
</table>
Stage 4

Spring semester
91362 Plant Ecophysiology (6cp)
91363 Animal Ecophysiology (6cp)

plus any two of
91320 Biochemistry 2 (6cp)
91326 Analytical Biochemistry (6cp)
91330 Microbiology 2 (6cp)

Stage 5

Autumn semester
91364 Aquatic Ecology (8cp)
91365 Terrestrial Ecology (8cp)

plus Electives 1 (8cp)

Stage 6

Spring semester
91366 Pest Control and Toxicology
(8cp)
91367 Applied Ecology (8cp)

plus Electives 1 (8cp)

1 For details of the electives available for the Environmental Biology degree, see Elective Options Table.

Note
Total elective credit points to be completed: 16

PART-TIME PROGRAM

Stage 1

Autumn semester
65012 Chemistry 1 (LS) (6cp)
91311 Biology 1 (6cp)

Spring semester
65022 Chemistry 2 (LS) (6cp)
91312 Biology 2 (6cp)

Stage 2

Autumn semester
33101 Mathematics 1 (LS) (3cp)
33103 Statistics for Life Sciences (3cp)
68041 Physics 1 (LS) (6cp)

Spring semester
33105 Introductory Biometrics (3cp)
91317 Human Biology (6cp)
91395 Biocomputing (3cp)

Stages 3 and 4 – in 1995 and odd years

Autumn semester
91314 Microbiology 1 (6cp)
91360 Quantitative Ecology (6cp)

Spring semester
91362 Plant Ecophysiology (6cp)
91363 Animal Ecophysiology (6cp)

Stages 3 and 4 – in 1996 and even years

Autumn semester
91313 Biochemistry 1 (6cp)
91316 Bioinstrumentation (6cp)

Spring semester
91320 Biochemistry 2 (6cp)
91326 Analytical Biochemistry (6cp)
91330 Microbiology 2 (6cp)

Stages 5 and 6 – in 1995 and odd years

Autumn semester
91365 Terrestrial Ecology (8cp)

plus Electives 1 (4cp)

Spring semester
91366 Pest Control and Toxicology
(8cp)

or

91367 Applied Ecology (8cp)

plus Electives 1 (4cp)

Stages 5 and 6 – in 1996 and even years

Autumn semester
91364 Aquatic Ecology (8cp)

plus Electives 1 (4cp)

Spring semester
91366 Pest Control and Toxicology
(8cp)

or

91367 Applied Ecology (8cp)

plus Electives 1 (4cp)

1 For details of the electives available for the Environmental Biology degree, see Elective Options Table.

2 The order in which part-time students undertake Stages 3, 4, 5 and 6 subjects is determined by the fact that subjects are offered in appropriate time slots in alternate years only. Students are expected to undertake 91367 Applied Ecology in their final year of study.

Notes
Total elective credit points to be completed: 16

Subjects for part-time students may be offered in a different order or combination in any one year.

Students should note that excursions may be held in the week prior to semester.
Bachelor of Science in Urban Horticulture

The Bachelor of Science in Urban Horticulture is fully recognised for membership of the Australian Institute of Biology Inc. and the Australian Institute of Horticulture Inc. as a professional qualification in plant science and as a specialist qualification in ornamental and amenity, landscape and environmental horticulture.

The course provides students with a sound background in plant science and horticultural management. After introductory studies in horticulture and foundation studies in the basic sciences, students will specialise in plant science. Areas studied include plant structure, physiology, ecology, genetics and soil science. As there is a particular emphasis on ornamental and amenity horticulture, students also undertake studies in plant cultivation, protection, breeding and Australian plants. Horticultural management is studied in relation to financial management, plant production systems and open space areas.

Excursions will be undertaken in the Sydney metropolitan area and to other parts of the State. Students should note that excursions may be held in the weeks prior to semester and in other non-teaching weeks during the semester. In 1995, for example, the Terrestrial Ecology and Marine Ecology excursions will be held in February prior to formal classes.

EMPLOYMENT OPPORTUNITIES

Graduates of the course are in increasing demand as professional horticulturists. As an urban horticulturist you might be a researcher in a plant sciences laboratory, work on the selection and breeding of new ornamental varieties, including Australian native species, be responsible for the planning and management of nursery production, park and recreation areas, or the revegetation and management of natural areas disturbed by human impact. Many graduates also enter universities and research organisations.

COURSE STRUCTURE

Students can complete the degree in three years full-time or six years part-time or a combination of both attendance patterns. The undergraduate program emphasises practical experimentation and research activities are encouraged through project assignments. The students acquire familiarity with advanced instruments and technology, and are encouraged to participate in seminar activities. The course has been developed in close liaison with all branches of the industry and with the Horticulture School of the Ryde College of TAFE whose glasshouse and associated facilities are used, in addition to those of UTS.

Subjects are divided into core subjects and elective subjects. All students enrolled in the degree must satisfactorily complete all core subjects for award of the degree and, in addition, must satisfactorily complete a total of eight credit points of elective subjects. Students generally choose elective subjects with a particular theme or area of expertise in mind. Examples of recommended electives are given in Elective Options Table; however, it should be noted that timetable constraints may prevent the undertaking of some elective combinations.

Elective combinations include a particular area of study via subjects available and approved by the Head of Department, for example from another faculty or university.

FULL-TIME PROGRAM

Stage 1

* Autumn semester *

65012 Chemistry 1 (LS) (6cp)
91201 Horticultural Experimentation (3cp)
91210 Landscape Horticulture (3cp)
91242 Horticultural Procedures F/T (2 sem) (6cp)
91311 Biology 1 (6cp)

Graduates of the course are in increasing demand as professional horticulturists. As an urban horticulturist you might be a researcher in a plant sciences laboratory, work on the selection and breeding of new ornamental varieties, including Australian native species, be responsible for the planning and management of nursery production, park and recreation areas, or the revegetation and management of natural areas disturbed by human impact. Many graduates also enter universities and research organisations.
Stage 2

Spring semester
- 65022 Chemistry 2 (LS) (6cp)
- 91211 Horticultural Botany (3cp)
- 91242 Horticultural Procedures F/T (2 sem)\(^1\) (6cp)
- 91312 Biology 2 (6cp)
- 91395 Biocomputing (3cp)

Stage 3

Autumn semester
- 91206 Plant Production (6cp)
- 91208 Plant Protection (6cp)
- 91314 Microbiology 1 (6cp)
- 91360 Quantitative Ecology (6cp)

Spring semester
- 65022 Chemistry 2 (LS) (6cp)
- 91211 Horticultural Botany (3cp)
- 91244 Horticultural Procedures P/T (4 sem)\(^1\) (3cp)
- 91312 Biology 2 (6cp)

Stage 4

Spring semester
- 91204 Soils and Growth Media (6cp)
- 91205 Plant Breeding and Genetics (6cp)
- 91218 Australian Plants (6cp)
- 91362 Plant Ecophysiology (6cp)

Stage 5

Autumn semester
- 91207 Plants in the Landscape (8cp)
- 91229 Horticultural Financial Management (4cp)
- 91236 Plant Tissue Culture (4cp)
- 91365 Terrestrial Ecology (8cp)

Spring semester
- 65022 Chemistry 2 (LS) (6cp)
- 91244 Horticultural Procedures P/T (4 sem)\(^1\) (3cp)
- 91395 Biocomputing (3cp)

Stage 6

Spring semester
- 91215 Horticultural Research Project (8cp)
- 91224 Horticultural Production Management (4cp)
- 91225 Open Space Management (4cp) plus Electives\(^2\) (8cp)

Notes

Students should note that excursions for field study elective subjects may be held in the weeks prior to semester and in other non-teaching weeks during the year.

PART-TIME PROGRAM

Stage 1

Autumn semester
- 91210 Landscape Horticulture (3cp)
- 91244 Horticultural Procedures P/T (4 sem)\(^1\) (3cp)
- 91311 Biology 1 (6cp)

Spring semester
- 91211 Horticultural Botany (3cp)
- 91244 Horticultural Procedures P/T (4 sem)\(^1\) (3cp)
- 91312 Biology 2 (6cp)

Stage 2

Autumn semester
- 65012 Chemistry 1 (LS) (6cp)
- 91201 Horticultural Experimentation (3cp)
- 91244 Horticultural Procedures P/T (4 sem)\(^1\) (3cp)

Spring semester
- 65022 Chemistry 2 (LS) (6cp)
- 91244 Horticultural Procedures P/T (4 sem)\(^1\) (3cp)
- 91395 Biocomputing (3cp)

Stages 3 and 4 – in 1995 and odd years

Autumn semester
- 91314 Microbiology 1 (6cp)
- 91360 Quantitative Ecology (6cp)

Spring semester
- 91362 Plant Ecophysiology (6cp)
- 91218 Australian Plants (6cp)

Stages 3 and 4 – in 1996 and even years

Autumn semester
- 91208 Plant Protection (6cp)
- 91206 Plant Production (6cp)

Spring semester
- 91204 Soils and Growth Media (6cp)
- 91205 Plant Breeding and Genetics (6cp)

\(^1\) Classes for the Horticultural Procedures subject are undertaken at the Horticulture School of the Ryde College of TAFE over two semesters. TAFE commencement dates for this subject will be earlier than the UTS commencement of classes date each semester. All necessary information will be given to commencing students at UTS enrolment.

\(^2\) For details of the electives available for the Urban Horticulture degree, see Elective Options Table.
Stage 5 and 6 – in 1995 and odd years

Autumn semester
- 91365 Terrestrial Ecology (8cp)
- 91236 Plant Tissue Culture (4cp)

Spring semester
- 91224 Horticultural Production Management (4cp)
- 91225 Open Space Management (4cp) or
- 91215 Horticultural Research Project\(^3\) (8cp)
- plus Electives\(^2\) (4cp)

Stages 5 and 6 – in 1996 and even years

Autumn semester
- 91207 Plants in the Landscape (8cp)
- 91229 Horticultural Financial Management (4cp)

Spring semester
- 91224 Horticultural Production Management (4cp)
- 91225 Open Space Management (4cp) or
- 91215 Horticultural Research Project\(^3\) (8cp)
- plus Electives\(^2\) (4cp)

1. Classes for the Horticultural Procedures subject are undertaken at the Horticulture School of the Ryde College of TAFE over four semesters. TAFE commencement dates for this subject will be earlier than the UTS commencement of classes date each semester. All necessary information will be given to commencing students at UTS enrolment.

2. For details of the electives available for the Urban Horticulture degree, see Elective Options Table.

3. Students are advised to undertake 91215 Horticultural Research Project (8cp) in their final semester.

Notes

Total elective credit points to be completed: 8

The order in which part-time students undertake Stage 3, 4, 5 and 6 subjects is determined by the fact that subjects are offered in appropriate time slots in alternate years only.

Entrants with a TAFE Certificate in Horticulture, or equivalent, are exempted from the subject Horticultural Procedures.

Students should note that excursions for field study elective subjects may be held in the weeks prior to semester and in other non-teaching weeks during the year.

PART-TIME PROGRAM (FOR ENTRANTS WITH ASSOCIATE DIPLOMA IN HORTICULTURE OR EQUIVALENT)

Stage 1

Autumn semester
- 65012 Chemistry 1 (LS) (6cp)
- 91201 Horticultural Experimentation (3cp)
- 91210 Landscape Horticulture (3cp)

Spring semester
- 91211 Horticultural Botany (3cp)
- 91312 Biology 2 (6cp)
- 91395 Biocomputing (3cp)

Stage 2

Autumn semester
- 91206 Plant Production (6cp)
- 91314 Microbiology 1 (6cp)

Spring semester
- 91204 Soils and Growth Media (6cp)
- 65022 Chemistry 2 (LS) (6cp)

Stage 3

Autumn semester
- 91208 Plant Protection (6cp)
- 91360 Quantitative Ecology (6cp)

Spring semester
- 91362 Plant Ecophysiology (6cp)
- 91205 Plant Breeding and Genetics (6cp)

Stage 4

Autumn semester
- 91207 Plants in the Landscape (8cp)
- 91229 Horticultural Financial Management (4cp)
- 91236 Plant Tissue Culture (4cp)

Spring semester
- 91215 Horticultural Research Project (8cp)
- 91224 Horticultural Production Management (4cp)
- 91225 Open Space Management (4cp)

Note

Subjects for part-time students may be offered in a different order or combination in any one year.
ELECTIVE OPTIONS TABLE FOR ENVIRONMENTAL BIOLOGY, BIOTECHNOLOGY AND URBAN HORTICULTURE COURSES

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credit Points</th>
<th>Semester</th>
<th>Environ Biology</th>
<th>Urb Hort</th>
</tr>
</thead>
<tbody>
<tr>
<td>91205</td>
<td>Plant Breeding and Genetics</td>
<td>6</td>
<td>S</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>91206</td>
<td>Plant Production</td>
<td>6</td>
<td>A</td>
<td>N/A</td>
<td>5</td>
</tr>
<tr>
<td>91207</td>
<td>Plants in the Landscape</td>
<td>8</td>
<td>A</td>
<td>N/A</td>
<td>5</td>
</tr>
<tr>
<td>91208</td>
<td>Plant Protection</td>
<td>6</td>
<td>A</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>91218</td>
<td>Australian Plants</td>
<td>6</td>
<td>S</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>91236</td>
<td>Plant Tissue Culture</td>
<td>4</td>
<td>A</td>
<td>N/A</td>
<td>5</td>
</tr>
<tr>
<td>91319</td>
<td>Concepts in Biochemistry</td>
<td>8</td>
<td>A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>91321</td>
<td>Biochemistry 3</td>
<td>8</td>
<td>A</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>91322</td>
<td>Biochemistry 4</td>
<td>8</td>
<td>S</td>
<td>6</td>
<td>N/A</td>
</tr>
<tr>
<td>91330</td>
<td>Microbiology 2</td>
<td>6</td>
<td>S</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>91331</td>
<td>Microbiology 3</td>
<td>8</td>
<td>A</td>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>91334</td>
<td>Molecular Biology 1</td>
<td>4</td>
<td>A</td>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>91335</td>
<td>Molecular Biology 2</td>
<td>8</td>
<td>S</td>
<td>C</td>
<td>N/A</td>
</tr>
<tr>
<td>91337</td>
<td>Virology</td>
<td>4</td>
<td>A</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>91347</td>
<td>Toxic Materials in the Environment</td>
<td>4</td>
<td>S</td>
<td>6</td>
<td>N/A</td>
</tr>
<tr>
<td>91350</td>
<td>Principles of Pharmacology and Toxicology</td>
<td>4</td>
<td>S</td>
<td>6</td>
<td>N/A</td>
</tr>
<tr>
<td>91359</td>
<td>Immunology 2</td>
<td>8</td>
<td>S</td>
<td>6</td>
<td>N/A</td>
</tr>
<tr>
<td>91362</td>
<td>Plant Ecophysiology</td>
<td>6</td>
<td>S</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>91363</td>
<td>Animal Ecophysiology</td>
<td>6</td>
<td>S</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>91364</td>
<td>Aquatic Ecology</td>
<td>8</td>
<td>A</td>
<td>N/A</td>
<td>C</td>
</tr>
<tr>
<td>91366</td>
<td>Pest Control and Toxicology</td>
<td>8</td>
<td>S</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>91371</td>
<td>Field Studies: Mountain Ecology</td>
<td>8</td>
<td>S</td>
<td>N/A</td>
<td>5</td>
</tr>
<tr>
<td>91372</td>
<td>Clinical Bacteriology and Parasitology</td>
<td>12</td>
<td>S</td>
<td>6</td>
<td>N/A</td>
</tr>
<tr>
<td>91373</td>
<td>Applied Mycology</td>
<td>3</td>
<td>S</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>91374</td>
<td>Tissue Culture</td>
<td>4</td>
<td>A</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>91375</td>
<td>Field Studies: Marine Sciences</td>
<td>4</td>
<td>A&S</td>
<td>5 or 6</td>
<td>5 or 6</td>
</tr>
<tr>
<td>91383</td>
<td>Clinical Mycology</td>
<td>4</td>
<td>S</td>
<td>C</td>
<td>6</td>
</tr>
<tr>
<td>91396</td>
<td>Advanced Biocomputing</td>
<td>4</td>
<td>S</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>91398</td>
<td>Special Reading Assignment LS*</td>
<td>4</td>
<td>A&S</td>
<td>5 or 6</td>
<td>5 or 6</td>
</tr>
<tr>
<td>91399</td>
<td>Individual Project LS*</td>
<td>8</td>
<td>A&S</td>
<td>5 or 6</td>
<td>5 or 6</td>
</tr>
<tr>
<td>xxxxx</td>
<td>Miscellaneous elective/LS elective</td>
<td>4/8</td>
<td>A&S</td>
<td>5 or 6</td>
<td>5 or 6</td>
</tr>
</tbody>
</table>

(i.e. a subject from another faculty or university)

KEY

- **A** = Timetabled in Autumn semester
- **S** = Timetabled in Spring semester
- **C** = Core subject for that course
- **LS** = Life Sciences
- **5 or 6** = Recommended elective Stage 5 or 6
- **∗** = Supervision form must be completed
- **N/A** = Not available to students in this degree
Notes
Subjects marked 5 and/or 6 can be undertaken by part-time students when programmable provided the prerequisite requirements are met.
Owing to timetabling constraints, not all electives may be available to all students in any given semester.
Subjects not marked may be able to be taken as electives following discussion with an appropriate member of academic staff.
Students should note that excursions for field study elective subjects may be held in the weeks prior to semester and in other non-teaching weeks during the year.

Bachelor of Science (Honours)

ADMISSION
The Honours course is open to students who possess, or have fulfilled, all the requirements for a three-year Bachelor’s degree in Biomedical Science, Biotechnology, Environmental Biology or Urban Horticulture from UTS, or equivalent qualification, with at least an average credit grade in the final two stages of the undergraduate program.

AIMS
An Honours program gives basic training in biological or biomedical research. Students may then enter occupations for which an Honours degree is the minimum entry requirement or continue with postgraduate research.

ATTENDANCE PATTERNS
The course is offered either as a full-time program over two semesters, or as a part-time program over four semesters. The course contains some coursework partly devoted to a critical review of the scientific literature. The research project, which is the major component of the course and extends over both semesters, normally takes the form of an experimental or analytical investigation, undertaken either in the laboratory or in the field. The work is in an area of biomedical science (biochemistry, immunology, pathology or microbiology), biotechnology, environmental biology (including environmental toxicology and coastal resource management), urban horticulture or clinical measurement/cardiac technology and the results are presented in an oral seminar and in a written report, both of which are formally assessed.

APPLICATION
Prospective candidates should make an application to the Academic Registrar by 31 October, for entry to the Honours
degree program in the first semester of the following year. There is provision for consideration of late applications.

SELECTION
Applications for entry to the Honours degree will be considered by the Honours Degree Committee. Applicants will be notified of acceptance by the Academic Registrar.

FEES AND HIGHER EDUCATION CONTRIBUTION SCHEME
Higher Education Contribution Scheme (HECS) will normally apply to all students enrolled in Honours courses. All enrolled students are required to pay the compulsory University Union and Students' Association charges on enrolment.

COMMENCEMENT DATE
Students are required to commence work on their Honours program on the Monday of the first week in February. This applies despite the fact that formal enrolment may be held after this date. Students should contact their supervisor for details.

AWARD
Each of the four undergraduate courses will be awarded as Honours degrees with the following grades: Class 1, Class 2 Division 1, Class 2 Division 2 and Class 3.

They will be referred to as Bachelor of Science (Honours)
Abbreviation: BSc (Hons)
Course code: KB04

FURTHER INFORMATION
Interested students should discuss the program and the possible research projects available, with Course Coordinators or with individual members of academic staff.

COURSE STRUCTURE

Full-time program

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Stages 1 and 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn and Spring semesters</td>
<td></td>
</tr>
<tr>
<td>91304</td>
<td>Honours (Biological and Biomedical Sciences) (48cp)</td>
</tr>
</tbody>
</table>

Part-time program

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Stages 1 and 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn and Spring semesters</td>
<td></td>
</tr>
<tr>
<td>91305</td>
<td>Honours (Biological and Biomedical Sciences) (24cp)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Stages 3 and 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn and Spring semesters</td>
<td></td>
</tr>
<tr>
<td>91305</td>
<td>Honours (Biological and Biomedical Sciences) (24cp)</td>
</tr>
</tbody>
</table>
Bachelor of Science (Honours) in Applied Chemistry – Forensic Science

This course was introduced in 1994. The forensic subjects will start in 1996.

This chemistry course provides a program of instruction which, together with a research project, will prepare students for entry to professional work in the field of applied chemistry or as a specialist in the forensic science area. The course includes a firm foundation of studies in the basic sciences, with in-depth development of the discipline of chemistry, emphasising its forensic applications.

LENGTH

The Bachelor of Science (Honours) in Applied Chemistry – Forensic Science will comprise four years of full-time coursework including one semester of research work.

ATTENDANCE PATTERN

The course will be offered on a four-year full-time basis.

COURSE STRUCTURE

The first two years of the program are common for all chemistry students, after which those students studying for the degree in Forensic Science will undertake two years of forensic studies.

If the required standard for Honours is not achieved at the end of Stage 4 students' enrolment in the course will be discontinued and they will be offered the option of full credit transfer to the BAppSc (Chemistry).

FULL-TIME PROGRAM

Each Stage corresponds to one semester of full-time attendance.

Stage 1

Autumn semester
31870 Introduction to Microcomputers (2cp)
33171 Science Mathematics 1 (4cp)
65101 Chemistry 1M (6cp)
68101 Physics 1 (6cp)
66011 Geology 1 (6cp)

or
91388 Concepts in Biology (6cp)

Spring semester
31871 Computing for Science (3cp)
33172 Science Mathematics 2 (3cp)
65201 Chemistry 2M (6cp)
65202 Organic Chemistry 1 (6cp)
68201 Physics 2 (6cp)

Stage 2

Autumn semester
60301 Treatment of Scientific Data (3cp)
65301 Spectroscopy and Structure (7cp)
65502 Inorganic Chemistry (7cp)
65504 Chemical Safety (4cp)
66031 Technical Communication (4cp)

Spring semester
65401 Analytical Chemistry 1 (8cp)
65402 Organic Chemistry 2 (8cp)
65403 Electrochemistry (4cp)
65404 Chemical Thermodynamics (4cp)

Stage 3

Autumn semester
33173 Science Mathematics 3 (3cp)
65503 Electronics and Instrumentation (5cp)
65551 Analytical Chemistry 2 (Advanced) (8cp)
65556 Forensic Examination of Physical Evidence 1 (4cp)
65557 Forensic Toxicology 1 (5cp)

Spring semester
65603 Surface Chemistry (4cp)
65656 Forensic Examination of Physical Evidence 2 (6cp)
65657 Forensic Toxicology 2 (8cp)
79990 Legal System (2cp)
91382 Introduction to Biological Fluids (3cp)

Stage 7

Autumn semester

6576 Forensic Examination of Physical Evidence 3 (6cp)
6577 Narcotics and Drugs of Abuse (5cp)
6578 Accelerants, Incendiaries and Explosives (5cp)
79991 Forensic Science Case Study (8cp)

Stage 8

Spring semester

65856 Research Project (24cp)

1 An alternative Chemistry elective may be selected.

Bachelor of Science/Bachelor of Laws

The BSc LLB joint degree was first introduced at UTS in 1991. The course is aimed primarily at producing Law graduates with a strong background in science who wish to work in areas such as environmental law, patents and mining law.

Students completing the course are able to apply for admission as either a solicitor or barrister of the Supreme Court of New South Wales.

The joint degree is a five-year full-time course. Three law subjects studied in the first year of the course are taught over one year (two semesters), the remaining subjects are one semester. Students attend 11 to 15 hours of lectures, practicals and seminars per week. Students may be required to attend evening classes.

It is anticipated that a further option will be introduced in 1996 to allow students to take a major strand of study in one of the sciences. Students commencing in 1995 will be able to choose between the general strand and the major strand in 1996.

COURSE PROGRAM

Each stage corresponds to one semester of full-time attendance.

Stage 1

Autumn semester

65013 Chemistry (Sc Law) (5cp)
66013 Geology 1 (Sc Law) (5cp)
70113 Legal Process and History (10cp)
70100 Skills: Legal Research and Writing (2cp)
70400 Skills: Computerised Legal Research (2cp)

Stage 2

Spring semester

33171 Science Mathematics 1 (4cp)
65025 Chemistry 2 (Sc Law) (5cp)
70211 Law of Contract (8cp)
70212 Criminal Law (7cp)
70200 Skills: Case Analysis and Statutory Interpretation (2cp)
<table>
<thead>
<tr>
<th>Stage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn semester</td>
</tr>
<tr>
<td>60301 Treatment of Scientific Data (3cp)</td>
</tr>
<tr>
<td>66404 Resource Management (3cp)</td>
</tr>
<tr>
<td>70311 Law of Tort (8cp)</td>
</tr>
<tr>
<td>70611 Federal Constitutional Law (7cp)</td>
</tr>
<tr>
<td>plus Law elective skill (2cp)</td>
</tr>
<tr>
<td>Stage 4</td>
</tr>
<tr>
<td>Spring semester</td>
</tr>
<tr>
<td>33172 Science Mathematics 2 (3cp)</td>
</tr>
<tr>
<td>67201 Materials Science 1 (4cp)</td>
</tr>
<tr>
<td>68081 Physics 1 (Sc Law) (5cp)</td>
</tr>
<tr>
<td>70312 Real Property (7cp)</td>
</tr>
<tr>
<td>70411 Commercial Transactions (7cp)</td>
</tr>
<tr>
<td>70300 Skills: Conveyancing (3cp)</td>
</tr>
<tr>
<td>Stage 5</td>
</tr>
<tr>
<td>Autumn semester</td>
</tr>
<tr>
<td>67302 Polymers 1 (3cp)</td>
</tr>
<tr>
<td>70513 Succession (4cp)</td>
</tr>
<tr>
<td>70514 Family Law (5cp)</td>
</tr>
<tr>
<td>70612 Administrative Law (7cp)</td>
</tr>
<tr>
<td>91389 Biology 1 (Sc Law) (5cp)</td>
</tr>
<tr>
<td>Stage 6</td>
</tr>
<tr>
<td>Spring semester</td>
</tr>
<tr>
<td>68082 Physics 2 (Sc Law) (5cp)</td>
</tr>
<tr>
<td>70412 Corporate Law (7cp)</td>
</tr>
<tr>
<td>70511 Equity and Trusts (7cp)</td>
</tr>
<tr>
<td>70500 Skills: Drafting (2cp)</td>
</tr>
<tr>
<td>91390 Biology 2 (Sc Law) (5cp)</td>
</tr>
<tr>
<td>Stage 7</td>
</tr>
<tr>
<td>Autumn semester</td>
</tr>
<tr>
<td>71114 Remedies and Restitution (7cp)</td>
</tr>
<tr>
<td>71113 Insolvency (3cp)</td>
</tr>
<tr>
<td>70600 Skills: Pleadings (2cp)</td>
</tr>
<tr>
<td>70705 Skills: Litigation (4cp)</td>
</tr>
<tr>
<td>plus Science electives¹ (12cp)</td>
</tr>
<tr>
<td>Stage 8</td>
</tr>
<tr>
<td>Spring semester</td>
</tr>
<tr>
<td>71112 Conflict of Laws (7cp)</td>
</tr>
<tr>
<td>71212 Revenue Law (7cp)</td>
</tr>
<tr>
<td>70900 Skills: Moot (3cp)</td>
</tr>
<tr>
<td>plus Science electives¹ (12cp)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn semester</td>
</tr>
<tr>
<td>71211 Law of Evidence (7cp)</td>
</tr>
<tr>
<td>71201 Skills: Alternative Dispute Resolution (2cp)</td>
</tr>
<tr>
<td>plus Science electives¹ (11cp)</td>
</tr>
<tr>
<td>plus Law elective² (7cp)</td>
</tr>
<tr>
<td>Stage 10</td>
</tr>
<tr>
<td>Spring semester</td>
</tr>
<tr>
<td>Science electives¹ (6cp)</td>
</tr>
<tr>
<td>plus 2 Law elective skills (4cp)</td>
</tr>
</tbody>
</table>

¹ Science electives
The Science electives may be chosen from the following:
- 65301 Spectroscopy and Structure (7cp)
- 65401 Analytical Chemistry 1 (8cp)
- 65501 Analytical Chemistry 2 (8cp)
- 65601 Environmental Chemistry (8cp)
- 66061 Environmental Geology (3cp)
- 66202 Lithology (2cp)
- 66601 Exploration and Mining Geology (4cp)
- 67201 Materials Science 2 (4cp)
- 67402 Polymers 2 (4cp)
- 68302 Applied Optics (3cp)
- 91315 Biomonitoring (3cp)
- 91376 Environmental Measurement (3cp)
- 91313 Biochemistry 1 (6cp)
- 91314 Microbiology 1 (6cp)
- 91354 Anatomical Pathology (6cp)
- 91317 Human Biology (6cp)
- 91385 Concepts in Environmental Science (3cp)
- 91351 Immunology 1 (3cp)
- 91355 Haematology 1 (3cp)
- 91320 Biochemistry 2 (6cp)
- 91330 Microbiology 2 (6cp)

² Law elective
Choice of any subject with 77...prefix (from 77001 to 77054 inclusive).

Note:
The above information is correct as at 1 October 1994. Students should approach the Faculty of Law and Legal Practice for more up-to-date information.
UNDERGRADUATE SUBJECT DESCRIPTIONS

Guide to subject descriptions

The subject descriptions shown below indicate the subject code and name, the number of credit points for the subject (e.g. 3cp), the duration of the subject, indicated as semester weeks, if applicable, and the number of formal contact hours each week (e.g. 4hpw); for some subjects, there may also be practical components off-campus, and this is indicated in the text. Also shown are the prerequisites or corequisites if any, the method of assessment and a brief outline of the content.

Prerequisites are subjects which must be completed before taking the subject to which they refer. Corequisites may be completed before or be taken concurrently with the subject to which they refer.

60301
TREATMENT OF SCIENTIFIC DATA
3cp; 3hpw
prerequisites: 33171 Science Mathematics 1, 31870 Introduction to Microcomputers
subject coordinator: Dr L Kirkup

Errors: error calculations, error propagation. Presentation of data and graphical analysis; population and frequency distributions; sampling techniques; Least-squares; applications of concepts to the physical sciences.

65011
CHEMISTRY 1 F/T
6cp; 6hpw

65012
CHEMISTRY 1 (LIFE SCIENCES)
6cp; 6hpw
Chemistry as it is related to the Life Sciences. Basic concepts, atomic structure, periodic table, bonding stoichiometry, thermodynamics, structure of matter.

65021
CHEMISTRY 2 F/T
6cp; 6hpw

65022
CHEMISTRY 2 (LIFE SCIENCES)
6cp; 6hpw
prerequisite: 65012 Chemistry 1 (Life Sciences)
subject coordinator: Associate Professor W Stern

Chemical equilibrium and solubility. Reaction kinetics. Introduction to organic chemistry. Functional groups, reaction mechanism and stereochemistry.

65023
ENGINEERING CHEMISTRY
6cp; 6hpw
subject coordinators: Dr B Young and Dr J Kalman

This lecture series covers the following topics: mole concept, stoichiometry, structure of the atom, atomic spectra, periodic table, chemical bonding, electrochemistry and corrosion, gas laws, change of state, colloids, solution equilibria, applied organic chemistry and the structure of solids.
65024
INTRODUCTORY ORGANIC CHEMISTRY
3cp; 3hpw
prerequisite: 65011 Chemistry 1 FIT
subject coordinator: Dr H Patney

65031
THERMODYNAMICS
3cp; 3hpw
prerequisites: 67201 Materials Science 1,
33172 Science Mathematics 2, or 65021 Chemistry 2 FIT
subject coordinator: Dr J Byrne
First law of thermodynamics, internal energy and enthalpy changes in chemical and physical reactions. Entropy and the second and third laws of thermodynamics. Free energy and chemical equilibria. Phase equilibria. The thermodynamic properties of ideal and non-ideal solutions.

65061
CORROSION TECHNOLOGY
4cp; 4hpw
prerequisite: 67405 Physical Metallurgy 2
subject coordinator: Associate Professor R Jones
A detailed survey of the various forms of corrosion, and the use of appropriate anti-corrosion techniques are discussed in terms of modern theory and practice. Some attention is given to the economics of alternative anti-corrosion methods. Lectures are complemented by extensive practical work which emphasises the applied nature of the subject.

65062
EXTRACTIVE METALLURGY
6cp; 6hpw
prerequisites: 65031 Thermodynamics, plus all Stage 1, 2 and 3 subjects
subject coordinator: Dr A Cameron
Occurrence of minerals. Communion and the theory of time particles. Extractive metallurgy including physical separation methods, flotation, hydrometallurgy and pyrometallurgy.

65071
CORROSION TECHNOLOGY FOR ENGINEERS
3cp; 3hpw
prerequisites: 65023 Engineering Chemistry,
67021 Materials Engineering 1
subject coordinator: Associate Professor R Jones
A detailed survey of the various forms of corrosion. The use of appropriate anti-corrosion techniques in terms of modern theory and practice. The economics of alternative anti-corrosion methods. The subject extends the prior knowledge that engineers have of the mechanical behaviour of metals, so that corrosion resistance also is considered an important aspect of materials selection.

65101
CHEMISTRY 1M
6cp; 6hpw
assumed knowledge: core of HSC 2-unit chemistry or equivalent
subject coordinator: Dr R Sleet
Preparation for practical work, atomic structure, periodic tables, chemical bonding. Redox reactions, chemical energetics, properties of matter.
65201
CHEMISTRY 2M
6cp; 6hpw
prerequisite: 65101 Chemistry 1M or equivalent
subject coordinator: Dr R Sleet
Chemical kinetics, chemical equilibrium, enthalpy and entropy, acid-base theory, complexions, electrochemistry, manufacture of chemicals.

65202
ORGANIC CHEMISTRY 1
6cp; 6hpw
prerequisite: 65101 Chemistry 1M F/T or equivalent
subject coordinator: Dr J Kalman
Introduction to organic chemistry. Nomenclature, functional groups, reaction mechanisms, stereochemistry, chemical and instrumental analysis.

65301
SPECTROSCOPY AND STRUCTURE
7cp; 6hpw
prerequisite: 65201 Chemistry 2M or equivalent
subject coordinator: Dr R Ashby
An introduction to the theory and practice of structure determination spectroscopic techniques including UV-visible, infra-red, nuclear magnetic resonance and mass spectrometry and X-ray diffractometry.

65302
INORGANIC CHEMISTRY
7cp; 6hpw
prerequisite: 65201 Chemistry 2M or equivalent
subject coordinator: Dr A Baker

65401
ANALYTICAL CHEMISTRY 1
8cp; 6hpw
prerequisites: all Stage 2 subjects plus 65302 Inorganic Chemistry
subject coordinator: Dr M Dawson
Lecture and laboratory topics selected from: separation techniques – solvent extraction; distillation; precipitation; chromatography, normal phase, reversed phase and ion chromatography, types of columns, types of separation media, mobile phases. Volumetric analysis – non-aqueous; complexometric; redox.

65402
ORGANIC CHEMISTRY 2
8cp; 6hpw
prerequisites: all Stage 2 subjects plus 65301 Spectroscopy and Structure
subject coordinator: Associate Professor G Norton

65403
ELECTROCHEMISTRY
4cp; 3hpw
prerequisites: all Stage 2 subjects plus 65301 Spectroscopy and Structure
subject coordinator: Associate Professor R Jones

65404

CHEMICAL THERMODYNAMICS

4cp; 3hpw
prerequisites: all Stage 2 subjects plus 65301 Spectroscopy and Structure
subject coordinator: Dr J Byrne

65501

ANALYTICAL CHEMISTRY 2

8cp; 6hpw
prerequisites: all Stage 3 subjects plus 65403 Electrochemistry and 65401 Analytical Chemistry 1
subject coordinator: Dr H Sharp

Lecture and laboratory topics selected from: electroanalytical chemistry – ion selective electrodes, voltametric methods; spectroscopic analysis – UV/VIS, emission spectroscopy, ICP-AES, flame and furnace AAS, X-ray fluorescence; radiochemistry; flow injection analysis; quality assurance.

65502

CHEMICAL PROCESS CONTROL

8cp; 6hpw
prerequisites: all Stage 4 subjects
subject coordinator: Dr B Young

65503

ELECTRONICS AND INSTRUMENTATION

5cp; 4hpw
prerequisites: all Stage 4 subjects
subject coordinator: Dr H Sharp

65504

CHEMICAL SAFETY

3cp; 2hpw
prerequisites: all Stage 1 subjects plus 65201 Chemistry 2M, 65202 Organic Chemistry

65507
ADVANCED CHEMISTRY PROJECT
prerequisites: all Stages 1–4 subjects
Students may choose a topic from a wide range, on which to carry out work of an individual, investigative nature.

65551
ANALYTICAL CHEMISTRY 2 (ADVANCED)
8cp; 6hpw
prerequisites: all Stage 3 subjects plus 65401
Analytical Chemistry 1 and 65403
Electrochemistry
subject coordinator: Dr H Sharp
Additional material for Honours students: PC-based data acquisition and control. Additional assignment topics related to advanced chemical instrumentation techniques.

65556
FORENSIC EXAMINATION OF PHYSICAL EVIDENCE 1
4cp; 3hpw
prerequisites: all Stage 3 subjects
subject coordinator: Associate Professor W Stern
This subject introduces students to the concept of and methods used for the physical examination of evidence. Lectures and laboratory work will examine retention, transfer and residence times of various compounds and consider the application and significance of specific analytical techniques. Optical and electron microscopic techniques will also be covered.

65557
FORENSIC TOXICOLOGY 1
5cp; 4hpw
prerequisites: all Stage 3 subjects plus 65401
Analytical Chemistry 1 and 65402 Organic Chemistry 2
subject coordinator: Dr M Dawson
The aim of this subject is to familiarise students with the different classes, pharmacology and uses of drugs and poisons. There will also be an introduction to microbiology together with a general review of the coronial system. Students will be required to attend laboratory sessions and to complete appropriate assignments.

65601
ENVIRONMENTAL CHEMISTRY
8cp; 6hpw
prerequisites: all Stage 4 subjects plus 65501
Analytical Chemistry 2
subject coordinator: Dr M Dawson
The chemical nature and control of natural and polluted systems in the atmosphere and hydrosphere. The use of modern analytical techniques in study of such systems.

65602
REACTION KINETICS
4cp; 3hpw
prerequisites: all Stage 4 subjects
subject coordinator: Dr L Evans
Kinetics: rate laws, reaction mechanism, rate theory.

65603
SURFACE CHEMISTRY
4cp; 3hpw
prerequisites: all Stage 4 subjects
subject coordinator: Dr R Ashby
Interfacial phenomena, surface active agents, catalysis, rheology.

65651
ENVIRONMENTAL CHEMISTRY (ADVANCED)
8cp; 6hpw
prerequisites: all Stage 4 subjects
corequisite: 65551 Analytical Chemistry 2 (Advanced)
subject coordinator: Dr M Dawson
Additional material for Honours students: Honours students will be required to submit two additional assignments and complete one additional, more challenging practical class. They will also be required to do additional reading from current research publications.
65656
FORENSIC EXAMINATION OF PHYSICAL EVIDENCE 2
6cp; 4hpw
prerequisites: all Stage 4 subjects plus 65556
Forensic Examination of Physical Evidence 1
subject coordinator: Associate Professor W Stern
This subject considers the structure, chemistry and identification of a wide range of materials commonly encountered in forensic investigations. The lecture material is complemented by an extensive laboratory program.

65657
FORENSIC TOXICOLOGY 2
8cp; 6hpw
prerequisites: all Stage 4 subjects plus 65551
Analytical Chemistry 2 (Advanced) and 65557
Forensic Toxicology 1
subject coordinator: Dr M Dawson
This subject has a substantial laboratory component in which knowledge of the chemistry of drugs and poisons is applied to the analysis of compounds in biological samples.

65701
APPLIED ORGANIC CHEMISTRY 1
8cp; 6hpw
prerequisites: all Stage 4 subjects
subject coordinator: Associate Professor G Norton

65702
APPLIED ORGANIC CHEMISTRY 2
8cp; 6hpw
prerequisites: all Stage 4 subjects
subject coordinator: Dr J Kalman
Selected advanced topics in organic chemistry including organic synthesis, photochemistry, natural products and instrumental methods.

65703
METALLURGICAL CHEMISTRY
8cp; 6hpw
prerequisites: all Stage 4 subjects
subject coordinator: Dr A Cameron
Occurrence of minerals. Commination and the theory of time particles. Extractive metallurgy including physical separation methods, flotation, hydrometallurgy and pyrometallurgy.

65704
COORDINATION AND ORGANOMETALLIC CHEMISTRY
8cp; 6hpw
prerequisite: all Stage 4 subjects
subject coordinator: Dr A Baker
Spectral and magnetic properties of coordinating compounds. Structural chemistry including single crystal X-ray diffraction. Applications of thermodynamics and kinetics to inorganic chemistry. Organometallic chemistry: theory and industrial applications. Coordination chemistry and catalysis.

65705
CORROSION SCIENCE
8cp; 6hpw
prerequisites: all Stage 4 subjects
subject coordinator: Associate Professor R Jones
The course provides a detailed survey of the various forms of corrosion, and the use of appropriate anti-corrosion techniques are discussed in terms of modern theory and practice. Some attention is given to the economics of alternative anti-corrosion methods. Lectures are complemented by extensive practical work which emphasises the applied nature of the subject.
65751
APPLIED ORGANIC CHEMISTRY 1
(ADVANCED)
8cp; 6hpw
prerequisites: all Stage 4 subjects
subject coordinator: Associate Professor G Norton

65752
APPLIED ORGANIC CHEMISTRY 2
(ADVANCED)
8cp; 6hpw
prerequisites: all Stage 4 subjects
subject coordinator: Dr J Kelman
Additional material for Honours students: interpretation of homonuclear and heteronuclear decoupling experiments and nuclear Overhauser effects. Fragmentation mechanisms in mass spectrometry. Photochemical reactions of aromatic compounds. Reactions involving cleavage of weak single bonds.

65753
METALLURGICAL CHEMISTRY
(ADVANCED)
8cp; 6hpw
prerequisites: all Stage 4 subjects
subject coordinator: Dr A Cameron

65754
COORDINATION AND ORGANOMETALLIC CHEMISTRY
(ADVANCED)
8cp; 6hpw
prerequisites: all Stage 4 subjects
subject coordinator: Dr A Baker
Additional material for Honours students: kinetics and mechanisms of reactions of organometallic compounds. Library assignment. Advanced project work.

65756
FORENSIC EXAMINATION OF PHYSICAL EVIDENCE 3
6cp; 4hpw
prerequisites: all Stage 4 subjects plus 65556 Forensic Examination of Physical Evidence 1
This subject provides further development in the application of the techniques of forensic examination of physical evidence. Topics will include the structure, chemistry and identification of paper, lubricants, cosmetics and dyes. Introduction to fingerprinting techniques.

65757
NARCOTICS AND DRUGS OF ABUSE
5cp; 4hpw
prerequisites: all Stage 4 subjects plus 65551 Analytical Chemistry 2 (Advanced) and 65557 Forensic Toxicology I
subject coordinator: Dr M Dawson
The topics to be covered include sources of drugs, profiling, sampling protocol and the identification and analysis of opioids, amphetamines, hallucinogens etc.

65758
ACCELERANTS, INCENDIARIES AND EXPLOSIVES
5cp; 4hpw
prerequisites: all Stage 4 subjects plus 65551 Analytical Chemistry 2 (Advanced) and 65556 Forensic Examination of Physical Evidence 1
subject coordinator: Associate Professor W Stern
A study of the chemistry of accelerants and explosives is essential knowledge for a forensic scientist. The course will consider appropriate techniques for the identification of various classes of materials. Demonstrations will be arranged with appropriate authorities.
65856
RESEARCH PROJECT
24cp; at least 2.5 hpw
prerequisites: all of Stages 1–7 subjects
subject coordinator: Dr M Dawson
A research project on specific aspects of forensic science will be conducted under the joint supervision of a member of the academic staff of the University and an external (industrial) supervisor. Some of the work may be required to be conducted at sites away from UTS.

