DISCLAIMER
This publication contains information which was current at 1 September 2000. Changes in circumstances after this date may impact upon the accuracy or currency of the information. The University takes all due care to ensure that the information contained here is accurate, but reserves the right to vary any information described in this publication without notice. Readers are responsible for verifying information which pertains to them by contacting the Faculty or the UTS Student Info & Admin Centre.
EQUAL OPPORTUNITY
It is the policy of UTS to provide equal opportunity for all persons regardless of race, colour, descent, national or ethnic origin, ethno-religious background; sex; marital status, pregnancy; potential pregnancy; family responsibilities, disability, age; homosexuality; transgender status; political conviction; and religious belief.

FREE SPEECH
UTS supports the right to freedom of speech and the rights of its members to contribute to the diversity of views presented in our society.

NON-DISCRIMINATORY LANGUAGE
UTS has adopted the use of non-discriminatory language as a key strategy in providing equal opportunity for all staff and students. Guidelines for the use of non-discriminatory language have been developed and all members of the University community are encouraged to use them.
TABLE OF CONTENTS

GENERAL INFORMATION
5
- Welcome 5
- About the UTS handbooks 5
- Student inquiries 6
- Applications 7
- Fees and costs 7
- HECS 2
- Financial help 8
- UTS Library 9
- University Graduate School 9
- Support for student learning 9
- Student Learning Centres 11
- Equity and diversity 12
- Other services 12
- Campus life 13
- Principal dates for 2001 14

FACULTY INFORMATION
17
- Message from the Dean 17
- Faculty Mission Statement 17
- Faculty of Science 17
- Units within the Faculty 19
- Centres 21
- Information for Science students 23
- Prizes and scholarships 29
- International Studies electives 34

UNDERGRADUATE COURSES
36
- Diploma in Scientific Practice (N005) 38
- Bachelor of Science (N010) 39
- Bachelor of Science in Applied Chemistry (NC05) 41
- Bachelor of Science (Honours) in Applied Chemistry (NC06) 44
- Bachelor of Science (Honours) in Applied Chemistry – Forensic Science (NC04) 44
- Bachelor of Science in Applied Physics (NP05) 45
- Bachelor of Science (Honours) in Applied Physics (NP06) 47
- Bachelor of Health Science in Traditional Chinese Medicine (NH06) 48
- Bachelor of Health Science in Traditional Chinese Medicine (Honours) (NH08) 49
- Bachelor of Health Science in Traditional Chinese Medicine/
- Bachelor of Arts in International Studies (N008) 49
- Bachelor of Medical Science (NH04) 51
- Bachelor of Science (Honours) (KB04) 53
- Bachelor of Science in Biomedical Science (KB02) 54
- Bachelor of Science in Biotechnology (KB06) 58
- Bachelor of Science in Earth and Environmental Science (NG05) 62
- Bachelor of Science (Honours) in Geoscience (NG06) 64
- Bachelor of Science (Honours) in Environmental Science (NG07) 64
Welcome to the University of Technology, Sydney (UTS), one of the largest universities in New South Wales – a university with an international reputation for quality programs and flexible learning. UTS develops and regularly revises its programs of study in partnership with industry, government and professional bodies, so that its degrees are based on the latest professional standards and current practices. As a result, UTS produces graduates who are ready for work, and this is demonstrated in the high numbers of its students who are members of the workforce within a few months of finishing their degree.

UTS offers its students a lively, supportive and diverse learning environment across three campuses, and a range of social, cultural and sporting facilities to enrich each student’s experience. UTS regards learning as a lifelong experience, and offers a range of programs to cater for the educational needs of people at a variety of stages in their lives, and from diverse backgrounds and cultures.

UTS offers undergraduate and postgraduate degrees, developed by the Faculties of Business; Design, Architecture and Building; Education; Engineering; Humanities and Social Sciences; Information Technology; Law; Nursing, Midwifery and Health; and Science. Each of these faculties is responsible for programs across a number of key disciplines, and many offer courses in conjunction with one another, or with the Institute for International Studies. Courses developed and delivered by these faculties reflect the University’s commitment to providing a relevant education to students through flexible and work-based modes of learning and through the ongoing internationalisation of the curriculum.

ABOUT THE UTS HANDBOOKS

Every year UTS produces 10 faculty/institute handbooks which provide the latest information on approved courses and subjects to be offered in the following year. These handbooks include comprehensive details about course content and structure, subject and elective choices, attendance patterns, credit-point requirements, and important faculty and student information. Many of them also contain faculty policies and guidelines for participation in specific courses. This provides students with the necessary information to meet the requirements of the course, complete a program of study, and receive a degree.

UTS also produces a companion volume to these handbooks every year. The UTS Calendar 2001 contains the University Act, By-law and Rules, a list of courses offered across the University, and other useful University information. Copies of the faculty/institute handbooks and the UTS Calendar 2001 are held in the University’s libraries and faculty offices and can be purchased at the Co-op Bookshop.

Every effort is made to ensure that the information contained in the handbooks and the Calendar is correct at the time of printing. However, UTS is continuously updating and reviewing courses and services to ensure that they meet needs, current and emerging, and as a result information contained in these publications may be subject to change.

For the latest information, see the University’s website at:

www.uts.edu.au
STUDENT INQUIRIES

UTS Student Info & Admin Centre
telephone (02) 9514 1222
e-mail info.office@uts.edu.au
www.uts.edu.au

City campus
Level 4 foyer, Building 1 (Tower Building)
1 Broadway, Ultimo

Kuring-gai campus
Level 6, Building K1
Eton Road, Lindfield

Postal address
PO Box 123, Broadway NSW 2007

International Programs Office
10 Quay Street, Haymarket
telephone +61 2 9514 1531
fax +61 2 9514 1530
e-mail intlprograms@uts.edu.au

Faculty student offices

Business
Undergraduate inquiries
Level 1, Building 5
Haymarket, City campus
telephone (02) 9514 3500
Level 5, Building K1
Kuring-gai campus
telephone (02) 9514 5355
e-mail undergraduate.business@uts.edu.au

Postgraduate inquiries
Level 5, Building 5
Haymarket, City campus
telephone (02) 9514 3660
e-mail graduate.business@uts.edu.au

Design, Architecture and Building
Level 5, Building 6 (Peter Johnston Building)
City campus
telephone (02) 9514 8913
e-mail dab.info@uts.edu.au

Education
Room D101, Building 5
Haymarket, City campus
telephone (02) 9514 3900
e-mail education@uts.edu.au
Room 333, Building K2
Kuring-gai campus
telephone (02) 9514 5621
e-mail teached.office@uts.edu.au

Engineering
Level 7, Building 2
City campus
telephone (02) 9514 2666
e-mail upo@eng.uts.edu.au

Humanities and Social Sciences
Faculty Student Centre
Level 2, Building 3 (Bon Marche Building)
City campus
telephone (02) 9514 2300
e-mail fhss.student-centre@uts.edu.au

Faculty Research Office
Level 7, Building 2
City campus
telephone (02) 9514 1959
e-mail research.degrees.hss@uts.edu.au

Information Technology
Level 3, Building 4
City campus
telephone (02) 9514 1803
e-mail info@it.uts.edu.au

Law
Room B303, Building 5
Haymarket, City Campus
telephone (02) 9514 3444
e-mail admingen@law.uts.edu.au

Nursing, Midwifery and Health
Room 397, Building K5
Kuring-gai campus
telephone (02) 9514 5202
e-mail nmh@uts.edu.au

Science
Level 3, Building 4
City campus
Level 2, Dunbar Building
St Leonards campus
telephone (02) 9514 1756
e-mail information@science.uts.edu.au

Institute for International Studies
10 Quay Street
Haymarket, City campus
telephone (02) 9514 1574
e-mail iisinfo@uts.edu.au
APPLICATIONS

Undergraduate
The NSW and ACT Universities Admissions Centre (UAC) processes most applications for undergraduate courses which start at the beginning of the year. Students are required to lodge these UAC application forms between August and December; early closing dates may apply to some courses. To find out more about these courses and the application procedures, check the UAC Guide, or the UAC website at: www.uac.edu.au

Students can also apply for entry to some UTS courses by lodging a UTS application form directly with the University. These are usually courses that are not available to recent school leavers and do not have a UAC code.

Postgraduate
Applications for postgraduate courses should be made directly to UTS. For courses starting at the beginning of the year, most applications open in August with a first round closing date of 31 October. For courses starting in the middle of the year, applications open in May. For more information about applying to study at UTS, contact the UTS Student Info & Admin Centre.

International students
International students' applications for both postgraduate and undergraduate courses can be made either directly to the International Programs Office or through one of the University's registered agents. For courses starting at the beginning of the year, applications should be received by 30 November of the previous year. For courses starting in the middle of the year, applications should be received by 31 May of that year. For more information, contact the International Programs Office.

Non-award and cross-institutional study
Students who want to study a single subject at UTS which is not part of a UTS degree or qualification, must apply for non-award or cross-institutional study. There are four application periods, and closing dates vary for each semester. For more information contact the appropriate faculty or the UTS Student Info & Admin Centre.

FEES AND COSTS

Service fees
Service fees are charged to students to contribute to the cost of a range of facilities and services which are generally available to all students during the course of their study.

Variations and exemptions
Fees and charges may vary from year to year. In certain circumstances, some students may be eligible for reduced service fees. For full details of variations and exemptions to the fees listed below, contact the UTS Student Info & Admin Centre.

Fee components

Union Entrance Fee
a once-only charge for new students $22

Union Fee
a semester-based charge for currently enrolled students $113 per semester

Students' Association Fee
a yearly charge for currently enrolled students $54.40 per year

Student Accommodation Levy
a yearly charge for currently enrolled students $58 per year

Student Identification Card Charge
a yearly charge for students enrolled on a tuition fee basis $15 per year

1 Charges have been adjusted to reflect the University's liability for Goods and Services Tax (GST).

Course fees
No course fees are paid by local students undertaking undergraduate studies at UTS. Students are, however, liable for HECS charges (see following page). Many postgraduate courses attract a course fee. These course fees are calculated on a course by course basis and are charged in addition to the service fees outlined above. Payment of course fees may vary depending on a student's status, and on conditions laid down by the faculty. Please contact the relevant faculty for full details. Details of course fees are outlined under each course entry in this handbook. Readers should note that fees quoted throughout the handbook are correct at the time of publication however they are subject to change and should be confirmed with the Student Info & Admin Centre.
Course fees for international students

At the time of publication, course fees for undergraduate international students range from A$5,000 to A$8,250 per semester, and for postgraduate international students from A$4,000 to A$8,250 per semester. These vary from time to time and the International Programs Office should be contacted for up-to-date information.

International students in Australia on a student visa are required to undertake full-time study as a condition of their visa.

For more information contact the International Programs Office.

Other costs

Students may incur other costs while they study at UTS. These may include books, printed sets of reading materials, photocopying, equipment hire, the purchase of computer software and hardware, and Internet services.

HECS

(Higher Education Contribution Scheme)

HECS is a financial contribution paid to the Commonwealth Government by tertiary students towards the cost of their education. It is payable each teaching period and the amount paid will vary according to the number of credit points undertaken and the method of payment nominated by the student.

Most students have three choices in the way they pay HECS:
1. paying all of the HECS up front and receiving a 25% discount
2. deferring all payment until a student’s income reaches a certain level, or
3. paying at least $500 of the HECS contribution up front and deferring the remainder.

Note: These options may not apply to New Zealand citizens and Australian Permanent Residents.

Commonwealth legislation sets strict conditions for HECS over which the University has no control. HECS charges are based on the subjects in which students are enrolled on the HECS census date. It is important for students to realise that any reductions in their academic workload after the census date for a particular semester will not reduce their HECS liability.

Students who defer their HECS payments become liable to commence repayment once their taxable income reaches the repayment threshold. This does not necessarily mean at the conclusion of their studies – a student’s income may reach this threshold before then.

New students, students returning from leave and students who are commencing a new or second course, must complete a Payment Options Declaration form. This form must be lodged with the University by the census date and should show a valid Tax File Number.

For Autumn semester, the HECS census date is 31 March, and for Spring semester, the HECS census date is 31 August. HECS census dates for other teaching periods can be obtained from the UTS Student Info & Admin Centre.

There are a number of variations to these guidelines. It is the responsibility of each student to find out which HECS conditions apply to them. Information can be obtained from the booklet HECS Your Questions Answered, which is available from the HECS office on 1800 020 108 (www.hecs.gov.au) or the UTS Student Info & Admin Centre.

FINANCIAL HELP

Austudy/Youth Allowance

Students aged under 25 years, may be eligible to receive financial assistance in the form of the Youth Allowance.

Full-time students aged over 25 years may be eligible to receive Austudy which provides financial help to students who meet its income and assets requirements. Application forms and information about eligibility for Austudy are available from the Student Services Unit at Kuring-gai or City campuses.

Commonwealth legislation sets strict requirements for Austudy/Youth Allowance over which the University has no control. It is important that the students concerned understand these requirements.

Students who receive Austudy and decide to drop subjects during the semester, must be aware that to remain eligible for Austudy they must be enrolled in a minimum of 18 credit points, or have a HECS liability for the semester of .375 equivalent full-time student units. The only exceptions made are for students with disabilities which interfere with their studies, students who are single supporting parents or, in some exceptional cases, those who have been directed by the University to reduce their study load.
For more information, talk to a financial assistance officer in the Student Services Unit.

telephone (02) 9514 1177 (City)
or (02) 9514 5342 (Kuring-gai)

Application forms for both schemes should be lodged as soon as possible with any Centrelink office, or at:

Centrelink Student Services
Parker Street, Haymarket
Locked Bag K710
Haymarket NSW 2000

Abstudy
Abstudy assists Aboriginal and Torres Strait Islander tertiary students by providing income support and other assistance. For more information about Abstudy, contact the staff at Jumbunna, Centre for Australian Indigenous Studies, Education and Research.

Level 17, Building 1 (Tower Building)
telephone (02) 9514 1902

UTS LIBRARY

The University Library collections are housed in three campus libraries which contain over 650,000 books, journals and audiovisual materials as well as a large range of electronic citation and full-text databases. Services for students include assistance in finding information through Inquiry and Research Help desks and online reference assistance, training programs, Closed Reserve, loans, reciprocal borrowing and photocopying facilities. The Library’s extensive range of electronic information resources, such as catalogues, databases and Electronic Reserve, and online services, such as research assistance, online training, loan renewal, reservations and inter-Library requests, can be accessed on campus and remotely 24 hours a day from the Library website.

The Library is open for extended opening hours. More information about the Library can be found at:

www.lib.uts.edu.au

City Campus Library
Corner Quay Street and Ultimo Road
Haymarket
telephone (02) 9514 3388

Kuring-gai Campus Library
Eton Road, Lindfield
telephone (02) 9514 5313

Gore Hill Library (St Leonards campus)
Corner Pacific Highway and
Westbourne Street, Gore Hill
telephone (02) 9514 4088

UNIVERSITY GRADUATE SCHOOL

The University Graduate School is a pan-university organisation which enhances the quality of postgraduate research studies and supports research degree students, providing leadership in framing policy for postgraduate development in partnership with the faculties. It provides a contact point for postgraduate research degree students and supports them in their studies.

The University Graduate School is located in Building B2, Blackfriars, City campus.

telephone (02) 9514 1336
email ugs@uts.edu.au
www.gradschool.uts.edu.au

SUPPORT FOR STUDENT LEARNING

Student Services Unit

To ensure student success, the University provides a range of professional services to support different aspects of student life and learning at UTS.

These services include:

- orientation and University transition programs
- student housing and assistance in finding private rental accommodation
- workshops and individual counselling to enhance effective learning
- assistance for students with disabilities and other special needs
- student loans and financial assistance
- health services
- personal counselling
- assistance with administrative problems or complaints
- assistance when extenuating circumstances impact on study
- help with getting a job
- campus interview program.
All these services are sensitive to the needs of students from diverse backgrounds and are available at City and Kuring-gai campuses with flexible hours for part-timers.

The Student Services Unit website offers a jobs database, 'where UTS graduates get jobs', virtual counselling and links to the 'student help' website:

www.uts.edu.au/div/ssu

Transition to university programs – Orientation 2001

UTS offers a free Study Success program of integrated lectures and activities before semester begins, to help new students manage the transition to university study. There are specially tailored programs for part-time and international students as well as for recent school leavers. Students are informed of academic expectations, the skills needed to be an independent learner, and learning strategies which can help them successfully manage the workload. They are also provided with valuable information about how the University and its faculties operate, and the services provided.

For more information, contact:
Student Services Unit
telephone (02) 9514 1177 (City)
or (02) 9514 5342 (Kuring-gai)

Careers Service

The Careers Service can help students make the link between various UTS courses and the careers they can lead to. The Careers Service also offers general career guidance, and assists with job placement for students seeking industry experience or permanent or casual employment. Contact the Careers Service on:

telephone (02) 9514 1471 (City campus)

www.uts.edu.au/div/cas

Health

The Health Service offers a bulk billing practice to students at two locations. For appointments, contact:

telephone (02) 9514 1166 (City campus)
or (02) 9514 5342 (Kuring-gai campus)

Housing

University Housing provides assistance to students in locating private accommodation. A limited amount of UTS-owned housing is also available.

telephone (02) 9514 1509 (listings)
or (02) 9514 1199 (UTS accommodation)

Special Needs Service

The University has in place a range of services and procedures to improve access for students with disabilities, ongoing illnesses and other special needs. Students who have disabilities or illnesses which may impact on their studies are encouraged to contact the Special Needs Service for a confidential discussion of the assistance available.

telephone (02) 9514 1177
TTY (02) 9514 1164
email special.needs@uts.edu.au

Financial Assistance

Financial Assistance staff assist students with personal financial matters and are the contact point for student loans. They can also advise on Youth Allowance, Austudy and other Centrelink benefits.

telephone (02) 9514 1177

Locations for Student Services

telephone (02) 9514 1177
TTY (02) 9414 1164
fax (02) 9514 1172
email student.services@uts.edu.au

www.uts.edu.au/div/ssu

City campus

Level 6, Building 1 (Tower Building)

- Counselling Service
- Health Service
- Special Needs and Financial Assistance Service

Level 3, Building 1 (Tower Building)

- Careers Service
- Housing Service

9 Broadway

- Housing Service
Kuring-gai campus
Level 5, Building K1
- Counselling Service
- Health Service

Computer laboratories
Computer laboratories are located throughout the University and are available for all students and staff to use. Details of locations and availability of the computer laboratories may be obtained from the Information Technology (ITD) Support Centre on:

telephone (02) 9514 2222

Student email accounts
UTS provides students with an email account, which gives all students access to email facilities via the web. To find out more about UTS Email, visit the website:

www.uts.edu.au/email/

Alternatively, pick up the brochure Your UTS Email Account available in all ITD General Purpose Laboratories and drop-in centres. If you have any problems activating your account or with the use of UTS Email, contact the IT Support Centre on:

telephone (02) 9514 2222

Computer training
In general, where computer training is necessary as part of a course that attracts HECS, it is provided as part of that course. Students can also consult the Computing Study Centre (see below).

STUDENT LEARNING CENTRES

Chemistry Learning Resources Centre
The Chemistry Learning Centre assists students in undergraduate courses in the faculties of Science; Nursing, Midwifery and Health; Engineering; and Business.
Room 211, Building 4
City campus
Rosemary Ward
telephone (02) 9514 1729
e-mail rosemary.ward@uts.edu.au

Computing Study Centre
The Computing Study Centre assists students in developing skills in the use of various standard computer packages.
Level 16, Building 1 (Tower Building)
City campus
John Colville, Director
telephone (02) 9514 1854
e-mail john.colville@uts.edu.au

English Language Study Skills Assistance (ELSSA) Centre
ELSSA Centre provides free English language and study skills courses for all UTS students completing their degree in English.
ELSSA Centre
Alex Barthel (Director)
Level 18, Building 1 (Tower Building)
City campus
telephone (02) 9514 2327
or
Room 522, Building K2
Kuring-gai campus
telephone (02) 9514 5160
e-mail elssa.centre@uts.edu.au
www.uts.edu.au/div/elssa/

Jumbunna, Centre for Australian Indigenous Studies, Education and Research (CAISER)
Jumbunna CAISER is run by a predominantly Australian indigenous staff who provide specialist advice and a range of services to assist Aboriginal and Torres Strait Islander students.
Jumbunna CAISER
Level 17, Building 1 (Tower Building)
City campus
telephone (02) 9514 1902

Mathematics Study Centre
The Centre coordinates mathematics assistance across the University and is staffed by lecturers with expertise in mathematics and statistics.
Level 16, Building 1 (Tower Building)
City campus
Leigh Wood (Director)
telephone (02) 9514 2268
e-mail leigh.wood@uts.edu.au
Room 522, Building K2
Kuring-gai campus
telephone (02) 9514 5186
Physics Learning Centre
This is a drop-in centre for first-year physics students.
Level 11, Building 1 (Tower Building)
City campus
(with an adjoining computer laboratory)
Peter Logan
telephone (02) 9514 2194
email peter.logan@uts.edu.au

EQUITY AND DIVERSITY
UTS is committed to equal opportunity and the right of all staff and students to work, study and access services in a university environment which is safe, equitable, free from discrimination and harassment, and in which everybody is respected and treated fairly. The University also aims to assist members of under-represented groups overcome past or present discrimination, and to provide a supportive and open organisational culture in which all students and staff are able to develop to their full potential.

UTS has a strong commitment to ensure that the diverse nature of the Australian society is reflected in all aspects of its employment and education. It is the policy of UTS to provide equal opportunity for all persons regardless of race, colour, descent, national or ethnic origin, ethno-religious background; sex; marital status, pregnancy; potential pregnancy; family responsibilities, disability, age; homosexuality; transgender status; political conviction; and religious belief.

The Equity & Diversity Unit provides a range of services for students and prospective students. These include coordination of the inpUTS Educational Access Scheme for students who have experienced long-term educational disadvantage; coordination of financial scholarships and awards for commencing low-income students; and the provision of confidential advice and assistance with the resolution of discrimination and harassment related grievances.

Equity & Diversity Unit
Level 17, Building 1 (Tower Building)
telephone (02) 9514 1084
email equity.diversity.unit@uts.edu.au
www.equity.uts.edu.au

OTHER SERVICES
Student Ombud
Enrolled or registered students with a complaint against decisions of University staff, or related to the University, may seek assistance from the Student Ombud.
All matters are treated in the strictest confidence and in accord with proper processes.
Room 402, Building 2
City campus
telephone (02) 9514 2575
email ombuds@uts.edu.au
www.uts.edu.au/oth/ombuds

Freedom of Information
Under the Freedom of Information Act 1989 (NSW), individuals may apply for access to information held by the University.
Personal information may also be accessed under the Privacy and Personal Information Act 1998. In addition to the requirements of the Act, UTS has a number of policies which govern the collection and use of private information.

David Clarke
FOI Officer
Level 4A, Building 1 (Tower Building)
City campus
telephone (02) 9514 1240
email david.clarke@uts.edu.au

Student complaints
UTS is committed to providing a learning and working environment in which complaints are responded to promptly and with minimum distress and maximum protection to all parties.
All students and staff have a responsibility to contribute to the achievement of a productive, safe and equitable study and work environment at UTS. The University’s procedures for handling student complaints are based on confidentiality, impartiality, procedural fairness, protection from victimisation and prompt resolution.

Students should first raise their complaint directly with the person concerned where possible or appropriate, or with an appropriate person in the faculty or administrative unit concerned. To seek advice and assistance in lodging a complaint, contact the Student Services Unit or the Equity & Diversity Unit.

The Policy on Handling Student Complaints is published on the Rules, Policies and Procedures website at:
CAMPUS LIFE

UTS Union
The UTS Union is the community centre for the University. It provides food and drink services, lounges and recreational areas, comprehensive social and cultural programs, sports facilities and programs, stationery shops, a newsagency and resource centres. Off campus the Union provides access to a ski lodge, rowing club, sailing club, athletics club and basketball stadium.

Union Office (City campus)
telephone (02) 9514 1444
e-mail Debbie.Anderson@uts.union.uts.edu.au

City campus at Haymarket
telephone (02) 9514 3369

Kuring-gai campus
telephone (02) 9514 5011

Union Sports Centre
The centre contains multi-purpose spaces, squash courts, weights rooms, circuit training room and outdoor basketball court.

Lower ground floor, Building 4
City campus
telephone (02) 9514 2444

UTS Rowing Club
Dobroyd Parade, Haberfield
telephone (02) 9797 9523

Child care
UTS Child Care Inc. (UTSCC) coordinates all child care services at UTS. Child care is available from 8.00 a.m. to 10.00 p.m. at both City and Kuring-gai campuses.

Students and staff of UTS receive priority access and a small rebate on fees. Normal Government assistance is available to low- and middle-income families.

telephone (02) 9514 1456 (City)
or (02) 9514 2960 (Blackfriars)
or (02) 9514 5105 (Kuring-gai)

Co-op Bookshop
The Co-op Bookshop stocks the books on students' reading lists, and a variety of general titles and computer software. It has branches at the City and Kuring-gai campuses, and, at the start of semester, at Haymarket and Gore Hill (St Leonards campus).

City campus
telephone (02) 9212 3078
e-mail uts@mail.coop-bookshop.com.au

Kuring-gai campus
telephone (02) 9514 5318
e-mail kuringai@mail.coop-bookshop.com.au
www.coop-bookshop.com.au

Students' Association
The Students' Association (SA) is the elected representative body of students at UTS: it is an organisation run by students for students. UTS students have the right to stand for election of the SA and to vote in the annual elections. The SA also employs caseworkers to provide advocacy for students on academic and non-academic matters.

City campus office
Level 3, Building 1 (Tower Building)
telephone (02) 9514 1155

Kuring-gai campus office
Level 4, Building 2
telephone (02) 9514 5237

Radio Station 2SER-FM (107.3 FM)
2SER-FM is a community radio station run by hundreds of volunteers who are involved in producing and presenting a smorgasbord of programs focusing on education, information, public affairs and specialist music. Students interested in community media, are welcome to visit the 2SER studios or to attend a volunteer recruitment meeting. Contact the station for more details.

Level 26, Building 1 (Tower Building)
City campus
telephone (02) 9514 9514

UTS Gallery and Art Collection
The UTS Gallery is a dedicated public gallery on the City campus. The UTS Gallery presents regularly changing exhibitions of art and design from local, interstate and international sources.

The UTS Art Collection comprises a diverse range of paintings, prints, photographs and sculptures which are displayed throughout the University and, at times, in the UTS Gallery.

Level 4, Building 6 (Peter Johnson Building)
City campus
telephone (02) 9514 1284
fax (02) 9514 1228
e-mail uts.gallery@uts.edu.au
www.uts.gallery.uts.edu.au
PRINCIPAL DATES FOR 2001

January
1. New Year’s Day – public holiday
2. Summer session classes recommence (to 2 February)
3. UTS Advisory Day
4. Closing date for change of preference to the Universities Admissions Centre (UAC), by mail or in person
5. Closing date (midnight) for change of preference to UAC, via UAC Infoline and website (www.uac.edu.au)
6. Formal supplementary examinations for 2000 Spring semester students
7. Last day to submit appeal against exclusion from Spring 2000
8. Final examination timetable for Summer session available
9. Main round of offers to UAC applicants
10. Enrolment of new main round UAC undergraduate students at City campus
11. Closing date for change of preference to UAC for final round offers
12. Australia Day – public holiday
13. Public School holidays end

February
1. Final round of offers to UAC applicants
2. Summer session ends for subjects with formal exams
3. Last day to lodge a Stage 2 appeal against assessment grade for Spring semester 2000
4. Formal examinations for Summer session
5–16. Enrolment of new students at City campus
6. Third round closing date for postgraduate applications for Autumn semester 2001 (except Faculty of Business – closing date 16 February)
7. Faculty of Business third round closing date for postgraduate applications for Autumn semester 2001
8. Orientation week for new students commences (to 2 March)
9. Release of results for Summer session
10. Union ‘O’ Day – Clubs and activities day
11. Late enrolment day

March
5. Autumn semester classes commence
6. Late enrolment day
7. Last day to lodge a Stage 2 appeal against assessment grade for Summer session
8. Last day to enrol in a course or add subjects
9. Last day to pay upfront HECS or postgraduate course fees for Autumn semester 2001
10. Applications open for Vice-Chancellor’s Postgraduate Research Student Conference Fund (for conferences July – December)
11. Last day to apply to graduate in Spring ceremonies 2001
12. Last day to withdraw from a course or subject without financial penalty
13. HECS census date

April
1. Last day to withdraw from a course or subject without academic penalty
2. 12–30 Public School holidays
3. Good Friday – public holiday
4. Easter Monday – public holiday
5. Vice-Chancellors’ Week (non-teaching)
6. Graduation ceremonies (Kuring-gai campus)
7. Anzac Day – public holiday

May
1. Applications open for undergraduate courses, where applicable, and postgraduate courses for Spring semester 2001
2. Graduation ceremonies (City campus)
3. Provisional examination timetable available
4. Closing date for applications for Vice-Chancellor’s Postgraduate Research Student Conference Fund (for conferences July – December)
5. Closing date for undergraduate and first round postgraduate applications for Spring semester 2001
6. Closing date for applications for Postgraduate Equity Scholarships for Spring semester 2001
June
1 Final examination timetable available
11 Queen's Birthday – public holiday
15 Last teaching day of Autumn semester
16 Formal examinations commence (to 6 July)
29 Second round closing date for postgraduate applications for Spring semester 2001

July
2–6 Vice-Chancellors' Week (non-teaching)
6–23 Public School holidays
16–20 Formal alternative examination period for Autumn semester students
18–26 Enrolment of new students for Spring semester
25 Release of Autumn semester examination results
26 Formal supplementary examinations for Autumn semester students
30 Spring semester classes commence

August
1 Applications available for undergraduate and postgraduate courses for Autumn semester 2002
1 Applications available for Postgraduate Research Scholarships
3 Last day to withdraw from full-year subjects without academic penalty
3 Last day to lodge a Stage 2 appeal against assessment grade for Autumn semester 2001
10 Last day to enrol in a course or add subjects
17 Last day to pay upfront HECS or postgraduate course fees for Spring semester 2001
30 Last day to apply to graduate in Autumn ceremonies 2002
31 Last day to withdraw from a course or subject without financial penalty
31 HECS census date

September
7 Last day to withdraw from a course or subject without academic penalty
7 Applications open for Vice-Chancellor's Postgraduate Research Student Conference Fund (for conferences January – June 2002)
24–28 Vice-Chancellors' Week (non-teaching)
24–28 Graduation ceremonies (City campus)
28 Applications open for UTS Academic Internships
28 Closing date for undergraduate applications via UAC (without late fee)
28 Closing date for inpUTS Educational Access Scheme via UAC
28 Public School holidays commence

October
1 Labour Day – public holiday
5 Provisional examination timetable available
15 Public School holidays end
26 Final examination timetable available
31 Closing date for undergraduate applications via UAC (with late fee)
31 First round closing date for postgraduate applications for Autumn semester 2002
31 Closing date for Australian Postgraduate Awards, the R L Werner and University Doctoral Scholarships
31 Closing date for applications for Postgraduate Equity Scholarships for Summer session

November
9 Last teaching day of Spring semester
10–30 Formal examination period
29 Closing date for applications for Vice-Chancellor's Postgraduate Research Student Conference Fund (for conferences January – June 2002)
30 Closing date for applications for UTS Academic Internships
30 Closing date for undergraduate applications direct to UTS (without late fee)
December

3 Summer session commences
 (to 1 February 2002)

7 Closing date for undergraduate
 applications via UAC (with late fee)

10–14 Formal alternative examination period
 for Spring semester students

14 Last day for students enrolled in
 Summer session to apply to graduate in
 Autumn ceremonies 2002

19 Release of Spring semester examination
 results

20 Public School holidays commence
 (to 28 January 2002)

25 Christmas Day – public holiday

26 Boxing Day – public holiday

1 HECS/Postgraduate course fees will apply after the
 HECS census dates (31 March and August or last working
 day before). Contact the relevant Faculty Office for further
 information about enrolment and withdrawal deadlines
 for flexible delivery subjects.

Note: Information is correct as at 9 August 2000. The
University reserves the right to vary any information
described in Principal Dates for 2001 without notice.
MESSAGE FROM THE DEAN

If you are a new student, I welcome you to the Faculty and wish you a challenging, inspiring and rewarding stay with us as you undertake your studies. The graduates you will join in a few years have a very high reputation with Australian industry and the professions for their knowledge, skills and ethical approach to the practice of science.

The Faculty of Science provides education to students from a diversity of backgrounds and offers study patterns that are flexible and adaptable. The Faculty offers a wide range of undergraduate degree programs, Master's and PhD programs by research, and several postgraduate coursework programs. In addition to courses in key science discipline areas, the combined degrees offered by the Faculty are designed to equip graduates with the ability to make the necessary links between science and other professions.

The Faculty is committed to excellence in teaching, scholarship and research, and will continue to provide a supportive learning environment for students at all levels. In recent years the Faculty's strength in research has enabled it to improve significantly the quality of its laboratories and equipment, to the obvious benefit of its students.

This handbook will provide you with the relevant course information you need to complete your studies as smoothly as possible. I wish you an enjoyable and productive year and hope that you find professional and personal satisfaction during your time at UTS.

Professor Tony Moon
Dean

Its vision is to become a leading science faculty, recognised nationally and internationally for the quality of its teaching, research and community service programs. The Faculty has developed its reputation by producing Bachelor's and higher degree graduates who meet the needs of Australian industry and the professions, and by establishing strong links with Australian industry through cooperative education, research and development.

FACULTY MISSION STATEMENT

The purpose of the Faculty is to provide the highest quality graduate and postgraduate professional education and training to meet the needs of Australian industry and science; and to engage in research and allied professional scientific activities to bring economic and social benefits to the Australian and international community.

FACULTY OF SCIENCE

The Faculty of Science has established a sound tradition of providing quality teaching, research and consultancy. Graduates are renowned for their adaptability and work readiness.

The Faculty consists of several departments in biological and biomedical sciences as well as in physical, chemical, earth, and environmental sciences. The Departments of Applied Physics, Health Sciences and Chemistry, Materials and Forensic Science as well as the
main Faculty Office are located at the City campus. The St Leonards campus houses the Department of Cell and Molecular Biology and a Dean’s office. The Department of Health Sciences works on both campuses while operating the UTS College of Traditional Chinese Medicine on Harris Street and running the Acupuncture Clinic in Building 4. The Department of Environmental Sciences is located on both campuses.

The Faculty provides high quality professional education in the physical, chemical, earth, environmental, biological and biomedical sciences, and engages in high-level research, scholarship and community service activities in support of the UTS mission, with a view to bringing social and economic benefit to the Australian community.

The Faculty offers a number of graduate and Honours degree programs developed to produce graduates for professional and vocational practice with an ability to continue their studies by research and to contribute to the knowledge base of their scientific discipline. Bachelor of Science and Honours programs are offered in applied chemistry, applied chemistry/forensic science, applied physics, biomedical science, biotechnology, medical science, environmental biology, environmental and urban horticulture, earth and environmental science with honours in either geoscience or environmental science. A Bachelor of Health Science and Honours program is offered in Traditional Chinese Medicine. Professional Experience is offered as an optional and additional component of all of the Bachelor of Science degree courses and leads to the award of a Diploma in Scientific Practice.

The Faculty is involved in the teaching of science to other faculties, including Engineering; and Nursing, Midwifery and Health. The Faculty is also involved in offering the following joint undergraduate degree programs:

- The Bachelor of Science/Bachelor of Laws degree course is offered in conjunction with the Faculty of Law. In order to qualify for separate awards in science and law, students are required to select an area of specialisation in science so that they can proceed to more advanced studies and thereby obtain recognition in relevant professional fields. Graduates from the course will be qualified for professional practice as either scientists or lawyers and especially in areas where a knowledge of both disciplines is desirable.

- The Bachelor of Medical Science/Bachelor of Laws double degree course, introduced in 1998, is similar in structure to the BSc LLB course but with a specialisation in medical science. Graduates will qualify for professional practice in either field but may expect to be in most demand in those areas of law in which a knowledge of medical science is a particular advantage or, conversely, in areas of science such as the biotechnology or pharmaceutical industries where a knowledge of the law has special value.

- The combined degrees Bachelor of Science/Bachelor of Arts in International Studies and Bachelor of Medical Science/Bachelor of Arts in International Studies, provides students specialising in science and medical science with additional practical skills, in particular those that increase awareness of their international contexts through providing the opportunity to acquire knowledge and understanding of a language and culture other than English. Students are required to select an area of specialisation in science and a region or country of specialisation within the International Studies program. The length of both degrees is five years full time which includes one year of In-country Study. Graduates may work as professionals in their area of scientific expertise particularly in specialist positions where an understanding of a particular culture may be highly desirable.

- The combined degree Bachelor of Health Science in Traditional Chinese Medicine/ Bachelor of Arts in International Studies provides acupuncture and Chinese herbal medicine students with greater exposure to, and understanding of, China’s culture and a working knowledge of Chinese. The program will make it easier for acupuncture graduates to practice outside Australia.

- The combined degree Bachelor of Science or Medical Science/Bachelor of Engineering integrates the theory and application of science and engineering to produce well-rounded graduates. In five years of full-time study, students choose from one of the Engineering majors and from one of the Science Programs. Depending on the combinations chosen, graduates are qualified to work in professional practice as well as in research and development.
• The Bachelor of Science/Bachelor of Business requires completion of Bachelor of Business core subjects, and subjects in one selected major with an equal subject load from one of the Science programs over four years of full-time study. Graduates may work as professional scientists or as business professionals. Career areas include management, marketing, finance, accounting or economics in enterprises in which high-level scientific expertise is desirable; the program also provides business expertise for scientists who wish to be administrators in research or other scientific institutions. The Bachelor of Medical Science/Bachelor of Business is similar in structure to the Bachelor of Science/Bachelor of Business with the science specialisation in medical science.

In the postgraduate area, the Faculty offers PhD and Master's degrees (by thesis), Master's programs (by coursework), a Graduate Diploma and a Graduate Certificate. Prospective students should discuss possible topics of research with the relevant Associate Dean or Head of the appropriate department in the first instance. The research programs may be carried out on either a full-time or a part-time basis and it is possible for part-time students to undertake a portion of their research at a site external to UTS, provided appropriate supervisory arrangements can be made. Details of current research in progress can be obtained from the office of the Associate Dean (Research). The Faculty has strong links with industry. Staff members maintain contact with industry by undertaking appropriate research and consulting activities.

In the development of all of the above programs the Faculty is assisted by appropriate advisory committees with members drawn from the wider community. The courses are regularly reviewed to ensure currency and relevance to industrial and commercial practice. The Faculty has strong links with industry. Staff members maintain contact with industry by undertaking appropriate research and consulting activities.

For the Bachelor of Medical Science and all Bachelor of Science degree courses students have the option to spend a further 12 months working in a relevant industry. This leads to an additional award, a Diploma in Scientific Practice. The Faculty provides assistance to students in finding these professional experience positions. Part-time students may combine the Diploma with their normal work if it is relevant to their degree.

Most programs are available on either a full-time or part-time basis or a combination of both these attendance patterns.

UNITS WITHIN THE FACULTY

Much of the Faculty's research is focused in the activities of several research centres, institutes and units. The Faculty also runs the UTS College of Traditional Chinese Medicine and administers two clinics. Details of the centres, institutes and the UTS College of Traditional Chinese Medicine can be found on the following pages. The Units in the Faculty are listed below.

Coastal Resource Management Unit

The Coastal Resource Management Unit is an interfaculty network of education, research and consultancy teams within the University. The Faculty wins a substantial part of the competitive grants awarded to the University and is a major contributor in two Cooperative Research Centres, namely Aquaculture, and the Australian Centre for Renewable Energy. Much of the Faculty's research focuses on the activities of its research centres and units, including the Centre for Ecotoxicology (run jointly with the Environment Protection Authority), the Centre for Materials Technology, the National Centre for Groundwater Management, and the Centre for Biomedical Technology. This concentration of research has enabled the Faculty to improve significantly the quality of its major equipment in recent years, to the obvious benefit of its students.
The Unit aims to offer interdisciplinary professional courses and conduct relevant research in the coastal zone for industry, government and the community, identify problem areas and solutions, and enhance the community awareness of the coastal zone and its problems. These developments, solutions and expertise will be exported to neighbouring countries in the Pacific region and other collaborative links will be developed in North America and Europe.

Through the University the Unit is linked with several overseas and national universities. These linkages are expanding. Students may complete work at those institutions and gain credit.

Immunobiology Unit

The Immunobiology Unit is a multidisciplinary research laboratory established in 1989 and located within the Department of Cell and Molecular Biology. The research undertaken in the Unit includes fundamental and applied studies of the immune system in both mammalian and non-mammalian models. The Unit pursues active research and provides high-quality postgraduate training programs in the fields of antibody engineering, tumour targeting, vaccine development, immunophylogeny and toxicology employing advanced techniques in molecular biology and protein characterisation. The research is supported by state-of-the-art equipment including automated gene sequencers, analytical and preparative HPLC, peptide sequencer, mass spectrometer, flow cytometer and biosensor. Research projects are supported by grants from external agencies such as ARC and by commercial contracts with industry partners. In collaboration with colleagues at the University of Tasmania (Launceston), the Unit is a key participating laboratory in the Cooperative Research Centre for Aquaculture. A major objective of this collaboration is the development of new strategies for mass vaccination of farmed fish.

Molecular Parasitology Unit

The Molecular Parasitology Unit was established in 1991 as a laboratory investigating evolution, taxonomy, differentiation and diagnosis of parasites based on molecular methods. Its research objective is to generate and compare gene sequences. The Unit has an international reputation in this area, and trains visiting overseas researchers and students, in addition to providing high-quality postgraduate training in molecular biology research to local scientists and students. The Unit is multidisciplinary, relying on molecular techniques developed, used and taught in the Department of Cell and Molecular Biology, and mathematical analyses and computing practices undertaken in the Department of Environmental Sciences.

In May 1997, the Unit was recognised as a Key University Research Strength when more staff from the Department of Cell and Molecular Biology and the Department of Chemistry, Materials and Forensic Science added their research skills to the Unit to become a major Australian focus for molecular parasitology research and teaching.

Molecular Genetics Unit

The Molecular Genetics Unit was established in the Department of Cell and Molecular Biology as a focus for basic and applied molecular biology research. Research areas include X chromosome inactivation, gene therapy (diabetes), and multidrug resistance (prokaryotic and eukaryotic).

Health Psychology Unit

The Health Psychology Unit (formerly the Psycho-Oncology Unit) was established in 1973 within the Department of Cell and Molecular Biology. It now carries out research into the effects of emotional states on cancer recurrence in early and late stage breast cancer using cognitive behavioural therapy in groups. Other current projects include working with palliative care services to assist patients and families cope with end of life issues and a community service project to assist 'at risk' adolescents to manage their anxiety and depression. The Unit is funded through donations by the community and business sectors.

UTS College of Traditional Chinese Medicine

The UTS College of Acupuncture was established in 1994, founded upon the experience and educational expertise of Acupuncture Colleges (Australia). With 25 years' experience, Acupuncture Colleges (Australia) previously offered diploma and Bachelor's programs accredited by the New South Wales Ministry of Education. The decision to transfer acupuncture education to the University was in accord with the growth in acceptance and use of acupuncture in Australia, and the need to provide a standard of education at a level expected by the community.
In 1995, the College was incorporated into the Faculty of Science as part of the Department of Health Sciences. In 1997, the College of Acupuncture was renamed the UTS College of Traditional Chinese Medicine, offering undergraduate programs in both acupuncture/moxibustion and Chinese herbal medicine, the two major strands of Traditional Chinese Medicine (TCM).

The Faculty of Science offers an undergraduate course in Traditional Chinese Medicine. Facilities do not yet exist for offering these courses on a part-time basis. In addition to the undergraduate degree, the Faculty offers a Master of Health Science in Traditional Chinese Medicine (by coursework) that provides graduate education in either acupuncture or Chinese herbal medicine to qualified applicants who wish to extend their knowledge to incorporate another branch of Chinese medicine into their clinical practice. Studies leading to a Master of Science by research are also available.

The Faculty administers two clinics, one offering acupuncture services and the other Chinese herbal services, to the community. These clinics also play a major role in the clinical education of Traditional Chinese Medicine. One clinic operates in Building 4 on Harris Street (acupuncture), while the other operates from level 4, 645 Harris Street (Chinese herbalism).

In the development of all programs, the Faculty is assisted by advisory committees comprised of members of the education, health and acupuncture professions. The courses and specific subjects are also under ongoing review and development to ensure their relevance to traditional Chinese medical practice.

The Faculty benefits from close links with the Universities of Traditional Medicine in China and the TCM Unit at the Victoria University of Technology. Through a memorandum of understanding with the Guangzhou University of Traditional Chinese Medicine, undergraduate students are offered an optional one-month hospital internship in China which carries credits towards the clinical component of the degree programs.

Students entering either the Bachelor of Health Science in Traditional Chinese Medicine are eligible to apply for places in the combined degree: Bachelor of Health Science in Traditional Chinese Medicine/Bachelor of Arts in International Studies (Mandarin major). Academically selected students enter this program at the beginning of their third year. The combined program extends the course length to five-and-a-half years, one year of which is spent in China studying language, culture and TCM.

Students of the UTS College of TCM are strongly recommended to read the Code of Conduct for Students of the UTS College of Traditional Chinese Medicine under the section on Information for Students in this handbook.

All course inquiries should be directed to:

Mr Bob Hayes
UTS College of Traditional Chinese Medicine
4/645 Harris Street
Ultimo NSW 2007
telephone (02) 9514 2500

CENTRES

Centre for Biomedical Technology
The Centre for Biomedical Technology is a multifaculty and interdisciplinary research centre with a network of researchers from the faculties of Science; Engineering; Mathematical and Computing Sciences; Nursing, Midwifery and Health; and Business. It integrates the University's diverse expertise and resources to enhance the scientific and technological base for the biomedical technology industry, government and health care providers. It aims to facilitate and coordinate biomedical technology research, promote continuing education in the field, develop medical devices and provide consultation to the biomedical technology industry. Research programs are in the areas of cardiac electrophysiology and technology, medical imaging, biomathematical modelling, medical instrumentation, diabetes and the nursing-technology interface.

The Centre provides expertise and facilities for postgraduate training and research programs for postdoctoral researchers, academic staff and students. Staff conduct teaching in medical physics, bioengineering, biomathematics, clinical measurement and physiology. The Centre offers Master's (by thesis) and Doctoral degree programs.

Centre for Ecotoxicology
This Centre is a joint enterprise of UTS and the NSW Environment Protection Authority (EPA), and is located in the St Leonards campus of the University. The aims of the Centre are to promote education, research and information transfer in the field of ecotoxicology. This is a newly emerging discipline that has arisen as a result of the dependence of modern society on the use of chemicals. It is a meeting
point of chemistry and biology — the study of the impacts of chemicals and mixed effluents on communities in affected areas. The Centre coordinates research programs at Honours, Master’s and Doctoral levels. Teaching and research supervision involve a collaboration of both the UTS and EPA staff. The research work of the Centre involves consultation with industry and government in identifying areas in which investigation is needed on the impact of chemicals on native flora and fauna under Australian climatic and other environmental conditions. A foundation of scientific knowledge is required in order to ensure the development of appropriate environmental quality guidelines for this continent.

The University arm also offers an independent investigative and testing service for industry, through the UTS commercial company, Insearch.

Centre for Materials Technology

The Centre for Materials Technology offers expertise, education, instrumentation and innovation in the areas of materials science and materials engineering. Its aim is to offer to industry and government a collaborative and multidisciplinary approach to research, development, manufacturing and problem solving for the technological and economic benefit of Australian industry. The main functions of the Centre are to assist staff teams to obtain government and industrial research grants; make facilities and expertise available for industry and government; establish postgraduate research scholarships and research assistantships; coordinate multidisciplinary research investigations; undertake consultancy; assist relevant professional institutes to organise conferences and seminars; present regular postgraduate and post certificate courses; present in-house high-tech training courses for industry; present research and development seminars; and to develop products and devices of high quality. The Centre has projects in solar energy, daylighting and advanced glazing, thin films, biomaterials, carbon and resource chemistry, nanotechnology, ceramics, molecular and surface structure modelling, microstructural analysis, materials for optoelectronic devices and novel polymer applications.

Cooperative Research Centre for Aquaculture

The Cooperative Research Centre for Aquaculture commenced operating early in 1994 and includes participants from six universities (including UTS), seven other research institutions and a number of commercial groups. The Federal Government has funded six of the research programs and UTS is involved in two of them, namely the Health Protection and Maintenance Program and the Production Efficiency and Environmental Management Program.

The Directorship of the Cooperative Research Centre is located at Broadway in the City campus. It is linked with the University through the Office of the Pro-Vice-Chancellor (Research), the Research Office and several units throughout the University, such as the Library, the External Relations Unit and the Faculty of Information Technology.

The CRC’s Health Protection and Maintenance Program has been redesigned and now comprises two major multi-institutional projects. One of these is led from the UTS Department of Cell and Molecular Biology, and also involves the University of Tasmania, the Tasmanian Department of Primary Industry and Fisheries, the Queensland Department of Primary Industries and the salmon industry. It is aimed at the development of novel generic technologies for fish vaccines.

The Production Efficiency and Environmental Management Program includes a large collaborative project between CSIRO, Australian Institute of Marine Science, James Cook and Queensland universities and UTS, as well as other research groups and several prawn farms. This project covers the analysis, management, effluent control and environmental impacts of ponds used for the intensive farming of prawns.

Cooperative Research Centre for Renewable Energy

The Cooperative Research Centre for Renewable Energy commenced operation in late 1996. It is incorporated in Western Australia. UTS is one of eight universities which are members of this CRC. The UTS participants include members of the Faculty of Engineering, the Department of Applied Physics and the Faculty of Design, Architecture and Building, and the Centre for Materials Technology. The CRC’s work ranges over many areas of renewable energy technology including solar cells, solar thermal systems and energy efficient technologies. The UTS contributions are predominantly in the area of energy efficiency including novel electric motors, energy efficient glazing, and new daylighting and lighting systems. There is also a
major contribution to the development and assessment of computer software for use in the design of energy efficient buildings.

The CRC will have a major impact on Australia’s contribution to technologies which will reduce greenhouse gas emissions and will open up a range of new industries which are anticipated to generate considerable income for the country, and a wide range of new employment opportunities. The UTS participants are constructing special systems for the accurate specification of building components as needed for complex computer models that address lighting and energy flows in buildings. There are strong links with companies in Sydney and Canberra.

National Centre for Groundwater Management

The National Centre for Groundwater Management is a joint enterprise between the Faculties of Science and Engineering, with the general aims of researching groundwater problems of strategic national importance, coordinating and developing postgraduate courses and continuing education programs, and liaising with industry.

The Centre is recognised by the Federal Government through the Land and Water Resources Research Development Corporation as a National Centre for research and consultancy training in groundwater and environmental applications.

In addition to PhD and MSc (research) degree programs in groundwater, the Centre offers two courses as a collaborative effort between the Faculty of Science and the Faculty of Engineering, namely, the Master of Science in Hydrogeology and Groundwater Management and the Graduate Diploma in Hydrogeology and Groundwater Management. There are flexible arrangements for each program: part-time, full-time and distance mode. Further details are given in the section on postgraduate courses.

For inquiries please contact:
Professor Michael Knight, Director
National Centre for Groundwater Management
room 1/1715
telephone (02) 9514 1984
fax (02) 9514 1985
email groundwater.management@uts.edu.au

INFORMATION FOR SCIENCE STUDENTS

Students in the Faculty of Science are strongly encouraged to read the handbook and the *UTS Calendar 2001* (particularly Chapter 2 General Information) for advice on student administration matters. The *UTS Calendar 2001*, the official information guide to UTS courses, rules and regulations, may be purchased from the Co-op Bookshop on the corner of Harris Street and Broadway. Copies are available for perusal at the UTS Library and at the Student Info & Admin Centres at Broadway (the foyer area, level 4 of the Tower Building, City campus) and Kuring-gai (Student Centre is on level 6, with an inquiry counter in the foyer area on level 5 of the Kuring-gai campus). Copies will also be available for viewing in each Department and Faculty Office at both the St Leonards and City campuses. The *UTS Calendar 2001* contains valuable information about the different services available to students, student admission requirements, enrolment, examinations, exclusion, progression, graduation, HECS, Austudy, Abstudy and other important matters. The *UTS Calendar 2001* is available online at: www.uts.edu.au/div/publications/cal/index.html

Environment, Health and Safety

Statement of aims

The University is committed to providing a safe and healthy workplace for students, staff and visitors and adopting a socially responsible approach towards protecting and sustaining the environment. It aims to be at the forefront of environment, health and safety practice in higher education.

To this end UTS will:

- prevent or control hazards that could result in personal injury or ill-health
- manage accidents and incidents that do occur in order to minimise harmful effects and to prevent recurrence
- promote safe and environmentally sound practices among the UTS community
- carry out its teaching, research and organisational activities in ways that protect the environment from harmful effects
- integrate environment, health and safety issues into its curricula and research as appropriate.
Personal responsibility

- Always remember that health and safety is everybody’s responsibility. Everyone is required to demonstrate a responsible attitude towards environmental, health and safety issues, and especially their impact on laboratory and field work.
- You must know how to report emergencies, accidents and incidents, and what action you should take to minimise or eliminate hazards.
- Never do anything without considering the risks of your actions in relation to the health and safety of others and, if you are intending to carry out any unfamiliar work which might pose a health, safety or environmental risk, always make sure you get appropriate information, advice or instruction before you start.

By following these simple rules, we shall make the Faculty of Science a safer and healthier place in which to study and work.

Workload guidelines

Full-time study within the Faculty of Science is expected to take up about the same amount of time as normal full-time work. Adequately prepared students studying effectively should expect to achieve satisfactory grades if they devote that amount of effort to their study. High grades may require more effort.

The Faculty:

- assumes that students devote approximately 100 minutes of study (including class time) each week of semester for each credit point attempted
- will ensure that, as far as possible, subjects or assignments of equal value require the same effort to achieve an equivalent outcome
- wishes to ensure that the timing of assignment submissions avoids pressuring students to devote too little time for satisfactory completion of a set task and attempts to adjust its assessment schedules and weightings to that end.

Subjects or assignments that cannot comply with the above principles should be explicitly identified at the commencement of semester.

Students are invited to point out circumstances in which these principles appear to be contravened. They should do this by writing to the Associate Dean (Coursework Programs) in the Faculty of Science.

Feedback from academic staff

It is Faculty policy that each student is entitled to feedback on his/her performance in an assignment or subject. No assignment mark or grade in the Faculty of Science should be given without additional feedback to the student, or a clear statement of how, when and where such feedback can be obtained.

Feedback should include at least one comment that is specific and sufficiently constructive to assist the student’s learning.

Statement of good practice and ethics in informal assessments

The ‘Statement of good practice and ethics in informal assessments’ is especially included here because the statement is taken very seriously by the Faculty and we encourage you, the student, to take it seriously too.

1. Aims of informal assessments

The term ‘informal assessment’ at UTS is defined as any assessment task other than a final examination that is administered by the Registrar and held in the official UTS Examination Weeks. Such assessment is in no other sense ‘informal’, especially as it contributes to the final assessment of the student in the subject.

Common forms of such assessment in the Faculty of Science include:

- practical reports
- computer programs
- essays and assignments (including reports of field work)
- tests and quizzes.

The setting and assessing of these tasks is aimed at promoting the following educational aims:

- furthering each student’s learning of the subject
- the acquisition of practical skills of laboratory and field work, and their documentation
- providing a means for staff to assess each student’s learning
- providing feedback to the student on progress in learning
- providing feedback to staff on the effectiveness of their teaching.

These aims will be subverted if students deceive staff about either the authenticity of results, or the authorship of their written work. Such behaviour is unethical, unprofessional
and completely unacceptable. Within the Western tradition of scholarship it is regarded as a serious academic offence.

It is recognised that students may sometimes find themselves in positions of extreme stress, for reasons of illness or misadventure, when malpractice may seem tempting. In such circumstances, however, other solutions are available, for example, seeking extra time for the submission of an assignment, accompanied by a medical certificate and/or other compelling explanation.

2. Unacceptable behaviour

Cheating in all its forms is unacceptable behaviour, and cannot be condoned. Cheating is a breach of the University Rules. Examples of cheating include:

2.1 Outright lying

This is never acceptable under any circumstances. Remember that lying, in science, includes inventing or falsifying results.