65858
HONOURS RESEARCH PROJECT
24cp; 2 semesters
prerequisites: all of Stages 1–7 subjects
Defining a research project. Research aims and relationship to available time and resources. Establishing previous work and critical assessment of methodology and results. Appropriate research methods, data collection, data manipulation, logical development of detailed complex arguments. Research ethics. Structure and presentation of research findings.

65995
INDUSTRIAL TRAINING (APPLIED CHEMISTRY HONOURS)
prerequisites: average mark of at least 65 for Stages 1–4
subject coordinators: Dr H Sharp and Dr R Sleet
A minimum of one semester working as a member of a group involved in professional practice in chemistry. The student will be placed in a challenging position requiring initiative, scientific judgement and team work.

65996
INDUSTRIAL TRAINING 1
(APPLIED CHEMISTRY)
First six months full-time

65997
INDUSTRIAL TRAINING 2
(APPLIED CHEMISTRY)
Second six months full-time

65998
INDUSTRIAL TRAINING (APPLIED CHEMISTRY) P/T

66011
GEOLOGY 1
6cp; 6hpw
subject coordinator: to be advised
The dynamic Earth: earth materials; earth structure and the evolution of the continents and oceans; geological history; geological structure of Australia; resource and environmental geology. Two half-day field excursions in the Sydney area.

66032
GEOLOGY FOR ENGINEERS
3cp; 3hpw
subject coordinator: Mr T Ronnard
Nature of minerals; origin and classification of igneous, sedimentary and metamorphic rocks; rock weathering processes; river landscapes, marine landscapes; rock slope stability; uses of rock in construction; structural features of rocks; geological mapping techniques; introduction to rock mechanics.

66101
GEOLOGY 1M
6cp; 6hpw
For students in the Applied Geology degree course. Equivalent to 66011 plus a one-day field excursion in the Sydney region.

66201
GEOLOGICAL MAPPING
4cp; 3hpw
prerequisite: 66011 Geology 1 or 66101 Geology 1M
subject coordinator: Dr G Skilbeck
Maps and aerial photographs; contours; stratigraphic principles and correlation; folds and faults; interpretation of geological maps; surveying and mapping techniques. Geological framework of Australia. Six-day field camp.
66202
LITHOLOGY
2cp; 2hpw
prerequisite: 66011 Geology I or 66101 Geology II
subject coordinator: Dr K Dadd
Crystal symmetry and habit; crystal growth types; chemical classification of minerals; ore mineral associations; field classification and hand specimen description of igneous, sedimentary, metamorphic and volcanic rocks. Includes origin and types of deposits. Practical includes hand specimen examination of common minerals and rocks.

66302
SEDIMENTARY GEOLOGY
6cp; 5hpw
corequisite: 66301 Mineralogy and Petrology
subject coordinator: Dr E Frankel
Nature and origin of sedimentary materials and stratigraphic sequences including processes of weathering, transportation, deposition and diagenesis. Sedimentology of principal depositional environments; petrographic and textural analysis of sediments; nature and identification of clay minerals; introduction to palaeontological techniques. Field work.

66303
GEOCHEMISTRY
3cp; 3hpw
corequisite: 66301 Mineralogy and Petrology
subject coordinator: Dr K Dadd

66401
TECHNICAL COMMUNICATION
3cp; 4hpw
prerequisites: 66301 Mineralogy and Petrology, 66302 Sedimentary Geology
subject coordinator: to be advised
The nature of technical communication, geological report writing and presentation. Visual communication: charts,
graphs, line drawings, maps, statistics. Legal problems of technical communication: contracts, copyright. House style, standard abbreviations and terminology. Editing, preparation and submission of technical manuscript for publication and/or printing. Oral presentation of technical reports, participation in symposia. Journal and library research.

66402
STRUCTURAL GEOLOGY

7cp; 6hpw
prerequisites: 66301 Mineralogy and Petrology, 66302 Sedimentary Geology
subject coordinator: Associate Professor B Marshall
Stress, strain, rheological concepts, and problems pertaining to rock deformation: classification, recognition and formation of fracture systems in brittle and transitional environments; classification, recognition and formation of structures in ductile environments: collection and analysis of structural data in mine, field and laboratory data presentation: mineralisation in the structural environment. Field work.

66403
ECONOMIC GEOLOGY

4cp; 3 1/3hpw
prerequisites: 66301 Mineralogy and Petrology, 66302 Sedimentary Geology
subject coordinator: to be advised
Introduction to the nature of ore bodies: genesis, classification and laboratory methods of investigating such deposits. Field guides to mineralisation: field investigation of mineralisation. Field work.

66404
RESOURCE MANAGEMENT

3cp; 3hpw
prerequisite: 66202 Lithology
subject coordinator: to be advised
Determination of reserves and resources on a global scale. Definition of reserve categories in use in Australia. The structure and financing of mining companies including financial evaluation techniques using discounted cash flows. Stock exchange operation. Metal marketing and cartels. The New South Wales mining laws: comparison with law in other States. Government policies with respect to the mining industry and the effects of political decisions on mining operations; ethics in the mining industry and the geological profession.

66405
BASIN ANALYSIS

4cp; 3hpw
prerequisites: 66201 Geological Mapping, 66302 Sedimentary Geology, 66406 Exploration Geophysics
subject coordinator: Dr G Skilbeck
Techniques of stratigraphic dating and correlation; interpretation of modern and ancient depositional environments; palaeocurrent analysis; provenance, dispersal and diagenesis; relations between basin structure, tectonism and sedimentation. Field work.

66406
EXPLORATION GEOPHYSICS

4cp; 3 1/3hpw
prerequisites: 66203 Geodynamics, 66201 Geological Mapping, 31871 Computing for Science
subject coordinator: Dr G Skilbeck
Introduction to common methods of air and ground geophysics; theory, technique and equipment; interpretation principles; limitations, particularly in differing parts of Australia. Applications of selected techniques in regional exploration, ground follow-up and target-detailing. Down-hole methods of geophysics; geophysical logging. Integration of geophysics with other exploration techniques within ongoing exploration programs. Field work.
66501

ENGINEERING AND ENVIRONMENTAL GEOLOGY
5cp; 6hpw and 4-day field excursion
corequisite: 66402 Structural Geology
subject coordinators: Associate Professor B Marshall and Dr E Frankel

66502

ADVANCED PETROLOGY
4cp; 3½hpw
prerequisite: 66301 Mineralogy and Petrology
corequisite: 66505 Advanced Structural Geology
subject coordinator: Associate Professor B Franklin

66503

FOSSIL FUELS
4cp; 3½hpw
corequisites: 66302 Sedimentary Geology, 66405 Basin Analysis
subject coordinator: Dr E Frankel

World energy market. Geology of fossil fuel deposits including coal and associated strata, petroleum, natural gas and synfuels derived from oil shale, tar sands and other petroiferous sediments. Introduction to methods of resource size estimation. Field work.

66504

EXPLORATION GEOCHEMISTRY
2cp; 3hpw
corequisite: 66403 Economic Geology
subject coordinator: to be advised

Introduction to geochemical exploration; sampling theory; statistical data processing and presentation; sample security; soil, sediment stream, rock and vegetation surveys; design of a geochemical exploration program.

66505

ADVANCED STRUCTURAL GEOLOGY
4cp; 3½hpw
prerequisites: 66402 Structural Geology, 66403 Economic Geology
corequisite: 66502 Advanced Petrology
subject coordinator: Associate Professor B Marshall

Elastic, plastic and viscous behaviour in relation to the deformation of mono- and poly-minerallic aggregates; microfabric studies – grain boundary relationships, preferred orientation and the application of the U-stage; theoretical advances in the formation of folds, foliations and lineations; metamorphism and deformation in space and time – progressive deformation relationships on hand-specimen, mine and regional scales; metamorphism, deformation and remobilisation of ore deposits; tectonics and ore distribution; the evolution with geologic time of structure, tectonics and ore deposits. Field work.
66506
ADVANCED GEOLOGICAL MAPPING
3cp (field work)
prerequisites: 66201 Geological Mapping,
66402 Structural Geology
subject coordinator: to be advised
Regional and detailed geological mapping using topographic, air photo and plan bases. Field measurement techniques. Position specification and location by visual, compass, altimeter and GPS methods. Recording field data. Use of information derived by remote sensing and geophysical surveys. Report preparation and data compilation. Presentation of geological maps and sections. Oral presentation of mapping results.

66507
PROJECT SEMINAR
3cp; 3hpw
subject coordinator: Dr E Frankel
In preparation for 66604 Field Project, students are assigned seminar topics which include a literature search on an area of interest, background reading on relevant theoretical topics, and practical or field exercises designed to develop skills applicable to the particular Field Project proposed.

66551
ADVANCED STRUCTURAL GEOLOGY (HONOURS)
5cp
prerequisites: all Stage 4 subjects
subject coordinator: Associate Professor B Marshall
Elastic, plastic and viscous behaviour in relation to the deformation of mono- and poly-mineralic aggregates; microfabric studies - grain boundary relationships, preferred orientation and the application of the U-stage; theoretical advances in the formation of folds, foliations and lineations; metamorphism and deformation in space and time - progressive deformation relationships at hand-specimen, mine and regional scales; metamorphism, deformation and remobilisation of ore deposits; tectonics and ore distribution; the evolution with geologic time of structure, tectonics and ore deposits. Field work.

66552
ADVANCED PETROLOGY (HONOURS)
5cp
prerequisites: all Stage 4 subjects
subject coordinator: Associate Professor B Franklin

66553
FOSSIL FUELS (HONOURS)
5cp
prerequisites: all Stage 4 subjects
subject coordinators: Dr E Frankel and Dr G Skilbeck
Overview of the world energy market and the historical development of the fuels industries. Geology of fossil fuels deposits, including coal and associated strata, petroleum, natural gas and synthetic fuels derived from oil shale, tar sand and other petrolierous sediments. Methods of resource size estimation. Geological aspects of the occurrence of fossil fuels in Australia and Papua New Guinea is covered in a research assignment. Three-day field
trip to examine coal industry in the Hunter Valley.

66601
EXPLORATION AND MINING GEOLOGY
4cp; 4hpw
prerequisites: 66402 Structural Geology, 66403 Economic Geology
subject coordinator: Mr T Rannard
Principles of project initiation and continuation; functions of the controlling on-site geologist; exploration programs and budgeting; critical path analysis. Prospect analysis using discounted cash flow methods. Relation of exploration programs to geological models. Prospecting methods and follow-up techniques. Drilling; commonly used methods; logging of drill products; interpretation of results. Drill-sections, level plans, grade and recovery predictions, reserves estimation. Mineral processing.

66602
TECTONICS
3cp; 3hpw
prerequisites: 66201 Geological Mapping, 66502 Advanced Petrology
subject coordinator: Professor E Leitch

66603
REMOTE SENSING
3cp; 3hpw
corequisite: 66201 Geological Mapping
subject coordinator: Dr G Skilbeck
Utilisation of differing parts of the electromagnetic spectrum in remote sensing. Distant and near remote sensing; radar and infra-red imagery; traditional black-and-white, and colour air-photography; multispectral photography and scanning; satellite imagery. Emphasis will be on geological applications of remote sensing in reconnaissance mapping, geotectonics, and mineral exploration. Practical work will predominantly involve principles of air-photo interpretation.

66604
FIELD PROJECT
9cp; 9hpw
prerequisite: 66507 Project Seminar
subject coordinator: Dr E Frankel
This is an assignment to be carried out under supervision of a specified member of staff. The assignment combines a literature search, field mapping and/or sampling, and a short laboratory investigation. Assessment is based on a formal typed report submitted to the supervisor before the last week of the semester.

66605
ADVANCED FOSSIL FUELS
4cp; 4hpw
prerequisite: 66503 Fossil Fuels
subject coordinator: Dr E Frankel
MINERAL DEPOSITS

4cp; 3hpw
prerequisites: 66402 Structural Geology, 66403 Economic Geology
subject coordinator: to be advised
Case studies of classical metallic and non-metallic mineral deposits; their genesis in the light of current theories of ore formation; evidence adduced from field and laboratory studies. Classification of mineral deposits relative to environment and method of formation. Field work.

ADVANCED ENGINEERING GEOLOGY

4cp; 4hpw
prerequisite: 66501 Engineering and Environmental Geology
subject coordinator: Associate Professor B Marshall
Quantification of geologic data for engineering purposes; stress and deformation in soil and rock masses, especially near surface excavations and underground openings; special techniques for field and laboratory investigations; evaluation and development of groundwater resources, probabilistic analysis of soil and rock slope stability.

MINERAL SCIENCE PROJECT

2cp; 2hpw
subject coordinator: Associate Professor B Franklin
A report and seminar prepared by the student on the mineral science project.

CONVERGENT MARGIN TECTONICS (HONOURS)

3cp
prerequisites: Stage 5 Honours subjects
subject coordinators: Professor E Leitch and Dr J Aitchison (University of Sydney)

CONCEPTUAL MODELS OF ORE DEPOSITS (HONOURS)

3cp
prerequisites: Stage 5 Honours subjects
subject coordinator: Associate Professor B Marshall
Introduction to conceptual models for ore deposits; empirical/genetic approaches; metallogenic concepts for magmatic, hydrothermal, and sedimentary deposits; structural controls in ore formation; examples of world class deposits.

APPLIED CLASTIC BASIN ANALYSIS (HONOURS)

3cp
prerequisites: Stage 5 Honours subjects
subject coordinator: Dr G Skilbeck
Detailed examination of clastic sedimentary environments with particular emphasis on sandstone body deposition and orientation. The applications of genetic stratigraphy and seismic stratigraphy are examined using real practical exercises on seismic and well data. On a field trip to the Sydney Basin and New England Fold Belt outcrops of fluvial, seashore marine and deep marine environments are examined in detail to demonstrate the three-dimensional nature of deposits.
66654
RESEARCH DEVELOPMENTS IN GEOSCIENCE
3cp
prerequisites: Stage 5 Honours subjects
subject coordinator: Professor E. Leitch
The subject is based around a series of nine 50-minute seminars given by Doctoral students, academic staff and visiting professional geoscientists. Students will be required to read specified reference material prior to the seminars, and to discuss this material, together with points arising out of the presentation, during a closely following tutorial.

66655
STRUCTURAL GEOLOGY OF ORE DEPOSITS (HONOURS)
3cp
prerequisites: Stage 5 Honours subjects
subject coordinator: Associate Professor B. Marshall
Deformation mechanisms and deformation mechanism maps; evaluation of behaviour of sulfides, silicates and mixtures under metamorphic conditions; mobilisation/remobilisation and movement of ore in brittle and ductile crust; emplacement of ore in sink-sites (ore shoot and orebody formation); structural analysis of orebodies in complex terrains (outcrop and drill core).

66858
PROJECT (HONOURS)
28cp; 2 semesters
prerequisites: Stage 5 Honours subjects
subject coordinator: Professor E. Leitch
Defining a research project. Research aims and relationship to available time and resources. Establishing previous work and critical assessment of methodology and results. Appropriate research methods, data collection, data manipulation, logical development of detailed complex arguments. Research ethics. Structure and presentation of research findings.

66995
INDUSTRIAL TRAINING (HONOURS)
prerequisites: Stage 4 subjects
subject coordinator: Dr G. Skilbeck
A minimum of one semester working as a member of a group involved in professional practice in applied geology. The student will be placed in a challenging position requiring initiative, scientific judgement and team work.

66996
INDUSTRIAL TRAINING 1 (APPLIED GEOLOGY)
prerequisites: 66201 Geological Mapping, 66202 Lithology
The first period of at least six months full-time relevant industrial employment is necessary to satisfy this subject. The employment must have the approval of the Head of Department of Applied Geology.

66997
INDUSTRIAL TRAINING 2 (APPLIED GEOLOGY)
prerequisites: Stage 4 Applied Geology Course
The second period of full-time relevant industrial employment. Only in exceptional circumstances, and with permission of the Head of Department, may formal subjects be undertaken concurrently with this subject.

66998
INDUSTRIAL TRAINING (APPLIED GEOLOGY) P/T

67011
MATERIALS 1
3cp
An introductory course in the properties of building materials. Most commonly used materials are covered but not in depth.
67021
MATERIALS ENGINEERING 1

3cp
*prerequisites: 42611 Mechanics 1, 65023 Engineering Chemistry

A basic introduction to materials science. It provides a foundation in terms of microscopic structure and composition for the understanding of the behaviour of engineering materials. Topics dealt with include atomic structure of solids, phase diagrams, properties of metals and alloys, corrosion, polymers and rubbers, ceramics, timber and composites.

67022
MATERIALS SCIENCE FOR ENGINEERS

3cp
*corequisites: 65023 Engineering Chemistry, 4352 Mechanics of Solids I

This subject deals with the basic properties of engineering materials. In a materials science section the major topics are classification and structure of solids; primary and secondary bonding; metals, polymers and ceramics, heat treatment and joining methods; durability and corrosion. In a second section of mechanical properties of materials the major topics are the behaviour of materials subjected to tensile and compressive loads: hardness; theories of failure. The lecture program is supported by a program of laboratory demonstrations and experiments.

67023
MATERIALS TECHNOLOGY

3cp
*prerequisite: 68031 Engineering Physics I (Electrical)

The objectives are to develop the student’s familiarity with commonly used electrical engineering materials to the extent that he or she would classify them in order of hardness, strength, thermal and electrical conductivity, density, dielectric constant and permeability. Materials covered include ferrous and non-ferrous metals, plastics and ceramics. The subject includes the topics of measurement of material properties, joining techniques. General production techniques and the selection methods are covered but the emphasis is placed on the properties and selection of metals ceramics, polymers and composites in electronic devices and instruments.

67061
MATERIALS ENGINEERING 2

3cp
*prerequisites: 33222 Engineering Mathematics 2B, 42631 Mechanics 3

An introduction to the behaviour of mechanical vibrations. The content includes free and forced response of spring/mass/damper systems, two- and multidegree of freedom systems, torsional vibrations and transverse vibration of beams. Laplace transformation, mechanical impedance and matrix methods are used and both analytical and computer-based numerical solutions are presented.

67201
MATERIALS SCIENCE 1

4cp
*prerequisites: 65011 Chemistry 1 FIT, 6810 Physics I
*corequisites: 65021 Chemistry 2 FIT, 68201 Physics 2, 33171 Science Mathematics I
*subject coordinator: Dr M Stevens

Introduction to the crystalline structure and physical properties of solids. Structure sensitive and structure insensitive properties. The properties of metals and metallic alloys in terms of modern theories. The control of structure and properties of commercially important alloys. Introduction to the structure and properties of polymer and ceramic materials and the techniques employed to modify their properties. Introduction to the mechanical testing of materials. The effects of stress state temperature straining rate and repetitive loadings on the behaviour of materials (creep, fatigue and brittle fracture).
67202
INTRODUCTION TO CRYSTALLOGRAPHY

2cp
subject coordinator: Dr B Ben-Nissan

Introduction to crystallography, crystal systems, symmetry, Miller indices, the stereographic projection, zone axis theory. Introduction to the reciprocal lattice. X-rays, diffraction methods, interpretation of powder photographs, the determination of crystal structures, intensities of X-ray reflection and intensity calculations. The orientation of single crystals and the determination of texture in polycrystalline materials.

67303
MECHANICAL PROPERTIES OF MATERIALS

6cp
prerequisite: 67201 Materials Science
corequisite: 33172 Science Mathematics 2
subject coordinator: Dr M Wilson

67401
POLYMERS 1

3cp
prerequisites: 67201 Materials Science 1, 65024 Introductory Organic Chemistry
corequisite: 67301 Materials Science 2
subject coordinator: to be advised

67402
POLYMERS 2
4cp
prerequisite: 67302 Polymers 1
subject coordinator: to be advised
The mechanisms, kinetics and statistics of polymerisation reactions.

67403
CERAMICS 1
4cp
prerequisite: 67201 Materials Science 1
subject coordinator: Dr A Ray

67404
PHYSICAL METALLURGY 1
4cp
prerequisites: 67201 Materials Science 1, 67301 Materials Science 2, 65031 Thermodynamics, 67202 Introduction to Crystallography
subject coordinator: Dr W Yeung
The application of thermodynamic principles to phase equilibrium and transformations in metal alloy systems. The fundamentals of nucleation and solidification of metals and their alloys. Theories of diffusion in metals. Commercial alloys and industrial heat treatment processes. The preparation and examination of metallic macrostructures and microstructures.

67405
PHYSICAL METALLURGY 2
4cp
prerequisite: 67303 Mechanical Properties of Materials
corequisite: 67404 Physical Metallurgy 1
subject coordinator: Dr M Wilson

67406
INSTRUMENTATION FOR MATERIALS SCIENTISTS
2cp
prerequisite: 68201 Physics 2
subject coordinator: Professor J Unsworth
DC and AC circuits, materials for transducers and transducers for materials, recorders, amplifiers, CRO and meters, specification, signal/noise ratio, feedback bandwidth, Op-Amps, comparators, lock in amplifiers, signal generators, A/D conversion, ICs signal processing, controllers, interfacing instruments.

67501
CERAMICS 2
4cp
prerequisites: 67403 Ceramics 1, 65031
Thermodynamics
subject coordinator: Dr A Ray
Structure, properties and manufacture of commercial glasses. Phase transformations and nucleation in glass systems and their applications in glass ceramics. Chemical and physical strengthening of glasses and glass ceramics. Glass fibres and their applications in optical communication. Industrial excursions.
67502
POLYMERS 3
4cp
prerequisite: 67302 Polymers I
subject coordinator: to be advised

67503
CERAMICS 3
4cp
prerequisites: 67301 Materials Science 2, 67303 Mechanical Properties of Materials, 67403 Ceramics I
subject coordinator: Dr B Ben-Nissan

67504
PHYSICAL METALLURGY 3
4cp
prerequisites: 67404 Physical Metallurgy 1, 67303 Mechanical Properties of Materials
subject coordinator: Dr M Wilson
The principles and application of foundry technology, welding technology and powder metallurgy. An introduction to the theory and application of non-destructive testing techniques applied to the examination of metal components and structures. Industrial excursions and technical inspections.

67505
PROJECT F/T
8cp
Materials Science project over two semesters.

67551
MATERIALS CHARACTERISATION
4cp
corequisites: 67504 Physical Metallurgy 3, 67552 Polymers 3 (Hons), 67503 Ceramics 3 (Hons)
Analysis of materials properties with the aid of advanced analytical methods including microscopy, spectroscopy, radiation, thermal, mechanical, electrical and magnetic techniques. Emphasis is given to the selection of examination techniques for the evaluation of specific materials properties. Excursions to research laboratories involving specialist materials testing techniques.

67552
POLYMERS 3 (HONOURS)
4cp
prerequisites: 67302 Polymers I, 67402 Polymers 2, 67303 Mechanical Properties of Materials
67553

CERAMICS 3 (HONOURS)

4cp

prerequisites: 67401 Materials Science 3, 67303 Mechanical Properties of Materials, 67403 Ceramics 1

corequisite: 67501 Ceramics 2

Structural imperfections and defect mechanisms using Kroger-Vink notations. Diffusion in ceramics, solid reactions, sintering theories, densification and grain growth. In addition to current production methods, modern production techniques such as nano particle powder technology, sol-gel developed thin and thick films, and ceramic membrane technology will be covered. Molecular engineering in ceramics through better chemistry for multicomponent and multilayer ceramics and interface interactions will be emphasised.

Mechanical properties will precede the design with brittle materials, fatigue life prediction in ceramics, reliability and probability analysis in ceramics engineering and manufacture.

Micromechanical models and their application to ceramics design, toughening mechanisms, ceramic matrix and cermet composites and near net shape ceramic production methods will also be covered.

Production and properties of thermal, magnetic, electrical and opto electronic ceramic materials, sensor technology piezoelectric and pyroelectric ceramics.

67554

PHYSICAL METALLURGY (HONOURS)

4cp

prerequisites: 67404 Physical Metalurgy 1, 67405 Physical Metalurgy 2

corequisite: 68071 Applied Physics (Materials)

The application of metallurgical principles and theoretical concepts to the present and developing metals processing technologies, including foundry technology, welding technology, powder metallurgical techniques and surface finishing. The theory and application of non-destructive testing techniques applied to the examination of metal components and structures. Industrial excursions and technical inspections.

67601

MATERIALS DEGRADATION

2cp

prerequisites: 67403 Ceramics 1, 67402 Polymers 2

subject coordinator: Dr A Ray

The environmental degradation of ceramics, plastics and rubber. Techniques employed for the measurement of degradation of non-metallic materials.

67602

SURFACE PROPERTIES OF MATERIALS

4cp

prerequisites: 65031 Thermodynamics, 67402 Polymers 2, 67405 Physical Metallurgy 2, 67403 Ceramics 1

subject coordinator: Dr M Stevens

Basic surface properties, thermodynamics of surfaces, electrical double layer theories, absorption/desorption phenomena, surface active agents. Applications in adhesion, catalysis, lubrication and wear characteristics.

67603

DESIGN AND MATERIALS SELECTION

2cp

prerequisites: 67403 Physical Metallurgy 2, 67403 Ceramics 1, 67402 Polymers 2

subject coordinator: Dr B Ben-Nissan

This subject is an examination of the decision-making processes which an engineer or technologist employs to originate, evolve and proportion a device, a machine component or a structural system. Material selection and specification, a critical factor in this process, is examined in regard to material characteristics, in-service performance, aesthetic and economic factors, and other matters that must be considered in the design process. Various case histories are studied.
67604
COMPOSITES
2cp
prerequisites: 67405 Physical Metallurgy 2,
67504 Physical Metallurgy 3, 67402
Polymers 2, 67502 Polymers 3,
67501 Ceramics 2, 67503 Ceramics 3
corequisite: 67602 Surface Properties of
Materials
subject coordinator: Mr G Heness

67651
ADVANCED MATERIALS
4cp
prerequisites: 67504 Physical Metallurgy 3,
67552 Polymers 3 (Hons), 67553 Ceramics 3
(Hons), 67551 Materials Characterisation
corequisite: 67604 Composites
The application of modern theories concerning the structure and properties of materials based upon thermodynamic concepts and the quantum and electromagnetic theories of matter. An integrated treatment will be supported by application examples that will emphasise an interdiscipliary approach to the development of specialist materials such as electroactive composites, semiconductors, superconductors, biomaterials, high performance fibres and composites, and optical fibres.

67858
HONOURS PROJECT
24cp; 2 semesters
prerequisites: Honours Stages 5 and 6
Defining and planning a research project. Research aims and relationship to available time and resources. Reviewing previous research work and critical assessment of methodology and results. Appropriate research methods, data collection, data manipulation, logical development of detailed complex arguments. Research ethics. Structure and presentation of research finds. Preparation of articles for publication in journals and conferences.

67995
INDUSTRIAL TRAINING
(HONOURS)
prerequisites: Honours Stages 5 and 6
A minimum of one semester working as a member of a group involved in professional practice in materials science. The student will be placed in a challenging position requiring initiative, scientific judgement and team work.

67996
INDUSTRIAL TRAINING 1
(MATERIALS SCIENCE)

67997
INDUSTRIAL TRAINING 2
(MATERIALS SCIENCE)

67998
INDUSTRIAL TRAINING
(MATERIALS SCIENCE) P/T

68011
ENGINEERING PHYSICS
(MECHANICAL)
3cp; 3hpw
subject coordinator: Associate Professor P Logan
A foundation physics course for mechanical engineering students. It covers the fundamentals of thermal physics, wave motion including sound and light, and electricity and magnetism.
68012
ELECTRICAL ENGINEERING 1 (MECHANICAL)
3cp; 3hpw
prerequisites: 68011 Engineering Physics (Mechanical), 33121 Engineering Mathematics I
Covers the basic theory of electricity and magnetism and provides an introduction to the theoretical and practical aspects of electrical machines. The syllabus includes DC circuits transients, AC circuits, magnetic fields, electromagnetic induction, magnetic materials, magnetic circuits, DC machines, multiphase circuits, transformers, induction motors and synchronous machines.

68021
ENGINEERING PHYSICS (CIVIL)
6cp; 6hpw
corequisites: 33120 Engineering Mathematics I, 43511 Statics
subject coordinator: Associate Professor P Logan
This is a foundation physics subject for Civil Engineering students. It provides an understanding of fundamental concepts in dynamics, electromagnetism, optics and thermal properties of matter. Students are introduced to the basic techniques of measurement.

68031
ENGINEERING PHYSICS 1 (ELECTRICAL)
6cp; 6hpw
corequisite: 33120 Engineering Mathematics I
subject coordinator: Associate Professor P Logan
A foundation physics subject for electrical engineering students. It covers the fundamentals of dynamics and statics, fluid mechanics, and thermal physics. Students are introduced to the basic techniques of measurement.

68032
ENGINEERING PHYSICS 2 (ELECTRICAL)
3cp; 3hpw
prerequisites: 33120 Engineering Mathematics I, 68031 Engineering Physics I (Electrical)
subject coordinator: Associate Professor P Logan
This is a foundation physics subject for electrical engineering students. It covers the fundamentals of waves and optics, atomic and nuclear physics, and includes an introduction to magnetism.

68033
ENGINEERING PHYSICS 3 (ELECTRICAL)
3cp; 3hpw
prerequisites: 68032 Engineering Physics 2 (Electrical), 67023 Materials Technology (recommended)
Dielectric materials: fundamentals; classification of dielectrics; practical applications; relationship between atomic and bulk dielectric properties; dielectric breakdown.
Magnetic materials: classification of materials by magnetic properties; bulk magnetic properties and their measurement; magnetic materials for practical applications. Conduction modes in metals, dielectrics and semi-conductors. Superconductivity (briefly).

68034
ELECTRICAL POWER GENERATION
3cp; 3hpw
prerequisite: 68031 Engineering Physics 1 (Electrical)
A course on energy and power for electrical engineering students. It covers the laws of thermodynamics: T-S diagrams; different thermodynamic cycles including the Otto; Diesel and steam engines; refrigeration cycles, thermal generation technology; nuclear reactors; nuclear fusion; MHD; solar energy; alternative energy including wind, hydro, waves, tidal and geothermal; the distribution and storage of energy.
including pumped storage and batteries; the efficient use of energy; pollution; the economics, politics and planning of energy production and use.

68035
COMMUNICATION PHYSICS
3cp; 3hpw
subject coordinator: Professor A Moon
Basic aspects of electromagnetic wave propagation and attenuation in specific media. Real boundary problems, distributed source and multiwavelength effects: involving interference, diffraction, reflection, and image formation and processing. Waveguides and optical fibres. Sources and detectors of radiation. Electro-optic, acousto-optic and integrated optoelectronics.

68041
PHYSICS 1 (LIFE SCIENCES)
6cp; 6hpw
subject coordinator: Associate Professor P Logan
General introduction to mechanics, wave motion, optics, thermal physics, properties of matter and modern physics.

68071
APPLIED PHYSICS (MATERIALS)
4cp; 4hpw
prerequisite: 68201 Physics 2
This subject is specifically designed for materials science students. It covers interference and diffraction, lasers, optical fibres, thick lenses, lens aberrations, photometry, the basic principles of photography, image analysis, polarisation, vacuum systems, deposition techniques, thin films, glow discharges, ion beams, thermal sensors and important diagnostic techniques such as ultrasonics and radioisotopes.

68101
PHYSICS 1
6cp; 6hpw
corequisites: 33170 Basic Science Mathematics or 33171 Science Mathematics 1
subject coordinator: Associate Professor P Logan
Introduction to the fundamental laws of mechanics, thermal physics, wave motion and optics.

68201
PHYSICS 2
6cp; 6hpw
prerequisite: 68101 Physics 1
corequisite: 33171 Science Mathematics 1
subject coordinator: Associate Professor P Logan
Introduction to electrostatics, electromagnetism and circuit analysis, properties of matter and optics. For Chemistry and Geology students, atomic and nuclear physics instead of gravitation and additional optics.

68301
PHYSICS 3
3cp; 3hpw
prerequisites: 68201 Physics 2, 33171 Science Mathematics 1
Classical physics: law of universal gravitation; Doppler effect; introduction to statistical analysis. 20th-century physics: discovery of charged particles, concept of quantisation; nature of the atom; Rutherford experiment; Bohr theory; extension of Bohr theory; atomic structure. Special Theory of Relativity. X-rays nature and diffraction. Nature of nucleus; radioactivity, particle detectors. Introduction to elementary particles.
68302
APPLIED OPTICS
3cp; 3hpw
prerequisite: 68201 Physics 2
corequisites: 33172 Science Mathematics 2, 33173 Science Mathematics 3
subject coordinator: Associate Professor P Logan
Polarisation; refraction at a plane and curved surfaces; thin lenses, thick lenses; colour and dispersion of light; the effects of stops; photometry; lens aberrations and lens design; intensification and enhancement; absorption, scattering and spectroscopy.

68303
ELECTROTECHNOLOGY
3cp; 3hpw
prerequisite: 68201 Physics 2
corequisites: 33172 Science Mathematics 2, 33173 Science Mathematics 3
subject coordinator: Mrs S Hogg

68304
ELECTRONICS 1
6cp; 6hpw
prerequisites: 68201 Physics 2, 33172 Science Mathematics 2
Review of AC and DC circuit theory, semiconductor theory, diodes and bipolar transistors, basic transistor circuits, introduction to digital electronics, logic gates, latches and counters, JFET and JFET amplifiers, frequency characteristics and feedback in amplifiers, operational amplifiers, oscillators and power electronics.

68401
QUANTUM PHYSICS 1
3cp; 3hpw
prerequisites: 68301 Physics 3, 33172 Science Mathematics 2, 33173 Science Mathematics 3
subject coordinator: Dr R Woolcott
Brief historical introduction, the Schrödinger equation. Time-independent solutions for harmonic oscillator, infinite and finite square wells, hydrogen atom, potential steps and barriers. Angular momentum. Orthogonality, interpretation of solutions.

68402
APPLIED MECHANICS
3cp; 3hpw
prerequisites: 68201 Physics 2, 33221 Engineering Mathematics 2A
subject coordinator: Dr G Anstis

68403
THERMODYNAMICS AND ENERGY
3cp; 3hpw
prerequisite: 68201 Physics 2
subject coordinator: Associate Professor P Logan
Applications of basic ideas of thermodynamics to the analysis of power generation, refrigeration, heat pumps. Methods of power production: hydrocarbons, alternative energy, energy storage and transportation, solar energy. Temperature measurement; thermocouple, optical pyrometer, resistance thermometry.
68404
ELECTRONICS 2
3cp; 3hpw
prerequisite: 68304 Electronics 1

68405
VACUUM AND THIN FILM PHYSICS
3cp; 3hpw
prerequisite: 68201 Physics 2
subject coordinator: Dr L Kirkup
Vacuum systems; pumps, system operation and design, gauges, leak detection and mass spectrometry. Thin film deposition techniques. Glow discharge sputtering, ion beams. Surface processing. Cryogenics.

68406
COMPUTATIONAL PHYSICS
4cp; 4hpw
prerequisites: 60301 Treatment of Scientific Data, 31871 Computing for Science, 68201 Physics 2, 33221 Engineering Mathematics 2A
subject coordinator: Dr M Braun
Introduction to digital techniques in applied physics; data analysis, numerical modelling. Techniques for writing and testing large programs. Use of computer packages.

68501
NUCLEAR PHYSICS
3cp; 3hpw
prerequisite: 68401 Quantum Physics I
subject coordinator: Dr R Woolcott
Core: basic properties of nucleus, scattering theory, nuclear forces, nuclear models, nuclear reactions, passage of energetic particles through matter, nuclear instrumentation. Lobe: fundamental particles, quarks and leptons, "standard theory", grand unified theories, other current theories. Pass students take the core and a brief summary of the lobe plus extra laboratory work. Honours students take the core and the lobe in more detail.

68502
FIELD THEORY
3cp; 3hpw
prerequisites: 33330 Physical Mathematics, 68303 Electrotechnology
subject coordinator: Dr G Anstis

68503
MATERIALS PHYSICS
3cp; 3hpw
prerequisites: 68301 Physics 3, 68303 Electrotechnology
Introduction to digital techniques in applied physics; data analysis, numerical modelling. Techniques for writing and testing large programs. Use of computer packages.

68504
MICROPROCESSORS IN INSTRUMENTATION
3cp; 3hpw
prerequisites: 31871 Computing for Science, 68304 Electronics 1
Computer architecture; machine language, computer interfacing; applications of microcomputers in instrumentation, the FORTH language.
68505
SOLID-STATE PHYSICS
3cp; 3hpw
prerequisite: 68401 Quantum Physics I
subject coordinator: Dr J Bell
Electrons in solids; free electrons, ICAO, band theory, nearly free electron, tight binding. Insulators, metals and semiconductors: electrical and optical properties of semiconductors. Lattice vibrations; phonons, specific heat, thermal conductivity and expansion.

68508
PROJECT A
6cp; 2 semesters
A pass project in Applied Physics.

68516
TECHNIQUES OF MATERIALS ANALYSIS
6cp; 3hpw
prerequisites: 67202 Introduction to Crystallography, 68301 Physics 3, 69302 Applied Optics
subject coordinator: Dr D Green
X-ray generation, absorption and scattering; space group theory; crystal diffraction theory; application to structure analysis; defects and deformations in crystal, accurate cell dimensions. Quantitative XRF and XRD.

68553
COMPUTER MODELLING OF PHYSICAL SYSTEMS
3cp; 3hpw
prerequisites: 68406 Computational Physics, 68505 Solid-state Physics, 68502 Field Theory, 68601 Quantum Physics 2

68556
ADVANCED X-RAY TECHNIQUES
3cp; 3hpw
prerequisites: 68301 Physics 3, 67202 Introduction to Crystallography, 33330 Physical Mathematics
subject coordinator: Professor A Moon

68557
ADVANCED ELECTRON MICROSCOPY TECHNIQUES
3cp; 3hpw
prerequisites: 68301 Physics 3, 68302 Applied Optics, 33330 Physical Mathematics
subject coordinator: Professor A Moon

68601
QUANTUM PHYSICS 2
3cp; 3hpw
prerequisite: 68401 Quantum Physics I
corequisite: 33330 Physical Mathematics
subject coordinator: Dr G Anstis
Quantum mechanics; time-independent perturbation theory, variational principle, applications. Rotational and vibrational spectra of molecules. Multi-electron atoms. Hartree approximation. Interpretation of quantum theory. Statistical mechanics and transport phenomena; probability calculations. Isolated systems, fixed-temperature systems, resulting distributions, partition function. Application to paramagnetic solid, ideal gases and

68602
PHYSICAL OPTICS
3cp; 3hpw
prerequisites: 68502 Field Theory, 68302 Applied Optics
subject coordinator: Professor A Moon
Classical physical optics; dispersion, Fresnel equations; polarisation; interference and interferometry; diffraction, the use of Fourier transforms in diffraction; spatial filtering; laser cavities and amplification; coherence, holography, fibre optics.

68603
APPLIED THERMODYNAMICS
3cp; 3hpw
prerequisites: 68403 Thermodynamics and Energy, 33221 Engineering Mathematics 2A
Thermodynamic functions and their applications. Analysis of reactions, phase changes. Non-equilibrium thermodynamics; thermoelectric effect. Low temperature physics. The third law: production of low temperatures. Introduction to kinetic theory; mean free path, calculation of thermal conductivity, resistivity etc.

68604
PRINCIPLES OF INSTRUMENTATION
3cp; 3hpw
prerequisite: 68406 Computational Physics
corequisite: 33330 Physical Mathematics
Characteristics of measurement; the role of electronics in instrumentation; signal conditioning; performance characteristics of instruments; noise and its reduction; analysis of signals and instruments.

68605
TRANSDUCERS AND DEVICES
3cp; 3hpw;
prerequisite: 68304 Electronics 1, 68505 Solid-state Physics

68608
PROJECT B
3cp
An extension of 68508 Project A which is a pass project in Applied Physics.

68652
DEVICE PHYSICS
6cp; 6hpw
prerequisites: 68505 Solid State Physics, 68602 Physical Optics, 68404 Electronics 2
subject coordinator: Professor G Smith
Electronics; p-n junction diodes, npn and pnp transistors, field effect transistors. Photonics; detectors and sources of radiation spectral properties, laser diodes, LED, photodiodes, heterodyne systems, signal and background noise, detectability, thermal noise, bit error rate. Anisotropic media, acousto- and electro-optics. Optical modulation. Integrated optoelectronics. Transducers: piezoelectric devices for velocity, acceleration, strain sensors, position and angle sensors including laser gyroscope.

68655
ADVANCED SOLID-STATE PHYSICS
4cp; 3hpw
prerequisites: 68505 Solid-state Physics, 33330 Physical Mathematics
Band structure of solids: tight-binding method, nearly free electron model; computational techniques. Electron dynamics in electric and magnetic fields; low dimensional systems. Lattice

68711
PHYSICS 1 S
8cp
for Computing sub-major students
Details are as for 68041.

68712
ENGINEERING PHYSICS (CIVIL) S
8cp
for Computing sub-major students
Details are as for 68021.

68713
PHYSICS FOR ELECTRONICS S
8cp; 6hpw
subject coordinator: Associate Professor P Logan
A foundation course for the sub-major in electronics. It covers basic mechanics, wave motion and optics: electrostatics, electromagnetism and circuit analysis. An option, recommended in special cases only, is to replace the wave motion and optics with further mechanics including rotational motion.

68714
ELECTRICITY AND MAGNETISM S
4cp; 3hpw
prerequisite: 68101 Physics 1
Introduction to electrostatics, electromagnetism and circuit analysis.

68721
PHYSICS 2 S
8cp
for Computing sub-major students
Details are as for 68201.

68731
PHYSICS 3 S
4cp
for Computing sub-major students
Details are as for 68301.

68732
APPLIED OPTICS S
4cp
for Computing sub-major students
Details are as for 68302.

68733
ELECTROTECHNOLOGY S
4cp
for Computing sub-major students
Details are as for 68303.

68734
ELECTRONICS 1 S
8cp
for Computing sub-major students
Details are as for 68304.

68741
QUANTUM PHYSICS 1 S
4cp
for Computing sub-major students
Details are as for 68401.

68742
APPLIED MECHANICS S
4cp
for Computing sub-major students
Details are as for 68402.

68743
THERMODYNAMICS AND ENERGY S
4cp
for Computing sub-major students
Details are as for 68403.
68744
ELECTRONICS 2 S
4cp
for Computing sub-major students
Details are as for 68404.

68751
NUCLEAR PHYSICS S
4cp
for Computing sub-major students
Details are as for 68501.

68753
MATERIALS PHYSICS S
4cp
for Computing sub-major students
Details are as for 68503.

68754
MICROPROCESSORS IN INSTRUMENTATION S
4cp
for Computing sub-major students
Details are as for 68504.

68755
SOLID-STATE PHYSICS S
4cp
for Computing sub-major students
Details are as for 68505.

68761
QUANTUM PHYSICS 2 S
4cp
for Computing sub-major students
Details are as for 68601.

68763
APPLIED THERMODYNAMICS S
4cp
for Computing sub-major students
Details are as for 68603.

68764
PRINCIPLES OF INSTRUMENTATION S
4cp
for Computing sub-major students
Details are as for 68604.

68858
PROJECT (HONOURS)
24cp; 2 semesters
prerequisite: 68997 Industrial Training 2 (Physics)

The project is carried out over two semesters under the supervision of a member of academic staff of the Department of Applied Physics and, if appropriate, an external supervisor. At the end of the first semester the student’s work will be assessed on the basis of a short report. Towards the end of the project the student is required to present a talk to a meeting of academic staff. The final report will represent not only the results of the student’s work but also an understanding of their significance, an appreciation of other relevant work in the area of the project and an understanding of the underlying physics of the methods employed.

68943
APPROVED EXTERNAL SUBJECT
3cp

68946
APPROVED EXTERNAL SUBJECT
6cp

68995
INDUSTRIAL TRAINING (APPLIED PHYSICS HONOURS)
15hpw
prerequisite: preliminary selection into the Honours course in Applied Physics, knowledge of workshop practice and an appreciation of laboratory safety principles

Students will work for a period of one semester (at least 18 weeks) on a project or projects which involve the application of physical principles to
technological problems of some economic importance. The project will be carried out under the direction of an industrial and an academic supervisor.

68996
INDUSTRIAL TRAINING 1
(PHYSICS)

68997
INDUSTRIAL TRAINING 2 (PHYSICS)

91201
HORTICULTURAL
EXPERIMENTATION
3cp; 3hpw
Deals with the principles of biological experimentation, as applied to horticulture. These include uses of simple mathematical functions; experimental design and analysis; the use of statistics; and applications in practical situations such as testing growth media, pesticides, or plant performance.

91204
SOILS AND GROWTH MEDIA
6cp; 6hpw
prerequisite: 65012 Chemistry I (Life Sciences), 91311 Biology I or equivalent
Physical and chemical properties of soils and horticultural potting mixtures; methods of analysis; supply of nutrients, water, air, ions; management of soils and potting mixes. Problems with soils and mixes; pH, drainage, irrigation and salinity. Natural Australian soil ecosystems; growth media, formulation and use; media used in hydroponics.

91205
PLANT BREEDING AND GENETICS
6cp; 6hpw
prerequisite: 91314 Microbiology I
Biochemical and cellular processes including molecular genetics and control of genetic activity in cells, and environmental influences amongst individuals and populations. The program introduces students to cloning, somatic cell genetics and hybridisation. The work will also include the control of cell activity by DNA and protein synthesis, and hormonal control of plant processes. The importance of cytoplasmic inheritance will be introduced as will the genetic manipulation of the plant genome. Traditional methods of plant breeding, and production of pure seed and stocks will also be covered.

91206
PLANT PRODUCTION
6cp; 6hpw
prerequisite: 91312 Biology 2
Cultivation of both exotic and native plants of value in urban horticulture. Skills necessary for the cultivation, selection and modification of stocks for particular situations are developed. The principles of plant physiology, water use, irrigation and associated problems within nurseries and intensive cultivation systems are covered.

91207
PLANTS IN THE LANDSCAPE
8cp; 6hpw
prerequisite: 91206 Plant Production
This subject is designed to develop the student's understanding of the uses of plant materials (especially woody plants) in the landscape as part of the function of open space management. The subject considers the benefits of plants, techniques for selecting appropriate plants of good quality for particular purposes and sites, methods of establishing these plants and management techniques necessary to maintain plant health, including the diagnosis and management of plant problems. Integral to this subject are site visits to open space developments around Sydney and discussions with the managers of these areas.
91208
PLANT PROTECTION
6cp; 6hpw
prerequisites: 91211 Horticultural Botany, 91314 Microbiology 1
The concept of disease in plants, and the classification of plant diseases is introduced. The main groups of plant pathogens and pests, their transmission and management are studied. Visits to the Plant Disease Diagnostic Laboratory, Plant Quarantine Station, NSW Plant Pathology Herbarium and related laboratories are arranged. A collection, preservation and identification of plant pathogens is a component of the subject.

91210
LANDSCAPE HORTICULTURE
3cp; 3hpw
Introduces students to landscape studies by considering the significance and interrelationships of landscape, horticulture and human societies in the past, present and future. The subject considers the impact of humans on the landscape, the history of people/plant/landscape interactions, including the history of gardens, and the process of landscape design in relation to current practice in Australia.

91211
HORTICULTURAL BOTANY
3cp; 3hpw
prerequisite: 91311 Biology 1
A number of biological concepts underlining plant culture are considered, including Angiosperm and Gymnosperm morphology and anatomy, and the adaptations to diverse environmental conditions. Special reference is made to the Australian flora.

91215
HORTICULTURAL RESEARCH PROJECT
8cp; 6hpw
corequisite: 91224 Horticultural Production Management or 91225 Open Space Management
Designed to enhance the student’s scientific and professional skills by developing the student’s ability to carry out horticultural research in an independent manner. The student is required to formulate a research or development project topic, to plan the necessary research work within an appropriate time-scale, to carry out the work, to analyse appropriately and critically the data or information obtained, to reach conclusions relating the data (or information) to the project topic, and to present the findings of the project in a formal written report and a seminar to other students and staff. The secondary aim of the subject is to develop the student’s skills in searching for and obtaining employment through participation in a class dealing with employment and career development.

91218
AUSTRALIAN PLANTS
6cp; 6hpw
prerequisite: 91360 Quantitative Ecology
This subject broadens the understanding of the origin, evolution and classification of the Australian flora. The potential of native plants for horticultural exploitation e.g. cut flowers, essential oils, source of foods and pharmaceuticals is considered. One-day excursions to national parks, botanic gardens and wildflower farms and a three-day excursion to Canberra and the National Botanic Gardens, are included. The subject includes a plant collection demonstrating various applications.
91224
HORTICULTURAL PRODUCTION MANAGEMENT
4cp; 3hpw
prerequisites: 91229 Horticultural Financial Management, 91206 Plant Production
Through this subject, the student is expected to develop an understanding of the technical aspects of nursery management and plant production. Cost/benefit analysis will be made of the daily operations of commercial enterprises ranging from plants produced in tissue culture to open area growth of flowers, to the intensive controlled growth of potted plants in greenhouses. Also covered will be the technical aspects of personnel management, and seasonal and budgetary factors involved. Cost/benefit analysis of physical, biological and human resources will be considered. Long-term and construction design of plant production units will be discussed.

91225
OPEN SPACE MANAGEMENT
4cp; 3hpw
prerequisites: 91229 Horticultural Financial Management, 91207 Plants in the Landscape
Designed to develop the student’s understanding of the operation and management of open space amenity areas, such as landscaped parks and gardens, bushland and reserves, and urban streets. Several case studies in open space management are examined and the importance of obtaining accurate information for decision making is highlighted. The subject considers management functions including planning in relation to long-term and short-term goals, organising resources, staff recruitment and development, directing staff and evaluating the achievement of goals.

91229
HORTICULTURAL FINANCIAL MANAGEMENT
4cp; 3hpw
This subject is normally taken in Stage 5 of the course. The principles and practices of business management in a horticultural enterprise are introduced. The subject includes an introduction to accounting methods, balance sheets, stock control, management and legal issues.

91236
PLANT TISSUE CULTURE
4cp; 3hpw
prerequisites: 91211 Horticultural Botany, 91208 Plant Protection
An introduction to plant cell and tissue culture, and the application of these techniques to cloning, somatic embryogenesis, somaclonal variation, anther and pollen culture, disease indexing and pathogen elimination. The program includes media preparation, nutrient and growth substance requirements; transplanting hardening-off stages of in vitro grown plants. Students are also introduced to experiments involving plant tissue culture technology. Special emphasis is given to Australian indigenous and rare flora.

91242
HORTICULTURAL PROCEDURES F/T
12cp; 6hpw, 2 semesters
Introduction to urban horticulture, indicating its historical and cultural significance. Major world climate zones and the species and typical structural forms of vegetation. Plant features utilised in ornamental horticulture for a variety of amenity and aesthetic purposes. Annual, perennial, herbaceous, woody, exotic and native plant species for specific purposes. Plant nomenclature, and identification of selected groups; techniques of propagation from seeds, spores, cuttings. Budding, grafting and pruning techniques. Applications of a range of construction
materials and equipment to open area establishment and planting; simple surveying and levelling techniques and introduction to recording and monitoring programs. The role of selected woody ornamentals, bulbs, and softwooded perennials in their natural ecosystems, and in the artificial environments of urban landscapes. The distribution of native vegetation in the Australian environment, and the choice of plants, exotic and native, for particular places and uses. Methods of plant identification. The asexual propagation of the plant material including breeding, aerial layering, semi-hardwood cuttings, grafting, introduction of leaf cuttings, tissue culture, and cultivation of plants in controlled nursery environments. An introduction to the problems presented by different horticultural sites, and techniques of landscape construction, including drainage, postings, retention banks, and access ways. Classes for the full-time Horticultural Procedures subject are undertaken at the Ryde College of TAFE over two semesters. TAFE commencement dates for this subject will be earlier than the UTS commencement each semester. All necessary information will be given to commencing students at UTS enrolment.

91244
HORTICULTURAL PROCEDURES P/T
12cp; 3hpw, 4 semesters
equivalent to 91242
Classes for the part-time Horticultural Procedures subject are undertaken at the Ryde College of TAFE over two years. TAFE commencement dates for this subject will be earlier than the UTS commencement each semester. All necessary information will be given to commencing students at UTS enrolment.

91312
BIOLOGY2
6cp; 6hpw
prerequisite: 91311 Biology 1 or equivalent
Theme: interrelationship between structure and function in living systems at two levels of organisation: cellular and organismic. Cell structure and physiology: molecular architecture of cells; cellular reactions and metabolism; molecular basis of heredity and information transfer. Animal physiology – mechanisms of movement, gas exchange and circulation, nutrition and digestion, osmoregulation and excretion among animal groups. Plant physiology – anatomy and physiology of flowering plants, nutrition, photosynthesis, transport. Physiological adaptations of Australian native species of animals and plants to the specific environments.

91311
BIOCHEMISTRY 1
6cp; 6hpw
prerequisites: 91311 Biology 1, 65022 Chemistry 2 (LS)
Bioenergetics and physical biochemistry: energy flow and transformation, laws of thermodynamics, free energy considerations in equilibrium and steady-state situations; electrolyte behaviour, pH and proton equilibria; colligative properties, osmotic pressure; chemical kinetics, catalysis and enzyme action. Structure and function of biological molecules emphasising structural, energy providing and informational characteristics: carbohydrates, lipids, amino acids, peptides, proteins (including enzymes), nucleosides, nucleotides, nucleic acids. Replication and repair of DNA; recombinant DNA. Protein
synthesis. Basic concepts of metabolic pathways; energetics of metabolism.

91314

MICROBIOLOGY 1

6cp; 6hpw

prerequisite: 91312 Biology 2

An introduction to the structure, function and taxonomy of the bacteria, fungi, protozoa and viruses. A survey of selected topics including microscopy; elementary immunology; chemotherapy; microbial ecology; sterilisation and disinfection and microbiological techniques.

91315

BIOMONITORING

3cp; 3hpw

prerequisites: 91312 Biology 2, 91317 Human Biology

corequisite: 91314 Microbiology 1

The dynamics of natural and disturbed aquatic and terrestrial ecosystems; effects of industrial pollution on these ecosystems are investigated. Effects of pollution include chemical changes such as pH fluctuations, increases in concentrations of heavy metals and organic chemicals such as pesticides and detergents; biological contaminants resulting from sewage, garbage and changes in the balance of the natural microorganisms biota. Sampling procedures; estimates of biomass and productivity; methods of data analysis. This subject includes field excursions.

91316

BIOINSTRUMENTATION

6cp; 3hpw

prerequisite: 68041 Physics 1 (LS)

Extension of physics knowledge to concepts of electricity emphasising electronic instrumentation as used in field, clinical and other biological applications.

Such knowledge is essential to acquire competence in the practice of medical laboratories and environmental studies.

91317

HUMAN BIOLOGY

6cp; 6hpw

corequisite: 91312 Biology 2

Basic gross anatomy and detailed study of microscopic structure of the human body. The structure and function of tissues and organs are related to a model of control mechanism in order to emphasise the process of homeostasis. Whenever possible, an attempt is made to integrate morphological, physiological and biochemical details in each of the functional units in the human body.

91319

CONCEPTS IN BIOCHEMISTRY

8cp; 6hpw

prerequisites: 91311 Biology 1 or equivalent, 65022 Chemistry 2 (Life Sciences)

This subject is available only to students not enrolled in the undergraduate degrees in Biomedical Science, Biotechnology or Environmental Biology.

91320

BIOCHEMISTRY 2

6cp; 6hpw

prerequisite: 91313 Biochemistry 1

91321
BIOCHEMISTRY 3
8cp; 6hpw
prerequisite: 91320 Biochemistry 2
Structure of biological membranes and implications for metabolite transport; the cell surface and recognition of extracellular modulators of cell function. Adaptive processes and enzyme regulation in metabolic control; biochemical devices for the amplification of metabolic response. Biosynthesis, secretion and action of hormones; detailed biochemistry of selected hormones. Vitamins and trace metals in nutrition and their involvement in enzyme action as coenzymes, activators and regulators. Biochemistry of connective tissue and bone; calcium homeostasis. Specialised metabolism of nervous tissue; generation and transmission of the nerve impulse. Muscle proteins and the biochemistry of muscle contraction.

91322
BIOCHEMISTRY 4
8cp; 6hpw
prerequisite: 91320 Biochemistry 2
Biochemical pharmacology and toxicology: modes of action of widely-used drugs including anti-depressants, addictive drugs, narcotics, analgesics, anaesthetics and anti-inflammatory drugs. The toxicity and metabolism of foreign compounds and their elimination from the body. Biomedical Science: biochemical aspects of disease states, cancer and carcinogenesis, rheumatoid arthritis and other inflammatory diseases, inherited metabolic diseases, mental disorders, alcoholism.

91326
ANALYTICAL BIOCHEMISTRY
6cp; 6hpw
prerequisite: 91313 Biochemistry 1

91330
MICROBIOLOGY 2
6cp; 6hpw
prerequisite: 91314 Microbiology 1
Microbial physiology and basic applied microbiology. Bacterial physiology - nutrition, energetics; biosynthesis and growth. Mechanisms and use of growth and physiological reactions in diagnostic and applied microbiology. Features of, and factors influencing, the microbial flora of habitats such as the higher animal body, soils, water supply and disposal systems and foods. The survival, growth and death of such flora; methods for identification and quantitation. Introduction to bacterial genetic systems and processes. Antimicrobial substances in the environmental, hospital and laboratory environments.

91331
MICROBIOLOGY 3
8cp; 6hpw
prerequisite: 91330 Microbiology 2
Public health microbiology. Basic epidemiological principles; mathematical formulation of epidemics; sociological aspects. The public health laboratory
environment; food, water and airborne diseases; exotic and notifiable diseases; zoonoses. Epidemiological tracing methods; biotyping; serotyping; bacteriophage typing; bacteriocin (BLIS) typing; molecular typing. Control measures; hygiene; sanitation; disinfection; sterilisation; vaccines, vaccination procedures and vaccination programs.

91337
VIROLOGY
4cp; 3hpw
prerequisite: 91330 Microbiology 2
Tissue culture practices. Introductory virology; nature of viruses, viral multiplication; classification; identification. Diagnostic virology, involving isolation and serology of viruses of clinical significance. Chemotherapy and interference principles. Epidemiological principles and advanced case studies, vaccine programs and control of viral and bacterial diseases.

91334
MOLECULAR BIOLOGY 1
4cp; 3hpw
prerequisites: 91314 Microbiology 1, 91313 Biochemistry 1
corequisites: 91330 Microbiology 2 and/or 91320 Biochemistry 2
Introduction to the basis of present-day molecular biology. Key concepts and procedures in bacterial and bacteriophage genetics, including mutation, recombination and mechanisms of genetic exchange, utilising plasmids, transposons and viruses. Introduction to the principles and procedures underlying DNA manipulation methods in the molecular biology laboratory, including the molecular cloning, selection and analysis of recombinant DNA.

91335
MOLECULAR BIOLOGY 2
8cp; 6hpw
prerequisite: 91334 Molecular Biology 1

91341
BLOOD BANK
4cp; 3hpw
prerequisites: 91354 Anatomical Pathology, 91355 Haematology 1, 91351 Immunology 1

91342
CLINICAL BIOCHEMISTRY 1
4cp; 3hpw
prerequisite: 91320 Biochemistry 2
Principles of clinical biochemistry. Laboratory hazards and quality control including appropriate statistics as used in clinical biochemical laboratories. Introduction to calculations and analyses of clinically important substances. Pre-analytical procedures. Qualitative analysis as exemplified by urine analysis. Quantitative analysis as exemplified by inorganic phosphorus analysis. Spectroscopic identification of normal and abnormal haemoglobin pigments. Blood sugar estimations and basis of abnormalities of carbohydrate metabolism. Principles of clinical enzymology with particular reference to the

91343
CLINICAL BIOCHEMISTRY 2
4cp; 3hpw
prerequisite: 91342 Clinical Biochemistry 1

91347
TOXIC MATERIALS IN THE ENVIRONMENT
4cp; 3hpw
prerequisites: completion of Stages 1–4
Pathways of toxic substances in the environment. Transfer mechanisms between the different environment compartments. Bio-accumulation and bio-transformation. Environmental legislation: the NSW Environmental Acts and their associated regulations; comparison of the Federal Acts with those from other States; significance of socioeconomic factors on decision making in environmental impact assessment; objectives, contents and procedures for the preparation of environmental impact statements.

91350
PRINCIPLES OF PHARMACOLOGY AND TOXICOLOGY
4cp; 3hpw
prerequisites: 91317 Human Biology, 91313 Biochemistry 1

91351
IMMUNOLOGY 1
3cp; 3hpw
prerequisites: 91354 Anatomical Pathology, and either 91314 Microbiology 1 or 91313 Biochemistry 1
This is a core subject for the Biomedical Sciences and Biotechnology courses that is designed to introduce the basic concepts of immunology. The subject is structured so that it follows the course of an immune response, from initial non-specific reactions to the development of adaptive responses and immunological memory. Emphasis is given to the basic concepts that underlie the recognition of foreignness and the response to infection. The practical sessions introduce students to a variety of cellular and serological techniques that are the cornerstones of immunological analysis. In addition, special interactive teaching sessions are used to explore contemporary topics in immunology.

91354
ANATOMICAL PATHOLOGY
6cp; 6hpw
prerequisites: 91312 Biology 2, 91317 Human Biology, 65022 Chemistry 2 (LS)
This subject provides a basic knowledge of disease processes, the body's responses to them, the preparation and staining of mammalian tissues for microscopic examination of organ structure, and light microscopic appearance of diseased tissues.
The subject also teaches the chemistry of biological dyes and their uses in the laboratory to highlight normal tissue structures and demonstrate pathological tissue changes.
On completing the subject the student should have a general understanding of disease processes, their morphological appearance and the laboratory techniques used to interpret structural tissue changes that occur in disease. The student should also be able to identify a variety of diseases from histological sections under the light microscope, as well as perform standard laboratory staining procedures on tissue sections.

91355
HAEMATOLOGY 1
3cp; 3hpw
prerequisites: 91354 Anatomical Pathology, and either 91314 Microbiology 1 or 91313 Biochemistry 1

Structure, function and morphology of normal blood and bone marrow. Haemostasis and haematopoiesis. Automated laboratory equipment used in haematology. Introduction to haematological disease and the significance of haematological changes in disease.

91358
HAEMATOLOGY 2
8cp; 6hpw
prerequisite: 91355 Haematology 1

Disease processes related to hereditary, acquired, benign and malignant disorders of haematological systems. Correlation of physiological processes, pathological states and diagnostic tools in haematology. Light microscopic morphological examination of peripheral blood and bone marrow in disease and correlation of these findings with indices and cell counts obtained by automated laboratory equipment. Procedures for detection and precise diagnosis of anaemias, haemostatic disorders, haemoglobin disorders and haematological malignancies. Introduction to cytogenetics; prenatal diagnosis of genetic disease; genetic counselling and cancer cytogenetics.

91359
IMMUNOLOGY 2
8cp; 6hpw
prerequisite: 91351 Immunology 1

Provides current concepts of modern immunology to students who have some basic understanding of the subject, and an appreciation of the wide spectrum of applied immunology in medicine, research and industry. Specialised areas of immunology covered include genetics of antibody diversity; structure of antibodies, T-cell receptor and MHC molecules; cytokines; monoclonal antibodies; clinical immunology and techniques applicable in both diagnostic and research laboratories including enzyme-linked immunoassays; cell separations and flow cytometry.

91360
QUANTITATIVE ECOLOGY
6cp; 6hpw
prerequisites: 91312 Biology 2, 91317 Human Biology, 91395 Biocomputing, 33105 Introductory Biometrics or 91201 Horticultural Experimentation

Measurement and analysis as part of the resource management process. Techniques of estimating population size and density of sedentary organisms; sampling methods, assessment and data analysis in aquatic and terrestrial systems. Techniques for sampling multispecies communities and mobile organisms. Estimations of biomass and productivity. Principles of identification and categorisation of key groups of indicator organisms in aquatic and terrestrial systems, including major groups of plants, invertebrates and microbial groups. The design and use of keys. Collection, preservation and identification of specimens from the field. This subject will include field excursions to develop skills of field identification of organisms and measurement techniques, both aquatic and terrestrial.
91362
PLANT ECOPHYSIOLOGY
6cp; 6hpw
prerequisite: 91360 Quantitative Ecology
Principles of plant classification with reference to Australian groups; introductory geology, soil formation, soil structure, classification and analysis; anatomical and other responses of plants to environmental stress; carbon metabolism and factors affecting growth and development; nitrogen fixation and nutrient cycling; the role of plants in the biosphere. This subject will include field excursions.

91363
ANIMAL ECOPHYSIOLOGY
6cp; 6hpw
prerequisite: 91360 Quantitative Ecology
Basic concepts in ecophysiology; limiting factors, lethal limits, acclimation. Patterns of physiological responses to natural and selected man-made stressors. Coordination of physiological processes with environmental factors; neuro-endocrine control of life cycles and physiological responses, stress syndrome. Population changes; basic animal population dynamics, structure, growth and regulation of populations. This subject includes a field excursion.

91364
AQUATIC ECOCOLGY
8cp; 6hpw
prerequisites: 91362 Plant Ecophysiology, 91363 Animal Ecophysiology
Australian water resources and the hydrological cycle. Structural components and functional processes of aquatic ecosystems; physical, chemical and biological features; energy flows and nutrient cycles. Distinctive features of lakes, rivers and streams, estuaries, coastal lagoons and the sea. Assessment and monitoring of water pollution problems; water quality and biological surveillance. Management of polluted and disturbed aquatic habitats. Management of water supply reservoirs. This subject will involve a number of field excursions including an excursion in February preceding enrolment.

91365
TERRESTRIAL ECOCOLGY
8cp; 6hpw
prerequisites: 91362 Plant Ecophysiology, 91363 Animal Ecophysiology
Ecosystem concepts and their application to ecological management; ecosystem dynamics; major world ecosystems and associated non-biotic mechanisms; major Australian terrestrial ecosystems and their management. Fire: its ecological impacts and management. Case studies in applied ecology. Use will also be made of reports of statutory authorities, management plans and environmental impact assessments. This subject will include field excursions including an excursion in February preceding enrolment.

91366
PEST CONTROL AND TOXICOLOGY
8cp; 6hpw
prerequisite: 91360 Quantitative Ecology
Biological and chemical principles of pest control: the safe use of pesticides. Methods of toxicological testing for pesticides, heavy metals and other hazardous chemicals, in air, soil and water, using biological assays of animals and plants.

91367
APPLIED ECOCOLGY
8cp; 6hpw
prerequisites: 91364 Aquatic Ecology, 91365 Terrestrial Ecology
The lecture/seminar component will deal with experimental design for ecological investigations, with applications in environmental management; the significance of socioeconomic factors on decision making in environmental matters, and the role of the professional environmental scientist. A major part of this subject will be devoted to a research project, normally carried out in small groups. An individual detailed report on the project will be submitted by each
student. This subject is normally to be taken in the last semester of the undergraduate work, since it draws on the expertise derived from all other subjects in the course. There is a field excursion.

91368

BIOPROCESSING

8cp; 6hpw

Prerequisite: 91330 Microbiology 2

Fermentation technology; processes of formation and extraction of useful products of microbial, animal and plant cells; the microbiological, physiological and biochemical bases of industrially useful fermentations in the food, beverage, pharmaceutical and other relevant industries; unit operations and processing procedures in industrial fermentations. Computer interfacing and control procedures for fermentation systems. Economic and other factors impinging on the operation of fermentation industries. Industrial visits and a literature project are undertaken in this subject.

91369

APPLIED AND ENVIRONMENTAL MICROBIOLOGY

8cp; 6hpw

Prerequisite: 91330 Microbiology 2

Industrial visits are an important component of this subject.

91370

FIELD STUDIES: SEMI-ARID ECOLOGY

8cp; 6hpw (run over 10–14 day excursion to far-western NSW in July every third year, alternating with 91371 i.e. a major field elective every 18 months)

This subject is normally taken in senior stages of the degree course. It can thus be assumed that students will have a thorough knowledge of basic ecology (see also elective field study subjects 91371 and 91375). The aim of the subject is to broaden students’ understanding of environmental biology and its management applications by demonstration and experimentation outside the Sydney Basin. The importance of water and water management, rangeland management and national parks management of dry areas will be included, along with ecological studies of factors determining the composition and structure of semi-arid vegetation. Assessment will involve submission of a log book/journal and a project report or presentation, to be completed after the field excursion.

91371

FIELD STUDIES: MOUNTAIN ECOLOGY

8cp; 6hpw (run over 10-day excursion to southeastern NSW in December every third year, alternating with 91370 i.e. a major field elective every 18 months)

This and other electives are normally taken in senior stages of the degree course. It can thus be assumed that students will have a thorough knowledge of basic ecology (see also elective field study subjects 91370 and 91375.) The aim of the subject is to broaden the student’s understanding of environmental biology and its management applications by demonstration and experimentation outside the Sydney Basin. The student will be introduced by demonstration and experimentation to the ecology of tall forests and mountain areas, the management of mountain forests, the impacts of forestry
operations, and the management of national parks and wilderness areas. Assessment will involve submission of a log book/journal, and a project report or presentation, to be completed after the field excursion.

91372
CLINICAL BACTERIOLOGY AND PARASITOLOGY
12cp; 9h pw
prerequisite: 91331 Microbiology 3
Quantitative methods, reliability studies, automation, data processing and numerical analysis in clinical microbiology. Pathogenic microorganisms: their handling (including safety requirements), cultivation, isolation and relationship to the indigenous flora of man and animals. A detailed study of staphylococci, streptococci, corynebacteria, mycobacteria, neisseria, enteric bacteria, pasteurellae, pseudomonads and spirochaetas. Antibiotics and antibiotic sensitivity testing. Pathogens of veterinary significance. Parasites (protozoa and helminths) of medical and veterinary importance; methods for handling specimens and laboratory diagnosis. Molecular techniques for diagnosis and identification.

91373
APPLIED MYCOLOGY
3cp; 3h pw
corequisite: 91330 Microbiology 2
Introduction to fungal structure and function. Fungal classification. Fungi in bioprocessing, clinical disease, and biodegradation.

91374
TISSUE CULTURE
4cp; 3h pw
prerequisite: 91351 Immunology 1
Theoretical and practical aspects of the cultivation of animal cells and tissues in vitro. Basic principles of culture; establishment of cell lines; adherent and suspension cultures; harvesting and propagation; organ cultures; storage of cultures; cell fusion; use of cultures to produce and test for specific products; culture dynamics; flow cytometry; mutation and transformation in vitro.

91375
FIELD STUDIES: MARINE SCIENCES
4cp; 3h pw (run over 6-day excursion to Jervis Bay or similar south coast area of NSW, currently offered twice each year in Jan/Feb and July)
This and other electives are normally taken in senior stages of the degree course. It can thus be assumed that students will have a thorough knowledge of basic ecology (see also elective field study subjects 91370 and 91371). The aim of the subject is to broaden the student's understanding of environmental biology and its management applications by demonstration and experimentation outside the Sydney Basin. The student will be introduced by demonstration and experimentation to a variety of marine, estuarine, and littoral ecosystems, and the management principles and practices in each zone. This excursion is seen as part of the interinstitutional field studies series of the Australian Marine Sciences Consortium (AMSC) which includes 20 member universities in Australia and New Zealand, the Australian Institute of Marine Science, the Australian Defence Force Academy, and the Royal Australian Naval College. Instructors in a range of relevant disciplines come from member institutions, and investigations include chemical, biological, geological and physical oceanography, in addition to the biology of fishes, benthic fauna, plants and sediments.
In accordance with the guidelines for AMSC excursions, UTS supervisors will assess a report submitted on the final day of the field trip.
91376
ENVIRONMENTAL MEASUREMENT
3cp; 3hpw
prerequisites: 91312 Biology 2, 33105 Introductory Biometrics, 91395 Biocomputing
Measurement and analysis as part of the resource management process. Techniques of estimating population size and density of sedentary organisms; sampling methods, assessments and data analysis in aquatic and terrestrial systems. Techniques for sampling multispecies communities and mobile organisms. Estimations of biomass and productivity. This subject involves an excursion to develop skills of field identification of organisms and measurement techniques, aquatic and terrestrial.

91377
CYTOPATHOLOGY
16cp; 6hpw, for 2 semesters
prerequisites: 91354 Anatomical Pathology, 91355 Haematology 1
Instruction in the interpretation and diagnosis, at the light microscope level, of cell samples from a variety of anatomical sites. Morphologic features of cells in normal states, effects of inflammation, physiologic patterns, hormonal effects, changes due to specific organisms and viruses, premalignant and malignant conditions and the effects of treatments on cell morphology and smear patterns. Throughout the first semester the emphasis is on samples from the female genital tract. The second semester provides instruction on cell samples from the respiratory tract, alimentary tract, urinary tract, serous cavities, central nervous system, breast and thyroid with emphasis on fine needle aspiration samples. Principles and procedures of specimen collection, preparation and staining, reporting methodology and laboratory procedures are covered. Epidemiologic and aetiologic factors in premalignant and malignant diseases and special procedures which complement cytopathologic diagnosis are included.

91379
ENVIRONMENTAL SCIENCE FOR ENGINEERS
4cp; 3hpw
equivalent to 91380
This is an introductory biological science elective subject available only to students who are currently enrolled in an undergraduate degree with the Faculty of Engineering. Content is as for 91380 Concepts in Environmental Science.

91380
CONCEPTS IN ENVIRONMENTAL SCIENCE
3cp; 3hpw
This subject is available only to students who are not currently enrolled in an undergraduate degree within the biological and biomedical sciences or Faculty of Engineering.
This subject provides an introduction to major principles of biological science, particularly in the field of ecology. The biosphere – a complexly balanced system involving the cycling of materials and continuous flow of energy; and the increased impacts on the biosphere of science, technology, industrialisation and population pressures.

91382
INTRODUCTION TO BIOLOGICAL FLUIDS
3cp; 2hpw
prerequisites: 65401 Analytical Chemistry 1, 65557 Forensic Toxicology 1
corequisite: 65657 Forensic Toxicology 2
subject coordinator: Associate Professor A Dawson
This is an introductory subject on the chemistry and biochemistry of biological fluids. Topics will include DNA profiling, blood analysis/grouping, examination of fluids such as sweat, semen, saliva.
91383
CLINICAL MYCOLOGY
4cp; 3hpw
prerequisite: 91330 Microbiology 2 restricted to those students who have not previously completed 91373 Applied Mycology
This is an elective subject which has the same content as 91373 but with an added assignment requirement. Each student will undertake a literature project related to his/her clinical mycology.

91388
CONCEPTS IN BIOLOGY
6cp; 6hpw
This is an elective subject available to students from Physical Sciences and from other faculties. The subject is designed as a one-semester introductory course in biology, suitable as an elective subject for students in Physical Sciences, providing an introduction to the major principles of biological science, and the importance of this branch of science in a world of advanced technology. Life exists in general on three planes of organisation: cell, organism and population. Life is self-perpetuating, diverse and evolving. The biosphere represents a complexly balanced system involving a cycling of materials and a continuous flow of energy. Science, technology, industrialisation and population pressures are all having increasing impacts on the biosphere.

91395
BIOCOMPUTING
3cp; 3hpw
prerequisite: 33103 Statistics for Life Sciences or 91201 Horticultural Experimentation
Introduction to computers and programs in the biological sciences. Analysis of the operation of computer systems with emphasis on principles of hardware architecture, operating systems, editors and file management. Comparison of various types of computers, IBM PC, Macintosh, mainframe, and various software packages available for the biological and biomedical sciences.

91396
ADVANCED BIOCOMPUTING
4cp; 3hpw
prerequisite: 91395 Biocomputing
Computer programming techniques with emphasis on structured programming using Pascal. Problem analysis and development of solution structures. Writing and verifying programs.

91398
SPECIAL READING ASSIGNMENT - LIFE SCIENCES
4cp
To be undertaken only following prior negotiation on the part of the student with a full-time member of academic staff regarding individual supervision and, in addition, requires special permission of the Associate Dean.

91399
INDIVIDUAL PROJECT - LIFE SCIENCES
8cp
To be undertaken only following prior negotiation on the part of the student with a full-time member of academic staff regarding individual supervision and, in addition, requires special permission of the Associate Dean.

91601
ANATOMY AND PHYSIOLOGY I
6cp; 6hpw
This subject is designed to develop an understanding of the structure and function of the human body from a biomedical perspective. It also encompasses the fundamental physical and chemical principles required for the understanding of physiological processes.
91602
ANATOMY AND PHYSIOLOGY 2
6cp; 6hpw
prerequisite: 91601 Anatomy and Physiology 1
This subject continues the study of the major body systems and further develops knowledge of the structure and function of the human body by introducing the concept of biochemical regulatory processes important in health.

91603
ANATOMY AND PHYSIOLOGY 3
4cp; 4hpw
prerequisite: 91602 Anatomy and Physiology 2
This subject is designed to complete the survey of the major body systems and further develop knowledge of the structure and function of the human body by introducing the concept of the immune system and neuro-endocrine control system important in health. This subject underpins the student’s understanding of those systems that are considered, on the basis of current research, as major contributors to the therapeutic 'acupuncture effect'.

91604
INTRODUCTORY PHARMACOLOGY AND MICROBIOLOGY
4cp; 4hpw
prerequisite: 91603 Anatomy and Physiology 3
This subject provides the Acupuncture student with an insight into the action of therapeutic chemicals and their toxicity. It enables the future practitioner to understand why certain drugs have been prescribed and to recognise when the patient’s signs and symptoms are due to medication rather than to the central disorder.

91605
PATHOPHYSIOLOGY
4cp; 4hpw
prerequisites: 91603 Anatomy and Physiology 3 and 91604 Introductory Pharmacology and Microbiology
This subject is designed to develop an understanding of the physiological and pathological responses of the human body to a variety of adaptive and maladaptive conditions. The student will gain an understanding of how the responses of cells, tissues and organ systems are affected by various stimuli and how such effects influence overall body function.

91607
RESEARCH METHODS 1
4cp; 4hpw
This subject is an introduction to the scientific method and its importance to the acupuncture profession. It deals with basic research issues: theories and models; independent, dependent and confounding variables; and the influence of the placebo effect. It also examines the philosophical basis of positivist, empiricist and analytical approaches to scientific endeavours.

91608
RESEARCH METHODS 2
4cp; 4hpw
prerequisite: 91607 Research Methods 1
This subject builds on material provided in the Research Methods 1. It enables the student to have a solid grasp of the research process in health sciences and encourages research into acupuncture. As such, it is an important foundation for students in undertaking an Independent Research Project.
91997
PROFESSIONAL EXPERIENCE (BIOI/BIOM) P/T

Part-time students employed full time in an area relevant to their course, should enrol in this subject in every semester for which they are employed.

Note: While such enrolment will be listed on the academic record to indicate employment while studying Professional Experience subjects do not incur a HECS liability.

91999
PROFESSIONAL EXPERIENCE (BIOI/BIOM) P/T

All full-time students employed part time in an area relevant to their course should enrol in this subject in every semester for which they are employed.

Note: While such enrolment will be listed on your academic record to indicate your employment while studying Professional Experience subjects do not incur a HECS liability.

99501
INTRODUCTION TO ACUPUNCTURE, CHANNEL, POINT AND ORGAN PHYSIOLOGY

5cp; 5hpw

corequisite: 99502 Theoretical and Philosophical Foundations of Traditional Acupuncture

An introduction to the basic theoretical concepts of traditional acupuncture that provides an overview of the program and helps to bridge the gulf between the Biomedical and the traditional Chinese approach to health. The subject offers foundation knowledge and skills for the practice of acupuncture. It provides the traditional physiology of the 12 organs and 14 major channels. Point function is considered in preparation for the material in Point Location 1, providing an overall view of the organ/channel functions and their relationship to health.

99502
THEORETICAL AND PHILOSOPHICAL FOUNDATIONS OF TRADITIONAL ACUPUNCTURE

6cp; 6hpw

The theoretical and philosophical components of the subject have a continuing and progressive application in all aspects of acupuncture. This subject provides a broad foundation for the traditional Chinese medical view of health, disease aetiology and diagnostic systems, and principles of treatment which will be built upon throughout the training program. Pulse diagnosis, one of the cornerstones of the traditional Chinese diagnostic system, is included in this subject.

99503
CLINICAL THEORY, PRACTICE AND OBSERVATION OF CLINICAL ACUPUNCTURE AND CLINIC - LEVEL I

3cp; Workshop and clinical observation sessions: 2hpw; Clinical Assistant Level 1: 15 hours

corequisite: 99501 Introduction to Acupuncture, Channel, Point and Organ Physiology

Approximately 20 per cent of the undergraduate training program is devoted to gaining clinical experience in preparation for becoming a qualified acupuncture practitioner. This module acquaints the student with essential skills and requirements for patient care in the practice of acupuncture. It then places the student in a working clinic as an assistant with duties appropriate to his/her level of training.

99504
THE PHYSIOLOGY OF ENERGY AND ITS PATHWAYS

3cp; 3hpw

prerequisites: 99501 Introduction to Acupuncture, Channel, Point and Organ Physiology, 99502 Theoretical and Philosophical Foundations of Traditional Acupuncture

This subject extends the students' knowledge of the jing luo (channel) system in relation to the clinical practice
of acupuncture. It also provides an understanding, not only of how to balance energy, but also of the mechanisms of energy production and methods of assisting this system of production – important aspects of preventative therapy.

99505
POINT LOCATION 1 AND ACUPRESSURE WORKSHOPS
5cp; 5hpw
prerequisites: all units of Stage 1
corequisite: 99504 The Physiology of Energy and its Pathways
This subject deals with the location, depth, action, special precautions and contra-indications, from both an anatomical and traditional acupuncture viewpoint, of the major acupuncture points that will be used in clinical practice. This module complements the knowledge of point function provided in Introduction to Acupuncture, Channel, Point and Organ Physiology and The Physiology of Energy and its Pathways. Practical experience is provided by the introduction of acupressure and non-invasive treatment techniques.

99506
NEEDLE AND MOXIBUSTION TECHNIQUES AND CLINIC – LEVEL 2
3cp; Workshops: 2hpw; Clinical Assistant Level 2: 15 hours
prerequisites: all units of Stage 1
corequisites: 91602 Anatomy and Physiology 2 and 99504 The Physiology of Energy and its Pathways
Practicums in the basic therapeutic skills of needle insertion and manipulation, moxibustion and allied therapeutic techniques that are essential skills for an acupuncture practitioner. Clinical training is provided through the clinical program of the College of Acupuncture.

99508
CHINESE DIAGNOSTIC SYSTEM AND ADVANCED PULSE DIAGNOSIS
6cp; 6hpw
prerequisites: 99501 Introduction to Acupuncture, Channel, Point and Organ Physiology, 99502 Theoretical and Philosophical Foundations of Traditional Acupuncture
corequisite: 99509 Special Points and Systems
This subject provides a deeper understanding of the objectives, applications and therapeutic conclusions inherent in the traditional Chinese diagnostic system. It provides practical workshops in advanced pulse diagnosis which complement the theoretical work being offered in Special Points and Systems.

99509
SPECIAL POINTS AND SYSTEMS
5cp; 5hpw
prerequisites: 99501 Introduction to Acupuncture, Channel, Point and Organ Physiology, 99502 Theoretical and Philosophical Foundations of Traditional Acupuncture
corequisites: 99508 Chinese Diagnostic System and Advanced Pulse Diagnosis, 99510 Introduction to Chinese Massage, Point Location 2 and Clinic – Level 3
This subject examines the functions of categories of acupuncture points and the use of these points in various theoretical perspectives. In particular the six division, triple heater and four radical theories are studied in the context of disease progression through body levels. The eight extra and antique point systems provide additional perspectives from which to view health, illness and the flow of qi.
INTRODUCTION TO CHINESE MASSAGE (TUINA), POINT LOCATION 2 AND CLINIC – LEVEL 3

5cp; Workshops: 4hpw; Clinical Assistant
Level 3: 20 hours
prerequisites: all units of Stage 2
corequisites: 91603 Anatomy and Physiology 3,
99508 Chinese Diagnostic System and Advanced Pulse Diagnosis, 99509 Special Points and Systems

Introduction to Chinese Massage (tuina): This module combines the acupressure techniques with general Chinese massage (tuina) techniques. It enables the student to assist the practitioner in the clinical situation where specific massage is required after the removal of needles to increase the effectiveness of acupuncture treatment.

Point Location 2: This module revises work undertaken in Point Location 1 and complements the knowledge of point function provided in Special Points and Systems. Clinical training is continued through the clinical program of the College of Acupuncture.

HISTORICAL AND ADVANCED THEORETICAL FOUNDATIONS OF ACUPUNCTURE

6cp; 6hpw
prerequisites: 99508 Chinese Diagnostic System and Advanced Pulse Diagnosis, 99509 Special Points and Systems
corequisite: 99512 Advanced Chinese Diagnosis

This subject studies the theoretical structure of Traditional Chinese Medicine and its influence upon the holistic approach to healing and preventative therapy. It focuses on the classical literature of Chinese Medicine and some of the more complex theories arising from it.

ADVANCED CHINESE DIAGNOSIS

7cp; 7hpw
prerequisite: 99508 Chinese Diagnostic System and Advanced Pulse Diagnosis
corequisite: 99511 Historical and Advanced Theoretical Foundations of Acupuncture

This subject contributes a large component of the essential skills and knowledge that are required for traditional Chinese diagnosis. The lectures and workshops underpin not only the clinical experiences of the student, but also the differentiation of disease states when biomedical and Chinese medical systems are integrated.

POINT LOCATION 3 AND CLINIC – LEVEL 4

4cp; Workshops: 2hpw; Clinical Assistant
Level 4: 35 hours
prerequisites: all units of Stage 3
corequisites: 91604 Introductory Pharmacology and Microbiology, 99511 Historical and Advanced Theoretical Foundations of Acupuncture, 99512 Advanced Chinese Diagnosis

This module revisits and extends the students’ knowledge of acupuncture point location as well as complementing the knowledge of point function provided in the subject Advanced Chinese Diagnosis. Clinical training is continued through the clinical program of the College of Acupuncture.

MICROSYSTEMS AND SPECIAL METHODS OF TREATMENT

5cp; 5hpw
prerequisite: 99512 Advanced Chinese Diagnosis
corequisite: 99516 Advanced Needle Technique with Ex-channel Point Location and Clinic – Level 5

The theoretical information provided by the subject is applied and practised in the subject workshops on Advanced Needle Technique with Ex-channel Point Location. Much of the information contained in these units is applicable to the treatment of sports injuries, pain
control and paralysis. A preparatory research proposal is undertaken at this stage as a forerunner to the Independent Research Project.

99515
ADVANCED CHINESE MASSAGE (TUINA)
3cp; 3hpw
prerequisite: 99510 Introduction to Chinese Massage, Point Location 2 and Clinic – Level 3

The subject combines the acupressure, massage and movement techniques of Chinese massage into an integrated treatment approach. This provides the student with a therapeutic approach which can be applied as an alternative or in addition to acupuncture.

99516
ADVANCED NEEDLE TECHNIQUE AND EX-CHANNEL POINT LOCATION AND CLINIC – LEVEL 5
5cp; Workshops: 4hpw; Clinical Assistant Level 5: 35 hours

prerequisites: all units of Stage 4
corequisites: 91605 Pathophysiology, 99514 Microsystems and Special Methods of Treatment, 99518 Clinical Features of Disease

This subject provides practical experience in the application of information provided in the subject Microsystems and Special Methods of Treatment and serves to integrate theory and manual skills. A fully qualified acupuncture practitioner is expected to have a thorough understanding of the microsystems that are used to reinforce the efficacy of traditional acupuncture, or when the normal application of needles is not indicated. Clinical training is continued through the clinical program of the College of Acupuncture.