2.2 Plagiarism (copying)

The Oxford Dictionary defines plagiarism as the taking and using of another person’s thoughts, writings or inventions as one’s own. It includes unacknowledged quotations from other authors (books, journals, fellow students), or the copying out, perhaps with changes intended to disguise, of slabs of other people’s work. Don’t copy!

2.3 Collusion

Collusion is a fraudulent, secret understanding between two or more people to deceive, for example, in ‘fixing’ results, or doing one essay together and rewording it slightly to pass it off as two independent efforts.

2.4 Use of unauthorised material or equipment

Only equipment or material specified by the coordinating examiner may be used by a student during examinations, class tests and quizzes. Don’t write on rulers, calculator cases etc.!

Don’t cheat! Don’t even think of cheating!

3. Acceptable practices

3.1 Acknowledging sources – referencing

Whenever any other person’s work is used in the formulation of a written piece of work, it must be clearly indicated where the source of the information lies. The ‘other person’ could be a published or unpublished author, your lecturer, or one of your fellow students. Consequently the various guides to writing assignments that are held in the library (and any that your lecturers may provide). As you prepare the assignment, keep a detailed running record of your references in a notebook, and use a standard referencing system e.g. the Harvard system. Often references cannot be found again later.

3.2 Collaboration

In many cases, experiments and other means of data collection require students to cooperate. Some assignments may involve an idea-gathering stage followed by the writing-up phase.

While collaboration is normally encouraged in the developmental and experimental stages, final data analysis and interpretation and writing-up must be strictly your own effort (except in any exceptional circumstances that would have to be spelt out in detail by your lecturer).

4. Guide for good practice in written work

(Adapted from the statement prepared by the Faculty of Humanities and Social Sciences.)

4.1 Writing essays or assignments

Developing the ability to express yourself and argue clearly and in your own words is an important part of your university studies. Students are often confused, however, about just what is expected of them in written work: on the one hand, they are asked to present their own original ideas and arguments yet, on the other, they are told to use and take account of ideas, concepts and theories etc., in the material they read. In fact, an important element of a well-written piece of work is the way that a student meets these two, apparently conflicting, demands.

4.2 Originality

‘Being original’ in an essay, for instance, does not mean that you have to think up your own theories and concepts etc. Rather, it refers, in part, to the way you make use of – by critiquing, analysing, evaluating, synthesising, exemplifying, instancing – the ideas, theories, evidence etc. of other writers or of experimental or secondary data (e.g. census statistics) in constructing a coherent and plausible argument.

4.3 Arguing a case

Strictly speaking, an ‘argument’ refers to the reasoned advancement of a number of propositions leading to a particular conclusion. In an essay, it means that having read and considered the relevant literature, and on the basis
of this and any other appropriate evidence, you come to a conclusion about the question. In writing the essay, you set out the argument, or a series of arguments, to support that conclusion. In doing so, you draw on relevant ideas etc. from your reading, using them to support your argument. In cases where experimental data form the basis of the written work, your task may be to argue the case of how the data support or falsify a hypothesis.

Whether you are asked to argue, discuss, evaluate, compare and contrast, analyse, critique, consider etc. you are still being asked to mount a reasoned argument, in one form or another, leading to a conclusion based on an evaluation of all the evidence presented in your reading or provided by the data. For example, some essay questions may ask you to discuss or evaluate two conflicting arguments; in this case you have to decide - on the basis of the arguments themselves, any other evidence, and perhaps with the help of what some other writers say - which is the stronger or more adequate of the two and then argue that, giving evidence in support.

In a sense, you could think of writing an essay, assignment or report (some of which might require different formats) rather like designing and erecting a building. All the possible and available building materials (bricks, timber, concrete, steel, roofing etc.) would be equivalent to all the reading you have done or experimental data you have acquired. You certainly cannot just throw a stack of materials on to a block of land and expect them to form the building. Rather, you would need to, firstly, get a general idea of the sort of building that is appropriate by considering all the relevant factors (such as size and lie of the land, accommodation required and building restrictions); secondly, design a structure which takes all of these factors into account, selecting materials to hold up the structure and rejecting those which would not. In a similar way you need to think carefully about all the information you have and decide what is relevant and what you can generally conclude from it; then design or plan it into a coherent and cogent argument supporting that position.

The actual argument (the design) is your original contribution; the support for that argument comes from all the data, ideas and theories etc. you considered and the evidence used (the materials). Hence, it is the way you critically analyse, evaluate, select and synthesise information and use it in your argument which is important in the work. You do not create something totally new, nor do you merely throw together other people's ideas. Do not make the mistake of thinking that it is sufficient for you to merely compile into some coherent order other people's referenced ideas etc. - the bulk of the essay has to be your own work.

Re-marking of assessment items

Occasionally, you might not be clear about why you received a lower than expected mark, or you might feel that your work has not been fairly assessed.

Initially, you should discuss the matter with the marker or Coordinating Examiner (CE) concerned. Such discussions are part of routine academic procedure by which you receive advice, clarification and feedback about your performance.

Usually, the result of such a discussion will be either:

(i) the marker or CE will satisfy you that the mark is fair, or

(ii) you will satisfy the marker or CE that the item was not fairly marked. For example, the marker or CE might have misread a section of your paper. In such cases, the marker or CE will adjust the original mark accordingly.

Sometimes, however, agreement cannot be reached. For example, you might consider that the point of view of the marker or CE does not allow a disinterested assessment of a particular item. In these cases, you may request that the item be re-assessed by a second marker.

Code of Conduct for students of the UTS College of Traditional Chinese Medicine

Rule 2.4.2 of the University states: 'Whilst on the premises of the University or engaged in any activity related to their study at the University, students shall comply with any reasonable directive given to them by an officer of the University, and shall maintain an acceptable standard of conduct.'

Rule 2.4.4 of the University states: 'Where the Responsible Academic Officer, in consultation with the appropriate External Supervisor (if any), considers that a student so assessed is not ready to proceed with or is unsuitable to continue any part of the required professional experience on its scheduled commencement, the Responsible Academic Officer may defer or re-schedule the student's participation.'
The Responsible Academic Officer must advise the students, in writing, of the decision within three business days of making it.

Where the deferral of a student’s participation in any part of the required clinical education program would have the effect of preventing the student from continuing his/her course, the Responsible Academic Officer may refer the matter, with appropriate recommendation, to the Vice-Chancellor, who shall take such action as he/she deems appropriate.

The Vice-Chancellor must advise the student in writing of the decision within three business days of making it.

In addition to Rule 2.4.2. and 2.4.4, students are required to sign an agreement to observe the UTS College of Traditional Chinese Medicine Code of Clinical Conduct. This agreement is an undertaking to observe clinical policy and procedures, to maintain a duty of care to patients and fellow students, and to demonstrate an acceptable level of professional conduct.

Clinic dress

The high neck, shoulder buttoning, white, ‘dentist’-style jacket has been approved as the College’s regulation clinical dress for students. Students not dressed in the approved clinical style will not be permitted to attend the clinic session. Students are also required to wear one colour (white, black, brown, navy or grey) shoes in a ‘closed’ style, with a plain (not patterned) skirt or trousers in a conservative colour. Sneakers, runners, sports shoes and jeans are not acceptable clinic wear. All clothing must be clean.

All visible jewellery such as rings, earrings, face and body piercing rings or studs, bracelets and anklets must not be worn in the clinic. Long hair should be tied back neatly and must look clean and tidy. If nail polish is worn it should be clear or in a pale, natural shade and unchipped. If the disclosure has a bearing on the primary condition of the patient, or will be a significant factor in their response to treatment, it must be recorded. The patient should be advised of this requirement and given the option of seeking treatment elsewhere.

Patient records

If a student is asked to treat or to care for a patient, it is the student’s responsibility to familiarise themselves with the patient’s current condition and to check the patient’s clinical records. It is not the responsibility of the clinical manager or the supervising practitioner, although they may advise the student, at their own discretion, of any issues that they deem to be important.

Patients on medication and/or attending another practitioner

It is unethical to comment on any course of treatment or medication provided by another practitioner, or to advise in any manner on a course of treatment provided by another practitioner. All decisions regarding therapeutic choices belong to the patient and, even if a patient asks for advice on the appropriateness, or otherwise, of a therapeutic procedure, it is not acceptable for a student or student/practitioner to comment on matters outside their area of expertise.
Refusal of services

Practitioners and students have the right to refuse TCM services to patients who are drunk, under the influence of mind-altering drugs, abusive, or who exhibit antisocial behaviours. They also have the duty to refuse to carry out services that are illegal, or that they believe have the potential to endanger the health of the patient.

Practicums

Students during practicums in acupuncture, moxibustion, treatment techniques and massage will be required to carry out therapeutic and diagnostic procedures on fellow students. These practical sessions and workshops are under the supervision of a practitioner and all standard procedures and infection control measures must be observed. Students who decline to participate in giving and receiving treatments in practicums will be unable to complete these subjects and will therefore be unable to complete the course.

Student health and welfare

It is important that students, especially those entering a healing profession, should maintain good health and general well-being during their studies. The University has a Student Health Service that offers both health care and counselling services.

Students will be participating in the University's acupuncture or Chinese herbal medicine clinics as observers, assistants and, in their final year, as student practitioners. It is not appropriate for anyone with an infectious condition to work closely with patients. Should students be suffering from any temporary, communicable disease they must advise their clinical supervisor. Students who believe that they may be coming down with a cold, or some minor ailment, are advised to provide, and wear, a surgical mask to protect patients and fellow students from infection.

Students who are HIV positive or who have a hepatitis infection must be aware of their duty of care to staff, other students, and patients during clinical practice.

Advice from the NSW Department of Health

'The Department, bearing in mind its recommendations to the general community, would hope that all students were adequately immunised against poliomyelitis, diphtheria and tetanus in childhood. They should have had a booster of Sabine vaccine against poliomyelitis and a booster of Adult Diphtheria Tetanus Toxoid (ADT) at about 25 years of age. In addition, persons particularly involved in health services would be wise to have had a Mantoux test and, if seronegative, to have had BCG vaccination (for tuberculosis).'

The guidelines of the College in relation to hepatitis B and health care workers and students indicate the need for hepatitis B immunisation before contact with blood/body fluids and state that it is their obligation to know their current hepatitis B status.

Hepatitis B inoculation and Mantoux testing

Students entering the course are advised that, for their own protection, they should contact the Student Health Service at the City campus to arrange for a hepatitis B inoculation. These are available at a minimal cost to all acupuncture students. Immunisation against tetanus and tuberculosis is also recommended for your protection.

Information regarding Mantoux testing is also available through the Student Health Service. The Student Health Service can make individual or group arrangements for students to receive anti-hepatitis B virus and anti-tetanus vaccinations at any time. The Service is also able to offer advice on anti-tuberculosis vaccination.

Further information on these matters is available from Student Services Health Service, City campus: telephone (02) 9514 1166.

External clinical training

The College office keeps a list of practitioners who have been approved by the University and who are willing to allow students to attend their private clinics for pre-internship levels of clinical experience. Students should contact the practitioner they wish to attend before making application at the College office.

Student support centres in the Faculty of Science

Chemistry Learning Resources Centre

The Chemistry Learning Resources Centre is located in room 211 in Building 4 on the City campus. It has a range of resources to support the learning of chemistry by undergraduate students from the Faculties of Science, Nursing, Engineering and Business. Resources available in the Centre include microcomputers equipped with interactive software, videos, models and books. Most of the resources are for first-year students but there are also resources for students studying
chemistry in the later stages of their degree program. The Centre is open each weekday during semester. Further information may be obtained by visiting the website at:

or by contacting the coordinator:
Mrs Rosemary Ward
telephone (02) 9514 1729
fax (02) 9514 1460
email Rosemary.Ward@uts.edu.au

Physics Learning Centre
The Applied Physics Department operates a drop-in Physics Learning Centre on level 11 of the Tower Building on the City campus. Academic staff members are available at convenient times during the week to assist students with any problems they have associated with their first-year physics studies. In addition to the fixed schedule for personal tutorial assistance, there is a computer laboratory adjoining the Physics Learning Centre in which assistance can be obtained whenever the Physics Laboratory Office is open (normally 9.00 a.m. - 5.30 p.m.). There are also computer-aided learning programs and simulated textbook problems available for study by all first-year physics students. For further information contact:

Associate Professor Peter Logan
telephone (02) 9514 2194
fax (02) 9514 2219
email peter.logan@uts.edu.au

Bridging courses
Chemistry bridging course
For first-year Chemistry subjects in 2001 it is strongly recommended that students have either HSC chemistry or some other suitable prior knowledge.

UTS Bridging Chemistry is a bridging course designed to introduce students to the language, symbols, and basic concepts on which to build a meaningful study of chemistry at the tertiary level. The format of the course includes lectures and demonstrations, tutorial and problem sessions, self-paced learning, and laboratory experiences. Students in Science enrol for two weeks in February, and are supported by comprehensive learning materials. Further information can be obtained from:

Dr John Kalman
UTS Bridging Chemistry
Department of Chemistry Materials and Forensic Science
telephone (02) 9514 1728
e-mail John.Kalman@uts.edu.au

Insearch – Foundation Program
Insearch, which is wholly owned by UTS, offers a Foundation Studies Certificate in Science. The program is designed by staff of the Faculty of Science for students that are not currently qualified for direct university entry. While the University cannot guarantee admission to its degree programs (except for international students), students who have completed the program may apply for admission to the first year of most degree programs offered by the Faculty. For further information please contact:

The Registrar
Insearch
Ground Floor
10 Quay Street
Haymarket
telephone (02) 9281 8688
fax (02) 9281 9875
email courses@insearch.edu.au
www.insearch.edu.au

PRIZES AND SCHOLARSHIPS
Prizes and scholarships are awarded each year to students in the Faculty for meritorious work. These are made available through the generosity of private individuals and public organisations. They are offered each semester, annually or biennially. In rare instances, a prize or scholarship will be offered only when funds permit. Most prizes and scholarships are offered subject to the provision that they will be awarded only when a student has attained a mark or level of achievement considered by the Faculty Board to be sufficiently high. In addition to these official University prizes and scholarships it should be noted that there are available a number of scholarships and prizes from external sources for which University students can compete. Information about these scholarships and prizes appears from time to time on official noticeboards.
Please note that the conditions of the awards listed in this handbook are being reviewed and may be subject to change.

Faculty of Science Doctoral Research scholarships

A number of Doctoral Research scholarships may be offered to permanent residents by the Faculty for full-time study towards a PhD. The awards which may be up to the value of approximately $17,000 per annum over three years are available for study in the following areas:

- Medical and Biomedical Science
- Health Science and Health Science Technology
- Cell and Molecular Biology
- Environmental Sciences including Environmental Biology and Earth Science
- Analytical and Organic Chemistry
- Applied Physics including Image Processing and Analysis
- Forensic Science
- Materials Science and Technology
- Groundwater Management.

Information and application forms can be obtained from the Office of the Associate Dean (Research). The closing date is normally the end of November in the year prior to award.

Dean's Merit List for Academic Excellence

The Faculty wishes formally to recognise outstanding performance by its students through the awarding of prizes, medals and the grading of degrees. The Dean's Merit List endeavours to formally acknowledge academic achievement throughout a student's course of study. From the end of 1993 and each year thereafter, the Faculty publishes a list of students who have been placed on the Dean's Merit List. Each student also receives a certificate to this effect. To be listed a student would usually need to undertake a normal load, achieve an average mark for the year of 85 or above and be recommended by the relevant Examination Review Committee in December each year.

The Australian Acupuncture and Chinese Medicine Association Prize

This prize is awarded to the graduating student from the Bachelor of Health Science in Traditional Chinese Medicine course who obtains the highest weighted average mark for all subjects in the course. The prize is in the form of a suitably worded certificate, together with a book allowance to the value of $250 plus one year's complimentary membership of the Australian Acupuncture Association Limited.

The Australian Ceramic Society Award

The Australian Ceramic Society Scholarship was established in 1986 and is awarded annually to the student enrolled in the Materials Science degree course who, when undertaking a research project in the area of ceramics, obtains the highest average mark in Stages 1, 2, 3 and 4. The cash value of the scholarship is $400.

Australian Institute of Medical Scientists' Prize in Clinical Bacteriology

This prize was established in 1983 by the New South Wales Branch of the Australian Institute of Medical Laboratory Scientists. It is offered annually to students enrolled in the Biological and Biomedical Sciences courses and is awarded to the student who obtains the highest mark in the subject 91338 Clinical Bacteriology. The prize consists of a cash award of $200, a suitably worded bronze medallion, and one year’s membership of the Institute.

Australian Institute of Medical Scientists’ Prize in Haematology

This prize was established in 1983 by the New South Wales Branch of the Australian Institute of Medical Laboratory Scientists. It is offered annually to students enrolled in the Biological and Biomedical Sciences courses and is awarded to the student who obtains the highest mark in the subject 91358 Haematology 2. The prize consists of a cash award of $200, a suitably worded bronze medallion, and one year’s membership of the Institute.

Australian Institute of Physics Prize

The NSW Branch of the Australian Institute of Physics has made available an annual award to a student in the fourth year of the Physics degree who obtains the best results in completing the final stage of the course. The prize is a cash award of $200 plus one year’s free membership of the Australian Institute of Physics.

Australian Society for Parasitology Prize

This prize, new in 2001, is awarded to the student enrolled in an undergraduate degree at the University who achieves the highest
mark for the subject 91352 Eukaryotic Microbiology, provided that the grade obtained is not lower than Distinction. The prize is in the form of a suitably worded certificate and a cash award of $400.

Biotechnology Prize
This prize was established in 2000 and is awarded annually to the graduating student from the Biotechnology degree course who achieves the highest weighted average mark in 91314 Microbiology 1, 91330 Microbiology 2, Applied and Environmental Microbiology and 91369 Biobusiness and Environmental Biotechnology, provided that the weighted average mark is at distinction level or higher. The prize consists of a suitably worded certificate and a cash award of $250.

Cathay Herbal Laboratories Prize
This prize is awarded annually to the graduating student from the Bachelor of Health Science in Traditional Chinese Medicine course who obtains the highest aggregate mark in the final-year clinical subjects. The prize will be in the form of a suitably worded certificate, together with Cathay Herbal Laboratories products such as textbooks, acupuncture supplies, herbal medicines and educational services, to the value of $1,000.

Chemistry Department Prize
This prize was established in 1986. It is awarded annually to the student enrolled in the Applied Chemistry degree course who, having completed Stage 2 of the course, obtains the best performance in the Stage 2 chemistry subjects. The prize is valued at $100.

CHINAHERB Prize
This prize is awarded to the graduating student from the Bachelor of Health Science in Traditional Chinese Medicine course who obtains the highest weighted average mark for TCM subjects in the year. The prize is in the form of a suitably worded certificate, together with a $200 cash prize and a $300 credit account with CHINAHERB.

Colin Field Prize
This prize was established in 1989 by Emeritus Professor Colin Field, former Dean of the Faculty of Life Sciences and Head of the School of Biological and Biomedical Sciences. The prize is awarded annually to the Biomedical Science, Environmental Biology or Biotechnology student who obtains the highest overall average mark from all subjects undertaken in Stages 1 and 2. The prize has a cash value of $200.

CSL (Commonwealth Serum Laboratories) Prize
This prize was established in 1990. It is awarded to the graduating student from the Biological and Biomedical Sciences degrees who attains the highest aggregate mark in the subject 91340 Transfusion Science, with a mark at distinction level or higher. The prize has a cash value of $200.

Department of Land and Water Conservation Prize
This prize was first established as the Department of Water Resources Prize in 1990. It is awarded annually to a student enrolled in the Biological and Biomedical Sciences courses who obtains the highest average mark in the subjects 91121 Aquatic Ecology, 91119 Terrestrial Ecosystems, and 91120 Mapping and Remote Sensing, provided that the average mark is of distinction grade. The prize has a cash value of $250.

DFC Thompson Memorial Prize
This prize is awarded annually to the student who, upon completion of Stage 5 in the Applied Chemistry degree course, obtains the highest weighted average mark for subjects in Stages 3, 4 and 5 of the course. The prize consists of a suitably worded certificate, together with a cash prize of $1,000.

Hampson Sugerman Macquarie Prize in Pathology
This prize was established in 1982 by Dr David Sugerman. The prize is awarded annually to the student enrolled in the Biomedical Science degree course who obtains the highest aggregate in the subjects 91354 Anatomical Pathology, 91351 Immunology 1 and 91355 Haematology 1, provided that the student reaching the highest aggregate has an average mark of not less than the standard of credit. The prize consists of a cash award of $375 and a medal.

The Environmental Biology Prize
This prize was established anonymously in 1984. The prize has a cash value of $250 and is awarded to the student enrolled in the Bachelor of Science in Environmental Biology degree course who obtains the highest average mark in Stages 3 to 6 of the degree course.
Foseco Prize in Materials Science
This prize was established in 1982 by Foseco Pty Ltd as an incentive to students engaged in studies in the field of Materials Science. The prize is offered annually to students enrolled in the Materials Science degree course and is awarded to the student who achieves the highest aggregate mark in the subject 67407 Physical Properties of Materials. The prize consists of a cash award of $200.

Francis E Feledy Memorial Prize
This award was established by the staff of the British Motor Corporation as a memorial to the late Francis E Feledy for his work as an architect and engineer with that company. The award was first made available in 1966 through the then Department of Technical Education. In 1974, the then Institute became the Trustee of the fund. At the discretion of the Trustee, the prize is awarded annually to an outstanding part-time student entering his or her final year in each of the Faculties of Engineering; Science; and Design, Architecture and Building. The prize is valued at $600 for each award.

Hatrick-Jotun Prize
This prize (formerly the Hatrick Fiberfil Prize in Design and Materials Selection) was re-established in 1986. It is awarded to the student in the Materials Science degree course who achieves the best performance in the subject 67608 Composites. The prize has a cash value of $250.

Hatrick Reichhold Prize in Polymer Technology
This prize was established in 1984 by A C Hatrick Chemicals Pty Ltd as an incentive to students studying in the field of polymers and resin technology. The prize is awarded to the student who achieves the best performance in the subject 67409 Polymer Technology. The cash value of the prize is $250.

The Institute of Materials Engineering Australasia Prize
This prize, established in 1983, is offered annually to students in the Materials Science degree course, and will be awarded to the student who achieves the highest mark in the subject 67304 Physical Metallurgy. The prize consists of a cash award of $200 and one year's membership of the Institute of Metals and Materials Australasia.

Leonard J Lawler Prize
This prize is presented by the Australian Institute of Medical Scientists in dedication to the past services of Mr L J Lawler to the New South Wales Branch of the AIMS. Over a long period Mr Lawler has shown great interest in the education of clinical chemists. The prize has been awarded annually since 1976. It is awarded to the student enrolled in the Biomedical Science course who attains the best aggregate in the subjects 91344 Clinical Biochemistry I and 91345 Clinical Biochemistry II. The prize consists of a cash award of $200, a suitably worded bronze medallion and one year's membership of the Institute.

Loctite Australia Prize in Adhesion Science
This prize was established in 1983. It is awarded annually to the student enrolled in the Materials Science degree course who achieves the best performance in the subject 67508 Surface Chemistry of Materials. The prize has a cash value of $150.

Hampson Sugerman Macquarie Prize in Biomedical Science
This prize was established in 1984 by Macquarie Pathology Services Pty Ltd. The prize is awarded annually to the student who obtains the highest average mark in Stages 3–6 of the degree course leading to the award of BSc in Biomedical Science. The prize includes a cash award of $375 and a medal.

M Y Ali Prize in Cytopathology (previously known as M Y Ali Prize in Diagnostic Cytology)
This prize was established in 1978 by Dr M Y Ali, former Associate Head of the School of Life Sciences at NSWIT, who was responsible for the introduction and initial development of studies in diagnostic cytology. It is awarded annually to the student enrolled in the Biomedical Science degree course who achieves the highest mark in the subject 91377 Cytopathology, provided that the mark is not less than credit level. The prize consists of a cash award of $200 and a suitably worded certificate.

National Safety Council of Australia Prize
The National Safety Council of Australia Prize was established in 1986 and is awarded to the student enrolled in the Applied Chemistry degree course who obtains the highest aggregate
mark in the subject 65410 Chemical Safety and Legislation. The prize is in the form of a book token to the value of $100.

The New South Wales Police Service Prize

This prize was established in 1997 by the New South Wales Police Service Education and Training Command. It is awarded to the student enrolled in the Bachelor of Science (Honours) in Applied Chemistry – Forensic Science who obtains the highest weighted average mark for the Forensic Examination of Physical Evidence subjects. The prize consists of a suitably worded certificate together with a cash award of $500.

Pasminco Prize in Extractive Metallurgy

This prize was established in 1990. It is awarded to the student enrolled in the Physical Sciences courses who obtains the highest aggregate mark in the subject 65062 Extractive Metallurgy. The prize has a cash value of $250.

Pfizer Achievement Award

This prize was established in 1997 by Pfizer Pty Ltd. It is awarded to the student enrolled in either the Applied Chemistry degree course or the Forensic Science degree course who achieves the highest mark in the subject 65508 Organic Chemistry 2, provided that the grade obtained is not lower than Distinction. The prize has a cash value of $1,000.

Physics Staff Prize

This prize was established in 1985. It is awarded each year to the student in the Applied Physics degree course who obtains the highest average mark in Stages 1-3 of the course. The prize has a cash value of $200.

Safety Institute of Australia Ratcliffe Prize

Awarded for the best aggregate result of the Master of Occupational Health and Safety Management course.

RACI Industrial Chemistry Group Prize for Environmental Chemistry

This prize, new in 2001, is awarded to the student enrolled in an undergraduate degree at the University who achieves the highest mark for the subject 65621 Environmental Chemistry, provided that the grade obtained is not lower than Distinction. The prize is in the form of a suitably worded certificate and a cash award of $500.

R F G MacMillan Award

This prize was established in 1991. It is awarded to a Materials Science degree student for participation and involvement in Materials Science activities beyond the normal academic requirements. The prize has a cash value of $500.

Robert K Murphy Research Fund

To perpetuate the name of Dr R K Murphy, who was for 25 years Lecturer-in-Charge of the Chemistry Department and subsequently Principal of Sydney Technical College, the Sydney Technical College Science Association sponsored a fund to be known as the Robert K Murphy Research Fund, to which a number of chemical industries also subscribed. The income from the fund has been applied to set up the following prizes and a scholarship:

1. **Robert K Murphy Research Prize**

 This prize is awarded annually to the student in the Applied Chemistry degree course who submits the best original Chemistry project. The prize has a cash value of $250.

2. **Robert K Murphy Prize**

 This prize is awarded annually to the student in the Applied Chemistry degree course who entered the course on completion of Chemistry Certificate of the TAFE Commission and who achieves the best overall performance in the Applied Chemistry degree. The prize has a cash value of $250.

3. **Robert K Murphy Research Scholarship**

 This scholarship is awarded annually to the student in the Applied Chemistry degree course who satisfies the Trustees that such a scholarship is warranted to assist the student in research, in investigation or advanced study. The prize has a cash value of $250.

Schering Plough Prize

This prize was established in 1990. It is awarded to the student enrolled in an Advanced Chemistry project in the Applied Chemistry course who presents the best project seminar (in terms of both technical merit and presentation). The prize has a cash value of $250.
St Joe Mineral Deposits Prize
St Joe Australia Pty Ltd established this prize in 1984. The prize is awarded to the student who obtains the highest credit point average in the subject 66408 Earth Resources. The prize has a cash value of $50.

Stanton Coalstad Prize
This prize may be awarded annually to a student enrolled in the Materials Science degree course who obtains the highest mark in the subject 67101 Introduction to Materials at his or her first attempt. The prize will be valued at $500 and will comprise a cash award and a book voucher.

Sydney Environmental and Soil Laboratory Prize in Urban Horticulture
This prize is awarded to the graduating student from the Bachelor of Science in Environmental and Urban Horticulture course who obtains the highest weighted average mark in Stages 3–6 of the course, at distinction level or above. The prize will be in the form of a suitably worded certificate, together with a cash prize of $300.

Western Mining Corporation Prize
This prize was established in 1986. It is awarded annually to the student enrolled in the Applied Geology course who obtains the highest average mark of all students undertaking the Field Project in the year for which the award is made. The successful student will preferably demonstrate an interest in metaliferous exploration geology. The prize has a cash value of $200.

Western Mining Corporation Junior Studies Prize
This is a cash prize of $150 awarded annually to the student who has shown the most significant improvement in the quality of academic work at the completion of Stage 4 in the Materials Science degree course. The prize was awarded for the first time in 1979.

Western Mining Corporation Senior Studies Prize
This is a cash prize of $150 awarded annually, subject to a suitable recipient being nominated by the Head of the Department of Chemistry, Materials and Forensic Science, for distinguished performance in the final year (Stages 5 and 6) of the Materials Science degree course. The prize was awarded for the first time in 1979.

Workcover Authority Prize
Awarded for the highest aggregate mark in the first year of study in the Master of Occupational Health and Safety Management course.

Yakult Student Award in Biotechnology
This prize was established in 1996. It is awarded to the graduating student in the Bachelor of Science in Biotechnology course who obtains the highest weighted average mark for the specialist biotechnology subjects 91368 Bioreactors and Bioprocessing and 91369 Biobusiness and Environmental Biotechnology, provided that the average mark is at credit level or higher. The prize is valued at $250.

INTERNATIONAL STUDIES ELECTIVES

The Institute for International Studies at UTS offers electives in language studies and in the study of contemporary societies in parts of the non-English-speaking world. All subjects are taught over one semester and have a value of 8 credit points.

Language Studies
All students wishing to take language studies as a credited part of their degree are required to enrol through the Institute for International Studies, whether the language studies are undertaken at UTS or elsewhere. The Institute teaches some language programs at UTS, has made arrangements with other universities for some languages to be taught to UTS students, and can make special arrangements for individual students to attend specific language programs where academic needs demand. The individual student’s level of language proficiency before entry to the UTS program decides their level of language study. There is a range of entry levels to the various programs available. Most are available at beginner’s and post-HSC levels, and some at more advanced levels.
The Institute offers language programs in: Chinese, French, German, Greek, Indonesian, Italian, Japanese, Malaysian, Russian, Spanish and Thai. The Institute can arrange for the teaching of other language programs depending on availability and demand.

Contemporary Society

The Institute also offers a series of subjects that provide an introduction to the contemporary societies, politics, economics and culture of the countries of East Asia and South-East Asia, Latin America and Europe that are the areas of specialisation of the Institute.

Introductory subjects on the contemporary societies of China, Japan, South-East Asia, Hong Kong and Taiwan, Latin America and Europe will be available. There are no prerequisites for any of the Contemporary Society subjects. All subjects are taught in English and are available, with the permission of their faculties, to all UTS students. Further information is available in the 2001 handbook for the Institute for International Studies, or by contacting the Institute for International Studies on telephone (02) 9514 1574.
UNDERGRADUATE COURSES

Pass degree courses

Continuing students

All students who commenced before 1997 should refer to the 1998 handbook for the Faculty of Science for old course and subject descriptions and transitional arrangements. Printed copies of the 1998 handbook for the Faculty of Science are available for viewing in all Department offices and from the Faculty Office at the St Leonards and Broadway campuses.

Admission requirements

Applicants are considered for admission in accordance with the Rules and By-law of UTS as set out in the UTS Calendar 2001, and on the basis of meeting the general requirements in one of the following categories:

- the NSW Higher School Certificate
- an appropriate TAFE award – Diploma, Associate Diploma or completion of a Tertiary Preparation Course (TPC)
- equivalent qualifications
- mature age or non-recent school leavers (see UTS Calendar 2001 for details)
- accumulated matriculation (see UTS Calendar 2001 for special circumstances).

Assumed knowledge/course prerequisites

There are no mandatory prerequisite subjects from the Higher School Certificate. However, it is assumed that all students entering the biological and medical sciences courses will have studied at least any two units of English, two-unit mathematics plus one two-unit science course. It is strongly recommended that they complete studies in two science subjects. Common combinations include chemistry/physics or chemistry/biology. For students entering programs in Applied Chemistry, Applied Physics, Forensic Science, Earth and Environmental Science, and Materials Science, it is assumed that they have studied at least any two units of English, two-unit mathematics plus two-unit physics, or two-unit chemistry or three-/four-unit science. The minimum University Admissions Index (UAI) varies from year to year depending upon the number of applications for entry and the number of places available.

Requirements for award of Bachelor's degree

A degree will be awarded to students satisfactorily completing the following requirements:

1. Credit points

A minimum of 144 credit points, accumulated by:

- full-time attendance in Bachelor's degree courses involving satisfactory completion of the prescribed core subjects and other approved subjects to the value of 48 credit points for each of three years, or
- part-time attendance in Bachelor's degree courses involving satisfactory completion of the prescribed core subjects and other approved subjects to the value of 24 credit points for each of six years, or
- any other approved combination of full-time and part-time attendance.

Students who have failed subjects cannot be guaranteed a complete program or normal progression. However, in some courses a subject failed with a mark of 40 per cent or more may allow progression into subjects for which the failed subject is a prerequisite. All prescribed subjects must be successfully completed for award of a degree.

Students having difficulty devising a program should consult the Student Administrative Officer or an academic adviser. Contact details of all course directors are listed at the end of the entry for each course. Where a student experiences legitimate difficulty enrolling in sufficient credit points to make up a full-time load, a minimum of 75 per cent of a normal full-time program is deemed adequate to maintain designation as a full-time student provided the whole degree is completed within 150 per cent of the normal progression period. Thus, a three-year full-time degree should be completed in or under four-and-a-

Attendance patterns: the terms 'full time' and 'part time' refer to the number of credit points being undertaken and do not imply attendance at any particular time of day. The Faculty of Science normally schedules classes between 9.00 a.m. and 10.00 p.m., and students may be required to attend any scheduled class regardless of their attendance pattern. It is unavoidable that full-time students will be required to attend some evening classes and that part-time students will be required to attend some daytime classes.
half years. Similarly, there is no minimum number of credit points for a part-time program for any one semester, but the whole degree should be completed within 150 percent of the normal progression period i.e. a six-year part-time degree should be completed in or under nine years.

2. Professional/industrial experience

Students enrolled in science courses have the option to undertake industrial training or other relevant professional experience additional to the normal academic requirements of their course. In most cases this will involve spending up to 12 months working in a relevant industry. This experience will normally be gained prior to completing the academic requirements of the course and will earn the student extra academic credit which will be recognised by the award of a Diploma in Scientific Practice. Further details appear below.

General structure of the Bachelor of Science and Bachelor of Medical Science courses

In 1997, the structures of all undergraduate courses except the Bachelor of Health Science courses were extensively revised with the aim of increasing the study options available to students. As a result, the general structure of these courses now comprises four components:

i) a 'core discipline [major] strand' (approximately 72 credit points) consisting of the prescribed subjects that define the course and form the basis for professional recognition

ii) a variable number of prescribed 'core support' subjects (normally 24–36 credit points in Stages 1–3) which underpin the core discipline strand though may not contribute directly to the requirements for professional recognition

iii) a 'second major' component (normally 24 credit points) comprising a coherent set of non-prescribed subjects offered by the Faculty of Science, by another faculty of the University or by the Institute for International Studies

iv) 'free elective' subjects (12–24 credit points), selected from anywhere in the University or cross-institutionally.

Details of some second majors offered by the Faculty of Science and other parts of the University are given at the end of the Undergraduate Courses section of this handbook.

Science Education

The Science Education program is intended to prepare students for a career in secondary school science education. In addition to a Bachelor of Science or Bachelor of Medical Science program students complete a Graduate Diploma in Education, which consists of two semesters of study.

Admission

Students enrolled in a Bachelor of Science or Bachelor of Medical Science program may apply to enter the Graduate Diploma in Education after the completion of at least 96 credit points of study. The selection process includes a formal interview. Students who seek to enter the Graduate Diploma in Education before the completion of the Bachelor program would normally be expected to have obtained a credit average in the core Science subjects.

Course program

Students complete two semesters of studies in Education, not necessarily in the same year. The Graduate Diploma will not be awarded until the completion of the Bachelor of Science or Bachelor of Medical Science program.

For further information please contact:
Office of the Associate Dean
(Coursework Programs)
Faculty of Science
telephone (02) 9514 4044
fax (02) 9514 4095

Honours degree courses

Honours programs provide basic training in research and introduce students to advanced areas of study in the relevant discipline. Graduates generally enter occupations for which an Honours degree is the minimum requirement, or continue with postgraduate research.

Admission

Since 1999 all Honours courses except the Bachelor of Science (Honours) in Applied Chemistry – Forensic Science and the Bachelor of Health Science (Honours) courses are one-year full time or equivalent part-time courses. They are open to students who possess, or have fulfilled all the requirements for, a relevant Bachelor's degree from UTS, or equivalent qualification, with at least an average credit over the final third of the undergraduate program.
Undergraduate courses

Attendance patterns
Honours courses are offered as full-time programs over two semesters or part-time programs over four semesters. The major component is a research project which extends over the full duration of the course and normally takes the form of an experimental or analytical investigation, undertaken either in the laboratory or the field. Candidates may also be required to undertake one or more critical reviews of the scientific literature in designated areas and to attend formal classes devoted to advanced coursework. The results of the project are presented in an oral seminar and in a written thesis, both of which are formally assessed.

Application and selection
Prospective candidates should make an application to the Registrar by 31 October for entry to the Honours degree program in the first semester of the following year. There is provision for consideration of late applications. Applications for entry to Honours degree courses will be considered by a relevant Faculty selection committee. The Registrar will notify applicants of the results of their applications.

Fees and Higher Education Contribution Scheme
Higher Education Contribution Scheme (HECS) fees will normally apply to all students enrolled in Honours courses. All enrolled students are also required to pay the compulsory University Union and Students' Association charges on enrolment.

Commencement date
Students commencing their Honours course in Autumn semester are normally required to commence work on their Honours program on the first Monday in February. This applies even when formal enrolment is held after this date. Students should contact their supervisor for details.

Award
Honours degrees may be awarded in the following grades: First Class, Second Class Division 1, Second Class Division 2, and Third Class. They will be referred to as Bachelor of Science (Honours). Abbreviation: BSc(Hons).

Further information
Interested students should discuss the program and possible research projects available with the relevant Head of Department or Honours Course Coordinator, or with individual members of academic staff.

Diploma in Scientific Practice
- UTS course code: N005
- Testamur title: Diploma in Scientific Practice
- Abbreviation: DipScPrac
- Course Director: Associate Professor Rod Buckney
- Course fee: HECS (local)

The Faculty of Science offers a Diploma in Scientific Practice, which can be taken in combination with any Science or Medical Science course. The Diploma study consists of a minimum of 30 weeks of Industrial Training and two 6-credit-point subjects. Students will undergo workplace assessment and must also pass both subjects to graduate with the combined Bachelor of Science/Diploma in Scientific Practice. The combined program is designed to ensure that graduates have enhanced practical skills and a mature understanding of the workplace environment.

Admission
Students enrolled in a Bachelor of Science or Bachelor of Medical Science program may apply to enter the combined program after completion of at least 48 credit points of study; in some programs a later entry is recommended. Places are not guaranteed because industrial training providers are not necessarily in a position to offer places in any one year.

Course program
The following general pattern will be followed, though students in particular Bachelor courses may undertake the Diploma components at a different stage or sequence.

Full-time program

<table>
<thead>
<tr>
<th>Year 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn semester</td>
<td>24cp</td>
</tr>
<tr>
<td>Bachelor program subjects</td>
<td>xxxxx</td>
</tr>
<tr>
<td>Spring semester</td>
<td>24cp</td>
</tr>
<tr>
<td>Bachelor program subjects</td>
<td>xxxxx</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn semester</td>
<td>24cp</td>
</tr>
<tr>
<td>Bachelor program subjects</td>
<td>xxxxx</td>
</tr>
<tr>
<td>Spring semester</td>
<td>24cp</td>
</tr>
<tr>
<td>Bachelor program subjects</td>
<td>xxxxx</td>
</tr>
</tbody>
</table>

1 This course is not offered to international students.
Year 3

Autumn semester

xxxxx Industrial Training —
60811 Professional Scientific Practice A 6cp

Spring semester

xxxxx Industrial Training 0cp
60812 Professional Scientific Practice B 6cp

Year 4

Autumn semester

xxxxx Bachelor program subjects 24cp

Spring semester

xxxxx Bachelor program subjects 24cp

Students enrolled in the combined program will normally complete the Bachelor program after the Scientific Practice subjects are completed, though there may be circumstances with part-time students, where concurrent completion would occur. For further information please contact:

Office of the Associate Dean
(Coursework Programs)
Faculty of Science
telephone (02) 9514 4044
fax (02) 9514 4095

Bachelor of Science

- UTS course code: N010
- UAC code: 607011
- Testamur title: Bachelor of Science
- Abbreviation: BSc
- Course Director: Associate Professor Rod Buckney
- Course fee: HECS (local) $7,250 per semester (international)

This program allows students to develop their own multidisciplinary programs of study. Students may combine two or more areas of science or a science specialisations with study in another Faculty, or they may cover a broad range of scientific disciplines. The Bachelor of Science may be completed in three years full time or six years part time.

The Faculty offers a number of Bachelor of Science programs and the Bachelor of Medical Science. Most of the Bachelor of Science programs have a named discipline area in the title, this program does not. The Bachelor of Science is designed to provide maximum flexibility for students wishing to study in the areas offered in the various Science/Medical Science programs. The free choice available to students is at least twice that in the named degrees. Students in this program are free, within certain general constraints (see below), to mix discipline areas from within the Faculty of Science or to mix Science subjects with subjects from other faculties at UTS.

The development of a Science specialisation is recommended. Specialisation areas include:
- Analytical Chemistry; Applied Microbiology; Biology; Cell and Molecular Biology; Computational Physics; Earth Science; Ecology; Electronics and Interfacing, Energy and Resources;
- Environmental Horticulture; Environmental Science; Freshwater Ecology; Horticulture; Industrial Chemistry; Laboratory Pathology; Marine Science; Materials Technology; Medical Biochemistry; Medical Microbiology; Nanotechnology and Nanomaterials;
- Pharmacology; Physiology; Plant Science; Pollution Ecology; Space and Earth Exploration.

The Faculty recommends that at least one Science specialisation be selected. Students may be able to identify subjects that form a coherent specialisation not identified above. Timetable constraints will mean that not all

1 These specialisations are under development and some elements (e.g. third-year subjects) may not be available in 2001.
possible combinations of subjects can be taken. Students are urged to consider the timetabling of their subject selections with great care.

Employment opportunities

Graduates will be suitable for employment in all areas in which Science is a core activity of the enterprise or an important support function. These include universities, CSIRO, government departments at all levels and private industry. The flexibility of this degree allows students to tailor their studies to target particular specialist sectors in Science and/or at the interfaces between Science and other professional areas.

Course structure

Subjects currently offered by the University have been classified as Introductory (normally taken in Stages 1 and 2), Intermediate (Stages 3 and 4) and Advanced (Stages 5 and 6 or later). In the Bachelor of Science, a student will complete:

- a minimum of 12 credit points of Mathematics/Statistics and Computing subjects, normally in their first year and
- at least 96 credit points of Science subjects, of which 24 credit points must be at Advanced level
- at least an additional 12 credit points of Advanced level subjects from any area.

These constraints ensure that graduates will have completed sufficient Science to be awarded a Bachelor of Science degree and sufficient Advanced level subjects to provide credible depth of development for the award of a degree.

Students are encouraged to undertake a professional/industrial experience program that leads to the awarding of the Diploma of Scientific Practices. The Diploma study consists of a minimum of 30 weeks industrial training and two 6-credit-point subjects. For further information please see separate entry in this handbook.

The Faculty recommends that students choose from one of three Introductory level programs, depending on whether their areas of specialisation lie in the Physical Sciences (Physics, Chemistry, Materials Technology and related areas), Environmental Sciences (Biology, Earth Sciences) or Medical and Molecular Biosciences (Medical and Medical Laboratory Science, Biotechnology).

This program is flexible enough to allow students to nominate their own first year subjects if they so wish, guidance is provided to assist in this process.

Typical program

A typical full-time program that includes the minimum science component is shown below:

Physical Sciences

<table>
<thead>
<tr>
<th>Stage 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65101</td>
<td>Chemistry 1C</td>
</tr>
<tr>
<td>68101</td>
<td>Foundations of Physics</td>
</tr>
<tr>
<td>67101</td>
<td>Introduction to Materials</td>
</tr>
<tr>
<td>33190</td>
<td>Mathematical Modelling for Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65201</td>
<td>Chemistry 2C</td>
</tr>
<tr>
<td>68201</td>
<td>Physics in Action (Physics 2)</td>
</tr>
<tr>
<td>67303</td>
<td>Mechanical Properties of Materials</td>
</tr>
<tr>
<td>33290</td>
<td>Computing and Mathematics for Science</td>
</tr>
</tbody>
</table>

Environmental Sciences

<table>
<thead>
<tr>
<th>Stage 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>33106</td>
<td>Statistical Design and Analysis (two semesters)</td>
</tr>
<tr>
<td>33101</td>
<td>Mathematics 1 (LS)</td>
</tr>
<tr>
<td>9101</td>
<td>Cells, Genetics and Evolution</td>
</tr>
<tr>
<td>65012</td>
<td>Chemistry 1A</td>
</tr>
<tr>
<td>66101</td>
<td>Earth Science 1</td>
</tr>
<tr>
<td>91246</td>
<td>Plant Structure, Function and Culture</td>
</tr>
<tr>
<td>xxxxx</td>
<td>Other approved subject</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>33106</td>
<td>Statistical Design and Analysis (two semesters)</td>
</tr>
<tr>
<td>91395</td>
<td>Biocomputing</td>
</tr>
<tr>
<td>91102</td>
<td>Functional Biology</td>
</tr>
<tr>
<td>65022</td>
<td>Chemistry 2A</td>
</tr>
<tr>
<td>66204</td>
<td>Field Studies 1</td>
</tr>
<tr>
<td>91247</td>
<td>Landscape Design and Plant Culture</td>
</tr>
<tr>
<td>xxxxx</td>
<td>Other approved subject</td>
</tr>
</tbody>
</table>

Medical and Molecular Biosciences

<table>
<thead>
<tr>
<th>Stage 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>33106</td>
<td>Statistical Design and Analysis (two semesters)</td>
</tr>
<tr>
<td>33101</td>
<td>Mathematics 1 (LS)</td>
</tr>
<tr>
<td>91701</td>
<td>Medical Science 1</td>
</tr>
<tr>
<td>91101</td>
<td>Cells, Genetics and Evolution</td>
</tr>
<tr>
<td>65012</td>
<td>Chemistry 1A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>33106</td>
<td>Statistical Design and Analysis (two semesters)</td>
</tr>
<tr>
<td>91395</td>
<td>Biocomputing</td>
</tr>
<tr>
<td>91702</td>
<td>Medical Science 2</td>
</tr>
<tr>
<td>65022</td>
<td>Chemistry 2A</td>
</tr>
<tr>
<td>68041</td>
<td>Physical Aspects of Nature</td>
</tr>
</tbody>
</table>
Stage 3

xxxxx Science specialisation subjects 12cp
xxxxx Electives1 12cp

Stage 4

xxxxx Science specialisation subjects 12cp
xxxxx Electives1 12cp

Stage 5

xxxxx Science specialisation subjects 12cp
xxxxx Electives1,2 12cp

Stage 6

xxxxx Science specialisation subjects 12cp
xxxxx Electives1,2 12cp

1 At least 12 credit points of the electives must be from the Faculty of Science.
2 At least 12 credit points of electives must be at Advanced level (see below).

The above structure and named subjects are recommended, rather than prescriptive; students with sound academic reasons for choosing other pathways to the award of the BSc should consult with the Associate Dean (Coursework Programs). Provided that the following constraints are met and a student's proposed program can be timetabled, approval will be granted for variation from the above 'typical' structure. Part-time students can take subjects at about half the rate specified above.

General constraints

In the generic Bachelor of Science, a student will complete a minimum of 12 credit points of Mathematics/Statistics and Computing subjects, normally in their first year and:

- at least 96 credit points of Science subjects, of which 24 credit points must be at Advanced level
- at least an additional 12 credit points of Advanced level subjects from any area.

Normally, no more than 108 credit points may be taken from Introductory and Intermediate subjects within the 144 credit points required for completion.

Students are advised to think carefully about their choice of Advanced subject areas during their first year of study. A choice of Advanced stage subjects will, because of the prerequisites required for them, effectively define the Intermediate stage subjects that are necessary. Students who meet, or anticipate, prerequisite 'blockages' should consult with the Associate Dean (Coursework Programs) or other academic staff to identify areas of assumed knowledge that the prerequisite subjects provide.

Bachelor of Science in Applied Chemistry

- UTS course code: NC05
- UAC code: 607105
- Testamur title: Bachelor of Science in Applied Chemistry
- Abbreviation: BSc
- Course Director: Dr John Kalman
- Course fee: HECS (local) $7,250 per semester (international)

All students who commenced before 1997 should refer to previous versions of the handbook, or consult the Course Director or Associate Dean (Coursework Programs).

This course gives students a firm foundation of study in the basic sciences, with in-depth development in the particular discipline of chemistry, emphasising its industrial applications. When coupled with concurrent work experience, for which an additional Diploma in Scientific Practice may be awarded, the course provides an excellent preparation for entry to professional work in the field of applied chemistry.

A Second Major in Materials Science can be studied within this program. For further details see the Second Major section of this handbook.

Students have the opportunity to tailor their studies to their individual interests. By taking an appropriate second major and selecting relevant electives, students can prepare themselves for employment in a variety of situations in industries concerned with plastics, paints, foods, metals and alloys, solvents or industrial chemicals. Students should refer to the section on Second Majors in this handbook and the list of electives at the end of this entry. They may also consult the Applied Chemistry Course Director for advice on selecting second majors and elective subjects.

The course consists of six academic stages but may include a period of industrial training which extends the minimum completion time to four years leading to the additional award of Diploma in Scientific Practice. Although the course can be completed by three years of full-time attendance if the professional/industrial experience component is not taken, students are strongly encouraged to undertake the industrial experience program. In this case a number of different patterns of attendance are possible: two years of full-time attendance followed by one year in industry and one year of full-time attendance; or two years of full-
time attendance followed by two years of part-time attendance; or six years of part-time attendance. Other patterns of attendance may also be permitted.\(^1\)

Full-time attendance involves approximately 24 hours each week at the University during the first year and 18 hours per week in the second and third years. This enables a full stage of the course to be completed in one semester. Part-time attendance involves approximately 12 hours each week at the University in Stages 1–2 and nine hours per week in Stages 3–6. This form of attendance allows students to complete a full stage in one year. It is expected that employers will release part-time students for at least one half-day per week for attendance at classes. Students commonly attend the University for one half-day and three evenings each week, or for two half-days and two evenings per week.

The award for successful completion of the course is Bachelor of Science. The course has been designed to meet the academic requirements for entry to corporate membership of the Royal Australian Chemical Institute.

The Honours program is designed to introduce students to more advanced coursework and to research work in chemistry. It allows selected students to continue on with postgraduate studies if desired and generally enhances their employment prospects.

The Department of Chemistry, Materials and Forensic Science strongly encourages students in this course to undertake the professional/industrial experience option and an Industrial Training Committee within the Department of Chemistry, Materials and Forensic Science provides guidance in the matter of appropriate vocational training. The industrial component normally involves a period of up to one year in full-time relevant employment. Each student is assigned to a member of staff who maintains regular contact during subsequent periods of study and employment. All academic inquiries should be made to:

Course Director, Applied Chemistry, Dr John Kalman
Department of Chemistry, Materials and Forensic Science
telephone (02) 9514 1728
fax (02) 9514 1628
email John.Kalman@uts.edu.au

Full-time program

Stage 1

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>33190</td>
<td>Mathematical Modelling for Science</td>
</tr>
<tr>
<td>65101</td>
<td>Chemistry 1C</td>
</tr>
<tr>
<td>67101</td>
<td>Introduction to Materials either</td>
</tr>
<tr>
<td>68101</td>
<td>Foundations of Physics(^1) or one of</td>
</tr>
<tr>
<td>66101</td>
<td>Earth Science 1</td>
</tr>
<tr>
<td>91101</td>
<td>Cells, Genetics and Evolution</td>
</tr>
<tr>
<td>91701</td>
<td>Medical Science 1</td>
</tr>
</tbody>
</table>

Stage 2

| Spring semester |
|-----------------|-----------------|
| 33290 | Computing and Mathematics for Science | 6cp |
| 65201 | Chemistry 2C | 6cp |
| 68201 | Physics in Action (Physics 2) or | 6cp |
| 68041 | Physical Aspects of Nature\(^2\) plus | 6cp |
| xxxxx | Approved Science subject | 6cp |

Stage 3

| Autumn semester |
|-----------------|-----------------|
| 65202 | Organic Chemistry 1 | 6cp |
| 65306 | Analytical Chemistry 1 | 6cp |
| 65307 | Physical Chemistry 1 | 6cp |
| xxxxx | Elective/second major | 6cp |

Stage 4

| Spring semester |
|-----------------|-----------------|
| 65409 | Analytical Chemistry 2 | 6cp |
| 65411 | Inorganic Chemistry 1 (Transition Metal Chemistry) | 6cp |
| 65410 | Chemical Safety and Legislation Elective/second major | 6cp |

Stage 5

| Autumn semester |
|-----------------|-----------------|
| 65508 | Organic Chemistry 2 (Structure Elucidation and Synthesis) | 6cp |
| 65509 | Inorganic Chemistry 2 (New Inorganic Materials) | 6cp |
| xxxxx | Electives/second major | 12cp |

Stage 6

| Spring semester |
|-----------------|-----------------|
| 65606 | Analytical Chemistry 3 | 6cp |
| 65607 | Physical Chemistry 2 | 6cp |
| xxxxx | Electives/second major | 12cp |

\(^1\) Holders of a TAFE Associate Diploma in Chemical Technology or equivalent qualification may be eligible for a number of subject exemptions and may therefore be able to complete the course in less than the standard time.

\(^2\) Not available to students who have completed 68101 Physics 1C.

Note: See the list of second majors on page 80.
Part-time program

Stage 1

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>33190 Mathematical Modelling for Science</td>
<td>65101 Chemistry 1C</td>
</tr>
<tr>
<td>67101 Introduction to Materials</td>
<td>68101 Foundations of Physics(^1)</td>
</tr>
<tr>
<td></td>
<td>or 68041 Physical Aspects of Nature(^2)</td>
</tr>
</tbody>
</table>

Stage 2

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>65201 Chemistry 2C</td>
<td>65202 Organic Chemistry 1</td>
</tr>
<tr>
<td>68201 Physics in Action (Physics 2)</td>
<td>65306 Analytical Chemistry 1</td>
</tr>
<tr>
<td>either 66101 Earth Science 1</td>
<td>65411 Inorganic Chemistry 1</td>
</tr>
<tr>
<td>or one of 91101 Cells, Genetics and Evolution</td>
<td>(Transition Metal Chemistry)</td>
</tr>
<tr>
<td>91701 Medical Science 1</td>
<td>xxxx Elective/second major</td>
</tr>
</tbody>
</table>

Stage 3

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>65202 Organic Chemistry 1</td>
<td>65508 Organic Chemistry 2</td>
</tr>
<tr>
<td>65306 Analytical Chemistry 1</td>
<td>(Structure Elucidation and Synthesis)</td>
</tr>
<tr>
<td></td>
<td>xxxx Elective/second major</td>
</tr>
</tbody>
</table>

Stage 4

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>65307 Physical Chemistry 1</td>
<td>65508 Organic Chemistry 2</td>
</tr>
<tr>
<td>xxxx Elective/second major</td>
<td>(Structure Elucidation and Synthesis)</td>
</tr>
<tr>
<td></td>
<td>xxxx Elective/second major</td>
</tr>
</tbody>
</table>

Stage 5

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>65508 Organic Chemistry 2</td>
<td>65508 Organic Chemistry 2</td>
</tr>
<tr>
<td>xxxx Elective/second major</td>
<td>(Structure Elucidation and Synthesis)</td>
</tr>
<tr>
<td></td>
<td>xxxx Elective/second major</td>
</tr>
</tbody>
</table>

1. Strongly recommended.
2. Not available to students who have completed 68101 Physics 1C.

Note: See the list of second majors on page 80.
Bachelor of Science (Honours) in Applied Chemistry

- UTS course code: NC06
- Testamur title: Bachelor of Science (Honours) in Applied Chemistry
- Abbreviation: BSc(Hons)
- Course Director: Dr John Kalman
- Course fee: HECS (local) $7,250 per semester (international)

All students who commenced before 1997 should refer to previous versions of the handbook, or consult the Course Director or Associate Dean (Coursework Programs).