99517
INDEPENDENT RESEARCH PROJECT WORKSHOPS
3cp; 2hpw

prerequisite: 91608 Research Methods 2

These workshops are designed to assist the student to bridge the gap between reflection on desirable areas of research and the submission of concrete proposals. The workshops provide an atmosphere that encourages discussion and the development of specific aims and objectives. Supervisors will guide the student through the development of his/her research to its completion.

99518
CLINICAL FEATURES OF DISEASE
4cp; 4hpw

prerequisite: 91605 Pathophysiology

This subject builds on the theoretical material offered in Pathophysiology. It also develops the student's ability to differentiate, in an acupuncture clinical setting, those conditions that should be referred to a medical practitioner or other health care professional.

99519
ADVANCED ACUPUNCTURE PRINCIPLES
3cp; 3hpw

prerequisites: all units of Stage 5

This subject ensures the integration of all theoretical aspects of training in clinical application. Before students enter the internship program in the outpatient clinic of the College of Acupuncture, they must satisfy the College of their ability to provide safe, responsible health care under the supervision of qualified practitioners.

99520
DISEASE STATES 1 AND 2
8cp; 8hpw

prerequisites: all units of Stage 5
corequisites: 99519 Advanced Acupuncture Principles, 99521 Combined Acupuncture Therapy and Diagnostic Practice

This subject moves the emphasis from the ‘learning’ of acupuncture to the clinical practice of acupuncture. After determining that acupuncture is appropriate to the patient’s condition, the student must then differentiate the pattern of disharmony as identified in Traditional Chinese Medicine, decide on the treatment principle and devise a course of treatment.
Disease States 1: paralysis (wei syndrome); neurological disorders; lumbar and back pain; disorders of neck and shoulders; disorders of elbow, wrist and hand; disorders of the leg, knee and foot; arthritis and rheumatism (bi syndrome); sports enhancement, scar treatment, analgesia and anaesthesia.

Disease States 2: gastro-intestinal tract; cardiovascular disorders; hypertension; renal and urinary disorders; disorders of the male reproductive system; headache; addictions, emergency acupuncture; gynaecology; obstetrics; paediatrics; weight management; cosmetic acupuncture.

99521
COMBINED ACUPUNCTURE THERAPY AND DIAGNOSTIC PRACTICE
5cp; 5hpw
prerequisites: all units of Stage 5
corequisites: 99519 Advanced Acupuncture Principles, 99520 Disease States 1 and 2
In the fourth year of training the student will be responsible for patient care, treatment and clinical management under the supervision of a practitioner. This subject prepares the student for this increased degree of clinical responsibility, as well as integrating material and skills previously studied.

99522
CLINICAL THEORY (OUTPATIENT CLINIC) AND CLINIC – LEVEL 6
4cp; Workshops and planning sessions: 2hpw;
Clinical Assistant Level 6: 35 hours
prerequisites: all units of Stage 5
corequisites: 99519 Advanced Acupuncture Principles, 99520 Disease States 1 and 2, 99521 Combined Acupuncture Therapy and Diagnostic Practice
This module builds on the first three years of theoretical, practical and clinical training and acquaints the student with skills and duties required by a ‘student-practitioner’ working in the University’s outpatient clinic. Clinical training is continued through the clinical program of the College of Acupuncture.

99523
DISEASE STATES 3
4cp; 4hpw
prerequisites: 99519 Advanced Acupuncture Principles, 99521 Combined Acupuncture Therapy and Diagnostic Practice
This subject develops wider skills in patient/practitioner communication and examines the following conditions: eye disorders; ear, nose and throat disorders; skin disorders; neurological disorders; gastro-intestinal disorders; hepatic and related disorders; respiratory disorders; psychological disorders; major and minor infectious diseases; prevention and treatment of recurring conditions including allergies; and the enhancement of the immune system.

99524
SPECIALIST TOPICS (INTERMODAL AND PROFESSIONAL)
4cp; 4hpw
prerequisites: 99519 Advanced Acupuncture Principles, 99521 Combined Acupuncture Therapy and Diagnostic Practice
This subject acquaints the student with the current requirements of private acupuncture practice and additional areas of clinical practice. Workshops are provided in: electro-acupuncture, laser-acupuncture, current research, bioethics and professional issues. This subject also encourages students to see themselves as part of the health care profession. Inter-modality exchange is encouraged by lectures from visiting specialists in areas such as osteopathy, physiotherapy and veterinary acupuncture.

99525
SUPERVISED PRACTICE (OUTPATIENT CLINIC)
12cp; 2 semesters; 250 hours of supervised clinical practice and completion of 20 case histories
prerequisites: satisfactory completion of all Stage 1–6 course components
The student experiences the full range of practitioner responsibilities under the supervision of a staff member. This area
of training is accomplished in the outpatient clinics of the College of Acupuncture which provide low cost acupuncture services to the general public.

99526
INDEPENDENT RESEARCH PROJECT
13cp; 2 semesters
prerequisites: 91608 Research Methods 2, 99517 Independent Research Project Workshops
This is an area of self-directed study. The research project provides the student with the opportunity to extend knowledge and establish a foundation for the development of future research and research reporting skills.

99527
HOSPITAL TRAINING IN CHINA
1 month of hospital internship at Guangzhou College of Traditional Chinese Medicine, People’s Republic of China
6cp
prerequisite: completion of coursework for the Bachelor of Health Science in Acupuncture
To experience first-hand the full acceptance of acupuncture within the cultural and medical framework of China increases the self-confidence of the student. After an initial introduction and briefing period, students enter the affiliated hospital system of the College of Acupuncture under the direction of the doctor in charge of the acupuncture out-patients’ department.

99528
AN INTRODUCTION TO TAI QI CHUAN
The exercise system of Traditional Chinese Medicine
3cp; 3hpw
Tai Qi Chuan is one of the physical therapies of Traditional Chinese Medicine. This elective subject introduces basic forms of these rhythmic exercises which aim to increase health and well-being. Together qi gong and tai qi subjects provide a traditional method for maintaining health.

99529
A SYSTEMS VIEW OF LIFE
The New Physics and Traditional Chinese Medicine
3cp; 3hpw
Concepts of Traditional Chinese Medicine that stem from a holistic world view differ from the fragmented and mechanistic view that has dominated European thought for the past 300 years. This elective subject offers an encompassing conceptual model for all sciences and a bridge between differing world views.

99530
PHILOSOPHY, RELIGION AND CULTURE
Their impact on health in a modern European society and China
3cp; 3hpw
prerequisite: 99502 Theoretical and Philosophical Foundations of Traditional Acupuncture
This elective subject widens the future practitioners’ concepts of health and health care attitudes among their own cultural group and that of other cultural groups. Two societies are examined: multicultural Australia and modern China.

99531
THE SUBTLE DIMENSIONS OF HEALING
Music, colour and aroma
3cp; 3hpw
In the ancient texts acupuncture therapy was linked with a range of other factors bearing on health care, such as music and aroma. This elective introduces some of these areas which can subsequently be explored as personal interest determines. It contributes to professional competency by extending the student’s ability to identify and work with interrelated dimensions of the healing process.
99532

SOCIAL CRISIS

Evaluating community resources and their role in acupuncture health care

3cp; 3hpw

prerequisite: 92167 Foundations of Helping and Caring

This elective subject is designed to make the acupuncture student aware of the implications of various types of crisis situations they may encounter in practice, and the impact such events may have on patients and their families. This subject identifies community resources and informs the student of what happens after referral.

99533

ACUPUNCTURE HEALTH POLITICS IN AUSTRALIA

Their impact on professional development

3cp; 3hpw

As part of the elective program this subject widens understanding of attitudes and health care politics among various professional groups, including acupuncturists. Acupuncture has formed a part of the wide consumer and health care challenge to orthodox medicine, both in Australia and overseas, and future practitioners should understand the issues and the role of the acupuncture profession in this process.

99535

NUTRITION IN A TRADITIONAL CHINESE MEDICAL CONTEXT

3cp; 3hpw

This elective subject is designed to assist in the clinical practice of acupuncture in the Australian social setting by equipping the future practitioner with the necessary skills to advise patients on the appropriate use of vitamins, minerals, foods and diets. It builds on the concepts of food therapy that are a basic aspect of the concordances of Traditional Chinese Medicine.

99536

FIRST AID

St John’s Ambulance course or approved training organisation

no cp

It is required that all students hold a current senior certificate in first aid, or equivalent qualification, before undertaking an internship in a clinic of the College of Acupuncture as a ‘student-practitioner’.

99543

QI GONG: ITS USE IN ACUPUNCTURE

The system of breathing exercises of Traditional Chinese Medicine

3cp; 3hpw

Qi gong is an ancient aspect of health care in traditional Chinese medicine that is re-emerging in China as a major part of the practitioner’s own health care regime. This elective subject introduces qi gong breathing and concentration which calms the mind and aids in the restoration of health. The use of qi gong by the practitioner is also reputed to increase the effectiveness of tuina (Chinese massage).
POSTGRADUATE COURSES

GENERAL INFORMATION
The Faculty offers both PhD and Master’s programs by research and thesis. There are also a number of Master’s by coursework, Graduate Diplomas and Graduate Certificate programs. Brief outlines of the programs are provided below. Prospective students should discuss possible topics of research with the Head of the appropriate Department in the first instance. For further formal information, they should consult the Postgraduate Studies information booklet and individual brochures.

EXTERNAL SUPERVISION
The research programs may be carried out on either a full-time or part-time basis and it is permissible for part-time students to undertake a portion of their research at a site external to UTS, provided an appropriate external supervisor can be appointed. Students applying for the part-time study mode with external supervision are required to show, prior to enrolment, that appropriate supervision, research support and facilities are available. These requirements are in addition to the normal requirement of internal supervision of an agreed research topic.

FEES AND HIGHER EDUCATION CONTRIBUTION SCHEME
Higher Education Contribution Scheme (HECS) will normally apply to all students enrolled in postgraduate courses. At the discretion of the Vice-Chancellor, HECS scholarships have, in recent years, been granted to students enrolled in research degrees. All enrolled students are required to pay the compulsory University Union and Students’ Association charges on enrolment.

POSTGRADUATE SCHOLARSHIPS
A number of scholarships are available to postgraduate students undertaking Master’s and Doctoral programs both by coursework and research. The Department of Employment, Education and Training (DEET) currently funds research, coursework and overseas research postgraduate awards. Information regarding eligibility criteria and how to apply for these scholarships is available from the Postgraduate Studies and Scholarships Office, City campus of UTS. Closing dates for these scholarships have, in recent years, been in late September/October of the year prior to award.

GRADUATE CERTIFICATE COURSES
The Faculty offers the following Graduate Certificate programs:

Graduate Certificates in Biomedical Technology
- Computer Data Acquisition in the Life Sciences
- Data Processing and Management in the Life Sciences
- Electronics and Computing in the Life Sciences
- Human Biology
- Medical Instrumentation and Measurement
- Physics in Medicine

Graduate Certificates in Coastal Resource Management
- Coastal Resource Management
- Coastal Zone Law and Economics

Graduate Certificate in Environmental Engineering and Management

Graduate Certificates in Environmental Toxicology and Ecotoxicology
- Principles of Environmental Toxicology
- Ecotoxicology

Graduate Certificates in Occupational Health and Safety
- Occupational Health and Safety
- Occupational Health and Safety Management

1 Interdisciplinary course run by the Faculty of Science in collaboration with the Faculties of Engineering, Business, Law and Legal Practice, and Design, Architecture and Building.
2 In collaboration with the NSW Environment Protection Authority.
Graduate Certificate courses will normally consist of two or three subjects offered over one semester for up to nine hours per week. Offered at the postgraduate level, they allow professionals to undertake a specific group of work-related subjects in order to enhance their knowledge in the rapidly expanding fields of science and technology.

ATTENDANCE
Each certificate course normally involves nine hours of attendance at UTS per week – one afternoon and two evenings – over one semester.

COURSE FEES
Course fees will apply for all Graduate Certificate courses. Postgraduate students are also required to pay the student services charge on enrolment. The Graduate Certificate fee-paying courses are designed for students who do not wish to undertake a Master’s degree and/or have been unable to gain entry into the Master’s degree program. Students who have completed a Graduate Certificate and have achieved a high level of academic performance in the course may apply for entry to an appropriate Master’s degree program. Such application will be considered subject to vacancies.

Graduate Certificates in Biomedical Technology
Course Coordinator: Associate Professor L K Holley
Graduate Certificates in Biomedical Technology are specifically designed as intensive training programs for professionals working in the areas of medical instrumentation and clinical measurement.

ADMISSION REQUIREMENTS
These courses are offered to graduates from the physical or biological sciences, engineering or medicine, with appropriate prerequisites. Graduate Certificate courses in Biomedical Technology will be offered in either Autumn or Spring semester and some will be offered in alternate years only.

1. Computer Data Acquisition in the Life Sciences
This certificate is designed to give comprehensive theoretical and practical education in computer hardware and software used in the area of clinical and physiological data acquisition. The program will provide the participant with knowledge and tools to set up and operate the digital acquisition and processing section of a data acquisition laboratory in a physiological setting.

Available in Spring semester – 1995 and odd years
91463 Hardware for Clinical Data Acquisition and Control (6cp)
91464 Laboratory Biocomputing (5cp)
91465 Advanced Programming – Life Sciences (5cp)

2. Data Processing and Management in the Life Sciences
This certificate is designed to provide students with an extensive range of mathematical, statistical, signal processing and image processing skills. These are directly applicable to the analysis of biological systems, diagnostic images, physiological signals and related areas of data processing and analysis in the life sciences.
Available in Autumn semester every year
91462 Digital Processing of Signals and Images in Medicine (5cp)
91461 Physiological Modelling (5cp)
91433 Biostatistics (6cp)

3. **Electronics and Computing in the Life Sciences**

This certificate is designed to give a foundation education in analogue and digital electronics, accompanied by a suitable treatment of mathematical concepts, and in computer programming as applied to the life sciences. It is suitable for health professionals wishing to enter biomedical instrumentation, clinical measurement and other related fields.

Available in Autumn semester every year
91405 Bioelectronics (6cp)
91408 Principles of Biocomputing (5cp)
91436 Advanced Mathematics in the Life Sciences (5cp)

4. **Human Biology**

This certificate is designed to give a foundation education in biological processes, and, in particular, the various physiological processes of the human body. It is suitable for scientists and engineers in the areas of biomedical engineering, medical physics or related fields, who wish to branch into biological applications.

Available in Autumn semester every year
91493 Biosystems (6cp)
91421 Principles of Human Biology (10cp)

5. **Medical Instrumentation and Measurement**

This certificate is designed to give comprehensive theoretical and practical education in the techniques of monitoring and measuring physiological parameters. Advanced instrumentation techniques, sensors and transducers used in physiological monitoring are taught in this course. The physical principles used to explain the operation and interaction of the physiological behaviour and the measurement techniques are also covered.

Available in Spring semester – 1996 and even years
91437 Advanced Bioinstrumentation (5cp)
91438 Biosensors and Transducers (5cp)
91439 Physiological Measurement (6cp)

6. **Physics in Medicine**

This course is designed for professionals in the area of medical physics, radiation protection, organ imaging and other related fields. Extensive theoretical and practical work is carried out in the hospital setting and at the Australian Nuclear Science and Technology Organisation.

Available in Spring semester – 1996 and even years
91434 Radiation Protection (5cp)
91403 Medical Imaging (6cp)
91404 Physics in Medicine (5cp)
Graduate Certificates in Coastal Resource Management

1. Coastal Resource Management

This course is designed to introduce graduates to general concepts and technical and scientific aspects of coastal resource management. The course would be particularly suitable for graduates without a scientific background in their undergraduate degree course e.g. graduates from business or law courses. Science graduates may also be interested to extend their range of expertise, in the context of coastal resource management. This certificate course comprises 12 credit points of part-time study and will be offered in Autumn semester. The subjects undertaken by individual candidates will be drawn from those offered in the first stage of the part-time Master’s program, the combination of subjects being determined by a candidate’s needs and academic background.

2. Principles of Coastal Zone Law and Economics

This course introduces graduates to the concepts and basic tenets of economics and environmental law as they relate to coastal resource management, and at the same time introduces students to research design and methods. While the last of these helps to bring together the various disciplinary approaches found in an integrated resource management team, it has particular relevance to cost-benefit analysis. In linking these three subjects, an attempt is made to provide future coastal resource managers with the ability to develop achievable and affordable solutions to real problems within an appropriate legal framework. The course would be particularly suitable for graduates in science and engineering who wish to broaden their knowledge of these fields. It would also be suitable for graduates in business and law who wish to extend their expertise in the context of coastal resource management. This certificate course comprises 12 credit points of part-time study and will be offered in Spring semester. The subjects will be those offered in the second stage of the part-time Master’s program.

Graduate Certificate in Environmental Engineering and Management

Environmental engineering and management are high on the political agenda. They also have a high professional priority. The Code of Ethics of the Institution of Engineers, Australia reminds its members that their responsibility ‘... for the welfare, health and safety of the community shall at all times come before their responsibility to the profession, to sectional or private interest or to other Engineers’. This responsibility applies equally to scientists, town planners and other professionals working in this field. They have a compelling duty to ensure that the adverse effects of development on the total environment are minimised.

This course of four subjects deals with the broad aspects of environmental management relevant to practising professionals in engineering, science, planning, architecture, law, surveying, health and building. Completing the course will develop a background and competency in environmental management.

More specifically, it will develop an awareness of ecological process; a sensitivity to the possible impacts of planned actions on environment, an understanding of the issues related to monitoring and to reducing the impacts of those actions; and professional skills to work as part of an integrated team responsible for environmental planning and management.

DURATION OF COURSE AND ATTENDANCE PATTERNS

This course is offered on a block-release pattern of study. The normal attendance pattern is based on two subjects per semester requiring a minimum of two semesters to complete the course.

The block-release pattern of study currently consists of three sessions per semester. Each session involves three days of full-time attendance covering two subjects per semester.
ADMISSION REQUIREMENTS

The normal educational qualification for admission is a Bachelor's degree in engineering, science, design, architecture, building, surveying or planning. Equivalent qualifications will be considered on their merits.

 Provisional admission for graduates from disciplines other than those above will be available provided their education contained an adequate introduction to mathematics and physical sciences. Each application in these categories will be used as a selection criterion if acceptable applications outnumber available places.

Articulation with Master's program: a multidisciplinary Master's degree program for environmental professionals is under active consideration. It is likely that completion of the Graduate Certificate will provide 'advanced standing' in such Master's programs at UTS.

COURSE STRUCTURE

Autumn semester
49122 Introduction to Environmental Engineering and Management (6cp)
49121 Environmental Assessment and Planning (6cp)

Spring semester
49123 Waste Minimisation and Advances in Pollution Control (6cp)
49124 Urban Water Quality Management (6cp)

Academic enquiries should be directed to the following persons:

Associate Professor K Brown
Department of Applied Biology,
Room GH2.3b, tel: 330 4042

Dr M Dawson
Department of Chemistry,
Room 4/105, tel: 330 1717

Associate Professor S Vigneswaran
School of Civil Engineering,
Room 2/523, tel: 330 2641

Dr J Broadbent
School of Design,
Room 6/610, tel: 330 8986

Graduate Certificates in Environmental Toxicology and Ecotoxicology

Graduate Certificates in Environmental Toxicology and Ecotoxicology are designed to provide training in specific areas of environmental toxicology.

ADMISSION REQUIREMENTS

Admission to these courses is open to graduates with degrees in biological sciences, chemistry, agriculture, pharmacy, engineering or equivalent disciplines. The student load per semester is 12 credit points. Two Graduate Certificates are offered, each to be completed as one semester of formal coursework.

1. Principles of Environmental Toxicology

Available in Autumn semester
Course Coordinator: Dr R Lim

This Certificate course is designed to provide a foundation education in environmental toxicology and to familiarise the student with biochemical and environmental effects of the various groups of environmentally hazardous chemicals.

91441 Principles of Toxicology (8cp)
and either
91493 Biosystems (4cp)
or
91474 Statistics in Bioscience (4cp)

2. Ecotoxicology

Available in Spring semester
Course Coordinator: Dr R Lim

This Certificate is designed to provide students with skills in experimental design and analysis in natural environmental systems and a sound understanding of toxicity testing in a wide range of organisms.

91440 Experimental Design and Methods (4cp)
91473 Bioassays/Toxicological Testing (8cp)
Graduate Certificates in Occupational Health and Safety

Two Graduate Certificate programs are offered: one in Occupational Health and Safety, and the other in Occupational Health and Safety Management. These programs involve an appropriate selection of subjects from those offered in the Graduate Diploma program, to be completed in two semesters part-time. These Certificate programs are not government-funded and are accordingly offered only on a full-fee basis.

GRADUATE DIPLOMA COURSES

The Faculty offers the following Graduate Diploma programs:

- Clinical Acupuncture
- Clinical Biochemistry
- Coastal Resource Management\(^1\)
- Environmental Toxicology\(^2\)
- Hydrogeology and Groundwater Management
- Medical Microbiology
- Musculo-skeletal Acupuncture
- Occupational Health and Safety

\(^1\) Interdisciplinary course run by the Faculty of Science in collaboration with the Faculties of Engineering, Business, Law and Legal Practice, and Design, Architecture and Building.

\(^2\) In collaboration with the NSW Environment Protection Authority.

Graduate Diploma in Clinical Acupuncture

The Graduate Diploma in Clinical Acupuncture has been designed in response to the needs of acupuncturists who have undertaken a considerable degree of training through unaccredited acupuncture programs and who now wish to gain access to University programs. The Graduate Diploma is a ‘gateway program’ which acknowledges prior learning, consolidates knowledge and builds upon the practitioner’s theoretical and experiential base.

COURSE CONTENT

The program focuses upon three major areas – biomedical science, acupuncture theory/practice and acupuncture research. A specially tailored biomedical science upgrade relevant to the specific characteristics of acupuncture practice will be offered.

Subjects relating to the theory and practice of acupuncture will involve the students by drawing upon their clinical experience. In relation to specific topics, students will be asked to refine, extend and share their knowledge by way of seminars and workshops.
Students will also study research methodology as it applies to the health sciences and undertake a specific research project under the supervision of the academic staff of the College of Acupuncture.

ADMISSION REQUIREMENTS

As the Graduate Diploma is a gateway program for practicing acupuncturists, applicants will be either overseas- or Australian-trained practitioners. All applicants are required to have at least two years of professional experience and be able to furnish documentation to verify this fact.

Australian-trained practitioners who apply for the course are expected to have completed the equivalent of three years full-time training that has included an adequate education in the theory/practice of acupuncture and appropriate biomedical science subjects such as anatomy, physiology, microbiology, pharmacology, pathophysiology and differential diagnosis.

Overseas applicants are required to have completed an acupuncture training program equivalent to that which is required of Australian trained applicants.

Australian applicants born and trained overseas are expected to:

a) have completed a program equivalent to that which is required of Australian trained applicants; or

b) hold a medical degree, recognised in their country of origin but not in Australia, and to have practiced acupuncture as their primary modality for at least three years. An interview will be conducted to assure the College that a reasonable level of acupuncture knowledge has been acquired.

All applicants are required to hold a current First Aid Certificate (St John’s Ambulance Level II or equivalent).

All applicants are required to meet the University’s requirement for English competency.

The Graduate Diploma in Clinical Acupuncture is not government-funded and is accordingly offered only on a full-fee basis.

COURSE STRUCTURE

There are no majors, sub-majors/minors or electives in this program. The course is one year full-time or two years part-time. Initially the course is being offered only on a part-time basis as indicated in the following course outline.

PART-TIME PROGRAM

<table>
<thead>
<tr>
<th>Semester 1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>91609</td>
<td>Biomedical Science Upgrade</td>
<td>(8cp)</td>
</tr>
<tr>
<td>99544</td>
<td>Clinical Aspects of Acupuncture 1 (6cp)</td>
<td></td>
</tr>
<tr>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99545</td>
<td>Clinical Aspects of Acupuncture 2 (6cp)</td>
<td></td>
</tr>
<tr>
<td>91607</td>
<td>Research Methods 1 (4cp)</td>
<td></td>
</tr>
<tr>
<td>Semester 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91608</td>
<td>Research Methods 2 (4cp)</td>
<td></td>
</tr>
<tr>
<td>99518</td>
<td>Clinical Features of Disease (4cp)</td>
<td></td>
</tr>
<tr>
<td>99546</td>
<td>Clinical Review (3cp)</td>
<td></td>
</tr>
<tr>
<td>Semester 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99547</td>
<td>Clinical Aspects of Acupuncture 3 (6cp)</td>
<td></td>
</tr>
<tr>
<td>99537</td>
<td>Independent Research Project (Postgraduate) (7cp)</td>
<td></td>
</tr>
</tbody>
</table>
Graduate Diploma in Clinical Biochemistry

Course Coordinator: Dr J C Swann

This course offers postgraduate education for entry into or advancement in the profession of clinical biochemistry. The entry requirement is a degree in Science or Medicine with an identifiable component of biochemistry. Students will acquire the theoretical knowledge and practical skills in all areas appropriate to the operations of a modern biochemical diagnostics laboratory.

Although there are no employment requirements for admission to the Graduate Diploma course, entry is subject to quota limits, and preference may be given to applicants currently employed in a clinical biochemistry laboratory or related area.

Students are required to successfully complete a minimum of 64 credit points for award. The course is offered on a part-time basis over four semesters, normally involving attendance at UTS for nine hours each week, and normally timetabled over one afternoon and two evenings. The program of study consists of formal lectures, discussion groups, laboratory sessions, seminars and assignment work. In the early stages of the course, students are introduced to analytical aspects of biochemistry and to fundamental areas of clinical biochemistry. Other subjects include the use of computing in the biological and medical sciences, the statistical analysis of data and experimental design, and either case study analysis or aspects of clinical laboratory management. A number of specialised and contemporary areas of clinical biochemistry are surveyed in the advanced clinical biochemistry subjects, and in the final stage students formulate a proposal for a project that could be researched within a clinical biochemistry environment.

Students who have achieved a high level of performance in the first three stages of this course, and whose employment situation will allow the conducting of a suitable research project, may apply for transfer to the Master's degree program in Clinical Biochemistry.

PART-TIME PROGRAM

Entry to program in 1995 and odd years

Stage 1

Autumn semester
91408 Principles of Biocomputing (5cp)
91410 Principles of Clinical Biochemistry (5cp)
91433 Biostatistics (6cp)

Spring semester
91411 Biochemical Pathophysiology (6cp)
91424 Clinical Biochemistry – Advanced Aspects B (10cp)

Stage 2

Autumn semester
91426 Analytical Techniques in Biochemistry (10cp)
and either
91419 Case Studies in Clinical Biochemistry (6cp)
or
91417 Clinical Laboratory Management (6cp)

Spring semester
91423 Clinical Biochemistry – Advanced Aspects A (10cp)
91453 Project Proposal (Clinical Biochemistry) (6cp)

Entry to program in 1996 and even years

Stage 1

Autumn semester
91410 Principles of Clinical Biochemistry (5cp)
91426 Analytical Techniques in Biochemistry (10cp)

Spring semester
91411 Biochemical Pathophysiology (6cp)
91423 Clinical Biochemistry – Advanced Aspects A (10cp)
Stage 2

Autumn semester
91408 Principles of Biocomputing (5cp)
91433 Biostatistics (6cp)
and either
91419 Case Studies in Clinical Biochemistry (6cp)
or
91417 Clinical Laboratory Management (6cp)

Spring semester
91424 Clinical Biochemistry – Advanced Aspects B (10cp)
91453 Project Proposal (Clinical Biochemistry) (6cp)

1 Entrants in odd and even years will undertake slightly different programs.

Notes
Subjects will be prescribed in the first semester according to the educational background of the entrant.
Each semester normally consists of approximately nine hours per week, over one afternoon and two evenings.
A minimum of 64 credit points must be successfully completed for award of the Graduate Diploma.

Graduate Diploma in Coastal Resource Management

Course Coordinator: Associate Professor K R Brown

The aims of this course are similar in principle but more limited than those of the Master’s degree course. Graduates will have completed all the foundation and intermediate subjects to enable them to become competent practitioners at an appropriate level, but they will not have had the opportunity to carry out an individual research project, or to study the advanced aspects of integrated resource management and recreation and tourism management.

The diploma course comprises 48 credit points and will be offered over four semesters of part-time study or equivalent full-time study.

There will be no automatic entry from the diploma to the Master’s program. Selection will be based on the individual performance of the student in the course completed, and the availability of places in the in-load Master’s program. Such places may be available from year to year, either because of under-enrolment in the Master’s course, or by attrition from it.

If a graduate of the diploma gains entry into the Master’s course, he or she will be granted advanced standing for the subjects already completed.

FULL-TIME PROGRAM

Stage 1

Autumn semester
98711 Coastal Resource Policy (4cp)

plus
Coastal Systems (two to three of the following)
91493 Biosystems (4cp)
98712 Estuarine and Coastal Chemistry (4cp)
98713 Hydraulics (4cp)
98714 Introductory Coastal Geology (4cp)
Graduate Diploma in Environmental Toxicology

Course Coordinator: Dr R Lim

Course fees will apply. Postgraduate students are also required to pay the student services charge on enrolment.

This course provides postgraduate education and training in the developing science of environmental toxicology. It is a discipline which deals with the toxic effects of chemicals in the environment to organisms, communities and ecosystems. Students will acquire the theoretical knowledge and practical skills required of a practising environmental toxicologist. The Graduate Diploma and Graduate Certificate fee-paying courses are designed for students who do not wish to undertake a Master's degree and/or have been unable to gain entry into the Master's degree program.

Admission to the course is open to graduates with degrees in biological sciences, chemistry, agriculture, pharmacy, engineering or equivalent disciplines. Admission to the course will be limited and the selection process may involve personal interviews. The course can be completed in two years (four semesters) of part-time or one year (two semesters) of full-time attendance. Students are required to successfully complete 48 credit points of formal coursework for award. This program consists of formal lectures, discussion groups, laboratory and field studies, seminars, assignments and formal examinations. The course comprises six subjects.

In the first year of the course students are introduced to concepts in mammalian and environmental toxicology, biostatistics, research design, and principles of laboratory toxicity testing. Subjects covered in the second year are biochemical and analytical toxicology, and approaches and methods in field surveillance, fate and management of toxic substances.
Students who have achieved a high level of performance in the course may apply for transfer to the Master's degree program in Environmental Toxicology. Such application will be considered subject to vacancies. This will require the conduct of a suitable research project and submission of a report based on the project undertaken. Projects may be undertaken with industry or government institutions.

FULL-TIME PROGRAM

Stage 1

Autumn semester

91441 Principles of Toxicology (8cp)
91471 Biochemical and Analytical Toxicology (12cp)

and either

91493 Biosystems (4cp)

or

91474 Statistics in Bioscience (4cp)

Spring semester

91472 Field Surveillance, Fate and Management of Toxic Substances (12cp)
91440 Experimental Design and Methods (4cp)
91473 Bioassays/Toxicological Testing (8cp)

PART-TIME PROGRAM

Stage 1

Autumn semester

91441 Principles of Toxicology (8cp)

and either

91493 Biosystems (4cp)

or

91474 Statistics in Bioscience (4cp)

Spring semester

91440 Experimental Design and Methods (4cp)
91473 Bioassays/Toxicological Testing (8cp)

Stage 2

Autumn semester

91471 Biochemical and Analytical Toxicology (12cp)

Spring semester

91472 Field Surveillance, Fate and Management of Toxic Substances (12cp)

Notes

Subjects will be prescribed in the first semester according to the educational background of the entrant. Each semester normally consists of approximately nine hours per week over one afternoon and two evenings in the part-time mode. A minimum of 48 credit points must be successfully completed for award of the Graduate Diploma.
Graduate Diploma in Hydrogeology and Groundwater Management

This course is designed for students working in the area of groundwater resource management.

ADMISSION REQUIREMENTS

Applicants should hold a four-year science degree from UTS or an equivalent qualification. Non-science graduates may be admitted to this course if their qualifications are relevant to hydrogeology and groundwater management. Applicants with other qualifications relevant to groundwater resource development may be accepted for admission, subject to approval by the Faculty Board.

ATTENDANCE

The course is offered on a full-time attendance pattern, although students may extend their enrolment over more than one year.

DURATION

The course requires full-time attendance. It has a pattern similar to the Master of Science in Hydrogeology and Groundwater Management. However, the project work of the Spring semester is shorter and requires completion by the end of the teaching semester.

COURSE STRUCTURE

With the exception of Project (15 credit points) and Computing for Groundwater Specialists, all subjects have a credit point value of five, and require three hours per week per semester.

Autumn semester

66014 Hydrogeology
49550 Computing for Groundwater Specialists
49555 Groundwater Modelling
66015 Hydrogeochemistry
49551 Surface Hydrology and Groundwater
Elective 1
Elective 2

Spring semester

66022 Groundwater Science Project (GD) F/T

or

66024 Groundwater Science Project (GD) P/T

Electives

As for Master of Science

1 This is a non-credit subject available to students whose computing background requires strengthening.
Graduate Diploma in Medical Microbiology

Course Coordinator: Dr I Stevenson

Course fees will apply. Postgraduate students are also required to pay the student services charge on enrolment.

This course offers postgraduate education to graduates in the medical or biological sciences wishing to further a career in medical microbiology or related areas of hospital and medical science, such as diagnostic bacteriology, virology, mycology and parasitology. It is being offered by the Faculty, with support from the Westmead Hospital Centre for Infectious Diseases and Microbiology, and other major Sydney hospitals.

The program can be completed in one-and-a-half years of full-time or in three years of part-time attendance. The formal coursework consists of lectures, tutorials and supervised laboratory work, some of which may be conducted at hospitals or other laboratories in Sydney. Students will undertake assignments and complete formal examinations.

Admission to the course is open to science graduates of approved tertiary institutions where microbiology has been a significant component of the degree, or persons with equivalent qualifications.

PART-TIME PROGRAM

Stage 1

Autumn semester
91408 Principles of Biocomputing (5cp)
91480 Epidemiology and Disease Control (4cp)
91481 Current Topics in Medical Microbiology (3cp)

Spring semester
91482 Human Parasitology (5cp)
91483 Human Fungal Disease (4cp)
91481 Current Topics in Medical Microbiology (3cp)

Stage 2

Autumn semester
91485 Human Viral Disease (5cp)
91486 Management of the Microbiology Laboratory (4cp)
91487 Research Methodology - Medical Microbiology (3cp)

Spring semester
91488 Molecular Microbiology - Techniques and Diagnosis (8cp)
91490 Research Proposal Design - Medical Microbiology (4cp)

FULL-TIME PROGRAM

Full-time students must complete the requirements of the diploma in one year. The full-time program is simply a combination of the part-time program, taken concurrently. A minimum of 48 credit points must be successfully completed for award of the Graduate Diploma. Upgrade to a Master of Science in Medical Microbiology would be considered on application, following successful completion of the Graduate Diploma.
Graduate Diploma in
Musculo-skeletal
Acupuncture

The Graduate Diploma in Musculo-skeletal Acupuncture is designed for registered medical practitioners, physiotherapists, chiropractors and osteopaths who have a special interest in the treatment of disorders such as paralysis, spinal and soft tissue pain, arthritis and repetitive strain injury. It also provides for those with an interest in sports medicine and sporting performance enhancement.

COURSE CONTENT

The first half of the course provides the theoretical and philosophical foundations of Traditional Chinese Medicine. These include the physiology of the twelve organs and the fourteen major channels, together with the location and function of points. Special emphasis is given to the organs and channel systems that relate to the treatment of musculo-skeletal disorders and the promotion of general health and wellbeing.

The second half of the course concentrates on providing a full understanding of how musculo-skeletal disorders are diagnosed and treated within the Chinese medical framework. Specialities, including sporting injuries and sporting performance enhancement, are considered and various approaches to treatment evaluated. As a powerful adjunct to traditional acupuncture therapy, training is provided in **tuina** (Chinese massage) and the modern microsystems – ear, head, hand, foot and scalp acupuncture.

ADMISSION REQUIREMENTS

All applicants will be expected to hold an appropriate Australian degree or in the case of chiropractors, osteopaths and physiotherapists, at least a Diploma in their primary professional discipline.

Australian applicants will be required to hold professional registration in their primary modality. They will therefore be a registered: medical practitioner, physiotherapist, chiropractor or osteopath. There is no requirement for a fixed period of professional experience before course entry. Overseas applicants will be required to hold professional registration in their primary modality in their country of origin.

Applicants who are Australian citizens, born overseas, and who are professionally registered practitioners of the appropriate modalities in their country of origin but are not registered in Australia, will be eligible to enter the course. All applicants will be expected to have competency in English in accord with UTS requirements. This program is not government funded and is accordingly offered only on a full-fee basis.

COURSE STRUCTURE

There are no majors, sub-majors/minors or electives in the program. The course, as indicated in the following program, is initially being offered only on a part-time basis.

PART-TIME PROGRAM

Semester 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>99548</td>
<td>Introduction to Traditional Acupuncture Theory</td>
<td>5 cp</td>
</tr>
<tr>
<td>99549</td>
<td>Point Location</td>
<td>4 cp</td>
</tr>
<tr>
<td>99550</td>
<td>Research Workshops 1</td>
<td>3 cp</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>99551</td>
<td>The Chinese Medical Approach to Health and Disease</td>
<td>5 cp</td>
</tr>
<tr>
<td>99552</td>
<td>The Chinese Model of Qi and its Pathways</td>
<td>4 cp</td>
</tr>
<tr>
<td>99553</td>
<td>Clinical Practice 1</td>
<td>3 cp</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>99554</td>
<td>Acupuncture Diagnosis of Musculo-skeletal Disorders</td>
<td>5 cp</td>
</tr>
<tr>
<td>99555</td>
<td>Therapeutic Techniques and Tuina (Chinese massage)</td>
<td>4 cp</td>
</tr>
<tr>
<td>99556</td>
<td>Research Workshops 2</td>
<td>3 cp</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>99557</td>
<td>Acupuncture Treatment of Musculo-skeletal Disorders</td>
<td>5 cp</td>
</tr>
<tr>
<td>99558</td>
<td>Acupuncture Microsystems</td>
<td>4 cp</td>
</tr>
<tr>
<td>99559</td>
<td>Clinical Practice 2</td>
<td>3 cp</td>
</tr>
</tbody>
</table>
Graduate Diploma in Occupational Health and Safety

The aim of the course is to provide a graduate program in occupational health and safety which will produce broadly based, practical, occupational health and safety professionals, with the ability to promote and facilitate a preventive approach to occupational health and safety which minimises occupational injuries and diseases.

The behavioural objectives of the course are to enable graduates of the Graduate Diploma in Occupational Health and Safety to:

- influence managers so that occupational health and safety becomes an integral part of day-to-day management;
- manage occupational health and safety services within the context of legislative, regulatory and industrial relations environments;
- recommend practical and appropriate solutions to occupational health and safety problems;
- contribute to improvements in design of plant, processes and equipment, work practices, work organisation and environment, including access for people with disabilities;
- apply their knowledge of the concepts of occupational health and safety to satisfy the needs of people;
- be able to establish systems to recognise, evaluate and control hazards;
- disseminate information and increase awareness of occupational health and safety issues in the workplace;
- understand minimum requirements in order to interpret the intent of legislation and standards;
- be able to collect, analyse and maintain relevant data;
- be able to operate as a sole operator and as a member of a multidisciplinary team;
- coordinate/liaise with relevant bodies in occupational health and safety;
- be involved with the rehabilitation of injured workers and the deployment of people with disabilities;
- recognise their own limitations and be aware of and call on other experts when needed;
- recognise the need and be able to maintain the currency of their knowledge.

DURATION

The course is of two years' duration, to be undertaken on a part-time basis, and will require attendance at the University's City campus, Broadway, for eight hours per week. Students will be expected to satisfactorily complete the equivalent of four two-hour subjects per semester to complete the course in two years. The subjects will generally be scheduled so that students will attend for four hours on two evenings per week.

ADMISSION REQUIREMENTS

Students in this course could come from a wide variety of educational backgrounds, including the physical sciences, life sciences, health sciences, social science, medicine, engineering, industrial design, architecture, building, commerce, business, law and the humanities. Applicants will in general be required to have a degree in their discipline from a recognised university or college of advanced education in order to satisfy the basic admission requirement.

In this field, however, there are many very experienced people such as occupational health nurses, safety officers and inspectors who for historical reasons do not have a first degree. Applicants in this category are also encouraged to apply. Such applicants would be required to have at least a diploma or certificate in a relevant area together with sound experience in occupational health and safety in a responsible position.
COURSE STRUCTURE
The course has been structured to provide the required basic knowledge and skills for students with different backgrounds. Those students with a technical background are required to do the occupational health subjects in Semesters 2 and 3, whereas those with an essentially non-technical background are required to do the quantitative subjects in these semesters. All other subjects in the course are compulsory.

PART-TIME PROGRAM
Stage 1

Autumn semester
69312 Occupational Hazard Analysis (6cp)
69325 Data Analysis in Occupational Health and Safety (3cp)
69342 Legal Aspects of Occupational Health and Safety (3cp)

Spring semester
69321 Quantitative Assessment and Measurement (3cp)
or
69322 Occupational Health in the Workplace (3cp)
69313 Organisational Behaviour and Communication (3cp)
69323 Human Factors/Ergonomic Design (3cp)
69331 Building Emergency Control (3cp)

Stage 2

Autumn semester
69332 Chemical Safety (OHS) (3cp)
69333 Construction Safety (3cp)
69334 Occupational Health Services (3cp)
or
69335 People and the Physical Environment (3cp)
69343 Occupational Health and Safety Management (3cp)

Spring semester
69311 Occupational Health and Safety in Society (3cp)
69324 Biological Hazards and Toxicology (3cp)
69341 Problem Solving/Risk Management (6cp)

MASTER'S DEGREES (BY COURSEWORK)
The following Master’s degrees by coursework are offered:

- Master of Occupational Health and Safety
- Master of Science in Clinical Biochemistry
- Master of Science in Clinical Measurement
- Master of Science in Coastal Resource Management
- Master of Science in Environmental Toxicology
- Master of Science in Hydrogeology and Groundwater Management
- Master of Science in Medical Microbiology
- Master of Science in Medical Physics

1 Interdisciplinary course run by the Faculty of Science in collaboration with the Faculties of Engineering, Business, Law and Legal Practice, and Design, Architecture and Building.

2 In collaboration with the NSW Environment Protection Authority.

ADMISSION REQUIREMENTS AND SELECTION
Candidates may be admitted to the course with either a Bachelor’s degree from UTS (or equivalent) or such other general or professional qualifications as will satisfy the Academic Board that the applicant possesses the educational preparation and capacity.

REQUIREMENTS FOR SUBJECT ASSESSMENT AND STUDENT PROGRESSION
Students enrolled for a Master’s degree (by coursework) shall have each subject assessed according to the normal Rules of this University. However, there is no allowance for conceded pass.

Students who fail in any two subjects, or any one subject twice, or who fail to submit a Project Report at the specified time, will be seen as making unsatisfactory progress and will have their registration discontinued. Students may
appeal against such discontinuation of registration under Rule 3.4.12 (see the UTS Student Information Guide).

CONTINUING UTS STUDENTS
Master's degree (by coursework) students who have previously been enrolled in undergraduate UTS courses in the Faculty shall not enrol in postgraduate subjects which are equivalent to subjects previously undertaken towards an undergraduate degree.

Master of Occupational Health and Safety
Course Coordinator: Dr D Cobbin
This course involves all the coursework requirements of the Graduate Diploma, plus an additional year part-time to undertake a substantial research project in an area of particular interest and/or relevance to the student. Students would normally enrol in the first instance for the Graduate Diploma, and would be permitted to transfer to the Master’s program only if they have achieved a credit average or better in the coursework. Students may also be required to undertake specific courses nominated by their project supervisor. This would normally include a course in research methodology.

Persons who already have a Graduate Diploma in Occupational Health and Safety or equivalent from this or another university are able to enter the Master’s program with advanced standing. They would normally be required to complete one semester of appropriate coursework at credit level or better before undertaking the two-semester research project.

Master of Science in Clinical Biochemistry
Course Coordinator: Dr J C Swann
The course is available to science and medical graduates with a good background in general biochemistry and is designed mainly for those working in clinical laboratories. It extends their knowledge and professional expertise in the discipline of clinical biochemistry and in the efficient operation of a clinical laboratory. The course also provides an opportunity for research training in clinical biochemistry.

Admission to the course will be limited and the selection process may involve personal interviews. Concurrent employment in a clinical biochemistry laboratory or related area is a normal requirement for admission.

The course is offered on a part-time basis over six semesters, normally involving attendance at UTS for nine hours per week. The program of study consists of formal lectures, discussion groups, laboratory sessions, seminars and a supervised research project. In the early stages of the course, students are introduced to analytical aspects of biochemistry and to fundamental areas of clinical biochemistry. Other subjects include the use of computing in the biological and medical sciences, aspects of laboratory management, the statistical analysis of data and experimental design. Later stages of the course focus on more advanced areas of clinical biochemistry and include case study analysis and the development of problem-solving and consulting skills.

The final third of the course is devoted to a research project involving investigatory or developmental work in an appropriate area of clinical biochemistry. Projects are undertaken in cooperation with the employing laboratories and the results of the work are presented in an oral seminar and in a written report prepared in accordance with the formal requirements laid down by the Faculty.
Students who have already demonstrated their competence in any of the foundation subjects may be offered alternative subjects of equivalent weight.

PART-TIME PROGRAM

Entry to program in 1995 and odd years

Stage 1

Autumn semester
- 91408 Principles of Biocomputing (5cp)
- 91410 Principles of Clinical Biochemistry (5cp)
- 91433 Biostatistics (6cp)

Spring semester
- 91411 Biochemical Pathophysiology (6cp)
- 91424 Clinical Biochemistry – Advanced Aspects B (10cp)

Stage 2

Autumn semester
- 91408 Principles of Biocomputing (5cp)
- 91417 Clinical Laboratory Management (6cp)
- 91433 Biostatistics (6cp)

Spring semester
- 91423 Clinical Biochemistry – Advanced Aspects A (10cp)
- 91453 Project Proposal (Clinical Biochemistry) (6cp)

Stage 3

Autumn semester
- 91419 Case Studies in Clinical Biochemistry (6cp)
- 91426 Analytical Techniques in Biochemistry (10cp)

Spring semester
- 91423 Clinical Biochemistry – Advanced Aspects B (10cp)
- 91453 Project Proposal (Clinical Biochemistry) (6cp)

Entry to program in 1996 and even years

Stage 1

Autumn semester
- 91410 Principles of Clinical Biochemistry (5cp)
- 91426 Analytical Techniques in Biochemistry (10cp)

Spring semester
- 91411 Biochemical Pathophysiology (6cp)
- 91423 Clinical Biochemistry – Advanced Aspects A (10cp)

Stage 2

Autumn semester
- 91408 Principles of Biocomputing (5cp)
- 91417 Clinical Laboratory Management (6cp)
- 91433 Biostatistics (6cp)

Spring semester
- 91424 Clinical Biochemistry – Advanced Aspects B (10cp)
- 91453 Project Proposal (Clinical Biochemistry) (6cp)

1. Entrants in odd and even years will undertake some subjects in a different order.

Notes

Subjects will be prescribed in the first semester according to the educational background of the entrant. Each semester normally consists of approximately nine hours per week, over one afternoon and two evenings. A minimum of 96 credit points must be successfully completed for award of the degree.

For further information contact:
The Course Coordinator, Clinical Biochemistry, Dr J C Swann, tel: 330 4064 fax: 330 4003.
Master of Science in Clinical Measurement

Course Coordinator: Associate Professor L K Holley

The course offers postgraduate education to graduates in physical or biological science wishing to enter careers in clinical measurement, biomedical engineering and related areas of hospital and medical science such as cardiology, respiratory physiology, neurophysiology, biochemistry and orthopaedics. The program can be completed with two years of full-time or three years of part-time attendance. The part-time pattern normally involves nine hours per week for six semesters. In the first semester most students undertake two appropriate foundation subjects. In the next three semesters six advanced subjects are offered, covering essential knowledge and skills in the area of clinical measurement. The formal coursework consists of lectures, tutorials and supervised laboratory work, some of which may be conducted at teaching hospitals in Sydney. Students will undertake assignments and complete formal examinations. In the final year students undertake a project in an applied field relevant to their interests.

In the full-time attendance pattern students must complete the requirements of the degree in two years. Admission to the course is open to science, engineering and medical graduates of universities and colleges of advanced education, or persons with equivalent qualifications. Basic human anatomy and physiology, or basic electronics and computer programming and mathematics, are normally prerequisites. Foundation subjects are available to those who need extra background in either of these areas.

PART-TIME PROGRAM

Stage 1

Autumn semester
91405 Bioelectronics (6cp)
91408 Principles of Biocomputing (5cp)
91436 Advanced Mathematics in the Life Sciences (5cp)

or
91493 Biosystems (6cp)

Spring semester
91421 Principles of Human Biology (10cp)
91437 Advanced Bioinstrumentation (5cp)
91438 Biosensors and Transducers (5cp)
91439 Physiological Measurement (6cp)

Stage 2

Autumn semester
91462 Digital Processing of Signals and Images in Medicine (5cp)
91461 Physiological Modelling (5cp)
91433 Biostatistics (6cp)

Spring semester
91463 Hardware for Clinical Data Acquisition and Control (6cp)
91464 Laboratory Biocomputing (5cp)
91465 Advanced Programming – Life Sciences (5cp)

Stage 3

Autumn semester
91407 Project (Clinical Measurement) P/T (16cp)

Spring semester
91407 Project (Clinical Measurement) P/T (16cp)

1 Sets of Spring semester subjects alternate each year, which means entrants in odd and even years will undertake slightly different programs.

Notes

Subjects will be prescribed in the first semester according to the educational background of the entrant. Each semester normally consists of approximately nine hours per week, over one afternoon and two evenings. A minimum of 96 credit points must be successfully completed for award of the degree.

FULL-TIME PROGRAM

Full-time students must complete the requirements of the degree in two years by enrolling in 91406 Project (Clinical Measurement) F/T, in each year. All other subjects are as outlined above for the part-time program.

For further information contact: The Course Coordinator, Clinical Measurement, Associate Professor L K Holley, tel: 330 4152/4044 fax: 330 4003.
Master of Science in Coastal Resource Management

Course Coordinator: Associate Professor K R Brown

The degree in Coastal Resource Management is a joint enterprise of the Faculties of Science, Engineering and Business, in collaboration with the Faculties of Law and Legal Practice, and Design, Architecture and Building. The course can be completed over three years of part-time study, normally involving attendance on one afternoon and two evenings each week. Associated short courses, based on the various subject modules, and a two-year full-time option for the Master's course are available.

The course is part of the UTS Coastal Resource Management Program, the aims of which are to:

- offer interdisciplinary professional courses for work in industry and government;
- conduct the research needed to improve the management of coastal resources;
- collaborate with industry and government in identifying areas of concern;
- provide consultancy and information resources to industry and government;
- help provide effective solutions to the complex problems of this area of study;
- enhance community awareness and education in this area; and
- develop a centre of expertise in the Pacific region.

The course will enable graduates to enter or develop a career in coastal resource management in commerce, industry, consultancy, or with government agencies, as one of the new generation of environmental managers with:

- an ability to assess the possible impacts of planned actions on coastal and marine environments;
- a willingness and ability to monitor and reduce the impacts of those actions;
- the professional skills to work in integrated teams for environmental problem solving, planning and management; and
- an ability to manage coastal resources in developing and developed environments.

The course includes field work, site inspections, laboratory procedures and a variety of desk studies. In the final semester students will select and undertake an individual research project, in consultation with an appropriate academic supervisor, in their own area of interest and expertise. The project may be completed on campus or in association with an employer agency. The course equips environmental managers who, as part of a team, can take responsibility for decision making and conflict resolution with respect to coastal resources.

Admission to the course is open to graduates in science, engineering, architecture, building, business, law, or equivalent background. Applicants with general or professional qualifications which satisfy the Academic Board of capacity to pursue graduate studies may also qualify for admission. Entrants may be eligible for exemptions from one or more of the foundation subjects, on the basis of prior qualifications.

PART-TIME PROGRAM

Stage I

Autumn semester
98711 Coastal Resource Policy (4cp)

Plus
91493 Biosystems (4cp)
98712 Estuarine and Coastal Chemistry (4cp)
98713 Hydraulics (4cp)
98714 Introductory Coastal Geology (4cp)

Spring semester
91477 Research Design and Methods (4cp) (equiv)
91478 Economics of Coastal Resources (4cp)
91479 Coastal Zone Law (4cp)

Stage 2

Autumn semester
98715 Biological Resources and Assessment (8cp)
98716 Physical Geology of the Coastal Zone (4cp)

Spring semester
98717 Coastal Resource Planning (8cp)
98718 Pollution Assessment (4cp)

Stage 3

Autumn semester
98719 Recreation, Tourism and Natural Resource Management (4cp)
98720 Integrated Coastal Resource Management (8cp)

Spring semester
98721 Coastal Resource Project (12cp)

Notes
Subjects will be prescribed according to the educational background of the entrant.
Each semester normally consists of approximately nine hours per week, over one afternoon and two evenings.
A minimum of 96 credit points must be successfully completed for award of the degree.

For further information contact:
Master of Science in Environmental Toxicology

Course Coordinator: Dr R Lim

Environmental toxicology is the science which deals with the toxicity of chemicals in the environment to organisms, communities and ecosystems. A wide range of chemicals is in current use and their toxic effects need to be monitored. New chemicals are constantly being introduced and toxicological data are needed to assess potential hazards.

The course provides relevant postgraduate education and training in the developing science of environmental toxicology and is offered in conjunction with the Centre for Ecotoxicology. This Centre is a joint initiative between the New South Wales Environment Protection Authority and the University, and is housed in Dunbar Building, St Leonards campus.

Admission to the course is open to graduates with degrees in the biological sciences, chemistry, agriculture, pharmacy, engineering or equivalent disciplines. Admission to the course will be limited and the selection process may involve personal interviews.

The course is offered on a full-time or part-time basis. The part-time program normally involves attendance for nine hours per week for a total of six semesters. In the first two years there are six formal subjects which cover the essential knowledge and skills for the practising environmental toxicologist. The formal coursework comprises lectures, tutorials, and supervised laboratory and field work. Students will undertake written assignments and formal examinations. The final year involves a project which enables students to apply their knowledge to problems in environmental toxicology through experimental investigation, extensive critical reviews or other suitable activities. Projects may be undertaken in conjunction with industry or government institutions. All students must complete a report based on the project undertaken. The report must be prepared in accordance with the formal requirements laid down in the UTS Rules.

In the full-time attendance pattern students must complete the requirements of the degree in one and a half years with the project being completed in the final semester.

OBJECTIVES

The objectives of the course are to train scientific personnel to:

- be familiar with the groups of environmentally hazardous chemicals and their biochemical and environmental effects;
- design and implement toxicological tests on a variety of organisms including invertebrates, fish, mammals and terrestrial and aquatic plants;
- analyse and interpret the results of toxicological tests;
- use techniques of analytical chemistry to determine the nature and level of toxic materials in the environment;
- conduct field surveillance for the effects of toxic substances; and
- assess the risk from toxic chemicals and advise on environmentally sound management procedures.

FULL-TIME PROGRAM

Stage I

Autumn semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>91441</td>
<td>Principles of Toxicology</td>
<td>8</td>
</tr>
<tr>
<td>91471</td>
<td>Biochemical and Analytical Toxicology</td>
<td>12</td>
</tr>
<tr>
<td>and either</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91493</td>
<td>Biosystems(^1)</td>
<td>4</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91474</td>
<td>Statistics in Bioscience(^1)</td>
<td>4</td>
</tr>
</tbody>
</table>

Spring semester\(^1\)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>91472</td>
<td>Field Surveillance, Fate and Management of Toxic Substances</td>
<td>12</td>
</tr>
<tr>
<td>91440</td>
<td>Experimental Design and Methods</td>
<td>4</td>
</tr>
<tr>
<td>91473</td>
<td>Bioassays/Toxicological Testing</td>
<td>8</td>
</tr>
</tbody>
</table>
Stage 2

Autumn semester
91476 Environmental Toxicology
Project F/T (24cp)

PART-TIME PROGRAM

Stage I

Autumn semester
91441 Principles of Toxicology (8cp)
and either
91493 Biosystems\(^1\) (4cp)
or
91474 Statistics in Bioscience\(^1\) (4cp)

Spring semester \(^1\)
91440 Experimental Design and Methods (4cp)
91473 Bioassays/Toxicological Testing (8cp)

Stage 2

Autumn semester
91471 Biochemical and Analytical Toxicology (12cp)

Spring semester \(^1\)
91472 Field Surveillance, Fate and Management of Toxic Substances (12cp)

Stage 3

Autumn semester
91475 Environmental Toxicology
Project P/T (12cp)

Spring semester
91475 Environmental Toxicology
Project P/T (12cp)

\(^1\) Subjects will be prescribed in the first semester according to the educational background of the entrant.

Notes

Each semester normally consists of approximately nine hours per week, over one afternoon and two evenings. A minimum of 72 credit points must be successfully completed for award of the degree.

For further information contact:
The Course Coordinator, Environmental Toxicology, Dr R P Lim,

Master of Science in Hydrogeology and Groundwater Management

This course is designed to enable students to develop specialist skills in the area of groundwater management including aspects of geology, hydrology, hydraulics and resource management. This provides a multidisciplinary perspective to issues of groundwater management. For further information see the National Centre for Groundwater Management entry under Centres and Institutes within the Faculty.

ADMISSION REQUIREMENTS

Applicants must hold a four-year Science degree from UTS or an equivalent qualification and should have a minimum of two years' experience in employment related to the course. Applicants are required to submit a covering letter indicating why they wish to undertake the course, together with the names, telephone numbers and addresses of two professional referees.

ATTENDANCE

The course is offered on the basis of full-time attendance extending over one calendar year.

DURATION

The course requires full-time attendance for a series of lectures and laboratory work during Autumn semester and full-time project work during Spring semester. The time required to complete the project will be approximately 30 weeks, requiring students to continue project work until a satisfactory level of achievement has been attained.

COURSE STRUCTURE

With the exception of Project (30 credit points) and Computing for Groundwater Specialists, all subjects have a credit point value of five, and require three hours per week per semester.
Autumn semester
- 66014 Hydrogeology
- 49550 Computing for Groundwater Specialists
- 49555 Groundwater Modelling
- 66015 Hydrogeochemistry
- 49551 Surface Hydrology and Groundwater
- Elective 1
- Elective 2

Spring semester
- 66021 Groundwater Science Project (M) F/T
- or
- 66023 Groundwater Science Project (M) P/T

Electives
- 49554 Groundwater Computing
- 66016 Geophysics and Remote Sensing of Groundwater Resources
- 66017 Geopollution Management
- 66018 Groundwater Geophysics
- 66025 Contaminated Site Management
 An approved subject offered elsewhere

Master of Science in Medical Microbiology

Course Coordinator: Dr Iain Stevenson

The course offers postgraduate education to graduates in the medical or biological sciences wishing to further a career in medical microbiology or related areas of hospital and medical science, such as diagnostic bacteriology, virology, mycology and parasitology. It is being offered by the Faculty, with support from the Westmead Hospital Centre for Infectious Diseases and Microbiology, and other major Sydney hospitals.

The program can be completed in one-and-a-half years of full-time or in three years of part-time attendance. The formal coursework consists of lectures, tutorials and supervised laboratory work, some of which may be conducted at hospitals or other laboratories in Sydney. Students will undertake assignments and complete formal examinations. The final semester for full-time students, or year for part-time students, involves a project in a field relevant to the student’s interests.

Admission to the course is open to science graduates of approved tertiary institutions where microbiology has been a significant component of the degree, or persons with equivalent qualifications.

OBJECTIVES

To provide excellent postgraduate education for microbiology professionals.

Graduates of this course will:

- have a wide perspective and current awareness of individual groups of significant micro-organisms in the diagnostic clinical microbiology laboratory;
- be able to attain competence in the application of state-of-the-art diagnostic methods and procedures in their own laboratories;
appreciate the constraints inherent in many laboratory diagnostic procedures in microbiology;
• be able to assess and apply new and developing methodologies and technologies in the medical microbiology laboratory;
• be able to access current literature and other informational material rapidly and effectively; and
• have the potential to progress to research or research degree studies in microbiology.

PART-TIME PROGRAM

Stage 1

Autumn semester

91408 Principles of Biocomputing (5cp)
91480 Epidemiology and Disease Control (4cp)
91481 Current Topics in Medical Microbiology (3cp)

Spring semester

91482 Human Parasitology (5cp)
91483 Human Fungal Disease (4cp)
91481 Current Topics in Medical Microbiology (3cp)

Stage 2

Autumn semester

91485 Human Viral Disease (5cp)
91486 Management of the Microbiology Laboratory (4cp)
91487 Research Methodology – Medical Microbiology (3cp)

Spring semester

91488 Molecular Microbiology – Techniques and Diagnosis (8cp)
91490 Research Proposal Design – Medical Microbiology (4cp)

Stage 3

Autumn semester

91491 Project – Medical Microbiology P/T (2 sem) (12cp)

Spring semester

91491 Project – Medical Microbiology P/T (2 sem) (12cp)

FULL-TIME PROGRAM

Full-time students must complete the requirements of the degree in one and a half years. The full-time degree program is simply a combination of the part-time program, taken concurrently, plus the full-time project subject, 91492 Project – Medical Microbiology F/T (1 sem) (24cp).

COURSE FEES

Course fees will apply. Postgraduate students are also required to pay the Student Services charge on enrolment.

Notes

By prior arrangement, students may be able to complete the research project component of the course at their place of employment, which may be outside Sydney or Australia.

A minimum of 72 credit points must be successfully completed for award of the degree.

For further information contact: The Course Coordinator, Medical Microbiology, Dr I Stevenson, tel: 330 4154 fax: 330 4003.
Master of Science in Medical Physics

Course Coordinator: Associate Professor LK Holley

The course offers postgraduate education to graduates in the physical sciences wishing to enter a career in medical physics or related areas of hospital and medical science, such as nuclear medicine, radiotherapy, radiology or radiation protection. It is offered by the Faculty with support from members of the Australian College of Physical Scientists and Engineers in Medicine (ACPSEM) and major teaching hospitals.

The program can be completed with two years of full-time or three years of part-time attendance. The part-time pattern normally involves nine hours per week for six semesters. In the first semester most students undertake two appropriate foundation subjects. In the next three semesters six advanced subjects are offered, covering essential knowledge and skills in the area of medical physics. The formal coursework consists of lectures, tutorials and supervised laboratory work, some of which may be conducted at teaching hospitals in Sydney. Students will undertake assignments and complete formal examinations. In the final year students undertake a project in an applied field relevant to their interests.

Admission to the course is open to physical science graduates of universities and colleges of advanced education, or persons with equivalent qualifications. Basic human anatomy and physiology, or basic electronics, computer programming and mathematics, are normally prerequisites. Foundation subjects are available to those who need extra background in either of these areas.

OBJECTIVES

The objectives of the course are to provide students with:

- comprehensive theoretical and practical education in computing;
- hardware and software in clinical and physiological data acquisition;
- extensive range of biomathematical, biostatistical, signal processing and image processing skills;
- skills to conduct and report on an extensive research project; and
- ability to work as an independent, analytical professional in the medical physics environment.

PART-TIME PROGRAM

Stage 1

Autumn semester
91493 Biosystems (6cp)
91421 Principles of Human Biology (10cp)

Spring semester
91434 Radiation Protection (5cp)
91403 Medical Imaging (6cp)
91404 Physics in Medicine (5cp)

Stage 2

Autumn semester
91462 Digital Processing of Signals and Images in Medicine (5cp)
91461 Physiological Modelling (5cp)
91433 Biostatistics (6cp)

Spring semester
91463 Hardware for Clinical Data Acquisition and Control (6cp)
91464 Laboratory Biocomputing (5cp)
91465 Advanced Programming — Life Sciences (5cp)

Stage 3

Autumn semester
91489 Project (Medical Physics) P/T (16cp)

Spring semester
91489 Project (Medical Physics) P/T (16cp)

1 Sets of Spring semester subjects alternate each year, which means entrants in odd and even years will undertake slightly different programs.
Notes
Subjects will be prescribed in the first semester according to the educational background of the entrant. Each semester normally consists of approximately nine hours per week, over one afternoon and two evenings. A minimum of 96 credit points must be successfully completed for award of the degree.

FULL-TIME PROGRAM
Full-time students must complete the requirements of the degree in two years by enrolling in 91484 Project (Medical Physics) F/T in each year. All other subjects are as outlined above for the part-time program.

For further information contact:
The Course Coordinator, Medical Physics, Associate Professor L K Holley, tel: 330 4152/4044 fax: 330 4003.

POSTGRADUATE DEGREES BY RESEARCH/THESIS
The Master’s and PhD programs are designed for graduates who wish to develop a career in the field of biological and biomedical as well as physical sciences by undertaking an appropriate research investigation under professional supervision.

The broad areas of research expertise within the Faculty are:
- Materials technology
- Image processing and analysis
- Regional and resource geology
- Science education
- Cell and molecular biology
- Biomedical science and engineering
- Environmental biology and toxicology
- Groundwater management
- Biomedical technology
- Forensic and analytical chemistry
- Coastal resource management

Applications are invited for these research programs. Please consult with a potential academic supervisor or appropriate Head of Department before submitting an application.

For further information about the potential supervisors, please telephone the Science Faculty Office on 330 1687.

ADMISSION TO MASTER’S DEGREE (BY THESIS) PROGRAM
An application for admission to a Master’s degree program is accepted subject to the availability of facilities and supervision. The course can be completed in two years of full-time study or over a minimum of three years part-time. Study can be carried out by means of a cooperative arrangement with the candidate’s employer. Applicants should hold at least a Bachelor’s degree from UTS, or equivalent, or other general or professional qualifications as will satisfy the Academic Board that the applicant possesses the educational preparation and capacity to successfully complete the course.

ADMISSION TO PhD PROGRAM
Applications for the PhD program will be accepted at any time and a decision will be advised following consideration by the relevant research degrees committees. Candidates may be admitted to the program with a Bachelor’s degree with First or Second Class Honours Division 1 from UTS, or an appropriate Master’s degree from UTS, or an equivalent qualification.
POSTGRADUATE SUBJECT DESCRIPTIONS

44152, 44156
GROUNDWATER ENGINEERING PROJECTS (M) F/T, P/T
30cp
These projects will provide students with the opportunity to research specific engineering groundwater resource or contamination problems. The depth and extent of research will vary with credit points required. Projects include one or more of the following: modelling, laboratory experiments, field work related to hydrogeology and groundwater management, contaminant transport and processes, waste disposal and groundwater impact.

44153, 44157
GROUNDWATER ENGINEERING PROJECTS (GD) F/T, P/T
15cp
As above but at a reduced scale.

49121
ENVIRONMENTAL ASSESSMENT AND PLANNING
6cp; 3hpw
Conserving resources and meeting essential needs; industry, urban, energy futures - the need to reorientate technology; ecology and economics. Environmental law: principles; federal, State and local government responsibilities; environmental impact assessment. The concept of licensing requirements, approval procedures. Environmental economics: social benefit/cost analysis for environmental services, resource pricing, risk assessment; land-use planning. Project planning - environmental aspects.

49122
INTRODUCTION TO ENVIRONMENTAL ENGINEERING AND MANAGEMENT
6cp; 3hpw
Ecological systems and processes; basic ecological principles; bio-geochemical cycles; development of ecosystems; interaction between physical ecosystems; global environment issues such as greenhouse effect, ozone depletion and acid rain. Human impact on ecosystems: population growth; terrestrial ecosystems (forest and agricultural land); aquatic ecosystems (lake, river and ocean). Biodiversity; importance of sustainable development. An overview of major environmental problems; their effect and remedies. Air pollution, noise pollution, water pollution, soil pollution, solid and hazardous wastes. Case studies.

49123
WASTE MINIMISATION AND ADVANCES IN POLLUTION CONTROL
6cp; 3hpw
Environmental auditing of the product life cycle; leading-edge technologies of waste minimisation and pollution control, raw materials extraction and refinement; product development, design and manufacture; product use; product reuse/recycling; solid/hazardous wastes; liquid wastes. Effective management of the product life cycle; institutional barriers to improving the technologies of waste minimisation and pollution control; reviews of advanced technology and management practices adopted in domestic waste pollution control; economic considerations. Case studies: pulp and paper industry, metal plating industry, food and dairy industry, household waste, waste recycling in buildings.
49124
URBAN WATER QUALITY MANAGEMENT
6cp; 3hpw
Characteristics of Australian urban water systems: natural features and human infrastructure; benefits and uses of water systems. The sources and nature of major categories of pollutants generated from agricultural, urban and industrial sources; groundwater pollution; beach and coastal pollution; the ecological and public health impacts of pollutants causing siltation. Criteria and designs of monitoring programs; sampling procedures; methods of data analysis; description and modelling of pollution processes. Remedies: regulation of point sources; stormwater and sewer flow controls; groundwater controls etc. Standards, pollution laws, regulatory bodies and responsible organisations (with particular emphasis on New South Wales). Water and wastewater treatment processes.

49550
COMPUTING FOR GROUNDWATER SPECIALISTS
3hpw
Note: this subject does not carry academic credit
Provides the computing background needed for students with varying degrees of computer literacy. Topics covered include introduction to FORTRAN programming, mainframe, microcomputer operation systems, databases, spreadsheets, word processing, statistical and graphical packages with applications relating to groundwater processes.

49551
SURFACE HYDROLOGY AND GROUNDWATER
5cp; 3hpw
Provides the interface process link between surface hydrology and groundwater. Topics include hydrological cycle, water and energy balances and circulation, precipitation, interception, infiltration, storm runoff, hydrograph analysis, evaporation and transpiration, surface and groundwater interactions, land use effects, artificial recharge.

49554
GROUNDWATER COMPUTING
5cp; 3hpw
Provides a strong computing basis for groundwater management, especially in the area of statistics and graphics as applied to groundwater problems involving computing. Introduction to FORTRAN programming, mainframe, microcomputer operation systems, databases, spreadsheets, word processing, elements of geostatistics and graphical packages with applications related to groundwater processes, groundwater computing project.

49555
GROUNDWATER MODELLING
5cp; 3hpw
Provides the computer-modelling tools required for groundwater resource management. Topics include groundwater modelling of porous media, fractured rock and low permeability materials. Analogue, numerical analytical models. Matrix structure and inverse methods, stochastic modelling and characterisation of variability. Modelling multiphase fluids and regional groundwater flow. Applications to borefield management, salt water intrusion, mine dewatering, geotechnical problems.

66014
HYDROGEOLOGY
5cp; 3hpw
Provides a knowledge of geological occurrence and hydraulics of groundwater flow, exploration techniques, extraction engineering and field management.
66015
HYDROGEOCHEMISTRY
5cp; 3hpw
Covers the chemical basis for understanding how the chemistry of groundwater evolves both naturally and in the case of contamination. Both practical field measurement and computer modelling will be covered.

66016
GEOPHYSICS AND REMOTE SENSING OF GROUNDWATER RESOURCES
5cp; 3hpw
A theoretical and practical examination of the geophysical and remote sensing techniques applicable to groundwater resources evaluation and other environmental problems.

66017
GEOPOLLUTION MANAGEMENT
5cp; 3hpw
The relationship between groundwater contamination and water quality, together with appropriate waste management and disposal methods for minimal environmental impact. Contaminated land issues are also addressed.

66018
GROUNDWATER GEOPHYSICS
5cp; 3hpw
This subject presents an advanced application of geophysical techniques for groundwater research and resource management, and includes contamination assessment and monitoring.

66021, 66023
GROUNDWATER SCIENCE PROJECTS (M) F/T, P/T
30cp
These projects will provide students with the opportunity to research specific hydrogeology groundwater resource or contamination problems. The depth and extent of research will vary with credit points required. Topics include investigation consisting of one or more of: modelling, laboratory experiments, field work related to hydrogeology and groundwater management, contaminant transport and processes, waste disposal and groundwater impact.

66022, 66024
GROUNDWATER SCIENCE PROJECTS (GD) F/T, P/T
15cp
As above but at a reduced scale.

66025
CONTAMINATED SITE MANAGEMENT
5cp; 3hpw
To develop an understanding of the methodology and technology used in the assessment and remediation of contaminated sites.

The subject content includes: regulatory requirements, site assessment methodology, physical, chemical and biological properties and behaviour of contaminants, health issues, risk assessment, site assessment technology, remediation techniques and operation.

69311
OCUPATIONAL HEALTH AND SAFETY IN SOCIETY
3cp; 2hpw
This subject will cover the psychological, political and sociological dimensions of occupational health and safety, and present them within the context of the overall social system. It will highlight the complexity and diversity of working environments, and the importance of the human agency in constructing and changing them. It will also explore the strategies available to create safer and healthier working situations.
69312

OCCUPATIONAL HAZARD ANALYSIS

6cp; 4hpw

This subject will deal with the identification of the major categories of both safety and health hazards, the analytical techniques and management programs appropriate for dealing with them and the development of policies in occupational health and safety. Models of accident and disease causation, techniques of investigation, emergency hazards and risk assessment will also be covered.

69313

ORGANISATIONAL BEHAVIOUR AND COMMUNICATION

3cp; 2hpw

This subject examines the behaviour of people in organisations, and the dynamics of interpersonal and intergroup behaviour. Topics include: interpersonal perception, attitudes and values, motivation, communications, group behaviour, conflicts, leadership, organisation change and adaptation.

69321

QUANTITATIVE ASSESSMENT AND MEASUREMENT

3cp; 2hpw

Rational decision making in any science-based discipline requires quantitative data, and the ability to critically assess their meaning and accuracy. This subject will deal with the basics of measurement, including the differences between accuracy, precision and repeatability; the characteristics of measurement systems; basic units, derived quantities and performance indices, and will also develop confidence in the use of various types of measuring instruments.

69322

OCCUPATIONAL HEALTH IN THE WORKPLACE

3cp; 2hpw

The aim of this subject is to develop an understanding of the principles associated with the assessment and maintenance of health in the workplace, including stress adaptation and management. It will include coverage of the principles of health assessment, health promotion and education, assessment of work environment, management of illness in the workplace, disability and rehabilitation, and work factors affecting the worker's family.

69323

HUMAN FACTORS/ERGONOMIC DESIGN

3cp; 2hpw

The role of ergonomics/human factors in the creation of a healthy, safe and productive work environment will be covered, including the principles and techniques used in this discipline. The subject will include the principles of ergonomic design and their application to product and equipment design to combine safety with functionality.

69324

BIOLOGICAL HAZARDS AND TOXICOLOGY

3cp; 2hpw

This will be an introduction to biological hazards in the workplace, including allergens in airconditioning systems, legionellosis, infecting disorders, food poisoning, and other job associated risks. It will also discuss the principles of environmental and human toxicology, including toxic gases, dusts and chemicals and text methods, hygiene and sanitation.
69325
DATA ANALYSIS IN
OCCUPATIONAL HEALTH AND
SAFETY
3cp; 2hpw
The collection and organisation of data, and access to and use of databases are important aspects of the effective management of the occupational health and safety function. This subject will develop understanding and proficiency in these areas with special reference to occupational health and safety and workers' compensation information systems and reference material databases.

69331
BUILDING EMERGENCY CONTROL
3cp; 2hpw
This subject will develop students' awareness of the various types of emergencies and an understanding of their respective scenarios and possible outcomes. This will provide the basis for the development of management policies and training programs which will ensure safety commensurate with acceptable levels of risk.

69332
CHEMICAL SAFETY (OHS)
3cp; 2hpw
This subject will deal with the hazardous effects of chemicals on people and the methods of handling and storing chemicals to minimise risks to health and safety.

69333
CONSTRUCTION SAFETY
3cp; 2hpw
The construction industry continues to be one of the major areas of work-related injury. This subject will discuss all aspects of construction safety, from the design phase of a construction project through to the identification, analysis and management of the specific hazards on a construction site.

69334
OCCUPATIONAL HEALTH
SERVICES
3cp; 2hpw
This subject will cover the principles underlying the establishment and functioning of an effective occupational health service within an organisation including its role in assessment of the workplace, health assessment, the management of illness and injury and rehabilitation of injured workers.

69335
PEOPLE AND THE PHYSICAL
ENVIRONMENT
3cp; 2hpw
People have a continuing and dynamic interaction with their physical surroundings, and the processes of this interaction must be understood so that they can be designed for and controlled. The subject will deal with both those interactions which are a part of normal processes, such as noise, vibrations and heat, and those which are random and unplanned events. The first of these can be quantitatively assessed and controlled, whereas the latter requires the application of probability and reliability techniques.

69341
RISK MANAGEMENT
6cp; 4hpw
This subject introduces the following three aspects of risk, integrating them by use of a case study, supported by audio-visual material and assignments.

1. Risk as an intellectual factor which may be analysed and expressed in numerical terms, generally based on frequency and consequence. Methods of qualifying and quantifying these factors are identified.

2. Risk as a feature of the world of management, commerce and technology. This is illustrated by references to cases in each of those sectors. Risk is examined under a series of headings ranging from risk
forecasting to risk litigation. Ways in which an enterprise can protect itself against the consequences which may follow at each step from accepting risk are also explored.

3. Risk as a personal factor which must be faced individually and by managers, together with suggestions for how risks can best be dealt with.

69342
LEGAL ASPECTS OF OCCUPATIONAL HEALTH AND SAFETY
3cp; 2hpw
Occupational health and safety is covered by a wide range of legislative Acts and regulations, both State and federal. This subject will introduce students to the important aspects of this legislation, its interpretation, and the implications for the organisation and management of the occupational health and safety function.

69343
OCCUPATIONAL HEALTH AND SAFETY MANAGEMENT
3cp; 2hpw
This subject will bring together the management aspects of occupational health and safety through group exercises and case studies. It will deal with the role of the occupational health and safety manager in industry, motivation for health and safety, industrial relations issues, current concepts in safety and health, data analysis and collection and the use of records, training for occupational health and safety, and economic aspects of losses associated with accidents, injuries and ill health.

69351
OCCUPATIONAL HEALTH AND SAFETY PROJECT
24cp

91403
MEDICAL IMAGING
6cp; 3hpw
Nuclear medicine: radioisotopes, physics, use; instrumentation: gamma camera, rectilinear scanner, PET, SPECT; image quality and artifact. Radiology: generation, detection and properties of X-rays – DSA, CT; magnetic resonance imaging, ultrasound.

91404
PHYSICS IN MEDICINE
5cp; 3hpw
Radiotherapy sources of radiation; radiation beam parameter; measurement of therapy level radiation; simulators; dose distribution, brachytherapy; quality assurance; safety; non-ionising radiation: lasers, UV. Ultrasound: generation, detection and properties of Ultrasound – B and M mode scanning, electronic array scanning.

91405
BIOELECTRONICS
6cp; 3hpw
corequisite: 91436 Advanced Mathematics in the Life Sciences
Basic concepts of electronic measurement techniques, signals, transducers, electronic processing, display; basic electrical concepts and measurements: charge, current voltage and resistance in simple circuits, thevenin equivalence. Frequency dependent circuits: inductors, capacitors, impedance and reactance, RC, RL and RLC circuits, simple filters. Semi-conductors, diodes, FET and junction transistors. Amplifiers:

91406

PROJECT (CLINICAL MEASUREMENT) F/T

32cp; 4½hpw, 4 semesters

corequisites: all foundation subjects

Candidates are required to undertake a project and prepare a report. The project is designed to introduce them to problem solving situations in applied fields relevant to their interests and/or professional experience. Projects may take the form of experimental investigations, design studies, extensive critical reviews or other suitable activities. If possible, projects will be chosen in cooperation with hospital and medical institutions so that candidates have some introduction to professional practice. The project will be completed in accordance with the Rules for Master’s degree (by coursework).

91407

PROJECT (CLINICAL MEASUREMENT) P/T

32cp; 9hpw, 2 semesters

prerequisites: all foundation subjects

Equivalent to 91406

91408

PRINCIPLES OF BIOCOMPUTING

5cp; 3hpw

prerequisites: some knowledge of basic mathematics and statistics is assumed

Overview of computer systems and applications: principles of computer hardware, IBM PC series. Principles of operating systems: MS-DOS, UNIX. Principles of third generation languages and structured programming. The Pascal language: commands, input/output, control statements, data types, arrays, data files.

91410

PRINCIPLES OF CLINICAL BIOCHEMISTRY

5cp; 3hpw

91411

BIOCHEMICAL PATHOPHYSIOLOGY

6cp; 3hpw

prerequisite: 91410 Principles of Clinical Biochemistry

Role of the clinical biochemistry laboratory in patient care, with emphasis on the biochemical indications of underlying pathology. Measurement of homeostasis and its malfunction, as seen in regulation of electrolyte, water and acid-base balance, and liver and kidney function and disorders. Serum protein patterns in health and disease. Abnormalities of lipid metabolism. Radioimmunoassay and related techniques and their role in hormonal evaluation with special emphasis on thyroid function. Isoenzymes; malabsorption syndromes; vitamin levels in clinical investigation.
91412
BIOMEDICAL SCIENCES 1
10cp; 6hpw
This subject may be undertaken only with special permission of the Head of Department of Biochemistry.

91413
BIOMEDICAL SCIENCES 2
10cp; 6hpw
This subject may be undertaken only with special permission of the Head of Department of Biochemistry.

91414
ANALYTICAL BIOCHEMISTRY PROJECT 1
5cp; 3hpw
This subject may be undertaken only with special permission of the Head of Department of Biochemistry.

91415
ANALYTICAL BIOCHEMISTRY PROJECT 2
6cp; 3hpw
This subject may be undertaken only with special permission of the Head of Department of Biochemistry.

91417
CLINICAL LABORATORY MANAGEMENT
6cp; 3hpw
prerequisite: 91423 Clinical Biochemistry – Advanced Aspects A or 91424 Clinical Biochemistry – Advanced Aspects B
Theoretical considerations of planning, staffing, organising and controlling.
Problem identification in laboratories; aspects of accounting and finance; use of multiphasic health screening; labour relations; methods evaluation; ethical and legal considerations affecting laboratory personnel.

91419
CASE STUDIES IN CLINICAL BIOCHEMISTRY
6cp; 3hpw
prerequisite: 91411 Biochemical Pathophysiology
A variety of case studies, each illustrative of a different kind of problem, will be introduced. Real and simulated cases which involve conceptual and practical problems stemming from uncertain or ambivalent analytical procedures, faulty instrument calibration, poor quality control, inappropriate data handling, and unexpected or apparently inexplicable relationships between sets of biochemical data are used. Students work individually or in groups, studying particular cases, leading class discussions, and suggesting alternative technical or management procedures as well as new technological innovations that might be usefully employed in each case.

91421
PRINCIPLES OF HUMAN BIOLOGY
10cp; 6hpw
prerequisite: knowledge of basic biological concepts is assumed
Basic human organisation – tissues, fluids, skeletal and muscular systems. Biological control systems – essentials of control systems, the nervous and hormonal systems. Integrated structure and function of cardiovascular, lymphatic, respiratory, gastrointestinal, renal and reproductive systems. Introductory human genetics – human variability, basic population genetics, mutations, problems of counselling.

91423
CLINICAL BIOCHEMISTRY – ADVANCED ASPECTS A
10cp; 6hpw
prerequisite: 91410 Principles of Clinical Biochemistry
Toxicology and drug metabolism; modern methods for the screening, identification and quantitation of drugs
of abuse. Clinical biochemistry of foeto-placental function, gastrointestinal function, the porphyrrias and the catecholamines. Principles and practice of instrument evaluation. Advanced techniques in clinical biochemistry; IR spectroscopy, GLC, GC/mass spectrometry, HPLC, ion-selective electrodes.

91424
CLINICAL BIOCHEMISTRY – ADVANCED ASPECTS B
10cp; 6hpw
prerequisite: 91410 Principles of Clinical Biochemistry
Chemical pathology of liver and kidney function; pathophysiological effects of alcohol abuse, viral infection and choleostasis. The endocrine tissues; thyroid, adrenal and gonadal function. Theoretical and practical aspects of immunoassay. Inborn errors of metabolism; screening methods and investigation of the genome. Chemical diagnosis of diabetic states, hypertension and myocardial infarction. Immunological disorders; detection and diagnosis.

91426
ANALYTICAL TECHNIQUES IN BIOCHEMISTRY
10cp; 6hpw

91433
BIOSTATISTICS
6cp; 3hpw
prerequisite: 91408 Principles of Biocomputing or equivalent
Review of parametric and non-parametric statistics applied to the clinical field; population distributions, tests of significance, selection of suitable statistical tests, analysis of variance, correlation and regression analysis, experimental design. Use of major computer packages (SPSS, minitab) for statistics.

91434
RADIATION PROTECTION
5cp; 3hpw
Principles and techniques of radiological protection including basic physics; radiation, its sources and properties; radiation units; detection and measurement principles; health physics instruments; radiation dosimetry (ionising and non-ionising); principles of radiation control; radiation protection standards; shielding fundamentals; principles of radioactive waste disposal; safety design of nuclear laboratories; administrative aspects of radiological protection; legal aspects; accelerators and cyclotrons; transport of radioactive materials.

Note: Students may be required to attend lectures at the Australian School of Nuclear Technology, Lucas Heights.

91436
ADVANCED MATHEMATICS IN THE LIFE SCIENCES
5cp; 3hpw
prerequisite: some knowledge of basic mathematics is assumed
Number theory: binary, octal, decimal, hexadecimal. Boolean algebra.

91437
ADVANCED BIOINSTRUMENTATION
5cp; 3hpw
prerequisite: equivalent to Certificate in Electronics and Computing in Life Sciences and Certificate in Human Biology

91440
EXPERIMENTAL DESIGN AND METHODS
4cp; 3hpw
equivalent to 98903 Experimental Design and Resources Management, 91477 Research Design and Methods

The focus of this subject is the role and significance of experimental design and analysis in natural environmental systems. The emphasis will be on experimentation, survey techniques, and the construction and interpretation of statistical models.

91441
PRINCIPLES OF TOXICOLOGY
8cp; 6hpw
equivalent to 91448 Introduction to Toxicology

Strand A: Historical development of toxicology and environmental toxicology. The sources and behaviour of the main classes of toxic substances in the environment, their effects on tissues, organs, organisms and ecosystems. Introduction to community ecology and ecological processes. Environmental toxicology and human and occupational health. National and international standards for toxicological testing.

Strand B: The use of mammalian species in toxicity testing. Examination of the effects of the main classes of natural and artificial poisons on specific organ systems of mammals. Care and maintenance of laboratory animals and special problems associated with their use in toxicity testing. Mutagenesis, carcinogenesis and teratogenesis.
environment, their effects on tissues, organs, organisms and ecosystems. Introduction to community ecology and ecological processes. Environmental toxicology and human and occupational health. National and international standards for toxicological testing.

Strand B: The use of mammalian species in toxicity testing. Examination of the effects of the main classes of natural and artificial poisons on specific organ systems of mammals. Care and maintenance of laboratory animals and special problems associated with their use in toxicity testing. Mutagenesis, carcinogenesis and teratogenesis.

91453

PROJECT PROPOSAL (CLINICAL BIOCHEMISTRY)

6cp

prerequisite: completion of three semesters of coursework

Formulation of a proposal for an investigatory or developmental project in clinical biochemistry, suitable for completion over two semesters of part-time project work within the context of 91456 and 91459. The student is required to define the project aims in consultation with an academic supervisor, conduct a preliminary literature review, design the experimental approach and submit them in the form of a written project proposal.

91456

PROJECT 1 (CLINICAL BIOCHEMISTRY)

10cp

prerequisite: 91453 Project Proposal (Clinical Biochemistry)

Students are required to complete 91456 (six hours per week) and 91459 (nine hours per week) project subjects extending over two semesters, based on the project proposal submitted in 91453 or an equivalent written proposal. Projects are generally carried out at the student's place of employment and should relate to current problems or developments in clinical biochemistry in the working laboratory. Students are expected to translate their project design into action, developing appropriate methodology, collecting data and subjecting it to critical evaluation and scientific presentation. The project will be completed in accordance with the Rules for Master's degree (by coursework) students.