The Honours degree in Applied Chemistry is a one-year full-time course, or equivalent part time, which is taken after completing the Bachelor of Science in Applied Chemistry or an equivalent course with an average grade of at least credit over the final third of the course. The Honours degree offers basic training in research and introduces students to advanced areas of study in chemistry. The major component is a supervised individual research project which extends over the full duration of the course and normally takes the form of an experimental or analytical investigation undertaken in the laboratory.

Further details are provided in the general introduction to the Undergraduate Courses section of this handbook.

Students wishing to undertake Honours in 2001 should contact the Head of the Department of Chemistry, Materials and Forensic Science for advice and consult the student noticeboards in the department for details of available projects and supervisors.

Full-time program

Stage 1
65854 Honours (Chemistry) (two semesters) 24cp

Stage 2
65854 Honours (Chemistry) (two semesters) 24cp

Bachelor of Science (Honours) in Applied Chemistry – Forensic Science

- UTS course code: NC04
- UAC code: 607110
- Testamur title: Bachelor of Science (Honours) in Applied Chemistry – Forensic Science
- Abbreviation: BSc(Hons)
- Course Director: Dr Claude Roux
- Course fee: HECS (local) $7,250 per semester (international)

All students who commenced before 1997 should refer to previous versions of the handbook, or consult the Course Director or Associate Dean (Coursework Programs).

This course provides a program of instruction which, together with a research project, will prepare students for entry to professional work in the field of applied chemistry or as a specialist in the forensic science area. The course includes a firm foundation of studies in the basic sciences, with in-depth development of the discipline of chemistry, emphasising its forensic applications.

Attendance

The Bachelor of Science (Honours) in Applied Chemistry – Forensic Science comprises four years of full-time coursework including one semester of research work.

Course structure

The first two years of the program are similar, though not identical to the Bachelor of Science in Applied Chemistry course. The final two years are strongly focused on forensic studies.

If the required standard for Honours is not achieved at the end of Stage 4 (i.e. a credit average or better in Stage 3 and 4 subjects), students’ enrolment in the course will be discontinued and they will be offered the option of full-credit transfer to the Bachelor of Science in Applied Chemistry.

All academic inquiries should be made to:
Course Director, Forensic Science
Dr Claude Roux
Department of Chemistry, Materials and Forensic Science
telephone (02) 9514 1718
fax (02) 9514 1628
email Claude.Roux@uts.edu.au
Full-time program

Each stage corresponds to one semester of full-time attendance.

Stage 1

Autumn semester
33190 Mathematical Modelling for Science 6cp
65101 Chemistry 1C 6cp
68101 Foundations of Physics 6cp
either
91101 Cells, Genetics and Evolution 6cp
or
91701 Medical Science 1 6cp

Stage 2

Spring semester
33290 Computing and Mathematics for Science 6cp
65201 Chemistry 2C 6cp
65241 Principles of Forensic Science 6cp
one of
67101 Introduction to Materials 6cp
68201 Physics in Action (Physics 2) 6cp
91702 Medical Science 2 6cp

Stage 3

Autumn semester
65202 Organic Chemistry 1 6cp
65306 Analytical Chemistry 1 6cp
65341 Forensic Imaging 6cp
65307 Physical Chemistry 1 6cp

Stage 4

Spring semester
65409 Analytical Chemistry 2 6cp
65411 Inorganic Chemistry 1 (Transition Metal Chemistry) 6cp
65410 Chemical Safety and Legislation 6cp
91141 Biological Evidence 6cp

Stage 5

Autumn semester
65508 Organic Chemistry 2 (Structure Elucidation and Synthesis) 6cp
65509 Inorganic Chemistry 2 (New Inorganic Materials) 6cp
65542 Forensic Toxicology 1 6cp
65541 Physical Evidence 1 6cp

Stage 6

Spring semester
65606 Analytical Chemistry 3 6cp
65607 Physical Chemistry 2 6cp
65642 Forensic Toxicology 2 6cp
65641 Physical Evidence 2 6cp

Stage 7

Autumn semester
65741 Chemistry and Pharmacology of Illicit Drugs 6cp
65742 Fire and Explosion Investigation 6cp
65743 Complex Forensic Cases (Chemistry) 6cp
79991 Complex Forensic Cases (Law) 6cp

Stage 8

Spring semester
65856 Forensic Research Project 24cp

Bachelor of Science in Applied Physics

- UTS course code: NP05
- UAC code: 607145
- Testamur title: Bachelor of Science in Applied Physics
- Abbreviation: BSc
- Course Director: Dr Geoff Anstis
- Course fee: HECS (local) $7,250 per semester (international)

All students who commenced before 1997 should refer to previous versions of the handbook, or consult the Course Director or Associate Dean (Coursework Programs).

The development of modern technology and its application in a wide variety of industries has created a demand for scientists who have a confident approach to applied problem solving, a deep understanding of the physical principles underlying systems, who are able to utilise modern equipment for measurement and control and are flexible and adaptable to changing job needs. Applied physics graduates meet this demand and find employment in a wide range of private industries and public authorities.

The early stages of the Pass degree course consist of the study of basic science subjects, with the remainder of the course placing an emphasis on measurement, and on the use and design of instrumentation for measurement and control. There is thus a focus on modern electronics and computers. Students who perform well in the Pass program may proceed to the Honours program in order to pursue their studies to more advanced levels.

The Pass degree course consists of six stages of formal academic study and students also have the opportunity to undertake a professional/industrial experience program leading to the additional award of Diploma in Scientific Practice. Although the course may be completed
by three years of full-time attendance if the professional/industrial experience component is not taken, all students are strongly encouraged to undertake the industrial experience program. Hence the common course patterns are four years of full-time enrolment, including one year of industrial experience; or six years of part-time attendance while concurrently employed in a relevant industry; or alternating periods of full-time study with similar periods of full-time relevant employment.

Students have the opportunity to tailor their studies to their individual interests by taking elective subjects or a second major stream of study either in another area of science or in another field of study such as business, communications, international studies, law, mathematics or computing sciences. Students should refer to the section on Second Majors in this handbook and consult the Applied Physics Student Coordinator for advice on selecting second majors.

Full-time attendance involves approximately 24 hours each week at the University; this enables a full stage of the course to be completed in one semester.

Part-time attendance involves about 12 hours each week at the University; with this form of attendance the equivalent of a full stage may be completed in one year. It is expected that employers will release part-time students for at least one half-day per week for attendance at classes. Students commonly attend the University for one half-day and three evenings each week, or for two half-days and two evenings each week. All academic inquiries should be directed to:

Dr Geoff Anstis
Department of Applied Physics
telephone (02) 9514 2193
fax (02) 9514 2219
email Geoff.Anstis@uts.edu.au

Full-time program

Stage 1

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th>Stage 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>33190 Mathematical Modelling for Science</td>
<td>6cp</td>
</tr>
<tr>
<td>65101 Chemistry 1C</td>
<td>6cp</td>
</tr>
<tr>
<td>68101 Foundations of Physics</td>
<td>6cp</td>
</tr>
<tr>
<td>plus one of</td>
<td></td>
</tr>
<tr>
<td>66101 Earth Science 1</td>
<td>6cp</td>
</tr>
<tr>
<td>91101 Cells, Genetics and Evolution</td>
<td>6cp</td>
</tr>
<tr>
<td>91701 Medical Science 1</td>
<td>6cp</td>
</tr>
<tr>
<td>48210 Engineering for Sustainability</td>
<td>6cp</td>
</tr>
<tr>
<td>Spring semester</td>
<td></td>
</tr>
<tr>
<td>33290 Computing and Mathematics for Science</td>
<td>6cp</td>
</tr>
<tr>
<td>65201 Chemistry 2C</td>
<td>6cp</td>
</tr>
<tr>
<td>67101 Introduction to Materials</td>
<td>6cp</td>
</tr>
<tr>
<td>68201 Physics in Action (Physics 2)</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Stage 3

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th>Stage 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>33390 Mathematics and Scientific Software</td>
<td>6cp</td>
</tr>
<tr>
<td>68314 Electronics</td>
<td>6cp</td>
</tr>
<tr>
<td>68311 Atoms, Photons and Orbits (Physics 3)</td>
<td>6cp</td>
</tr>
<tr>
<td>68312 Electrotechnology and Data Analysis</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Stage 5

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th>Stage 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>68514 Electronics and Interfacing</td>
<td>6cp</td>
</tr>
<tr>
<td>68511 Quantum and Solid-state Physics</td>
<td>6cp</td>
</tr>
<tr>
<td>Electives/second major</td>
<td>12cp</td>
</tr>
</tbody>
</table>

Stage 6

Spring semester	

68512 Research Methods in Applied Physics	6cp
6861 Electromagnetics and Optics	6cp
Electives/second major	12cp

Part-time program

Stage 1

Autumn semester	

33190 Mathematical Modelling for Science	6cp
plus one of	
66101 Earth Science 1	6cp
91101 Cells, Genetics and Evolution	6cp
91701 Medical Science 1	6cp
48210 Engineering for Sustainability	6cp
Spring semester	
65101 Chemistry 1C	6cp
68101 Foundations of Physics	6cp
Bachelor of Science (Honours) in Applied Physics

- UTS course code: NP06
- Testamur title: Bachelor of Science (Honours) in Applied Physics
- Abbreviation: BSc(Hons)
- Course fee: HECS (local) $7,250 per semester (international)

All students who commenced before 1997 should refer to previous versions of the handbook, or consult the Course Director or Associate Dean (Coursework Programs).

This course is a one-year full-time course, or equivalent part time, which is taken after completing the Bachelor of Science in Applied Physics or an equivalent course with an average grade of at least credit over the final third of the course. The Honours degree offers basic training in research and introduces students to advanced areas of study in applied physics. The major component is a supervised individual research project which extends over the full duration of the course and normally takes the form of an experimental or analytical investigation undertaken in the laboratory.

Further details are provided in the general introduction to the Undergraduate Courses section of this handbook.

Students wishing to undertake Honours in 2001 should contact the Head of the Department of Applied Physics or the Honours Course Coordinator for advice concerning eligibility, selection and assessment procedures, and for information on projects available and the pattern of Honours most suitable for them.

Full-time program

Stage 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>68854</td>
<td>Honours (Physics) (two semesters) 24cp</td>
</tr>
</tbody>
</table>

Stage 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>68854</td>
<td>Honours (Physics) (two semesters) 24cp</td>
</tr>
</tbody>
</table>
Bachelor of Health Science in Traditional Chinese Medicine

- UTS course code: NH06
- UAC code: 607005
- Testamur title: Bachelor of Health Science in Traditional Chinese Medicine
- Abbreviation: BHlthSc
- Course Director: Mr Chris Zaslawski
- Course fee: HECS (local) $7,250 per semester (international)

The Bachelor of Health Science in Traditional Chinese Medicine provides the graduate with a professional entry level for the practice of acupuncture and Chinese patent herbal medicine. Traditional Chinese Medicine is made up of two major branches: acupuncture and Chinese herbal medicine.

During the four years of full-time study required to complete the Pass level program, the student will study Traditional Chinese Medicine (TCM) theory and philosophical foundations, acupuncture techniques, Chinese materia medica and clinical herbal prescriptions, moxibustion and tuina (Chinese massage), diagnosis, clinical skills, Western medical sciences appropriate to a primary contact health care practitioner, practice management and research methods.

Having completed the Pass program, selected students in the Bachelor of Traditional Chinese Medicine (pending accreditation) may have the opportunity to enter the Honours program or the combined degree: Bachelor of Health Science in Traditional Chinese Medicine/Bachelor of Arts in International Studies (Chinese major).

All Academic inquiries should be directed to:
Course Director
Mr Chris Zaslawski
UTS College of Traditional Chinese Medicine
Faculty of Science
telephone (02) 9514 7856 or (02) 9514 2500
fax (02) 9514 7866
email Chris.Zaslawski@uts.edu.au

Course program

Stage 1

Autumn semester
99560 Introduction to TCM 6cp
99502 Foundations of TCM 6cp
99563 Health Sciences 1 6cp
99616 Clinical Theory & Clinic Level 1 (over 2 semesters) 8cp

Spring semester
99564 The Physiology of Qi 4cp
99617 Point Location 1 8cp
99570 Health Sciences 2 6cp
92167 Foundations of Helping and Caring 4cp

Stage 3

Autumn semester
99618 Chinese Diagnostic System 1 6cp
99567 Introduction to Chinese Herbal Medicine 6cp
99539 Pathophysiology A 6cp
99619 Clinic - Level 2 and Point Location 2 (over two semesters) 8cp

Spring semester
99610 History and Philosophy of TCM 4cp
99672 Chinese Diagnostic System 2 6cp
99622 Pharmacology of Traditional Chinese Medicine 6cp
99579 Chinese Massage (Tuina) 6cp

Stage 5

Autumn semester
99623 Chinese Herbal Formulae 8cp
99584 Clinical Features of Disease 6cp
99624 Clinical Theory and Clinic – Level 3 (over two semesters) 12cp

Spring semester
99625 Research Methods 6cp
99626 Microsystems and Advanced Treatment Techniques 8cp
99607 Clinical Practicum (therapy and diagnosis) 8cp

Stage 7

Autumn semester
99628 Disease States 8cp
99629 Chinese Medical Classics 4cp
99630 Clinical Practice 1 12cp

Spring semester
99591 Practice Management 4cp
99590 Special Topics in TCM (Intermodal and Professional) 8cp
99631 Clinical Practice 2 (Chinese University hospital option) 12cp
Bachelor of Health Science in Traditional Chinese Medicine (Honours)\(^1\)

- UTS course code: NH08
- Testamur title: Bachelor of Health Science in Traditional Chinese Medicine (Honours)
- Abbreviation: BHlthSc(Hons)
- Course fee: HECS (local)
 \$7,250 per semester (international)

Admission

Admission to the Honours program will be based on the student attaining a weighted average mark equal to, or greater than, 65 over the eight stages of the Pass degree program.

Each student applying for admission to the program will be invited to nominate an area of special interest in which they wish to carry out a research project and will be required to consult with relevant members of academic staff concerning the feasibility of their proposal. If the proposal is approved, and subject to the establishment of satisfactory supervisory arrangements, the student will be formally admitted to the program and will conduct their project according to the University's Code of Practice for Supervisors and Honours Year Students.

Course program

Stages 1–8

As for Pass degree.

Stage 9

<table>
<thead>
<tr>
<th>Code</th>
<th>Honours Project (two semesters)</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>99593</td>
<td></td>
<td>24cp</td>
</tr>
</tbody>
</table>

Stage 10

<table>
<thead>
<tr>
<th>Code</th>
<th>Honours Project (two semesters)</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>99593</td>
<td></td>
<td>24cp</td>
</tr>
</tbody>
</table>

\(^1\) Subject to approval.

Bachelor of Health Science in Traditional Chinese Medicine/Bachelor of Arts in International Studies\(^1\)

- UTS course code: N008
- Testamur title: Bachelor of Health Science in Traditional Chinese Medicine Bachelor of Arts in International Studies
- Abbreviation: BHlthSc BA
- Course Director: Mr Chris Zaslawski
- Course fee: HECS (local)
 \$7,250 per semester (international)

This course is subject to University approval at the time of printing.

The combined degree program in Traditional Chinese Medicine and International Studies is offered jointly by the Faculty of Science and the Institute for International Studies. It provides students with a greater exposure to, and understanding of, Chinese culture and a working knowledge of Chinese. Apart from its wider educational goals, the program should also make it more possible for Traditional Chinese Medicine graduates to practise outside Australia.

The Bachelor of Health Science in Traditional Chinese Medicine/Bachelor of Arts in International Studies is a six-year degree program in which the study of Traditional Chinese Medicine is integrated with the China major of the International Studies program. Students spend the fifth year of study at a Chinese university. All existing arrangements for both the Bachelor of Health Science in Traditional Chinese Medicine and the Bachelor of Arts in International Studies apply equally to the combined degree program in Traditional Chinese Medicine and International Studies.

Course structure

To graduate with a BHlthSc/BA, a student will be required to have completed 288 credit points of study: 192 credit points in Traditional Chinese Medicine and 96 credit points in Chinese Studies. Of the 96 credit points in Chinese Studies, there will be 32 credit points (four subjects) of study of Chinese Language and Culture; 16 credit points (two subjects) of the study of contemporary China and its global context; and 48 credit points (two semesters) of In-country Study at a university or institution of higher education in China.

\(^1\) Entry to this degree is by internal transfer from the Bachelor of Health Science in Traditional Chinese Medicine (NH06). Students in NH06 apply during Year 2 for transfer to N008 commencing in Year 3.
Students do not need to have previously studied Chinese to be able to successfully complete the program. All students are required to complete four consecutive semesters of study of Chinese Language and Culture before proceeding to China for an academic year of study. There are various classes available for students with different levels of language proficiency: from classes for complete beginners, to classes for those who have completed HSC-level Chinese and for those with more advanced language skills.

The International Studies program is 96 credit points, and includes 32 credit points (four 8-credit-point subjects) of instruction in Language and Culture; 8 credit points (one subject) of study of Comparative Social Change; 8 credit points (one subject) of study of Contemporary Society; and 48 credit points (two semesters) of study at a university or institution of higher education in the country or region of specialisation.

Arrangements for In-country Study

All students are required to complete four consecutive semesters of study of Language and Culture before proceeding to In-country Study. There are different classes available for students according to their level of language proficiency.

The Institute for International Studies makes arrangements for students to spend two semesters of In-country Study at an institution of higher education in the country of their major. The costs of tuition in host institutions overseas and travel between Sydney and the designated host institutions are borne by UTS except in cases where a scholarship has been awarded to the student with provision for these costs. Under those circumstances, the funds that would otherwise have been allocated towards the student’s tuition and travel will be redirected to support the In-country Study program in general. In most cases, the cost of living for the period of In-country Study will not exceed the cost of living away from home in Sydney.

Course program

Year 1

<table>
<thead>
<tr>
<th>Stage 1 – Autumn semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>99560 Introduction to Traditional Chinese Medicine 6cp</td>
</tr>
<tr>
<td>99502 Foundations of TCM 6cp</td>
</tr>
<tr>
<td>99563 Health Sciences 1 6cp</td>
</tr>
<tr>
<td>99616 Clinical Theory and Clinic Level 1 (over two semesters) 8cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 2 – Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>99564 The Physiology of Qi 4cp</td>
</tr>
<tr>
<td>99617 Point Location 1 (treatment techniques/anatomy) 8cp</td>
</tr>
<tr>
<td>99570 Health Sciences 2 6cp</td>
</tr>
<tr>
<td>92167 Foundations of Helping and Caring 4cp</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Stage 3 – Autumn semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>99618 Chinese Diagnostic System 1 6cp</td>
</tr>
<tr>
<td>99567 Introduction to Chinese Herbal Medicine 6cp</td>
</tr>
<tr>
<td>99539 Pathophysiology A 6cp</td>
</tr>
<tr>
<td>99619 Clinic – Level 2 and Point Location 2 (over two semesters) 8cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 4 – Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>99620 History and Philosophy of TCM 4cp</td>
</tr>
<tr>
<td>99621 Chinese Diagnostic System 2 6cp</td>
</tr>
<tr>
<td>99622 Pharmacology of Traditional Chinese Medicine 6cp</td>
</tr>
<tr>
<td>99579 Chinese Massage (Tuina) 6cp</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Stage 5 – Autumn semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>97111 Chinese Language and Culture 1 8cp</td>
</tr>
<tr>
<td>99623 Chinese Herbal Formulas 8cp</td>
</tr>
<tr>
<td>99624 Clinical Theory and Clinic – Level 3 (over two semesters) 12cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 6 – Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>97211 Chinese Language and Culture 2 8cp</td>
</tr>
<tr>
<td>976111 Contemporary China 8cp</td>
</tr>
<tr>
<td>99626 Microsystems and Advanced Treatment Techniques 8cp</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Stage 7 – Autumn semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>97311 Chinese Language and Culture 3 8cp</td>
</tr>
<tr>
<td>50140 Comparative Social Change 8cp</td>
</tr>
<tr>
<td>99628 Disease States 8cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 8 – Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>974111 Chinese Language and Culture 4 8cp</td>
</tr>
<tr>
<td>99627 Clinical Practicum 8cp</td>
</tr>
<tr>
<td>99590 Special Topics in TCM (Intermodal and Professional) 8cp</td>
</tr>
<tr>
<td>99536 First Aid Certificate course</td>
</tr>
</tbody>
</table>
Undergraduate courses

Bachelor of Medical Science

- **UTS course code:** NH04
- **UAC code:** 607050
- **Testamur title:** Bachelor of Medical Science
- **Abbreviation:** BMedSc
- **Course Director:** Dr Graham Nicholson
- **Course fee:** HECS (local)
 - $7,250 per semester (international)

The Bachelor of Medical Science degree is designed to educate and train graduates for careers in both medical and health-related sciences. Following an initial program of studies in basic science, students specialise in a wide variety of medical and preclinical science areas structured to provide knowledge and understanding of the human body targeting its structure, function and disease processes both at a cellular, whole organ and behavioural level. In the intermediate and final years students will also select elective subjects to provide a major specialised strand. Elective strands will focus on either additional medical science areas such as molecular biology, immunology, haematology and clinical biochemistry or other subjects appropriate to the vocationally oriented course described below.

Employment opportunities

The purpose of the course is to provide students with a degree that equips them to work in pharmaceutical, pathology and biomedical industries; biotechnology companies; medical research in research institutes, hospitals, industry and universities; and other health-related professions at both State and Commonwealth levels. In addition to employment in these areas, graduates will also have the background knowledge and skills that are necessary for entry into graduate medical degrees as well as for preparing them for other vocationally oriented courses in the areas of occupational health and safety, biomedical engineering, nutrition and dietetics, osteopathy, public health and health administration. In addition, Honours, Master’s and Doctoral programs by research are available for graduates who show an aptitude for independent research work.

Year 5

Stage 9 – Autumn semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>977110</td>
<td>In-country Study 1: China</td>
<td>24</td>
</tr>
</tbody>
</table>

Stage 10 – Spring semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>978110</td>
<td>In-country Study 2: China</td>
<td>24</td>
</tr>
</tbody>
</table>

Year 6

Stage 11 – Autumn semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>99584</td>
<td>Clinical Features of Disease</td>
<td>6</td>
</tr>
<tr>
<td>99630</td>
<td>Clinical Practice 1</td>
<td>12</td>
</tr>
<tr>
<td>99629</td>
<td>Chinese Medical Classics</td>
<td>4</td>
</tr>
</tbody>
</table>

Stage 12 – Spring semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>99625</td>
<td>Research Methods</td>
<td>6</td>
</tr>
<tr>
<td>99631</td>
<td>Clinical Practice 2</td>
<td>12</td>
</tr>
<tr>
<td>99591</td>
<td>Practice Management</td>
<td>4</td>
</tr>
</tbody>
</table>

All academic inquiries relating to the Science component of this course should be directed to:

- **Course Director**
 - Mr Chris Zaslawski
 - UTS College of Traditional Chinese Medicine
 - Faculty of Science
 - telephone (02) 9212 7856 or (02) 9514 2500
 - fax (02) 9514 7866
 - email Chris.Zaslawski@uts.edu.au

Any inquiries relating to the International Studies component of this course should be directed to the Institute for International Studies, telephone (02) 9514 1574.

Combined degree students are required to confirm, during the University pre-enrolment and enrolment period, the subjects they intend to take for the year with the Institute at 10 Quay Street, Haymarket, Sydney.
Course structure

The course consists of six stages offered on a full-time attendance basis only. Subjects are divided into core subjects and elective subjects, some of which may form a coherent second major strand. All students enrolled in the course must satisfactorily complete a total of 40 credit points of elective/second major subjects for award of the degree. Students generally choose these subjects with a particular theme or area of expertise in mind, such as a particular area of study, through subjects available within the biological and biomedical sciences, or by way of subjects from other parts of the Faculty of Science or other faculties of UTS including Humanities and Social Sciences; Engineering; Nursing, Midwifery and Health; Business; Law, or the Institute for International Studies. Examples of recommended electives are given in the Elective Options Table for the Biomedical Science and Medical Science courses. Students may be eligible to take a second major in the biomedical science area (provided that they fulfil all of the prerequisites for subjects listed in the recommended biomedical subject strands). Students should also refer to the section on Second Majors in this handbook and consult the Medical Science Course Director for advice on selecting second majors and electives. It should be noted that timetable constraints may prevent the undertaking of some subject combinations.

All academic inquiries should be directed to:
Course Director, Medical Science
Dr Graham Nicholson
Department of Health Sciences
telephone (02) 9514 2230, (02) 9514 2234
fax (02) 9514 2228
e-mail Graham.Nicholson@uts.edu.au

Course program

Stage 1

Autumn semester

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>33101 Mathematics 1 (LS)</td>
<td>3cp</td>
</tr>
<tr>
<td>33106 Statistical Design and Analysis (two semesters)</td>
<td>3cp</td>
</tr>
<tr>
<td>65101 Chemistry 1C</td>
<td>6cp</td>
</tr>
<tr>
<td>91101 Cells, Genetics and Evolution</td>
<td>6cp</td>
</tr>
<tr>
<td>91701 Medical Science 1</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Spring semester

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>33106 Statistical Design and Analysis (two semesters)</td>
<td>3cp</td>
</tr>
<tr>
<td>65201 Chemistry 2C</td>
<td>6cp</td>
</tr>
<tr>
<td>91395 Biocomputing</td>
<td>3cp</td>
</tr>
<tr>
<td>91702 Medical Science 2</td>
<td>6cp</td>
</tr>
<tr>
<td>68041 Physical Aspects of Nature</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Stage 2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91313 Biochemistry 1</td>
<td>6cp</td>
</tr>
<tr>
<td>91703 Physiological Systems</td>
<td>6cp</td>
</tr>
<tr>
<td>xxxx Electives/second major</td>
<td>12cp</td>
</tr>
</tbody>
</table>

Stage 3

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91704 Behavioural Sciences</td>
<td>6cp</td>
</tr>
<tr>
<td>91705 Medical Devices and Diagnostics</td>
<td>6cp</td>
</tr>
<tr>
<td>xxxx Electives/second major</td>
<td>12cp</td>
</tr>
</tbody>
</table>

Stage 4

Autumn semester

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91706 Neuroscience</td>
<td>8cp</td>
</tr>
<tr>
<td>91707 Pharmacology 1</td>
<td>8cp</td>
</tr>
<tr>
<td>xxxx Electives/second major</td>
<td>8cp</td>
</tr>
</tbody>
</table>

Stage 5

Spring semester

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91708 Psychophysiology</td>
<td>8cp</td>
</tr>
<tr>
<td>91709 Pharmacology 2</td>
<td>8cp</td>
</tr>
<tr>
<td>xxxx Electives/second major</td>
<td>8cp</td>
</tr>
</tbody>
</table>
Bachelor of Science (Honours)

- UTS course code: KB04
- Testamur title: Bachelor of Science (Honours)
- Abbreviation: BSc(Hons)
- Course fee: HECS (local) $7,250 per semester (international)

Admission
The Honours course is open to students who possess, or have fulfilled, all the requirements for a three-year Bachelor's degree in Biomedical Science, Biotechnology, Environmental Biology, Environmental and Urban Horticulture or Medical Science from UTS, or equivalent qualification, with at least an average Credit grade in the final two stages of the undergraduate program.

Aims
An Honours program gives basic training in biological or biomedical research. Students may then enter occupations for which an Honours degree is the minimum requirement or continue with postgraduate research.

Attendance patterns and course requirements
The course is offered as a full-time program over two semesters. The research project, which is the major component of the course and extends over both semesters, normally takes the form of an experimental or analytical investigation, undertaken either in the laboratory or in the field. The course also requires students to undertake two critical reviews of the scientific literature in designated areas. The project work is in an area of biomedical science (biochemistry, molecular biology, immunology, pathology or microbiology), biotechnology, physiology (neuro or cardiac), environmental biology (including environmental toxicology and coastal resource management) or urban horticulture, and the results are presented in an oral seminar and in a written report, both of which are formally assessed.

Other information
Information concerning the method of application, starting dates and other relevant matters is provided at the beginning of the Undergraduate Courses section of this handbook.

Course program
Full-time program
Year 1 – Stages 1 and 2
Autumn and Spring semesters
91304 Honours (Biological and Biomedical Sciences) 48cp

Part-time program
Year 1 – Stages 1 and 2
Autumn and Spring semesters
91305 Honours (Biological and Biomedical Sciences) (two years) 24cp
Year 2 – Stages 3 and 4
Autumn and Spring semesters
91305 Honours (Biological and Biomedical Sciences) (two years) 24cp
Bachelor of Science in Biomedical Science

- UTS course code: KB02
- UAC code: 607013
- Testamur title: Bachelor of Science in Biomedical Science
- Abbreviation: BSc
- Course Director: Dr John Swann
- Course fee: HECS (local) $7,250 per semester (international)

All students who commenced before 1997 should refer to previous versions of the handbook, or consult the Course Director or Associate Dean (Coursework Programs).

The Biomedical Science degree consists of an initial program of biology, chemistry, physics, mathematics, statistics and computing followed by microbiology, biochemistry, pathology, immunology and molecular biology. Students then complete the third year of the course by undertaking a number of elective subjects, totalling a minimum of 48 credit points. At least half of these must be biomedical science electives covering more advanced biomedical aspects of the second-year core subjects or introducing a range of important areas of applied biomedical science.

The opportunity also exists for students to undertake a range of second majors or free electives in disciplines outside biomedical science.

The undergraduate training provides a solid background in the physical sciences and emphasises practical experimentation. In the final stages of the course, research activities are encouraged through project assignments. Students acquire familiarity with advanced instruments and technology. They are encouraged to participate in seminar activities. The purpose of the course is to educate people in a number of interface areas between modern technology, biology and medicine.

Employment opportunities

A wide range of employment opportunities is available to graduates. Biomedical scientists work closely with clinical pathologists, surgeons and other medical specialists in the control and elimination of disease. There is a demand for biomedical scientists in the Commonwealth and State health departments, the Repatriation Department, CSIRO, universities, pharmaceutical firms, veterinary laboratories and private pathology laboratories.

Graduates from this course who have completed studies in relevant clinical areas will be eligible for membership of the Australian Institute of Medical Scientists (AIMS). Further advice may be obtained from the Head of the Department of Cell and Molecular Biology.

Course structure

Students can complete the degree in three years full time or six years part time or by a combination of both these attendance patterns. The full-time course may be extended by up to one year for students who elect to take the professional/industrial experience program leading to the additional award of Diploma in Scientific Practice.

Subjects are divided into core subjects and elective subjects, some of which may form a coherent second major strand. All students enrolled in the degree must satisfactorily complete all core subjects for award of the degree and, in addition, must satisfactorily complete the required number of credit points of elective/second major subjects. Students generally choose these subjects with a particular theme or area of expertise in mind. Recommended electives are given in the Elective Options Table for the Biomedical Science and Medical Science courses. Students should also refer to the section on Second Majors in this handbook and consult the Biomedical Science Course Director for advice in selecting second majors and electives. It should be noted that timetable constraints may prevent the undertaking of some elective combinations.

All academic inquiries should be directed to:
Course Director, Biomedical Science
Dr John Swann
Department of Cell and Molecular Biology
telephone (02) 9514 4064
telephone (02) 9514 4026
email John.Swann@uts.edu.au

Full-time program

Stage 1

<table>
<thead>
<tr>
<th>Autumn semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>33101 Mathematics I (LS)</td>
</tr>
<tr>
<td>33106 Statistical Design and Analysis (two semesters)</td>
</tr>
<tr>
<td>65012 Chemistry 1A</td>
</tr>
<tr>
<td>91701 Medical Science 1</td>
</tr>
<tr>
<td>91101 Cells, Genetics and Evolution</td>
</tr>
</tbody>
</table>
Stage 2

Spring semester
33106 Statistical Design and Analysis (two semesters) 3cp
65022 Chemistry 2A 6cp
91395 Biocomputing 3cp
91702 Medical Science 2 6cp
68041 Physical Aspects of Nature1 or
xxxxx Elective/second major 6cp

Stage 3

Autumn semester
91313 Biochemistry 1 6cp
91314 Microbiology 1 6cp
91354 Anatomical Pathology 6cp
xxxxx Elective/second major 6cp
or
68041 Physical Aspects of Nature1 6cp

Stage 4

Spring semester
91320 Biochemistry 2 6cp
91326 Analytical Biochemistry 6cp
91330 Microbiology 2 6cp
xxxxx Elective/second major 6cp

Autumn semester
91313 Biochemistry 1 6cp
91314 Microbiology 1 6cp
91354 Anatomical Pathology 6cp
xxxxx Elective/second major 6cp
or
68041 Physical Aspects of Nature1 6cp

Stage 5

Autumn semester
xxxxx Biomedical Science electives2 16cp
xxxxx Electives/second major 8cp

Stage 6

Spring semester
xxxxx Biomedical Science electives2 8cp
xxxxx Electives/second major 16cp

1 Physical Aspects of Nature may be taken at either Stage 2 or 3.
2 For details of electives available for the Biomedical Science degree, see Elective Options Table for the Biomedical Science and Medical Science courses.

Part-time program

Stage 1

Autumn semester
65012 Chemistry 1A 6cp
91701 Medical Science 1 6cp

Spring semester
65022 Chemistry 2A 6cp
91702 Medical Science 2 6cp

1 Physical Aspects of Nature may be taken at either Stage 2 or 3.
2 For details of electives available for the Biomedical Science degree, see Elective Options Table for the Biomedical Science and Medical Science courses.

Note: The order in which part-time students undertake Stage 3, 4, 5 and 6 subjects, is determined by the fact that subjects are offered in appropriate time slots in alternate years only. Students entering the program in even and odd years will take their preferred combination of subjects in a different sequence.
Recommended subject strands

Completion of any combination of subjects totalling a minimum of 24 credit points from the table of approved biomedical science electives, plus another 24 credit points of electives/second major subjects which may be drawn from the table or from another part of the Faculty or elsewhere in the University, will fulfil the requirements of Stages 5 and 6 of the Biomedical Science degree course. However, it is strongly recommended that students include at least one of the following combinations of subjects in their programs. Each combination constitutes a cohesive strand of study in a particular discipline or related disciplines.

Biochemistry strand

Stage 5
91332 Molecular Biology 1 8cp
91344 Clinical Biochemistry 1 8cp
plus
xxxxx Additional electives 8cp

Stage 6
91335 Molecular Biology 2 8cp
91345 Clinical Biochemistry 2 8cp
plus
xxxxx Additional electives 8cp

Microbiology strand

Stage 5
91331 Microbiology 3 8cp
91332 Molecular Biology 1 8cp
plus
xxxxx Additional electives 8cp

Stage 6
91338 Clinical Bacteriology 8cp
91352 Eukaryotic Microbiology 8cp
plus
xxxxx Additional electives 8cp

Pathology strand

Stage 5
91358 Haematology 2 8cp
91377 Cytopathology (two semesters) 8cp
plus
xxxxx Additional electives 8cp

Stage 6
91340 Transfusion Science 8cp
91377 Cytopathology (two semesters) 8cp
plus
xxxxx Additional electives 8cp

Immunology strand

Stage 5
91332 Molecular Biology 1 8cp
plus
xxxxx Additional electives 16cp

Stage 6
91332 Molecular Biology 2 8cp
91359 Immunology 2 8cp
plus
xxxxx Additional electives 8cp
Elective options for the Biomedical Science and Medical Science courses

<table>
<thead>
<tr>
<th>Subject number</th>
<th>Subject name</th>
<th>Credit points</th>
<th>Seminar A/S</th>
<th>Biomedical Science Recommended stage for subject[^1]</th>
<th>Medical Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>91102</td>
<td>Functional Biology</td>
<td>6</td>
<td>S</td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td>91314</td>
<td>Microbiology 1</td>
<td>6</td>
<td>A</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>91354</td>
<td>Anatomical Pathology</td>
<td>6</td>
<td>A</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>91703</td>
<td>Physiological Systems</td>
<td>6</td>
<td>A</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>91351</td>
<td>Immunology 1</td>
<td>3</td>
<td>S</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>91355</td>
<td>Haematology 1</td>
<td>3</td>
<td>S</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>65410</td>
<td>Chemical Safety & Legislation</td>
<td>6</td>
<td>S</td>
<td>4</td>
<td>N/A</td>
</tr>
<tr>
<td>91320</td>
<td>Biochemistry 2</td>
<td>6</td>
<td>S</td>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>91326</td>
<td>Analytical Biochemistry</td>
<td>6</td>
<td>S</td>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>91330</td>
<td>Microbiology 2</td>
<td>6</td>
<td>S</td>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>91332</td>
<td>Molecular Biology 1</td>
<td>8</td>
<td>A</td>
<td>D 5 0</td>
<td>5</td>
</tr>
<tr>
<td>91344</td>
<td>Clinical Biochemistry 1</td>
<td>8</td>
<td>A</td>
<td>D 5 e</td>
<td>5</td>
</tr>
<tr>
<td>91358</td>
<td>Haematology 2</td>
<td>8</td>
<td>A</td>
<td>D 5 0</td>
<td>5</td>
</tr>
<tr>
<td>91338</td>
<td>Clinical Bacteriology</td>
<td>8</td>
<td>A</td>
<td>D 5 e</td>
<td>5</td>
</tr>
<tr>
<td>91706</td>
<td>Neuroscience</td>
<td>8</td>
<td>A</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>91707</td>
<td>Pharmacology 1</td>
<td>8</td>
<td>A</td>
<td>D 5</td>
<td>C</td>
</tr>
<tr>
<td>91335</td>
<td>Molecular Biology 2</td>
<td>8</td>
<td>S</td>
<td>D 6 o</td>
<td>6</td>
</tr>
<tr>
<td>91340</td>
<td>Transfusion Science</td>
<td>8</td>
<td>S</td>
<td>D 6 o</td>
<td>6</td>
</tr>
<tr>
<td>91345</td>
<td>Clinical Biochemistry 2</td>
<td>8</td>
<td>S</td>
<td>D 6 e</td>
<td>6</td>
</tr>
<tr>
<td>91352</td>
<td>Eukaryotic Microbiology</td>
<td>8</td>
<td>S</td>
<td>D 6 o</td>
<td>6</td>
</tr>
<tr>
<td>91359</td>
<td>Immunology 2</td>
<td>8</td>
<td>S</td>
<td>D 6 e</td>
<td>6</td>
</tr>
<tr>
<td>91709</td>
<td>Pharmacology 2</td>
<td>8</td>
<td>S</td>
<td>D 6</td>
<td>C</td>
</tr>
<tr>
<td>91377</td>
<td>Cytopathology</td>
<td>16</td>
<td>Full year</td>
<td>D 5 & 6</td>
<td>5 & 6</td>
</tr>
<tr>
<td>91398</td>
<td>Special Reading Assignment[^2]</td>
<td>4</td>
<td>A&S</td>
<td>5 or 6</td>
<td>5 or 6</td>
</tr>
<tr>
<td>91399</td>
<td>Individual Project LS[^2]</td>
<td>8</td>
<td>A&S</td>
<td>5 or 6</td>
<td>N/A</td>
</tr>
<tr>
<td>xxxxx</td>
<td>Miscellaneous elective[^3]</td>
<td>4/8</td>
<td>A&S</td>
<td>5 or 6</td>
<td>5 or 6</td>
</tr>
</tbody>
</table>

[^1]: The Stage 5 and 6 subjects marked (o) will run in part-time mode in odd years only; those marked (e) will run in part-time mode in even years only. All electives are offered in full-time mode every year.

[^2]: Supervision form must be completed and approved by the relevant Course Director.

[^3]: This may include subjects from other courses within the biological and biomedical sciences, subjects from another UTS school or faculty, or subjects from another university undertaken on a concurrent study basis, e.g. Viruses and Disease at University of NSW. Appropriate subjects from other universities may be counted as designated 3rd year electives for Biomedical Science if approved by the Course Director.

Note: Subjects recommended for particular stages may be undertaken by part-time students when programmable provided the prerequisites are met. Owing to timetable constraints, not all electives may be available to students in any given semester.
Bachelor of Science in Biotechnology

- UTS course code: KB06
- UAC code: 607033
- Testamur title: Bachelor of Science in Biotechnology
- Abbreviation: BSc
- Course Director: Associate Professor Kevin Broady
- Course fee: HECS (local) $7,250 per semester (international)

All students who commenced before 1997 should refer to previous versions of the handbook, or consult the Course Director or Associate Dean (Coursework Programs).

The UTS Bachelor of Science degree in Biotechnology provides you with a professional qualification in biological science with emphasis on DNA technology and its applications, and a firm basis in the industrial aspects of biotechnology.

The course in Biotechnology involves a thorough grounding in biochemistry, microbiology, immunology and molecular biology; these are the principal areas which together comprise the multidisciplinary science that we now term 'Biotechnology'. The methods of biotechnology find application in almost every area of biological and medical sciences. To take just a few examples, areas as diverse as the development of new vaccines and therapeutic substances, the study of early human populations, improving the quality of foods and beverages, pest control in agriculture, and studies of the causation of cancer, all make use of the methods of biotechnology.

Employment opportunities

Today's biotechnologist has an expanding variety of career opportunities, and graduates from this degree can expect to find employment opportunities in the food, beverage, chemical, pharmaceutical and fermentation industries, particularly in production, quality control, or research and development areas. These industries depend on a high level of professional competence in standard techniques of microbiology and biochemistry. An increasing number of products involve the application of some of the molecular or other aspects of biotechnology in their manufacture. Good employment opportunities also exist with State and Federal Government scientific instrumentalities, and in research and other laboratories in tertiary institutions, hospitals and industry. In recent years a number of smaller, specialised development and consulting companies have developed from biotechnology research programs. These organisations require graduates with a strong grounding in biotechnology and applied microbiology. Many employers in the biotechnology field, being themselves active in research and development, have close links with tertiary education institutions, and can offer graduates the possibility of higher degree studies in conjunction with employment.

Course structure

Students can complete the degree in three years full time or six years part time or by a combination of both these attendance patterns. The full-time course may be extended by up to one year for students who elect to take the professional / industrial experience program leading to the additional award of the Diploma in Scientific Practice.

Subjects are divided into core subjects and elective or second major subjects. For the award of the degree students must satisfactorily complete all core subjects and 28 credit points of elective or second major subjects. Elective subjects may be combined to form a cohesive strand comprising either subjects allied to biotechnology or a second major in a field of interest to the student. Examples of appropriate combinations of elective / second major subjects are given following the course structure outline.

The second major may consist entirely of subjects chosen from the Elective Options Table for the Biotechnology Course, or other subjects from the Faculty of Science. Some students may wish to undertake subjects from other faculties or institutes of UTS such as Business or Law or, with the approval of the Biotechnology Course Director, subjects from other universities. The Biotechnology Course Director can advise students on selection of second majors and electives.

All academic inquiries should be directed to:
Course Director
Associate Professor Kevin Broady
Department of Cell and Molecular Biology
telephone (02) 9514 4101
fax (02) 9514 4026
email Kevin.Broady@uts.edu.au
Full-time program

Stage 1

Autumn semester
- 33101 Mathematics 1 (LS) 3cp
- 33106 Statistical Design and Analysis (two semesters) 3cp
- 65012 Chemistry 1A 6cp
- 91101 Cells, Genetics and Evolution 6cp
- 91701 Medical Science 1 6cp

Spring semester
- 33106 Statistical Design & Analysis (two semesters) 3cp
- 65022 Chemistry 2A 6cp
- 91702 Medical Science 2 6cp
- 68041 Physical Aspects of Nature or
 - xxxxx Elective/second major 6cp

Stage 2

Autumn semester
- 91101 Cells, Genetics and Evolution 6cp

Spring semester
- 91128 Plant Biotechnology 3cp

Stage 3

Autumn semester
- 91313 Biochemistry 1 6cp
- 91314 Microbiology 1 6cp
- 9142 Biotechnology 6cp
- xxxxx Elective/second major 6cp
- 68041 Physical Aspects of Nature 6cp

Spring semester
- 91320 Biochemistry 2 6cp
- 91326 Analytical Biochemistry 6cp
- 91351 Immunology 1 3cp
- 91128 Plant Biotechnology 3cp
- xxxxx Electives 6cp

Stage 4

Autumn semester
- 91332 Molecular Biology 1 8cp
- 91369 Biobusiness and Environmental Biotechnology 8cp
- xxxxx Elective/second major 8cp

Spring semester
- 91335 Molecular Biology 2 8cp
- 91368 Bioreactors and Bioprocessing 8cp
- xxxxx Elective/second major 8cp

1. Physical Aspects of Nature may be taken at either Stage 2 or Stage 3.
2. See Elective Options Table for the Biotechnology course details of suitable electives offered by Faculty of Science.

Part-time program

Stage 1

Autumn semester
- 65012 Chemistry 1A 6cp
- 91701 Medical Science 1 6cp

Spring semester
- 65022 Chemistry 2A 6cp
- 91702 Medical Science 2 6cp

Stage 2

Autumn semester
- 33101 Mathematics 1 (LS) 3cp
- 33106 Statistical Design and Analysis (two semesters) 3cp
- 91101 Cells, Genetics and Evolution 6cp

Spring semester
- 33106 Statistical Design and Analysis (two semesters) 3cp
- 91395 Biocomputing 3cp
- 68041 Physical Aspects of Nature or
 - xxxxx Elective/second major 6cp

Stages 3 and 4 - in 2001 and odd years

Autumn semester
- 91314 Microbiology 1 6cp
- 91142 Biotechnology 6cp

Spring semester
- 91351 Immunology 1 3cp
- 91128 Plant Biotechnology 3cp
- xxxxx Electives 6cp

Stages 3 and 4 - in 2002 and even years

Autumn semester
- 91313 Biochemistry 1 6cp
- xxxxx Elective/second major 6cp
- 68041 Physical Aspects of Nature 6cp

Spring semester
- 91320 Biochemistry 2 6cp
- 91326 Analytical Biochemistry 6cp

Stage 5

Autumn semester
- 91332 Molecular Biology 1 8cp
- xxxxx Elective/second major 8cp

Spring semester
- 91335 Molecular Biology 2 8cp

1. Physical Aspects of Nature may be taken at either Stage 2 or Stage 3.
2. See Elective Options Table for the Biotechnology course details of suitable electives offered by Faculty of Science.
Stage 6

Autumn semester
91369 Biobusiness and Environmental Biotechnology 8cp

Spring semester
91368 Bioreactors and Bioprocessing 8cp
xxxx Electives1/second major 8cp

1 See Elective Options Table for the Biotechnology course details of suitable electives offered by Faculty of Science.

Note: Some core subjects and electives for part-time students are offered in alternate years only. Students entering the program in odd and even years will take their core subjects and electives in a different sequence. The order in which part-time students undertake Stage 3, 4, 5 and 6 subjects is determined by the fact that subjects are offered in appropriate time slots in alternate years only.

Recommended subject strands
Each student chooses 28 credit points of electives which may be drawn from the Elective Options Table for the Biotechnology course, from another part of the Faculty, from other faculties in the University or from other universities by an approved concurrent study program. A variety of subject combinations may be chosen, appropriate to a wide range of career options.

Some examples of elective groupings are given below.

Medical Biotechnology (Immunology or Microbiology)
91703 Physiological Systems 6cp
91330 Microbiology 2 6cp
91338 Clinical Bacteriology 8cp
91359 Immunology 2 8cp
or
91352 Eukaryotic Microbiology 8cp
or
UNSW Viruses and Disease 8cp

Medical Biotechnology (Biochemistry or Pharmacology)
91703 Physiological Systems 6cp
91330 Microbiology 2 6cp
91344 Clinical Biochemistry 1 8cp
or
91707 Pharmacology 1 8cp
91345 Clinical Biochemistry 2 8cp
or
91709 Pharmacology 2 8cp

In addition, a number of the optional second majors, listed separately in this handbook provide appropriate study programs to be taken in conjunction with the Biotechnology degree course. The following second majors may be worthy of consideration for Biotechnology students having specific career interests:

• Neurophysiology
• Small and Medium Enterprise Management
• Public Communication.

It should be noted that timetable constraints might prevent the undertaking of some combinations of core and elective subjects in a particular semester. The inclusion of subjects presented by another faculty or at a different campus requires close attention to timetabling.
Elective options table for the Biotechnology course (Biological, Biomedical and Environmental Science subjects)

<table>
<thead>
<tr>
<th>Subject number</th>
<th>Subject name</th>
<th>Credit points</th>
<th>Seminar A/S</th>
<th>Recommended stage for subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>91102</td>
<td>Functional Biology</td>
<td>6</td>
<td>S</td>
<td>2</td>
</tr>
<tr>
<td>91703</td>
<td>Physiological Systems</td>
<td>6</td>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>91311</td>
<td>Pollution Assessment</td>
<td>6</td>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>91233</td>
<td>Plant Production and Growth Media</td>
<td>6</td>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>91330</td>
<td>Microbiology 2</td>
<td>6</td>
<td>S</td>
<td>4 o</td>
</tr>
<tr>
<td>91704</td>
<td>Behavioural Sciences</td>
<td>6</td>
<td>S</td>
<td>4</td>
</tr>
<tr>
<td>91237</td>
<td>Plant Pathology</td>
<td>6</td>
<td>S</td>
<td>4</td>
</tr>
<tr>
<td>91121</td>
<td>Aquatic Ecology</td>
<td>6</td>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>91270</td>
<td>Plant Physiology</td>
<td>6</td>
<td>A</td>
<td>3 or 5</td>
</tr>
<tr>
<td>91338</td>
<td>Clinical Bacteriology</td>
<td>8</td>
<td>A</td>
<td>5 e</td>
</tr>
<tr>
<td>91707</td>
<td>Pharmacology 1</td>
<td>8</td>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>91706</td>
<td>Neuroscience</td>
<td>8</td>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>91344</td>
<td>Clinical Biochemistry 1</td>
<td>8</td>
<td>A</td>
<td>5 e</td>
</tr>
<tr>
<td>91114</td>
<td>Toxicity Assessment</td>
<td>6</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>91117</td>
<td>Freshwater Ecology</td>
<td>6</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>91249</td>
<td>Plant Genetics and Breeding</td>
<td>6</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>91113</td>
<td>Pollution Ecology</td>
<td>6</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>91352</td>
<td>Eukaryotic Microbiology</td>
<td>8</td>
<td>S</td>
<td>6 o</td>
</tr>
<tr>
<td>91399</td>
<td>Immunology 2</td>
<td>8</td>
<td>S</td>
<td>6 e</td>
</tr>
<tr>
<td>91709</td>
<td>Pharmacology 2</td>
<td>8</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>91345</td>
<td>Clinical Biochemistry 2</td>
<td>8</td>
<td>S</td>
<td>6 e</td>
</tr>
<tr>
<td>91708</td>
<td>Psychophysiology</td>
<td>8</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>91122</td>
<td>Environmental Management</td>
<td>6</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>91398</td>
<td>Special Reading Assignment</td>
<td>4</td>
<td>A&S</td>
<td>5 or 6</td>
</tr>
<tr>
<td>91399</td>
<td>Individual Project LS</td>
<td>8</td>
<td>A&S</td>
<td>5 or 6</td>
</tr>
<tr>
<td>xxxxx</td>
<td>Miscellaneous elective</td>
<td>4/6/8</td>
<td>A&S</td>
<td>3–6</td>
</tr>
</tbody>
</table>

A = Timetabled in Autumn semester
S = Timetabled in Spring semester
LS = Life Sciences

1. The subjects marked (o) will run in part-time mode in odd years only; those marked (e) will run in part-time mode in even years only. All electives are offered in full-time mode every year.

2. Supervision form must be completed and approved by the relevant Course Director.

3. This may include subjects from other courses within the biological and biomedical sciences, subjects from another UTS school or faculty, or subjects from another university undertaken on a concurrent study basis: e.g. Viruses and Disease at University of NSW.

Note: Subjects recommended for particular stages may be undertaken by part-time students when programmable provided the prerequisites are met. Owing to timetable constraints and student numbers, not all electives may be available to students in any given semester.
Bachelor of Science in Earth and Environmental Science

- UTS course code: NG05
- UAC code: 607155
- Testamur title: Bachelor of Science in Earth and Environmental Science
- Abbreviation: BSc
- Course Director: Associate Professor Greg Skilbeck
- Course fee: HECS (local) $7,250 per semester (international)

All students who commenced before 1997 should refer to previous versions of the handbook, or consult the Course Director or Associate Dean (Coursework Programs).

The Bachelor of Science in Earth and Environmental Science program is designed for students seeking careers as professional geoscientists or environmental scientists. The basic award for successful completion of the new course is Bachelor of Science.

The course consists of six stages of formal academic study and students also have the opportunity to undertake a professional/industrial experience program leading to the additional award of Diploma in Scientific Practice. The course begins with a study of basic chemistry, physics, biology, mathematics, computing, statistical design and analysis, and earth science, followed by a general training in field techniques, igneous, metamorphic and sedimentary origins, structural and resource geology. Geophysics, remote sensing and tectonics are studied during the later part of the program in association with exploration, resource, engineering and environmental geology, quaternary geology and Earth dynamics. In addition, specialised earth science subjects are available through the Sydney Universities Consortium of Geology and Geophysics (SUCOGG).

Concurrently with these studies in earth science, students undertake a second major in environmental studies which comprises a sequence of subjects including ecological sampling and experimentation, Australian biota and environmental management. These complementary studies are aimed at ensuring that the course produces graduates in earth science who also have a sound knowledge and awareness of environmental issues and practices to assist them in their professional careers. Students who already hold approved credentials in environmental science may be permitted to undertake a second major in another field of study. There is also an opportunity to undertake complementary study in civil and environmental engineering, chemistry and physics.

Although the course may be completed by three years of full-time attendance if the professional/industrial experience component is not taken, all students are strongly encouraged to undertake the industrial experience program. Hence, the common course patterns are four years of full-time enrolment, including one year of industrial experience; or six years of part-time attendance while concurrently employed full time in a relevant geological field; or alternating periods of full-time study with similar periods of full-time relevant employment.

All students are encouraged to consult the departmental website at: www.science.uts.edu.au/depts/des/desees.html

Full-time attendance involves approximately 24 hours each week at the University; this enables a full stage of the course to be completed in one semester.

Part-time attendance involves about 12 hours each week at the University; with this form of attendance the equivalent of a full stage may be completed in one year. It is expected that employers will release part-time students for at least one half-day per week for attendance at classes. Students commonly attend the University for one half-day and three evenings each week, or for two half-days and two evenings each week.

All academic inquiries should be directed to:
Course Director
Earth and Environmental Science
Associate Professor Greg Skilbeck
Department of Environmental Sciences
telephone (02) 9514 1760
done (02) 9514 1755
e-mail Greg.Skilbeck@uts.edu.au

Full-time program
Stage 1

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th>33101 Mathematics 1 (LS)</th>
<th>3cp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33106 Statistical Design and Analysis (two semesters)</td>
<td>3cp</td>
</tr>
<tr>
<td></td>
<td>66101 Earth Science 1</td>
<td>6cp</td>
</tr>
<tr>
<td></td>
<td>65012 Chemistry 1A</td>
<td>6cp</td>
</tr>
<tr>
<td></td>
<td>91101 Cells, Genetics and Evolution</td>
<td>6cp</td>
</tr>
</tbody>
</table>
Stage 2

Spring semester
- 33106 Statistical Design and Analysis
 (two semesters) 3cp
- 66204 Field Studies 1 6cp
- 65022 Chemistry 2A 6cp
- 91102 Functional Biology\(^1\) 6cp
- 91395 Biocomputing 3cp

Autumn semester
- 66304 Earth Materials 6cp
- 66305 Fold Belts and Cratons 6cp
- 68041 Physical Aspects of Nature 6cp
- 91110 Experimental Design and Sampling\(^1\) 6cp

Stage 3

Spring semester
- 66408 Earth Resources 6cp
- 66409 Surficial Processes and Products 6cp
- 66510 Geophysics 6cp
 \(\text{either}\)
- 91112 Ecological Principles and Modelling 6cp
 \(\text{or}\)
- 91309 Australian Biota\(^1\) 6cp

Stage 4

Spring semester
- 66609 Environmental and Quaternary Geology 6cp
- 66611 Engineering and Groundwater Geology 6cp
- 91122 Environmental Management 6cp
- \(\text{xxxxxxx Elective}^2\) 6cp

Stage 5

Autumn semester
- 91120 Mapping and Remote Sensing 6cp
- 66305 Fold Belts and Cratons 6cp
- 91110 Experimental Design and Sampling 6cp

Spring semester
- 66409 Surficial Processes and Products 6cp
- 66510 Geophysics 6cp

Stage 6

Autumn semester
- 91120 Mapping and Remote Sensing 6cp
- 66508 Crustal and Mantle Processes 6cp

Spring semester
- 66609 Environmental and Quaternary Geology 6cp
 \(\text{xxxxxxx Elective}^2\) 6cp

\(^1\) These are second major subjects.