91459

PROJECT 2 (CLINICAL BIOCHEMISTRY)

16cp

prerequisite: 91453 Project Proposal (Clinical Biochemistry)

See subject description for 91456 Project 1 (Clinical Biochemistry).

91461

PHYSIOLOGICAL MODELLING

5cp; Jhpw

prerequisite: 91408 Principles of Biocomputing

An introduction to the analysis of dynamic behaviour in biological and physical systems, with emphasis on the development of suitable mathematical models. General development of models; philosophy, variables, states, signal flows and parameters. Computational block models; simulations using THTSIM. Expression-based modelling languages. Example biological models; compartment models, driven models, nonlinear models. Integration errors. Validation of dynamic models against data.

91462

DIGITAL PROCESSING OF SIGNALS AND IMAGES IN MEDICINE

5cp; Jhpw

Linear systems, Fourier transforms in 1D and 2D; stochastic properties of signals; sampling and quantisation; discrete Fourier transformation, FFT; Z transform; digital filter structures, properties; IIR and FIR filters; image point operations; image filters; image transforms.
91463

HARDWARE FOR CLINICAL DATA ACQUISITION AND CONTROL

6cp; 6hpw
Typical hardware systems in the Life Sciences. CPU operation, microprocessor operations, memory, I/O interfacing, DMA. Turbo debugger environment. Display hardware, text mode, memory mapping, monochrome, CGA, EGA, VGA. Keyboard operation. Business architecture. Communications hardware. Peripheral systems (real world interfacing), data acquisition and control boards, frame grabbers, CCD/video, controllers, IEEE 488 interface bus, RS232C and centronics connections.

91464

LABORATORY BIOCOMPUTING

5cp; 3hpw
Intel assembler language. Use of Turbo Assembler debugger. Accessing systems hardware, data acquisition and control cards and interface cards. Interfacing to other languages (e.g. Turbo, Pascal). Use of Interrupts (DOS, BIOS, Hardware and interrupt handlers). When/why use Assembler code. Applications in medicine and biology.

91465

ADVANCED PROGRAMMING – LIFE SCIENCES

5cp; 3hpw
prerequisites: 91408 Principles of Biocomputing, 91436 Advanced Mathematics in the Life Sciences or equivalent
Interfacing programs with medical and biological applications. Advanced Pascal features, records and sets, dynamic structures, pointers, database structures, interrupt handlers, graphics, port instructions. Clinical interface programming using data acquisition and control boards. Data acquisition programming languages – interface drivers.

91471

BIOCHEMICAL AND ANALYTICAL TOXICOLOGY

12cp; 6hpw
equivalent to 91444 Analytical Techniques in Toxicology and 91445 Biochemical Toxicology
Biochemical mechanisms involved in entry, transformation and removal of toxic substances in plants, animals and selected micro-organisms. Application of immunological methods in investigating the toxicological responses in various organisms. Introduction to techniques and instrumentation used for toxicological testing of environmental and biological samples.

91472

FIELD SURVEILLANCE, FATE AND MANAGEMENT OF TOXIC SUBSTANCES

12cp; 9hpw
equivalent to 91443 Environmental Management, 91446 Field Surveillance and Management of Toxic Substances, 91447 Environmental Accumulation and Transformation of Toxic Substances
prerequisites: 91448 Introduction to Toxicology or 91441 Principles of Toxicology, 91433 Biostatistics or 91474 Statistics in Bioscience
91473
BIOASSAYS/TOXICOLOGICAL TESTING

8cp; 6hpw
equivalent to 91442 Toxicological Testing

Bioassays

- prerequisites: 91448 Introduction to Toxicology or 91441 Principles of Toxicology, 91433 Biostatistics or 91474 Statistics in Bioscience

Toxicity tests to determine acute and chronic effects of toxic substances on a wide range of organisms e.g. fish, invertebrates, plants. Analysis and interpretation of results.

91474
STATISTICS IN BIOSCIENCE

4cp; 3hpw
equivalent to 91433 Biostatistics

corequisite: 91408 Principles of Biocomputing or equivalent

Review of parametric and non-parametric statistics applied to the clinical field; population distributions, tests of significance, selection of suitable statistical tests, analysis of variance, correlation and regression analysis, experimental design. Use of major computer packages (SPSS, minitab) for statistics.

91475
ENVIRONMENTAL TOXICOLOGY PROJECT P/T

24cp; 2 semesters
prerequisites: include all foundation subjects equivalent to 91450 Project (Environmental Toxicology) P/T and 91460 Project (Environmental Toxicology) F/T

All Master's candidates must undertake a project and prepare a report. The project is designed to introduce them to problem-solving situations in applied fields relevant to their interests. Projects may take the form of experimental investigations, design studies, extensive critical reviews or other suitable activities. If possible, projects will be chosen in cooperation with employers so that candidates have some introduction to professional practice. The project will be completed in accordance with the Rules for Master's degree (by coursework) students.

91476
ENVIRONMENTAL TOXICOLOGY PROJECT F/T

24cp; 1 semester
prerequisites: include all foundation subjects, equivalent to 91450 Project (Environmental Toxicology) P/T and 91460 Project (Environmental Toxicology) F/T

All Master's candidates must undertake a project and prepare a report. The project is designed to introduce them to problem-solving situations in applied fields relevant to their interests. Projects may take the form of experimental investigations, design studies, extensive critical reviews or other suitable activities. If possible, projects will be chosen in cooperation with employers so that candidates have some introduction to professional practice. The project will be completed in accordance with the Rules for Master's degree (by coursework) students.

91477
RESEARCH DESIGN AND METHODS

4cp; 3hpw
prerequisites: all first semester subjects

The focus of this subject is the role and significance of experimental design and analysis in natural coastal systems. The emphasis will be on experimentation, survey techniques, and the construction and interpretation of statistical models.

91478
ECONOMICS OF COASTAL RESOURCES

4cp; 3hpw

Concentrates on the fundamental economic principles that underlie the allocation of coastal resources. The concept of ecologically sustainable development will be considered within an economic framework, and its significance to coastal resources will be assessed. Case studies and applications of environmental economic techniques to coastal resource management problems will be investigated.
91479
COASTAL ZONE LAW
4cp; 3hpw
prerequisites: completion of first year of studies
A survey will be made of those areas of law that are designed to control or regulate environmental quality of coastal resources. The subject covers the common law heritage and the major statutory and common law controls over pollution, use of land, terrestrial, aquatic, and heritage resources. The emphasis will be on Australian legislation in comparison with other countries.

91480
EPIDEMIOLOGY AND DISEASE CONTROL
4cp; 3hpw equivalent

91481
CURRENT TOPICS IN MEDICAL MICROBIOLOGY
6cp; 3hpw equivalent extending over 2 semesters
Offered with the Centre for Infectious Disease and Microbiology (CIDM), Westmead Hospital, and some classes/sessions will be held at the hospital. Classes will be presented by staff from UTS, CIDM and invited guest lecturers. In this subject a survey of selected topics in clinical microbiology will be undertaken. The precise mix of topics presented will vary from year to year, but will include a range of current problems or recent developments in diagnostic clinical microbiology.

91482
HUMAN PARASITOLOGY
5cp; 4hpw equivalent
A review of parasitic protozoa and helminths of medical and veterinary importance in both Australasia and the South-East Asian region. Standard procedures for specimen handling and laboratory diagnosis. Molecular and other advanced methods of specimen testing.

91483
HUMAN FUNGAL DISEASE
4cp; 3hpw equivalent

91484
PROJECT (MEDICAL PHYSICS) F/T
32cp
corequisites: all foundation subjects
Candidates are required to undertake a project and prepare a report. The project is designed to introduce them to problem-solving situations in applied fields relevant to their interests and/or professional experience. Projects may take the form of experimental investigations, design studies, extensive critical reviews or other suitable activities. If possible, projects will be chosen in cooperation with hospital and medical institutions so that candidates have some introduction to professional practice. The project will be completed in accordance with the Rules for Master’s degree (by coursework) students.

91485
HUMAN VIRAL DISEASE
5cp; 4hpw equivalent
The nature of viruses, multiplication, classification and identification procedures. Tissue culture practice, diagnostic virology and serology. Contribution of molecular methods to viral diagnosis. Selected viral diseases will be considered as individual case studies.
91486
MANAGEMENT OF THE MICROBIOLOGY LABORATORY

4cp; 3hpw

Organising, operating, staffing and controlling the clinical diagnostic laboratory. Method and equipment evaluation; reporting and accreditation. A perspective on accounting and financial control; legal and ethical considerations and constraints.

91487
RESEARCH METHODOLOGY - MEDICAL MICROBIOLOGY

3cp; 2hpw

Overview of approaches to research; defining the problem, planning the experimental work; interpretation of laboratory data; critical review of published work.

91488
MOLECULAR MICROBIOLOGY - TECHNIQUES AND DIAGNOSIS

8cp; 2hpw lectures plus 1 week intensive practical session, during semester break, 6hpw equivalent

Key concepts and procedures in molecular biology, including bacterial and bacteriophage genetics, mutation and DNA exchange. Plasmids, transposons and other mobilisable genetic elements. DNA isolation, manipulation and cloning procedures. Molecular biology applied to the diagnostic laboratory for organism identification and characterisation.

91489
PROJECT (MEDICAL PHYSICS) P/T

32cp; 2 semesters

prerequisites: all foundation subjects

Equivalent to 91484

91490
RESEARCH PROPOSAL DESIGN - MEDICAL MICROBIOLOGY

4cp; 3hpw equivalent

This subject complements 91487 and introduces the student to the preparation of internal laboratory reports, funding submissions, research proposals and material for scientific publication. The student will develop a detailed proposal for a research project.

91491
RESEARCH PROJECT - MEDICAL MICROBIOLOGY P/T

24cp; 2 semesters

An individual research project in an area of individual interest or a work related topic. The project will be developed in advance in consultation with the Course Coordinator and other academic staff involved in the teaching of the Master’s degree program. The project may be carried out in the Faculty’s laboratories, or externally by arrangement.

91492
RESEARCH PROJECT - MEDICAL MICROBIOLOGY

24cp; 1 semester

As for 91491 Research Project - Medical Microbiology

91493
BIOSYSTEMS

4cp; 3hpw

This is an introduction to biological sciences for graduates with little or no prior experience in this discipline. Characteristics of living things; the cell as a unit of life, its structure and function. Continuity of life – genetics of cells, individuals, populations. Evolution; classification of living organisms. Interactions at various levels of organisation in living systems – molecules and cells, organs, organisms, populations and total communities of many species. Animal and plant responses to natural and human-induced stresses in aquatic...
and terrestrial environments. Manipulation by humans of plant and animal genetics and environment and its consequences. Experimental aspects of biological sciences.

91498
SPECIAL READING ASSIGNMENT
P/G LIFE SCIENCES
6cp
This reading assignment can be undertaken only following negotiation by the student with a full-time member of academic staff to gain agreement to be individually supervised. It also requires special permission of the appropriate Subject Coordinator and Associate Dean.

91499
INDIVIDUAL PROJECT P/G - LIFE SCIENCES
10cp
This individual project can be undertaken only following negotiation by the student with a full-time member of academic staff to gain agreement to be individually supervised. It also requires special permission of the appropriate Subject Coordinator and Associate Dean.

91607
RESEARCH METHODS 1
4cp; 4hpw
Refer to subject description in the section 'Undergraduate Subject Descriptions'.

91608
RESEARCH METHODS 2
4cp; 4hpw
Prerequisite: 91607 Research Methods 1
Refer to subject description in the section 'Undergraduate Subject Descriptions'.

91609
BIOMEDICAL SCIENCE UPGRADE
8cp; 4hpw
This subject is designed for practising acupuncturists with a background of training in the biomedical sciences. The aim of the course is to consolidate existing knowledge and extend it in areas particularly relevant to acupuncture such as neuroscience, pathophysiology and microbiology.

98711
COASTAL RESOURCE POLICY
4cp; 3hpw
This introductory subject provides pointers to most aspects of the course, starting with a consideration of the definition of the coastal zone and coastal resources. Discusses regulatory frameworks, in Australia and overseas, and the roles of organisations involved in coastal resource management. The interdisciplinary nature of coastal resources problems, conflicts, and issues will also be considered.

98712
ESTUARINE AND COASTAL CHEMISTRY
4cp; 3hpw
Focuses on basic environmental chemistry of estuarine and ocean waters, and fresh water inputs from river systems. The significance of levels and changes in such parameters as pH, salinity, temperature, dissolved oxygen, stratification, turbidity and the presence of pollutants will be examined.

98713
HYDRAULICS
4cp; 3hpw
An introduction to physical processes in rivers, estuaries and marine waters. Stream flows, mixing patterns, generation processes of water waves and tides, and sediment transport processes will be dealt with. The interactions of these processes with coastal engineering activities will be emphasised.
98714
INTRODUCTORY COASTAL GEOLOGY
4cp; 3hpw
Deals with geological materials, processes and depositional environments within the coastal zone. Implications of these resources for environmental and management strategy formulation will be explored.

98715
BIOLOGICAL RESOURCES AND ASSESSMENT
8cp; 6hpw
Freshwater, estuarine and marine biological resources and their exploitation will be examined. Problems of productivity against a background of regulations will be studied, and the major management requirements for ecologically sustainable development of coastal resources will be addressed.

Introduces methodologies of biological surveys, field measurement, sampling, analysis and assessment in coastal systems. The principles of baseline surveys, biomonitoring, and impact assessment in systems such as mangroves, saltmarshes, seagrass beds, estuarine and lagoon waters and sediments, and marine systems will be developed.

98716
PHYSICAL GEOLOGY OF THE COASTAL ZONE
4cp; 3hpw
corequisites: 98714 Introductory Coastal Geology or 98601 Coastal Geology, 98713 Hydraulics or 98401 Estuarine and Coastal Hydraulics, 98715 Biological Resources and Assessment or 98905 Resource Measurement and Assessment or equivalents

The development of coastal systems through time will be considered. Topographic and bathymetric maps and their interpretation will be introduced. The nature and dynamics of sandy barrier coasts, coral reefs, cliff-dominated erosive coasts, and aggregates of mineral resources and their exploitation will be examined. Geological implications in coastal zone management and planning will be considered.

98717
COASTAL RESOURCE PLANNING
8cp; 6hpw
prerequisite: 91479 Coastal Zone Law or 98701 Law and Coastal Resources

The aims of planning will be analysed: functional, economic, social, environmental, and aesthetic. The planning process in theory will be explored, and the reality of planning processes will be compared and contrasted with the theoretical models. Case studies from Australian coastal areas and overseas examples will be used.

An overview will be given of the nature and sources of problems in coastal resource management. The complementary roles of technical and regulatory approaches will be compared. The balance of development and conservation will be explored with respect to policies relating to: public land; urban and industrial development; dunes, beaches, and mineral sands; estuaries, ports and marina developments; fisheries resources and products; hazard and risk assessment; and total catchment management.

98718
POLLUTION ASSESSMENT
4cp; 3hpw
Concentrates on the sources, impacts, and control of pollutants on coastal systems. The ecological characteristics of natural and disturbed habitats will be compared. The ecological and public health impacts of pollution will be considered. The objectives, approaches, design and evaluation of monitoring programs will be studied, including remote sensing and other techniques. Oil spill fingerprinting and clean-up strategies will be introduced, and the role of regulatory and management agencies considered.
98719
RECREATION, TOURISM AND NATURAL RESOURCE MANAGEMENT

4cp; 3hpw
corequisite: 98717 Coastal Resource Planning or 98906 Coastal Resource Management 2 or equivalent

Deals with the human aspects of management for organisations that have some responsibility over coastal resources. It examines both internal matters, such as organisational structure and function, as well as external issues, such as conflict resolution and negotiation with other groups in the community. It recognises that coastal resource management goals can be achieved only by organisations which are themselves effectively managed, and which deal appropriately with external groups that have an impact on the achievement of these goals.

Examines the management issues arising from the use of coastal areas for leisure. The Australian coast, particularly its natural areas, is a significant site for recreation and tourist activities. To ensure that these areas are managed sustainably, it is essential to consider the impacts and implications of this use for the natural coastal systems and to develop techniques that will allow this use to continue.

98720
INTEGRATED COASTAL RESOURCE MANAGEMENT

8cp; 6hpw
prerequisites: all first and second year subjects

As Integrated Environmental Assessment (IEA) and Integrated Environmental Management (IEM) require analysis of complex systems which cannot be undertaken from a single disciplinary base, this subject is for advanced students only. It synthesises the multidisciplinary content of the preceding modules through application to specific cases. Students will be required to think holistically; to undertake complex systems analysis; and to select and apply philosophies, concepts, methodologies and techniques appropriate to the particular problem. An IEA/IEM case study will be completed, with tight budgetary, time and performance requirements.

98721
COASTAL RESOURCE PROJECT

12cp; 8hpw

Normally in their final semester, students will complete the requirements for the Master’s degree by carrying out an individual coastal resource management research project, submitting a report, and giving an oral presentation of the work and its significance. The project may be in the form of laboratory or field investigations, a management review, a case study, or similar undertaking appropriate to the student's individual needs and interests.

99518
CLINICAL FEATURES OF DISEASE

6cp; 4hpw
prerequisite: 91609 Biomedical Science Upgrade

This subject builds on the theoretical material offered in the biomedical sciences upgrade. It also develops the student’s ability to differentiate, in an acupuncture clinical setting, those conditions that should be referred to a medical practitioner or other health care professional.

99537
INDEPENDENT RESEARCH PROJECT (POSTGRADUATE)

7cp
prerequisites: 91607 Research Methods 1, 91608 Research Methods 2

This is an area of self-directed study based on previous training, clinical experience and wide reading in acupuncture and allied subjects. The project provides the student with the opportunity to extend his/her knowledge through undertaking acupuncture research.
Graduate students who enrol in this course do so after at least three years of training in traditional Chinese acupuncture. It is assumed that they have mastered the basic concepts of traditional acupuncture and in this, and similar acupuncture subjects, they are asked to demonstrate their competence. The graduate student is therefore encouraged to contribute, as a professional acupuncture practitioner, to discussion through a seminar/workshop environment and to participate in scholarly debate on specified topics.

As the student is already familiar with all the basic concepts of traditional acupuncture, this subject focuses upon the analysis of disease states and the critical evaluation of various treatment protocols. Students will present and analyse specified disease states and examine the value of differing approaches to treatment.

This subject provides a practical review of competency in the responsible delivery of acupuncture services within a working clinical environment. To achieve this the graduate student assumes an internship role within the University's acupuncture clinic dealing directly with the public as an acupuncture practitioner.

Accurate point location is an essential skill for competent acupuncture practice. Emphasis is given to those points that are of major importance in the delivery of musculo-skeletal acupuncture therapy. Points will be examined in relation to their location, depth, action, special precautions and contra-indications. All classes are provided in a workshop environment.
99550
RESEARCH WORKSHOPS 1
3cp; 2hpw
A critical examination of current research is an important aspect of all graduate studies. This course provides opportunities for students to evaluate several areas of recent investigation. This work is undertaken in an interactive workshop environment and opportunities are provided for students to develop and design their own research models which can be analysed and discussed in the light of a growing awareness of the neuro-humoral effects of acupuncture therapy.

99551
THE CHINESE MEDICAL APPROACH TO HEALTH AND DISEASE
5cp; 3hpw
prerequisite: 99548 Introduction to Traditional Acupuncture Theory
This subject provides the student with an understanding of the major causes and types of disease from the traditional Chinese viewpoint. It familiarises the future specialist acupuncture practitioner with the overall objectives of treatment. The student also gains a knowledge of Chinese medical terminology that will assist them in wider reading.

99552
THE CHINESE MODEL OF QI AND ITS PATHWAYS
4cp; 3hpw
prerequisite: 99548 Introduction to Traditional Acupuncture Theory
The physiology of energy and its pathways extends the students' knowledge of the jing luo (channel) system in relation to the practice of musculo-skeletal acupuncture and the enhancement of sporting performance. It not only provides an understanding of how to influence energy but, through an awareness of energy production, enables the practitioner to utilise methods of assisting athletic performance and recovery from injury.

99553
CLINICAL PRACTICE 1
3cp; 3hpw
prerequisites: 99548 Introduction to Traditional Acupuncture Theory, 99549 Point Location corequisites: 99551 The Chinese Medical Approach to Health and Disease, 99552 The Chinese Model of Qi and its Pathways
Clinical experience gives an immediacy and a sense of purpose to specialised acupuncture education. It is provided to graduate students within the University's acupuncture clinics. These clinics are open to the public and are staffed by qualified practitioners assisted by students. Before entering the clinical environment students are provided with pre-clinical training to ensure that they are familiar with clinical requirements and regulations. Students will then take up the role of clinical assistant that enables them to gain valuable experience.

99554
ACUPUNCTURE DIAGNOSIS OF MUSCULO-SKELETAL DISORDERS
5cp; 3hpw
prerequisites: 99551 The Chinese Medical Approach to Health and Disease, 99552 The Chinese Model of Qi and its Pathways
Correct diagnosis is an essential aspect of selecting appropriate treatment. These workshop sessions provide a hands-on approach to the diagnosis of musculo-skeletal disorders according to the principles of Traditional Chinese Medicine. By this stage students will understand the theoretical basis for the correct diagnosis of a number of musculo-skeletal problems. Practice is provided in the traditional Chinese medical assessment of joint and soft tissue disorders, paralysis, sports injuries, rheumatic and arthritic conditions.
99555
THERAPEUTIC TECHNIQUES AND TUINA (CHINESE MASSAGE)

4cp; 3hpw
This component develops treatment skills by combining and applying the techniques of acupuncture, acupressure and tuina. This will enable the student to provide effective and safe therapeutic skills appropriate to their level of training as practitioners in their own clinics or under supervision in the University’s outpatient clinics.

99556
RESEARCH WORKSHOPS 2

3cp; 2hpw
prerequisite: 99550 Research Workshops 1
This subject builds on the work undertaken in Research Workshop 1. The participating student, having acquired an understanding of the special needs of research in acupuncture, and some of the mechanisms implicated in the acupuncture effect, is at this stage required to design a small research proposal into an aspect of acupuncture. It is expected that the proposal will deal with an area of musculo-skeletal therapy or sports medicine that could be a feasible area of research.

99557
ACUPUNCTURE TREATMENT OF MUSCULO-SKELETAL DISORDERS

5cp; 3hpw
prerequisites: 99554 Acupuncture Diagnosis of Musculo-skeletal Disorders, 99555 Therapeutic Techniques and Tuina
This subject builds on the theoretical foundation of traditional acupuncture and the work undertaken in Acupuncture Diagnosis of Musculo-skeletal Disorders. In that subject the student developed skills in evaluating the condition of the patient by integrating diagnostic information and proposing appropriate approaches to treatment. In this subject the student takes the process to the next stage and applies treatment under the supervision of the lecturer. This complements the role of the graduate student in Clinical Practice 2.

99558
ACUPUNCTURE MICROSYSTEMS

4cp; 3hpw
prerequisite: 99549 Point Location
The special areas of acupuncture demonstrated and practised in this subject have wide application in the general practice of acupuncture as well as musculo-skeletal areas. Microsystems are generally used to reinforce and enhance the action of body acupuncture but they may also be used as a system on their own, particularly in emergency situations such as the treatment of minor sports injuries. Much of the information contained in this subject is applicable in the areas of sports medicine and pain control.

99559
CLINICAL PRACTICE 2

3cp; 3hpw
prerequisite: 99553 Clinical Practice 1
corequisite: 99557 Acupuncture Treatment of Musculo-skeletal Disorders
This subject provides practical experience in the responsible delivery of acupuncture services within a working clinical environment. The student has experienced this environment as an assistant to a practitioner during the first part of the program. The graduate student now assumes an internship role within the University’s acupuncture clinic as an acupuncturist, specialising in musculo-skeletal acupuncture and acupuncture sports medicine.

The following subjects will be replaced by new ones in 1995:

91420 Principles of Bioscience replaced by 91493 Biosystems
98201 Environmental Economics and Ecologically Sustainable Management replaced by 91478 Economics of Coastal Resources
98202 Coastal Planning and Development and 98906 Coastal Resource Management 2 replaced by 98717 Coastal Resource Planning
98203 Coastal Management and Administration and Postgraduate research degree subjects
98204 Coastal Tourism, Recreation and Natural Systems Management replaced by 98719 Recreation, Tourism and Natural Resource Management

98401 Estuarine and Coastal Hydraulics replaced by 98713 Hydraulics
98601 Coastal Geology replaced by 98714 Introductory Coastal Geology
98602 Coastal Environmental Chemistry replaced by 98712 Estuarine and Coastal Chemistry
98603 Geological Resources and Development in Coastal Regions replaced by 98716 Physical Geology of the Coastal Zone
98701 Law and Coastal Resources replaced by 91479 Coastal Zone Law
98901 Coastal Resource Management 1 replaced by 98711 Coastal Resource Policy
98902 Biological Systems replaced by 91493 Biosystems
98903 Experimental Design and Resources Management replaced by 91477 Research Design and Methods
98904 Coastal Biological Resources and replaced by 98715 Biological Resources and Assessment
98905 Resource Measurement and Assessment
98907 Pollution Assessment and Monitoring replaced by 98718 Pollution Assessment
98908 Integrated Environmental Assessment and Management replaced by 98720 Integrated Coastal Resource Management
98990 Individual Research Project in Coastal Resource Management replaced by 98721 Coastal Resource Project

65990 MASTER’S THESIS (APPLIED CHEMISTRY) F/T
65991 MASTER’S THESIS (APPLIED CHEMISTRY) P/T AND EXT
66990 MASTER’S THESIS (APPLIED GEOLOGY) F/T
66991 MASTER’S THESIS (APPLIED GEOLOGY) P/T AND EXT
67990 MASTER’S THESIS (MATERIALS SCIENCE) F/T
67991 MASTER’S THESIS (MATERIALS SCIENCE) P/T AND EXT
68990 MASTER’S THESIS (APPLIED PHYSICS) F/T
68991 MASTER’S THESIS (APPLIED PHYSICS) P/T AND EXT
91777 MASTER’S THESIS (BIOL AND BIOMED) F/T

This research project can be undertaken only following negotiation by the student with a full-time member of academic staff in order to gain agreement to be individually supervised. It also requires special permission of the appropriate Head of Department and Associate Dean.
91778
MASTER’S THESIS (BIOL AND BIOMED) P/T
This research project can be undertaken only following negotiation by the student with a full-time member of academic staff in order to gain agreement to be individually supervised. It also requires special permission of the appropriate Head of Department and Associate Dean.

91987
DOCTORAL THESIS (BIOL AND BIOMED) P/T
This research project can be undertaken only following negotiation by the student with a full-time member of academic staff in order to gain agreement to be individually supervised. It also requires special permission of the appropriate Head of Department and Associate Dean.

91988
DOCTORAL THESIS (BIOL AND BIOMED) F/T
This research project can be undertaken only following negotiation by the student with a full-time member of academic staff in order to gain agreement to be individually supervised. It also requires special permission of the appropriate Head of Department and Head of School.

Subjects offered for Faculty of Nursing students

91509
PHARMACOLOGY
3cp; 3hpw
for Faculty of Nursing students

91518
PHYSIOLOGICAL FOUNDATIONS OF HEALTH 1
6cp; Bioscience component – 4hpw; Physical Science component – 2hpw
for Faculty of Nursing students
Introduction to anatomy and physiology, levels of organisation, homeostasis. Endocrine system – the major endocrine glands and their hormones, feedback control of hormones, hormone disorders. Integumentary system – skin structure and function, specific and non-specific defence mechanisms, wound healing. Musculoskeletal system – bone structure, organisation of the axial and appendicular skeleton, joints, muscular system, muscle tissues, principal skeletal muscles, muscles and movement. Reproductive systems and development – anatomy of male and female reproductive systems, mitosis and meiosis, formation of gametes and fertilisation, hormones and the female reproductive cycle, pregnancy, an overview of embryonic and foetal development including development of major organ systems. Measurement – scientific notation and basic mathematics. Electricity – static electricity, electric currents, magnetism, applications of electricity in the hospital and electrical safety. Heat and temperature, heat transfer and temperature regulation of the body. The building blocks of life – molecular and ionic compounds. Ions in the body – electrolytes, acids, bases and salts. How atoms join together to form molecules – obeying the rules of valence, polar and non-polar bonds, forces of attraction between molecules. Hydrocarbons and lipids, the structure of lipid bilayers.
91519
PHYSIOLOGICAL FOUNDATIONS OF HEALTH 2
6cp; Bioscience component – 4hpw; Physical Science component – 2hpw

91520
PATHOPHYSIOLOGY 1
6cp; 6hpw

Cellular homeostasis and normal cellular growth and development; diseases of blood; the immune system and its role in resistance to disease; the main groups of micro-organisms which affect humans, their epidemiology and methods of limiting their spread and controlling infection; alterations in nutrition and metabolism.

91521
PATHOPHYSIOLOGY 2
6cp; 6hpw

The major classes of cardiovascular disorders and their evolution from normal control mechanisms. The major respiratory disease processes and their relationship to normal respiratory function and defence mechanisms. The major renal disorders including acute and chronic renal failure. The major types of fluid and electrolyte disturbances and their contribution to altered homeostasis. Alterations in nervous system function. Basic principles of pharmacology with specific emphasis on drugs used in the treatment of cardiovascular, respiratory, renal and nervous system disorders.

91522
NEUROSCIENCE
3cp; 3hpw

systems in the cortical control of motor function. Control of movement and disturbances of motor function. Head injury, epilepsy, organic brain syndrome (Alzheimer's and degenerative disorders). Multiple sclerosis. Ageing and the nervous system. Electro-myography (EMG), electroencephalography (EEG) and evoked potentials. Imaging techniques including magnetic resonance imaging (MRI), and computerised axial tomography (CAT) scanning and positron emission tomography (PET).

Subjects offered by other faculties

Various general studies elective subjects available from other faculties are listed below. Further details are available from other faculty handbooks, or from the Information Office in each faculty.

21139

BUSINESS ORGANISATION

2cp; 2hpw
by Faculty of Business

Examines the various types of private sector business in Australia and studies the manner in which these businesses are managed. Develops decision-making, problem-solving and planning skills.

21816

PRACTICE MANAGEMENT

3cp; 3hpw
by Faculty of Business

This subject introduces the student to the realities of private practice and the need for proper planning in the management of a small business. Examines issues such as professionalism, location, record keeping, taxation, insurance, advertising, multidiscipline practices and legal requirements.

31870

INTRODUCTION TO MICROCOMPUTERS

2cp; 2hpw
by Faculty of Mathematical and Computing Sciences

Structure and use of computers, including the use of software packages; hardware and software; operating systems (MS-DOS); file management; spreadsheets, word processing and databases.

31871

COMPUTING FOR SCIENCE

3cp; 3hpw
prerequisites: 31870 Introduction to Microcomputers, 33170 Basic Science Mathematics by Faculty of Mathematical and Computing Sciences

Structured programming. Elements of FORTRAN: variables, control structures and formatting. File handling in FORTRAN. Subroutines and functions; array structures; applications to numerical analysis and problems from the physical sciences.

33101

MATHEMATICS 1 (LIFE SCIENCES)

3cp; 3hpw
by Faculty of Mathematical and Computing Sciences

Aspects of measurement; sequences and series; convergence and limits; graphical representation of functions; sigmoid curve; differentiation; integration; elementary differential equations; periodic functions. All topics are illustrated by problems relevant to biology.

33103

STATISTICS FOR LIFE SCIENCES

3cp; 3hpw
by Faculty of Mathematical and Computing Sciences

Descriptive statistics; measures of central tendency and dispersion; probability; discrete distributions including binomial, Poisson; continuous distributions including uniform, Normal; simple random sampling; standard tests of significance and estimation for population means and variances; goodness-of-fit tests.
33105
INTRODUCTORY BIOMETRICS

3cp; 3hpw
prerequisite: 33103 Statistics for Life Sciences by Faculty of Mathematical and Computing Sciences

Design and analysis of biological experiments; completely randomised design; randomised block design; regression analysis and correlation; multiple and polynomial regression; Latin square design; two factor designs with interaction; analysis of covariance distribution free tests.

33170
BASIC SCIENCE MATHEMATICS

3cp; 3hpw
by Faculty of Mathematical and Computing Sciences

Basic mathematics for scientists. Quadratic and linear equations. Functions; limits; continuity; derivatives. Trigonometric functions. Introduction to integral calculus.

33171
SCIENCE MATHEMATICS 1

4cp; 4hpw
prerequisite: 33170 Basic Science Mathematics or 70/100 2-unit HSC Mathematics or 100/150 3-unit HSC Mathematics, or permission by Faculty of Mathematical and Computing Sciences

A subject which develops the essential mathematical tools used in the physical sciences. Determinants and matrices; differentiation; trigonometric functions; implicit differentiation; integration; the natural logarithm and exponentials; inverse trigonometric functions; sequences and series; complex numbers.

33172
SCIENCE MATHEMATICS 2

3cp; 3hpw
prerequisite: 33171 Science Mathematics 1 by Faculty of Mathematical and Computing Sciences

An introduction to areas of application of differential and integral calculus in the physical sciences. Applications of differentiation; maximising functions; Newton’s method for finding roots. Applications of integration; areas, volumes, mass centres, arc lengths. Techniques for integrating; integration by parts; use of trigonometric identities; partial fractions. Functions of many variables; partial differentiation; chain rule. Variable separable differential equations; applications.

33173
SCIENCE MATHEMATICS 3

3cp; 3hpw
prerequisite: 33171 Science Mathematics 1 corequisite: 33172 Science Mathematics 2 by Faculty of Mathematical and Computing Sciences

Mathematical techniques for the physical sciences. Matrices; inverse; eigenvalues and eigenvectors. Three-dimensional coordinate geometry; vectors. Hyperbolic and inverse hyperbolic functions. Linear and exact first order differential equations. Infinite sequences and series.

33221
ENGINEERING MATHEMATICS 2A

3cp; 3hpw
prerequisites: 33172 Science Mathematics 2, 33173 Science Mathematics 3 by Faculty of Mathematical and Computing Sciences

equations. Methods of undetermined coefficients.

33330 PHYSICAL MATHEMATICS
3cp; 3hpw
prerequisite: 33221 Engineering Mathematics 2A
by Faculty of Mathematical and Computing Sciences

Vector calculus: vector fields, line and surface integrals, conservative fields, Green’s theorem, divergence and curl, Gauss’s theorem and the equation of continuity, Stokes’s theorem and circulation. ODEs: series solutions of linear equations with non-constant coefficients, Legendre’s and Bessel’s equations and functions. Boundary Value Problems: one-dimensional heat and wave equations, separation of variables Fourier sine and cosine series, vibrating circular membrane. Fourier analysis: introduction to Fourier integral, the triangle, sign step, delta and sinc functions.

51368 WRITTEN AND ORAL REPORTING
3cp; 2hpw
by Faculty of Humanities and Social Sciences

The principles and practice of effective written and oral reporting, designed to help students in researching, organising, writing and presenting material appropriate to technical and commercial contexts. Adaptation of material and communication techniques to selected channels of communication. Letters, memoranda, reports, articles, graphs, tables, diagrams. Short talks on technical subjects and introduction to visual aids.

51389 PROFESSIONAL WRITING AND COMMUNICATION
3cp; 2hpw
by Faculty of Humanities and Social Sciences

This is a practical workshop course designed to help students in health sciences improve their skills in written and speech communication. The course covers the variety of forms of written and oral communication required in health care settings and emphasises specific skills in the writing of essays and reports. Students will also develop their understanding of communication principles and processes.

79990 LEGAL SYSTEM
2cp; 1hpw
subject coordinator: Professor N Carter
by Faculty of Law and Legal Practice

This subject will provide the student of forensic science with an understanding of the law and legal system.

79991 FORENSIC SCIENCE CASE STUDY
8cp; 5hpw
prerequisites: all Stage 6 subjects
subject coordinator: Professor N Carter
by Faculty of Law and Legal Practice

Students will receive training in the preparation of reports and in the presentation of evidence in court. A substantial component of this subject is a Moot Court.

92167 FOUNDATIONS OF HELPING AND CARING
4cp; 4hpw
by Faculty of Nursing

Part 1: Interpersonal and Counselling Skills; Part 2: Theoretical Foundations of Psychological Health; Part 3: Human Responses to Health and Illness

This subject will provide an understanding of Western models of health care with a particular focus on the psycho-social components contributing to health and disease. It facilitates the development of essential interpersonal skills required for the practice of acupuncture and a helping role.
SUBJECT NAMES IN ALPHABETICAL ORDER