\(^2\) Students may choose any subject from within the Department, Faculty or University provided they meet the pre- or corequisite requirements. Students in Earth and Environmental Sciences are strongly recommended to enrol in 66612 Geological Mapping.
Stage 6

Autumn semester

- 66509 Tectonics and Surface Dynamics 6cp
- 91119 Terrestrial Ecosystems 6cp
- 91121 Aquatic Ecology 6cp

Spring semester

- 66611 Engineering and Groundwater Geology 6cp
- 91122 Environmental Management 6cp

Sydney Universities Consortium of Geology and Geophysics (SUCOGG)

Through a cooperative agreement between the four metropolitan universities teaching geosciences, students are able to choose electives from a range of honours level specialist subjects. These subjects are offered in a variety of flexible modes (field-based, short course) with coursework usually timetabled for Thursdays and Fridays during the first half of each year. A subject will only be offered if the staff member(s) listed is (are) available and sufficient students (usually a minimum of 8-10) enrol. Students are required to advise both the Department of Environmental Sciences Honours Coordinator and the nominated Subject Coordinator of their intention to enrol, before the end of the second week of semester. Contact details for SUCOGG subject coordinators are given in the Subject Descriptions section of this handbook.

- 66651 Convergent Margin Tectonics 3cp
- 66653 Applied Clastic Basin Analysis 3cp
- 66941 Applied Palaeontology 3cp
- 66942 Paleobiology Part I 3cp
- 66943 Coastal Environmental Assessments 3cp
- 66944 Coal Exploration and Mining Geology 3cp
- 66947 Carbonates in Petroleum Exploration 3cp
- 66949 Palaeobiology Part II 3cp
- 66950 Geochemical Analysis Techniques and Applications 3cp
- 66952 An Introduction to Phase Diagrams and Thermobarometry 3cp
- 66953 Interpretation of 2D and 3D Seismic Reflection Data 3cp
- 66954 Processing of Seismic Reflection and Ground Penetrating Radar Data 3cp
- 66955 Geological and Structural Interpretation of Potential Field Data 3cp
- 66956 Deformation Processes 3cp
- 66957 Introduction to Geostatistical Data Analysis 3cp

Bachelor of Science (Honours) in Geoscience

- UTS course code: NG06
- Testamur title: Bachelor of Science (Honours) in Geoscience
- Abbreviation: BSc(Hons)
- Course Director: Dr Graziella Caprarelli
- Course fee: HECS (local) $7,250 per semester (international)

Bachelor of Science (Honours) in Environmental Science

- UTS course code: NG07
- Testamur title: Bachelor of Science (Honours) in Environmental Science
- Abbreviation: BSc(Hons)
- Course Director: Dr Graziella Caprarelli
- Course fee: HECS (local) $7,250 per semester (international)

Both of these Honours programs are one-year full-time courses, or equivalent part time, which are taken after completing the Bachelor of Science in Earth and Environmental Science or an equivalent course with an average grade of at least Credit over the final third of the course. The Honours degrees offer basic training in research and introduce students to advanced areas of study in either geoscience or environmental science. The major component is a supervised individual research project which extends over the full duration of the course and normally takes the form of an experimental or analytical investigation undertaken in the laboratory or the field.

Entry requirements and further details are provided in the general introduction to the Undergraduate Courses section of this handbook.

Students wishing to undertake Honours in 2001 should contact the Head of Department for advice concerning projects available and the pattern of Honours most suitable for them, and consult the student noticeboards in the Department of Environmental Sciences for details of available projects and supervisors.
Bachelor of Science (Honours) in Geoscience – full-time program

Stage 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>66854</td>
<td>Honours (Geoscience) (two semesters)</td>
<td>24cp</td>
</tr>
</tbody>
</table>

Stage 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>66854</td>
<td>Honours (Geoscience) (two semesters)</td>
<td>24cp</td>
</tr>
</tbody>
</table>

Bachelor of Science (Honours) in Environmental Science – full-time program

Stage 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>66855</td>
<td>Honours (Environmental Science) (two semesters)</td>
<td>24cp</td>
</tr>
</tbody>
</table>

Stage 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>66855</td>
<td>Honours (Environmental Science) (two semesters)</td>
<td>24cp</td>
</tr>
</tbody>
</table>

Bachelor of Science in Environmental Biology

- UTS course code: K805
- UAC code: 607023
- Testamur title: Bachelor of Science in Environmental Biology
- Abbreviation: BSc
- Course Director: Dr Richard Lim
- Course fee: HECS (local) $7,250 per semester (international)

Since 2000, all subjects in this degree will be worth 6 credit points with the exception of Mathematics 1 and Biocomputing. Students who commenced their studies before 1999 should carefully read the Subject Descriptions section in this handbook and must consult with the Course Director before choosing a final program. The names and numbers of some subjects have changed and students need to be aware of these. All students are encouraged to consult the departmental website at: www.science.uts.edu.au/depts/des/deseb.html

The Bachelor of Science in Environmental Biology is fully recognised for membership of the Australian Institute of Biology Inc. and fully qualifies graduates as biological scientists with specialisation in environmental science. The course provides a degree in biological science and the advanced technological skills to tackle complex environmental problems, such as an ability to apply sampling and measurement methods for such purposes as pollution monitoring or the preparation of environmental assessments. After foundation studies in the basic sciences, students will specialise in the ecology and physiology of plants, animals and microorganisms, and in freshwater, marine and terrestrial ecosystems. Since 2006, several specialised second majors are available (see Course structure section).

During their studies students will have the opportunity to take part in field trips to many parts of eastern Australia, for example, north and south coast areas, Snowy Mountains, Murrumbidgee Irrigation Area, the far west, Jervis Bay and Heron Island. Students should note, however, that excursions for field study elective subjects may be held in the weeks prior to semester and in other non-teaching weeks of the year, including weekends. The major field trips are elective subjects listed separately below. The timetable for field trips scheduled to run in 2001 will be available prior to enrolment in late 2000.

Employment opportunities

Graduates of the course may be employed as scientific officers with government agencies such as the Sydney Water, Environment Protection Authority, Departments of Urban Affairs and Planning, Land and Water Conservation, Fisheries, National Parks and Wildlife Service, museums and herbaria; with local government authorities; or as technical and research officers with universities and colleges; or as environmental consultants, or environmental, toxicological or biological scientists in private enterprise. Many organisations provide opportunities for graduates to undertake research projects for a higher degree in the Faculty.

Course structure

Students can complete the degree in three years of full-time or six years of part-time attendance (see below) or by a combination of both attendance patterns. The full-time course may be extended by up to one year for students who elect to take the professional/industrial experience program leading to the award of a Diploma in Scientific Practice.

The Environmental Biology degree is divided into a major area of study, consisting of core environmental biology (72 credit points) and core support mathematics, statistics, computing, chemistry (30 credit points) subjects, and a second major or other elective area of study (comprising 42 credit points). Four specialist
second majors are available to students studying a major in environmental biology: Pollution Ecology, Wildlife Ecology, Freshwater Ecology or Coastal and Marine Sciences. The subject program for each of these is indicated below. Students should be aware that second majors in other science degree programs (listed later in this handbook), or any combination of subjects from within the University, can alternatively be studied to complete the 42 credit points outside the major area. Elective subjects can be chosen from any program elsewhere within the Department, Faculty or University, provided students can satisfy the prerequisites.

Students are strongly advised to consult with the Course Director, Environmental Biology, for advice on subject and second major selection.

All academic inquiries should be directed to:
Course Director, Environmental Biology
Dr Richard Lim
Department of Environmental Sciences
telephone (02) 9514 4037
fax (02) 9514 4079
e-mail Richard.Lim@uts.edu.au

Full-time major program

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Autumn semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>33101 Mathematics 1 (LS)</td>
<td>3cp</td>
</tr>
<tr>
<td>33106 Statistical Design and Analysis (two semesters)</td>
<td>3cp</td>
</tr>
<tr>
<td>65012 Chemistry 1A</td>
<td>6cp</td>
</tr>
<tr>
<td>91101 Cells, Genetics and Evolution</td>
<td>6cp</td>
</tr>
<tr>
<td>xxxx Elective/second major</td>
<td>6cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 2</th>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>33106 Statistical Design and Analysis (two semesters)</td>
<td>3cp</td>
</tr>
<tr>
<td>65022 Chemistry 2A</td>
<td>6cp</td>
</tr>
<tr>
<td>91102 Functional Biology</td>
<td>6cp</td>
</tr>
<tr>
<td>91395 Biocomputing</td>
<td>3cp</td>
</tr>
<tr>
<td>xxxx Elective/second major</td>
<td>6cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 3</th>
<th>Autumn semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>91110 Experimental Design and Sampling</td>
<td>6cp</td>
</tr>
<tr>
<td>91111 Pollution Assessment</td>
<td>6cp</td>
</tr>
<tr>
<td>91270 Plant Physiology</td>
<td>6cp</td>
</tr>
<tr>
<td>xxxx Elective/second major</td>
<td>6cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 4</th>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>91112 Ecological Principles and Modelling</td>
<td>6cp</td>
</tr>
<tr>
<td>91309 Australian Biota</td>
<td>6cp</td>
</tr>
<tr>
<td>91363 Animal Ecophysiology</td>
<td>6cp</td>
</tr>
<tr>
<td>xxxx Elective/second major</td>
<td>6cp</td>
</tr>
<tr>
<td>91119 Terrestrial Ecosystems</td>
<td>5cp</td>
</tr>
<tr>
<td>91120 Mapping and Remote Sensing</td>
<td>6cp</td>
</tr>
<tr>
<td>91121 Aquatic Ecology</td>
<td>6cp</td>
</tr>
<tr>
<td>xxxx Elective/second major</td>
<td>6cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 6</th>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>91122 Environmental Management</td>
<td>6cp</td>
</tr>
<tr>
<td>79004 Environmental Law and Science</td>
<td>6cp</td>
</tr>
<tr>
<td>xxxx Elective/second major</td>
<td>6cp</td>
</tr>
<tr>
<td>xxxx Elective/second major</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Part-time major program

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Autumn semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>65012 Chemistry 1A</td>
<td>6cp</td>
</tr>
<tr>
<td>91101 Cells, Genetics and Evolution</td>
<td>6cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 2</th>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>33106 Statistical Design and Analysis (two semesters)</td>
<td>3cp</td>
</tr>
<tr>
<td>91395 Biocomputing</td>
<td>3cp</td>
</tr>
<tr>
<td>xxxx Elective/second major</td>
<td>6cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 3</th>
<th>Autumn semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>91110 Experimental Design and Sampling</td>
<td>6cp</td>
</tr>
<tr>
<td>91270 Plant Physiology</td>
<td>6cp</td>
</tr>
<tr>
<td>91112 Ecological Principles and Modelling</td>
<td>6cp</td>
</tr>
<tr>
<td>91309 Australian Biota</td>
<td>6cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 4</th>
<th>Autumn semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>91111 Pollution Assessment</td>
<td>6cp</td>
</tr>
<tr>
<td>xxxx Elective/second major</td>
<td>6cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 5</th>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>91122 Environmental Management</td>
<td>6cp</td>
</tr>
<tr>
<td>xxxx Elective/second major</td>
<td>6cp</td>
</tr>
<tr>
<td>xxxx Elective/second major</td>
<td>6cp</td>
</tr>
</tbody>
</table>
Stage 5

Autumn semester
- 91119 Terrestrial Ecosystems 6cp
- 91120 Mapping and Remote Sensing 6cp

Spring semester
- 79004 Environmental Law and Science 6cp
- 91122 Environmental Management 6cp

Stage 6

Autumn semester
- 91121 Aquatic Ecology 6cp
- xxxxx Elective/second major 6cp

Spring semester
- xxxxx Electives/second major 12cp

Full-time electives/second major in Pollution Ecology

Stage 1

Autumn semester
- either
 - 66101 Earth Science 1 6cp
 - 68041 Physical Aspects of Nature 6cp
 - 91246 Plant Structure, Function and Culture 6cp

Spring semester
- either
 - 66204 Field Studies 1 6cp
 - 68041 Physical Aspects of Nature 6cp
 - 68201 Physics in Action (Physics 2) 6cp

Stage 2

Autumn semester
- 91313 Biochemistry 1 6cp

Stage 4

Spring semester
- 91114 Toxicity Assessment 6cp

Stage 5

Spring semester
- either
 - 91113 Pollution Ecology 6cp
 - 91117 Freshwater Ecology 6cp
- xxxxx Elective 6cp

1 Students may choose any subject from within the Department, Faculty or University provided they meet the pre- or corequisite requirements.

Undergraduate courses

Autumn semester
- 66101 Earth Science 1 6cp
- 68041 Physical Aspects of Nature 6cp
- 91246 Plant Structure, Function and Culture 6cp

Spring semester
- 66204 Field Studies 1 6cp
- 68041 Physical Aspects of Nature 6cp
- 68201 Physics in Action (Physics 2) 6cp

Autumn semester
- 91116 Wildlife Ecology 6cp

Spring semester
- 91113 Pollution Ecology 6cp
- 91117 Freshwater Ecology 6cp
- xxxxx Elective 6cp

1 Students may choose any subject from within the Department, Faculty or University provided they meet the pre- or corequisite requirements.
Full-time electives/second major in Freshwater Ecology

Stage 1

Autumn semester

- either
 - 66101 Earth Science 1 6cp
 - or
 - 68041 Physical Aspects of Nature 6cp
 - or
 - 91246 Plant Structure, Function and Culture 6cp

Stage 2

Spring semester

- either
 - 66204 Field Studies 1 6cp
 - or
 - 68041 Physical Aspects of Nature 6cp
 - or
 - 68201 Physics in Action (Physics 2) 6cp

Stage 3

Autumn semester

- 91314 Microbiology 1 6cp

Stage 4

Spring semester

- 91114 Toxicity Assessment 6cp

Stage 5

Autumn semester

- 91118 Fisheries Resources 6cp

Stage 6

Spring semester

- 91117 Freshwater Ecology 6cp
- xxxxx Elective 1 6cp

Full-time electives/second major in Coastal and Marine Sciences

Stage 1

Autumn semester

- 66101 Earth Science 1 6cp

Stage 2

Spring semester

- 66204 Field Studies 1 6cp

Stage 3

Autumn semester

- xxxxx Elective 1 6cp

Stage 4

Spring semester

- 98711 Coastal Resource Policy 6cp

Stage 5

Autumn semester

- 91118 Fisheries Resources 6cp

Stage 6

Spring semester

- 98708 Risk Assessment and Management 6cp
- xxxxx Elective 1 6cp

1 Students may choose any subject from within the Department, Faculty or University provided they meet the pre- or corequisite requirements. However, students undertaking the electives/second major in Coastal and Marine Science are strongly recommended to enrol in 91124 Coastal and Marine Ecology and 91126 Coral Reef Ecosystems.

Elective field subjects in the Department of Environmental Sciences

- 66612 Geological Mapping 6cp
- 91124 Coastal and Marine Ecology 6cp
- 91126 Coral Reef Ecosystems 6cp
- 91370 Semi-Arid Ecology 6cp
- 91371 Mountain Ecology 6cp
Bachelor of Science in Environmental and Urban Horticulture

- UTS course code: KB03
- UAC code: 607043
- Testamur title: Bachelor of Science in Environmental and Urban Horticulture
- Abbreviation: BSc
- Course Director: Dr Lou DeFilippis
- Course fee: HECS (local) $7,250 per semester (international)

Since 2000, all subjects in this degree will be worth 6 credit points, with the exception of Mathematics 1 and Biocomputing. Students who commenced their studies before 1999 should carefully read the Subject Descriptions section in this handbook and must consult with the Course Director before choosing a final program. The names and numbers of some subjects have changed and students need to be aware of these. All students are encouraged to consult the departmental website at:

The Bachelor of Science in Environmental and Urban Horticulture is fully recognised for membership of the Australian Institute of Biology Inc. and the Australian Institute of Horticulture Inc. as a professional qualification in plant sciences and as a specialist qualification in ornamental and amenity, landscape and environmental horticulture.

The course provides students with a sound background in plant science and horticultural management. After introductory studies in horticulture and foundation studies in the basic sciences, students will specialise in plant science. Areas studied include plant structure, physiology, ecology and genetics. As there is a particular emphasis on ornamental and amenity horticulture, students also undertake studies in plant cultivation, protection, breeding, and Australian plants. Horticultural management is studied in relation to plant production systems and open space areas.

Excursions will be undertaken in the Sydney metropolitan area and in other parts of the state. Students should note that excursions for field study elective subjects may be held in the weeks prior to semester and in other non-teaching weeks of the year, including weekends. The timetable for field trips scheduled to run in 2001 will be available prior to enrolment in late 2000.

Employment opportunities

Graduates of the course are in increasing demand as professional horticulturists. As an urban horticulturist you might be a researcher in a plant sciences laboratory; work on the selection and breeding of new ornamental varieties, including Australian native species; be responsible for the planning and management of nursery production, park and recreation areas; or be responsible for the revegetation and management of natural areas disturbed by human impact. Many graduates also enter universities and research organisations.

Course structure

Students can complete the degree in three years of full-time or six years of part-time attendance (see below) or by a combination of both attendance patterns. The full-time course may be extended by up to one year for students who elect to take the professional/industrial experience program leading to the award of a Diploma in Scientific Practice.

Since 2000, the Environmental and Urban Horticulture degree is divided into a major area of study, consisting of core horticulture (72 credit points) and core support (mathematics, statistics, computing, chemistry) (30 credit points) subjects, and a second major or other elective area of study (comprising 42 credit points). The recommended electives/second major for Environmental and Urban Horticulture students is in Environmental Biology and this is the program shown below. Students should be aware, however, that electives/second majors in other science degree programs (listed later in this handbook), or any combination of subjects from within the University, can alternatively be studied to complete the 42 credit points outside the major area. An electives/second major in either Molecular Biology or Microbiology (see the Second Majors section of this handbook) would be a suitable alternative to the Environmental Biology option. Elective subjects can be chosen from anywhere in the Department, Faculty or University, provided students can satisfy the prerequisites.

Students are strongly advised to consult with the Course Director, Environmental and Urban Horticulture, for advice on subject and electives/second major selection.
All academic enquiries should be directed to:
Course Director, Environmental and Urban Horticulture
Dr Lou DeFilippis
Department of Environmental Sciences
telephone (02) 9514 4152
fax (02) 9514 4079
email Lou.DeFilippis@uts.edu.au

Full-time program
(Second major subjects are in italics.)

Stage 1

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>33101 Mathematics 1 (LS)</td>
<td>3cp</td>
</tr>
<tr>
<td>33106 Statistical Design and Analysis (two semesters)</td>
<td>3cp</td>
</tr>
<tr>
<td>65012 Chemistry 1A</td>
<td>6cp</td>
</tr>
<tr>
<td>91246 Plant Structure, Function and Culture</td>
<td>6cp</td>
</tr>
<tr>
<td>91101 Cells, Genetics and Evolution</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Stage 2

<table>
<thead>
<tr>
<th>Spring semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>33106 Statistical Design and Analysis (two semesters)</td>
<td>3cp</td>
</tr>
<tr>
<td>65022 Chemistry 2A</td>
<td>6cp</td>
</tr>
<tr>
<td>91247 Landscape Design and Plant Culture</td>
<td>6cp</td>
</tr>
<tr>
<td>91102 Functional Biology</td>
<td>6cp</td>
</tr>
<tr>
<td>91395 Biocomputing</td>
<td>3cp</td>
</tr>
</tbody>
</table>

Stage 3

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>91110 Experimental Design and Sampling</td>
<td>6cp</td>
</tr>
<tr>
<td>91111 Pollution Assessment</td>
<td>6cp</td>
</tr>
<tr>
<td>91233 Plant Production and Growth Media</td>
<td>6cp</td>
</tr>
<tr>
<td>91270 Plant Physiology</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Stage 4

<table>
<thead>
<tr>
<th>Spring semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>91112 Ecological Principles and Modelling</td>
<td>6cp</td>
</tr>
<tr>
<td>91234 Uses of Australian Plants</td>
<td>6cp</td>
</tr>
<tr>
<td>91237 Plant Pathology</td>
<td>6cp</td>
</tr>
<tr>
<td>91309 Australian Biota</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Stage 5

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>91120 Mapping and Remote Sensing</td>
<td>6cp</td>
</tr>
<tr>
<td>91121 Aquatic Ecology</td>
<td>6cp</td>
</tr>
<tr>
<td>91250 Plants in the Landscape</td>
<td>6cp</td>
</tr>
<tr>
<td>xxxxxx Elective</td>
<td>6cp</td>
</tr>
</tbody>
</table>

1 Students may choose any subject from within the Department, Faculty or University provided they meet the pre- or corequisite requirements.

Stage 6

<table>
<thead>
<tr>
<th>Spring semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>91245 Open Space Management</td>
<td>6cp</td>
</tr>
<tr>
<td>91248 Plant Production Systems</td>
<td>6cp</td>
</tr>
<tr>
<td>91249 Plant Genetics and Breeding and either 91122 Environmental Management or 79004 Environmental Law and Science</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Part-time program
(Second major subjects are in italics.)

Stage 1

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>91246 Plant Structure, Function and Culture</td>
<td>6cp</td>
</tr>
<tr>
<td>91101 Cells, Genetics and Evolution</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Spring semester

| 91247 Landscape Design and Plant Culture | 6cp |
| 91102 Functional Biology | 6cp |

Stage 2

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>33101 Mathematics 1 (LS)</td>
<td>3cp</td>
</tr>
<tr>
<td>33106 Statistical Design and Analysis (two semesters)</td>
<td>3cp</td>
</tr>
<tr>
<td>65012 Chemistry 1A</td>
<td>6cp</td>
</tr>
<tr>
<td>91395 Biocomputing</td>
<td>3cp</td>
</tr>
</tbody>
</table>

Spring semester

| 91247 Landscape Design and Plant Culture | 6cp |
| 91249 Plant Genetics and Breeding and either 91122 Environmental Management or 79004 Environmental Law and Science | 6cp |

Stage 3

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>91233 Plant Production and Growth Media</td>
<td>6cp</td>
</tr>
<tr>
<td>91270 Plant Physiology</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Spring semester

| 91112 Ecological Principles and Modelling | 6cp |
| 91237 Plant Pathology | 6cp |

Stage 4

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>91234 Uses of Australian Plants</td>
<td>6cp</td>
</tr>
<tr>
<td>91309 Australian Biota</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Stage 5

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>91111 Pollution Assessment</td>
<td>6cp</td>
</tr>
<tr>
<td>91110 Experimental Design and Sampling</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Spring semester

| 91234 Uses of Australian Plants | 6cp |
| 91309 Australian Biota | 6cp |

Stage 6

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>91120 Mapping and Remote Sensing</td>
<td>6cp</td>
</tr>
<tr>
<td>91125 Plants in the Landscape</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Spring semester

| 91245 Open Space Management | 6cp |
| 91249 Plant Genetics and Breeding | 6cp |
2. The science component comprises at least 96 credit points of study approved by the Faculty of Science. For a student to be eligible for a separate Bachelor of Science degree the science component must meet the additional criteria specified in (a)-(c) below:

(a) the science component must be sufficiently focused to enable the student to command a coherent and integrated body of theoretical and practical knowledge in at least one field of science

(b) within the total of 96 credit points, the value of science subjects that are normally offered in Stages 1 and 2 of an undergraduate course of the Faculty of Science must not exceed 42 credit points, and

(c) within the total of 96 credit points, the value of science subjects that are normally offered in Stages 5 and 6 of an undergraduate course of the Faculty of Science must be at least 24 credit points.

3. On completion of the science component as set out in 2(a)-2(c) above a student who has also completed at least 96 credit points of law subjects approved by the Faculty of Law will be eligible for the award of Bachelor of Science.

4. A student who qualifies for the award of Bachelor of Science according to 3 above will, on completion of the law component as approved by the Faculty of Law, be eligible for the award of Bachelor of Laws.

5. A student who completes 144 credit points of study approved by the Faculty of Law and 96 credit points of study approved by the Faculty of Science but does not satisfy the conditions set out in 2(a)-2(c) above will be eligible for the award of Bachelor of Science/Bachelor of Laws (single testamur).

The conditions specified above imply that students are normally expected to specialise in a particular area of science in order to obtain relevant professional recognition and to proceed to a separate science degree. The specialist areas currently available to students are applied chemistry, applied physics, materials science, earth and environmental science, biomedical science, biotechnology, environmental biology, environmental and urban horticulture. A guide as to which subjects may

Bachelor of Science/Bachelor of Laws

- UTS course code: LL04
- UAC code: 609060
- Testamur titles: Bachelor of Science Bachelor of Laws
- Abbreviation: BSc LLB
- Course Director (Science): Associate Professor Rod Buckney
- Course fee: HECS (local) $6,500 per semester (international)

The BSc LLB degree course is aimed at producing graduates with professionally recognised qualifications in both science and law and who are well prepared to pursue a career in either field. Such graduates may choose to practice law in areas such as environmental law, patents and mining law where a strong background in science is of advantage. Alternatively they may choose to enter scientific careers, particularly as advisers, consultants or managers in industries where a knowledge of the law is of particular value.

Students completing the course are able to apply for admission as either solicitors or barristers of the Supreme Court of New South Wales.

The degree is a five-year full-time course and, subject to the fulfilment of the requirements described below, allows students to graduate with the separate degrees of Bachelor of Science and Bachelor of Laws (two testamurs). The study components and the requirements for course completion are as follows:

1. The law component comprises at least 144 credit points of study approved by the Faculty of Law.
form an appropriate study program in each of these areas is given after the general program structure.

Students are required to have their science program approved by the relevant Head of Department prior to the commencement of semester. Certain study options could involve timetabling difficulties and students may need to be flexible in arranging their study programs. All academic inquiries should be directed to:

Office of the Associate Dean
(Coursework Programs)
Faculty of Science
telephone (02) 9514 4044
fax (02) 9514 4095

Course program
Each stage corresponds to one semester of full-time attendance.

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>70113</td>
<td>Legal Process and History 10cp</td>
</tr>
<tr>
<td>70105</td>
<td>Legal Research 4cp</td>
</tr>
<tr>
<td>xxxxx</td>
<td>Approved Science subjects 12cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 2</th>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>70217</td>
<td>Criminal Law 6cp</td>
</tr>
<tr>
<td>70211</td>
<td>Law of Contract 8cp</td>
</tr>
<tr>
<td>xxxxx</td>
<td>Approved Science subjects 12cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 3</th>
<th>Autumn semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>70311</td>
<td>Law of Tort 8cp</td>
</tr>
<tr>
<td>70616</td>
<td>Federal Constitutional Law 8cp</td>
</tr>
<tr>
<td>xxxxx</td>
<td>Approved Science subject 6cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 4</th>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>70318</td>
<td>Personal Property 4cp</td>
</tr>
<tr>
<td>70317</td>
<td>Real Property 8cp</td>
</tr>
<tr>
<td>xxxxx</td>
<td>Approved Science subjects 12cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 5</th>
<th>Autumn semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>70417</td>
<td>Corporate Law 8cp</td>
</tr>
<tr>
<td>70617</td>
<td>Administrative Law 8cp</td>
</tr>
<tr>
<td>xxxxx</td>
<td>Approved Science subject 6cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 6</th>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>70516</td>
<td>Equity and Trusts 8cp</td>
</tr>
<tr>
<td>76xxx</td>
<td>Elective Subject 1 (Faculty of Law) 6cp</td>
</tr>
<tr>
<td>xxxxx</td>
<td>Approved Science subjects 12cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 7</th>
<th>Autumn semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>71216</td>
<td>Law of Evidence 6cp</td>
</tr>
<tr>
<td>71005</td>
<td>Practice and Procedure 4cp</td>
</tr>
<tr>
<td>xxxxx</td>
<td>Approved Science subjects 12cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 8</th>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>71116</td>
<td>Remedies 6cp</td>
</tr>
<tr>
<td>76xxx</td>
<td>Elective Subject 2 (Faculty of Law) 6cp</td>
</tr>
<tr>
<td>xxxxx</td>
<td>Approved Science subjects 12cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 9</th>
<th>Autumn semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>76xxx</td>
<td>Elective Subject 3 (Faculty of Law) 6cp</td>
</tr>
<tr>
<td>76xxx</td>
<td>Elective Subject 4 (Faculty of Law) 6cp</td>
</tr>
<tr>
<td>xxxxx</td>
<td>Approved Science subjects 12cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 10</th>
<th>Spring semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practice Legal Training (PLT) 24cp</td>
<td></td>
</tr>
<tr>
<td>or Four Law electives 24cp</td>
<td></td>
</tr>
</tbody>
</table>

Note: Law core subject descriptions are included in this handbook. Students should consult the 2001 handbook for the Faculty of Law for Law elective subjects.

Recommended Science strands
These programs are indicative rather than prescriptive. Students may, with the approval of the Associate Dean or relevant Head of Department, undertake alternative programs in order to fulfil the academic requirements for the degree.

The exact order in which the subjects are undertaken may vary depending upon timetabling constraints and the number of science and law subjects each student elects to study in any one semester.
Applied Chemistry (96 credit points)

65101 Chemistry 1C 6cp
68101 Foundations of Physics 6cp
65201 Chemistry 2C 6cp
68201 Physics in Action (Physics 2) 6cp
33190 Mathematical Modelling for Science 6cp
65410 Chemical Safety and Legislation 6cp
65411 Inorganic Chemistry i (Transition Metal Chemistry) 6cp
65306 Analytical Chemistry 1 6cp
65409 Analytical Chemistry 2 6cp
65202 Organic Chemistry 1 6cp
65307 Physical Chemistry 1 6cp
65606 Analytical Chemistry 3 6cp
65607 Physical Chemistry 2 6cp
65508 Organic Chemistry 2 (Structure Elucidation and Synthesis) 6cp
65509 Inorganic Chemistry 2 (New Inorganic Materials) 6cp
xxxx Science elective 6cp

Biomedical Science (96 credit points)

91101 Cells, Genetics & Evolution 6cp
91701 Medical Science 1 6cp
65101 Chemistry 1C 6cp
91702 Medical Science 2 6cp
65201 Chemistry 2C 6cp
91313 Biochemistry 1 6cp
91320 Biochemistry 2 6cp
91326 Analytical Biochemistry 6cp
91314 Microbiology 1 6cp
91330 Microbiology 2 6cp
91354 Anatomical Pathology 6cp
91351 Immunology 1 3cp
91355 Haematology 1 3cp
xxxxx Designated Biomedical Science electives 24cp

Biotechnology (98 credit points)

91101 Cells, Genetics and Evolution 6cp
91701 Medical Science 1 6cp
65101 Chemistry 1C 6cp
91702 Medical Science 2 6cp
65201 Chemistry 2C 6cp
91313 Biochemistry 1 6cp
91320 Biochemistry 2 6cp
91326 Analytical Biochemistry 6cp
91314 Microbiology 1 6cp
91142 Biotechnology 6cp
91351 Immunology 1 3cp
91128 Plant Biotechnology 3cp
91332 Molecular Biology 1 8cp
91335 Molecular Biology 2 8cp
91369 Biobusiness and Environmental Biotechnology 8cp
91368 Bioreactors and Bioprocessing 8cp

Earth Science (96 credit points)

66101 Earth Science 1 6cp
65101 Chemistry 1C 6cp
66204 Field Studies 1 6cp
65201 Chemistry 2C 6cp
66304 Earth Materials 6cp
91120 Mapping and Remote Sensing 6cp
66408 Earth Resources 6cp
66305 Fold Belts and Cratons 6cp
66611 Engineering and Groundwater Geology 6cp
66409 Surficial Processes and Products 6cp
66508 Crustal and Mantle Processes 6cp
66510 Geophysics 6cp
66609 Environmental and Quaternary Geology 6cp
66509 Tectonics and Surface Dynamics 6cp
xxxx Science electives 12cp

Environmental Biology (96 credit points)

91101 Cells, Genetics and Evolution 6cp
65101 Chemistry 1C 6cp
91102 Functional Biology 6cp
65201 Chemistry 2C 6cp
91110 Experimental Design and Sampling 6cp
33106 Statistical Design and Analysis (two semesters) 6cp
91111 Pollution Assessment 6cp
91395 Biocomputing 3cp
91270 Plant Physiology 6cp
91112 Ecological Principles and Modelling 6cp
91309 Australian Biota 6cp
91363 Animal Ecophysiology 6cp
91119 Terrestrial Ecosystems 6cp
91120 Mapping and Remote Sensing 6cp
91121 Aquatic Ecology 6cp
9122 Environmental Management 6cp
xxxx Elective 3cp
Environmental and Urban Horticulture (96 credit points)

91246 Plant Structure, Function and Culture 6cp
91101 Cells, Genetics and Evolution 6cp
91247 Landscape Design and Plant Culture 6cp
91110 Experimental Design and Sampling 6cp
91102 Functional Biology 6cp
91233 Plant Production and Growth Media 6cp
91234 Uses of Australian Plants 6cp
91120 Mapping and Remote Sensing 6cp
91395 Biocomputing 3cp
91270 Plant Physiology 6cp
91248 Plant Production Systems 6cp
91237 Plant Pathology 6cp
91250 Plants in the Landscape 6cp
91245 Open Space Management 6cp
91704 Plant Genetics and Breeding 6cp

Bachelor of Medical Science/Bachelor of Laws

- UTS course code: LL09
- UAC code: 609065
- Testamur title: Bachelor of Medical Science Bachelor of Laws
- Abbreviation: BMedSc LLB
- Course Director: Dr Graham Nicholson
- Course fee: HECS (local)
 $6,500 per semester (international)

This BMedSc LLB degree course commenced in 1998 although students who commenced their BSc LLB degree (course code LL04) in 1997 and who elected to specialise in medical science may apply for transfer to this course.

The course is aimed at producing graduates with recognised qualifications in both medical science and law and who are well prepared to pursue a career in either field. The law is of special importance in many areas of medical science including medical and health practice, medical research, and industrial and commercial enterprise. Hence, graduates could choose to practise in areas of law, such as certain types of litigation or criminal proceedings, where a strong scientific background in human biology, behavioural science, neuroscience, pharmacology, and medical devices and diagnostics, is particularly advantageous. Alternatively, they could practise as scientists in areas where a knowledge of the law is of particular advantage. Such areas could include pharmaceutical or biotechnology companies, or public health administration.

Students completing the course are able to apply for admission as either solicitors or barristers of the Supreme Court of New South Wales.

The degree is a five-year full-time course and allows students to graduate with the separate degrees of Bachelor of Medical Science and Bachelor of Laws (two testamurs). The first of these degrees may be awarded upon the completion of the specified 96 credit points of Medical Science subjects, provided that the student has also completed 96 credit points of Law subjects approved by the Faculty of Law. All academic inquiries should be directed to:

Course Director, Medical Science/Law
Dr Graham Nicholson
Department of Health Sciences
telephone (02) 9514 2230/(02) 9514 2234
fax (02) 9514 2228
email Graham.Nicholson@uts.edu.au

Course program¹

Stage 1

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70113 Legal Process and History</td>
<td>10cp</td>
</tr>
<tr>
<td>70105 Legal Research</td>
<td>4cp</td>
</tr>
<tr>
<td>91701 Medical Science 1</td>
<td>6cp</td>
</tr>
<tr>
<td>65101 Chemistry 1C</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Stage 2

<table>
<thead>
<tr>
<th>Spring semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70217 Criminal Law</td>
<td>6cp</td>
</tr>
<tr>
<td>70211 Law of Contract</td>
<td>8cp</td>
</tr>
<tr>
<td>91702 Medical Science 2</td>
<td>6cp</td>
</tr>
<tr>
<td>65201 Chemistry 2C</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Stage 3

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70311 Law of Tort</td>
<td>8cp</td>
</tr>
<tr>
<td>70616 Federal Constitutional Law</td>
<td>8cp</td>
</tr>
<tr>
<td>68041 Physical Aspects of Nature</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Stage 4

<table>
<thead>
<tr>
<th>Spring semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70318 Personal Property</td>
<td>4cp</td>
</tr>
<tr>
<td>70317 Real Property</td>
<td>8cp</td>
</tr>
<tr>
<td>91704 Behavioural Sciences</td>
<td>6cp</td>
</tr>
<tr>
<td>68201 Physics in Action (Physics 2)</td>
<td>6cp</td>
</tr>
</tbody>
</table>

¹ The order in which the subjects are undertaken may vary depending upon timetable constraints and the number of Science and Law subjects each student elects to study in any one semester. Advice should be sought from the Associate Dean (Coursework Programs) Faculty of Science or the Course Director, Medical Science/Law.
Bachelor of Science/Bachelor of Arts in International Studies

- **UTS course code:** N004
- **UAC code:** 609250
- **Testamur title:** Bachelor of Science Bachelor of Arts in International Studies
- **Abbreviation:** BSc BA
- **Course Director:** Associate Professor R T Buckney
- **Course fee:** HECS (local) $7,250 per semester (international)

The Faculty of Science, in collaboration with the Institute for International Studies, offers a combined degree program in Science and International Studies which is aimed at increasing students' awareness of international contexts and producing graduates who are well prepared for professional careers in science in an international setting.

The program is a five-year full-time course which links applied science studies with the study of a language and culture other than English, and the practice of science in other countries. It is available in association with the Bachelor of Science in the following fields:

- Applied Chemistry
- Applied Physics
- Biomedical Science
- Biotechnology
- Earth and Environmental Science
- Environmental and Urban Horticulture
- Environmental Biology.

Arrangements may also be made for combining the International Studies program with the Bachelor of Science (Honours) in Applied Chemistry – Forensic Science though in this case the course length will be six years full time.

Details of all the above courses are given earlier in the Undergraduate Courses section of this handbook and it should be noted that students may also elect to undertake the professional/industrial experience program leading to the additional award of Diploma in Scientific Practice. This will normally extend the length of the combined degree course by one year.

The Bachelor of Arts in International Studies requires undergraduates to study a major – a region or country specialisation – over a minimum of three years. Students study Language and Culture in Sydney for at least two years, followed by a period of study overseas.
In the International Studies Program, students focus on one of the following countries or majors: Argentina, Chile, China, France, Germany, Indonesia, Italy, Japan, Malaysia, Mexico, Russia, Spain and Thailand. The availability of the Russian major is currently being reviewed. There is also a Heritage Major that permits students with previous exposure to a language and culture to continue their study in countries such as Greece, Hong Kong, Korea, Poland, Taiwan and Vietnam.

Australia and the Asia-Pacific is only available as a major to international students. International students may access one of the other majors offered provided that the country they choose as their major is able to grant them a visa to study there. This would need to be determined prior to commencing subjects within the International Studies major. If a visa cannot be granted, then it will not be possible to undertake the chosen major.

Students are admitted to the International Studies program with no guarantee of entry to a specific major, although every effort is made to meet students' preferences. The Institute reserves the right to allocate places in majors according to its resources and arrangements with overseas universities.

In general, there are no prior language requirements for the International Studies component of this combined degree, except for programs within the Heritage major.

Each of the specialisations within the International Studies program is 96 credit points, and includes 32 credit points (four 8-credit-point subjects) of instruction in Language and Culture; 8 credit points (one subject) of study of Comparative Social Change; 8 credit points (one subject) of study of Contemporary Society; and 48 credit points (two semesters) of study at a university or institution of higher education in the country or region of specialisation.

Arrangements for In-country study

All students are required to complete four consecutive semesters of study of Language and Culture before proceeding to In-country Study. There is a range of language classes available for students depending on their level of language proficiency.

The Institute for International Studies makes arrangements for students to spend two semesters of In-country Study at an institution of higher education abroad. The costs of tuition in host institutions overseas and travel between Sydney and the designated host institutions are borne by UTS except in cases where a scholarship has been awarded to the student with provision for these costs. Under those circumstances, the funds that would have otherwise been allocated towards the student's tuition and travel will be redirected to support the In-country Study program in general. In most cases, the cost of living for the period of In-country Study will not exceed the cost of living away from home in Sydney. However, those studying in countries or regions where the cost of living is higher than in Sydney – notably, Japan – should be prepared for the higher cost of living.

Admission

Students are normally admitted directly to the first year of the course but there is provision for students already enrolled in a Bachelor of Science degree to transfer to the combined degree program. Applications for transfer are decided on the basis of academic merit and the preparedness of the student for undertaking International Studies.

Students admitted to the first year of the course may select any of the Science programs listed above provided that their entry rank is equal to or better than the cut-off for the chosen program.

Course program

The following general pattern will be followed for each Pass combined degree in Science and International Studies. A different pattern, extending over six years, would apply to a combined degree involving the Bachelor of Science (Honours) in Applied Chemistry – Forensic Science, details of which will be worked out in consultation with the Head of the Department of Chemistry, Materials and Forensic Science.

All academic inquiries relating to the Science component of this course should be directed to:

Office of the Associate Dean (Coursework Programs)
Faculty of Science
telephone (02) 9514 4044
fax (02) 9514 4095

Any inquiries relating to the International Studies component of this course should be directed to the Institute for International Studies, telephone (02) 9514 1574.
Undergraduate courses

<table>
<thead>
<tr>
<th>Year 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn semester</td>
</tr>
<tr>
<td>Stage 1 F/T Science program</td>
</tr>
<tr>
<td>Spring semester</td>
</tr>
<tr>
<td>Stage 2 F/T Science program</td>
</tr>
<tr>
<td>Year 2</td>
</tr>
<tr>
<td>Autumn semester</td>
</tr>
<tr>
<td>Stage 3/4 P/T Science program</td>
</tr>
<tr>
<td>50140 Comparative Social Change</td>
</tr>
<tr>
<td>971xxx Language and Culture 1</td>
</tr>
<tr>
<td>Spring semester</td>
</tr>
<tr>
<td>Stage 3/4 P/T Science program</td>
</tr>
<tr>
<td>972xxx Language and Culture 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn semester</td>
</tr>
<tr>
<td>Stage 3/4 P/T Science program</td>
</tr>
<tr>
<td>973xxx Language and Culture 3</td>
</tr>
<tr>
<td>Spring semester</td>
</tr>
<tr>
<td>Stage 3/4 P/T Science program</td>
</tr>
<tr>
<td>974xxx Language and Culture 4</td>
</tr>
<tr>
<td>976xxx Contemporary Society</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn semester</td>
</tr>
<tr>
<td>977xxx In-country Study 1</td>
</tr>
<tr>
<td>Spring semester</td>
</tr>
<tr>
<td>978xxx In-country Study 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn semester</td>
</tr>
<tr>
<td>Stage 5 F/T Science program</td>
</tr>
<tr>
<td>Spring semester</td>
</tr>
<tr>
<td>Stage 6 F/T Science program</td>
</tr>
</tbody>
</table>

Note: Subject descriptions for International Studies subjects are included in this handbook.

Bachelor of Medical Science/Bachelor of Arts in International Studies

- **UTS course code:** N011
- **UAC code:** 609255
- **Testamur title:** Bachelor of Medical Science Bachelor of Arts in International Studies
- **Abbreviation:** BMedSc BA
- **Course Director:** Dr. Graham Nicholson
- **Course fee:** HECS (local) $7,250 per semester (international)

This course is similar to the Bachelor of Science/Bachelor of Arts in International Studies course N004.

Bachelor of Science/Bachelor of Business

- **UTS course code:** N006
- **UAC code:** 609170
- **Testamur title:** Bachelor of Science Bachelor of Business
- **Abbreviation:** BSc BBus
- **Course Director:** Associate Professor Rod Buckney
- **Course fee:** HECS (local) $7,250 per semester (international)

The Faculty of Science, in collaboration with the Faculty of Business, offers a combined degree program in Science and Business which is designed to produce graduates who are well prepared for scientific practice in technically oriented businesses or who are equipped to enter administration in scientific institutions. The program is a four-year full-time course (8 years part-time), though students may complete earlier if they can include Summer semester subjects in their program. The Business component of the program is available in association with the following Science programs:

- Applied Chemistry
- Applied Physics
- Biomedical Science
- Biotechnology
- Earth and Environmental Science
- Environmental Biology
- Environmental and Urban Horticulture.

Students must complete 96 credit points from each degree program, with subjects normally taken concurrently from both degrees. (See 'Recommended Science strands' on page 72.)
Completion of a science disciplinary strand is essential, as is the completion of the Business core subjects and a Business major. Students who meet the academic requirements may apply to enter the Bachelor of Science (Honours) programs.

Admission

Students are normally admitted directly to the first year of the course but there is provision for students already enrolled in a Bachelor of Science or a Bachelor of Business degree to transfer to the combined degree program. Students currently enrolled in a Science or Business program will be permitted entry to the combined degree program if they satisfy either of the following criteria:

- they meet the entry requirement for the combined degree and have demonstrated satisfactory progress in their current program of study, or
- they have achieved a Credit weighted average mark over at least two stages of their current program.

Students admitted to the first year of the course may select any of the Science programs listed above provided that their entry rank is equal to or better than the cut-off for the chosen program.

Course program

The general pattern of subjects is expected to be as follows, though students who have time-tabling difficulties may apply to vary their program. Students are advised to take the part-time sequence of subjects as recommended above for each science course, though they may enrol in full-time classes in these subjects and are not restricted to the part-time timetable.

Stage 1

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th>12cp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science foundation subjects</td>
<td>12cp</td>
</tr>
<tr>
<td>Business core subjects</td>
<td>12cp</td>
</tr>
</tbody>
</table>

Stage 2

<table>
<thead>
<tr>
<th>Spring semester</th>
<th>12cp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science foundation subjects</td>
<td>12cp</td>
</tr>
<tr>
<td>Business core subjects</td>
<td>12cp</td>
</tr>
</tbody>
</table>

Stage 3

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th>12cp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science foundation and major subjects</td>
<td>12cp</td>
</tr>
<tr>
<td>Business core subjects</td>
<td>12cp</td>
</tr>
</tbody>
</table>

Stage 4

<table>
<thead>
<tr>
<th>Spring semester</th>
<th>12cp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science foundation and major subjects</td>
<td>12cp</td>
</tr>
<tr>
<td>Business core subjects</td>
<td>12cp</td>
</tr>
</tbody>
</table>

Stage 5

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th>12cp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science major subjects</td>
<td>12cp</td>
</tr>
<tr>
<td>Business major subjects</td>
<td>12cp</td>
</tr>
</tbody>
</table>

Stage 6

<table>
<thead>
<tr>
<th>Spring semester</th>
<th>12cp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science major subjects</td>
<td>12cp</td>
</tr>
<tr>
<td>Business major subjects</td>
<td>12cp</td>
</tr>
</tbody>
</table>

Stage 7

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th>12cp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science major subjects</td>
<td>12cp</td>
</tr>
<tr>
<td>Business major subjects</td>
<td>12cp</td>
</tr>
</tbody>
</table>

Stage 8

<table>
<thead>
<tr>
<th>Spring semester</th>
<th>12cp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science major subjects</td>
<td>12cp</td>
</tr>
<tr>
<td>Business major subjects</td>
<td>12cp</td>
</tr>
</tbody>
</table>

Note: For further details of Business majors available please consult the 2001 Handbook for the Faculty of Business.

For further information please contact:
Office of the Associate Dean (Coursework Programs)
Faculty of Science
telephone (02) 9514 4044
fax (02) 9514 4095

Recommended Science major subjects are detailed in the Bachelor of Science/Bachelor of Laws course description.

Bachelor of Medical Science/Bachelor of Business

- **UTS course code:** N007
- **UAC code:** 609175
- **Testamur title:** Bachelor of Medical Science Bachelor of Business
- **Abbreviation:** BMedSc BBus
- **Course Director:** Associate Professor Rod Buckney
- **Course fee:** HECS (local) $7,250 per semester (international)

This course is similar to the Bachelor of Science/Bachelor of Business course N006. Recommended science subjects are given in the description of the Medical Science/Law program.
Bachelor of Science/Bachelor of Engineering

- UTS course code: N012
- UAC code: 609360
- Testamur titles: Bachelor of Science in (name of science major)
 Bachelor of Engineering in (name of engineering major)
- Abbreviations: BSc BE
- Course Director: Associate Professor Rod Buckney
- Course fee: HECS (local) $7,250 per semester (international)

This combined degree program (two testamurs) is subject to approval at the time of writing. It is designed for students who want a rewarding, well-paid career in science and/or engineering. Its strong professional focus is ideal for students wanting to make the link between theory and practice. It is proposed that students may specialise in any field of Engineering and any field of Science (except Forensic Science and Traditional Chinese Medicine) offered at UTS.

High-achieving students may go on to the appropriate Science Honours program.

Course structure
Detailed course structure will be made available through the UTS website in the first instance. Full-time attendance requires five years of study.

Employment opportunities
Graduates of this course will work as cutting edge professionals where science and engineering interact most dynamically. These include medical technology and instrumentation, biotechnology, environmental protection and management, energy and resource exploration and development, communications, mathematical modelling, transport, construction, nanotechnology, molecular biology and materials technology. The Faculty of Science contact for this course is:

Associate Professor Rod Buckney
telephone (02) 9514 4092
fax (02) 9514 4095
e-mail Rod.Buckney@uts.edu.au

Bachelor of Medical Science/Bachelor of Engineering

- UTS course code: N013
- UAC code: 609370
- Testamur titles: Bachelor of Medical Science
 Bachelor of Engineering
- Abbreviations: BMedSc BE
- Course Director: Associate Professor Rod Buckney
- Course fee: HECS (local) $7,250 per semester (international)

This combined degree (two testamurs) is similar to the Bachelor of Science/Bachelor of Engineering course N012. For further details, consult this course and the UTS website.

Bachelor of Science/Bachelor of Engineering/Diploma in Engineering Practice

- Course code: tba
- Testamur title: Bachelor of Science in (name of science major)
 Bachelor of Engineering in (name of engineering major)
 Diploma in Engineering Practice
- Abbreviation: BSc BE DipEngPrac
- Course fee: HECS (local) $7,250 per semester (international)

This combined degree course is the same as the Bachelor of Science/Bachelor of Engineering course N012 except for the additional requirement of two internships and completion of the Engineering Practice Program of the Bachelor of Engineering/Diploma in Engineering Practice. The combined course is 252 credit points and has a nominal completion time of six years.
SECOND MAJORS

Students enrolled in a Bachelor of Science or Bachelor of Medical Science degree in the Faculty of Science are normally expected to undertake a second major as part of their course. Each second major comprises a coherent sequence of subjects offered by the Faculty of Science, another faculty of the University, or the Institute for International Studies. The purpose of the second major is to give students the opportunity to broaden their studies into other areas of interest or to pursue studies in particular disciplines to greater depth.

Examples of possible second majors are listed below but it should be noted that not all of them are necessarily appropriate to every course and that normal prerequisite conditions and timetabling constraints apply in all cases. Students should consult their Course Directors for advice on selecting second major strands.

Faculty of Science

Applied Chemistry

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>65202</td>
<td>Organic Chemistry 1</td>
<td>6cp</td>
</tr>
<tr>
<td>65306</td>
<td>Analytical Chemistry 1</td>
<td>6cp</td>
</tr>
<tr>
<td>65409</td>
<td>Analytical Chemistry 2</td>
<td>6cp</td>
</tr>
<tr>
<td>65508</td>
<td>Organic Chemistry 2 (Structure Elucidation and Synthesis)</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Biochemistry

This second major is suitable for students in the Physical, Chemical and Environmental Sciences courses.

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91313</td>
<td>Biochemistry 1</td>
<td>6cp</td>
</tr>
<tr>
<td>91320</td>
<td>Biochemistry 2</td>
<td>6cp</td>
</tr>
<tr>
<td>91326</td>
<td>Analytical Biochemistry</td>
<td>6cp</td>
</tr>
<tr>
<td>91344</td>
<td>Clinical Biochemistry 1</td>
<td>8cp</td>
</tr>
</tbody>
</table>

Earth Science

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>66101</td>
<td>Earth Science 1</td>
<td>6cp</td>
</tr>
<tr>
<td>66204</td>
<td>Field Studies 1</td>
<td>6cp</td>
</tr>
<tr>
<td>66304</td>
<td>Earth Materials</td>
<td>6cp</td>
</tr>
<tr>
<td></td>
<td>plus one or more of the following to a total of not less than 24cp</td>
<td></td>
</tr>
<tr>
<td>66408</td>
<td>Earth Resources</td>
<td>6cp</td>
</tr>
<tr>
<td>66409</td>
<td>Surficial Processes and Products</td>
<td>6cp</td>
</tr>
<tr>
<td>66611</td>
<td>Engineering and Groundwater Geology</td>
<td>6cp</td>
</tr>
<tr>
<td>66609</td>
<td>Environmental and Quaternary Geology</td>
<td>6cp</td>
</tr>
<tr>
<td>91120</td>
<td>Mapping and Remote Sensing</td>
<td>6cp</td>
</tr>
<tr>
<td></td>
<td>Geochemistry/organic geochemistry elective for SUCOGG</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Electronics and Computer Interfacing

This second major is of particular benefit to scientists who need to measure and record data from instrumentation using a microcomputer. The major progresses from digital electronic circuitry to microcomputer architecture and then to transducers and devices necessary for interfacing to the real world.

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>68201</td>
<td>Physics in Action (Physics 2)</td>
<td>6cp</td>
</tr>
<tr>
<td>68312</td>
<td>Electrotechnology and Data Analysis</td>
<td>6cp</td>
</tr>
<tr>
<td>68514</td>
<td>Electronics</td>
<td>6cp</td>
</tr>
<tr>
<td>68514</td>
<td>Electronics and Interfacing</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Environmental Biology

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91101</td>
<td>Cells, Genetics and Evolution</td>
<td>6cp</td>
</tr>
<tr>
<td>91102</td>
<td>Functional Biology</td>
<td>6cp</td>
</tr>
<tr>
<td>91110</td>
<td>Experimental Design and Sampling</td>
<td>6cp</td>
</tr>
<tr>
<td>91112</td>
<td>Ecological Principles and Modelling</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Experimental Methods in Applied Science

This second major provides students with skills in optical instrumentation, temperature measurement, vacuum technology, electromagnetic techniques, X-ray analysis, electron microscopy and scientific data analysis.

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>68201</td>
<td>Physics in Action (Physics 2)</td>
<td>6cp</td>
</tr>
<tr>
<td>68311</td>
<td>Atoms, Photons and Orbits (Physics 3)</td>
<td>6cp</td>
</tr>
<tr>
<td>68312</td>
<td>Electrotechnology and Data Analysis</td>
<td>6cp</td>
</tr>
<tr>
<td>68412</td>
<td>Energy Sciences and Technology</td>
<td>6cp</td>
</tr>
<tr>
<td>68512</td>
<td>Research Methods in Applied Physics</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Immunology

This second major is suitable for students in the Physical, Chemical and Environmental Sciences courses.

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91313</td>
<td>Biochemistry 1</td>
<td>6cp</td>
</tr>
<tr>
<td>91314</td>
<td>Microbiology 1</td>
<td>6cp</td>
</tr>
<tr>
<td>91351</td>
<td>Immunology 1</td>
<td>3cp</td>
</tr>
<tr>
<td>91359</td>
<td>Immunology 2</td>
<td>8cp</td>
</tr>
</tbody>
</table>

Materials Science

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>65062</td>
<td>Extractive Metallurgy</td>
<td>6cp</td>
</tr>
<tr>
<td>67101</td>
<td>Introduction to Materials</td>
<td>6cp</td>
</tr>
<tr>
<td>67305</td>
<td>Polymer Science</td>
<td>6cp</td>
</tr>
<tr>
<td>67508</td>
<td>Surface Chemistry of Materials</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Medical Science

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>91313</td>
<td>Biochemistry 1</td>
<td>6cp</td>
</tr>
<tr>
<td>91314</td>
<td>Microbiology 1</td>
<td>6cp</td>
</tr>
<tr>
<td>91701</td>
<td>Medical Science 1</td>
<td>6cp</td>
</tr>
<tr>
<td>91702</td>
<td>Medical Science 2</td>
<td>6cp</td>
</tr>
<tr>
<td></td>
<td>plus two or more of</td>
<td></td>
</tr>
<tr>
<td>91703</td>
<td>Physiological Systems</td>
<td>6cp</td>
</tr>
<tr>
<td>91704</td>
<td>Behavioural Sciences</td>
<td>6cp</td>
</tr>
<tr>
<td>91705</td>
<td>Medical Devices and Diagnostics</td>
<td>6cp</td>
</tr>
</tbody>
</table>
Microbiology
This second major is suitable for students in the Physical, Chemical and Environmental Sciences courses.