<table>
<thead>
<tr>
<th>Subject Name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerants, Incendiaries and Explosives</td>
<td>65758</td>
</tr>
<tr>
<td>Acupuncture Diagnosis of Musculo-skeletal Disorders</td>
<td>99554</td>
</tr>
<tr>
<td>Acupuncture Health Politics in Australia</td>
<td>99533</td>
</tr>
<tr>
<td>Acupuncture Microsystems</td>
<td>99558</td>
</tr>
<tr>
<td>Acupuncture Treatment of Musculo-skeletal Disorders</td>
<td>99557</td>
</tr>
<tr>
<td>Advanced Acupuncture Principles</td>
<td>99519</td>
</tr>
<tr>
<td>Advanced Biocomputing</td>
<td>91396</td>
</tr>
<tr>
<td>Advanced Bioinstrumentation</td>
<td>91437</td>
</tr>
<tr>
<td>Advanced Chemistry Project</td>
<td>65507</td>
</tr>
<tr>
<td>Advanced Chinese Diagnosis</td>
<td>99512</td>
</tr>
<tr>
<td>Advanced Chinese Massage (Tuina)</td>
<td>99515</td>
</tr>
<tr>
<td>Advanced Electron Microscopy Techniques</td>
<td>68557</td>
</tr>
<tr>
<td>Advanced Engineering Geology</td>
<td>66007</td>
</tr>
<tr>
<td>Advanced Fossil Fuels</td>
<td>66005</td>
</tr>
<tr>
<td>Advanced Geological Mapping</td>
<td>66506</td>
</tr>
<tr>
<td>Advanced Materials</td>
<td>67651</td>
</tr>
<tr>
<td>Advanced Mathematics in the Life Sciences</td>
<td>91436</td>
</tr>
<tr>
<td>Advanced Needle Technique and Ex-channel Point Location and Clinic – Level 5</td>
<td>99516</td>
</tr>
<tr>
<td>Advanced Petrology</td>
<td>66502</td>
</tr>
<tr>
<td>Advanced Petrology (Honours)</td>
<td>66552</td>
</tr>
<tr>
<td>Advanced Programming – Life Sciences</td>
<td>91465</td>
</tr>
<tr>
<td>Advanced Solid-state Physics</td>
<td>68655</td>
</tr>
<tr>
<td>Advanced Structural Geology</td>
<td>66505</td>
</tr>
<tr>
<td>Advanced Structural Geology (Honours)</td>
<td>66551</td>
</tr>
<tr>
<td>Advanced X-ray Techniques</td>
<td>68556</td>
</tr>
<tr>
<td>Analytical Biochemistry</td>
<td>91326</td>
</tr>
<tr>
<td>Analytical Biochemistry Project 1</td>
<td>91414</td>
</tr>
<tr>
<td>Analytical Biochemistry Project 2</td>
<td>91415</td>
</tr>
<tr>
<td>Analytical Chemistry 1</td>
<td>65401</td>
</tr>
<tr>
<td>Analytical Chemistry 2</td>
<td>65501</td>
</tr>
<tr>
<td>Analytical Chemistry 2 (Advanced)</td>
<td>65551</td>
</tr>
<tr>
<td>Analytical Techniques in Biochemistry</td>
<td>91426</td>
</tr>
<tr>
<td>Anatomical Pathology</td>
<td>91354</td>
</tr>
<tr>
<td>Anatomy and Physiology 1</td>
<td>91601</td>
</tr>
<tr>
<td>Anatomy and Physiology 2</td>
<td>91602</td>
</tr>
<tr>
<td>Anatomy and Physiology 3</td>
<td>91603</td>
</tr>
<tr>
<td>Animal Ecophysiology</td>
<td>91363</td>
</tr>
<tr>
<td>Applied and Environmental Microbiology</td>
<td>91369</td>
</tr>
<tr>
<td>Applied Clastic Basin Analysis</td>
<td>66653</td>
</tr>
<tr>
<td>Applied Ecology</td>
<td>91367</td>
</tr>
<tr>
<td>Applied Mechanics</td>
<td>68402</td>
</tr>
<tr>
<td>Applied Mechanics S</td>
<td>68742</td>
</tr>
<tr>
<td>Applied Mycology</td>
<td>91373</td>
</tr>
<tr>
<td>Applied Optics</td>
<td>68302</td>
</tr>
<tr>
<td>Applied Optics S</td>
<td>68732</td>
</tr>
<tr>
<td>Applied Organic Chemistry 1 (Advanced)</td>
<td>65701</td>
</tr>
<tr>
<td>Applied Organic Chemistry 2 (Advanced)</td>
<td>65702</td>
</tr>
<tr>
<td>Applied Organic Chemistry 2</td>
<td>65752</td>
</tr>
<tr>
<td>Applied Physics (Materials)</td>
<td>68071</td>
</tr>
<tr>
<td>Applied Thermodynamics</td>
<td>68603</td>
</tr>
<tr>
<td>Applied Thermodynamics S</td>
<td>68763</td>
</tr>
<tr>
<td>Approved External Subject</td>
<td>68943</td>
</tr>
<tr>
<td>Approved External Subject</td>
<td>68946</td>
</tr>
<tr>
<td>Aquatic Ecology</td>
<td>91364</td>
</tr>
<tr>
<td>Australian Plants</td>
<td>91218</td>
</tr>
<tr>
<td>Basic Science Mathematics</td>
<td>33170</td>
</tr>
<tr>
<td>Basin Analysis</td>
<td>66405</td>
</tr>
<tr>
<td>Bioassays/Toxicological Testing</td>
<td>91473</td>
</tr>
<tr>
<td>Biochemical and Analytical Toxicology</td>
<td>91471</td>
</tr>
<tr>
<td>Biochemical Pathophysiology</td>
<td>91411</td>
</tr>
<tr>
<td>Biochemistry 1</td>
<td>91313</td>
</tr>
<tr>
<td>Biochemistry 2</td>
<td>91320</td>
</tr>
<tr>
<td>Biochemistry 3</td>
<td>91321</td>
</tr>
<tr>
<td>Biochemistry 4</td>
<td>91322</td>
</tr>
<tr>
<td>Biocomputing</td>
<td>91395</td>
</tr>
<tr>
<td>Bioelectronics</td>
<td>91405</td>
</tr>
<tr>
<td>Bioinstrumentation</td>
<td>91316</td>
</tr>
<tr>
<td>Biological Hazards and Toxicology</td>
<td>69324</td>
</tr>
<tr>
<td>Biological Resources and Assessment</td>
<td>98715</td>
</tr>
<tr>
<td>replaces 98904 Coastal Biological Resources and Assessment</td>
<td></td>
</tr>
<tr>
<td>Biological Resources and Assessment</td>
<td>98905</td>
</tr>
<tr>
<td>Biological Measurement and Assessment</td>
<td></td>
</tr>
<tr>
<td>Biology 1</td>
<td>91311</td>
</tr>
<tr>
<td>Course</td>
<td>Code</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Biology 2</td>
<td>91312</td>
</tr>
<tr>
<td>Biomedical Science Upgrade</td>
<td>91312</td>
</tr>
<tr>
<td>Biomedical Sciences 1</td>
<td>91412</td>
</tr>
<tr>
<td>Biomedical Sciences 2</td>
<td>91413</td>
</tr>
<tr>
<td>Biomonitoring</td>
<td>91315</td>
</tr>
<tr>
<td>Bioprocessing</td>
<td>91368</td>
</tr>
<tr>
<td>Biosensors and Transducers</td>
<td>91438</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>91433</td>
</tr>
<tr>
<td>Biosystems</td>
<td>91493</td>
</tr>
<tr>
<td>replaces 91420 Principles of Bioscience and 98902 Biological Systems</td>
<td></td>
</tr>
<tr>
<td>Blood Bank</td>
<td>91341</td>
</tr>
<tr>
<td>Building Emergency Control</td>
<td>69331</td>
</tr>
<tr>
<td>Business Organisation</td>
<td>21139</td>
</tr>
<tr>
<td>Case Studies in Clinical Biochemistry</td>
<td>91419</td>
</tr>
<tr>
<td>Ceramics 1</td>
<td>67403</td>
</tr>
<tr>
<td>Ceramics 2</td>
<td>67501</td>
</tr>
<tr>
<td>Ceramics 3</td>
<td>67503</td>
</tr>
<tr>
<td>Ceramics 3 (Honours)</td>
<td>67553</td>
</tr>
<tr>
<td>Chemical Process Control</td>
<td>65502</td>
</tr>
<tr>
<td>Chemical Safety</td>
<td>65504</td>
</tr>
<tr>
<td>Chemical Safety (OHS)</td>
<td>69332</td>
</tr>
<tr>
<td>Chemical Thermodynamics</td>
<td>65404</td>
</tr>
<tr>
<td>Chemistry 1 (Life Sciences)</td>
<td>65012</td>
</tr>
<tr>
<td>Chemistry 1 F/T</td>
<td>65011</td>
</tr>
<tr>
<td>Chemistry 1M</td>
<td>65101</td>
</tr>
<tr>
<td>Chemistry 2 (Life Sciences)</td>
<td>65022</td>
</tr>
<tr>
<td>Chemistry 2 F/T</td>
<td>65021</td>
</tr>
<tr>
<td>Chemistry 2M</td>
<td>65201</td>
</tr>
<tr>
<td>Chinese Diagnostic System and Advanced Pulse Diagnosis</td>
<td>99508</td>
</tr>
<tr>
<td>Chinese Medical Approach to Health and Disease, The</td>
<td>99551</td>
</tr>
<tr>
<td>Chinese Model of Qi and its Pathways, The</td>
<td>99552</td>
</tr>
<tr>
<td>Clinical Aspects of Acupuncture 1</td>
<td>99544</td>
</tr>
<tr>
<td>Clinical Aspects of Acupuncture 2</td>
<td>99545</td>
</tr>
<tr>
<td>Clinical Aspects of Acupuncture 3</td>
<td>99547</td>
</tr>
<tr>
<td>Clinical Bacteriology and Parasitology</td>
<td>91372</td>
</tr>
<tr>
<td>Clinical Biochemistry - Advanced Aspects A</td>
<td>91423</td>
</tr>
<tr>
<td>Clinical Biochemistry - Advanced Aspects B</td>
<td>91424</td>
</tr>
<tr>
<td>Clinical Biochemistry 1</td>
<td>91342</td>
</tr>
<tr>
<td>Clinical Biochemistry 2</td>
<td>91343</td>
</tr>
<tr>
<td>Clinical Features of Disease</td>
<td>99518</td>
</tr>
<tr>
<td>Clinical Laboratory Management</td>
<td>91417</td>
</tr>
<tr>
<td>Clinical Mycology</td>
<td>91383</td>
</tr>
<tr>
<td>Clinical Practice 1</td>
<td>99553</td>
</tr>
<tr>
<td>Clinical Practice 2</td>
<td>99559</td>
</tr>
<tr>
<td>Clinical Review (Clinical Practice)</td>
<td>99546</td>
</tr>
<tr>
<td>Clinical Theory (Outpatient Clinic) and Clinic - Level 6</td>
<td>99522</td>
</tr>
<tr>
<td>Clinical Theory, Practice and Observation of Clinical Acupuncture and Clinic - Level 1</td>
<td>99503</td>
</tr>
<tr>
<td>Coastal Resource Planning</td>
<td>98717</td>
</tr>
<tr>
<td>Coastal Resource Management 2</td>
<td>98711</td>
</tr>
<tr>
<td>Coastal Resource Project</td>
<td>98721</td>
</tr>
<tr>
<td>Coastal Resource Project in Coastal Resource Management</td>
<td></td>
</tr>
<tr>
<td>Coastal Zone Law</td>
<td>91479</td>
</tr>
<tr>
<td>Conceptual Models of Ore Deposits (Honours)</td>
<td>66652</td>
</tr>
<tr>
<td>Computing for Groundwater Specialists</td>
<td>49550</td>
</tr>
<tr>
<td>Computing for Science</td>
<td>31871</td>
</tr>
<tr>
<td>Concepts in Biochemistry</td>
<td>91319</td>
</tr>
<tr>
<td>Concepts in Biology</td>
<td>91388</td>
</tr>
<tr>
<td>Concepts in Environmental Science</td>
<td>91380</td>
</tr>
<tr>
<td>Convergent Margin Tectonics (Honours)</td>
<td>66651</td>
</tr>
<tr>
<td>Coordination and Organometallic Chemistry</td>
<td>65704</td>
</tr>
<tr>
<td>Coordination and Organometallic Chemistry (Advanced)</td>
<td>65754</td>
</tr>
<tr>
<td>Corrosion Science</td>
<td>65705</td>
</tr>
<tr>
<td>Corrosion Technology</td>
<td>65061</td>
</tr>
<tr>
<td>Corrosion Technology for Engineers</td>
<td>65071</td>
</tr>
<tr>
<td>Course Title</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Current Topics in Medical Microbiology</td>
<td>91481</td>
</tr>
<tr>
<td>Data Analysis in Occupational Health and Safety</td>
<td>91377</td>
</tr>
<tr>
<td>Device Physics</td>
<td>69325</td>
</tr>
<tr>
<td>Digital Processing of Signals and Images in Medicine</td>
<td>69325</td>
</tr>
<tr>
<td>Disease Data Analysis in Occupational Health and Safety Projects F/T</td>
<td>91476</td>
</tr>
<tr>
<td>Epidemiology and Disease Control</td>
<td>91475</td>
</tr>
<tr>
<td>Estuarine and Coastal Chemistry</td>
<td>66601</td>
</tr>
<tr>
<td>Field Studies: Marine Sciences</td>
<td>66601</td>
</tr>
<tr>
<td>Field Studies: Mountain Ecology</td>
<td>66601</td>
</tr>
<tr>
<td>Field Studies: Semi-arid Ecology</td>
<td>66601</td>
</tr>
<tr>
<td>Field Surveillance, Fate and Management of Toxic Substances</td>
<td>66601</td>
</tr>
<tr>
<td>Environmental Toxicology Project F/T</td>
<td>66601</td>
</tr>
<tr>
<td>Environmental Toxicology Project P/T</td>
<td>66601</td>
</tr>
<tr>
<td>Geology 1</td>
<td>66016</td>
</tr>
<tr>
<td>Geology 1M</td>
<td>66016</td>
</tr>
<tr>
<td>Geology for Engineers</td>
<td>66016</td>
</tr>
<tr>
<td>Geophysics and Remote Sensing of Groundwater Resources</td>
<td>66016</td>
</tr>
<tr>
<td>Geophysics and Remote Sensing of Groundwater Resources</td>
<td>66016</td>
</tr>
<tr>
<td>Geopolitology Management</td>
<td>66016</td>
</tr>
<tr>
<td>Groundwater Computing</td>
<td>49554</td>
</tr>
<tr>
<td>Groundwater Engineering Project (GD) F/T</td>
<td>44153</td>
</tr>
</tbody>
</table>
Groundwater Engineering Project (GD) P/T 44157
Groundwater Engineering Project (M) F/T 44152
Groundwater Engineering Project (M) P/T 44156
Groundwater Geophysics 66018
Groundwater Modelling 49555
Groundwater Science Project (GD) F/T 66022
Groundwater Science Project (GD) P/T 66024
Groundwater Science Project (M) F/T 66021
Groundwater Science Project (M) P/T 66023
Haematology 1 91355
Haematology 2 91358
Hardware for Clinical Data Acquisition and Control 91463
Historical and Advanced Theoretical Foundations of Acupuncture 99511
Honours Project 67858
Honours Research Project 65858
Horticultural Botany 91211
Horticultural Experimentation 91201
Horticultural Financial Management 91229
Horticultural Procedures F/T 91242
Horticultural Procedures P/T 91244
Horticultural Production Management 91224
Horticultural Research Project 91215
Hospital Training in China 99527
Human Biology 91317
Human Factors/Ergonomic Design 69323
Human Fungal Disease 91483
Human Parasitology 91482
Human Viral Disease 91485
Hydraulics 98713
Hydrogeochemistry 66015
Hydrogeology 66014
Immunology 1 91351
Immunology 2 91359
Independent Research Project 99526
Independent Research Project (Postgraduate) 99537
Independent Research Project Workshops 99517
Individual Project – Life Sciences 91399
Individual Project P/G – Life Sciences 91499
Industrial Training (Applied Chemistry Honours) 65995
Industrial Training (Applied Chemistry) P/T 65998
Industrial Training (Applied Geology) P/T 66998
Industrial Training (Applied Physics Honours) 68995
Industrial Training (Honours) 66995
Industrial Training (Honours) 67995
Industrial Training 1 (Applied Chemistry) 65996
Industrial Training 1 (Applied Geology) 66996
Industrial Training 1 (Materials Science) 67996
Industrial Training 1 (Physics) 68996
Industrial Training 2 (Applied Chemistry) 65997
Industrial Training 2 (Applied Geology) 66997
Industrial Training 2 (Materials Science) 67997
Industrial Training 2 (Physics) 68997
Industrial Training (Materials Science) P/T 67998
Inorganic Chemistry 65302
Instrumentation for Materials Scientists 67406
Integrated Coastal Resource Management replaces 98608 Integrated Environmental Assessment and Management 98720
Introduction to Acupuncture, Channel, Point and Organ Physiology 99501
Introduction to Biological Fluids 91382
Introduction to Chinese Massage (Tuina), Point Location 2 and Clinic – Level 3 99510
Introduction to Crystallography 67202
Introduction to Environmental Engineering and Management 49122
Introduction to Microcomputers 31870
Introduction to Tai Qi Chuan, An 99528
Introduction to Toxicology 91448
<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Traditional Acupuncture Theory</td>
<td>99548</td>
</tr>
<tr>
<td>Introductory Biometrics</td>
<td>33105</td>
</tr>
<tr>
<td>Introductory Coastal Geology replaces 98601 Coastal Geology</td>
<td>98714</td>
</tr>
<tr>
<td>Introductory Organic Chemistry</td>
<td>65024</td>
</tr>
<tr>
<td>Introductory Pharmacology and Microbiology</td>
<td>91604</td>
</tr>
<tr>
<td>Laboratory Biocomputing</td>
<td>91464</td>
</tr>
<tr>
<td>Landscape Horticulture</td>
<td>91210</td>
</tr>
<tr>
<td>Legal Aspects of Occupational Health and Safety</td>
<td>69342</td>
</tr>
<tr>
<td>Legal System</td>
<td>79990</td>
</tr>
<tr>
<td>Lithology</td>
<td>66202</td>
</tr>
<tr>
<td>Management of the Microbiology Laboratory</td>
<td>91486</td>
</tr>
<tr>
<td>Master’s Thesis (Applied Chemistry) F/T</td>
<td>65990</td>
</tr>
<tr>
<td>Master’s Thesis (Applied Chemistry) P/T and Ext</td>
<td>65991</td>
</tr>
<tr>
<td>Master’s Thesis (Applied Geology) F/T</td>
<td>66990</td>
</tr>
<tr>
<td>Master’s Thesis (Applied Geology) P/T and Ext</td>
<td>66991</td>
</tr>
<tr>
<td>Master’s Thesis (Applied Physics) F/T</td>
<td>68990</td>
</tr>
<tr>
<td>Master’s Thesis (Applied Physics) P/T and Ext</td>
<td>68991</td>
</tr>
<tr>
<td>Master’s Thesis (Biol and Biomed) F/T</td>
<td>91777</td>
</tr>
<tr>
<td>Master’s Thesis (Biol and Biomed) P/T</td>
<td>91778</td>
</tr>
<tr>
<td>Master’s Thesis (Materials Science) F/T</td>
<td>67990</td>
</tr>
<tr>
<td>Master’s Thesis (Materials Science) P/T and Ext</td>
<td>67991</td>
</tr>
<tr>
<td>Materials 1</td>
<td>67011</td>
</tr>
<tr>
<td>Materials Characterisation</td>
<td>67551</td>
</tr>
<tr>
<td>Materials Degradation</td>
<td>67601</td>
</tr>
<tr>
<td>Materials Engineering 1</td>
<td>67021</td>
</tr>
<tr>
<td>Materials Engineering 2</td>
<td>67061</td>
</tr>
<tr>
<td>Materials Physics</td>
<td>68503</td>
</tr>
<tr>
<td>Materials Physics S</td>
<td>68753</td>
</tr>
<tr>
<td>Materials Science 1</td>
<td>67201</td>
</tr>
<tr>
<td>Materials Science 2</td>
<td>67301</td>
</tr>
<tr>
<td>Materials Science 3</td>
<td>67401</td>
</tr>
<tr>
<td>Materials Science for Engineers</td>
<td>67022</td>
</tr>
<tr>
<td>Materials Technology</td>
<td>67023</td>
</tr>
<tr>
<td>Mathematics 1 (Life Sciences)</td>
<td>33101</td>
</tr>
<tr>
<td>Mechanical Properties of Materials</td>
<td>67303</td>
</tr>
<tr>
<td>Medical Imaging</td>
<td>91403</td>
</tr>
<tr>
<td>Metallurgical Chemistry</td>
<td>65703</td>
</tr>
<tr>
<td>Metallurgical Chemistry (Advanced)</td>
<td>65753</td>
</tr>
<tr>
<td>Microbiology 1</td>
<td>91314</td>
</tr>
<tr>
<td>Microbiology 2</td>
<td>91330</td>
</tr>
<tr>
<td>Microbiology 3</td>
<td>91331</td>
</tr>
<tr>
<td>Microprocessors in Instrumentation</td>
<td>68504</td>
</tr>
<tr>
<td>Microprocessors in Instrumentation S</td>
<td>68754</td>
</tr>
<tr>
<td>Microsystems and Special Methods of Treatment</td>
<td>99514</td>
</tr>
<tr>
<td>Mineral Deposits</td>
<td>66606</td>
</tr>
<tr>
<td>Mineral Science Project</td>
<td>66608</td>
</tr>
<tr>
<td>Mineralogy and Petrology</td>
<td>66301</td>
</tr>
<tr>
<td>Molecular Biology 1</td>
<td>91334</td>
</tr>
<tr>
<td>Molecular Biology 2</td>
<td>91335</td>
</tr>
<tr>
<td>Molecular Microbiology – Techniques and Diagnosis</td>
<td>91488</td>
</tr>
<tr>
<td>Narcotics and Drugs of Abuse</td>
<td>65757</td>
</tr>
<tr>
<td>Needle and Moxibustion Techniques and Clinic – Level 2</td>
<td>99506</td>
</tr>
<tr>
<td>Neuroscience</td>
<td>91522</td>
</tr>
<tr>
<td>Nuclear Physics</td>
<td>68501</td>
</tr>
<tr>
<td>Nuclear Physics S</td>
<td>68751</td>
</tr>
<tr>
<td>Nutrition in a Traditional Chinese Medical Context</td>
<td>99535</td>
</tr>
<tr>
<td>Occupational Hazard Analysis</td>
<td>69312</td>
</tr>
<tr>
<td>Occupational Health and Safety in Society</td>
<td>69311</td>
</tr>
<tr>
<td>Occupational Health and Safety Management</td>
<td>69343</td>
</tr>
<tr>
<td>Occupational Health and Safety Project</td>
<td>69351</td>
</tr>
<tr>
<td>Occupational Health in the Workplace</td>
<td>69322</td>
</tr>
<tr>
<td>Occupational Health Services</td>
<td>69334</td>
</tr>
<tr>
<td>Open Space Management</td>
<td>91225</td>
</tr>
<tr>
<td>Organic Chemistry 1</td>
<td>65202</td>
</tr>
<tr>
<td>Organic Chemistry 2</td>
<td>65402</td>
</tr>
<tr>
<td>Organisational Behaviour and Communication</td>
<td>69313</td>
</tr>
<tr>
<td>Pathophysiology</td>
<td>91605</td>
</tr>
<tr>
<td>Pathophysiology 1</td>
<td>91520</td>
</tr>
<tr>
<td>Pathophysiology 2</td>
<td>91521</td>
</tr>
<tr>
<td>People and the Physical Environment</td>
<td>69335</td>
</tr>
<tr>
<td>Course Title</td>
<td>Code</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Pest Control and Toxicology</td>
<td>91366</td>
</tr>
<tr>
<td>Pharmacology</td>
<td>91509</td>
</tr>
<tr>
<td>Philosophy, Religion and Culture</td>
<td>99530</td>
</tr>
<tr>
<td>Physical Geology of the Coastal Zone</td>
<td>98716</td>
</tr>
<tr>
<td>"Geological Resources and Development in Coastal Regions"</td>
<td></td>
</tr>
<tr>
<td>Physical Mathematics</td>
<td>33330</td>
</tr>
<tr>
<td>Physical Metallurgy (Honours)</td>
<td>67554</td>
</tr>
<tr>
<td>Physical Metallurgy 1</td>
<td>67404</td>
</tr>
<tr>
<td>Physical Metallurgy 2</td>
<td>67405</td>
</tr>
<tr>
<td>Physical Metallurgy 3</td>
<td>67504</td>
</tr>
<tr>
<td>Physical Optics</td>
<td>68602</td>
</tr>
<tr>
<td>Physics 1</td>
<td>68101</td>
</tr>
<tr>
<td>Physics 1 (Life Sciences)</td>
<td>68041</td>
</tr>
<tr>
<td>Physics 1 S</td>
<td>68711</td>
</tr>
<tr>
<td>Physics 2</td>
<td>68201</td>
</tr>
<tr>
<td>Physics 2 S</td>
<td>68721</td>
</tr>
<tr>
<td>Physics 3</td>
<td>68301</td>
</tr>
<tr>
<td>Physics 3 S</td>
<td>68731</td>
</tr>
<tr>
<td>Physics for Electronics S</td>
<td>68713</td>
</tr>
<tr>
<td>Physics in Medicine</td>
<td>91404</td>
</tr>
<tr>
<td>Physiological Foundations of Health 1</td>
<td>91518</td>
</tr>
<tr>
<td>Physiological Foundations of Health 2</td>
<td>91519</td>
</tr>
<tr>
<td>Physiological Measurement</td>
<td>91439</td>
</tr>
<tr>
<td>Physiological Modelling</td>
<td>91461</td>
</tr>
<tr>
<td>Physiology of Energy and its Pathways, The</td>
<td>99504</td>
</tr>
<tr>
<td>Plant Breeding and Genetics</td>
<td>91205</td>
</tr>
<tr>
<td>Plant Ecophysiology</td>
<td>91362</td>
</tr>
<tr>
<td>Plant Production</td>
<td>91206</td>
</tr>
<tr>
<td>Plant Protection</td>
<td>91208</td>
</tr>
<tr>
<td>Plant Tissue Culture</td>
<td>91236</td>
</tr>
<tr>
<td>Plants in the Landscape</td>
<td>91207</td>
</tr>
<tr>
<td>Point Location</td>
<td>99549</td>
</tr>
<tr>
<td>Point Location 1 and Acupressure Workshops</td>
<td>99505</td>
</tr>
<tr>
<td>Point Location 3 and Clinic - Level 4</td>
<td>99513</td>
</tr>
<tr>
<td>Pollution Assessment</td>
<td>98718</td>
</tr>
<tr>
<td>"Pollution Assessment and Monitoring"</td>
<td></td>
</tr>
<tr>
<td>Polymers 1</td>
<td>67302</td>
</tr>
<tr>
<td>Polymers 2</td>
<td>67402</td>
</tr>
<tr>
<td>Polymers 3</td>
<td>67502</td>
</tr>
<tr>
<td>Polymers 3 (Honours)</td>
<td>67552</td>
</tr>
<tr>
<td>Practice Management</td>
<td>21816</td>
</tr>
<tr>
<td>Principles of Biocomputing</td>
<td>91408</td>
</tr>
<tr>
<td>Principles of Clinical Biochemistry</td>
<td>91410</td>
</tr>
<tr>
<td>Principles of Human Biology</td>
<td>91421</td>
</tr>
<tr>
<td>Principles of Instrumentation</td>
<td>68604</td>
</tr>
<tr>
<td>Principles of Instrumentation S</td>
<td>68764</td>
</tr>
<tr>
<td>Principles of Pharmacology and Toxicology</td>
<td>91350</td>
</tr>
<tr>
<td>Principles of Toxicology</td>
<td>91441</td>
</tr>
<tr>
<td>Professional Experience (Biol/Biom) F/T</td>
<td>91997</td>
</tr>
<tr>
<td>Professional Experience (Biol/Biom) P/T</td>
<td>91999</td>
</tr>
<tr>
<td>Professional Writing and Communication</td>
<td>51389</td>
</tr>
<tr>
<td>Project (Clinical Measurement) F/T</td>
<td>91406</td>
</tr>
<tr>
<td>Project (Clinical Measurement) P/T</td>
<td>91407</td>
</tr>
<tr>
<td>Project (Honours)</td>
<td>68858</td>
</tr>
<tr>
<td>Project (Medical Physics) F/T</td>
<td>91484</td>
</tr>
<tr>
<td>Project (Medical Physics) P/T</td>
<td>91489</td>
</tr>
<tr>
<td>Project 1 (Clinical Biochemistry)</td>
<td>91456</td>
</tr>
<tr>
<td>Project 2 (Clinical Biochemistry)</td>
<td>91459</td>
</tr>
<tr>
<td>Project A</td>
<td>68508</td>
</tr>
<tr>
<td>Project B</td>
<td>68608</td>
</tr>
<tr>
<td>Project P/T</td>
<td>67505</td>
</tr>
<tr>
<td>Project Proposal (Clinical Biochemistry)</td>
<td>91453</td>
</tr>
<tr>
<td>Project Seminar</td>
<td>66507</td>
</tr>
<tr>
<td>Qi Gong Its Use in Acupuncture</td>
<td>99543</td>
</tr>
<tr>
<td>Quantitative Assessment and Measurement</td>
<td>69321</td>
</tr>
<tr>
<td>Quantitative Ecology</td>
<td>91360</td>
</tr>
<tr>
<td>Quantum Physics 1</td>
<td>68401</td>
</tr>
<tr>
<td>Quantum Physics 1 S</td>
<td>68741</td>
</tr>
<tr>
<td>Quantum Physics 2</td>
<td>68601</td>
</tr>
<tr>
<td>Quantum Physics 2 S</td>
<td>68761</td>
</tr>
<tr>
<td>Radiation Protection</td>
<td>91434</td>
</tr>
<tr>
<td>Reaction Kinetics</td>
<td>65602</td>
</tr>
<tr>
<td>Recreation, Tourism and Natural Resource Management</td>
<td>98719</td>
</tr>
<tr>
<td>"Coastal Management and Administration and Coastal Tourism, Recreation and Natural Systems Management"</td>
<td></td>
</tr>
<tr>
<td>Remote Sensing</td>
<td>66603</td>
</tr>
<tr>
<td>Course Title</td>
<td>Course Code</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Research Design and Methods</td>
<td>91477</td>
</tr>
<tr>
<td>replaces 98903 Experimental Design and Resources Management</td>
<td></td>
</tr>
<tr>
<td>Research Developments in Geoscience</td>
<td>66654</td>
</tr>
<tr>
<td>Research Methodology – Medical Microbiology</td>
<td>91487</td>
</tr>
<tr>
<td>Research Methods 1</td>
<td>91607</td>
</tr>
<tr>
<td>Research Methods 2</td>
<td>91608</td>
</tr>
<tr>
<td>Research Project – Medical Microbiology F/T</td>
<td>91492</td>
</tr>
<tr>
<td>Research Project – Medical Microbiology P/T</td>
<td>91491</td>
</tr>
<tr>
<td>Research Proposal Design – Medical Microbiology</td>
<td>91490</td>
</tr>
<tr>
<td>Research Workshops 1</td>
<td>99550</td>
</tr>
<tr>
<td>Research Workshops 2</td>
<td>99556</td>
</tr>
<tr>
<td>Resource Management</td>
<td>66404</td>
</tr>
<tr>
<td>Risk Management</td>
<td>69341</td>
</tr>
<tr>
<td>Science Mathematics 1</td>
<td>33171</td>
</tr>
<tr>
<td>Science Mathematics 2</td>
<td>33172</td>
</tr>
<tr>
<td>Science Mathematics 3</td>
<td>33173</td>
</tr>
<tr>
<td>Sedimentary Geology</td>
<td>66302</td>
</tr>
<tr>
<td>Social Crisis</td>
<td>99532</td>
</tr>
<tr>
<td>Soils and Growth Media</td>
<td>91204</td>
</tr>
<tr>
<td>Solid-state Physics</td>
<td>68505</td>
</tr>
<tr>
<td>Solid-state Physics</td>
<td>68755</td>
</tr>
<tr>
<td>Special Points and Systems</td>
<td>99509</td>
</tr>
<tr>
<td>Special Reading Assignment – Life Sciences</td>
<td>91398</td>
</tr>
<tr>
<td>Special Reading Assignment P/G – Life Sciences</td>
<td>91498</td>
</tr>
<tr>
<td>Specialist Topics (Intermodal and Professional)</td>
<td>99524</td>
</tr>
<tr>
<td>Spectroscopy and Structure</td>
<td>65301</td>
</tr>
<tr>
<td>Statistics for Life Sciences</td>
<td>33103</td>
</tr>
<tr>
<td>Statistics in Bioscience</td>
<td>91474</td>
</tr>
<tr>
<td>Structural Geology</td>
<td>66402</td>
</tr>
<tr>
<td>Structural Geology of Ore Deposits (Honours)</td>
<td>66655</td>
</tr>
<tr>
<td>Subtle Dimensions of Healing, The</td>
<td>99531</td>
</tr>
<tr>
<td>Supervised Practice (Outpatient Clinic)</td>
<td>99525</td>
</tr>
<tr>
<td>Surface Chemistry</td>
<td>65603</td>
</tr>
<tr>
<td>Surface Hydrology and Groundwater</td>
<td>49551</td>
</tr>
<tr>
<td>Surface Properties of Materials</td>
<td>67602</td>
</tr>
<tr>
<td>Systems View of Life, A</td>
<td>99529</td>
</tr>
<tr>
<td>Technical Communication</td>
<td>66401</td>
</tr>
<tr>
<td>Techniques of Material Analysis</td>
<td>68516</td>
</tr>
<tr>
<td>Tectonics</td>
<td>66602</td>
</tr>
<tr>
<td>Terrestrial Ecology</td>
<td>91365</td>
</tr>
<tr>
<td>Theoretical and Philosophical Foundations of Traditional Acupuncture</td>
<td>99502</td>
</tr>
<tr>
<td>Therapeutic Techniques and Tuina (Chinese Massage)</td>
<td>99555</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>65031</td>
</tr>
<tr>
<td>Thermodynamics and Energy</td>
<td>68403</td>
</tr>
<tr>
<td>Thermodynamics and Energy S</td>
<td>68743</td>
</tr>
<tr>
<td>Tissue Culture</td>
<td>91374</td>
</tr>
<tr>
<td>Toxic Materials in the Environment</td>
<td>91347</td>
</tr>
<tr>
<td>Transducers and Devices</td>
<td>68605</td>
</tr>
<tr>
<td>Treatment of Scientific Data</td>
<td>60301</td>
</tr>
<tr>
<td>Urban Water Quality Management</td>
<td>49124</td>
</tr>
<tr>
<td>Vacuum and Thin Film Physics</td>
<td>68405</td>
</tr>
<tr>
<td>Virology</td>
<td>91337</td>
</tr>
<tr>
<td>Waste Minimisation and</td>
<td></td>
</tr>
<tr>
<td>Advances in Pollution Control</td>
<td>49123</td>
</tr>
<tr>
<td>Written and Oral Reporting</td>
<td>51368</td>
</tr>
</tbody>
</table>
UNITS WITHIN THE FACULTY

Much of the Faculty's research is focused in the activities of several research centres, institutes and units. Details of the centres and institutes can be found at a later stage in this handbook. The units in the Faculty are as follows:

Bioscience Unit

The Bioscience Unit was established in 1985 as part of the Department of Biochemistry and Physiology and is currently located on Level 14, Building 1, City campus. Staff are involved in the teaching of anatomy, physiology, pathophysiology and pharmacology within the Bachelor of Nursing course, and the Western Science component of the Bachelor of Health Science in Acupuncture course offered by UTS through its College of Acupuncture which is affiliated with Acupuncture Colleges (Australia). They also participate in teaching certain subjects within the Faculty's environmental toxicology, clinical measurement, biotechnology and biomedical science degrees. The unit contains the Brain Research Group, made up of a nucleus of active researchers with experience across various aspects of basic and applied neuroscience and neuropharmacology. In addition, staff of the unit are actively involved in a wide range of research activities including the control of public health pests, marsupial X-chromosome inactivation, and computer-assisted learning packages in clinical biochemistry.

Immunobiology Unit

The Immunobiology Unit was established in 1989 as a multidisciplinary laboratory undertaking research into basic and applied aspects of the immune system. Its activities are funded almost entirely by external competitive research grants such as those awarded by NHMRC, ARC and various national foundations.

Molecular Parasitology Unit

The Molecular Parasitology Unit was established in 1991 as a laboratory investigating evolution, taxonomy, differentiation and diagnosis of microorganisms based on molecular methods. Its research objective is to generate and compare gene sequences. The unit has an international reputation in this area, trains visiting overseas researchers and students, in addition to providing high quality postgraduate training in molecular biology research to local scientists and students. The Unit is multidisciplinary, relying on molecular techniques developed, used and taught in the Department of Microbiology, and mathematical analyses and computing practices undertaken in the Department of Applied Biology.

Neurobiology Unit

The Neurobiology Unit was established in 1973 within the Department of Biochemistry and Physiology. It carries out applied and basic research into the nervous system and the effect of emotional states on the immune system and cancer recurrence. It also trains postgraduate research students. The unit is funded through donations by the community and business sectors.

CENTRES AND INSTITUTES WITHIN THE FACULTY

There are eight centres and institutes within the Faculty, namely, the Centre for Science Communication (funded in part by DEET), the Centre for Materials Technology, the Centre for Ecotoxicology (run jointly with the EPA), the Institute for Coastal Resource Management, the Centre for Biomedical Technology, the Cooperative Research Centre for Cardiac Technology, the National Centre for Groundwater Management (a joint venture with the Faculty of Engineering) and the Cooperative Research Centre for Aquaculture.

Centre for Biomedical Technology

The Centre for Biomedical Technology is a multi-faculty and interdisciplinary research centre with a network of researchers from the Faculties of Science, Engineering, Mathematical and Computing Sciences, Nursing and Business. It integrates the University’s
diverse expertise and resources to enhance the scientific and technological base for the biomedical technology industry, government and health care providers. It aims to facilitate and coordinate biomedical technology research, promote continuing education in the field, develop medical devices and provide consultation to the biomedical technology industry. Research programs are in the areas of cardiac electrophysiology and technology, medical imaging, biomathematical modelling, medical instrumentation, diabetes and nursing-technology interface. The Centre is a key participant in the Cooperative Research Centre for Cardiac Technology.

The Centre provides expertise and facilities for postgraduate training and research programs for post doctoral researchers, academic staff and students. Staff conduct teaching in medical physics, bioengineering, biomathematics, clinical measurement and physiology. The Centre offers Graduate Certificates, Master’s of Science (by coursework) degrees in Medical Physics and Clinical Measurement, Master’s (by thesis) and Doctorate programs.

Centre for Ecotoxicology

This Centre is a joint enterprise of UTS and the NSW EPA, and is located in the St Leonards campus of the University. The aims of the Centre are to promote education, research and information transfer in the field of ecotoxicology. This is a newly emerging discipline that has arisen as a result of the dependence of modern society on the use of chemicals. It is a meeting point of chemistry and biology – the study of the impacts of chemicals and mixed effluents on communities in affected areas.

The Centre coordinates research programs at Honours, Master’s and Doctoral levels, and also offers Master’s, Graduate Diplomas and Graduate Certificates by coursework in environmental toxicology. Teaching and research supervision involve a collaboration of both the UTS and EPA staff. The research work of the Centre involves consultation with industry and government in identifying areas in which investigation is needed on the impact of chemicals on native flora and fauna under Australian climatic and other environmental conditions. A foundation of scientific knowledge is required in order to ensure the development of appropriate environmental quality guidelines for this continent.

The University arm also offers an independent investigative and testing service for industry, through the UTS consulting company, Insearch Limited.

Centre for Materials Technology

The Centre for Materials Technology offers expertise, education, instrumentation and innovation in the areas of materials science and engineering. Its aim is to offer to industry and government a collaborative and multidisciplinary approach to research, development, manufacturing and problem solving for the technological and economic benefit of Australian industry.

The main functions of the Centre are to assist staff teams to obtain government and industrial research grants; make facilities and expertise available for industry and government; establish postgraduate research scholarships and research assistantships; coordinate multidisciplinary research investigations; undertake consultancy; assist relevant professional institutes to organise conferences and colloquia; present regular postgraduate and post-certificate courses; present in-house high-tech training courses for industry; present research and development seminars; develop products and devices of high quality; and provide expertise in applications and design using CAD/CAM. The Centre has been most successful in obtaining external funding for research into conducting polymers and applications of piezoelectric devices.

Centre for Science Communication

The aims and objectives of the Centre for Science Communication are to promote science and technology to the general public; organise and develop
undergraduate and postgraduate courses in science communication; organise information programs on science and technology to schools; coordinate research into science communication; and promote UTS as one of Australia's leading technological institutions.

There are several programs under development, including 'Horizons of Science' forums, communication workshops for research workers, public lectures with media briefings and a media and schools resource service. The Centre is located in Building 2, City campus.

Cooperative Research Centre for Aquaculture

The Cooperative Research Centre for Aquaculture commenced operating early in 1994 and includes participants from six universities, including UTS, seven other research institutions and a number of commercial groups. The Federal Government has funded six of the research programs and UTS is involved in two of them, namely the Health Protection and Maintenance Program and the Production Efficiency and Environmental Management Program.

The Directorship of the Cooperative Research Centre is located at the Broadway in the city campus. It is linked with the University through the Office of the Pro-Vice-Chancellor (Research), the Research Office and several units throughout the University, such as the Library, the Public Relations Unit and the School of Computing Sciences.

The Health Protection and Maintenance Program has been funded to support two projects and both project leaders are located in the Dunbar Building at Gore Hill. One of the projects, being carried out by the Department of Microbiology, aims to develop a method for the rapid recognition of bacteria pathogenic to fish by the use of molecular techniques; the other, being carried out by the Department of Pathology and Immunology, will develop vaccines for use against fish pathogens.

The Production Efficiency and Environmental Management Program is a collaborative effort between CSIRO, James Cook University and UTS (Broadway campus), together with several prawn farms. This project focuses on the analysis, management and effluent control of ponds used for the intensive farming of these crustaceans.

Cooperative Research Centre for Cardiac Technology

The Cooperative Research Centre for Cardiac Technology is one of 35 competitive centres funded by the Federal Government and led by the University. Ten organisations are partners in the Centre. They are: Telectronics Pacing Systems, Royal North Shore Hospital, CSIRO, University of New South Wales, Westmead Hospital, St Vincent's Hospital, Associative Measurement, AMRAD, University of Queensland and University of Sydney.

UTS participants in the CRC for Cardiac Technology include members of the Centre for Biomedical Technology (covering the Faculties of Science, Engineering, Mathematical and Computing Sciences and Nursing).

The aim of the Centre is to develop new device-based technologies for the detection and management of coronary disease through the creation of an expanded knowledge base. Activities within the Centre concentrate on the interrelationships between electrophysiological, mechanical and biological changes associated with coronary disease; the development of a scientific base for designing and fabricating a new generation of diagnostic and management devices; and the provision of a new class of programs for training in research.

A novel educational/training stream permeates the research programs; it involves training new generations of scientists and engineers at the interface of academia and industry with opportunities for international exchanges. Links have been arranged with leading cardiac research groups at Duke University, USA, Imperial College, London and the University of Liverpool, UK.
Institute for Coastal Resource Management

The Institute for Coastal Resource Management is an interfaculty network of education, research and consultancy teams within the University. It integrates the University's diverse expertise and resources in several disciplines including environmental sciences (biology, chemistry, geology), environmental law, economic and sustainable development, planning, and management. This combination is unique within Australia for coastal resource management studies. Currently, staff from the Faculty of Science, Graduate School of Business, and the Schools of Civil Engineering, Leisure and Tourism Studies, Law and Building Studies are involved. The Institute is located on the St Leonards campus.

The Institute aims to offer interdisciplinary professional courses and conduct relevant research in the coastal zone for industry, government and the community, identify problem areas and solutions, and enhance the community awareness of the coastal zone and its problems. These developments, solutions and expertise will be exported to neighbouring countries in the Pacific region and other collaborative links will be developed in North America and Europe.

National Centre for Groundwater Management

The National Centre for Groundwater Management is a joint enterprise between the Faculties of Science and Engineering, with the general aims of researching groundwater problems of strategic national importance, coordinating and developing postgraduate courses and continuing education programs, and liaising with industry.

The Centre is recognised by the Federal Government through the Australian Water Research Advisory Corporation (formerly Council) as a National Centre for research and consultancy training in groundwater and environmental applications.

In addition to PhD and MSc (Research) degree programs in groundwater, the Centre offers two courses as a collaborative effort between the Faculty of Science and the Faculty of Engineering, namely, the Master of Science in Hydrogeology and Groundwater Management and the Graduate Diploma in Hydrogeology and Groundwater Management. Further details are given in the section on postgraduate courses.

For enquiries please contact:
Associate Professor Michael Knight
Director, National Centre for Groundwater Management,

COLLEGE OF ACUPUNCTURE

The UTS College of Acupuncture was established in 1994, founded upon the experience and educational expertise of Acupuncture Colleges Australia. In 1995, the College will be incorporated into the Faculty of Science as part of one of its departments. With 25 years' experience, Acupuncture Colleges Australia previously offered diploma and Bachelor's programs accredited by the New South Wales Ministry of Education. The decision to transfer acupuncture education to the University was in accord with the growth in acceptance and use of acupuncture in Australia, and the need to provide a standard of education at a level expected by the community.

The Faculty of Science will be offering a four-year-full-time undergraduate degree in Health Science Acupuncture. Facilities do not yet exist for offering this course on a part-time basis. In addition to the undergraduate degree, the Faculty will also be offering a Graduate Diploma in Musculo-skeletal Acupuncture as well as a Graduate Diploma in Clinical Acupuncture. The Faculty also offers a Master of Science by research and intends to establish a Master's (by coursework) program over the next few years.
In the development of all programs, the Faculty is assisted by advisory committees comprising members of the education, health and acupuncture professions. The courses and specific subjects are also under ongoing review and development to ensure their relevance to acupuncture practice.

The Faculty benefits from close links with the Universities of Traditional Medicine in China and the Acupuncture Unit at the Victoria University of Technology. Through an affiliation with the Guangzhou College of Traditional Chinese Medicine, undergraduate students are offered an optional one-month hospital internship in China which carries credits towards the clinical component of the degree program.

All course enquiries should be directed to: Mr Bob Hayes, at the UTS College of Acupuncture, 4/645 Harris Street, Ultimo 2007, tel: 330 2500

FACULTY BOARD IN SCIENCE

EX OFFICIO MEMBERS
Dean of the Faculty
Professor A R Moon (Chair)
Alternate Dean
Associate Professor M D Burchett
Head, School of Biological and Biomedical Sciences
Professor A Johnson
Head, School of Physical Sciences
Associate Professor R W Jones
Head, Department of Applied Biology
Associate Professor K R Brown
Head, Department of Applied Geology
Associate Professor B Franklin
Head, Department of Applied Physics
Professor G Smith
Head, Department of Biochemistry and Physiology
Dr J Swann
Head, Department of Chemistry
Associate Professor G Norton
Head, Department of Materials Science
Dr A Ray
Head, Department of Microbiology
Dr L Gibson
Department of Pathology and Immunology
Professor R L Raison
Professor E Leitch
Professor J Unsworth

NOMINATED MEMBERS
Ms J Forbes
Faculty of Nursing
Associate Professor E Hazel
Centre for Learning and Teaching
Ms S Scholfield
University Library
Dr G H Smith
Faculty of Mathematical and Computing Sciences
Dr B Samali
Faculty of Engineering
ELECTED MEMBERS
School of Biological and Biomedical Sciences
Academic staff
Dr D Booth
Associate Professor R T Buckney
Mrs K Cordatos
Dr J T Ellis
Dr A M George
Associate Professor P F Miller
Dr G M Nicholson
Ms A Pulkownik
Dr I Stevenson
Dr J Tarran
Support staff
Ms N Richardson

School of Physical Sciences
Academic staff
Dr J Byrne
Dr E Frankel
Dr D C Green
Dr J Kalman
Associate Professor P F Logan
Dr G Skillbeck
Dr M Stevens
Dr R L S Woolcott
Dr W Yeung
Dr B Young
Support staff
Ms J Hely

STUDENT MEMBERS
School of Biological and Biomedical Sciences
Mr C Allen
Ms D Solomon
School of Physical Sciences
Ms J Barczynska
Ms L Lerotic

APPOINTED MEMBERS
Associate Professor M J Knight
Dr S Hogg

COURSE ADVISORY COMMITTEES
The composition of course advisory committees in the Faculty of Science usually contains a majority of members external to the Faculty, normally including the following:

- a Chairperson external to the University who is eminent in the field
- the Dean of the Faculty
- the Head of the relevant Department
- one or more staff members of the Department
- external members from business and/or industry, professional associations and recent graduates of the Faculty

COURSE ADVISORY COMMITTEE FOR COURSES IN BIOLOGICAL AND BIOMEDICAL SCIENCES

Internal members
Professor A R Moon
Dean, Faculty of Science
Associate Professor M D Burchett
Alternate Dean
Professor A Johnson
Head, School of Biological and Biomedical Sciences
Associate Professor K R Brown
Head, Department of Applied Biology
Dr J Swann
Head, Dept of Biochemistry and Physiology
Dr L Gibson
Head, Dept of Microbiology
Professor R L Raison
Head, Dept of Pathology and Immunology

External members
Associate Professor R T Buckney
Alternate Head, School of Biological and Biomedical Sciences
Professor P Vincent (Chair)
Director, Kanematsu Laboratories

1 The Faculty is in the process of a major restructuring which will potentially include changes to the composition of the Faculty Board. Information on membership is correct as at 1 September 1994.
Dr V P Ackerman
Former Head, Microbiology, RNS Hospital

Dr J P Isbister
Head, Haematology, RNS Hospital

Dr M Meerkin
Sugerman’s Pathology

Associate Professor D Naidoo
Director of Clinical Chemistry, Prince of Wales Hospital and Prince Henry Hospital

Dr R Munro
Director of Microbiology, Liverpool Hospital

Dr J Skerritt
Grain Quality Research Laboratories, Division of Plant Industry, CSIRO

Dr B Robinson
Head, Molecular Genetics Unit, Kolling Institute for Medical Research, RNS Hospital

Dr K Hopper
Research Immunologist

Dr C Bunn
Research Scientist, Biotechnology Australia Pty Ltd

Dr P Molloy
Principal Research Scientist, CSIRO Division of Biomolecular Engineering

Dr R Baker
Environmental Consultant

Mr I Smalls
Principal Scientist, Water Resources

Dr M Ahsanullah
Principal Research Scientist, ANSTO

Professor T Chambers
Director, Royal Botanic Gardens

Dr D P Fagan
Manager, Environmental Science Group, Water Board

Dr G Batley
Senior Principal Research Scientist, CSIRO Centre for Advanced Analytical Chemistry

Ms R Mitchell
Principal, Horticulture School of the Ryde College of TAFE

Dr R Smart
Department of Nuclear Medicine, St George Hospital

COURSE ADVISORY COMMITTEE FOR COURSES IN PHYSICAL SCIENCES

Internal members

Professor A R Moon
Dean, Faculty of Science

Associate Professor R W Jones
Head, School of Physical Sciences

External members

Dr G Batley
Senior Principal Research Scientist, Centre for Advanced Analytical Chemistry, CSIRO Division of Coal and Energy

Dr A R Collins
Group General Manager Pancontinental Mining Limited

Dr K Reeve
Ceramics Section, ANSTO

Dr B Window
Senior Principal Research Scientist, CSIRO Division of Applied Physics

COURSE ADVISORY COMMITTEE FOR THE DEPARTMENT OF APPLIED GEOLOGY

Internal members

Professor A R Moon
Dean, Faculty of Science

Associate Professor R W Jones
Head, School of Physical Sciences

Associate Professor B Franklin
Head of Department

External members

Dr A R Collins (Chair)
Group General Manager, Pancontinental Mining Limited

Dr D Hobday
Director, In-situ Australia Pty Limited

Ms M McMahon
Director, McMahon Associates Pty Limited
Dr G Roder
Exploration Manager, Bridge Oil

Dr M Smyth
Principal Research Scientist, Division of Petroleum Resources, CSIRO

Dr I Wallace
Manager, Technical Services, Boral Research, Boral Resources (NSW) Pty Limited

COURSE ADVISORY COMMITTEE FOR THE DEPARTMENT OF APPLIED PHYSICS

Internal members
Professor A R Moon
Dean, Faculty of Science

Associate Professor R W Jones
Head, School of Physical Sciences

Professor G B Smith
Head of Department

External members
Dr B Window (Chair)
Senior Principal Research Scientist, CSIRO Division of Applied Physics

Ms C Astley-Boden
First Assistant Secretary, Office of the Chief Scientist, Department of the Prime Minister and Cabinet

Mr N Crothers
Technical Development Manager, Australia Consumers Association

Mr B Hutton
Chief Physicist, Dept of Nuclear Medicine, Royal Prince Alfred Hospital

Professor A Samarin, FTS
Consultant

COURSE ADVISORY COMMITTEE FOR THE DEPARTMENT OF CHEMISTRY

Internal members
Professor A R Moon
Dean, Faculty of Science

Associate Professor R W Jones
Head, School of Physical Sciences

Associate Professor G P Norton
Head of Department

External members
Dr G Batley (Chair)
Senior Principal Research Scientist, Centre for Advanced Analytical Chemistry, CSIRO Division of Coal and Energy

Mr G Livanos
Quality Assurance Manager, Sandoz Pharmaceuticals

Dr R Wells
Director of Research, Australian Government Analytical Laboratories

COURSE ADVISORY COMMITTEE FOR THE DEPARTMENT OF MATERIALS SCIENCE

Internal members
Professor A R Moon
Dean, Faculty of Science

Associate Professor R W Jones
Head, School of Physical Sciences

Dr A Ray
Head of Department

External members
Dr K Reeve (Chair)
Ceramics Section, ANSTO, Lucas Heights Research Laboratories

Dr P Bryant
GEC-Marconi Systems

Dr R Grant
Development Chemist, Dow Corning

Mr I Johnson
ICI Marketing Development Manager

Dr D Taylor
Managing Director, Taylor Ceramic Engineering

COURSE ADVISORY COMMITTEE FOR COURSES IN FORENSIC SCIENCE

Internal members
Professor A R Moon
Dean, Faculty of Science

Associate Professor R W Jones
Head, School of Physical Sciences

Associate Professor G P Norton
Head, Department of Chemistry
Dr M Dawson
Senior Lecturer

External members
Dr H Kobus
Chief Forensic Scientist, Forensic Science Centre of South Australia
Dr A Ross
Director, National Institute of Forensic Science
Dr A Cremarty
Director, NSW Health Laboratory, Lidcombe Hospital
Dr R B Wells
Director of Research, Australian Government Analytical Laboratory, NSW
Dr J Robertson
Head, Forensic Sciences Division, Australian Federal Police

COURSE ADVISORY COMMITTEE FOR COURSES IN OCCUPATIONAL HEALTH AND SAFETY
Members to be appointed.