- 91314 Microbiology 1 6cp
- 91330 Microbiology 2 6cp
- plus any two of
- 91332 Molecular Biology 1 8cp
- 91338 Clinical Bacteriology 8cp
- 91352 Eukaryotic Microbiology 8cp

Molecular Biology
This second major is suitable for students in the Physical, Chemical and Environmental Sciences courses.

- 91313 Biochemistry 1 6cp
- 91314 Microbiology 1 6cp
- 91332 Molecular Biology 1 8cp
- 91335 Molecular Biology 2 8cp

Neurophysiology
(for non-BMedSc courses)

- 91703 Physiological Systems 6cp
- 91704 Behavioural Sciences 6cp
- 91706 Neuroscience 8cp
- 91708 Psychophysiology 8cp

Pathophysiology

This second major is for students in the Physical, Chemical and Environmental Sciences courses.

- 91354 Anatomical Pathology 6cp
- 91703 Physiological Systems 6cp
- 99539 Pathophysiology A 6cp
- 99540 Pathophysiology B 6cp

Pharmacology
This second major is for students in the Biomedical Science and Biotechnology courses.

- 91703 Physiological Systems 6cp
- 91707 Pharmacology 1 8cp
- 91709 Pharmacology 2 8cp

Faculty of Information Technology

Statistics
This second major is suitable for students in Biological and Medical Science programs.

- 35252 Statistics 2 6cp
- 35254 Health Statistics 6cp
- 35353 Regression Analysis 6cp
- 35356 Design and Analysis of Experiments 6cp

This second major is suitable for students in Physical, Chemical, Earth and Environmental Sciences programs.

- 33401 Introductory Mathematical Methods 6cp
- 35252 Statistics 2 6cp
- plus any two of
- 35353 Regression Analysis 6cp
- 35355 Quality Control 6cp
- 35356 Design and Analysis of Experiments 6cp
- 35361 Probability and Stochastic Processes 6cp

Mathematics
This second major is suitable for students in Physical, Chemical, Earth and Environmental Sciences programs.

- 35101 Mathematics 1 6cp
- 35102 Mathematics 2 6cp
- 35212 Linear Algebra 6cp
- 35231 Differential Equations 6cp

Faculty of Engineering and/or Faculty of Information Technology

Computing and Computer Systems
An individually designed second major in computing and/or computer systems for students in Applied Physics programs can be arranged in consultation with the Course Director of the Applied Physics program and, where necessary, appropriate staff from the Faculty of Engineering or the Faculty of Information Technology. These subjects are normally taken after completing the core computing subjects taken by all applied physics students.

Example 1

- 48440 Software Development 2 6cp
- 48450 Operating Systems 6cp
- 48451 Digital Systems 6cp
- 48570 Data Acquisition and Distribution 6cp

Example 2

- 24 credit points or more from the following
- 31415 Principles of Software Development A 6cp
- 31425 Principles of Software Development B 6cp
- 31426 Systems Software and Networks 6cp
- 31428 Quantitative Modelling 6cp
- 31429 Procedural Programming 6cp
- 31748 Programming on the Internet 4cp
- 31904 Systems Programming 4cp

1 Students wishing to do these second majors must have taken 91701 Medical Science 1 (or 91101 Cells, Genetics and Evolution) and 91702 Medical Science 2 (or 91312 Biology 2) in Stages 1 and 2.
Faculty of Business

Management Practice
This second major is designed for students who wish to gain knowledge of the management process, including management and communication skills, employment relations practice, management of business processes and managing the strategy process.

- 21131 Business Process Management 6cp
- 21306 International Employment Relations 6cp
- 21440 Management Skills 6cp
- 21630 Management of the Strategy Process 6cp

Small and Medium Enterprise Management
This second major prepares students for a management role in the small and medium enterprise business sector by providing an understanding of the peculiarities of small and new businesses, which differentiate them from large corporations and government enterprises. This second major is offered at the City campus on demand and partially at the Kuring-gai campus on demand.

- 21082 Small and Medium Enterprise Management 6cp
- 21131 Business Process Management 6cp
- 21409 Entrepreneurship and Innovation 6cp
- 22566 Accounting for Small Business 1 6cp

Leisure Management
This second major provides an understanding of the role of leisure in contemporary society, focusing on the management and marketing of leisure services. This second major is offered at the Kuring-gai campus only.

- 27126 Leisure in Australia 6cp
- 27216 Leisure Services Management 6cp
- 27523 Leisure and Tourism Planning 6cp
- 27179 Festivals and Special Events 6cp
- 27306 Marketing of Leisure Services 6cp
- 27316 Leisure and Fitness Centre Operations 6cp
- 27628 Law for Leisure, Sport and Tourism 6cp

Tourism Management
This second major provides students with a systematic framework for understanding the tourism phenomenon in Australia. This second major is offered at the Kuring-gai campus only.

- 27184 Introduction to Tourism Systems 6cp
- 27648 The Tourism Industry 6cp
- 27706 Tourism Strategy and Operations 6cp
- 27185 Introduction to Tourist Behaviour 6cp
- 27523 Leisure and Tourism Planning 6cp
- 27628 Law for Leisure, Sport and Tourism 6cp
- 27642 Tourism Marketing 6cp

Faculty of Nursing, Midwifery and Health

Health Services Management
This second major is designed to provide skills, knowledge and understanding of management as it relates to health services and settings. This second major is offered at the Kuring-gai campus only.

- 92112 Health Care in Australia 6cp
- 92113 Trends in Health Care 6cp
- 92114 Health Services Management 6cp
- 92115 Planning and Evaluating Health Services 6cp

Faculty of Humanities and Social Sciences

Communication and Information
three or more of the following

- 50124 Information Needs and Uses 8cp
- 50125 Communication and Audience 8cp
- 50126 Information and the Organisation 8cp
- 50127 International Communication 8cp
- 50128 Media, Information and the Law 8cp
- 50129 News and Current Affairs 8cp
- 50130 Organisation Change and Communication 8cp
- 50179 Virtual Communities 8cp
- 50226 Communication and Information Environments 8cp
- 50227 Media, Information and Society 8cp

Information
at least three or more of the following

- 50143 Research Methods and Data Analysis 8cp
- 50144 Organising and Retrieving Information 8cp
- 50146 Internet and Electronic Information Networking 8cp
- 50147 Creating User Documentation 8cp
- 50223 Information Resources 8cp
- 50232 Information in Society 8cp

Public Communication
three or more of the following

- 50161 Advertising Production and Criticism 8cp
- 50162 Advertising Communication Strategies 8cp
- 50238 Public Communication Processes 8cp
- 50239 Public Communication Challenges 8cp
- 50519 Public Relations Principles 8cp
- 59610 Public Relations Strategies 8cp
Electives are also available in the following areas:

- Communication and English Language Studies
- Cultural Studies
- Journalism
- Social Inquiry
- Social, Political and Historical Studies
- Writing.

Consult the 2001 handbook for the Faculty of Humanities and Social Sciences for further information, or online at:

or telephone (02) 9514 2300 for further details.

Faculty of Education

Second majors are available through the Faculty of Education in the following areas:

- Art
- Educational Computing
- Education
- English
- History
- Music
- Personal Development, Health and Physical Education.

For further information consult the 2001 handbook for the Faculty of Education, or online at:

POSTGRADUATE COURSES

General information

The Faculty offers both PhD and Master's programs by research and thesis. There are also several Master's by coursework and a Graduate Diploma. Brief outlines of the programs are provided below. Prospective students should discuss possible topics of research with the Head of the appropriate department in the first instance. For further formal information, they should consult the University Graduate School information booklet and individual brochures.

External supervision

The research programs may be carried out on either a full-time or a part-time basis, and it is permissible for part-time students to undertake a portion of their research at a site external to UTS, provided an appropriate external supervisor can be appointed. Students applying for the part-time study mode with external supervision are required to show, prior to enrolment, that appropriate supervision, research support and facilities are available. These requirements are in addition to the normal requirement of internal supervision of an agreed research topic.

Fees and Higher Education Contribution Scheme

Higher Education Contribution Scheme (HECS) will normally apply to all research and Master's by coursework students. At the discretion of the Vice-Chancellor, HECS scholarships have, in recent years, been granted to students enrolled in Doctoral degrees. All enrolled students are required to pay the compulsory University Union and Students' Association charges on enrolment.

Postgraduate scholarships

A number of scholarships are available to postgraduate students undertaking Master's and Doctoral programs both by coursework and research. The Department of Education, Training and Youth Affairs (DETYA) currently funds research, coursework and overseas research postgraduate awards. Information regarding eligibility criteria and how to apply for these scholarships is available from the University Graduate School, City campus of UTS. Closing dates for these scholarships have, in recent years, been in late September/October of the year prior to award.

GRADUATE CERTIFICATE

Graduate Certificate in Pilates Method

- UTS course code: NH53
- Testamur title: Graduate Certificate in Pilates Method
- Course Director: Ms Denise Edwards
- Abbreviation: none
- Course fee: $3,500 (local)¹

This course provides students with a qualification that enhances their current fitness, coaching and personal training skills, and prepares them to work in existing Pilates Method studies or in liaison with other health professionals in order to promote fitness development. It is available to applicants who have a tertiary level qualification or equivalent in a relevant field of study that includes an anatomy and physiology component, at least 50 hours prior personal practice of the Pilates Method, and a first aid certificate with CPR.

Course program

This course is delivered part time over a year. Students attend classes for six hours per week, and there is a choice of afternoon or evening practical/tutorial sessions. The work placement is in accredited Pilates studios supervised by a trained practitioner.

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn semester</td>
<td>91801</td>
<td>Foundations of Pilates Method 1</td>
<td>6cp</td>
</tr>
<tr>
<td>Spring semester</td>
<td>91802</td>
<td>Foundations of Pilates Method 2</td>
<td>6cp</td>
</tr>
</tbody>
</table>

For further information and details about subject syllabuses, contact:
Course Director, Pilates Methods
Ms Denise Edwards
telephone (02) 9514 2489
tax (02) 9514 2228
e-mail da.edwards@uts.edu.au

¹ This course is not offered to international students.
GRADUATE DIPLOMA

The Faculty offers a Graduate Diploma in Hydrogeology and Groundwater Management (N061).

For Graduate Diploma courses, exemptions from subjects may be granted if a student can provide documented evidence of completed formal tertiary studies or recognised prior learning in the area. Exemptions will be granted at the discretion of the Course Director who will make a recommendation to the Faculty of Science Courses Committee. Total exemptions will not exceed a maximum of 50 per cent of the total credit points of the program. Exemptions may be granted for subjects previously completed at the undergraduate and postgraduate level, but the maximum exemptions granted for undergraduate subjects will not exceed 25 per cent of the total credit points of the program.

Requirements for student progression

Students enrolled in a Graduate Diploma who fail in any two subjects, or any one subject twice, will be seen as making unsatisfactory progress and will have their registration discontinued. Students may appeal against such discontinuation of registration under Rule 3.2.7, see the UTS Calendar 2001, or online at: www.uts.edu.au/div/publications/policies/rules/contents.html

Graduate Diploma in Hydrogeology and Groundwater Management

- UTS course code: N061
- Testamur title: Graduate Diploma in Hydrogeology and Groundwater Management
- Abbreviation: GradDipHGM
- Course Director: Professor Michael Knight
- Course fee: HECS (local) $6,000 per semester (international)

Course program

Autumn semester

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>66014</td>
<td>Hydrogeology</td>
<td>6cp</td>
</tr>
<tr>
<td>49550</td>
<td>Computing for Groundwater Specialists</td>
<td>0cp</td>
</tr>
<tr>
<td>49555</td>
<td>Groundwater Modelling</td>
<td>6cp</td>
</tr>
<tr>
<td>66015</td>
<td>Hydrogeochemistry</td>
<td>6cp</td>
</tr>
<tr>
<td>49551</td>
<td>Surface Hydrology and Groundwater</td>
<td>6cp</td>
</tr>
<tr>
<td>xxxxx</td>
<td>Elective 1</td>
<td>6cp</td>
</tr>
<tr>
<td>xxxxx</td>
<td>Elective 2</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Spring semester

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>66022</td>
<td>Groundwater Science Project (GD) F/T</td>
<td>12cp</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66024</td>
<td>Groundwater Science Project (GD) P/T</td>
<td>6cp</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>49554</td>
<td>Groundwater Computing</td>
<td>6cp</td>
</tr>
<tr>
<td>66018</td>
<td>Groundwater Geophysics</td>
<td>6cp</td>
</tr>
<tr>
<td>66025</td>
<td>Contaminated Site Management</td>
<td>6cp</td>
</tr>
<tr>
<td>xxxxx</td>
<td>Other approved subject</td>
<td>6cp</td>
</tr>
</tbody>
</table>

For further information contact:
Course Director, Hydrogeology and Groundwater Management
Professor M J Knight
telephone (02) 9514 1984
tax (02) 9514 1985
e-mail groundwater.management@uts.edu.u

1 This is a non-credit subject available to students whose computing background requires strengthening.
MASTER'S DEGREES
(BY COURSEWORK)

Master of Health Science in Traditional Chinese Medicine

Master of Occupational Health and Safety Management

Master of Occupational Health and Safety Management (Honours)

Master of Science in Hydrogeology and Groundwater Management

Admission requirements and selection

Candidates may be admitted to the course with either a Bachelor's degree from UTS (or equivalent) or such other general or professional qualifications as will satisfy the Academic Board that the applicant possesses the educational preparation and capacity.

Requirements for subject assessment and student progression

Students enrolled for a Master's degree (by coursework) shall have each subject assessed according to the normal Rules of this University. However, there is no allowance for conceded pass.

Students who fail in any two subjects, or any one subject twice, will be seen as making unsatisfactory progress and will have their registration discontinued. Students may appeal against such discontinuation of registration under Rule 3.3.8, see the UTS Calendar 2001 or online at:

Continuing UTS students

Master's degree (by coursework) students who have previously been enrolled in undergraduate UTS courses in the Faculty may not enrol in postgraduate subjects which are equivalent to subjects previously undertaken towards an undergraduate degree.

Master of Health Science in Traditional Chinese Medicine

- UTS course code: NH61
- Testamur title: Master of Health Science in Traditional Chinese Medicine
- Abbreviation: MHlthSc
- Course Director: Mr Yang Cong Xing
- Course fee: HECS, $3,750 (local)

This course is designed for students who wish to gain the knowledge and skills to prescribe Chinese herbal medicines.

This course is available to graduates in acupuncture, traditional Chinese medicine, or Chinese herbal medicine or equivalent, with an intake in even years only. Applications from practitioners of acupuncture or Chinese herbal medicine who do not hold an undergraduate degree will be assessed on an individual basis; prior learning and professional experience in traditional Chinese medicine will be recognised for course entry provided that it is deemed equivalent to that required for normal entry. The course is offered on a part-time basis over four semesters.

Stage 1

Autumn semester

99599 Principles of Chinese Herbal Medicine 8cp
99632 Graduate Clinic Level 1 (CHM) (2 semesters) 4cp

Spring semester

99612 Principles of Chinese Herbal Prescription 6cp
99613 Principles of Pharmacology in Chinese Medicine 6cp

Stage 2

Autumn semester

99614 Classics of Chinese Herbal Medicine 4cp
99615 Graduate Clinic Level 2 (CHM) 3cp
99994 Chinese Herbal Practice 1 6cp

Spring semester

99996 Chinese Herbal Practice 2 6cp
99997 Graduate Clinic Internship (CHM) 5cp

1 Annual part-time fee for students commenced prior to 2001.
2 Annual part-time fee for students commencing 2001.
3 This course is not offered to international students.
For further information and details about subject syllabuses contact:
Course Director
Traditional Chinese Medicine
Mr Yang Cong Xing
telephone (02) 9514 7854
fax (02) 9281 2267
e-mail Congxing.yang@uts.edu.au

Master of Occupational Health and Safety Management

- UTS course code: P055
- Testamur title: Master of Occupational Health and Safety Management
- Abbreviation: MOHSM
- Course Director: Dr Deirdre Cobbin
- Course fee: $6,500, $6,800 (local)

The aim of the course is to provide a graduate program in occupational health and safety which will produce broadly based, practical occupational health and safety professionals, with the ability to promote and facilitate a preventive approach to occupational health and safety which minimises occupational injuries and diseases.

Objectives

The behavioural objectives of the course are to enable graduates of the Master of Occupational Health and Safety Management to:

- influence managers so that occupational health and safety becomes an integral part of day-to-day management
- manage occupational health and safety services within the context of legislative, regulatory and industrial relations environments
- recommend practical and appropriate solutions to occupational health and safety problems
- contribute to improvements in design of plant, processes and equipment, work practices, work organisation and environment, including access for people with disabilities
- apply their knowledge of the concepts of occupational health and safety to satisfy the needs of people
- be able to establish systems to recognise, evaluate and control hazards
- disseminate information and increase awareness of occupational health and safety issues in the workplace
- understand minimum requirements in order to interpret the intent of legislation and standards
- collect, analyse and maintain relevant data
- operate as a sole operator and as a member of a multidisciplinary team
- coordinate/liaise with relevant bodies in occupational health and safety
- be involved with the rehabilitation of injured workers and the deployment of people with disabilities
- recognise their own limitations and be aware of and call on other experts when needed
- recognise the need, and be able, to maintain the currency of their knowledge.

Duration

In general the course is offered on a part-time basis over two years, and will require attendance at the University's City campus, Broadway, for eight hours per week. Students will be expected to satisfactorily complete 12 credit points per semester. The subjects will generally be scheduled so that students will attend for four hours on two evenings per week. Depending on availability of subjects it may be possible to complete the course in one year on a full-time basis.

Admission requirements

Students in this course could come from a wide variety of educational backgrounds, including the physical sciences, life sciences, health sciences, social science, medicine, engineering, industrial design, architecture, building, commerce, business, law and the humanities.

Applicants will in general be required to have a degree in their discipline from a recognised university or college of advanced education in order to satisfy the basic admission requirement.

In this field, however, there are many very experienced people such as occupational health nurses, safety officers and inspectors who for historical reasons do not have a first degree. Applicants in this category are also encouraged to apply. Such applicants would be required to have at least a diploma or...
Certificate in a relevant area together with sound experience in occupational health and safety in a responsible position.

Course program

Autumn semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>69312</td>
<td>Occupational Hazard Analysis</td>
<td>6cp</td>
</tr>
<tr>
<td>69325</td>
<td>Data Analysis in Occupational Health and Safety</td>
<td>3cp</td>
</tr>
<tr>
<td>69323</td>
<td>Human Factors/Ergonomic Design</td>
<td>3cp</td>
</tr>
<tr>
<td>69341</td>
<td>Risk Management</td>
<td>6cp</td>
</tr>
<tr>
<td>69345</td>
<td>Occupational Health and Safety Management</td>
<td>6cp</td>
</tr>
</tbody>
</table>

(replaces 69313 and 69343)

Spring semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>69336</td>
<td>Evaluating Occupational Health and Safety (Construction Industry)</td>
<td>6cp</td>
</tr>
<tr>
<td>69342</td>
<td>Legal Aspects of Occupational Health and Safety</td>
<td>3cp</td>
</tr>
<tr>
<td>69311</td>
<td>Occupational Health and Safety in Society</td>
<td>3cp</td>
</tr>
<tr>
<td>69338</td>
<td>Biological Hazards and Toxicology</td>
<td>6cp</td>
</tr>
<tr>
<td>69332</td>
<td>Chemical Safety (Management)</td>
<td>3cp</td>
</tr>
<tr>
<td>69335</td>
<td>People and the Physical Environment</td>
<td>3cp</td>
</tr>
</tbody>
</table>

For further information contact:

Course Director, Occupational Health and Safety Management
Dr Deirdre Cobbin
telephone (02) 9514 2231 or (02) 9514 2227
fax (02) 9514 2228
e-mail Deirdre.Cobbin@uts.edu.au

Master of Occupational Health and Safety Management (Honours)

- **UTS course code:** P057
- **Testamur title:** Master of Occupational Health and Safety Management (Honours)
- **Abbreviation:** MOHSM(Hons)
- **Course Director:** Dr Deirdre Cobbin
- **Course fee:** $6,500¹, $6,800² (local)³

This course involves all the coursework requirements of the Master of Occupational Health and Safety Management plus a substantial research project in an area of particular interest and/or relevance to the student. Students would be permitted to transfer to the Master's Honours program only if they achieved a credit average or better in the coursework. The 24 credit points to be completed in the Honours program involve the following subjects, each allocated 12 credit points:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>69351</td>
<td>Occupational Health and Safety Project</td>
<td>12cp</td>
</tr>
<tr>
<td>69353</td>
<td>Research Proposal (Occupational Health and Safety)</td>
<td>12cp</td>
</tr>
</tbody>
</table>

Persons who already have a Master of Occupational Health and Safety Management degree or equivalent from this or another university are able to enter the Master's Honours program with advanced standing. They would normally be required to complete one semester of appropriate coursework at credit level or better before undertaking the research project.

For further information contact:

Course Director, Occupational Health and Safety Management
Dr Deirdre Cobbin
telephone (02) 9514 2231 or (02) 9514 2227
fax (02) 9514 2228
e-mail Deirdre.Cobbin@uts.edu.au

1 Total fee for students commenced prior to 2001.
2 Total fee for students commencing 2001.
3 This course is not offered to international students.
Master of Science in Hydrogeology and Groundwater Management

- UTS course code: N057
- Testamur title: Master of Science in Hydrogeology and Groundwater Management
- Abbreviation: MSc
- Course Director: Professor Michael Knight
- Course fee: HECS (local) $7,250 per semester (international)

This course is designed to enable students to develop specialist skills in the area of groundwater management including aspects of geology, hydrology, hydraulics and resource management. This provides a multidisciplinary perspective to issues of groundwater management.

Duration

The course requires block-release attendance of three blocks of two weeks each for a series of lectures and laboratory work during Autumn semester and project work during Spring semester. The time required to complete the project will be approximately 30 weeks. Students must continue project work until a satisfactory level of achievement has been attained. The course is also available in distance mode which has an additional residential component.

Admission requirements

Applicants must hold a four-year science degree from UTS or an equivalent qualification.

Attendance

The course is offered on the basis of block-release attendance pattern and students may extend their enrolment over more than one year. Distance mode study is also available.

Course program

With the exception of Project (24 credit points) and Computing for Groundwater Specialists, all subjects have a value of 6 credit points.

<table>
<thead>
<tr>
<th>Autumn semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>66014 Hydrogeology</td>
<td>6cp</td>
</tr>
<tr>
<td>49550 Computing for Groundwater Specialists</td>
<td></td>
</tr>
<tr>
<td>49555 Groundwater Modelling</td>
<td>6cp</td>
</tr>
<tr>
<td>66015 Hydrogeochemistry</td>
<td></td>
</tr>
<tr>
<td>49551 Surface Hydrology and Groundwater</td>
<td>6cp</td>
</tr>
<tr>
<td>Elective 1</td>
<td>6cp</td>
</tr>
<tr>
<td>Elective 2</td>
<td>6cp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>66021 Groundwater Science Project (M) F/T</td>
<td>24cp</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>66023 Groundwater Science Project (M) P/T</td>
<td>12cp</td>
</tr>
</tbody>
</table>

Electives

| |
|------------------|---|
| 49554 Groundwater Computing | 6cp |
| 66018 Groundwater Geophysics | 6cp |
| 66025 Contaminated Site Management | |
| xxxxx Other approved subject | 6cp |

For further information contact:

Course Director, Hydrogeology and Groundwater Management
Professor Michael Knight
telephone (02) 9514 1984
fax (02) 9514 1985
email groundwater.management@uts.edu.au

1 This is a non-credit subject available to students whose computing background requires strengthening.
POSTGRADUATE DEGREES
BY RESEARCH

The Master's and PhD programs are designed for graduates who wish to develop a career in the biological, biomedical, environmental, earth, chemical or physical sciences by undertaking an appropriate research investigation under professional supervision.

The broad areas of research expertise within the Faculty are:

- Medical and Biomedical Science
- Health Science and Health Science Technology
- Cell and Molecular Biology
- Environmental Sciences including Environmental Biology and Earth Science
- Analytical and Organic Chemistry
- Applied Physics including Image Processing and Analysis
- Forensic Science
- Materials Science and Technology
- Groundwater Management.

Applications are invited for these research programs. Please consult with a potential academic supervisor or appropriate Head of Department before submitting an application.

For further information about the potential supervisors, please contact:

Office of the Associate Dean (Research)
telephone (02) 9514 2490
fax (02) 9514 1656

Admission to Master's degree (by thesis) program

Applications for admission to the Master's degree program are accepted subject to the availability of places, facilities and supervision. The course can be completed in two years full-time or three years part-time study. Study may be carried out by means of a cooperative arrangement with the candidate's employer. Applicants should hold at least a Bachelor's degree from UTS, or equivalent, or other general or professional qualifications as will satisfy the Academic Board that the applicant possesses the educational preparation and capacity to successfully complete the course.

Master's degrees (by thesis)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science</td>
<td>N053</td>
</tr>
<tr>
<td>Master of Science (Hydrogeology and Groundwater Management)</td>
<td>N056</td>
</tr>
</tbody>
</table>

Admission to PhD program

Applications for admission to the PhD degree program are accepted subject to the availability of places, facilities and supervision. The course can be completed in three years full-time study or four-and-a-half years part-time. Study may be carried out by way of a cooperative arrangement with the candidate's employer. Candidates may be admitted to the program with a Bachelor's degree with First or Second Class Honours Division 1 from UTS, or an appropriate Master's degree from UTS, or an equivalent qualification.

PhD programs

<table>
<thead>
<tr>
<th>Science</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogeology and Groundwater Management</td>
<td>N055</td>
</tr>
</tbody>
</table>
SUBJECT DESCRIPTIONS

60811
Professional Scientific Practice A
6cp; prerequisite(s): satisfactory completion of at least two years of an approved Bachelor program; corequisite(s): engagement in an approved program of industrial training leading to a minimum of 30 weeks of work undertaken by learning contract

This subject is one of two subjects which constitute the Diploma in Scientific Practice and a learning contract must be negotiated between the student and the Industrial Training Coordinator. Approved industrial experience is supplemented by a program designed to enhance the student’s appreciation of the technical, organisational, social, cultural, ethical and legislative dimensions of workplace practice in science. This subject is normally taken during the first half of the student’s industrial training. It focuses on the attributes required in a successful application for work placement, the orientation to workplace practices and the analysis of the student’s early workplace experiences. This subject may include an assessment of the student’s work by the workplace supervisor.

60812
Professional Scientific Practice B
6cp; prerequisite(s): 60811 Professional Scientific Practice A; satisfactory completion of at least two years of an approved Bachelor program; corequisite(s): a minimum of 30 weeks of approved industrial training undertaken by learning contract

This subject is one of two subjects which constitute the Diploma in Scientific Practice and a learning contract must be negotiated between the student and the Industrial Training Coordinator. Approved industrial experience is supplemented by a program designed to enhance the student’s appreciation of the technical, organisational, social, cultural, ethical and legislative dimensions of workplace practice in science. This subject is normally taken during the second half of the student’s industrial training. It will focus on the student’s overall experience of work and his/her appreciation of the wider dimensions of work. This subject includes an assessment of the student’s work by the workplace supervisor.

65012
Chemistry 1A
6cp; 6hpw

This subject is an introduction to some fundamental concepts in chemistry. Topics covered are: chemicals and chemical reactions; atomic structure; periodic table; chemical bonding; enthalpy changes in chemical reactions; and the structures and properties of solids. There is a laboratory program which complements the learning experiences in the lectures and tutorials. Other important aims of this subject are to enhance students’ thinking skills, to foster their abilities to work cooperatively with their peers and to assist in the development of their communication skills.

65022
Chemistry 2A
6cp; 6hpw; prerequisite(s): 65012 Chemistry 1A

This subject builds on, and expands the knowledge and understanding of, 65012 Chemistry 1A. It seeks thereby to give students completing one full-time year a broad and general understanding of inorganic, organic and physical chemistry concepts, knowledge and practice.

The organic chemistry topics covered are: alkanes, alkenes, alkynes and aromatic hydrocarbons; alcohols, phenols and ethers; aldehydes, ketones, carboxylic acids and their derivatives; amines organic halogen compounds; stereochemistry. The physical chemistry concepts are: reaction kinetics; chemical equilibrium; and acid-base theory.

The laboratory work seeks to impart practical skills and to demonstrate the theory and reactions taught. The subject aims to enhance students’ thinking skills, to foster their ability to work cooperatively with their peers, and to assist in the development of their communication skills.
65062
Extractive Metallurgy
6cp; 6hpw; prerequisite(s): all Stage 1, 2 and 3 subjects in the Applied Chemistry or Materials Science degree programs
Occurrence of minerals. Comminution and the theory of time particles. Extractive metallurgy including physical separation methods, flotation, hydrometallurgy and pyrometallurgy.

65101
Chemistry 1C
6cp; 6hpw; prerequisite(s): assumed knowledge: core of HSC 2-unit Chemistry or equivalent
This subject is an introduction to some fundamental concepts in chemistry. Topics covered are: chemicals and chemical reactions; atomic structure; periodic table; chemical bonding; enthalpy changes in chemical reactions; and the structures and properties of solids. The subject is designed for students with a strong background in chemistry and accordingly the topics are covered to a greater depth than in 65012 Chemistry 1A. There is a laboratory program which complements the learning experiences in the lectures and tutorials. Other important aims of this subject are to enhance students' thinking skills, to foster their abilities to work cooperatively with their peers and to assist in the development of their communication skills.

65201
Chemistry 2C
6cp; 6hpw; prerequisite(s): 65101 Chemistry 1C or equivalent
This subject builds on the foundation studies in 65101 Chemistry 1C. Topics covered are: chemical equilibrium; acid-base theory; complex ions; electrochemistry; chemical kinetics; structure and bonding in carbon chemistry; chemical reactions of carbon compounds. There is a laboratory program which complements the learning experiences in the lectures and tutorials. The subject also aims to enhance students' thinking skills, to foster their ability to work cooperatively with their peers, and to assist in the development of their communication skills.

65202
Organic Chemistry 1
6cp; 6hpw; prerequisite(s): 65201 Chemistry 2C or equivalent
The structures and reactions of the important families of organic compounds (aliphatic and aromatic hydrocarbons, halogen compounds, alcohols, ethers, carbonyl compounds, carboxylic acid derivatives and amines) are studied with emphasis on stereochemistry, reaction mechanisms and organic synthesis. Lecture and tutorial material is closely integrated with laboratory exercises in which students gain experience in techniques used in performing reactions, and in isolating, purifying and characterising products.

65241
Principles of Forensic Science
6cp; 4hpw
This subject provides a broad and sound overview of forensic science. It is designed to introduce the different disciplines, principles and concepts peculiar to forensic science. It covers, in the forensic context, the following areas: history, general definitions and concepts, subdisciplines, methodology and methods, introduction to crime scene, trace typology, function of the expert, legal system, judicial admissibility, ethical considerations, interpretation of forensic evidence. Lectures are complemented by tutorials/workshops involving guest speakers. Principles of Forensic Science is a core subject for the Forensic Science course and an elective for students in other related courses.

65306
Analytical Chemistry 1
6cp; 5-6hpw; prerequisite(s): 65201 Chemistry 2C or equivalent
Lecture, laboratory and computer-aided instruction components of the course cover: (a) spectroscopic methods of analysis including mass spectron and infra-red, ultraviolet-visible and NMR spectroscopy; (b) separation techniques including solvent extraction, distillation; precipitation, and a range of chromatographic methods; (c) volumetric techniques including acid-base, redox, non-aqueous, and potentiometric methods; and (d) errors, calibration and interpretation of analytical data.
65307
Physical Chemistry 1
6cp; 4.5hpw; prerequisite(s): 65201 Chemistry 2C; 33190 Mathematical Modelling for Science
This subject is designed to provide students with a working knowledge of chemical thermodynamics and optical spectroscopy which can then be applied to other subjects within the course. Students are introduced to fundamental concepts in both spectroscopy and thermodynamics and learn how to apply these principles in problem-solving situations. Lectures are complemented by tutorials and relevant practical experiments.

65341
Forensic Imaging
6cp; 5hpw; prerequisite(s): all Stage 1 subjects in the Forensic Science degree; 65241 Principles of Forensic Science; priority will be given to students enrolled in the Forensic Science course
This subject is specifically designed for forensic science students. It covers application of light theory in forensic science (absorption/reflection, UV, IR, diffusion, episcopic coaxial illumination, polarised light, photoluminescence etc.), technical and forensic photography (use of large and medium format and single lens reflex cameras), image treatment, optical and electron microscopy, comparison microscopy. Lectures are complemented by an extensive practical program given in the form of workshops. Potential elective students must consult the subject coordinator, Dr Claude Roux on telephone (02) 9514 1718 before enrolling in this subject.

65409
Analytical Chemistry 2
6cp; 4.5hpw; prerequisite(s): 65306 Analytical Chemistry 1

65410
Chemical Safety and Legislation
6cp; 3hpw; prerequisite(s): 65201 Chemistry 2C or equivalent

65411
Inorganic Chemistry 1 (Transition Metal Chemistry)
6cp; 4.5hpw; prerequisite(s): 65201 Chemistry 2C or 65022 Chemistry 2A or equivalent

65508
Organic Chemistry 2 (Structure Elucidation and Synthesis)
6cp; 4.5hpw; prerequisite(s): 65202 Organic Chemistry 1
This subject builds on previous studies of organic chemistry and demonstrates the use of combined chemical and spectroscopic methods UV, IR, NMR and MS in structural elucidation of organic compounds. It also aims to develop the ability to make planned use of simpler organic reactions in the multistage synthesis of new aliphatic and aromatic compounds. The lectures will be complemented by a relevant practical program and tutorial sessions.

65509
Inorganic Chemistry 2 (New Inorganic Materials)
6cp; 4.5hpw; prerequisite(s): 65411 Inorganic Chemistry 1 (Transition Metal Chemistry)
65541
Physical Evidence 1
6cp; 6hpw; prerequisite(s): 65241 Principles of Forensic Science; 65341 Forensic Imaging
This subject covers the nature, value and relevance of several types of physical evidence. It follows on from 65241 Principles of Forensic Science and 65341 Forensic Imaging. It covers fingerprint detection and identification; miscellaneous individual traces, tooth marks, lip prints, nail marks etc.; path marks, footwear impression, tyre impression etc.; weapons including firearms, bullet/cartridge identification, gunshot residues, firing distance; motor vehicle globes and other light; miscellaneous trace evidence, matches, cigarettes/tobacco, building and safe insulation materials cordage, buttons, wood, and glass. Lectures are complemented by a practical program involving mock cases.

65542
Forensic Toxicology 1
6cp; 4hpw; prerequisite(s): 65306 Analytical Chemistry 1; corequisite(s): 65508 Organic Chemistry 2 (Structure Eluddation and Synthesis); 91141 Biological Evidence
The subject is designed as an introduction to the fundamentals of forensic toxicology. It involves specific forensic material, general pharmacology and toxicology. The practical component is designed to reinforce topics covered in lectures and seeks to give students experience in analytical problems specific to biological systems, which relies to some extent on the techniques they learnt in both 65306 Analytical Chemistry 1 and 91141 Biological Evidence. The subject also gives students an overview of State and federal laws concerning licit and illicit drugs and poisons.

65606
Analytical Chemistry 3
6cp; 4.5hpw; prerequisite(s): 65306 Analytical Chemistry 1
Lecture and laboratory topics covering: (a) electrochemical analysis methods, ion selective electrodes, calibration methods, standard addition etc.; (b) spectroscopic methods such as AA, ICP, ICP/MS and XRF; trace analysis and matrix effects; (c) estimation of uncertainty in analytical chemistry, accuracy, precision gross errors, sensitivity, selectivity and linearity; (d) error propagation in analytical chemistry, systematic and random errors.

65607
Physical Chemistry 2
6cp; 4.5hpw; prerequisite(s): 65307 Physical Chemistry 1; 65411 Inorganic Chemistry 1 (Transition Metal Chemistry)

65621
Environmental Chemistry
6cp; 6hpw; prerequisite(s): 65022 Chemistry 2A or 65201 Chemistry 2C or equivalent
This subject focuses on the importance of chemical changes in the natural environment, and those resulting from human activity. Chemical changes are examined for both inorganic matter (soil clays) and organic matter (plant materials), having as their end products humic substances, petroleum, and coal. Particular emphasis is placed on changes in organic molecular structure. Important pollutants including halogenated hydrocarbons, and the oxides of nitrogen, sulfur and carbon are discussed, in the contexts of their origins and their effects on the geosphere, hydrosphere and biosphere.

65641
Physical Evidence 2
6cp; 6hpw; prerequisite(s): 65541 Physical Evidence 1
This subject complements the material covered in 65541 Physical Evidence 1. It covers forensic analysis of soil, paint, fibres, hairs and documents. Lectures are complemented by an extensive practical program involving mock cases. At the end of this subject, the students should be able to select appropriate analytical procedures, analyse, interpret and write an expert witness report describing the forensic analysis of the material covered in 65541 Physical Evidence 1 and 65641 Physical Evidence 2.
65642
Forensic Toxicology 2
6cp; 4hpw; prerequisite(s): 65542 Forensic Toxicology 1; 65508 Organic Chemistry 2 (Structure Elucidation and Synthesis)
The subject is designed and delivered as an advanced course covering specific aspects of forensic toxicology. These aspects are approached from a practical perspective, dealing in some depth with analytical details of the areas covered. The subject is designed to be taught alongside 65741 Chemistry and Pharmacology of Illicit Drugs, enabling the pharmacology and toxicology of drugs such as cannabis, amphetamines, opiates and cocaine, to be taught in parallel with other aspects of these drugs.

65741
Chemistry and Pharmacology of Illicit Drugs
6cp; 5hpw; prerequisite(s): 65508 Organic Chemistry 2 (Structure Elucidation and Synthesis); 65409 Analytical Chemistry 2
This subject aims to familiarise students with the pharmacology, chemistry, methods of analysis and legal status of a wide range of drugs of abuse. It examines the pharmacology of the various classes of drugs (opioids, amphetamines and other stimulants, hallucinogens, cannabis, miscellaneous drugs including alcohol and tobacco products) route of synthesis and profiling of drugs to determine route of manufacture; sampling and analysis protocols; State and federal legislation covering the manufacture and importation of certain drugs; case studies; and social issues.

65742
Fire and Explosion Investigation
6cp; 3hpw; prerequisite(s): 65641 Physical Evidence 2
This subject seeks to show how a systematic scientific examination of a fire or explosion scene can lead to the establishment of its origin and cause. It covers general definitions; fire insurance and crime statistics; combustion process, external and internal scene examination, fire origin and cause determination; physical properties of materials, gases, aerosols; spontaneous combustion; kitchen fires, cigarettes, heaters, motor vehicle fires, electric appliances; accelerants, explosives; sniffers and canines; and computer modelling of fires.

65743
Complex Forensic Cases (Chemistry)
6cp; 6hpw; prerequisite(s): 65641 Physical Evidence 2; 65642 Forensic Toxicology 2; 91141 Biological Evidence; corequisite(s): 79991 Complex Forensic Cases (Law)
This subject is designed as an advanced practical course where the students apply techniques and principles gained in previous forensic subjects to the analysis of mock cases. It aims to familiarise the students with the management of a complex forensic case involving more than one type of evidence. It involves forensic analysis of material previously studied, preparation of expert witness reports and preparation for presenting evidence in a court environment.

65854
Honours (Chemistry)
24cp per semester; 2 semesters; prerequisite(s): BSc in Applied Chemistry or equivalent three-year degree
Study designed to enhance the skills and knowledge necessary for research in chemistry. The principal activity is an individual research project in which the student, under supervision, plans and undertakes investigations in an area of interest. The data collected are then subjected to analysis and interpretation under the guidance of the supervisor. Students learn to define objectives and aims, work to available time and resources, use appropriate research methods, critically assess information and develop complex arguments in detail. The findings of the research project are presented in a structured and integrated thesis which comprises the main assessment component. In addition, two hours per week are devoted to advanced topics of current research interest, presented through specialist lectures or seminars.

65856
Forensic Research Project
24cp; at least 25hpw; prerequisite(s): all Stage 1–7 subjects
A research project on specific aspects of forensic science will be conducted under the joint supervision of a member of the academic staff of the University and an external (industrial) supervisor. Some of the work may have to be conducted at sites away from UTS.
66014
Hydrogeology
6cp
Provides a knowledge of geological occurrence and hydraulics of groundwater flow, exploration techniques, extraction engineering and borefield management.

66015
Hydrogeochemistry
6cp
Covers the chemical basis for understanding how the chemistry of groundwater evolves both naturally and in the case of contamination. Both practical field measurement and computer modelling will be covered.

66018
Groundwater Geophysics
6cp
This subject presents an advanced application of geophysical techniques for groundwater research and resource management, and includes contamination assessment and monitoring. The focus is on seismic, electrical and electromagnetic methods.

66021, 66023
Groundwater Science Projects (M) F/T, P/T
24cp F/T or 12cp P/T
These projects will provide students with the opportunity to research specific hydrogeology groundwater resource or contamination problems. The depth and extent of research will vary with credit points required. Topics include investigation consisting of one or more of: modelling, laboratory experiments, field work related to hydrogeology and groundwater management, contaminant transport and processes, waste disposal and groundwater impact.

66022, 66024
Groundwater Science Projects (GD) F/T, P/T
12cp F/T or 6cp P/T
As 66021, 66023 Groundwater Science Projects (M) F/T, P/T but at a reduced scale.

66025
Contaminated Site Management
6cp
To develop an understanding of the methodology and technology used in the assessment and remediation of contaminated sites.

The subject content includes: site assessment methodology, physical, chemical and biological properties and behaviour of contaminants, health issues, risk assessment, site assessment technology. Further details are available at the website:
or contact the Subject Coordinator on telephone (02) 9514 2614.

66101
Earth Science 1
6cp
This is an entry level subject to the study of Earth Science concepts that introduces students to the basics necessary for geoscientific and environmental studies. The dynamic Earth and its materials; the structure and evolution of the crust, continents, oceans and the atmosphere. Geological history — what the rock sequences are telling us; time sequencing of major events which shaped our planet; the development of life forms and geological controls on these; structural geology. Introduction to landscape development — fluvial and arid, the coastal zone; geological hazards; groundwater; engineering geology; resources and mining; environmental geology. Weekly practical classes cover a wide range of skills in map reading, examination and description of sediments, minerals, rocks and fossils; geological interpretation. These are complemented by two full-day field excursions and other self-paced field work.

66204
Field Studies 1
6cp: approximately 3-4 hpw for 10 weeks, six-day field excursion in NSW, and up to 4 local half-day excursions; prerequisite(s): 66101 Earth Science 1; 91311 Biology 1
An introduction to field techniques in the earth and environmental sciences. Introduction to air photographs and satellite imagery; use of these and topographic and other maps in the field. Concepts of land tenure, ethics and safety in the field. Methods of systematic study — gridding, transects, maps and plans on the local scale. Basic geological mapping, stratigraphic principles, examination of landscape changes with time. As appropriate, use and development of thematic and soils maps. Much of the subject will be taught during one major field camp and supported by one or more afternoons of local field work.

1 This subject is no longer offered.
Earth Materials

6cp; prerequisite(s): 33101 Mathematics 1 (Life Sciences) or equivalent; 65012 Chemistry 1A; 66101 Earth Science 1

Students will be introduced to the rocks and minerals that are found at or near the surface of the Earth. The subject will cover the techniques and methodologies used to identify and classify minerals and rocks in hand specimen and thin section. An introduction to the chemistry of minerals and rocks is also undertaken. Crystal symmetry and Miller Indices; optical theory; use of the polarising microscope; optical properties, chemistry and paragenesis of rock-forming minerals; crystallisation paths of igneous minerals; occurrence, mineralogy and texture of igneous rocks; introduction to nature of magma and its cooling behaviour, magmatic differentiation, sources of magma; igneous rock associations. Types of metamorphism and textures of metamorphic rocks; chemical equilibria and metamorphic mineral reactions; concept of metamorphic zones and facies; metamorphic rock associations. Macroscopic (hand specimen) and microscopic description of minerals and rocks.

Fold Belts and Cratons

6cp; prerequisite(s): 66101 Earth Science 1

Stress and strain in rocks. Classification of common geological structures including folds, faults, joints, and foliations. Assemblages of imposed structures at different crustal levels. Deformation in space and time. Present day deformation and its relationship to plate boundaries. Relationship between metamorphism, the emplacement of large plutonic masses and plate setting. Presentation, manipulation and interpretation of structural data on maps, cross-sections and stereo nets. Use of the Mohr circle.

Earth Resources

6cp; prerequisite(s): 66304 Earth Materials; corequisite(s): 66409 Surficial Processes and Products

Introduction to the nature of ore bodies including genesis and classification. Laboratory investigation of ore deposits. Introduction to exploration methods and reserve estimation for mineral deposits. World energy market, geology of fossil fuels deposits including coal and associated strata, oil, natural gas and synfuels derived from oil shale, tar sands and other petrolierous sediments. Concepts of exploration and resource estimation. Alternate energy sources and their viability.

Surficial Processes and Products

6cp; prerequisite(s): 66204 Field Studies 1; 66304 Earth Materials; 65012 Chemistry 1A; 91311 Biology 1

Fold Belts and Cratons

6cp; prerequisite(s): 66101 Earth Science 1

Stress and strain in rocks. Classification of common geological structures including folds, faults, joints, and foliations. Assemblages of imposed structures at different crustal levels. Deformation in space and time. Present day deformation and its relationship to plate boundaries. Relationship between metamorphism, the emplacement of large plutonic masses and plate setting. Presentation, manipulation and interpretation of structural data on maps, cross-sections and stereo nets. Use of the Mohr circle.

Earth Resources

6cp; prerequisite(s): 66304 Earth Materials; corequisite(s): 66409 Surficial Processes and Products

Introduction to the nature of ore bodies including genesis and classification. Laboratory investigation of ore deposits. Introduction to exploration methods and reserve estimation for mineral deposits. World energy market, geology of fossil fuels deposits including coal and associated strata, oil, natural gas and synfuels derived from oil shale, tar sands and other petrolierous sediments. Concepts of exploration and resource estimation. Alternate energy sources and their viability.

Surficial Processes and Products

6cp; prerequisite(s): 66204 Field Studies 1; 66304 Earth Materials; 65012 Chemistry 1A; 91311 Biology 1

Fold Belts and Cratons

6cp; prerequisite(s): 66101 Earth Science 1

Stress and strain in rocks. Classification of common geological structures including folds, faults, joints, and foliations. Assemblages of imposed structures at different crustal levels. Deformation in space and time. Present day deformation and its relationship to plate boundaries. Relationship between metamorphism, the emplacement of large plutonic masses and plate setting. Presentation, manipulation and interpretation of structural data on maps, cross-sections and stereo nets. Use of the Mohr circle.

Earth Resources

6cp; prerequisite(s): 66304 Earth Materials; corequisite(s): 66409 Surficial Processes and Products

Introduction to the nature of ore bodies including genesis and classification. Laboratory investigation of ore deposits. Introduction to exploration methods and reserve estimation for mineral deposits. World energy market, geology of fossil fuels deposits including coal and associated strata, oil, natural gas and synfuels derived from oil shale, tar sands and other petrolierous sediments. Concepts of exploration and resource estimation. Alternate energy sources and their viability.

66510
Geophysics
6cp; prerequisite(s): 68041 Physical Aspects of Nature; 66101 Earth Science 1; 66408 Earth Resources

Review of solid earth geophysics including seismicity, magnetism, gravity and heat flow. Geophysical techniques applied to subsurface investigation of engineering, environmental and exploration sites, including resistivity, gravity, magnetics and seismic reflection and refraction techniques. Down-hole geophysics. Two-day field excursion.

66609
Environmental and Quaternary Geology
6cp; prerequisite(s): 66409 Surficial Processes and Products

Quaternary allocyclic factors that influence Earth systems and their consequences. Milankovich cycles, ice ages, eustatic fluctuations and climate change; recordings of these in Earth systems, their resulting elucidation, and the consequences of these and other major influences on the geosphere-biosphere. ‘Greenhouse’ concepts and their relationship and responses to natural and anthropogenic input. Geological hazards and their recognition, management and alleviation. Pollution and anthropogenic interference with Earth systems and the problems that arise. Recognition of the environmental problems and methods for their control and alleviation.

66611
Engineering and Groundwater Geology
6cp; includes several full and half-day excursions and field project work in the Sydney Basin; prerequisite(s): 66101 Earth Science 1; 33101 Mathematics 1 (Life Sciences); 65012 Chemistry 1A or equivalent; 66409 Surficial Processes and Products; corequisite(s): 66409 Surficial Processes and Products

Chemical weathering and clay mineralogy. Rheological properties of rocks and soils, properties of fills and aggregates; unified soil classification system. Engineering rock mass concepts and classification. Engineering site investigations, aspects of testing rocks and soils. Soil and rock slope stability; concepts of urban development, special purpose investigations e.g. dams and tunnels. Basic concepts of hydrogeology; effective porosity, hydraulic conductivity of geologic materials, occurrence and flow of water in aquifers and soils, Darcy’s Law, regional groundwater systems. The unsaturated zone. Elements of aqueous geochemistry and groundwater sampling. Water wells, construction of piezometers. This subject replaces 66501 Engineering and Environmental Geology, 66061 Environmental Geology, 66034 Groundwater Geology and 66610 Engineering Geology. Students who have completed these should not enrol in Engineering and Groundwater Geology.

66612
Geological Mapping
6cp; 10-day field excursion; prerequisite(s): 66204 Field Studies 1

Regional and detailed geological mapping in a range of settings using topographic, aerial photo and plan bases. Recording field observations. Field techniques in stratigraphy and structural geology. Traversing. Location determination by visual, compass, altimeter and GPS methods. Use of information from remote sensing and geophysical aerial surveys. Preparation of geological maps and sections. Land tenure and interaction with landowners and other interested parties. Safety in the field.

66651
Convergent Margin Tectonics
3cp; flexible including a 4-day field excursion; prerequisite(s): 66509 Tectonics and Surface Dynamics SUCOGG Elective

Subject Coordinator: Dr Paul Lennox (UNSW)

Students are expected to develop an understanding of modern convergent margins and the manifestation of their ancient equivalent preserved in orogenic belts. The subject covers basic tectonic elements, temporal and spatial variability of modern margins. The regional geology of the New England Fold Belt or the Lachlan Fold Belt, two of the major tectonic elements of the Tasman Fold Belt System of Australia, are covered in detail as examples of ancient margins. The module provides a synthesis of data derived from many geological sub-disciplines and allows students to bring information together from many of their
previous subjects in order to develop an overall view of the development of a large section of continental crust.

Coordinator: Professor E C Leitch
e-mail Evan.Leitch@uts.edu.au

Other staff involved:
P G Lennox (UNSW), K Klepeis (Sydney University)

66653
Applied Clastic Basin Analysis
3cp; flexible
SUCOGG Elective
Subject Coordinator: Associate Professor G Skilbeck

A review of the principles of seismic and sequence stratigraphy, including the problems and pitfalls. An examination of clastic sedimentary environments with particular emphasis on sandstone body deposition and orientation within a sequence stratigraphy framework. Applications of genetic/sequence stratigraphy are examined in exercises using real seismic and well data. On the accompanying field trip, outcrop of fluvial, near-shore, shallow and deep marine environments are examined to demonstrate the three-dimensional nature of deposits.

Coordinator: Associate Professor G Skilbeck
e-mail Greg.Skilbeck@uts.edu.au

66854
Honours (Geoscience)
24cp per semester; 2 semesters;
prerequisite(s): BSc in Earth and Environmental Science or equivalent three-year degree

Study designed to enhance skills and knowledge in undertaking scientific research in geology. Comprises 12 credit points of electives in a specialist field and a 36-credit-point equivalent individual research project where the student, under supervision, defines a problem in an area of interest, and then collects, analyses and interprets data to solve this problem. Students learn to define objectives and aims, work to available time and resources, use appropriate research methods, critically assess information and to develop complex arguments in detail. The findings of the research project are presented in a structured and integrated thesis which comprises the main assessment component. Research ethics and scientific method are emphasised.

66855
Honours (Environmental Science)
24cp per semester; 2 semesters;
prerequisite(s): BSc in Earth and Environmental Science or equivalent three-year degree

Study designed to enhance skills and knowledge in undertaking research in environmental science. Comprises 12 credit points of electives in a specialist field and a 36-credit-point equivalent individual research project where the student, under supervision, defines a problem in an area of interest, and then collects, analyses and interprets data to solve this problem. Students learn to define objectives and aims, work to available time and resources, use appropriate research methods, critically assess information and to develop complex arguments in detail. The findings of the research project are presented in a structured and integrated thesis which comprises the main assessment component. Research ethics and scientific method are emphasised.

66941
Applied Palaeontology
3cp; flexible
SUCOGG Elective
Subject Coordinator: Associate Professor R Mawson (Macquarie University)

An introduction to applied methods of dealing with a selection of stratigraphically important fossil groups. The subject aims to give students an awareness of what can be gleaned from the fossils they might find in their field area and to enhance students' skills in practical palaeontological methods. The subject includes practical experience in problem solving involving at least six stratigraphically important groups of fossils.

Coordinator: Associate Professor R Mawson
e-mail rmawson@laurel.ocs.mq.edu.au

66942
Palaeobiology Part I
3cp; flexible
SUCOGG Elective
Subject Coordinator: Associate Professor R Mawson (Macquarie University)

In this subject, students will be able to extend their awareness of the problems concerning invertebrate fossil communities. Student will gain an awareness of the importance of form and structure of fossil invertebrates and will enhance their skills in critical evaluation. Of particular importance will be the study of
evolutionary palaeontology with features such as shell form, musculature, vision, and buoyancy of extinct invertebrates; coloniality and models of phylogeny.

Coordinator: Associate Professor R Mawson
email rmawson@laurel.ocs.mq.edu.au

Other staff involved:
Professor J Talent (Macquarie University)

66943
Coastal Environmental Assessments
3cp; flexible
SUCOGG Elective
Subject Coordinator: Associate Professor A D Albani (UNSW)

Students will learn how to carry out a coastal environmental assessment of a target area. The subject deals specifically with the coastal fringe which is under ever increasing pressure from urbanisation and industrialisation. An understanding of the relationship between benthic foraminifera, sediments, sediment geochemistry and the water masses will be covered. The construction and testing of databases, including the use of complex numeric databases to evaluate human impact on the coastal environments, are included. Sampling analytical techniques, including statistical analyses of the databases are presented through the use of case studies.

Coordinator: Associate Professor A D Albani
email a.albani@unsw.edu.au

Other staff involved:
Dr P C Rickwood (UNSW)
Dr E Frankel (UTS)

66944
Coal Exploration and Mining Geology
3cp; flexible
SUCOGG Elective
Subject Coordinator: Associate Professor C Ward (UNSW)

This subject aims to develop familiarity with the techniques of coal deposit evaluation, and the use of geology in coal mining operations. Topics covered include geological evaluation of coal deposits, the relation between quality factors and coal preparation, marketing and use; geological and geophysical methods in coal exploration programs; significance of geological features in the design, development and operation of underground and open-cut coal mines, and the evaluation of environmental impacts of coal mining. A combination of coal analysis and testing programs; coal petrology and petrographic analysis; relationship of coal properties to utilisation processes; introduction to mining methods and coal preparation technology; geological and geophysical methods for coal exploration and mine-site studies; mechanical behaviour of rock masses in surface and underground mine situations; subsidence and environmental impact evaluation; introduction to geological database and modelling systems will be covered.