1 The Faculty is in the process of a major restructuring. There is possibility that the number and composition of the Course Advisory Committees may change. Information on membership is correct as at 1 September 1994.

STAFF LIST

The Faculty is in the process of restructuring. As from 1 January 1995, the two Schools will no longer exist and the Heads of School will be replaced by Associate Deans with Faculty-wide portfolios. The following information is correct as at 14 October 1994.

Professor of Physics and Dean of Science
A R Moon, BSc, PhD (Melb), FAIP

Associate Professor and Alternate Dean
M D Burchett, BSc, PhD (Syd) DipEd (NE), MAIH, MAIBiol

Faculty Administrator
I D A Costabile, BA (SW) (Witwatersrand)

Secretary to the Dean
C A Crane

Administrative Assistants
J Fong, BSc (Hons) (Hong Kong), MHKIPM
M A Stevens

School of Physical Sciences

Associate Professor and Head of School
R W Jones, BSc, DipEd (Melb), PhD (Cantab), CChem, MRACI

Senior Lecturer and Alternate Head of School
S W Hogg, BSc (WAust), MAppSc (NSWIT), MAIP

Administrative Officer
B J Kitto, BA (Macq)

Secretary to Head of School
P L Kumar

Secretaries
E Couttie
H Dalrymple
S Faifo

Data Entry Operator
J Micheli

Word Processor Operator
V Searle

Technical Manager
B Robens, BSc, PostGradDipHumComm, MEngSc (UNSW), MgmtCert (AIM), GIEA, AAIM, MACEA
Senior Technical Officer (Electronics)
T W Carlson

Visual Aids Officer
J Klemes

Scientific Services Officer (Computing)
A T Stafford, MA (Cantab)

Electron Microscope Unit

Lecturer
M Phillips, BSc (UNSW), PhD (UTS), GAIP

Technical Officer
R Wuhrer, MAppSc (UTS)

X-Ray Unit

Scientific Services Officer
M Anast, BAppSc (Hons) (NSWIT)

Mechanical Workshop

Officer-in-charge and Senior Technical Officer
J Campion

Senior Laboratory Craftsperson, Grade 2
J Edgington

Design & Manufacturing Coordinator
R Peters

Support Services Officer – Toolmaker
P J Fanos

Department of Chemistry

Associate Professor and Head of Department
G P Norton, BSc (Syd), PhD (UNSW), CChem, FRACI

Associate Professor
W Stern, BSc, PhD (UNSW), ASTC, CChem, FRACI

Senior Lecturers
R A Ashby, BSc, PhD (UNSW), CChem, FRACI, MAIP
A T Baker, BSc, PhD (UNSW), CChem, MRACI
J P Byrne, BSc, PhD (Syd)
A J Cameron, MSc, PhD (Syd), CChem, MRACI, AMAusIMM
D M Cobbin, MSc, PhD (Syd), PhD (Macq), MAPSS
M Dawson, BPharm, PhD (Syd), CChem, MRACI, MPS
J H Sharp, BSc, PhD (UNSW), CChem, MRACI
R J Sleet, MSc, PhD (Syd), CChem, MRACI

Lecturers
R Armstrong, MSc, DipEd (Syd), DipEdTech (Plym), CChem, MRACI
J R Kalman, BSc, PhD (Syd), CChem, MRACI
H Patney, MSc (Hons) (Punjab), PhD (Flinders), CChem, MRACI
R Ward, BSc (Syd), DipEd (CSU)
B Young, BE, PhD (Cantuar)

Associate Lecturer
L A Evans, BAppSc (Hons) (NSWIT), PhD (Murdoch)

Honorary Associate
R Day, MSc (UNSW), ASTC

Scientific Officer
J Keegan, DipTech (Sc), BAppSc (NSWIT)

Senior Technical Officers
A Barnes
C Carrodus, DipTech (Sc) (NSWIT), BAppSc (UTS), MRACI
J Holmes
L Klemes
B McQuillan

Technical Officers
L Ambrose
D Cohen
M Coulston
S Cunneen
M Daraphet
J M Ehret
J Lah

Laboratory Cleaners
D Blagojevic
N Djordjevic
H Rogers
B Vracarevic

Department of Applied Geology

Associate Professor and Head of Department
B J Franklin, BSc (Syd), PhD (UNSW), MAIG, FGAA

Professor
E C Leitch, MSc (Auck), PhD (NE), FGS

Associate Professor
B Marshall, BSc (Lond), PhD (Brist), GradDipMgt (CIAE), ARCS, FGS, AMAIMM, MAIG

Senior Lecturers
E Frankel, BSc (Natal), PhD (Syd)
C G Skilbeck, BSc, PhD (Syd)
Associate Lecturers
(Fractional time)
T L Allan, BSc (Syd)
K A Dadd, BAppSc (Hons) (NSWIT), PhD (Macq)
T Rannard, BAppSc (UTS)

Honorary Associates
S R Sangameshwar, MSc (Mys), MSc, PhD (Sask), FGSI, MAIMM, MAIG, FGAC
F L Sutherland, MSc (Tas), PhD (J Cook)

Assistant Technical Manager
A Buttenshaw, ChemCert, MetCert (TAFE)

Technical Officers
D Colchester, BSc (Otago), MSc (NSWIT)
A Giles, BAppSc (Hons) (NSWIT)
L M Green, BAppSc (Hons) (NSWIT)
R Hungerford, BAppSc (Hons) (NSWIT)
V Taylor-Perkins

Department of Applied Physics
Professor of Applied Physics and Head of Department
G B Smith, BSc (NE), PhD (Monash), FAIP

Associate Professors
R W Cheary, BSc, PhD (Aston)
P F Logan, MSc (Syd), PhD (ANU), GradDipEdStud (ACAE), MinstP

Associate Professor and NSWIT Reader
(Fractional Time)
J M Bell, BSc (Syd), PhD (UNSW), MAIP

Senior Lecturers
G R Anstis, BSc (Monash), PhD (Adel), MAIP
M Braun, BSc (Melb), MAppSc (QIT), PhD (Flinders), MACPSEM, MIPSIM
S W Hogg, BSc (WAust), MAppSc (NSWIT), MAIP
W Kalceff, BSc (Syd), PhD (UNSW), DipEd (Syd Teach Coll), MAIP
L Kirkup, BSc (Sheff), MSc (Lond), PhD (PAis), MinstP, CPhys, MAIP
K McGuffie, BSc (Edin), PhD (Liverpool), FRMetS, MAGU

Lecturers
D Green, BSc (Qld), PhD (Syd), MAIP
R L S Woolcott, BSc, PhD (Syd), MAIP

Associate Lecturers
S Maheswaran, BSc (Peradeniya), PhD (Simon Fraser)
S Shankar, BSc (MK), MSc (Anna), DipEd (UNSW)

Honorary Associate
E P A Sullivan, MSc, PhD (Syd), MAIP

Secretary
E Couttie

Technical Manager
M Rosenbaum

Senior Technical Officers
R Graves
G McCredie
A Wong

Senior Research Assistant
J Barczynska

Research Fellow
P Swift, BSc, PhD (Syd)

Laboratory Attendants
A Harris
N Maharaj
M T Smith

Department of Materials Science
Senior Lecturer and Head of Department
A S Ray, MSc (Calc), PhD (UNSW)

Professor of Materials Technology
J Unsworth, BSc (Wales), MSc (Manchester), PhD (Macq), CChem, CPhys, FAIP, FPRI, SMIEEE

Senior Lecturers
B Ben-Nissan, MSc (ITU), PhD (UNSW), MIM
M G Stevens, MSc, PhD (Syd), MRACI
M Wilson, BSc (N’cle), PhD (UNSW), MIEAust

Lecturers
G L Heness, BAppSc (NSWIT), MAppSc (UTS)
W Y Yeung, BSc (Eng), PhD (Hong Kong), MIMMA, FRMS (UK)

Associate Lecturers (Fractional time)
C M Dodd, BAppSc (UTS)
M P Watson, BAppSc (UTS)

Honorary Associates
J Bogi, DipTechAppSci, MAppSc (NSWIT)
G M Renwick, BSc (St And), PhD (Monash), MRACI, CChem

Assistant Technical Manager
A Rubel, MSc (MechEng) (Idaho)

Scientific Services Officer
J P Guerbois, DipBuildMatSc (CNAM Paris)
Senior Technical Officers
M Gertner
J Hely, BSc (N’cle)

Technical Officer
D Knevezic

School of Biological and Biomedical Sciences

Professor and Head of School
A M Johnson, BAppSc (SAIT), MA (Hons) (W’gong), PhD, MEdM (Flin), FASM, FAIBiol

Associate Professor and Alternate Head of School
R T Buckney, BSc (Hons), PhD (Tas), MAIBiol

Secretary to Head of School
P Carland

Technical and Administrative Manager
D Edwards, E & C Cert

Finance Officer
J Powter

Stores Officer
E Soliman

Student Administration Unit

Acting Student Administrative Officer
D A R Tudge

Computing Services

Technical Officer
A Watts

Electronic Workshop

Manager
J Stafford

Mechanical Workshop

Manager
C Lidster

Apprentice
R Gleesoon

Department of Applied Biology

Associate Professor and Head of Department
K R Brown, BSc, PhD (UNSW), MAIBiol

Department Secretary
G Angus

Associate Professors
R T Buckney, BSc (Hons), PhD (Tas), MAIBiol
M D Burchett, BSc, PhD (Syd), DipEd (NE), MAIH, MAIBiol
D Cheng, BSc (Hons), TTC, PhD (Tas), MAISL, MAMSA, MFBA, MAIBiol
L K Holley, BAppSc (DDIAE), MAAppSc (QIT), PhD (Macq), DipLaw (BAB), MAIP, MACPSEM

Senior Lecturers
C J Clarke, BSc, PhD (Syd) MAIBiol
L F De Filippis, BSc (Hons), PhD (La Trobe), MAIH
R Lim, BSc (Hons), MSc (Mal), PhD (Waterloo), MAIBiol
D A Morrison, BSc, PhD (Syd), MAIBiol

Lecturers
D Booth, BSc (Hons) (Syd), MSc (Queens University), PhD (Oregon State University)
K A Johnson, MSc Agr (Acad Krakow), MAIBiol, MAAIAS, MRACI
A Pulownik, MSc (Syd)
J Renwick, BAppSc (BiomedSc) (NSWIT)
J Tarran, BSc (Hons), DipEd, PhD (UNSW), MAIH

Adjunct Professor
R S Baker, BSc (Hons), PhD (WAust), MAIBiol

Honorary Associates
J Chapman, BSc (Hons) (UNSW), PhD (Syd), DipEnvStud (Macq), MAIBiol
L Thomas, MAAppSc (Melb)

Laboratory Managers
G Goldsack, DipMedTech (AIMS), AAIMS, MAIBiol
N Richardson, DipMedTech (SydTech)

Scientific Officer
N L Clark, BAppSc (UTS), GAIP
P Ralph, BAppSc (NSWIT), MAIBiol

Senior Technical Officers
S Fenech, BAppSc (NSWIT)
P Jones, TechCertBiol (SydTech), BAppSc (UTS)

Technical Officers
B Almond, BAppSc (NSWIT)
J Carey, BSc (Macaq)
C Chirgwin, BioTechCert (Syd Tech)
J M MacLeod, AssDipAppSc (Armidale TAFE)
Laboratory Cleaners
M Kurbel
P Hunt

Department of Biochemistry and Physiology

Senior Lecturer and Head of Department
J C Swann, BSc, PhD (Adel)

Associate Professor and Head of Bioscience Unit
P F Miller, BSc (Hons), PhD (Man), DipTerEd (NE), MAIBiol

Secretary – Bioscience Unit
D Massey

Associate Professor
A G Dawson, BSc, PhD (Sheff), DipTerEd (NE)

Senior Lecturers
A R Craig, BSc (Hons), PhD (UNSW), MAPsS, BMCP
A M George, MSc, PhD (Syd)
A D Kidman, BSc (Syd), MSc (UNSW), PhD (Hawaii)
G M Nicholson, BSc (Hons), PhD (Syd)
R L Orwell, BSc, PhD (UNSW)
A Piper, BSc (Hons) (Monash), DPhil (Oxford)
M Willow, MSc (Syd), DipEd (KCAE), PhD (ANU), MB BS (Hons) (UNSW)

Lecturers
L F Chew, BSc (Hons), MSc (UNSW)
D Edwards, BSc (UNSW)
B M Harrison, BSc, PhD (Lond)
A M Simpson, BSc (Hons), PhD (Syd)

Associate Lecturers
M J Wilson, MSc (UNSW)
J R Wyndham, MSc, DipEd (Syd)

Adjunct Professor
M Meerkin, BSc (Melb), MB BS (Monash), FRCPA, FAACB, FACB

Honorary Associates
M Christie, BSc (Adel), PhD (Syd)
I Spence, BSc (Syd), PhD (Monash)

Laboratory Managers
W Booth, BSc (Qld), MAAppSc (QUT), PhD (Syd) – Biochemistry
B Peters, BAppSc (NSWIT), MAIBiol – Bioscience Unit

Technical Officers
G Grindrod, TechCert Biol (Syd Tech)

J Easton, BAppSc (NSWIT)
C Giannini, BAppSc (UTS)
L Hwang, BSc (UNSW)
D Kelly, PathTechCert (Syd Tech)
H McConkey, ChemCert (Mulheim-Ruhr)
M Stasos, BSc (UNSW)

Laboratory Cleaner
O Petroff

Neurobiology Unit

Senior Lecturer and Head of Unit
A D Kidman, BSc (Syd), MSc (UNSW), PhD (Hawaii)

Administrative Officer
J Harrop

Administrative Assistant
V Usher

Senior Research Officer
M W Davey, BSc (Qld), PhD (ANU)

Research Officer
K Cocker, BA (Macq), MA (Syd), MAPsS

Department of Microbiology

Senior Lecturer and Head of Department
L F Gibson, BSc (Hons) (Edin), PhD (Melb), FASM, MAIBiol

Senior Lecturers
J T Ellis, BSc (Hons) (Reading), PhD (Liverpool)
I M Stevenson, BSc (Birm), PhD (Edin), FASM, MAIBiol

Lecturer
B J Bloomfield, ASTC, BSc (UNSW), MSc (Syd), PhD (Rutgers)

Adjunct Professor
V P Ackerman, BA, MB BS (Syd), PhD (ANU), FRCPA, FASM

Honorary Associates
G Grohmann, BSc (Hons) (UNSW), PhD (Syd)
D Groot Obbink, BSc (Melb), MSc (W Ontario), PhD (Brit Columbia), FASM
R Munro, MB BS (Syd), MRCP, FRCPPath, FRCPA, DpBact, FASM
J Walker, MSc, PhD (Syd)

Laboratory Manager
J Phillips, BSc (UNSW), MASM, MAIBiol
Senior Technical Officer
J Khoury, BAppSc (NSWIT), MASM, MAIBiol

Technical Officers
M Johnson, BAppSc (UTS)
V Statzenko, BiolCert (Syd Tech Coll)
Z Podkulksa, MSc (UJ Krakow)

Research Assistants
K Luton, BSc (Hons) (JCUNQ)

Laboratory Cleaner
T Chernenko

Immunobiology Unit
Professor and Head of Unit
R L Raison, BSc (Syd), PhD (Monash)

Scientific Officer
K Weston, BSc (Hons) (Syd)

Research Assistants
J Hook, BAppSc (UTS)
G Shoebridge, BSc (Hons) (Macq)
C Woodlands, BSc (Hons) (Syd)

Institute for Coastal Resource Management
Associate Professor and Director
K R Brown, BSc, PhD (UNSW), MAIBiol

Business Manager
J Scarsbrick, BBus (NE)

Project Manager
B Nudd, BSc (NE)

Molecular Parasitology Unit
Professor and Head of Unit
A M Johnson, BAppSc (SAIT), MA (Hons) (W'gong), PhD, MEdM (Flin), FASM, FAIBiol

Postdoctoral Fellow
A Jeffries, BSc (Hons), PhD (Adel)

Research Assistant
K Luton, BSc (Hons) (JCUNQ)

Department of Pathology and Immunology
Professor and Head of Department
R L Raison, BSc (Syd), PhD (Monash)

Department Secretary
J Taverner

Associate Professor
K W Broady, BSc (Hons), PhD (UNSW), MASM

Lecturers
K Cordatos, BSc, DipEd (Syd), CFIAC, AAIMS, CT (ASC), MEd (NE), MAIBiol
D Raftos, BSc (Hons), PhD (Macq)
T Sztynda, BSc (Hons), PhD (Melb), MASEP
N B Woodland, BSc (NE)

Adjunct Professors
J Isbister, BSc (Med) (Hons), MB BS Hons (UNSW), FRACP, FRCPath
D Ma, MB BS (Hons), MD (UNSW), FRACP, FRCPath

Honorary Associates
C Geczy, BSc, PhD (UNSW)
B Munro, DipMT (AIMS), FAIMS
K Robinson, BSc (Hons), PhD (Witwatersrand)

Technical Officers
T Baragith
J Thorpe

Centre for Ecotoxicology
Joint UTS/Environment Protection Authority (EPA)

EPA staff members
Co-Director
J Chapman, BSc (Hons) (UNSW), PhD (Syd), DipEnvStud (Macq), MAIBiol, MASE

Ecotoxicologists
D Heinke, DipElectEng (Yallourn), BE (Elect) (Melb), MASE
R V Hynie, BSc (WAust), MSc, PhD (N’cle), MASE
M Julli, BAappSc (NSWIT), MAappSc (UTS), MASE
T Krassoii, BAappSc (UTS), MASE
T Manning, BSc (Hons) (Syd), MAappSc (UTS) MRACI, MASE
R Sunderam, BSc (Hons) (Sri Lanka), MAappSc (UTS), MASE
M Warne, BSc (Hons), M.sc (N’cle), PhD (Griffith), MRACI, MSETAC, MASE

UTS staff members
Co-Director
M D Burchett, BSc, PhD (Syd), DipEd (NE), MAIH, MAIBiol

Associate Professors
K R Brown, BSc, PhD (UNSW), MAIBiol
R T Buckney, BSc (Hons), PhD (Tas), MAIBiol
D Cheng, BSc (Hons), TTC PhD (Tas), MASL, MAMSA, MFBA, MAIBiol
P F Miller, BSc (Hons), PhD (Man), DipTert Ed (NE), MAIBiol

Senior Lecturers
C J Clarke, BSc, PhD (Syd)
R Lim, BSc (Hons), MSc (Mal), PhD (Waterloo)
R L Orwell, BSc, PhD (UNSW)
A Piper, BSc (Hons) (Monash), PhD (Oxford)
J H Sharp, BSc, PhD (UNSW), CChem, MRACI

Lecturers
M Dawson, BPharm, PhD (Syd), CChem, MRACI, MPS
B M Harrison, BSc, PhD (Lond)
G M Nicholson, BSc (Hons), PhD (Syd)
A Pulkownik, MSc (Syd)

Laboratory Manager
N Richardson, DipMedTech (Syd Tech Coll)

Scientific Officer
P Ralph, BAppSc (NSWIT)

Senior Technical Officers
P Jones, TechCertBiol (Syd Tech Coll), BAppSc (UTS)

National Centre for Groundwater Management

In conjunction with the Faculty of Engineering

Associate Professor and Centre Director
M J Knight, BSc, PhD (Melb), FGS, MIE (Aust), MAIMM

Senior Lecturers
W A Milne-Home, BSc (Leicester), MSc (London), PhD (Alberta), CertEngGCH (UNSW)
N P Merrick, MSc (Syd), GradDipDataProc (NSWIT)

Research Fellow
R G McLaughlan, BSc (Melb), GradDipCivEng, MAppSc, PhD (UNSW)

Administrative Assistant
R Peters, BA (Ramkhamhaeng)

Centre for Science Communication

Consultant
P Pockley, BSc, DipEd (Melb), PhD (Oxford)

Administrator
S Elliott, BSc (Hons) (Macq)

College of Acupuncture

The College of Acupuncture will be incorporated into the Faculty as from 1 January 1995. It is likely that the College will form part of one of the Departments in the Faculty. The following information is correct as at 14 October 1994.

Associate Professor and Head of College
C Rogers, BAc (ICOM), DipAc, DSc (CP), LectAc (HKCCA), MACAc, Visiting Professor, Guangzhou University of TCM

Lecturers
M Garvey, BA (Syd), PracDipAc (ACA), CertAdvAc (NCTCM), DipChMass (NC), DipSwedMass (SydCChiro), MLitt (UNE), MACAc
D Ryan, BPhilos, BTheol (SCC), PracDipAc (ACA), DipHerbMed (DHC), Cert Counselling (SCC), MACAc
C X Yang, DipAppSc (Biochem) (Swinburne), CertAdvAc (GCTCM), PracDipAc (ACA), MSc (UNSW), MACAc
C Zaslawski, BAppSc (Phty) (Syd), PracDipAc (ACA), CertAdvAc (GCTCM), DipChHerb (ACOM), MACAc

Specialist Lecturers
G Cassis, BA (ANU), DipAppSc (ACA), DipEd (Syd), MEd (UTS)
G Bignold, BAppSc (ACA), DipTuina (NSWCNT), DipTherapeuticMass (St George College), DipThaiMass (Wat Suan Chang Mai)
S Pope, RN, DipAppSc (ACA)

Additional lecturers in specialist subjects and electives as required

Administrative Staff
R Hayes, AdvCertPblcAdmn (SydTech)
W Yick
INDEX

AC Hatrick Chemicals Prize 9
Accelerants, Incendiaries and Explosives 59
Acupuncture Diagnosis of Musculo-skeletal Disorders 150
Acupuncture Health Politics in Australia 103
Acupuncture Microsystems 151
Acupuncture Treatment of Musculo-skeletal Disorders 151
Advanced Acupuncture Principles 100
Advanced Biocomputing 95
Advanced Bioinstrumentation 140
Advanced Chemistry Project 56
Advanced Chinese Diagnosis 99
Advanced Chinese Massage (Tuina) 100
Advanced Electron Microscopy Techniques 78
Advanced Engineering Geology 66
Advanced Fossil Fuels 65
Advanced Geological Mapping 64
Advanced Materials 73
Advanced Mathematics in the Life Sciences 139
Advanced Needle Technique and Ex-channel Point Location and Clinic – Level 5 100
Advanced Petrology 63
Advanced Petrology (Honours) 64
Advanced Programming – Life Sciences 142
Advanced Solid-state Physics 79
Advanced Structural Geology 63
Advanced Structural Geology (Honours) 64
Advanced X-Ray Techniques 78
Analytical Biochemistry 87
Analytical Biochemistry Project 1 138
Analytical Biochemistry Project 2 138
Analytical Chemistry 1 55
Analytical Chemistry 2 56
Analytical Chemistry 2 (Advanced) 57
Analytical Techniques in Biochemistry 139
Anatomical Pathology 89
Anatomy and Physiology 1 95
Anatomy and Physiology 2 96
Anatomy and Physiology 3 96
Animal Ecophysiology 91
Applied and Environmental Microbiology 92
Applied Clastic Basin Analysis (Honours) 66
Applied Ecology 91
Applied Mechanics 76
Applied Mechanics S 80
Applied Mycology 93
Applied Optics 76
Applied Optics S 80
Applied Organic Chemistry 1 58
Applied Organic Chemistry 1 (Advanced) 59
Applied Organic Chemistry 2 58
Applied Organic Chemistry 2 (Advanced) 59
Applied Physics (Materials) 75
Applied Thermodynamics 79
Applied Thermodynamics S 81
Approved External Subjects 81
Aquatic Ecology 91
Australian Ceramic Society Prize in Ceramics 9
Australian Ceramic Society Scholarship 9
Australian Institute of Medical Laboratory Scientists Prize in Clinical Bacteriology and Parasitology 10
Australian Institute of Medical Laboratory Scientists’ Prize in Haematology 10
Australian Institute of Physics Prize 10
Australian Plants 83
Bachelor of Applied Science (Honours) in Chemistry 29
Bachelor of Applied Science (Honours) in Geology 31
Bachelor of Applied Science (Honours) in Materials Science 32
Bachelor of Applied Science (Honours) in Physics 33
Bachelor of Applied Science in Chemistry 17
Bachelor of Applied Science in Geology 20
Bachelor of Applied Science in Materials Science 22
Bachelor of Applied Science in Physics 25
Bachelor of Applied Science in Science Education 27
Bachelor of Health Science in Acupuncture 35
Bachelor of Science (Honours) 48
Bachelor of Science (Honours) in Applied Chemistry – Forensic Science 50
Bachelor of Science in Biomedical Science 36
Bachelor of Science in Biotechnology 40
Bachelor of Science in Environmental Biology 42
Bachelor of Science in Urban Horticulture 44
Bachelor of Science/Bachelor of Laws 51
Basic Science Mathematics 156
Basin Analysis 62
Bioassays/Toxicological Testing 143
Biochemical and Analytical Toxicology 142
Biochemical Pathophysiology 137
Biochemistry 1 85
Biochemistry 2 86
Biochemistry 3 87
Biochemistry 4 87
Biocomputing 95
Bioelectronics 136
Bioinstrumentation 86
Biological Hazards and Toxicology 134
Biological Resources and Assessment 147
Biology 1 85
Biology 2 85
Biomedical Science Upgrade 146
Biomedical Sciences 1 138
Biomedical Sciences 2 138
Biomonitoring 86
Bioprocessing 92
Bioscience Unit 165
Biosensors and Transducers 140
Biostatistics 139
Biosystems 145
Blood Bank 88
Boehringer Mannheim Prize for Biomedical Sciences 10
Building Emergency Control 135
Business Organisation 155

Case Studies in Clinical Biochemistry 138
Centre for Biomedical Technology 165
Centre for Ecotoxicology 166
Centre for Materials Technology 166
Centre for Science Communication 166
Centres and institutes within the Faculty 165
Ceramics 1 70
Ceramics 2 70
Ceramics 3 71
Ceramics 3 (Honours) 72
Chemical Process Control 56

Chemical Safety 56
Chemical Safety (OHS) 135
Chemical Thermodynamics 56
Chemistry 1 (Life Sciences) 53
Chemistry 1 F/T 53
Chemistry 1M 54
Chemistry 2 (Life Sciences) 53
Chemistry 2 F/T 53
Chemistry 2M 55
Chemistry Department Prize 10
Chinese Medical Approach to Health and Disease, The 150
Chinese Model of Qi and its Pathways, The 150
Chinese Diagnostic System and Advanced Pulse Diagnosis 98
Clinical Aspects of Acupuncture 1 149
Clinical Aspects of Acupuncture 2 149
Clinical Aspects of Acupuncture 3 149
Clinical Bacteriology and Parasitology 93
Clinical Biochemistry – Advanced Aspects A 138
Clinical Biochemistry – Advanced Aspects B 139
Clinical Biochemistry 1 88
Clinical Biochemistry 2 89
Clinical Features of Disease 100, 148
Clinical Laboratory Management 138
Clinical Mycology 95
Clinical Practice 1 150
Clinical Practice 2 151
Clinical Review (Clinical Practice) 149
Clinical Theory (Outpatient Clinic) and Clinic – Level 6 101
Clinical Theory, Practice and Observation of Clinical Acupuncture and Clinic – Level 1 97
Coastal Resource Planning 147
Coastal Resource Policy 146
Coastal Resource Project 148
Coastal Zone Law 144
Colin Field Prize 10
College of Acupuncture 168
Combined Acupuncture Therapy and Diagnostic Practice 101
Communication Physics 75
Composites 73
Computational Physics 77
Computer Modelling of Physical Systems 78
Computing for Groundwater Specialists 132
Computing for Science 155
Concepts in Biochemistry 86
Concepts in Biology 95
Concepts in Environmental Science 94
Conceptual Models of Ore Deposits (Honours) 66
Construction Safety 135
Contaminated Site Management 133
Convergent Margin Tectonics (Honours) 66
Cooperative Research Centre for Aquaculture 167
Cooperative Research Centre for Cardiac Technology 167
Coordination and Organometallic Chemistry 58
Coordination and Organometallic Chemistry (Advanced) 59
Corrosion Science 58
Corrosion Technology 54
Corrosion Technology for Engineers 54
Course Advisory Committees 170
Courses offered by the Faculty 14
CSL (Commonwealth Serum Laboratories) Prize 10
Current Topics in Medical Microbiology 144
Cytopathology 94

Data Analysis in Occupational Health and Safety 135
Dean’s Merit List for Academic Excellence 9
Department of Water Resources Prize 10
Design and Materials Selection 72
Device Physics 79
Digital Processing of Signals and Images in Medicine 141
Disease States 1 and 2 100
Disease States 3 101
Doctoral Thesis (Biol and Biomed) F/T 153
Doctoral Thesis (Biol and Biomed) P/T 153
Dr David Sugerman Prize in Pathology 11

Electrical Power Generation 74
Electricity and Magnetism S 80
Electrochemistry 55
Electronics 1 76
Electronics 1 S 80
Electronics 2 77
Electronics 2 S 81
Electronics and Instrumentation 56
Electrotechnology 76
Electrotechnology S 80
Engineering and Environmental Geology 63
Engineering Chemistry 53
Engineering Mathematics 2A 156
Engineering Physics (Civil) 74
Engineering Physics (Civil) S 80
Engineering Physics (Mechanical) 73
Engineering Physics 1 (Electrical) 74
Engineering Physics 2 (Electrical) 74
Engineering Physics 3 (Electrical) 74
Environmental Biology Prize 11
Environmental Chemistry 57
Environmental Chemistry (Advanced) 57
Environmental Measurement 94
Environmental Assessment and Planning 131
Environmental Science for Engineers 94
Environmental Toxicology Project F/T 143
Environmental Toxicology Project F/T 143
Epidemiology and Disease Control 144
Estuarine and Coastal Chemistry 146
Experimental Design and Methods 140
Exploration and Mining Geology 65
Exploration Geochemistry 63
Exploration Geophysics 62
Extractive Metallurgy 54

Faculty Board in Science 169
Faculty mission statement 2
Faculty of Science, The 5
Faculty of Science Postgraduate Research Scholarship 9
Fees and Higher Education Contribution Scheme 104
Field Project 65
Field Studies: Marine Sciences 93
Field Studies: Mountain Ecology 92
Field Studies: Semi-arid Ecology 92
Field Surveillance, Fate and Management of Toxic Substances 142
Field Theory 77
First Aid 103
Forensic Examination of Physical Evidence 1 57
Forensic Examination of Physical Evidence 2 58
Forensic Examination of Physical Evidence 3 59
Forensic Science Case Study 157
Forensic Toxicology 1 57
Forensic Toxicology 2 58
Foseco Prize in Materials Science 11
Fossil Fuels 63
Fossil Fuels (Honours) 64
Foundations of Helping and Caring 157
Francis E Feledy Memorial Prize 11

Geochemistry 61
Geodynamics 61
Geological Mapping 60
Geology for Engineers 60
Geology 1 60
Geology 1M 60
Geophysics and Remote Sensing of Groundwater Resources 133
Geopollution Management 133
Graduate Certificate courses 104
Graduate Certificate in Environmental Engineering and Management 107
Graduate Certificates in Biomedical Technology 105
Graduate Certificates in Coastal Resource Management 107
Graduate Certificates in Environmental Toxicology and Ecotoxicology 108
Graduate Certificates in Occupational Health and Safety 109
Graduate Diploma courses 109
Graduate Diploma in Clinical Acupuncture 109
Graduate Diploma in Clinical Biochemistry 111
Graduate Diploma in Coastal Resource Management 112
Graduate Diploma in Environmental Toxicology 113
Graduate Diploma in Hydrogeology and Groundwater Management 115
Graduate Diploma in Medical Microbiology 116
Graduate Diploma in Musculo-skeletal Acupuncture 117
Graduate Diploma in Occupational Health and Safety 118
Groundwater Computing 132
Groundwater Engineering Projects (GD) F/T, P/T 131
Groundwater Engineering Projects (M) F/T, P/T 131
Groundwater Geophysics 133
Groundwater Modelling 132
Groundwater Science Projects (GD) F/T, P/T 133
Groundwater Science Projects (M) F/T, P/T 133
Haematology 1 90
Haematology 2 90
Hardware for Clinical Data Acquisition and Control 142
Hatrick-Jotun Prize in Design and Materials Selection 11
Hatrick Reichhold Prize in Polymer Technology 11
Historical and Advanced Theoretical Foundations of Acupuncture 99
Honours Project 73
Honours Research Project 60
Horticultural Botany 83
Horticultural Experimentation 82
Horticultural Financial Management 84
Horticultural Procedures F/T 84
Horticultural Procedures P/T 85
Horticultural Production Management 84
Horticultural Research Project 83
Hospital Training in China 102
Human Biology 86
Human Factors/Ergonomic Design 134
Human Fungal Disease 144
Human Parasitology 144
Human Viral Disease 144
Hydraulics 146
Hydrogeochemistry 133
Hydrogeology 132
Immunobiology Unit 165
Immunology 1 89
Immunology 2 90
Independent Research Project 102
Independent Research Project Workshops 100
Independent Research Project (Postgraduate) 148
Individual Project – Life Sciences 95
Individual Project P/G – Life Sciences 146
Industrial Training (Applied Chemistry Honours) 60
Industrial Training (Applied Chemistry)
P/T 60
Industrial Training (Applied Physics Honours) 81
Industrial Training (Honours) 67, 73
Industrial Training 1 (Applied Chemistry) 60
Industrial Training 1 (Applied Geology) 67
Industrial Training 1 (Materials Science) 73
Industrial Training 1 (Physics) 82
Industrial Training 2 (Applied Chemistry) 60
Industrial Training 2 (Applied Geology) 67
Industrial Training 2 (Materials Science) 73
Industrial Training 2 (Physics) 82
Industrial Training P/T (Applied Geology) 67
Industrial Training P/T (Materials Science) 73
Inorganic Chemistry 55
Institute for Coastal Resource Management 168
Institute of Metals and Materials Australasia Prize 11
Instrumentation for Materials Scientists 70
Integrated Coastal Resource Management 148
Introduction to Acupuncture, Channel, Point and Organ Physiology 97
Introduction to Biological Fluids 94
Introduction to Chinese Massage (Tuina), Point Location 2 and Clinic – Level 3 99
Introduction to Crystallography 69
Introduction to Chinese Massage (Tuina), Point Location 2 and Clinic – Level 3 98
Introduction to Environmental Engineering and Management 131
Introduction to Microcomputers 155
Introduction to Tai Qi Chuan, An 102
Introduction to Toxicology 140
Introduction to Traditional Acupuncture Theory 149
Introductory Biometrics 156
Introductory Coastal Geology 147
Introductory Organic Chemistry 53
Introductory Pharmacology and Microbiology 96

JOEL Prize for Electron Microscopy 11
KK & S Prize in Metallurgy 11
Laboratory Biocomputing 142
Landscape Horticulture 83
Legal Aspects of Occupational Health and Safety 136
Legal System 157
Leonard J Lawler Prize 11
Lithology 61
Loctite Australia Prize in Adhesion Science 12

Macquarie Pathology Services Prize in Biomedical Science 12
Management of the Microbiology Laboratory 145
Master of Occupational Health and Safety 120
Master of Science in Clinical Biochemistry 120
Master of Science in Clinical Measurement 122
Master of Science in Coastal Resource Management 123
Master of Science in Environmental Toxicology 125
Master of Science in Hydrogeology and Groundwater Management 126
Master of Science in Medical Microbiology 127
Master of Science in Medical Physics 129
Master's degrees (by coursework) 119
Master’s Thesis (Applied Chemistry) F/T 152
Master’s Thesis (Applied Chemistry) P/T and Ext 152
Master’s Thesis (Applied Geology) F/T 152
Master’s Thesis (Applied Geology) P/T and Ext 152
Master’s Thesis (Applied Physics) F/T 152
Master’s Thesis (Applied Physics) P/T and Ext 152
Master’s Thesis (Biol and Biomed) F/T 152
Master’s Thesis (Biol and Biomed) P/T 153
Master’s Thesis (Materials Science) F/T 152
Master’s Thesis (Materials Science) P/T and Ext 152
Materials 1 67
Materials Characterisation 71
Materials Degradation 72
Materials Engineering 1 68
Materials Engineering 2 68
Materials Physics 77
Materials Physics S 81
Materials Science 1 68
Materials Science 2 69
Materials Science 3 69
Materials Science for Engineers 68
Materials Technology 68
Mathematics 1 (Life Sciences) 155
Mechanical Properties of Materials 69
Medical Imaging 136
Message from the Dean 2
Metallurgical Chemistry 58
Metallurgical Chemistry (Advanced) 59
Microbiology 1 86
Microbiology 2 87
Microbiology 3 87
Microprocessors in Instrumentation 77
Microprocessors in Instrumentation S 81
Microsystems and Special Methods of Treatment 99
Mineral Deposits 66
Mineral Science Project 66
Mineralogy and Petrology 61
Molecular Biology 1 88
Molecular Biology 2 88
Molecular Microbiology – Techniques and Diagnosis 145
Molecular Parasitology Unit 165
M Y Ali Prize in Diagnostic Cytology 12

Narcotics and Drugs of Abuse 59
National Centre for Groundwater Management 168
National Safety Council of Australia Prize 12
Needle and Moxibustion Techniques and Clinic – Level 2 98
Neurobiology Unit 165
Neuroscience 154
Nuclear Physics 77
Nuclear Physics S 81
Nutrition in a Traditional Chinese Medical Context 103

Occupational Hazard Analysis 134
Occupational Health and Safety in Society 133

Occupational Health and Safety Management 136
Occupational Health and Safety Project 136
Occupational Health in the Workplace 134
Occupational Health Services 135
Open Space Management 84
Organic Chemistry 1 55
Organic Chemistry 2 55
Organisational Behaviour and Communication 134

Pasminco Prize in Extractive Metallurgy 12
Pathophysiology 96
Pathophysiology 1 154
Pathophysiology 2 154
People and the Physical Environment 135
Pest Control and Toxicology 91
Pharmacology 153
Philosophy, Religion and Culture 102
Physical Geology of the Coastal Zone 147
Physical Mathematics 157
Physical Metallurgy (Honours) 72
Physical Metallurgy 1 70
Physical Metallurgy 2 70
Physical Metallurgy 3 71
Physical Optics 79
Physics 1 75
Physics 1 (Life Sciences) 75
Physics 1 S 80
Physics 2 75
Physics 2 S 80
Physics 3 75
Physics 3 S 80
Physics for Electronics S 80
Physics in Medicine 136
Physics Staff Prize 12
Physiological Foundations of Health 1 153
Physiological Foundations of Health 2 154
Physiological Measurement 140
Physiological Modelling 141
Physiology of Energy and its Pathways, The 97
Plant Breeding and Genetics 82
Plant Ecophysiology 91
Plant Production 82
Plant Protection 83
Plant Tissue Culture 84
Plants in the Landscape 82
Structural Geology 62
Structural Geology of Ore Deposits
(Honours) 67
Subject names in alphabetical order 158
Subjects offered by other faculties 155
Subjects offered for Faculty of Nursing
students 153
Subtle Dimensions of Healing, The 102
Supervised Practice (Outpatient
Clinic) 101
Surface Chemistry 57
Surface Hydrology and
Groundwater 132
Surface Properties of Materials 72
Systems View of Life, A 102
Technical Communication 61
Techniques of Materials Analysis 78
Tectonics 65
Terrestrial Ecology 91
Theoretical and Philosophical
Foundations of Traditional
Acupuncture 97
Therapeutic Techniques and Tuina
(Chinese Massage) 151
Thermodynamics 54
Thermodynamics and Energy 76
Thermodynamics and Energy S 80
TICS Prize 13
Tissue Culture 93
Toxic Materials in the Environment 89
Transducers and Devices 79
Treatment of Scientific Data 53
Undergraduate courses 15
Undergraduate subject descriptions 53
Units within the faculty 165
Urban Water Quality Management 132
Vacuum and Thin Film Physics 77
Virology 88
Waste Minimisation and Advances in
Pollution Control 131
Western Mining Corporation Junior
Studies Prize 13
Western Mining Corporation Prize 13
Western Mining Corporation Senior
Studies Prize 13
Workcover Authority Prize 13
Written and Oral Reporting 157