Coordinator: Associate Professor C Ward
email C.Ward@unsw.edu.au

Other staff involved:
Professor P Davies (Sydney University)
66949

Palaeobiology Part II

3cp; flexible

SUCOGG Elective

Subject Coordinator: Associate Professor R Mawson (Macquarie University)

In this subject students will extend their knowledge of problems concerning vertebrates, with emphasis on the development of critical skills in the evolutionary palaeontology and the science of form in vertebrates. Special emphasis will be given to palaeoengineering (including jaw mechanics, flight etc.) and approaches to physiology and sociobiology of extinct vertebrates and the evolution of the brain.

Coordinator: Associate Professor R Mawson
email rmawson@laurel.ocs.mq.edu.au

Other staff involved:
Professor J Talent (Macquarie University)

66950

Geochemical Analysis Techniques and Applications

3cp; flexible

SUCOGG Elective

Subject Coordinator: Dr N J Pearson (Macquarie University)

The aim of this subject is to familiarise students with the various analytical techniques used in geochemical analysis, concentrating on the facilities available to SUCOGG. Students will develop a basic working knowledge of the principles and procedures used in the evaluation and manipulation of geochemical data and will have the opportunity to gain practical experience in the application of geochemical data to a diverse range of petrological problems. The subject is relevant to students planning a career in petrology because advances in instrumentation and the development of new techniques are producing an abundance of geochemical data and an understanding of these analytical techniques is necessary to remove the 'black-box' aura and to create a greater appreciation of the quality of the results. This is critical to the interpretation of geochemical data, and the significance attained when propagated in petrogenetic models.

The program includes a review of analytical techniques (XRF, electron microprobe, mass spectrometry, laser Raman spectroscopy, XRD, proton microprobe, ICP-MS, high P-T experimental apparatus), planning of an analytical program, sample preparation, basic X-ray theory, errors and analysis statistics, fundamental data manipulation (calculation of structural formulae, mineral end-members, CIPW norm), data presentation, introduction to advanced geochemical software.

Coordinator: Dr N J Pearson
email norm.pearson@mq.edu.au

Other staff involved:
Professor S Y O'Reilly
Professor T H Green (Macquarie University)
Professor W L Griffin (CSIRO)

66952

An Introduction to Phase Diagrams and Thermobarometry

3cp; flexible

SUCOGG Elective

Subject Coordinator: Dr G Clarke (Sydney University)

In this subject students will learn how whole rock and mineral geochemical data may be used to quantitatively constrain the P-T-X conditions that formed some common metamorphic rocks, and the application of phase diagrams to common metamorphic problems. Topics such as elementary thermodynamic theory, use of data that has already been acquired through electron microprobe analysis of rock thin sections, and the principles of Schreinemakers analysis will be covered. At the end of the subject students should have sufficient knowledge of, and confidence in, thermobarometric and phase diagram methods to: (1) competently analyse a given metamorphic rock; (2) describe the minerals present in terms of their composition and potential end-members; (3) apply common, experimentally calibrated thermometers and barometers; and (4) construct simple phase diagrams that complement quantitative methods of analysis. Since the conditions of formation of many common mineral assemblages may not be precisely defined, a thermobarometric method that uses an approach involving an internally consistent thermodynamic data set will also be introduced and applied.

Coordinator: Dr G Clarke
email geoffc@mail.usyd.edu.au

Other staff involved:
Associate Professor B Hensen
Subject descriptions

66953

Interpretation of 2D and 3D Seismic Reflection Data

3cp; flexible
SUCOEG Elective
Subject Coordinator: Mr D Palmer (UNSW)

In this subject students will develop skills and knowledge about the interpretation of seismic reflection data for petroleum exploration and coal mine planning, using interactive computer software (SeisVision by GeoGraphix). The program will include introductory seismic data processing, spatial and temporal resolution, 3D Migration, the design of 3D surveys, display of the 3D seismic data volume, vertical and horizontal sections, attributes, phase, and colour, structural interpretation, horizon picking, fault mapping, depth conversion, stratigraphic interpretation, horizontal time sections, horizon flattening, reservoir analysis.

Coordinator: Mr D Palmer
email d.palmer@unsw.edu.au
Other staff involved:
Associate Professor C G Skilbeck (UTS)

66954

Processing of Seismic Reflection and Ground Penetrating Radar Data

3cp; flexible
SUCOEG Elective
Subject Coordinator: Mr D Palmer (UNSW)

The subject develops familiarity and skills in routine processing of time series data recorded for seismic reflection and ground penetrating radar surveys. Topics include: a review of fundamental theory, analogue and digital signals, aliasing, the Fourier transform, bandwidth, the impulse response, convolution, correlation, introduction to seismic unix, general command structure, self documentation, examining trace headers, displaying with SU, spectral analysis with SU, frequency filtering with SU, velocity filtering with SU, common midpoint sorting, velocity analysis, normal moveout corrections, stacking, migration.

Coordinator: Mr D Palmer
email d.palmer@unsw.edu.au
Other staff involved:
Professor I Mason (Sydney University)
Dr K Gohl (Macquarie University)

66955

Geological and Structural Interpretation of Potential Field Data

3cp; flexible
SUCOEG Elective
Subject Coordinator: Dr M Lackie (Macquarie University)

The subject develops familiarity and skills in the geological interpretation of aeromagnetic, radiometric and gravity data. Topics dealt with in the subject include a review of fundamentals of petrophysics, sampling, resolution, and spatial aliasing, image presentation, high and low pass filters, the geometric skeleton, definition of discrete magnetic units, definition of discontinuities and contacts, separation of shallow and deep sources, dip indicators, geological classification of aeromagnetic patterns, the third dimension, structural history and modelling with 'Noddy'.

Coordinator: Dr M Lackie
email mlackie@laurel.oce.mq.edu.au
Other staff involved:
Dr P G Lennox (UNSW)
Mr D Palmer (UNSW)

66956

Deformation Processes

3cp; flexible
SUCOEG Elective
Subject Coordinator: Dr D W Durney (Macquarie University)

This subject gives an overview of mechanisms of deformation and mass-transfer which affect common rock types (structural petrology) and simple concepts of progressive deformation (kinematics). Examples are mainly from low-grade metamorphic environments, but many of the concepts apply to higher grades as well. Expected outcomes include being able to analyse and report microstructures associated with tectonic deformation and veining in silicate and carbonate rocks, and to gain an appreciation of flow types and how structures may develop through time. The subject will be relevant to field or laboratory studies of deformed rocks (including orebody host-rocks) wherever cleavage, veining, metasomatism, shearing or multiple deformation are present. The subject covers topics such as intra-crystalline (dislocation) and intercrystalline (solution-transfer) deformation mechanisms and mass transfer processes; deformation mechanism microstructures and controls.
Mineral growth textures and their modification; types of vein growth. Practical work includes an examination of neocrystallisation textures and cleavage structures.

Coordinator: Dr D W Durney
e-mail d.durney@atlas.es.mq.edu.au

66957
Introduction to Geostatistical Data Analysis
3cp; flexible
SUCOGG Elective
Subject Coordinator: Dr R Dietmar Mueller (Sydney University)

Basic principles of statistical data analysis in geoscience; data collection and preparation, univariate statistics including graphical and numerical description, probability, the normal distribution, inference, analysis of variance multivariate statistics including bivariate scatter, correlation coefficient and bivariate regression with special emphasis on geoscientific applications.

Coordinator: Dr R Dietmar Mueller
e-mail dietmar@es.su.oz.au

67101
Introduction to Materials
6cp; corequisite(s): 65101 Chemistry 1C or equivalent

An introduction to materials science, providing a foundation in microscopic structure and composition for the understanding of the behaviour of engineering materials. Topics include classification and structure of solids, phase diagrams, properties of metals, ceramics, polymers, timber and composites.

67303
Mechanical Properties of Materials
6cp; prerequisite(s): 33190 Mathematical Modelling for Science; 67101 Introduction to Materials

This subject provides an understanding of the mechanical properties of materials by the use of standard mechanical tests and the determination of materials property data. The concepts of stress, strain, elasticity, plasticity and criteria for yielding and fracture are addressed and applied to a wide range of mechanical test methods and materials. The issue of fractography as a means failure analysis is also addressed. Basic statics is introduced to the student along with an introduction to fracture mechanics. This subject also ensures that the student develops the necessary laboratory and analysis skills required by professionals involved in the mechanical testing of materials for either research or quality assurance.

67304
Physical Metallurgy
6cp; 6hpw; prerequisite(s): 67303 Mechanical Properties of Materials; 67101 Introduction to Materials

This subject provides an understanding of the theory of phase transformations in metal and alloys. Solidification and solid-solid transformations of metals and alloys are studied in relevance to the phase transformation theory. Deformation mechanism and annealing behaviour of metals and alloys are studied in terms of modern theory and practice. Attention is also given to application of the industrial processes and their effects on the microstructure-texture-property development of metallic materials.

67305
Polymer Science
6cp; 6hpw; prerequisite(s): 65201 Chemistry 2C; 67101 Introduction to Materials or equivalent

This subject provides an introduction to the chemistry and physics of polymers and includes comprehensive coverage of the structures, polymerisation mechanisms and characterisation techniques of polymers. Practical classes provide experience with relevant techniques and complement the theory presented in lectures. The applications of polymers are also addressed. This subject gives students a solid grounding in the field of polymers and the practical foundation for work in the polymer industry.

67306
Industrial Ceramics
6cp; 6hpw; prerequisite(s): 67101 Introduction to Materials; 65201 Chemistry 2C

Fundamentals of ceramic science and technology, ceramic phase diagrams – binary and ternary systems, ceramic structures and phase transformation, clay-based ceramics, cements and concretes, and glasses. Raw materials and manufacturing methods.
104 Subject descriptions

67407
Physical Properties of Materials
6cp; 6hpw; prerequisite(s): 67101 Introduction to Materials; 68201 Physics in Action
(Physics 2); 33190 Mathematical Modelling for Science; 65201 Chemistry 2C
An introduction to atomic structure and quantum mechanics serves to develop the band theory of solids at an intermediate level. These theoretical concepts are utilised in describing the electrical, thermal, magnetic and optical properties of metals, semi-conductors and insulators. The characteristics and structure of high temperature superconductors are discussed. The unique properties of these materials are emphasised by an examination of devices including capacitors, diodes, thermocouples, loudspeakers, recording heads, strain gauges, information storage, fibre optics and so on.

67408
Industrial Metallurgy
6cp; 6hpw; prerequisite(s): 67303 Mechanical Properties of Materials; 67304 Physical Metallurgy
The subject provides an understanding of application of metallurgical principles and theoretical concepts to the present and developing metal processing technologies, including foundry and casting technology, metalworking processes, welding technology, surface finishing and powder metallurgical techniques. The theory and application of non-destructive testing techniques are studied for examination of metal components and structures. Attention is also given to the environmental impact and the latest recycling technology of metals and alloys.

67409
Polymer Technology
6cp; 6hpw; prerequisite(s): 67305 Polymer Science; 67303 Mechanical Properties of Materials
This subject provides a comprehensive coverage of the physical properties of polymers and processing methods used in their manufacture. Practical classes provide experience with such processing methods and the relevant mechanical testing techniques. This subject gives students a practical foundation for work in the polymer industry.

67506
Technical Ceramics
6cp; 6hpw; prerequisite(s): 67306 Industrial Ceramics; 67303 Mechanical Properties of Materials
This subject covers the physical aspects of the Technical Ceramics. Structural imperfections are covered using Kroger-Vink notations and industrial electronic ceramics are introduced as practical examples. Free energy curves for ceramic materials are covered and spinel diagrams and related ferrite and aluminate structures are introduced. Diffusion, densification, sintering theories, grain growth and other sintering problems. Molecular engineering of advanced ceramics, oxides, nitrides, sialons in general. Advanced ceramics production methods. Glass ceramics, thermal coatings, mechanical properties, reliability and probability analysis in ceramic materials. Toughening mechanisms in ceramics. Magnetic and electronic and opto-electronic ceramics. Optical fibre production and technology.

67606
Corrosion and Degradation of Materials
6cp; 6hpw; prerequisite(s): 67408 Industrial Metallurgy; 67506 Technical Ceramics; 67409 Polymer Technology
This subject provides a detailed survey of the forms and mechanisms of corrosion of metallic materials and the degradation of non-metallic materials. The use of appropriate non-corrosion and anti-degradation methods is considered in terms of modern theory and practice. Attention is also given to the economics of materials selection and degradation protection and control techniques. Lectures are complimented by an extensive practical program which emphasises the applied nature of the subject.

67608
Composites
6cp; 4hpw; prerequisite(s): 67303 Mechanical Properties of Materials; 67409 Polymer Technology; 67506 Technical Ceramics; 67408 Industrial Metallurgy
The subject draws together the concepts the students have developed on metals, ceramics and polymers and applies them to the incorporation of these materials to form composites in order to develop material properties that are unobtainable in the monolithic counterparts. Appreciation of why composites are used and
what advantages they can give the designer/engineer over monolithic materials are given. Students will gain a basic knowledge of composite design and cost analysis in the use of composites. In addition students will obtain an understanding of the processing methods used to produce composite parts. Also included is an examination of the decision-making processes that materials scientists employ to originate, evolve and produce a device. Material selection and specification is examined and is not limited to composite materials.

67854
Honours (Materials Science)
24cp per semester; 2 semesters; prerequisite(s): BSc in Materials Science or equivalent 3-year degree
Study designed to increase skills and knowledge necessary for research in materials science. The student selects an individual research project and, under supervision, formulates a research plan for a problem in an area of interest. Planning is based upon a critical review of the technical literature and methodologies. Appropriate goals are set within definite time frames and resources to ensure the objectives are fulfilled. Students gain practical experience in applying advanced analytical methods through sophisticated instrumentation to characterise the structural aspects and properties of the material under investigation. Data collected from these measurements are evaluated by testing the statistical significance and establishing empirical relationships between experimental variables. Interpretation of the data and the establishment of models from accepted modern theories to explain the empirical findings enhance the creative skills of the student. The findings of the research project are presented in a structured and integrated thesis which comprises the main assessment. In addition, two hours per week are devoted to advanced topics of current research interest, presented through specialist lectures or seminars.

68041
Physical Aspects of Nature
6cp; 6hpw
General introduction to movement, wave motion, optics, thermal effects, properties of solid and fluid matter, electrical and atomic concepts with a view to developing an appreciation and understanding of how to model the physical aspects of nature. The material is presented with a focus on application to all areas of science and life science and integrates as a key component hands-on laboratory work and analysis of experimental data.

68101
Foundations of Physics
6cp; 6hpw
This is a foundation physics subject primarily for students in the physical sciences. It covers the fundamentals of dynamics and statics, fluid mechanics, thermal physics, waves and electricity. A strong emphasis is placed on the investigative nature of physics research with an integrated laboratory program developing further the problem-solving skills of the lecture and tutorial material to an appreciation of good experimental design and significance in information obtained under real-life modelling situations.

68201
Physics in Action (Physics 2)
6cp; 6hpw; prerequisite(s): 68101 Foundations of Physics
This subject extends the material studied in 68101 Foundations in Physics, with statics and dynamics extended to a study of rotation, thermal physics extended to the first two laws of thermodynamics and waves extended to a study of geometrical optics and optical devices. At the same time, students are introduced to electric circuitry and electromagnetism and commence a historical study of atomic and nuclear physics.

68311
Atoms, Photons and Orbits (Physics 3)
6cp; 5hpw; prerequisite(s): 33190 Mathematical Modelling for Science or equivalent; 68201 Physics in Action (Physics 2); corequisite(s): 33290 Computing and Mathematics for Science
First-year mathematical techniques enable students in this subject to extend the understanding and modelling of mechanics and optics to more real-world situations and at the same time explore the exciting evolution from Newtonian Physics to Quantum Physics. It provides the foundation for later core physics subjects, the emphasis of the subject being mainly theoretical but it has an experimental component applying the explorative first year techniques to optical experimentation, a study of radioactivity and computer simulation of dynamical systems.
Mechanics topics include the generalisation of kinematics to 3D motion and orbital mechanics. Optics studies include refraction, lenses, photography, the dispersion of light, aberrations, polarisation and scattering phenomena. 'Modern' physics will study the basic properties of the atom, radioactivity and relativity and lead into an introductory segment on Quantum Physics.

68312
Electrotechnology and Data Analysis
6cp; 5hpw; prerequisite(s): 68201 Physics in Action (Physics 2); 33290 Computing and Mathematics for Science

Scientific writing, rigorous analysis and a command of methods of presentation are essential tools for the physicist of the 21st century. In this subject, students study the concepts of electricity, electromagnetism and electrical measurements and their application to dynamical systems at the same time as exploring contemporary techniques of analysis of experimental data. These two areas are integrated into a project component which develops further the skills of experimental design developed in 68101 Foundations of Physics in an electromagnetic context and enables the students to become critical analysers of their own and others' experimental work.

68314
Electronics
6cp; 5hpw; prerequisite(s): 68201 Physics in Action (Physics 2); 33290 Computing and Mathematics for Science

This subject will develop students' understanding of the basic building blocks of electronic circuits. Review of circuit theory, semiconductor theory, diodes and bipolar transistors, transistors as switches and linear devices, introduction to digital electronics, logic gates, latches and counters, frequency characteristics and feedback in amplifiers, operational amplifiers. Hands on learning, guided discovery activities in laboratory context are a key feature. The subject is equivalent to the Engineering subject 48520 Electronics.

68411
Vibrations, Quanta and Nucleons (Physics 4)
6cp; 5hpw plus 1 flexible; prerequisite(s): 68311 Atoms, Photons and Orbits (Physics 3); 33290 Computing and Mathematics for Science; 33390 Mathematics and Scientific Software or equivalent

This subject aims to complete the basic core physics training for Applied Physics students by applying the treatment of mechanics to vibrations, to variable mass and fluid flow and to the special features of the mechanics of the atom. The students will learn the basic techniques of quantum mechanics to begin to understand the findings of atomic theory introduced in 68311 Atoms, Photons and Orbits (Physics 3). Processes involving the considerable forces associated with the inner structure of the nucleus are studied to provide an understanding of the power of nuclear applications in the fields of medicine and forensic science. This is core material, providing the foundation for a study of the solid-state and leads directly into the subject 68511 Quantum and Solid-state Physics.

68412
Energy Science and Technology
6cp; 5hpw; prerequisite(s): 68201 Physics in Action (Physics 2); 33290 Computing and Mathematics for Science or equivalent

Solar, renewable and conventional energy issues including energy efficiency and the possibilities for energy use posed by the laws of thermodynamics. Vacuum and thin films play a key role in many energy technologies - this part of the course is laboratory and project-based, including a practical study in either advanced windows, roof coatings or solar absorbers.

68511
Quantum and Solid-state Physics
6cp; 5hpw; prerequisite(s): 68411 Vibrations, Quanta and Nucleons (Physics 4); 33490 Computational Mathematics and Physics

This subject will highlight the fundamental nature of quantum mechanics and its application to the understanding of solids. Potential wells, eigenstates and eigenvalues, solutions to the Schrödinger equation in 3 dimensions, linear combination of atomic orbitals, band theory, pure and doped semiconductors, pn-junction and the light emitting diode will be explored. You do not have to be Einstein to understand the quantum mechanical basis of
modern devices and their application in modern life. A major assignment will be computational and will utilise software skills developed in 33490 Computational Mathematics and Physics.

68512
Research Methods in Applied Physics
6cp; 5hpw; prerequisite(s): 68312 Electrotechnology and Data Analysis or equivalent experimental design experience
The purpose of this ‘capstone’ applied physics subject is to provide the opportunity for students to experience applied physics research. Students will be able to develop skills in cutting edge research techniques. Exact topics covered will vary depending on availability of staff. For example, X-ray diffraction, atomic force microscopy, scanning electron microscopy, solar energy materials, advanced optical characterisation, lighting, energy, medical imaging, and parallel computing could be offered. A few background lectures may take place though the subject will be predominantly project and laboratory based. The subject would be a suitable elective for students in all branches of the physical sciences.

68514
Electronics and Interfacing
6cp; 5hpw; prerequisite(s): 68314 Electronics; 48520 Electronics or equivalent instrumentation experience
The subject will further develop students’ understanding of computer interfacing in applied physics and science in general. You will learn how to construct functioning interfaces and the role of digital electronics. Digital electronics, computer interfacing, and the use of the LabView package will be the main components of the subject. A sequence of small projects will involve the design and construction of circuits and interfaces and is a key feature of the subject. This subject would be useful to students in science courses who have an interest in developing their skills in the instrumentation and interfacing areas, with project work oriented to students’ needs and interests.

68611
Electromagnetics and Optics
6cp; 5hpw; prerequisite(s): 68201 Physics in Action (Physics 2); 33490 Computational Mathematics and Physics or equivalent
The subject’s purpose is to consolidate the emphasis on optics and its applications in the course. The development of an understanding of electromagnetic theory and some of its key features, and its relevance to modern telecommunications will benefit scientists and engineers. The subject seeks to consolidate students’ understanding of the theory of electromagnetism in the modern world. The topics include derivation, and application, of Maxwell’s equations, energy transfer by waves, guided waves and optical fibre technology, optical instrumentation, diffraction and spatial filtering techniques. The emphasis of this subject is conceptual. Students will also engage in an extensive laboratory program in experimental optics. Computer simulation and data visualisation techniques will underpin the electromagnetics theory. Students will be encouraged to explore topics of interest through project activities.

68854
Honours (Physics)
24cp per semester for 2 semesters; prerequisite(s): BSc in Applied Physics or equivalent three-year degree
Study designed to enhance the skills and knowledge necessary for research in physics. The principal activity is an individual research project in which the student, under supervision plans and undertakes investigations in an area of interest. The data collected are then subjected to analysis and interpretation under the guidance of the supervisor. Students learn to define objectives and aims, work to available time and resources use appropriate research methods, critically assess information and develop complex arguments in detail. The findings of the research project are presented in a structured and integrated thesis which comprises the main assessment component.

69311
Occupational Health and Safety in Society
3cp; 2hpw
This subject will cover the psychological, political and sociological dimensions of occupational health and safety, and present them within the context of the overall social system. It will highlight the complexity and diversity of working environments, and the importance of the human agency in constructing and changing them. It will also explore the strategies available to create safer and healthier working situations.
69312
Occupational Hazard Analysis
6cp; 4hpw
This subject will deal with the identification of the major categories of both safety and health hazards, the analytical techniques and management programs appropriate for dealing with them and the development of policies in occupational health and safety models of accident and disease causation, techniques of investigation, emergency hazards and risk assessment will also be covered.

69323
Human Factors/Ergonomic Design
3cp; 2hpw
The role of ergonomics/human factors in the creation of a healthy, safe and productive work environment will be covered, including the principles and techniques used in this discipline. The subject will include the principles of ergonomic design and their application to product and equipment design to combine safety with functionality.

69325
Data Analysis in Occupational Health and Safety
3cp; 2hpw
The collection and organisation of data, and access to and use of databases are important aspects of the effective management of the occupational health and safety function. This subject will develop understanding and proficiency in these areas with special reference to occupational health and safety and workers’ compensation information systems and reference material databases.

69332
Chemical Safety (Management)
3cp; 2hpw
This subject will deal with the hazardous effects of chemicals on people and the methods of handling and storing chemicals to minimise risks to health and safety.

69335
People and the Physical Environment
3cp; 2hpw
People have a continuing and dynamic interaction with their physical surroundings, and the processes of this interaction must be understood so that they can be designed for and controlled. The subject will deal with both those interactions which are a part of normal processes, such as noise, vibrations and heat, and those which are random and unplanned events. The first of these can be quantitatively assessed and controlled, whereas the latter requires the application of probability and reliability techniques.

69336
Evaluating Occupational Health and Safety (Construction Industry)
6cp; 4hpw; prerequisite(s): completion of 2 semesters of the Master’s in Occupational Health and Safety Management
This subject focuses on the importance to the occupational health and safety manager of identifying and accessing occupational health and safety research literature sources in order to keep abreast of current issues and emerging technologies in the building construction industry. It is designed to encourage the development of skills in accessing and critically evaluating occupational health and safety research literature in its treatment of current issues in the building and construction industry as well as to develop skills and confidence in evaluating and communicating such information.

69338
Biological Hazards and Toxicology
6cp; 4hpw
This will be an introduction to biological hazards in the workplace, including allergens in airconditioning systems, legionellosis, infecting disorders, food poisoning, and other job associated risks. It will also discuss the principles of environmental and human toxicology, including toxic gases, dusts and chemicals and test methods, hygiene and sanitation.

69341
Risk Management
6cp; 4hpw
Risk management is the term applied to a logical and systematic method of identifying, analysing, assessing, treating, monitoring and communicating risks associated with any activity, function or process in a way that will enable organisations to minimise losses and maximise opportunities.
At successful completion of this subject students will have demonstrated that they:

- understand and are able to implement the Australian/New Zealand Standard 4360 in the context of occupational health and safety
- understand the systems associated with the application of risk management in organisations.

69342
Legal Aspects of Occupational Health and Safety
3cp; 2hpw

Occupational health and safety is covered by a wide range of legislative Acts and regulations, both State and federal. This subject will introduce students to the important aspects of this legislating, its interpretation, and the implications for the organisation and management of the occupational health and safety function.

69345
Occupational Health and Safety Management
6cp; 4hpw

This subject will bring together the management aspects of occupational health and safety through group exercises and case studies. It includes examination of the behaviour of people in organisations, and the dynamics of interpersonal and intergroup behaviour. It then deals with the role of the occupational health and safety manager in industry, motivation for health and safety, industrial relations issues, current concepts in safety and health, data analysis and collection and the use of records, training for occupational health and safety, and economic aspects of losses associated with accidents, injuries and ill health.

69351
Occupational Health and Safety Project
12cp

Students are required to undertake a substantial research project in an area of specialisation in occupational health and safety which is of interest and relevance to them. They will be guided and supervised by a member of academic staff from that area. They may also be required to undertake additional coursework in research methods and/or in the specialisation area to supplement the research program.

69353
Research Proposal (Occupational Health and Safety)
12cp; 6hpw (average) over 2 semesters; corequisite(s): 69351 Occupational Health and Safety Project

This subject complements 69351 Occupational Health and Safety Project. Each student works independently to review relevant research literature in order to develop a viable research question suitable for investigation in 69351. Students then formulate a specific research plan including selection of appropriate data collection and analysis methods and scheduling the sequence of steps that will be required to answer the question within the available time frame. There is a formal lecture component dealing with research issues. Student seminars and written reports based on different stages of their projects provide experience in writing and presenting research communications.

91101
Cells, Genetics and Evolution
6cp; 6hpw (average)

This foundation subject in the biological science, introduces a number of associated topics relating to the cells as well as the whole organism. This subject covers general evolutionary principles, emphasising the biological diversity from genetic variation to the diversity of species and ecosystems. Topics include scientific inquiry, concept of science (as applied to evolutionary thought), principles of genetics, the nature of variation, human evolution. Multimedia technology is integrated throughout the lecture and laboratory curricula.

Students normally work in groups of four in the three-hour laboratory block. Laboratory work is designed to involve students in investigation, problem-solving and discovery exercises and may involve computer simulation exercises supplementing other ‘hands-on’ activities with living organisms. Computer exercises allow students to further investigate principles of genetics, classification of organisms based on evolutionary relationships, evolutionary mechanisms, population ecology and other topics. Small group work will develop communication skills. This unit introduces students to many of the fundamental concepts in biological sciences, and as such could also serve as an elective for other courses.
110 Subject descriptions

91102 Functional Biology
6cp; 6hpw (average)
This foundation subject in the biological sciences introduces a number of associated topics relating to animals and plants. The evolution and diversity of the Australian biota is discussed within the context of climate changes and other environmental factors. Adaptations of animals and plants are explored by considering how they function, what makes them work, the how and the why. Multimedia technology is integrated throughout the lecture and laboratory curricula.
The laboratory classes are normally three-hour blocks, designed to involve students in investigate, problem-solving and discovery exercises. Students work in small groups with computer simulation programs and other activities involving living organisms. The development of communication skills is recognised as a key strategy in this foundation subject.
This introductory unit focusing on the Australian environment and its animals and plants could serve as an elective for other courses.

91110 Experimental Design and Sampling
6cp; prerequisite(s): 91395 Biocomputing; 33106 Statistical Design and Analysis or equivalent; 91312 Biology 2
The principles and practice of scientific experimentation, with particular emphasis on biology. The essential steps in experimental design and analysis, and their roles. The source of experimental variability and the ways of effectively dealing with them. Environmental sampling procedures and designs. The logic of experimental and statistical hypothesis testing. The practical uses and limitations of these statistical tests in biology: multifactorial analysis of variance, correlation, multiple regression, chi-square. Techniques for analysing multivariate data, with emphasis on the pattern-analysis methods of ordination and clustering.
This subject replaces 91303 Experimental Design in Ecology and 91329 Ecological Sampling (or the equivalent subject 91376 Environmental Measurement). Students who have completed these subjects should not enrol in this subject.

91111 Pollution Assessment
6cp; prerequisite(s): 65012 Chemistry 1A or equivalent; 91312 Biology 2
This subject presents an overview of the sources and classes of major pollutants in aquatic and terrestrial ecosystems, their fates in the environment and the means of assessing their impact on the biota. It will introduce the concepts of bioaccumulation, biotransformations, acute and chronic toxicity as well as the applicability of field and laboratory methods in the biomonitoring process.

91112 Ecological Principles and Modelling
6cp; prerequisite(s): 91395 Biocomputing; 91312 Biology 2
This subject provides a foundation in the characteristics and functioning of populations and communities in terrestrial and aquatic ecosystems. It includes exploration of population and community processes, including inter- and intraspecific interactions and the origins of temporal and spatial patterns in communities and populations of plants and animals. This subject may include field excursion which could be conducted before commencement of semester.

91113 Pollution Ecology
6cp; prerequisite(s): 91111 Pollution Assessment; 91112 Ecological Principles and Modelling
This subject addresses some of the current issues in pollution ecology and will include examination of relevant case studies. Natural and stress variability in ecosystems, snapshot vs long-term studies. Future development of toxicity assessment in ecotoxicology; microcosms, mesocosm, field studies. Early warning biomarkers of environmental degradation; impact of pollution of genetic diversity. Rehabilitation of contaminated sites, including bioremediation; alternatives to pesticides; endocrine disruptors and lifestyle effects of pollutants; toxicity modelling (QSARS and others); nexus between ecology of organisms and their apparent responses to contaminants; the science underlying environmental quality guidelines.

This subject is no longer offered.

1 This subject is no longer offered.
91114
Toxicity Assessment
6cp; prerequisite(s): 65012 Chemistry 1A or equivalent; 91312 Biology 2
Physiological and cellular responses of organisms to toxic chemicals and the variety of assessment methods to compare their relative toxicities. Biological responses to toxic materials, conditions affecting their uptake and transformation, stress physiology; chronic and acute toxicity testing, bioassays and test protocols for terrestrial and aquatic systems (pesticides, herbicides); multispecies test. Biological and chemical principles of pest control; the safe use of pesticides. Criteria for selection of organisms; interpretation of test results; endpoints and biomarkers.

91116
Wildlife Ecology
6cp; prerequisite(s): 91309 Australian Biota
This subject covers a range of aspects including wildlife ecology and management in Australia and worldwide; behavioural ecology of vertebrate wildlife; the ecology of threatened and endangered species; anthropogenic impacts on Australian wildlife; captive breeding programs and the role of national parks in conservation; the ecology of native and introduced pest animals; conservation through sustainable use of wildlife.

91117
Freshwater Ecology
6cp; 6hpw; prerequisite(s): 91121 Aquatic Ecology
This subject approaches the study of freshwater ecosystems synthetically through project-based teaching. This will form the focus in which the learning and application of limnological principles to resolving water-related issues are provided. It includes approaches to the assessment and management of freshwater ecosystems. It also introduces the importance that other disciplines such as sociology, economics and politics have on issues on the management of water resources. This subject requires significant interaction between students and community in the development and conduct of a targeted project.

91118
Fisheries Resources
6cp; prerequisite(s): 91112 Ecological Principles and Modelling
Freshwater, estuarine and marine biological resources and their exploitation will be examined. Problems of productivity against a background of regulations will be explored, and the major management requirements for ESD of coastal and freshwater fisheries resources addressed. NSW and Australian practices shall be examined in relation to best practices elsewhere. Some classes taught in excursion mode.

91119
Terrestrial Ecosystems
4cp; 3hpw; prerequisite(s): 91309 Australian Biota; 91307 Community and Population Ecology1; 91110 Experimental Design and Sampling
This subject provides an advanced understanding of the characteristics and functioning of terrestrial ecosystems and is designed to strengthen and develop skills in the acquisition and analysis of data from terrestrial systems. Patterns and processes in terrestrial ecosystems. The influence of soil, fire, climate and history on the characteristics of terrestrial environments. Causes and effects of degradation of terrestrial systems; management issues. This subject includes a compulsory field excursion which may be conducted before commencement of semester.

91120
Mapping and Remote Sensing
6cp; prerequisite(s): 91395 Biocomputing; 91110 Experimental Design and Sampling; Earth and Environmental Science students should have completed 68305 Fold Belts and Cratons
This senior subject caters to Earth and Environmental Science, Environmental Biology, and Environmental and Urban Horticulture students. It covers the properties of EM radiation and its interaction with the Earth’s atmosphere. Qualitative and quantitative analysis and interpretation of aerial photographs and satellite imagery including Landsat TM and SPOT data, and microwave and thermal imaging are included. Students are introduced to the techniques of Geographical Information Systems (GIS) and digital image...
enhancement using specialist computing software, and image processing. GIS design and analysis skills are provided. GIS will be used to address issues associated with resources management, while remote sensing techniques will be applied to the assessment of resources, such as forestry, coastal habitats and geological features.

91121
Aquatic Ecology
6cp; includes a compulsory field trip to Stroud, normally held in February; prerequisite(s): 91270 Plant Physiology; 91363 Animal Ecophysiology
Australian water resources. The hydrological cycle and catchment-water relationships. Structural components and functional processes of aquatic ecosystems: physical, chemical and biological features; nutrient cycles and energy flows. Distinctive features of lakes, wetlands, rivers and streams, estuaries, coastal lagoons and the sea. Ecology of algae, macrophytes, zooplankton, benthic macroinvertebrates, and vertebrates in aquatic systems. Food webs in aquatic ecosystems.

91122
Environmental Management
6cp; prerequisite(s): completion of Stages 1-5
Environmental Management is examined from different perspectives including the socio-economic and community aspects. Global issues as well as Australian environmental issues are considered. Integrated environmental management is offered as a means of limiting effects of problems. This is considered in the light of environmental ethics and legislation. Other aspects include risk environmental impact assessment and consequences including the evaluation process. Tools used for capacity building are developed. Several major case studies are explored. Agenda 21 issues and sustainable use of environmental resources are emphasised.

91124
Coastal and Marine Ecology
6cp; includes a 5-day field excursion to Jervis Bay, normally held in February; prerequisite(s): satisfactory completion of Stages 1 and 2, including 66204 Field Studies 1
The subject provides an introduction to marine ecology. It examines a wide range of temperate marine habitats and communities including: seagrasses, fishes, sandy shores, mangroves and intertidal invertebrates, as well as coastal geological processes. The subject includes 10 hours of formal lectures, 40 hours of practical work on site, a written exam and a report on one of the detailed investigations performed during the field trip.
Enrolment in this subject is restricted by the accommodation at the University of Canberra Field Station. Preference will be given firstly to Environmental Biology students who are enrolled in the Coastal and Marine Sciences sub-major, and thereafter will be based on academic performance over Stages 1 and 2. This subject was previously called Field Studies: Introductory Marine Sciences. Do not enrol in Coastal and Marine Ecology if you have completed Field Studies: Introductory Marine Sciences.

91126
Coral Reef Ecosystems
6cp; includes a 9-day field excursion to Heron Island, normally held in July; prerequisite(s): 91124 Coastal and Marine Ecology
During this senior level elective field subject, students will examine in detail the ecology and geology of a coral reef environment. As part of the study, students carry out a group research project on an area of special interest with the reef environment. The subject requires a literature survey prior to attendance on the excursion and preparation of a field report following completion of the field work. The subject covers a range of aspects of the marine environment, including chemical, biological, physical and geological oceanography, in addition to the biology of fishes, benthic fauna, plants and sediments.
Enrolment in the subject is restricted by the availability of space at the Heron Island Research Station and preference will be given firstly to Environmental Biology students who are enrolled in the Coastal and Marine Sciences sub-major, and thereafter will be based on academic performance over Stages 3-5. The subject was formerly called Field Studies: Advanced Marine Sciences.

91128
Plant Biotechnology
3cp; 3hpw; prerequisite(s): 91314 Microbiology 1; plus first year Biology subjects
Students are introduced to plant cell and tissue culture, and the application of these techniques to cloning, somatic embryogenesis, somaclonal variation, anther and pollen culture, and
totipotent suspension as a means of multiplication, and determining phenotypic and genetic stability of tissue cultured plants. The program also includes media preparation and nutrient requirements, and the use of robotics and biofermentors in micropropagation. Pathogen detection and elimination, production of virus-free plants, pathogen indexing, certification of horticultural crops, plant quarantine, germplasm preservation, cryopreservation, long-term storage, and biologically secondary metabolites will be covered. Physiological status of micropropagated plants, transplanting and hardening-off stages will be demonstrated, and practices and problems in micropropagation such as vitrification, phenolic exudates, vessel environment, and large-scale production will be covered. Special emphasis is given to Australian indigenous and rare flora.

91141
Biological Evidence
6cp; 5hpw; prerequisite(s): 65241 Principles of Forensic Science; priority will be given to students enrolled in the Forensic Science course

This subject introduces the nature, value and relevance of biological materials as forensic evidence. Different methods for the identification of various biological samples are examined along with the techniques which are used to classify, differentiate and identify the source of biological material. The analysis and interpretation of DNA evidence are emphasised. Lectures are complemented by an extensive practical program including collection procedure, use of PC technology and population statistics. Potential elective students must consult the subject coordinator Dr Tamara Sztynda on telephone (02) 9514 4157 before enrolling in this subject.

91142
Biotechnology
6cp; 6hpw; prerequisite(s): 1st year biology or medical science subjects; corequisite(s): 91313 Biochemistry 1 or 91314 Microbiology 1

This subject provides an overview of the discipline of biotechnology encompassing the traditional industries of food and industrial (chemical) biotechnology to the more recent high-technology applications in agriculture and medicine. The emphasis is placed on the principles and processes of biological manipulation and the resulting product. Practical projects will be used along with relevant site visits and workshops to demonstrate specific applications.

91233
Plant Production and Growth Media
6cp; prerequisite(s): 65012 Chemistry 1A; 91312 Biology 2

Cultivation of both exotic and native plants of value in urban horticulture. Skills necessary for the cultivation, selection and modification of stocks for particular situations are developed. The principles of water use, irrigation and associated problems within nurseries and intensive cultivation systems are covered. Also studied are the physical and chemical properties of horticultural potting mixes; methods of analysis; supply of nutrient, water, air and ions; management of potting mixes; and problems with mixes. Formulation and use of growth media; media used in hydroponics.

91234
Uses of Australian Plants
6cp; prerequisite(s): 65022 Chemistry 2A or equivalent; corequisite(s): 91309 Australian Biota

The potential of Australian plants for horticultural exploitation e.g. cut flowers, essential oils, source of foods and pharmaceuticals are considered. Identification of Australian plants as promising future plant crops, difficulties experienced in propagation and cultivation and status of this area of horticulture. Students are asked to write a research proposal for a chosen plant to be developed as a horticultural crop with an emphasis on problems related to growing plants in controlled environments or in open situations. Australian tree species which could substitute for exotic trees in urban street planting, or as wind breaks. This subject involves field trips to wildflower farms, botanic gardens and national park. There is also a 3-day field trip during a study week.

91237
Plant Pathology
6cp; prerequisite(s): 91270 Plant Physiology

This subject provides knowledge of the main group of plant pathogens causing plant diseases, understanding of their mode of attack and prevention from spreading are discussed. The recognition of signs and symptoms is introduced. Influence of environmental conditions on disease development. Methods of prevention are discussed. Visits to Plant Quarantine at Rydalmere, Narara Research
Station and Nursery are arranged. Collection, preservation and identification of plant pathogens form a component of this subject.

91245
Open Space Management
6cp; prerequisite(s): 91270 Plant Physiology
This subject is designed to develop the student's understanding of the operation and management of open space amenity areas, such as landscaped parks and gardens, bushland and reserves, and urban streets. The subject considers landscape management principles, including the organisation of landscape management and the role of planning. Integral to this subject are contributions from industry experts in diverse areas of open space management. Several case studies in open space management are examined and the importance of obtaining accurate information for decision making is highlighted.

This subject replaces 91230 Landscape Design and 91232 Horticulture 2. Students who have completed these subjects should not enrol in this subject.

91246
Plant Structure, Function and Culture
6cp
This subject introduces students to a wide variety of plant materials used in urban (environmental) horticulture. Plant materials studied include annual, perennial, herbaceous, wood, exotic, and native plant species. These plant materials are studied within the context of their uses for enhancement of the urban surroundings. The subject also introduced the student to plant morphology and anatomy in relation to plant function, through the study of plant organs and tissues, with a particular focus on vegetative biology. Also studied are techniques of plant propagation, both sexual and asexual, including seeds, cuttings, budding, grafting, layering, separation and division.

This subject replaces 91231 Horticulture 1. Students who have completed this subject should not enrol in Plant Structure, Function and Culture.

91247
Landscape Design and Plant Culture
6cp; prerequisite(s): 91246 Plant Structure, Function and Culture
This subject introduces students to landscape studies by considering the impact of humans on the landscape, the history of people/plant/landscape interactions including the history of gardens, and the process of landscape design in relation to current practice in Australia. The subject also introduces students to a wide variety of plant materials used to enhance urban surroundings, including annual, perennial, herbaceous, woody, exotic and native plant species. Also studied are techniques of plant propagation. The subject provides an introduction to irrigation systems used in nurseries and open space areas, including computerised systems, and methods of greenhouse environmental control.

This subject replaces 91230 Landscape Design and 91232 Horticulture 2. Students who have completed these subjects should not enrol in this subject.

91248
Plant Production Systems
6cp; prerequisite(s): 91246 Plant Structure, Function and Culture
This subject consists of two equal parts; plant tissue culture and horticultural production management. In plant tissue culture students are introduced to plant cell and tissue culture, and the application of these techniques to cloning, somatic embryogenesis, somaclonal variation, anther and pollen culture, totipotent suspension as means of multiplication, phenotypic and genetic stability of tissue cultured plants. The program also includes media preparation, and nutrient requirements. Use of robotics and biofermentors in micropropagation. Pathogen detection and elimination, production of virus-free plants, pathogen indexing, certification of horticultural crops. Plant quarantine and international shipment of tissue cultures plants. Germplasm preservation; cryopreservation, long-term storage. Biosecondary metabolites. Physiological status of micropropagated plants, transplanting, hardening-off stages. Practices and problems in micropropagation such as vitrification, phenolic exudates, vessel environment. Laboratory design and large-scale production. Students are introduced to experiments involving plant tissue culture technology. Special emphasis is given to Australian indigenous and rare flora.

Horticultural production management will develop student understanding of the technical aspects of nursery management and plant production. Cost-benefit analysis will be made of the daily operations of commercial enterprises ranging from plants produced in tissue culture to open area growth of flowers, to the intensive controlled growth of potted plants in the greenhouses. Also covered will be the technical aspects of personnel management, and seasonal and budgetary factors involved.
Cost-benefit analysis of physical, biological, and human resources will be considered. Long-term and construction design of plant production units will be discussed.

91249
Plant Genetics and Breeding
6cp; prerequisite(s): 91237 Plant Pathology; 91270 Plant Physiology
Biochemical and cellular processes including molecular genetics and control of genetic activity in cells, and environmental influences amongst individuals and populations. The program introduces students to cloning, somatic cell genetics and hybridisation. The work also includes the control of cell activity by DNA and protein synthesis, and hormonal control of plant processes. The importance of cytoplasmic inheritance will be introduced as will the genetic manipulation of the plant genome. Traditional methods of plant breeding and production of pure seed and stocks will also be covered.

91250
Plants in the Landscape
6cp; prerequisite(s): 91270 Plant Physiology
This subject is designed to develop the student's understanding of the uses of plant materials (especially woody plants) in the landscape as part of the function of open space management. The subject considers the benefits of plants, techniques for selecting appropriate plants of good quality for particular purposes and sites, methods of establishing these plants and management techniques necessary to maintain plant health, including the diagnosis and management of plant problems. Integral to this subject are site visits to open space developments around Sydney and discussions with the managers of these areas.

91270
Plant Physiology
6cp; prerequisite(s): 91312 Biology 2

91304
Honours (Biological and Biomedical Sciences)
24cp per semester; 2 semesters; prerequisite(s): BMeds or BSc in Biomedical Science, Biotechnology, Environmental Biology, Environmental and Urban Horticulture or equivalent 3-year degree
Study designed to enhance the skills and knowledge necessary for research in the biological and biomedical sciences. The principal activity is an individual research project in which the student, under supervision, plans and undertakes investigation in an area of interest. The data collected are then subjected to analysis and interpretation under the guidance of the supervisor. Students learn to define objectives and aims, work to available time and resources, use appropriate research methods, critically assess information and develop complex arguments in detail. The findings of the research project are presented in a structured and integrated thesis which comprises the main assessment component.

91305
Honours (Biological and Biomedical Sciences) (2yrs)
12cp per semester; 4 semesters; prerequisite(s): BMeds or BSc in Biomedical Science, Biotechnology, Environmental Biology, Environmental and Urban Horticulture or equivalent 3-year degree
Study designed to enhance the skills and knowledge necessary for research in the biological and biomedical sciences. The principal activity is an individual research project in which the student, under supervision, plans and undertakes investigation in an area of interest. The data collected are then subjected to analysis and interpretation under the guidance of the supervisor. Students learn to define objectives and aims, work to available time and resources, use appropriate research methods, critically assess information and develop complex arguments in detail. The findings of the research project are presented in a structured and integrated thesis which comprises the main assessment component.

1 This subject is no longer offered.
91309

Australian Biota

6cp; prerequisite(s): 91312 Biology 2

The principles and practice of taxonomy and evolutionary biology. The limitations and usefulness of taxonomic tools in botany and zoology. The major Australian groups of plants, vertebrates and invertebrates. The biogeography of Australian plants and vertebrates. The design and use of identification keys. Collection, identification and preservation of specimens from the field. This subject may include a field excursion.

1 This subject is no longer offered.

91313

Biochemistry 1

6cp; 6hpw; prerequisite(s): 65022 Chemistry 2A or equivalent; 91101 Cells, Genetics and Evolution or 91701 Medical Science 1

91314

Microbiology 1

6cp; 5hpw; prerequisite(s): 1st year Biology or Medical Science subjects

An introduction to the structure, function and taxonomy of the bacteria, fungi, protozoa and viruses. Several key topics in the study of microbiology will be discussed including microscopy, sterlilisation and disinfection, microbial nutrition and growth, antibiotics and the classification and identification of microorganisms. Basic mycology will also cover their role in disease and the environment. The mode of transmission and symptoms of important diseases caused by both parasites, such as malaria, sleeping sickness, schistosomiasis, elephantiasis, and viruses such as HIV and hepatitis, will be studied. The practical exercises will give the student experience of the principal laboratory procedures for the isolation, manipulation, growth and identification of microorganisms.

91320

Biochemistry 2

6cp; 6hpw; prerequisite(s): 91313 Biochemistry 1

91326

Analytical Biochemistry

6cp; 6hpw; prerequisite(s): 91313 Biochemistry 1

91330

Microbiology 2

6cp; 6hpw; prerequisite(s): 91314 Microbiology 1

Public health microbiology. Basic epidemiological principles; mathematical formulation of epidemics; measures of disease frequency (rates and risk factors); sociological aspects. The public health laboratory environment; food, water and airborne diseases; exotic and notifiable diseases; zoonoses. Application of bacterial enumeration and identification techniques to the examination of water and food. Epidemiological tracing methods; biotyping; serotyping; bacteriophage typing;
bacteriocin (BLIS) typing; molecular typing. Control measures; hygiene; sanitation; disinfection; sterilisation; vaccines, vaccination procedures and vaccination programs.

91331
Microbiology 3

8cp; 6hpw; prerequisite(s): 91330

Microbiology 2

Public health microbiology. Basic epidemiological principles; mathematical formulation of epidemics; sociological aspects. The public health laboratory environment; food, water and airborne diseases; exotic and notifiable diseases; zoonoses. Epidemiological tracing methods; biotyping; serotyping; bacteriophage typing; bacteriocin (BLIS) typing; molecular typing. Control measures; hygiene; sanitation; disinfection; sterilisation; vaccines, vaccination procedures and vaccination programs.

91332
Molecular Biology 1

8cp; 6hpw; prerequisite(s): 91314 Microbiology 1; 91313 Biochemistry 1

Introduction to the basis of present-day molecular biology. Key concepts and procedures underlying DNA manipulation methods in the molecular biology laboratory, including the isolation of nucleic acids and the molecular cloning, selection and analysis of recombinant DNA. Topics covered include: DNA and RNA isolation; restriction enzymes; DNA ligation; transformation of DNA into cells; cloning strategies; southern, northern and western blotting; and an introduction to DNA sequencing and the PCR. Lectures, tutorials, practicals and assignments are fully integrated so that topics are covered extensively and are delivered by alternative teaching modes. These modes include flexible learning practices such as the provision of similar information by way of lectures, practical experimentation, teaching video tutorials, and problem assignments, the last of these involving the use of Internet Molecular Biology Sites and UTS MacVector software. Students will be expected to become adept at retrieving and analysing nucleic acid and protein sequences from databases. Flexible assessment is used for the purpose of accommodating variations in the competence and diligence of students in the different assessment tasks.

91335
Molecular Biology 2

8cp; 6hpw; prerequisite(s): 91332 Molecular Biology 1

91338
Clinical Bacteriology

8cp; 6hpw; prerequisite(s): 91330

Microbiology 2

Quantitative methods, reliability studies, automation, data processing and numerical analysis in clinical microbiology. Pathogenic microorganisms: their handling (including safety requirements), cultivation, isolation and relationship to the indigenous flora of humans and animals. A detailed study of staphylococci, streptococci, coryne-bacteria, mycobacteria, neisseria, enteric bacteria, pasteurellae, pseudomonads and spirochaetes. Antibiotics and antibiotic sensitivity testing.

91340
Transfusion Science

8cp; 6hpw; prerequisite(s): 91354 Anatomical Pathology; 91355 Haematology 1; 91351 Immunology 1

This subject covers the following topics: human blood groups; principles of donor blood compatibility and antigen/antibody reactions; detection and identification of serum antibodies; blood products; the safety of the blood supply and minimisation of transmission of infectious diseases; investigation of transfusion reactions; haemolytic disease of the newborn; blood groups in forensic investigations; platelet and leucocyte immunohaematology; transfusion in critical care situations; legal aspects of transfusion of blood products; stem cell transplantation; and cytokine stimulation of haemopoiesis.
91344
Clinical Biochemistry 1

8cp; 6hpw; prerequisite(s): 91320
Biochemistry 2

91345
Clinical Biochemistry 2

8cp; 6hpw; prerequisite(s): 91320
Biochemistry 2
The role of the biochemist in patient care through measurement of physiological homeostasis and its malfunction. Control of electrolyte, water and acid-base balance; blood gases, kidney function; calcium metabolism and lipids. Hormonal controls including adrenal function and the use radioimmunoassays in hormonal evaluations, with special emphasis on thyroid function. Genetic basis of tests used to screen for inborn errors affecting newborn infants, such as phenylketonuria and cystic fibrosis, and for hereditary diseases affecting adults such as haemochromatosis (iron overload). The human genome project and the detection of genotypes predisposing individuals to diseases such as bowel and breast cancer. Ethical and social issues arising from genotyping of individuals. Current approaches to gene therapy for diseases such as diabetes. Cancer chemotherapy and multi-drug resistance. Laboratory evaluation of biochemical assay methods.

91351
Immunology 1

3cp; 3hpw; prerequisite(s): 91314
Microbiology 1; 91313 Biochemistry 1
This subject is designed to introduce the basic concepts of immunology. It is structured in such a way that it follows the course of an immune response, from initial non-specific reactions to the development of adaptive responses and immunological memory. Emphasis is given to the basic concepts that underlie the recognition of foreignness and the response to infection. The practical sessions introduce students to a variety of cellular and serological techniques that are the cornerstones of immunological analysis. In addition, special interactive teaching sessions are used to explore contemporary topics in immunology.

91352
Eukaryotic Microbiology

8cp; 6hpw; prerequisite(s): 91314
Microbiology 1; 91332 Molecular Biology 1; 91351 Immunology 1
This subject covers the following topics parasitism; biology of parasitic worms including nematodes, trematodes and cestodes; biology of parasitic protozoa including the sporozoans, flagellates, amoeba and ciliates; arthropods as vectors of disease; clinical parasitology; molecular biology of parasites; immunity and vaccine development; anti-parasitic therapy.

91354
Anatomical Pathology

6cp; 6hpw; prerequisite(s): 91702 Medical Science 2; 65022 Chemistry 2A
This subject provides a basic knowledge of disease processes, the body’s responses to them, the preparation and staining of mammalian tissues for microscopic examination of organ structure, and light microscopic appearance of diseased tissues. The subject also introduce the chemistry of biological dyes and their uses in the laboratory to highlight normal tissue structures and to demonstrate pathological tissue changes that occur during disease development. This is all integrated to present an understanding of disease with its morphological appearance and the laboratory techniques used to interpret structural tissue changes that occur in disease states.

91355
Haematology 1

3cp; 3hpw; prerequisite(s): 91354 Anatomical Pathology; 91314 Microbiology 1 or 91313 Biochemistry 1
Structure, function and morphology of normal blood and bone marrow. Haemostasis and haematopoiesis. Automated laboratory equipment used in haematology. Introduction
to haematological disease and the significance of haematological changes in disease.

91358

Haematology 2

8cp; 6hpw; prerequisite(s): 91355

Haematology 1

Disease processes related to hereditary, acquired, benign and malignant disorders of haematological systems. Correlation of physiological processes, pathological states and diagnostic tools in haematology. Light microscopic morphological examination of peripheral blood and bone marrow in disease and correlation of these findings with indices and cell counts obtained by automated laboratory equipment. Procedures for detection and precise diagnosis of anaemias, haemostatic disorders, haemoglobin disorders and haematological malignancies. Introduction to cytogenetics; prenatal diagnosis of genetic disease; genetic counselling and cancer cytogenetics.

91359

Immunology 2

8cp; 6hpw; prerequisite(s): 91351

Immunology 1

Provides current concepts of modern immunology to students who have some basic understanding of the subject, and an appreciation of the wide spectrum of applied immunology in medicine, research and industry. Specialised areas of immunology covered include genetics of antibody diversity; structure of antibodies, T-cell receptor and MHC molecules; cytokines; monoclonal antibodies; clinical immunology and techniques applicable in both diagnostic and research laboratories including enzyme-linked immunoassays; cell separations and flow cytometry.

91363

Animal Ecophysiology

6cp; prerequisite(s): 91312 Biology 2

Basic concepts in ecophysiology; limiting factors, lethal limits, acclimation. Patterns of physiological responses to natural and selected manufactured stressors. Coordination of physiological processes with environmental factors; neuro-endocrine control of life cycles and physiological responses, stress syndrome. Population changes; basic animal population dynamics, structure, growth and regulation of populations.

91368

Bioreactors and Bioprocessing

8cp; 6hpw; prerequisite(s): 91313 Biochemistry 1; 91314 Microbiology 1

This subject covers the practical aspects of modern biotechnology including bioreactor operation, microbial kinetics, extraction techniques and downstream processing. It includes the microbiological physiological and biochemical basis of industrially useful fermentations in food, beverage, pharmaceutical and other relevant industries. Economic and other factors impinging on the operation of fermentation industries are also undertaken in this subject. The theory and laboratory practice is further developed by visits to local biotechnology businesses.

91370

Semi-Arid Ecology

6cp; 10–14 day field excursion to far western NSW in July every third year, alternating with 91371; prerequisite(s): 66204 Field Studies 1

This and other extended field electives are normally taken in the senior stages of the degree course. It is assumed that students will have a thorough knowledge of basic ecology. The aim is to broaden students' understanding of environmental biology and its management applications by demonstration and experimentation outside the Sydney Basin. The importance of water and water management, rangeland management and national park management of dry areas will be will be included, along with ecological studies of factors determining the structure and composition of semiarid vegetation. Assessment will involve submission of a log book/journal and a project report or presentation, to be completed after the field excursion.

Enrolment in the subject is restricted by the availability of space in vehicles. Preference will be given firstly to Environmental Biology students who are enrolled in any of the named electives/second majors, and thereafter will be based on academic performance over Stages 2–4.

91371

Mountain Ecology

6cp; 10–14 day field excursion to southern NSW in December every third year, alternating with 91370; prerequisite(s): 66204 Field Studies 1

This and other extended field electives are normally taken in the senior stages of the degree course. It is assumed that students will
Subject descriptions

have a thorough knowledge of basic ecology. The aim is to broaden students' understanding of environmental biology and its management applications by demonstration and experimentation outside the Sydney Basin. The ecology of tall forests and mountain areas, and the management of mountain forests, the impacts of forestry operations, and the management of national parks and wilderness areas. Assessment will involve submission of a log book/journal and a project report or presentation, to be completed after the field excursion.

Enrolment in the subject is restricted by the availability of space in vehicles. Preference will be given firstly to Environmental Biology students who are enrolled in any of the named second majors, and then will be based on academic performance over Stages 2-4.

91377
Cytopathology
16cp; 6hpw, for 2 semesters; prerequisite(s): 91354 Anatomical Pathology; 91355 Haematology 1

Instruction in the interpretation and diagnosis, at the light microscope level, of cell samples from a variety of anatomical sites. Morphologic features of cells in normal states, effects of inflammation, physiologic patterns, hormonal effects, changes due to specific organisms and viruses, premalignant and malignant conditions and the effects of treatments on cell morphology and smear patterns. Instruction on cell samples from the female genital tract, respiratory tract, alimentary tract, urinary tract, serous cavities, central nervous system, breast and thyroid with emphasis on fine needle aspiration samples. Principles and procedures of specimen collection, preparation and staining, reporting methodology and laboratory procedures are covered. Epidemiologic and aetologic factors in premalignant and malignant diseases and special procedures which complement cytopathologic diagnosis are included.

91395
Biocomputing
3cp; prerequisite(s): 1st semester of 33106 Statistical Design and Analysis

Introduction to computers and programs in the biological sciences. Analysis of the operation of computer systems with emphasis on principles of hardware architecture, operating systems, editors and file management. Comparison of various types of computers, IBM PC, Macintosh, mainframe, and various software packages available for the biological and biomedical sciences.

91398
Special Reading Assignment – Life Sciences
4cp
To be undertaken only following prior negotiation on the part of the student with a full-time member of academic staff regarding individual supervision. In addition, requires special permission of the Associate Dean (Coursework Programs).

91399
Individual Project – Life Sciences
8cp
To be undertaken only following prior negotiation on the part of the student with a full-time member of academic staff regarding individual supervision. In addition, requires special permission of the Associate Dean (Coursework Programs).

91701
Medical Science 1
6cp; 6hpw

This subject provides an introduction to the anatomy and physiology of the healthy human body. Lectures are complemented by an appropriate practical program. The content includes: the levels of organisation in the body, basic anatomy, anatomical terms, surface anatomy and body regions and overview of major organ systems. Transport of materials across membranes, osmosis, diffusion, active transport. The basic concepts of microscopy and the histology of tissues and major organ systems. The general structure and functional significance of the major organ systems. Basic microbiology and aseptic technique. The basic concepts of modern genetics. Chromosomes, mitosis and meiosis, DNA, RNA, transcription, translation. Mutations and oncogenes. Genetic inheritance, disorders and pedigrees. The structure, function and histology of the integumentary system, the musculoskeletal system, the gastrointestinal system, cardiovascular, lymphatic and renal systems. The chemical principles related to enzyme action and kinetics and the chemical reactions in digestion.
91702

Medical Science 2
6cp; 6hpw; prerequisite(s): 91701 Medical Science 1

This subject completes the coverage of the anatomy and physiology of the body systems begun in 91701 Medical Science 1. It is also designed to foster an appreciation of the interactions between and control of all body systems. Independent learning as well as critical analysis and communication skills will also be developed in this unit. Topics include: structure and function of the respiratory, endocrine, nervous, reproductive and immune systems along with relevant clinical applications in each system.

91703

Physiological Systems
6cp; 5hpw; prerequisite(s): 91702 Medical Science 2

This subject extends the knowledge and understanding of cellular elements of the body and of certain body organ systems that were introduced in the subjects Medical Science 1 and 2. It provides an understanding of control systems, principles of mass transfer and compartmental systems analysis and how these principles apply to the body. Ion channels and membrane transport processes. Circulation and cardiovascular system. Control of metabolism and endocrine system. Formation and excretion of urine. Regulation of extracellular fluid composition and volume. Lecture material complemented by practicals, tutorials and directed self-study modules.

91704

Behavioural Sciences
6cp; 4hpw; prerequisite(s): 33106 Statistical Design and Analysis or equivalent; 91703 Physiological Systems

The overall aim of this study is to demonstrate the significance of contributions of theories and practices from the behavioural sciences to effective medical theory and practice. Key concepts, principles and theories from the behavioural sciences that have particular relevance to the medical sciences are explored within the framework of selected health care and medical scenarios such as chronic pain, the placebo effect, depression, cardiovascular disease, health promotion. Content provides an introduction to the field of behavioural medicine which addresses the application of theory and practice of the behavioural sciences to the theory and practice of modern medicine. Students have practical experience in the application of principles from cognitive learning theory in design and completion of behavioural monitoring and self-management programs.

91705

Medical Devices and Diagnostics
6cp; 6hpw; prerequisite(s): 68041 Physical Aspects of Nature or 68101 Foundations of Physics; 91703 Physiological Systems

This subject provides an introduction to the principles of operation and use of typical devices encountered in medical practice. Specific emphasis is given to various methods of transducing information from the body such as pressure, internal voltage signals, oximetry temperature. Principles of active stimulation of various organs such as heart, muscle and cochlear are also taught. Medical overview of the regulatory framework imaging modalities explored is also given.

91706

Neuroscience
8cp; 6hpw; prerequisite(s): 91703 Physiological Systems

This subject provides an advanced understanding of the physiological basis of the nervous system. Physiology of excitable tissue. Structure, function and control of ion channels. Functions of the nervous system, with special reference to systems including complex reflex systems, control of posture and movement, cutaneous, deep and visceral sensation, central regulation of visceral function vision, hearing and equilibrium, smell and taste, arousal mechanisms, sleep and electrical activity of the brain, autonomic nervous system, neural basis of instinctual behaviour and emotions. Higher functions of the nervous system. Neural nets and cybernetics. Case studies of disease states in the nervous system. Lecture material is complemented by practicals, tutorials and self-directed study modules. Emphasis on student presentation of case studies and seminars.

91707

Pharmacology 1
8cp; 6hpw (average); prerequisite(s): 91313 Biochemistry 1; 91703 Physiological Systems

This subject provides the introductory principles governing drug and xenobiotic action to be developed further in 91709 Pharmacology 2. It is designed to foster a problem-solving approach to pharmacology with particular
emphasis on applying molecular pharmacology concepts to pathophysiological problems. Major objectives will be to develop the concepts of dose response relationships and the specificity of drug action. Therapeutic index and the concept of selective toxicity. Pharmacokinetic factors and their role in pharmacotherapy. Chemical neurotransmitters, ion channels and receptors as determinants of drug action in the central and peripheral nervous systems. Clinical efficacy of the major pharmacology drug classes used in the treatment of pathophysiological processes involving the cardiovascular, renal and nervous systems. Lectures are complemented by a tutorial/practical program which emphasises the clinical nature of the subject and develops lecture material using a variety of experimental, tutorial, computer-simulation and case-study approaches.

91708 Psychophysiology
8cp; 6hpw; prerequisite(s): 91704 Behavioural Sciences
This subject builds on material provided in Behavioural Sciences. It provides the student with a solid grasp of the relationship between mind and behaviour with emphasis upon the underlying physiological mechanisms. Implications for health are emphasised throughout the course. The unit will encourage the student to evaluate the connections believed to occur between attitudes, behaviour, lifestyle, physiology, and health outcome. Lectures are complemented by practical workshops and discussion in tutorials.

91709 Pharmacology 2
8cp; 6hpw (average); prerequisite(s): 91707 Pharmacology 1
This subject develops and extends the principles governing drug and xenobiotic action covered in 91707 Pharmacology 1. Objectives are to further develop the concept of receptors as cellular determinants of drug and xenobiotic action and to develop the concepts of modulated receptors and ion channels in determining anaesthetic drug action. The clinical efficacy of the major pharmacology drug classes used in the treatment of diabetes and respiratory and musculoskeletal systems disorders. Endogenous opioids in pain control mechanisms and the interaction of opioid analgesics with these systems. Selective toxicity in the treatment of microbial, viral and protozoal infections. Toxicokinetic factors, defence mechanisms, cellular reactivity, receptors and binding sites as determinants of target organ toxicity. Drugs in the conception and birthing process. Carcinogens and teratogens. Specific classes of toxic substances. Lectures are complemented by a tutorial/practical program which emphasises the clinical nature of the subject and develops lecture material using a variety of experimental tutorial, computer simulation and case-study approaches.

98708 Risk Assessment and Management
6cp
This subject provides an introduction to methods of risk assessment in an environmental context. An understanding of the concepts of risk perception, risk communication and risk acceptability is developed. Legal issues in risk management are also discussed. The subject is relevant to the modification or engineering of risks and has application to environmental management, impact assessment and auditing.

98711 Coastal Resource Policy
6cp
An intermediate level undergraduate subject which provides an overview of coastal policy and resources management, integrated coastal [and ocean] development and management, including selected regions will be surveyed and assessed. Policies of national, State and local governments will be critically examined and contrasted as appropriate with policies of overseas coastal nations. Constituency building is introduced with the associated tools necessary for coastal managers. The interdisciplinary nature of coastal resources, problems, conflicts and issues will be highlighted. (This subject was previously part of the Master of Science in Coastal Resource Management – the content has been modified to fit the undergraduate program.)

99502 Foundations of TCM
6cp; a flexible teaching and learning subject
The theoretical and philosophical components of the subject have a continuing and progressive application in all aspects of TCM. This subject provides a broad foundation for the traditional Chinese medical view of health,
disease aetiology and diagnostic systems and principles of treatment which will be built upon throughout the training program. Pulse diagnosis, one of the cornerstones of the traditional Chinese diagnostic system, is included in this subject.

99539
Pathophysiology A
6cp; 6hpw; prerequisite(s): 99570 Health Sciences 2

99560
Introduction to TCM
6cp; 5hpw; corequisite(s): 99502 Foundations of TCM
An introduction to the basic theoretical concepts of TCM that provides an overview of the program and helps to bridge the gap between the biomedical and traditional Chinese approach to health. The subject offers foundation knowledge and skills for the practice of TCM. It provides the traditional physiology of the 12 organs and 14 major channels and is offered in a flexible learning format.

99563
Health Sciences 1
6cp; 6hpw
This subject provides an introduction to the anatomy and physiology of the healthy human body. Lectures are complemented by an appropriate practical program. The subject includes the following: the levels of organisation in the body; basic anatomy, anatomical terms, surface anatomy and body regions and overview of major organ systems. Transport of materials across membranes, osmosis diffusion, active transport. The basic concepts of tissue and major organ systems. The general structure and functional significance of the major organ systems. Basic microbiology and aseptic techniques. Chromosomes, mitosis and meiosis. DNA, RNA. The structure, function and histology of the integumentary system, the musculoskeletal system, the gastrointestinal system, cardiovascular, lymphatic and renal systems. Nutrition, enzyme action indigestion.

99564
The Physiology of Qi
4cp; a flexible teaching and learning subject; prerequisite(s): 99560 Introduction to TCM; 99502 Foundations of TCM
This subject extends the student's knowledge of the jing luo (channel) system in relation to the clinical practice of acupuncture. It also provides an understanding, not only of how to balance energy, but of the mechanisms of energy production and methods of assisting this system of production – an important aspect of preventative therapy.

99567
Introduction to Chinese Herbal Medicine
6cp; 6hpw; prerequisite(s): 99560 Introduction to TCM; 99502 Foundations of TCM; corequisite(s): 99539 Pathophysiology A
This subject provides introductory information on the basic properties and functions of Chinese herbs and forms an essential foundation for an understanding of Chinese herbal formulae.

99570
Health Sciences 2
6cp; 6hpw; prerequisite(s): 99563 Health Sciences 1
This subject completes the survey of healthy human anatomy and physiology begun in Health Sciences 1. Specifically it examines the endocrine, nervous, reproductive and respiratory systems including concepts of control systems and system interactions within the body. It also completes an introduction to basic microbiological concepts of disease transmission, sterilisation and asepsis. This unit also examines chemical and physical concepts that underpin the bioscience component. These include chemical measurement, solutions, chemical reactions involving carbohydrates, lipids and proteins, pH and acid-base analysis along with the physical principles of gas pressure, temperature and flow, electricity and transmission of light and sound.
Chinese Massage (Tuina)
6cp; workshops and clinical internship 6x13hrs (over two semesters); prerequisite(s): all subjects of Stage 4 of the TCM course
The subject combines the acupressure techniques with general Chinese massage (tuina) techniques. It enables the student to assist the practitioner in the clinical situation where specific massage is required after the removal of needles to increase the effectiveness of acupuncture treatment.

Clinical Features of Disease
6cp; 4hpw; prerequisite(s): 99540 Pathophysiology B
This subject builds on the theoretical material offered in Anatomy and Physiology subjects. It also develops the student's ability to differentiate, in an acupuncture clinical setting, those conditions that should be referred to a medical practitioner or other health care professionals.

Special Topics in TCM (Intermodal and Professional)
8cp; 6hpw; prerequisite(s): 99585 Disease States
This subject acquaints the student with the current requirements of private TCM practice. Workshops are provided in current research, bioethics and professional issues. The subject also encourages students to broaden their understanding of issues and techniques related to practice, to individually pursue areas of personal interest and research, and to see themselves as part of the wider health care community.

Honours Project
48cp; two semesters; prerequisite(s): completion at credit level of the four-year degree in TCM or equivalent
This is an area of self-determined study. The Honours research project provides the student with the opportunity to extend their knowledge under the guidance of a suitably qualified member of academic staff and to establish a foundation for the development of their professional research and research reporting skills.

Chinese Herbal Practice 1
6cp; flexible learning program; prerequisite(s): all TCM units of Stage 2
Chinese herbal medicine involves the diagnosis of specific disorders and the discrimination of variations within these diagnosed disorders. Students are trained in the selection and formulation of individual herbal prescriptions appropriate to the patient's individual presenting symptoms. This subject provides the student with practice in analysing the presentation of various disorders, especially pulmonary and gastro-intestinal conditions.

Chinese Herbal Practice 2
6cp; flexible learning program; prerequisite(s): all TCM units of Stage 3
Chinese herbal medicine involves the diagnosis of specific disorders, and the discrimination of variations within these diagnosed disorders. This subject builds on work undertaken in 99594 Chinese Herbal Practice 1.

Graduate Clinic Internship (CHM)
5cp; Graduate internship: 25 hours as a supervised practitioner; prerequisite(s): all units of Stage 3; corequisite(s): all units of Stage 4
The graduate herbal clinician will undertake 25 hours of supervised practice in the UTS Chinese herbal clinics.
99599

Principles of Chinese Herbal Medicine

8cp; flexible learning program

This subject offers foundation knowledge and skills for the practice of Chinese herbal medicine. As a graduate subject it is predicated by an extensive knowledge of Traditional Chinese Medical theory. It provides an introduction to the basic concepts of Chinese herbalism and its application.

99612

Principles of Chinese Herbal Prescription

6cp; flexible learning program; prerequisite(s): all TCM units of Stage 2

This subject analyses the Chinese herbal formulae utilised to treat illness. In this subject the major herbal formulae are evaluated, together with their appropriate application. Students are encouraged to discriminate between various treatment strategies.

99613

Principles of Pharmacology Chinese Medicine

6cp; lecture/tutorials and workshops program; prerequisite(s): all subjects of Stage 1

In this subject students will undertake an integrated course, which includes strands in botany, pharmacognosy, and pharmacology of Chinese medical herbs. This subject relates to the specific area of Chinese herbs, examining the action of the active constituents of herbs, the toxicity of certain formulae and their synergic effects in medicinal use.

99614

Classics of Chinese Herbal Medicine

4cp; flexible learning program; prerequisite(s): all subjects of Stage 2

This subject evaluates the guiding principles of Shang Han Lun, Jin Kui Yao Lue and Fi Wei Lun. These guiding principles are the basis of TCM practice nowadays. Selected chapters will be discussed to illustrate the important messages relevant to modern Chinese herbal medicine.

99615

Graduate Clinic Level 2 (CHM)

3cp; Graduate Clinical Assistant Level 2: 15 hours (total); prerequisite(s): all subjects of Stage 2

Clinical training is continued under the guidance of an experienced practitioner at the clinics of the UTS College of Traditional Chinese Medicine. This subject is especially directed towards providing the student with confidence to undertake a full internship in the following semester.

99616

Clinical Theory and Clinic Level 1

8cp; workshop and clinical observation sessions: 2hpw in Autumn semester. Clinical Assistant Level 1: 40 hours over two semesters; corequisite(s): 99560 Introduction to TCM; 99502 Foundations of TCM; 99563 Health Sciences 1

Approximately 30 per cent of the undergraduate training program is devoted to gaining clinical experience in preparation for becoming a qualified TCM practitioner. This subject prepares the student for the role of clinical assistant and introduces them to the clinical environment in the UTS teaching clinics.

99617

Point Location 1

8cp; 8hpw; prerequisite(s): all units of Stage 1; corequisite(s): 99564 The Physiology of Qi

This subject deals with the location, depth, action, special precautions and contra-indications of the major points used in clinical practice. This module of point location complements the knowledge of point function provided in 99560 Introduction to TCM and 99564 The Physiology of Qi. The module in anatomy provides a basis for the accurate location of points, and the module that introduces acupressure and basic treatment techniques provides practical experience.

99618

Chinese Diagnostic System 1

6cp; 5hpw; prerequisite(s): 99560 Introduction to TCM; 99502 Foundations of TCM

This subject provides a deeper understanding of the objectives, application and therapeutic conclusions inherent in the Traditional Chinese diagnostic system. It provides practical workshops in advanced pulse diagnosis that compliments students theoretical work.
126 Subject descriptions

99619
Clinic – Level 2 and Point Location 2
8cp; Clinical Assistant Level: 60 hours; practicums: 13x2 hours; prerequisite(s): all subjects of Stage 2; corequisite(s): 99539 Pathophysiology A; 99618 Chinese Diagnostic System 1
Clinical training is continued in the UTS College of Traditional Chinese Medicine clinics. Knowledge of point location is revised and expanded.

99620
History and Philosophy of TCM
4cp; 4hpw; prerequisite(s): 99502 Foundations of TCM
This subject studies the development of TCM in the West as well as the theoretical structure of Traditional Chinese Medicine and its influence upon the holistic approach to healing and preventative therapy. It focuses on some of the more complex theories arising from classical literature and the ethics, both ancient and modern, that are imbedded in the practice of TCM.

99621
Chinese Diagnostic System 2
6cp; 6hpw; prerequisite(s): 99618 Chinese Diagnostic System 1; corequisite(s): 99620 History and Philosophy of TCM
This subject contributes a large component of the essential skills and knowledge that are required for traditional Chinese diagnosis. The subject and workshops underpin, not only the clinical experiences of the student, but also the differentiation of disease states when biomedical and Chinese medical systems are integrated.

99622
Pharmacology of Traditional Chinese Medicine
6cp; 4hpw; assumed knowledge: 99539 Pathophysiology A
This subject will examine the principles of pharmacotherapy with specific emphasis on Western drugs which affect the cardiovascular, respiratory, renal and nervous systems. It will examine the pharmacology of Chinese herbs and will cover up-to-date scientific knowledge of commonly used herbal products and scheduled herbs, including botanical description, active constituents, pharmacological action, toxicity, therapeutic uses and TGA regulatory status.
1 This subject is no longer offered.

99623
Chinese Herbal Formulae
8cp; 6hpw; prerequisite(s): all TCM subjects of Stage 2; corequisite(s): 99571 Chinese Diagnostic System
Chinese herbal medicine utilises herbal combinations to treat illness. In this subject the major herbal formulae are evaluated together with their appropriate application. Students are encouraged to discriminate between various treatment strategies.
1 This subject is no longer offered.

99624
Clinical Theory and Clinic – Level 3
2cp; workshops, tutorials and planning sessions: 2hpw; Clinical Assistant Level 3: 70 hours; prerequisite(s): all units of Stage 4; corequisite(s): 99584 Clinical Features of Disease; 99623 Chinese Herbal Formulae
This module builds on the first three years of theoretical, practical and clinical training and acquaints the student with skills and duties required by a 'student-practitioner' working in the University's outpatient clinic. Clinical training is continued through the clinical program of the UTS College of Traditional Chinese Medicine.

99625
Research Methods
6cp; 6hpw
This subject is an introduction to the scientific method and its importance to the TCM profession. It deals with basic research issues: theories and models; independent; dependent and confounding variables; and the influence of the placebo effects. It also examines the philosophical basis of positivist, empiricist and analytical approaches to scientific endeavours.

99626
Microsystems and Advanced Treatment Techniques
8cp; 8hpw; prerequisite(s): all TCM subjects of Stage 6
The theoretical information provided by the subject is applied and practised in the subject's workshops on advanced treatment techniques.
Much of the information contained in these units is applicable to the treatment of sports injuries, pain control and paralysis.

99627

Clinical Practicum

8cp; 6hpw; prerequisite(s): all TCM subjects of Stage 5; corequisite(s): all TCM subjects of Stage 6

In the final year of training the student will be responsible for patient care, treatment and clinical management under the supervision of a practitioner. This subject prepares the student for this increased degree of clinical responsibility, as well as integrating material and skills previously studied.

99628

Disease States

8cp; 8hpw; prerequisite(s): all TCM and Biomedical subjects

The subject moves its emphasis from the 'learning' of TCM to the clinical practice of TCM. After determining that TCM is appropriate to the patient's condition, the student must then differentiate the pattern of disharmony as identified in Traditional Chinese Medicine, decide on the treatment principle and devise a course of treatment. Some of the conditions examined may include: paralysis (wei syndrome); neurological disorders; lumbar and back pain; disorders of neck and shoulders; musculoskeletal disorders, arthritis and rheumatism (bi syndrome), and sports enhancement.

99629

Chinese Medical Classics

4cp; 3hpw; prerequisite(s): 99620 History and Philosophy of TCM

Traditional Chinese Medicine is firmly based on a 2000-year-old body of classical medical writing. This subject examines some of the major landmark texts of TCM that are still relevant to today's practitioners. The interpretation of such ancient writings is the study of a lifetime but this subject introduces the student to the original writings on many aspects of TCM theory with which they are already familiar.

99630

Clinical Practice 1

12cp; 250 hours of supervised clinical practice and clinical case presentation; prerequisite(s): satisfactory completion of all Stage 1-6 subjects

The student experiences the full range of practitioner responsibilities under the supervision of a clinical manager. This area of training is accomplished in the outpatient clinics of the UTS College of Traditional Chinese Medicine which provide low-cost TCM services to the public.

99631

Clinical Practice 2

12cp; 250 hours of supervised clinical practice and oral presentation of a case history; prerequisite(s): satisfactory completion of all Stage 1-6 course subjects

The student experiences the full range of practitioner responsibilities under the supervision of a clinical manager. This area of training is accomplished in the outpatient clinics of the UTS College of Traditional Chinese Medicine which provide low-cost TCM services to the public. The student also has the option of spending two months in China to undertake a hospital internship in Guangzhou University of TCM.

99632

Graduate Clinic Level 1 (CHM)

4cp; Graduate Clinical Assistant Level 1: 10 hours, dispensing workshop 2 x 4; prerequisite(s): 99599 Principles of Chinese Herbal Medicine

Students complete a workshop program that enables them to undertake basic herbal dispensing in the UTS clinic. Clinical training is provided through the clinical program of the UTS College of Traditional Chinese Medicine at the specialist TCM centre provided by the University which is open to the general public.
SUBJECTS OFFERED BY OTHER FACULTIES

33101
Mathematics 1 (Life Sciences)
3cp; 3hpw
Topics covered in this subject include: aspects of measurement; sequences and series; convergence and limits; graphical representation of functions; sigmoid curve; differentiation; integration; elementary differential equations; and periodic functions. All topics are illustrated by problems relevant to biology.

33106
Statistical Design and Analysis
6cp; 2 semesters; 3hpw
This subject runs over two semesters and provides the theory and techniques needed in the design and analysis of experiments in the natural sciences. It covers descriptive statistics, measures of location and dispersion, commonly used discrete and continuous distributions and simple random sampling. Statistical tests, both parametric and distribution free, are presented for a variety of designs, including paired trials, completely randomised design, block designs and designs with interaction terms or covariates. The analysis of linear, multiple and polynomial regression models is also presented, together with appropriate diagnostic techniques to determine the validity of the models.

33130
Mathematical Modelling 1
6cp; prerequisite(s): no formal prerequisites, but knowledge of NSW HSC of 3-unit Mathematics is assumed corequisite(s): 68037 Physical Modelling
On completion of this subject students should be able to: understand the relevance of mathematics to engineering science and practice; understand the way in which mathematics can supply useful tools and resources to model real world problems; use mathematical terminology and concepts; use formal and informal language to demonstrate understanding of these concepts; demonstrate a high level of skill in the computational techniques of the subject; demonstrate understanding of the theoretical results which justify the use of these techniques; communicate the above knowledge clearly, logically and critically; use the computer algebra system Mathematica to perform calculations and explore mathematical ideas relevant to the subject content; be able to apply the subject matter covered in lectures, tutorials and assignments to previously unseen problems; be aware of the historical context of mathematical development.
Topics covered include the following: presentation of a collection of physical problems; functions and their relationship to measurement and the interpretation of physical results; differentiability; differential equations arising from physical problems; solution by series; growth and decay problems; oscillatory motion; trigonometric functions and inverse trigonometric functions; integration; the logarithm function; inverse functions; methods of integration; and introduction to nonlinear oscillations.
The computer algebra system Mathematica will be used throughout the subject as an aid to computation, graph plotting and visualisation.

33190
Mathematical Modelling for Science
6cp; 6hpw; prerequisite(s): no formal prerequisite but a knowledge of HSC 2-unit Mathematics is assumed
Topics covered in this subject include: functions and their relationship to scientific experiments; differentiability; differential equations arising from scientific problems; solution by series; radioactive decay and exponential functions; oscillatory motion and trigonometric functions; integration; the logarithm function; inverse functions; trigonometric functions; and solution of differential equations by integration and inverse functions. The computer algebra system Mathematica will be used for symbolic, graphical and numerical computations.

33230
Mathematical Modelling 2
6cp; prerequisite(s): 33130 Mathematical Modelling 1 or 33132 Mathematical Modelling 1 (2 semester mode)
On completion of this subject students should be able to: understand the relevance of mathematics to engineering science and practice; understand the way in which mathematics can supply useful tools and resources to model real world problems; use mathematical terminology and concepts; use formal and informal language to demonstrate understanding of these concepts; demonstrate
a high level of skill in the computational techniques covered in the subject content; demonstrate understanding of the theoretical results which justify the use of these techniques; communicate the above knowledge clearly, logically and critically; use the computer algebra system Mathematica to perform calculations and explore mathematical ideas relevant to the subject content; apply the subject matter covered in lectures, tutorials and assignments to previously unseen problems and proofs; be aware of the historical context of mathematical development.

Topics include the following: linear algebra; solutions to sets of equations resulting from particular problems; the need to develop a variety of ways of solving sets of equations; matrices and determinants, eigenvectors and eigenvalues; a standard treatment of vectors building on that given in Physical Modelling; partial derivatives using waves and temperature distributions as illustrative examples; optimisation; the method of least squares; multiple integrals and their applications; probability with a focus on the determination of the reliability of a system of components in various engineering contexts; variance, skewness and kurtosis; probability distributions, conditional probability and bivariate probability.

The computer algebra system Mathematica will be used throughout the subject as an aid to computation, graph plotting and visualisation.

33290
Computing and Mathematics for Science
6cp; 6hpw; prerequisite(s): 33190 Mathematical Modelling for Science

In the computing component of this subject students will study a range of computing modules designed to give them basic computing application skills and some more advanced modules appropriate to their particular discipline. The mathematics component will include studies of simultaneous linear equations and their occurrence in scientific problems; methods for solving these equations using matrices and determinants; eigenvalues and eigenvectors; vectors in two and three dimensions: products of vectors; spatial geometry and coordinate systems; functions of several variables; partial derivatives; optimisation; and method of least squares. The computer algebra system Mathematica will be used for symbolic, graphical and numerical computations.

33390
Mathematics and Scientific Software
6cp; 4hpw; prerequisite(s): 33290 Computing and Mathematics for Science

Topics covered in this subject include: methods of integration; double and triple integrals and their application to scientific problems; the use of spherical and cylindrical coordinates; linear algebra and its relationship to boundary value problems; inner products and orthogonality; separation of variables; and fourier series. An introduction to C and Mathematica programming in the context of problems from this subject and its prerequisite is also covered.

33490
Computational Mathematics and Physics
6cp; 5hpw; prerequisite(s): 68201 Physics in Action (Physics 2); 33390 Mathematics and Scientific Software

Topics covered include: one dimensional heat and wave equations; solution by separation of variables; Fourier sine and cosine series; line and surface integrals divergence and curl; theorems of Gauss and Stokes; functions of a complex variable; Cauchy-Riemann equations; complex integration; Cauchy’s integral theorem and integral formula; Taylor and Laurent series; and singular points and their use in contour integration.

The subject is an introduction to the study of complex physical systems by computer and an introduction to computational tools used in areas such as molecular spectroscopy, fluid flows, diffusion of pollutants, scanning tunnelling microscopy, wave propagation along optic fibres.

48006
Capstone Project (6cp)

6cp; prerequisite(s): 48260 Engineering Management; corequisite(s): 48140 Review of Engineering Practice 2 or 48160 Professional Review; 48270 Technology Assessment

Undergraduate
Subject Coordinators: Gerry Ring and David Eager

Objectives of the Capstone Project are: to bring together and integrate knowledge and skills gained in the course as a whole, including engineering principles, planning and design, ethics, management, and communication, and to apply these to an initially unstructured problem formulated by each student in consultation with an adviser; to reinforce and
Subject descriptions

develop competencies that have not been sufficiently emphasised in the student's choice of subjects or engineering practice to date; to define a substantial engineering study or design task, place it in context, and carry it to completion within a specified time and to a professional standard; to complete a comprehensive written and bound report that places the project in context, defines its objectives, and describes the work done and the resulting conclusions or recommendations; to provide a bridge to the student's professional future, and the opportunity to demonstrate professional competencies and capabilities; to provide scope to demonstrate initiative and creativity, and take pride in achievement.

Each student is required to undertake a substantial engineering project, normally during their final year of study, and to prepare a formal report describing the work performed and the resulting conclusions and recommendations. The work is planned and carried out under the supervision of a member of academic staff. Both the work and the report must meet professional engineering standards. The project may be in any area of engineering. Students may choose a topic relating to their experience in engineering practice, or an area of interest which they wish to study in detail. Typical projects might take any of the following forms: literature review - a study of the available literature and a state-of-the-art appraisal of an area of engineering; design - the complete design of a substantial engineering artefact or system; experimental investigation - a comprehensive laboratory investigation or testing program; research and development - original research of a fundamental or applied nature, or development of a new application of a particular technology; computer-based analysis - development or use of computer software to study the behaviour of an engineering solution; project management - planning and management of a substantial engineering project, normally in a workplace, business or community context; combining technical and management skills; impact analysis, planning, system design - study and analysis of an engineering solution in its economic, social and environmental context, integrating the engineering dimension with cross-disciplinary interfaces, and optimising overall system design, normally interactive with other professions.

48110
Engineering Practice 1

Op; prerequisite(s): 48121 Engineering Practice Preview 1; either 48210 Engineering for Sustainability or 48220 Informatics; and one of 48310 Introduction to Civil Engineering or 48510 Introduction to Electrical Engineering or 48610 Introduction to Mechanical Engineering or 48720 Introduction to Telecommunications Engineering or 48820 Introduction to Environmental Engineering

Engineering educators, as well as engineering employers, have long recognised the value of integrating practical experience with academic studies. Engineering Practice 1 and 2 are zero credit point subjects that support students while they are working in industry or the community for the purpose of gaining experience in the practice of engineering. Engineering Practice 1 provides students with the opportunity to discover engineering workplace culture and to develop their basic technical skills. It is expected that students will gain this level of experience early in their academic program. One semester prior to undertaking the experience students must enrol in the subject 48121 Engineering Practice Preview 1. Students may enrol in Engineering Practice 1 for more than one semester while they are working at a basic level and they need not take additional semesters of Engineering Practice Preview 1, however, they are encouraged to progress to higher levels of engineering practice so that they can gain a wide range of skills and abilities.

Material to be taught and learnt: each student's experience will be unique. What is learned will be a function of a number of factors affecting the experience. Employer or host organisations are not expected to provide formal training although some may choose to do so. Instead students are required to become active learners and seek opportunities to fulfil the objectives of this experience module. Students are assisted in this process through Engineering core and field of practice subjects and specifically through Engineering Practice Review 1.
48121

Engineering Practice Preview 1

3cp
ENGINEERING PRACTICE
Undergraduate

Engineering Practice Preview 1 helps initiate students to the engineering workplace by guiding them through the employment process, developing the communication and documentation skills appropriate to engineering practice, showing them how to learn through experience exploring the nature and culture of the workplace, introducing ethical and social issues, and helping them to plan for their own personal and professional development.

Students will negotiate their learning options from a range of compulsory and optional topics including: Ethics and Social Responsibility, Industrial Relations, Occupational Health and Safety and The Culture of Engineering.

Assessment tasks will be negotiated from a variety of compulsory and optional assignments, many of which can be incorporated into the student's portfolio. Some tasks include: personal résumé, job application letters, employment interviewing, learning style assessment, learning contracts, ethics case study, industrial relations case study. Assessment will essentially be formative to assist students in achieving an acceptable level. However, students will not be able to undertake Engineering Practice 1 until they have passed all the compulsory components of Engineering Practice Preview 1.

48122

Engineering Practice Review 1

3cp
ENGINEERING PRACTICE
Undergraduate

Engineering Practice Review 1 guides students through a process of thoughtful reflection and review of their engineering practice. Workplace issues are examined and students are assisted in developing appropriate professional strategies. Students identify the technical and professional advancement that has occurred as a consequence of their experience, and integrate these new ideas with their existing knowledge frameworks. This learning is documented for peer and professional review.

Since each student's work experience will be unique, all students will benefit from sharing and discussing their experiences. What each individual student learns will be a function of a number of factors affecting their workplace experience. However, this subject assists all students to receive a firm grounding in the fundamentals of engineering workplace practice, including: the nature and culture of the engineering workplace, the employment process, ethics and social responsibility, communication and documentation, the application of engineering method, occupational health and safety, industrial relations, and personal and professional development.

Assessment tasks include: evaluation of learning contract, report of workplace experience, group review, logbook and portfolio.

48130

Engineering Practice 2

0cp
prerequisite(s): 48141 Engineering Practice Preview 2
ENGINEERING PRACTICE
Undergraduate

Engineering Practice 1 and 2 are zero credit point subjects that support students while they are working in industry or the community for the purpose of gaining experience in the practice of engineering. Engineering Practice 2 expects that students will be advanced in their academic studies and be working closely with engineering professionals in order to extend their understanding of the practice of professional engineering and to apply, test and further develop their technical skills. One semester prior to undertaking the experience students must enrol in the subject 48141 Engineering Practice Preview 2. Students may enrol in Engineering Practice 2 for more than one semester while they are working at this para-professional level; and they need not take additional semesters of Engineering Practice Preview 2. However, they are encouraged to progress to a professional level of engineering practice.

Material to be taught and learnt: each student's experience will be unique. What is learned will be a function of a number of factors affecting the experience. Employer or host organisations are not expected to provide formal training although some may choose to do so. Instead students are required to become active learners and seek opportunities to fulfill the objectives of this experience module. Students are
assisted in this process through Engineering core and field of practice subjects and specifically through Engineering Practice Review 2.

48141

Engineering Practice Preview 2

3cp; prerequisite(s): 48122 Engineering Practice Review 1

Undergraduate

Engineering Practice Preview 2 helps students to develop as professional engineers by refining employment-related processes, developing the communication and documentation skills appropriate to professional engineering practice, exploring issues of organisational management and commercial practice, examining ethical and social issues, applying theory in practice and developing strategies for continuing professional development.

Students will negotiate their learning options from a range of compulsory and optional topics including: the nature and culture of professional engineering, the professional employment process, engineering in a global social context, organisational behaviour, management and commercial practice, industrial relations and human resource issues, communication and documentation, leadership and teamwork, occupational health and safety, ethics and social responsibility, experiential learning and knowledge creation, and personal and professional development.

In addition they will consider the development of professional competencies as required by the Institution of Employers, Australia.

Assessment tasks will be negotiated from a variety of compulsory and optional assignments, many of which can be incorporated into the student's portfolio. Some tasks include: professional resume, employment and assessment interviewing, learning contracts, ethics case study, industrial relations case study, occupational health and safety case study. Assessment will be formative to assist students in achieving an acceptable level. However, students will not be able to undertake Engineering Practice 2 until they have passed all the compulsory components of Engineering Practice Preview 2.

48142

Engineering Practice Review 2

3cp; prerequisite(s): 48130 Engineering Practice 2

Undergraduate

Engineering Practice Review 2 helps students to develop as professional engineers by reflecting on their workplace practice and documenting their learning for peer and professional review.

Since each student's work experience will be unique, all students will benefit from sharing and discussing their experiences. What each individual student learns will be a function of a number of factors affecting their workplace experience. However, this subject assists all students to appreciate the dimensions of professional engineering workplace practice, including: engineering in a global environment, organisational behaviour, commercial practice, industrial relations and human resource issues, ethics and social responsibility, communication and documentation, the extension and application of engineering knowledge, occupational health and safety, industrial relations, and personal and professional development and recognition.

Assessment tasks include: evaluation of learning contract, report of workplace experience and career episodes, group review, logbook, and portfolio.

48210

Engineering for Sustainability

6cp

Core

Undergraduate

Subject Coordinator: Keiko Yasukawa

Upon completion of this subject, students should be able to demonstrate development in the following areas:

- orientation to university study
- ability to read critically and write appropriately in a variety of academic contexts
- appreciation of the social and historical contexts of engineering
- awareness of different definitions of 'progress'
- awareness of what is 'professionalism'
- appreciation of the role of codes of ethics, and
- appreciation of the principles of sustainability.
This subject takes students on a journey into the past, present and future of engineering and its relationship to society and the environment. They will choose one of several module groups based around broad engineering-related themes.

Within these modules, students will be examining the contributions made by engineers in their respective areas, how they were received by and benefited different groups in society, and what impact they had on the environment. Current and historical case studies from our local communities as well as from other parts of the world will be used to illustrate the different ways in which technologies have evolved and have been valued.

The subject is taught by an interdisciplinary team who will present lectures, and facilitate interactive workshops. Assessment includes individual reflective writing, case study reports, and team-based poster presentation. In each of these assessment tasks, students are assessed both for their learning of key content material and academic skills such as critical reading and analysis, and academic writing and presentation.

48220

Informatics

6cp

Core

Undergraduate

Subject Coordinator: Martin Evans

The objectives of this subject are: to develop a deep understanding of the types of engineering problems which can benefit from the use of information and computational tools; to identify these benefits, the types of tools and their appropriateness, strengths and limitations; to develop an understanding of the application of, and specific skills in applying, informatics tools to engineering problems (and in particular in the areas of utilising information, oral and written communication, teamwork, resource management, design processes); and to develop maturity with respect to critical thinking and professional ethics.

Topics include: consideration of issues related to informatics tools and categories of informatics tools, types of problems which can benefit from these tools, benefits of using tools, limitation of tools, relevance of tools to different types of problems; consideration of issues related to using tools to identify, structure, conceptualise, visualise, articulate, and reason about engineering problems; consideration of issues related to how tools relate to the culture of engineering, engineering ethics, and critical thinking; specific skills in computer programming fundamentals, and a specific programming language; skills in using operating systems, written and oral communication software, spreadsheets, Internet tools, mathematical modelling tools, databases, teamwork tools, and project management tools.

48230

Engineering Communication

6cp; prerequisite(s): 48220 Informatics

Core

Undergraduate

Subject Coordinator: Helen McGregor

On completion of this subject students should be able to: understand basic principles and theories of human communication; research within the various discipline areas that inform the study of communication; write competently in a number of different genres; perform competently in a variety of oral communication situations; understand basic principles and practices of graphic communication; demonstrate their ability to express engineering concepts through graphical communication; demonstrate their ability to 'converse' mathematically; lead and participate in group processes; appreciate the central role of communication in engineering practice.

Topics include: principles and theories of communication; communication in practice; the processes of communication; and communication technology.

48240

Uncertainties and Risks in Engineering

6cp; prerequisite(s): 48220 Informatics; 33230 Mathematical Modelling 2

Core

Undergraduate

Subject Coordinator: Jim Irish

The objectives of this subject are: to develop in students a critical understanding of ideas concerning decision making under risk, uncertainty, ignorance and indeterminacy (and an appreciation that each person and group has knowledge, attitudes and beliefs about risk and uncertainty which, to the individual or group, are ‘rational’); to explore the contexts in which experts, including professional engineers, manipulate problems involving risk
and uncertainty; to develop a critical appreciation of the uncertainties and subjectivities inherent in modelling; and to equip students with the ability to select and apply appropriate statistical tools, to acquire additional statistical competencies, and to understand their strengths and limitations.

Topics include:
Decision making under risk, uncertainty, ignorance or indeterminacy – history of decision making under risk, uncertainty, etc.; cultural approaches to risk and uncertainty (approaches which emphasise the plurality of rationalities); the modern dependence on or fascination with quantification; historical origins of statistics and risk analysis; new approaches to negotiating risk and uncertainty decisions: the primacy of open process, trust, and valuing contextual knowledge over quantitative risk estimates; the sociology of knowledge; case studies concerning, for example, Chernobyl, lawyers' approaches to knowledge, and probabilistic knowledge; communicating and negotiating uncertainty and risk.

Formal definitions of risk, uncertainty, indeterminacy and ignorance – connections to risk management and to sustainability, especially the Precautionary Principle; connections to communication, safety, reliability, quality, investment risk, measurement, and system performance evaluation; sources of errors; limitations of models as predictive tools; risk transfer, risk modification, and risk avoidance.

The role of formal methods of handling risk and uncertainty – standards, codes, and expert or professional knowledge in resolving risk or uncertainty, particularly in engineering and related professions; how models are constructed and used as the basis for codes and standards; examples and connections to the fields of practice/programs; the complexity of engineering decisions and the reductionist approach to classifying problems; ensuring predictability, quality and reliability in the face of the random: perturbations and uncertainties inherent in systems.

Techniques for modelling and analysing uncertainties and risks – in order to be able to examine some hypotheses about risk and uncertainty, appreciation of the process of and mastery of some of the skills for modelling and analysis will be developed, including: different classifications of mathematical models and modelling methods, e.g. stochastic, deterministic, mixed stochastic-deterministic, parametric, black box, simulation; linear, nonlinear, lumped parameter, distributed parameter; static, dynamic; regression and correlation analysis; choice of variables and relationships to model; sources of uncertainty propagation in models, e.g. measurement uncertainties, propagation of computational errors, system noise and disturbances, unmodelled variables, non-quantifiable variables and effects; measures of certainty and uncertainty in models, e.g. robustness, confidence intervals, statistical inference based on hypothesis testing; mechanisms for minimising effects of uncertainties in models and systems, e.g. feedback, filters, and redundancy; model verification, e.g. tests of goodness of fit; model validation, e.g. statistical forecasting; how decisions are made under uncertainty; different approaches to documenting and communicating the results of statistical modelling and decision making.

48250
Engineering Economics and Finance
6cp; prerequisite(s): 48110 Engineering Practice 1; 48240 Uncertainties and Risks in Engineering
Core
Undergraduate
Subject Coordinator: Gary Marks

The objectives of this subject are for students to be able to use their knowledge of engineering culture to develop an understanding of the relationship between economics and finance and engineering; to gain a working knowledge of macro and micro economic theories in the context of engineering practice, ethics and sustainability; to acquire skills in determining the appropriate use and limitations of various economic and financial models and techniques used to define/manage/analyse engineering activities; to develop competence in identifying and working through the economic and financial aspects of an engineering project/case study; to become aware of the impact of various economic and financial models and techniques on the social and technical dimensions of engineering activity; to integrate economic and financial understanding and fields of practice specialist knowledge in project-based/case study work.

Topics include: a basic understanding of macroeconomics, microeconomics and environmental economics; awareness of the philosophies underpinning economics, and terms and methods used by economists and
accountants; analysis of engineering economic models including cost-benefit analysis, multiple-objective analysis etc; skills in assessing and using accounting and financial concepts especially in the context of small business but also including awareness of management accounting.

48260
Engineering Management
6cp; prerequisite(s): 48122 Engineering Practice Review 1 or 48120 Review of Engineering Practice 1; 48240 Uncertainties and Risks in Engineering
Core
Undergraduate
Subject Coordinator: Ravindra Bagia

This subject enables students to develop the following: an appreciation that management is integral to engineering in aspects ranging from the personal to the organisational; an awareness of the roles and functions of management – general, engineering and project management; an understanding of the rationale underpinning various engineering and project management models and tools and the interaction with engineering practice. It introduces and analyses a range of engineering and project management tools, developing an appreciation of their appropriate uses, strengths and weaknesses. Building on awareness developed in earlier subjects, and through work place experiences, it introduces students to the potential impacts of engineers’ decisions and management on the community and the client. Students will acquire skills in choosing and using the most appropriate engineering and project management tools for identifiable engineering activities.

Topics include: concepts of general management and engineering and project management and their relationships; systems/product life cycle model and the various contributions which engineers make, or can make, during this cycle; and the contributions of other occupations; models used to visualise the processes occurring during the cycle, and for envisaging management and decision making; the range of tools which can be applied for various purposes during the cycle, e.g. to make decisions, manage people, manage resources, audit and account for management of resources, etc; historical development of this range of management, theories, tools, and models, and the arguments for and against them: engineering and project management; and the capabilities required of engineering managers.

48270
Technology Assessment
6cp; prerequisite(s): 48240 Uncertainties and Risks in Engineering
Core
Undergraduate
Subject Coordinator: Elizabeth Taylor

The objective of this subject is to provide students with an understanding of the development of impact as a concept, and to gain an appreciation of how it has been specifically constructed within the engineering culture.

Students will consider the concept of impact within the frameworks of technology assessment techniques; acquire an appreciation of and sensitivity to different interpretations of the impact of technologies; examine how different understandings of the concept of impact affect the relationships between technological professions and society; compare and critique methodologies and strategies for dealing with the impacts of engineering activity; develop skills in determining the appropriate use of various techniques used by decision makers to manage/determine the impact of engineering activity; develop skills in involving community in decision making regarding the impact of engineering activity; gain an appreciation of the diversity of engineering practice and its interdependence with other professions; experience and reflect on the interdisciplinary nature of engineering activity.

48430
Software Development
6cp; prerequisite(s): 48220 Informatics
Fields of Practice: Computer Systems Engineering
Program
Undergraduate

The objectives of this subject are to: develop in students a critical understanding of issues related to the development of software systems, including understanding of the concepts of software life cycles, processes and software paradigms; software methodologies; software analysis, design, implementation, and testing; and algorithm design and problem solving. It also aims to develop in students the skill to apply analysis and design techniques and programming skills to the development of software systems; and equip them with the ability to acquire new software development skills as required by specific development projects.
Topics include: introduction to the software development lifecycle and development processes and models (such as the waterfall model and the ISO 12207 model); introduction to software paradigms and detailed consideration of the purpose and underlying principles of the Object-Oriented paradigm; introduction to concepts of development methodologies and detailed coverage of one specific methodology (including analysis, design and implementation aspects of this methodology); principles and procedures for software testing, verification, validation and debugging; approaches to algorithm design and problem solving; software coding - detailed coverage of a programming language in order to develop specific skills related to the above elements.

Students would have developed fundamental programming skills in the prerequisite subject 48220 Informatics. In order to further develop their programming skills, and to understand the relationships between different programming paradigms, they will be required to develop an understanding of the Java programming language. The object-oriented paradigm will be implemented using the Unified Modelling Language (UML) methodology.

48441
Introductory Digital Systems
6cp; prerequisite(s): 48520 Electronics; 48430 Software Development
Fields of Practice: Computer Systems Engineering
Program
Undergraduate

The objectives of this subject are to enable students to: master the fundamentals of digital and programmable electronic circuits and their engineering applications; master the hardware architecture of a typical small computer system; understand the principles of low level programming and gain an ability to write simple assembly code. Students will be introduced to the basics of concurrent and real time application programming. The subject will develop a simple register-based computer incorporating I/O and interrupts.

Topics include: digital sequential circuits; state diagram and its application in the design of digital circuits; basic hardware architectures of the digital computer in terms of its building blocks; how hardware integrates with software at the machine level; low level language programming; internal architecture and design of a typical register-based central processing unit and a main memory subsystem, and their interdependence; concepts of computer system buses, as well as different types of input and output devices; interrupts and DMA (direct memory access) input and output; microcontroller theory; hardware interfacing design techniques. Aspects of real-time programming, concurrency and multiple processing, the design of a basic multi-tasking operating system and the solution of a concurrent application. Optional modules toward the end of the subject cover an in-depth study of a selected micro-controller, advanced topics in embedded real time applications, printed circuit board design among others.

48451
Advanced Digital Systems
6cp; prerequisite(s): 48441 Introductory Digital Systems
Fields of Practice: Computer Systems Engineering
Program
Undergraduate

The objectives of this subject are that students should be able to: analyse, design and implement a programmable digital system based on a user requirement specification, and investigate advanced computing architectures. The subject has two major components (1) analysis/design and (2) implementation, of an advanced computing node. The components are integrated, and are each worth 50 per cent of the course mark.

The subject provides an in-depth understanding of the analysis/design and implementation of advanced digital hardware at medium scale computer system building block level. It builds on the basics of Introductory Digital Systems introduced in the earlier 'field of practice' subjects. This subject is common to the Electrical, CSE and Telecommunication degree courses.

48530
Circuit Analysis
6cp; prerequisite(s): 48520 Electronics
Fields of Practice: Electrical Engineering Program
Undergraduate
In previous subjects students have been introduced to the analysis and application of electrical devices and systems. In this subject these skills will be developed to the point of virtuosity, as students acquire proficiency in the rigorous analysis of real-world models. By a process of (1) theoretical investigation, (2) experiment design, (3) experimental testing, and (4) reflection, students will develop a clear conceptual and experiential understanding of the difference between real-world phenomena and the models that are used to represent them. While electrical circuits are a prime focus, the application of analysis techniques to other disciplines and types of system models will be concomitant. The subject will also provide a perspective on the historical development of this area and on present and future trends.
In most weeks students will partake in a three-hour small group teaching session with up to an additional three hours laboratory or in-field activities. Assessment will consist of individual and group work tasks with weekly quizzes and a final exam.
The following topics are covered:
Signals and Systems – introduction to spectral analysis, Laplace transforms; ideal and real voltage and current sources and loads; resistors; capacitors, inductors and coupled coils; Kirchhoff’s voltage and current laws, Thévenin’s and Norton’s theorems, mesh and nodal analysis, symmetry, circuit transformation, superposition, solution of ODEs using Laplace; power in AC circuits, electrical distribution networks and devices, multiphase systems; one and two ports systems, transfer and immittance functions, two port parameters and behaviour; poles and zeros, s-plane analysis, Bode plots; first order systems – response to periodic and non-periodic inputs, time domain solution, frequency domain solution; arbitrary systems analysis – linear versus non-linear, response to an arbitrary input using convolution, dominant pole approximation, practical system identification techniques.

48540
Signals and Systems
6cp; prerequisite(s): 48220 Informatics; 33230 Mathematical Modelling 2
Fields of Practice: Electrical Engineering Program
Undergraduate
This subject presents the theoretical basis for system analysis and gives students skills in using the techniques to design components of real control/communication systems. The derivation of models from real world devices through measurement, and the comparison of model predictions with experimental results is emphasised in the laboratory component of the course. A group project that requires the design and implementation of part of a control/communication system allows students to apply their knowledge to a real-life problem.
Topics include: signal types and signal representation in the time and frequency domains; system modelling; signal operations in the time and frequency domains; discrete signals and systems; the effects of feedback; time and frequency domain performance and correlation; system stability.
Through learning activities students will also gain study skills including academic literacy skills, and an appreciation of the different fields of practice of engineering and the interdisciplinary nature of engineering.
Class time will be used for lecture-type resource sessions, tutorials, laboratories and project work. There will be a number of formal laboratory sessions that apply system theory to different engineering disciplines, which also familiarise students with the laboratory equipment. Several simple control systems will then be used as case studies in signals and system behaviour. The laboratory component culminates in a substantial group project that will require a formal written and oral presentation.

48550
Electrical Energy Technology
6cp; prerequisite(s): 48531 Electromechanical Systems; 48530 Circuit Analysis; 68038 Advanced Mathematics and Physics
Fields of Practice: Electrical Engineering Program
Undergraduate
The objective of this subject is to reinforce and extend knowledge of electromechanical systems and circuit analysis into the components and philosophy of typical power systems (generators, transformers, transmission lines, induction and synchronous motors,
138 Subject descriptions

Protection) by a deeper study of 3-phase systems, ac machines, and power system design principles.

Technical and theoretical content is expected to be acquired by students to the levels of 'know' (essential), 'familiar' (can solve problems if required) and 'aware' (have read/seen), and the laboratory skills to be acquired, are shown below. The topics are linked by application to a small power system, on which assignments and laboratory work are based.

Know
• 3-phase circuit theory – balanced network, star/delta, p.u. system
• Component non-ideal models and performance – transmission line, 1-phase and 3-phase transformer, dc and ac machines (dc: induction, synchronous as motor and generator)
• System control and design principles – energy storage, cogeneration, renewable generation, remote and grid-connected systems, and pollution control

Familiar
• 3-phase circuit theory – symmetrical components, unbalanced network, fault calculations, motor starting, generator short circuit
• Component models and performance – CT, VT, circuit breaker, cables
• System control and design principles – voltage selection, AC vs DC, system losses and efficiency

Aware (exposure technologies)
• Component models and performance – d, q transformation
• System control and design principles – P, Q, tie lines, state estimation, tap setting, economic load despatch, load flow, FACTS, SVC, harmonics
• Principles of protection – overcurrent, unit, distance, earth
• Power system applications – electric train, rolling mill, power station, air conditioning fan, sewerage or water pump, wind generator, sub-station, switchyard, HV and LV reticulation

Laboratory skills
• 1-phase transformer tests and performance
• 3-phase transformer tests and performance
• DC machine performance
• Induction machine parameters and performance
• 3-phase DC generator parameters and performance
• Power system performance

48560 Analogue and Digital Control
6cp; prerequisite(s): 48540 Signals and Systems

The objective of this subject is to enable students to model with validation control systems, to analyse, design, and implement both analogue and digital controllers so that the controlled systems conform with given specifications. Emphasis is placed on laboratory work, the theoretical content of the subject being only that required to produce successful designs. Students are required to work on reduced scale models of actual industrial processes. The equipment is based upon experience gained with authentic control applications and is suitably modified for student use. Students follow the usual sequence adopted in industry, i.e. they start with the calibration of transducers and actuators leading on to dynamic response testing, physical modelling, model verification and finally to controller design, implementation, and testing.

Topics include: linear and nonlinear modelling of control systems using Newton's rules, analogous networks or Lagrangian techniques; linearisation and development of linear, time-invariant transfer functions; development of lead-lag compensators or PID controllers using classical control design techniques such as root locus, Bode gain and phase diagrams, Nyquist plots and Nichols chart; development of state-variable equations from differential equations; development of state-variable feedback controllers and state observers; open-loop pulse transfer functions and discrete-time state models; discretisation using backward difference, bilinear, step-invariance or pole-zero mapping; development of digital PID controllers, deadbeat controllers, and discrete-time state-variable feedback controllers; describing functions and limit cycles for nonlinear control systems; and the development of linear controllers for nonlinear systems using describing function techniques.
48561

Power Electronics
6cp; prerequisite(s): 48530 Circuit Analysis
FIELDS OF PRACTICE: ELECTRICAL ENGINEERING Program
Undergraduate

The objectives of this subject are to enable students to: acquire reasonable proficiency in power electronics and its applications; gain confidence and expertise in the use of power semiconductor devices; have some understanding of rigorous analysis using computer simulation of real power electronic systems; be aware of the electromagnetic interference problems associated with power electronic systems and how these problems can be overcome; be aware of the interdisciplinary nature of power electronics; be aware of the enormous potential this area has for development and exploitation; learn how to evaluate whether one has the skills to undertake a specific design or analysis task and, if not, how to build up the required skill level; be aware of good and bad practice in problem solving and learn the art of improving on practice whenever a weakness is revealed; develop validation strategies that enable one to have sufficient confidence to analyse one's own readiness to accept professional responsibility for conclusions reached; be aware of the importance of continually seeking improved analytical methods and computational tools that will give results more expeditiously and with reduced chance of errors; have a clear conceptual understanding of the difference between real practical systems and the models that are used to represent them.

Topics include: external characteristics, operation and gate drive circuit design of modern power semiconductor devices; protection circuits and thermal design for power devices; power conversion circuits including rectifiers, choppers, inverters, and cycloconverters; pulse-width modulation techniques; harmonic and voltage control of inverters; applications such as switch-mode power supplies, DC drives, AC drives, UPS systems, HVDC; recent advances in device technology; using microcontroller for power electronic applications; EMC and electromagnetic interference in power electronics; use of linear electronics for control of power electronic systems.

48570

Data Acquisition and Distribution
6cp; prerequisite(s): 48540 Signals and Systems; 48441 Introductory Digital Systems
FIELDS OF PRACTICE: ELECTRICAL ENGINEERING Program
Undergraduate

Objectives

By the end of this subject students should be able to:

- analyse, design, build and test: data acquisition and distribution systems (DADS); measurement systems; intelligent instrumentation systems
- characterise, specify and select to satisfy the requirements of a DADS: sensors/transducers and associated circuits; transducer analog interfacing and signal conditioning circuits; data conversion devices and systems
- interface DADS to computers, plant and installations
- write, test and embed control and programming software for DADS interfacing.

Material to be taught and learnt includes:

- applications, requirement specifications and typical architectures of DADS
- general performance characteristics of DADS components and subsystems
- physical principles and design fundamentals of sensors and transducers
- mechanical, temperature, pressure, flow-rate, level transducers and applications
- optoelectronic transducers and applications
- transducer analogue interfacing
- precision amplifiers and low-level signal conditioning
- noise, guarding and shielding in instrumentation systems
- data conversion devices and systems
- DADS design; time and error budget of DADS
- computer structures for DADS
- DADS interfacing to computers and control software
- intelligent instrumentation systems; data integrity.
49550

Computing for Groundwater Specialists

6cp; block attendance totalling 24 hours
Postgraduate

Subject Coordinator: Mr D Yates, National Centre for Groundwater Management

This subject provides the computing background needed for students with varying degrees of computer literacy. Topics covered include DOS and Windows operating systems, databases, spreadsheets, word processing, statistical and graphical packages with applications relating to groundwater processes.

Assessment: continuous assessment involving assignments and problems.

49551

Surface Hydrology and Groundwater

6cp; block attendance totalling 36 hours
Postgraduate

Subject Coordinator: Professor M J Knight, National Centre for Groundwater Management

This subject provides the interface process link between Surface Hydrology and Groundwater. Topics include hydrological cycle, water and energy balances and circulation, precipitation, interception, infiltration, storm runoff, hydrograph analysis, evaporation and transpiration, surface and groundwater interactions, land-use effects, artificial recharge.

Assessment: continuous assessment involving assignments and problems and short examinations.

49554

Groundwater Computing

6cp; block attendance
Postgraduate

Subject Coordinator: Mr N Merrick, National Centre for Groundwater Management

This subject provides a strong computing basis for groundwater management especially in the area of statistics and graphics as applied to groundwater problems involving computing. Introduction to DOS and Windows operating systems, databases, spreadsheets, word processing, elements of geostatistics and graphical packages with applications related to groundwater processes, groundwater computing project.

Assessment: continuous assessment involving assignments and problems assessed at a more advanced level than 49550 Computing for Groundwater Specialists.

49555

Groundwater Modelling

6cp; block attendance totalling 36 hours; corequisite(s): 49550 Computing for Groundwater Specialists
Postgraduate

Subject Coordinator: Mr N Merrick, National Centre for Groundwater Management

The subject provides the computer modelling tools required for particular groundwater resource management underpinned by an adequate appreciation of the underlying theory and computer algorithms. Topics include conceptual modelling, analytical modelling, numerical modelling and solution algorithms applied to the governing differential equations. Emphasis is placed on finite difference and finite element methods. Applications to groundwater resource studies, borefield management, optimisation problems.

Assessment: continuous assessment involving assignments, problems and short examinations.

70105

Legal Research

4cp
Undergraduate

This subject aims to familiarise students with the basic tools available to engage in legal research. It includes an introduction to various paper-based resources (citations, digests etc.). Students are also introduced to the use of computerised systems as an aid to legal research. The emphasis is on Internet-based systems such as AustLII, Scale Plus and Butterworths Online. CD-ROM products are also briefly covered.

70113

Legal Process and History

10cp
Undergraduate

This subject aims to introduce students to, and to provide students with, a sound working knowledge of the Australian legal and constitutional environment. The subject also aims to equip students with certain legal skills – in particular, the skills of case analysis, statutory interpretation, legal problem solving and critical analysis – which are essential to the study and practice of the law. Students will be asked to consider what is law, who makes law, and how and why the law has developed in the way that it has. They will also examine the
institutions that make up our legal system – the legislature, the Crown and the executive, the courts and the ‘legal players’ (the judge, the jury and the legal practitioner) – and explore the principles and doctrines that underpin our legal system. Further, they will be asked to consider why our legal system is so different from that of some of our regional neighbours, and to evaluate the strengths and weaknesses of the common law legal system. Valuable insight into the way our legal system operates may be gained through using a historical approach, and this means delving back into English, as well as Australian, legal and constitutional history. Such an approach also facilitates refinement of critical analysis skills. At the end of the subject, students should have a fully developed understanding of the Western legal tradition, the place of common law in that system, and the ramifications of living under a Westminster parliamentary system as well as a federal system.

70211
Law of Contract
8cp; prerequisite(s): 70113 Legal Process and History; corequisite(s): 70217 Criminal Law; 70105 Legal Research
Undergraduate

This subject deals with the legal principles related to when promises are binding, the difficulties arising out of their interpretation, how they may become defeasible, issues relating to their performance, and how they may be discharged. Topics covered include the formation of contracts (agreement, consideration, terms); vitiating factors (capacity, mistake, misrepresentation, illegality, duress, undue influence, unconscionability); discharge by performance and non-performance of contractual obligations (breach and frustration); and contractual remedies.

70217
Criminal Law
6cp; corequisite(s): 70113 Legal Process and History; 70105 Legal Research
Undergraduate

This subject deals with the substantive criminal law, the doctrines and rules that define the conditions of criminal liability and some aspects of the procedural law. Australian common law doctrine and the Crimes Act 1900 (NSW) are considered. Topics include the nature of crime; the doctrine of mens rea and actus reus; presumption of innocence; offences against the person; property offences; strict liability; complicity; criminal defences; criminal investigation and procedure; and drug law.

70311
Law of Tort
8cp; prerequisite(s): 70113 Legal Process and History; corequisite(s): 70105 Legal Research; 70217 Criminal Law
Undergraduate

This subject discusses the functions and aims of the tort. It then examines the nature of tortious liability in the light of a selection of specific torts, namely, trespass to the person, goods and land; the action on the case for wilful injuries; conversion; negligence; nuisance; and defamation. Reference is also made to defences, vicarious liability and contribution between tortfeasors.

Attention is drawn to the relevance of the type of conduct complained of (intentional, reckless, careless); the nature of the various interests protected (personal security, chattels, land, reputation, economic interests, domestic relations); the adaptability of tort law to changing needs and values of society (thus the introduction, dominance and current perceived limitations of the fault concept); and the element of policy expressed or implied in judicial decisions.

70317
Real Property
4cp; prerequisite(s): 70211 Law of Contract; corequisite(s): 70311 Law of Tort
Undergraduate

Topics covered include agreements for sale of land; time for completion; Torrens title and priorities; old system, possessory, qualified and limited title; fixtures; trespass to land; co-ownership; easements; covenants; mortgages; and leases.

70318
Personal Property
4cp; prerequisite(s): 70211 Law of Contract; corequisite(s): 70311 Law of Tort
Undergraduate

Topics covered include classifications of personal property, choses in action and choses in possession; acquisition of title to goods; law of bailment; insurance; securities interests in chattels, and law of negotiable instruments, with particular reference to cheques.
70417

Corporate Law

8cp; prerequisite(s): 70317 Real Property

Undergraduate

The response of the law to the activities of business entities is dealt with in this subject. Although the emphasis is on corporations, there will be a brief discussion of the manner in which non-corporate entities including partnerships are regulated. The study of corporations law will include an overview of the historical developments, the current method of regulation and the proposals for reform.

70516

Equity and Trusts

8cp; prerequisite(s): 70317 Real Property; corequisite(s): 70417 Corporate Law

Undergraduate

Equity is a body of rules or principles developed in the Court of Chancery before 1873. The doctrines of equity developed as a response to defects in the English common law system, defects which had resulted in rigidity and inflexibility. A knowledge of the principles of equity is therefore crucial to a complete understanding of the law in those areas of private law, particularly property and contract, where equity intervened to modify the operation of the rules of the common law. In that sense, the doctrines of equity form part of the law of contract or property. Equity also developed remedies, such as the injunction, which were unknown to the common law and which have a continuing influence in public law as well as private law.

70616

Federal Constitutional Law

8cp; prerequisite(s): 70113 Legal Process and History; 70105 Legal Research; corequisite(s): 70211 Law of Contract

Undergraduate

This subject examines the effect of the Australian Constitution on the legal and fiscal relationship of the Commonwealth, States, and Territories. In order that students develop an understanding of the techniques of judicial review in the constitutional context, a range of powers given to the Commonwealth is examined. These include trade and commerce, corporations, taxation and external affairs. Other areas examined are explicit and implicit restrictions of power, the questions of inconsistency and intergovernmental relations. The general role of the High Court in Australian constitutional law is considered, along with the Separation of Powers Doctrine as it relates to the independence of the judiciary.

70617

Administrative Law

8cp; prerequisite(s): 70616 Federal Constitutional Law

Undergraduate

This subject deals with the supervision of the executive arm of government by the courts and by other statutory mechanisms. Topics include the grounds of review of administrative decisions, in particular natural justice; ultra vires; jurisdictional error and error of law; remedies available at common law upon judicial review, including the prerogative writs and equitable remedies; judicial review under the Administrative Decision (Judicial Review) Act 1976 (Cwlth); a review of Commonwealth decisions under the Administrative Appeals Tribunal Act 1976 (Cwlth), and the role and function of the Ombudsman. If time permits, freedom of information and privacy legislation will also be touched upon, and the role of the Independent Commission Against Corruption (ICAC).

71005

Practice and Procedure

4cp; prerequisite(s): 70516 Equity and Trusts

Undergraduate

Practice and Procedure is a core subject that develops the students' understanding of the process of litigation from the commencement of proceedings through to the final hearings. Topics include statements of claim in contracts and torts; defence, cross-claims and replies; equitable proceedings; particulars; discovery, inspection and interrogatories; notice of motion; drafting affidavits; subpoenas; and advocacy skills.

71116

Remedies

6cp; prerequisite(s): 70516 Equity and Trusts

Undergraduate

This subject deals with the range of court-ordered remedies available to a plaintiff in civil proceedings. The more common remedies are those administered at either common law or in equity: damages; equitable remedies (declarations, specific performance, injunctions,
Anton Pillar orders, account, equitable damages); and statutory and common law remedies for deceptive conduct. Bankruptcy and insolvency will also be considered.

71216
Law of Evidence
6cp; prerequisite(s): 70516 Equity and Trusts
Undergraduate

This subject deals with adjectival law and the determination of how information may be presented to the court in litigation, when such information will be admissible in evidence, and how the rules of proof are applied. The inclusionary rule of relevance, the various exclusionary rules (such as hearsay, opinion, tendency, coincidence, credibility, character, privilege), and the judicial discretion to exclude will be studied, as well as the incidence of the burden of proof.

79004
Environmental Law and Science
6cp; prerequisite(s): 91312 Biology 2
Undergraduate Cross-Disciplinary

This subject will explore the interdisciplinary nature of environmental law and the interface between environmental law and science in the context of environmental management and conservation of resources. Topics will include, but will not be limited to: introduction to environmental law; environmental ethics; principles of sustainability; the role of international conventions and federal, State and local governments; legislative framework of environmental law in Australia; community right to know legislation; use of economic instruments e.g. tradeable permits and environmental taxes, environmental impact assessment; contaminated land; methods of enforcement; and alternative dispute resolution.

79991
Complex Forensic Cases (Law)
6cp; 1 semester
Undergraduate Cross-Disciplinary

Students will receive training in the preparation of reports and in the presentation of evidence in court. A substantial component of this subject is a moot court.
INTERNATIONAL STUDIES
SUBJECTS

50140
Comparative Social Change
8cp; for undergraduate students
Offered by the Faculty of Humanities and Social Sciences
The aim of this subject is to provide students with an understanding of the processes of modernisation and social change in a comparative context using case studies in countries of Western Europe, Latin America, and East and South-East Asia. The lectures will highlight a number of key issues, including whether the processes of social change are universal or specific; the consequences of modernisation in and for the economy, politics, society, culture and ideology of non-Western societies; and whether the established Eurocentric analytical models are still useful in understanding the modern world. It will be emphasised that differing interpretations of modernisation flow from various relations of power which lead to a multiplicity of views on its meanings and significance.

Chinese Language and Culture subjects

Chinese Unit 1
8cp; 6hpw; prerequisite: nil
Chinese 1 aims at developing in students a survival communicative ability in basic social interactions. It teaches students Pinyin, the official transcription system, as a guide to the pronunciation of the Chinese language, and some basic structures and devices of the language. Students are expected to know about 300 Chinese characters by the end of this unit.

Chinese Unit 2
8cp; 6hpw; prerequisite: Chinese Unit 1
Chinese 2 continues to develop in students a survival communicative ability in basic social interactions. It also introduces some of the basic structures and devices of the language. Students are expected to know about 600–800 Chinese characters by the end of this unit.

Chinese Unit 3
8cp; 6hpw; prerequisite: Chinese Unit 2 or HSC 2/3-unit Chinese
Chinese 3 is the entry point for students who have completed HSC 2/3-unit Chinese and who first learnt Chinese at school in Australia. Chinese 3 aims at further developing students’ oral communicative competence in basic social interactions. More written texts will be gradually introduced to enhance the ability of students to use Chinese characters. The basic structures and devices of the language will be reinforced. Students are expected to know about 1,200 Chinese characters by the end of this unit.

Chinese Unit 4
8cp; 6hpw; prerequisite: Chinese Unit 3
Chinese 4 is the second unit for students who have completed HSC 2/3-unit Chinese. Chinese 4 aims at further developing students’ communicative competence in basic social interactions. More written texts are introduced to enhance the ability of students to use Chinese characters. The basic structures and devices of the language are also reinforced. Students are expected to know about 1,600 Chinese characters by the end of this unit.

Chinese Unit 5
8cp; 6hpw; prerequisite: Chinese Unit 4
Chinese 5 is the third unit for students who first learnt Chinese at school in Australia and obtained HSC 2/3-unit Chinese. Chinese 5 aims at further developing students’ communicative competence in general social interactions. While reinforcing the macro-skills of reading, writing, listening and speaking, this unit will focus on practical writing skills. Students are expected to know about 2,000 Chinese characters by the end of this unit.

Chinese Unit 6
8cp; 6hpw; prerequisite: Chinese Unit 5
Chinese 6 is the fourth subject for students who have obtained HSC 2/3-unit Chinese with basic communicative skills and the ability to undertake In-country Study in China. Chinese 6 aims at further developing students’ communicative competence in general social interactions. While reinforcing basic structures and devices of the language, this unit will further develop students’ writing skills. Students are expected to know about 2,500 Chinese characters by the end of this unit.

Chinese Unit 7
8cp; 4hpw; prerequisite: a working knowledge of Chinese characters as well as communicative competence in a Chinese language other than Modern Standard Chinese.
Chinese 7 is for students who have a working knowledge of Chinese characters as well as communicative competence in a Chinese language other than Modern Standard Chinese.
This unit aims at developing communicative competence to meet students' needs in social and professional interactions where Modern Standard Chinese (also known as Mandarin, Putonghua or Guoyu) is used. Simplified characters, pronunciation, intonation and situational Chinese usages are the focus of class instruction.

Chinese Unit 8

8cp; 4hpw; prerequisite: Chinese Unit 7 or equivalent

This unit aims at developing a communicative competence at a more sophisticated level. Students are exposed to a range of Chinese texts in varied sociocultural contexts in order to master the use of Chinese for different purposes, and are provided with opportunities to further improve speaking and listening skills through discussions of the texts and making cross-cultural comparisons.

Chinese Unit 9

8cp; 4hpw; prerequisite: Chinese Unit 8 or equivalent

This unit aims at developing in students a high level of communicative competence required for understanding various electronic and published media articles, correspondence and texts related to contemporary society where Modern Standard Chinese (also known as Mandarin, Putonghua or Guoyu) is used. Students are exposed to a range of Chinese texts in order to master the use of Chinese for different purposes, and are provided with opportunities to maintain speaking and listening skills through discussion of the texts.

Chinese Unit 10

8cp; 4hpw; prerequisite: Chinese Unit 9 or equivalent

This unit aims at further developing in students a high level of communicative competence in reading and writing to meet students' needs in social and professional interactions. Modern Standard Chinese (also known as Mandarin, Putonghua or Guoyu) is used. Students are exposed to a range of diverse texts from modern Chinese literature, history, language and culture in order to master the use of written Chinese for different purposes, and are provided with further opportunities to maintain speaking and listening skills through discussion of the texts.

971411, 972411, 973411, 974411

French Language and Culture subjects

French Unit 1

8cp; 1st semester, 6hpw; prerequisite: nil

French 1 is the first in a series of four units designed to provide students who have no prior knowledge of the French language with basic survival skills in language and culture and the ability to undertake In-country Study in France.

By the end of the unit, students would be expected to have achieved 'elementary proficiency' and be able to satisfy immediate communication needs required in basic social interaction, using expressions and phrases they have learnt. The program allows for the development of listening, speaking, reading and writing skills, and an understanding of the sociocultural contexts in which the language is used. In particular, students gain an awareness of the background of French-speaking countries. Students also develop strategies for predicting the meaning of new expressions and anticipating ways to express new meanings.

The approach adopted is communicative and provides students with many opportunities to interact and use the language in various social and cultural contexts. Audiovisual equipment and computers will be used to facilitate learning.

French Unit 2

8cp; 2nd semester, 6hpw; prerequisite: French Unit 1 or equivalent

French 2 is the second in a series of four units designed to provide students who have no prior knowledge of the French language with basic survival skills in language and culture and the ability to undertake In-country Study in France.

By the end of the unit, students would be expected to have achieved 'minimum survival proficiency' in speaking, listening, reading and writing and be able to satisfy immediate communication needs and minimum courtesy requirements required in basic social interaction. Students will also develop an understanding of the sociocultural contexts in which the language is used and develop further communication strategies.

The approach adopted is communicative and provides many opportunities for students to interact and use the language in a meaningful way in various social and cultural contexts. Audiovisual equipment and computers will be used to facilitate learning.
French Unit 3
8cp; 1st semester, 6hpw; prerequisite: French Unit 2, HSC French, or equivalent

French 3 is the third in a series of four units for students with no prior knowledge of the French language, or the first in a series of four units for students who have successfully completed HSC 2/3-unit French, or its equivalent. It provides students with basic survival skills in French language and culture, and the ability to undertake In-country Study in France.

By the end of the unit, students would be expected to have achieved communicative competence in speaking, listening, reading and writing skills to be able to satisfy all 'survival' needs and limited social needs. They would also be expected to have developed an awareness of the various social and cultural contexts in which the language is used. In this unit, students develop the ability to understand the general content of magazine and newspaper articles.

The approach adopted is communicative and provides many opportunities for students to interact and use the language in various social and cultural contexts. Audiovisual equipment and computers will be used to facilitate learning.

French Unit 4
8cp; 2nd semester, 6hpw; prerequisite: French Unit 3 or equivalent

French 4 is the fourth in a series of four units for students with no prior knowledge of the French language, or the second in a series of four units for students who have successfully completed French 3, HSC 2/3-unit French, or its equivalent; and equips these students with basic survival skills in French language and culture and the ability to undertake In-country Study in France.

By the end of the unit, students would be expected to have begun to develop the communication skills required to satisfy limited routine social or work demands related to the situation covered. Students would also have developed an awareness of the various social and cultural contexts in which the language is used. Students learn to express opinions, discuss education, entertainment and travel, and develop the language skills and background knowledge required to find accommodation.

The approach adopted is communicative and provides many opportunities for students to interact and use the language in various social and cultural contexts. Audiovisual equipment and computers will be used to facilitate learning.

French Unit 5
8cp; 1st semester, 6hpw; prerequisite: French Unit 4 or equivalent

French 5 is the third in a series of four units designed to provide students who have successfully completed French 4, HSC 2/3-unit French, or its equivalent, with the ability to consolidate and extend their knowledge during a period of In-country Study in France.

By the end of the unit, students would be expected to have achieved the communicative competence required to satisfy routine social demands and limited work requirements in speaking, listening, reading and writing skills. They would also be expected to have developed an awareness of the various social and cultural contexts in which the language is used. Students learn to communicate in French and to compare lifestyles, university life and education and practice interview techniques in preparation for In-country Study.

The approach adopted is communicative and provides many opportunities for students to interact and use the language in a meaningful way in various social and cultural contexts. There are discussions and debates on set topics. Audiovisual equipment and computers will be used to facilitate learning.

French Unit 6
8cp; 2nd semester, 6hpw; prerequisite: French Unit 5 or equivalent

French 6 is the fourth in a series of four units designed to provide students who have successfully completed French 5, or its equivalent with the ability to consolidate and extend their knowledge during a period of In-country Study in France.

By the end of the unit, students would be expected to have achieved the communicative competence required for limited formal and informal conversations on practical and social topics. Students would also be expected to be able to read and write with sufficient accuracy to meet a limited range of social needs and limited work needs. Language development focuses on topics such as economy, class and social stratification, gender roles, religion and beliefs, literature and the arts.

The approach adopted is communicative and provides many opportunities for students to interact and use the language in a meaningful way in various social and cultural contexts.
There are discussions and debates on set topics. Audiovisual equipment and computers will be used to facilitate learning.

French Unit 7

Bcp; 1st semester, 4hpw; prerequisite: French Unit 6

French 7 is designed to provide students who have successfully completed French 6, or its equivalent with the ability to consolidate and extend their knowledge of French in preparation for a period of In-country Study in France.

By the end of the unit, students are expected to be able to communicate confidently in French in a wide variety of everyday situations, and to have comprehension skills which enable them to read a wide variety of authentic materials in French. Students are expected to extend their knowledge of present-day French society and culture and to have acquired the vocabulary and linguistic structures necessary to participate in formal and informal conversations with considerable accuracy.

The classroom approach provides students with opportunities to further develop their vocabulary, fluency and accuracy as they use French to respond to authentic texts and to discuss set topics. Students are required to read extensively in preparation for classroom presentations and discussions.

French Unit 8

Bcp; 2nd semester, 4hpw; prerequisite: French Unit 7

French 8 is designed to provide students who have successfully completed French 7, or its equivalent with the ability to consolidate and extend their knowledge of French in preparation for a period of In-country Study in France.

By the end of the unit, students are expected to demonstrate the linguistic skills and cultural awareness required to engage appropriately in a range of formal and informal discussions in social, professional and educational contexts. The classroom approach provides students with opportunities to further develop their vocabulary, fluency and accuracy as they use French to discuss set topics and to respond to authentic texts, television programs and films. Students are required to read extensively in preparation for classroom presentations and discussions.

German Language and Culture subjects

German Unit 1

Bcp; 1st semester, 6hpw; prerequisite: nil

German 1 is the first in a series of four units designed to provide students who have no prior knowledge of the German language with basic survival skills in German language and culture and the ability to undertake In-country Study in Germany.

By the end of the unit, students would be expected to have achieved ‘elementary proficiency’ and be able to satisfy immediate communication needs required in basic social interaction, using expressions and phrases they have learnt. The program allows for the development of listening, speaking, reading and writing skills, and an understanding of the sociocultural contexts in which the language is used. Students gain, in particular, an awareness of the background of German-speaking countries. Students also develop strategies for predicting the meaning of new expressions and anticipating ways of expressing new meanings.

The approach adopted is communicative and provides students with many opportunities to interact and use the language in various social and cultural contexts. Audiovisual equipment and computers will be used to facilitate learning.

German Unit 2

Bcp; 2nd semester, 6hpw; prerequisite: German Unit 1 or equivalent

German 2 is the second in a series of four units designed to provide students with no prior knowledge of the German language with basic survival skills in German language and culture and the ability to undertake In-country Study in Germany.

By the end of the unit, students would be expected to have achieved ‘minimum survival proficiency’ in speaking, listening, reading and writing and be able to satisfy immediate communication needs and minimum courtesy requirements required in basic social interaction. Students will also develop an understanding of the sociocultural contexts in which the language is used and further communication strategies.

The approach adopted is communicative and provides many opportunities for students to interact and use the language in a meaningful way in various social and cultural contexts. Audiovisual equipment and computers may be used to facilitate learning.
Subject descriptions

German Unit 3
8cp; 1st semester, 6hpw; prerequisite: German Unit 2, HSC German, or equivalent

German 3 is the third in a series of four units for students with no prior knowledge of the German language, or the first in a series of four units for students who have successfully completed HSC 2/3-unit German, or its equivalent. It provides students with basic survival skills in German language and culture and the ability to undertake In-country Study in Germany.

By the end of the unit, students would be expected to have achieved the communicative competence in speaking, listening, reading and writing skills to be able to satisfy all 'survival' needs and limited social needs. They would also be expected to have developed an awareness of the various social and cultural contexts in which the language is used. In this unit, students also develop the ability to understand the general content of magazine and newspaper articles.

The approach adopted is communicative and provides many opportunities for students to interact and use the language in various social and cultural contexts. Audiovisual equipment and computers will be used to facilitate learning.

German Unit 4
8cp; 2nd semester, 6hpw; prerequisite: German Unit 3 or equivalent

German 4 is the fourth in a series of four units for students with no prior knowledge of the German language, or the second in a series of four units for students who have successfully completed German 3, HSC 2/3-unit German, or its equivalent. It provides them with basic survival skills in German language and culture and the ability to undertake In-country Study in Germany.

By the end of the unit, students would be expected to have begun to develop the communicative skills required to satisfy limited routine social and work demands related to the situation covered. Students would also have developed an awareness of the various social and cultural contexts in which the language is used. Students learn to express opinions, discuss education, entertainment and travel, and develop the language skills and background knowledge required to find accommodation.

The approach adopted is communicative and provides many opportunities for students to interact and use the language in various social and cultural contexts. Audiovisual equipment and computers will be used to facilitate learning.

German Unit 5
8cp; 1st semester, 6hpw; prerequisite: German Unit 4 or equivalent

German 5 is the third in a series of four units designed to provide students who have successfully completed German 4, HSC 2/3-unit German, or its equivalent, with the ability to consolidate and extend their knowledge during a period of In-country Study in Germany.

By the end of the unit, students would be expected to have achieved the communicative competence required to satisfy routine social demands and limited work requirements in speaking, listening, reading and writing skills. They would have developed an awareness of the various social and cultural contexts in which the language is used. Students learn to communicate in German when comparing lifestyles, university life and education and to practice interview techniques in preparation for In-country Study.

The approach adopted is communicative and provides many opportunities for students to interact and use the language in a meaningful way in various social and cultural contexts. There are discussions and debates on set topics. Audiovisual equipment and computers will be used to facilitate learning.

German Unit 6
8cp; 2nd semester, 6hpw; prerequisite: German Unit 5 or equivalent

German 6 is the fourth in a series of four units designed to provide students who have successfully completed German 5, or its equivalent, with the ability to consolidate and extend their knowledge during a period of In-country Study in Germany.

By the end of the unit, students would be expected to have achieved the communicative competence required to speak the language with reasonable accuracy, and to be able to participate readily in limited formal and informal conversations on practical and social topics. Students would also be expected to be able to read and write with sufficient accuracy to meet a limited range of social needs and limited work needs. Language focuses on topics such as the economy, class and social stratification, gender roles, religion and beliefs, and literature and the arts.
The approach adopted is communicative and provides many opportunities for students to interact and use the language in a meaningful way in various social and cultural contexts. There are discussions and debates on set topics. Audiovisual equipment and computers will be used to facilitate learning.

German Unit 7

4cp; 1st semester, 4hpw; prerequisite: German Unit 6

German 7 is designed to provide students who have successfully completed German 6, or its equivalent with the ability to consolidate and extend their knowledge of the German language in preparation for a period of In-country Study in Germany.

By the end of the unit, students are expected to be able to communicate confidently and with a high level of accuracy in German in a wide range of formal and informal conversations, and to have comprehension skills which enable them to read a wide variety of authentic materials in German. They are expected to be able to read and write for academic and general purposes with sufficient accuracy to meet a wide range of social and academic needs.

The classroom approach provides students with opportunities to further develop their vocabulary, fluency and accuracy as they use German to respond to authentic texts and to discuss set topics. Students are required to read extensively in preparation for classroom presentations and discussions.

German Unit 8

4cp; 2nd semester, 4hpw; prerequisite: German Unit 7

German 8 is designed to provide students who have successfully completed German 7, or its equivalent with the ability to consolidate and extend their knowledge of German in preparation for a period of In-country Study in Germany.

By the end of the unit, students are expected to have achieved a high level of proficiency and speak the language with a high level of accuracy. They will be able to participate in a wide range of formal, informal and academic conversations on topics such as the economy, gender roles, social life, politics and current issues. They will also learn about academic writing and will develop academic skills such as note taking and essay writing in German. They will be expected to read and write academic and general texts with a high degree of accuracy to meet a wide range of social and academic needs.

The classroom approach provides students with opportunities to further develop their vocabulary, fluency and accuracy as they use German to discuss set topics and to respond to authentic texts, television programs and films. Students are required to read extensively in preparation for classroom presentations and discussions.

971311, 972311, 973311, 974311

Indonesian Language and Culture

Indonesian is offered to UTS students through arrangements with other universities. Students are placed in classes appropriate to their level of competence. The aim of the Indonesian language program is to give students a good working knowledge of modern written and spoken Indonesian and to enable them to express themselves in the language correctly and with reasonable clarity.

971431, 972431, 973431, 974431

Italian Language and Culture subjects

Italian Unit 1

8cp; 1st semester, 6hpw; prerequisite: nil

Italian 1 is the first in a series of four units designed to provide students who have no prior knowledge of the Italian language with basic survival skills in Italian language and culture and the ability to undertake In-country Study in Italy.

By the end of the unit, students would be expected to have achieved ‘minimum creative proficiency’ and be able to satisfy immediate communication needs required in basic social interaction, using expressions and phrases they have learnt. The program allows for the development of listening, speaking, reading and writing skills, and an understanding of the sociocultural contexts in which the language is used. In particular, students gain an awareness of the background of Italian-speaking countries. Students also develop strategies for predicting the meaning of new expressions and anticipating ways of expressing new meanings.

The approach adopted is communicative and provides students with many opportunities to interact and use the language in various social and cultural contexts. Audiovisual equipment and computers will be used to facilitate learning.
Italian Unit 2

8cp; 2nd semester, 6hpw; prerequisite: Italian Unit 1 or equivalent

Italian 2 is the second in a series of four units designed to provide students who have no prior knowledge of the Italian language with basic survival skills in Italian language and culture and the ability to undertake In-country Study in Italy.

By the end of the unit, students would be expected to have achieved 'basic transactional proficiency' in speaking, listening, reading and writing, and be able to satisfy immediate communication needs and minimum courtesy requirements for basic social interaction. Students will also develop an understanding of the sociocultural contexts in which the language is used and further communication strategies.

The approach adopted is communicative and provides many opportunities for students to interact and use the language in a meaningful way in various social and cultural contexts. Audiovisual equipment and computers will be used to facilitate learning.

Italian Unit 3

8cp; 1st semester, 6hpw; prerequisite: Italian Unit 2, HSC Italian, or equivalent

Italian 3 is the third in a series of four units for students with no prior knowledge of the Italian language, or the first in a series of four units for students who have successfully completed HSC 2/3-unit Italian, or its equivalent. It provides them with basic survival skills in Italian language and culture and the ability to undertake In-country Study in Italy.

By the end of the unit, students would be expected to have achieved the communicative competence required to satisfy routine social demands and limited work requirements in speaking, listening, reading and writing. They would also be expected to have developed an awareness of the various social and cultural contexts in which the language is used. In this unit, students also develop the ability to understand the general content of magazine and newspaper articles.

The approach adopted is communicative and provides many opportunities for students to interact and use the language in various social and cultural contexts. Audiovisual equipment and computers will be used to facilitate learning.

Italian Unit 4

8cp; 2nd semester, 6hpw; prerequisite: Italian Unit 3 or equivalent

Italian 4 is the fourth in a series of four units for students with no prior knowledge of Italian language, or the second in a series of four units for students who have successfully completed Italian 3, HSC 2/3-unit Italian, or its equivalent. It provides them with basic survival skills in Italian language and culture and the ability to undertake In-country Study in Italy.

By the end of the unit, students would be expected to have begun to develop the communication skills required to satisfy limited routine social and work demands related to the situation covered. Students would also have developed an awareness of the various social and cultural contexts in which the language is used. Students learn to express opinions, discuss education, entertainment and travel, and develop the language skills and background knowledge required e.g. to find accommodation.

The approach adopted is communicative and provides many opportunities for students to interact and use the language in various social and cultural contexts. Audiovisual equipment and computers will be used to facilitate learning.

Italian Unit 5

8cp; 1st semester, 6hpw; prerequisite: Italian Unit 4 or equivalent

Italian 5 is the third in a series of four units designed to provide students who have successfully completed Italian 4, HSC 2/3-unit Italian, or its equivalent, with the ability to consolidate and extend their knowledge of the Italian language and culture during a period of In-country Study in Italy.

By the end of the unit, students would be expected to have achieved the communicative competence required to satisfy routine social demands and limited work requirements in speaking, listening, reading and writing. They would also be expected to have developed an awareness of the various social and cultural contexts in which the language is used. Students learn to communicate in Italian while comparing lifestyles, university life and education and practice interview techniques in preparation for In-country Study.

The approach adopted is communicative and provides many opportunities for students to interact and use the language in a meaningful
way in various social and cultural contexts. There are discussions and debates on set topics. Audiovisual equipment and computers will be used to facilitate learning.

Italian Unit 6

8cp; 2nd semester, 6hpw; prerequisite: Italian Unit 5 or equivalent

Italian 6 is the fourth in a series of four units designed to provide students who have successfully completed Italian 5, or its equivalent with the ability to consolidate and extend their knowledge of the Italian language and culture during a period of In-country Study in Italy.

By the end of the unit, students would be expected to have achieved the communicative competence required to speak the language with sufficient accuracy for limited formal and informal conversations on practical and social topics. Students would also be expected to be able to read and write with sufficient accuracy to meet a limited range of social needs and limited work needs. Language focuses on topics such as the economy, class and social stratification, gender roles, religion and beliefs, literature and the arts.

The approach adopted is communicative and provides many opportunities for students to interact and use the language in a meaningful way in various social and cultural contexts. There are discussions and debates on set topics. Audiovisual equipment and computers will be used to facilitate learning.

Japanese Language and Culture subjects

Japanese Unit 1

8cp; 6hpw; prerequisite: nil

This is the first subject in the Japanese Language and Culture program. It is designed as the first step in providing students who have no prior knowledge of Japanese with the basic language survival skills and sociocultural awareness to enable them to undertake In-country Study in Japan.

While focusing primarily on the development of speaking and listening skills, this subject also provides a working knowledge of the hiragana and katakana scripts and approximately 50 kanji. Sociocultural aspects are integrated into the program as they relate to the need for students to learn to use the language appropriately in various social and cultural contexts.

Japanese Unit 2

8cp; 6hpw; prerequisite: Italian Unit 5 or equivalent

This is the second in a series of four units for students with no prior knowledge of the Japanese language. By the completion of this unit, the student should be able to demonstrate the language and sociocultural skills required to establish and maintain relationships in social or work-related spheres, and fulfil basic survival needs in a Japanese-speaking environment.

Emphasis is given to the development of speaking and listening skills, but students will also further develop their reading and writing skills. Besides kana, they will know approximately 150 kanji by the end of the unit. Sociocultural aspects are integrated into the program as they relate to the need for students to learn to use the language appropriately in various social and cultural contexts.

Japanese Unit 3

8cp; 6hpw; prerequisite: Japanese Unit 2 or HSC Japanese

Japanese 3 is the third in a series of four units for students with no prior knowledge of the Japanese language, or the first in a series of four units for students who have successfully completed HSC-level Japanese. By the end of the unit, students are expected to have achieved 'survival proficiency' in the use of the language, and be able to satisfy survival needs and limited social demands relating to topics and situations covered.

At the end of the subject, students are expected to have developed their listening, speaking, reading and writing skills to a level where they can communicate in everyday situations, and are able to demonstrate an awareness of the social implications of language and behaviour. It is expected that students will know approximately 250 kanji by the end of the unit.

Japanese Unit 4

8cp; 6hpw; prerequisite: Japanese Unit 3

Japanese 4 is the fourth in a series of four units for beginners. It is also the second in a series of four units for those who have successfully completed HSC-level Japanese, or its equivalent, and aim to further develop Japanese listening, speaking, reading and writing skills. By the end of the unit, students are expected to have achieved 'limited social proficiency', and be able to interact in limited social, study
and work contexts with Japanese speakers in Japan or Australia. They will also have learnt approximately 350 kanji.

Japanese Unit 5
8cp; 6hpw; prerequisite: Japanese Unit 4
Japanese 5 is the third in a series of four units in the post-HSC series, and is for those who have successfully completed either Japanese 4, or its equivalent, and aim to further develop listening, speaking, reading, writing and cultural skills. By the end of the unit, students are expected to have achieved 'limited social proficiency', and be able to satisfy routine social and limited work demands. The emphasis is on the development of the language and of the cultural sensitivity required in both formal and informal situations. By the end of the subject, students are expected to be able to read and write approximately 470 kanji.

Japanese Unit 6
8cp; 6hpw; prerequisite: Japanese Unit 5
Japanese 6 is the final subject in a series of four units in the post-HSC series and is for those who have successfully completed either Japanese 5, or its equivalent. By the end of this subject, students are expected to have achieved 'minimal vocational proficiency', and be able to speak the language with sufficient structural accuracy and vocabulary to participate effectively in many formal and informal conversations on practical, social and limited vocational topics. The emphasis is on the development of the language and of the cultural sensitivity required in both formal and informal situations. By the end of the subject, students should be able to read simple prose and write approximately 590 kanji.

971331, 972331, 973331, 974331
Malaysian Language and Culture
Malaysian is offered to UTS students through arrangements with other universities. Students are placed in classes appropriate to their level of competence. The aim of the Malaysian language program is to give students a good working knowledge of modern written and spoken Malaysian and to enable them to express themselves in the language correctly and with reasonable clarity.

971734, 972734, 973734, 974734
Russian
Russian is offered to UTS students through an arrangement with other universities. Students are placed in classes appropriate to their level of competence. The aim of the Russian language program is to give students a good working knowledge of modern written and spoken Russian and to enable them to express themselves in the language correctly and with reasonable clarity.

971501, 972501, 973501, 974501
Spanish Language and Culture subjects
Spanish Unit 1
8cp; 1st semester, 6hpw; prerequisite: nil
Spanish 1 is the first in a series of four units designed to provide students who have no prior knowledge of the Spanish language with basic survival skills in the language and culture, and the ability to undertake In-country Study in Latin America or Spain.
By the end of the subject, students would be expected to have achieved 'elementary proficiency' and be able to satisfy immediate communication needs required in basic social interaction, using expressions and phrases they have learnt. The program allows for the development of listening, speaking, reading and writing skills, and an understanding of the sociocultural contexts in which the language is used. Students gain, in particular, an awareness of the background of Hispanic countries. Students also develop strategies for predicting the meaning of new expressions and anticipating ways they might express new meanings.

Spanish 1 consists of 78 hours of classroom instruction. The approach adopted is communicative and provides students with many opportunities to interact and use the language in various social and cultural contexts. Audiovisual equipment and computers will be used to facilitate learning.

Spanish Unit 2
8cp; 2nd semester, 6hpw; prerequisite: Spanish Unit 1
Spanish 2 is the second in a series of four units designed to provide students who have no prior knowledge of the Spanish language with basic survival skills in the language and culture, and the ability to undertake In-country Study in Latin America or Spain.
By the end of the subject, students would be expected to have achieved 'minimum survival proficiency' in speaking, listening, reading and writing, and be able to satisfy immediate communication needs and minimum courtesy requirements in basic social interactions. Students will also develop an understanding of the sociocultural contexts in which the language is used and further communication strategies.
Spanish 2 consists of 78 hours of classroom instruction. The approach adopted is communicative and provides many opportunities for students to interact and use the language in various social and cultural contexts. Audiovisual equipment and computers will be used to facilitate learning.

Spanish Unit 3

8cp; 1st semester, 6hpw; prerequisite: Spanish Unit 2 or HSC Spanish

Spanish 3 is the third in a series of four units for students with no prior knowledge of the Spanish language, or the first in a series of four units for students who have successfully completed HSC-level Spanish, or its equivalent. It provides students with basic survival skills in the language and culture, and the ability to undertake In-country Study in Latin America or Spain.

By the end of the unit, students would be expected to have achieved a communicative competence in speaking, listening, reading and writing skills in order to be able to satisfy all 'survival' needs and limited social needs. They would also be expected to have developed an awareness of the various social and cultural contexts in which the language is used. In this unit, students also develop the ability to understand the general content of magazine and newspaper articles.

Spanish 3 consists of 78 hours of classroom instruction. The approach adopted is communicative and provides many opportunities for students to interact and use the language in various social and cultural contexts. Audiovisual equipment and computers will be used to facilitate learning.

Spanish Unit 4

8cp; 2nd semester, 6hpw; prerequisite: Spanish Unit 3

Spanish 4 is the fourth in a series of four units for students with no prior knowledge of the Spanish language, or the second in a series of four units for students who have successfully completed Spanish 3 and HSC-level Spanish, or its equivalent. It provides students with basic survival skills in the language and culture, and the ability to undertake In-country Study in Latin America or Spain.

By the end of the unit, students would be expected to have begun to develop the communication skills required to satisfy limited routine social and work demands. They would also be expected to have developed an awareness of the various social and cultural contexts in which the language is used. In this subject, students learn to express opinions, discuss education, entertainment and travel, and develop the language skills and background knowledge required e.g. to find accommodation.

Spanish 4 consists of 78 hours of classroom instruction. The approach adopted is communicative and provides many opportunities for students to interact and use the language in various social and cultural contexts. Audiovisual equipment and computers will be used to facilitate learning.

Spanish Unit 5

8cp; 1st semester, 6hpw; prerequisite: Spanish Unit 4

Spanish 5 is the third in a series of four units designed to provide students who have successfully completed Spanish 4 and HSC-level Spanish, or its equivalent with the ability to consolidate and extend their knowledge during a period of In-country Study in Latin America or Spain.

By the end of the unit, students would be expected to have achieved communicative competence in speaking, listening, reading and writing, and to be able to satisfy routine social demands and limited work requirements. They would have developed an awareness of the various social and cultural contexts in which the language is used. Students learn to communicate in Spanish to compare lifestyles, university life and education, and practise interview techniques in preparation for In-country Study.

Spanish 5 consists of 78 hours of classroom instruction. The approach adopted is communicative and provides many opportunities for students to interact and use the language in various social and cultural contexts. There are discussions and debates on set topics. Audiovisual equipment and computers will be used to facilitate learning.

Spanish Unit 6

8cp; 2nd semester, 6hpw; prerequisite: Spanish Unit 5

Spanish 6 is the fourth in a series of four units designed to provide students who have successfully completed Spanish 5 and HSC-level Spanish, or its equivalent with the ability to consolidate and extend their knowledge during a period of In-country Study in Latin America or Spain.

By the end of the unit, students would be expected to be able to speak the language with sufficient accuracy, and to participate in limited
formal and informal conversations on practical and social topics. Students would also be expected to be able to read and write with sufficient accuracy to meet a limited range of social and work needs. Language focuses on topics such as the economy, class and social stratification, gender roles, religion and beliefs, literature and the arts.

Spanish 6 consists of 78 hours of classroom instruction. The approach adopted is communicative and provides many opportunities for students to interact and use the language in various social and cultural contexts. There are discussions and debates on set topics. Audio-visual equipment and computers will be used to facilitate learning.

Spanish Unit 7
8cp; 1st semester, 6hpw; prerequisite: Spanish Unit 6

Spanish 7 is designed to provide students who have successfully completed Spanish 6, or its equivalent with the ability to consolidate and extend their knowledge during a period of In-country Study in Latin America or Spain. By the end of the unit students would be expected to be able to communicate confidently in Spanish within a wide range of everyday situations, and to have further improved their comprehension skills by reading a wide variety of authentic materials in Spanish. Students would also be expected to have extended their knowledge of today’s world-wide Hispanic society and culture and to have acquired the vocabulary and structures necessary to be able to discuss and write about the cultural context of texts with considerable accuracy. The approach provides students with opportunities to further develop their vocabulary, fluency and accuracy in speaking and writing as they use the language in response to authentic texts such as newspaper and magazine articles and television programs in Spanish. Students are required to read extensively during self-study periods in preparation for classroom presentations, debates and discussions.

971320, 972320, 973320, 974320

Thai

Thai is offered to UTS students through the language program offered jointly by the University of Sydney and Macquarie University. The program is designed to allow complete beginners in Thai to reach a survival level that will allow them to continue their studies in Thailand. If student numbers permit, classes will be available on UTS campuses.

976101

Chinese East Asia
8cp; 2nd semester, 4hpw

South China – Hong Kong, Taiwan and the Southern Chinese provinces of Fujian and Guangdong – is a region of global importance. It is a dynamo of economic growth for the East Asia region and one that has resulted from the economic integration of Hong Kong, Taiwan and South China, and which is now expanding to include East China. Yet its constituent parts have developed separately in different and often inimical political systems. As a result of all these factors, South China is likely to become a region of increasing importance, strategically and politically, as well as economically. This subject examines the development of Hong Kong, Taiwan and South China and their interaction. It is an introductory subject that requires no prior knowledge of the region or of any Chinese language.
976111

Contemporary China

8cp; 2nd semester, 4hpw

This subject examines the contours and dynamics of social, political and economic change in the People’s Republic of China since the death of Mao Zedong and the start of the reform era. A central theme is the emerging relationship between state and society in a state socialist system in the process of change and reform. It is an introductory subject that requires no prior knowledge of the People’s Republic of China or of any Chinese language.

976211

Contemporary Japan

8cp; 2nd semester, 4hpw

This subject provides an introduction to the dynamics of political, social and economic systems in modern Japan. Central themes are the causes and consequences of social change and continuity in the context of Japan’s emergence as an economic superpower. In the process, it offers a general introduction to Japan’s culture. This subject requires no prior knowledge of Japan or of Japanese.

976301

Contemporary South-East Asia

8cp; 2nd semester, 4hpw

This subject provides an introduction to the countries of Indonesia, Malaysia, Thailand and Vietnam. The themes of modernity and identity will be examined at a political-economic level and also at an individual level. Issues which will be explored include: migration patterns in the context of regional interrelationships; increasing urbanisation; legacies of colonialism; the commodification of culture and the growing impact of tourism; new creative forms in the visual, literary and performing arts; the beliefs about and behaviour of women in the region; and ways in which religion and social practice intersect.

976401

Contemporary Europe

8cp; 2nd semester, 4hpw

This subject is an introduction and an overview laying the groundwork for the study of contemporary Europe. It surveys present-day European Union institutions and sociopolitical developments and provides a comparative study of political and social developments in the countries of Western and Eastern Europe. It aims to provide students with an understanding of the historical background of present-day Europe and enable them to identify major contemporary policy issues in this region of the world.

976501

Contemporary Latin America

8cp; 2nd semester, 4hpw

Latin America has been a crucible for social, political and economic change in the 19th and 20th centuries. Intense struggles for nationhood, democracy, economic modernisation and secularisation have all resonated in the countries of Latin America. During the middle of the 20th century, Latin America’s primary concerns were focused on national self-determination, inward industrialisation and populist authoritarian efforts to legitimise elite rule. In the late 20th century, the emphasis shifted towards economic growth, internationalisation, and pressures to improve the capacity and accountability of governments. The subject aims to provide students with the historical background, cultural awareness and analytic skills to interpret everyday social, political and economic reality during their period of In-country Study. The subject requires no prior knowledge of Latin America or of Spanish.

977xxx

In-country Study 1

24cp; prerequisite: completion of relevant subjects appropriate to the student’s International Studies major.

In-country Study subjects are only available to students doing the Bachelor of Arts in International Studies.

As part of the International Studies combined degrees, students spend two semesters of In-country Study at a university or institution of higher education overseas. The location is determined by the student’s International Studies major.

In the International Studies Program, students focus on one of the following countries or majors: Argentina, Chile, China, France, Germany, Indonesia, Italy, Japan, Malaysia, Mexico, Russia, Spain and Thailand. The availability of the Russian major is currently being reviewed. There is also a Heritage Major that permits students with previous exposure to a language and culture to continue their study in countries such as Greece, Hong Kong, Korea, Poland, Taiwan and Vietnam.
Subject descriptions

Australia and the Asia–Pacific is only available as a major to international students. International students may access one of the other majors offered provided that the country they choose as their major is able to grant them a visa to study there. This would need to be determined prior to commencing subjects within the International Studies major. If a visa cannot be granted, then it will not be possible to undertake the chosen major.

978xxx
In-country Study 2
24cp; prerequisites: 977xxx In-country Study 1
As part of the International Studies combined degrees, students spend two semesters of In-country Study at a university or institution of higher education overseas. The location is determined by the student’s International Studies major.

The following majors are available in the International Studies program: Argentina, Australia and the Asia–Pacific Region, Chile, China, France, Germany, Indonesia, Italy, Japan, Malaysia, Mexico, Russia, Spain and Thailand.
ALPHABETICAL LIST OF SUBJECTS

Administrative Law 70617
Advanced Digital Systems 48451
Analogue and Digital Control 48560
Analytical Biochemistry 91326
Analytical Chemistry 1 65506
Analytical Chemistry 2 65409
Analytical Chemistry 3 65606
Anatomical Pathology 91354
Animal Ecophysiology 91363
Applied Clastic Basin Analysis 66653
Applied Palaeontology 66941
Aquatic Ecology 91121
Atoms, Photons and Orbits (Physics 3) 68311
Australian Biota 91309
Behavioural Sciences 91704
Biochemistry 1 91313
Biochemistry 2 91320
Biocomputing 91395
Biological Evidence 91141
Biological Hazards and Toxicology 69338
Bioreactors and Bioprocessing 91368
Biotechnology 91142
Capstone Project (6cp) 48006
Carbonates in Petroleum Exploration 66947
Cells, Genetics and Evolution 91101
Chemical Safety (Management) 69332
Chemical Safety and Legislation 65410
Chemistry 1A 65012
Chemistry 1C 65101
Chemistry 2A 65022
Chemistry 2C 65201
Chemistry and Pharmacology of Illicit Drugs 65741
Chinese Diagnostic System 1 99618
Chinese Diagnostic System 2 99621
Chinese East Asia 976101
Chinese Herbal Formulæ 99623
Chinese Herbal Practice 1 99594
Chinese Herbal Practice 2 99596
Chinese Language and Culture 97x111
Chinese Massage (Tuina) 99579
Chinese Medical Classics 99629
Circuit Analysis 48530
Classics of Chinese Herbal Medicine 99614
Clinic – Level 2 and Point Location 2 99619
Clinical Bacteriology 91338
Clinical Biochemistry 1 91344
Clinical Biochemistry 2 91345
Clinical Features of Disease 99584
Clinical Practice 1 99630
Clinical Practice 2 99631
Clinical Practicum 99627
Clinical Theory and Clinic – Level 3 99624
Clinical Theory and Clinic Level 1 99616
Coal Exploration and Mining Geology 66944
Coastal and Marine Ecology 91124
Coastal Environmental Assessments 66943
Coastal Resource Policy 98711
Comparative Social Change 50140
Complex Forensic Cases (Chemistry) 65743
Complex Forensic Cases (Law) 79991
Composites 67608
Computational Mathematics and Physics 33490
Computing and Mathematics for Science 33290
Computing for Groundwater Specialists 49550
Contaminated Site Management 66025
Contemporary China 976111
Contemporary Europe 976401
Contemporary Japan 976211
Contemporary Latin America 976501
Contemporary South-East Asia 976201
Convergent Margin Tectonics 66651
Coral Reef Ecosystems 91126
Corporate Law 70417
Corrosion and Degradation of Materials 67606
Criminal Law 70217
Crustal and Mantle Processes 66508
Cytopathology 91377
Data Acquisition and Distribution 48570
Data Analysis in Occupational Health and Safety 69325
Deformation Processes 66956
Disease States 99628
Earth Materials 66304
Earth Resources 66408
Earth Science 1 66101
Ecological Principles and Modelling 91112
Electromagnetics and Optics 68611
Electronics 68314
Electronics and Interfacing 88514
Electrotechnology and Data Analysis 68312
Energy Science and Technology 68412
Engineering Communication 48230
Engineering Economics and Finance 48250
Engineering for Sustainability 48210
Engineering Management 48260
Engineering Practice 1 48110
Engineering Practice 2 48130
Engineering Practice Preview 1 48121
Engineering Practice Preview 2 48141
Engineering Practice Review 1 48122
Engineering Practice Review 2 48142
Environmental and Quaternary Geology 66609
<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Chemistry</td>
<td>65621</td>
</tr>
<tr>
<td>Environmental Law and Science</td>
<td>79004</td>
</tr>
<tr>
<td>Environmental Management</td>
<td>91122</td>
</tr>
<tr>
<td>Equity and Trusts</td>
<td>70516</td>
</tr>
<tr>
<td>Eukaryotic Microbiology</td>
<td>91382</td>
</tr>
<tr>
<td>Evaluating Occupational Health and Safety</td>
<td></td>
</tr>
<tr>
<td>(Construction Industry)</td>
<td>69336</td>
</tr>
<tr>
<td>Experimental Design and Sampling</td>
<td>91110</td>
</tr>
<tr>
<td>Extractive Metallurgy</td>
<td>65962</td>
</tr>
<tr>
<td>Federal Constitutional Law</td>
<td>70616</td>
</tr>
<tr>
<td>Field Studies 1</td>
<td>66204</td>
</tr>
<tr>
<td>Fire and Explosion Investigation</td>
<td>65742</td>
</tr>
<tr>
<td>Fisheries Resources</td>
<td>91118</td>
</tr>
<tr>
<td>Fold Belts and Cratons</td>
<td>66305</td>
</tr>
<tr>
<td>Forensic Imaging</td>
<td>65341</td>
</tr>
<tr>
<td>Forensic Research Project</td>
<td>65856</td>
</tr>
<tr>
<td>Forensic Toxicology 1</td>
<td>65542</td>
</tr>
<tr>
<td>Forensic Toxicology 2</td>
<td>65642</td>
</tr>
<tr>
<td>Foundations of Helping and Caring</td>
<td>92157</td>
</tr>
<tr>
<td>Foundations of Physics</td>
<td>68101</td>
</tr>
<tr>
<td>Foundations of TCM</td>
<td>99502</td>
</tr>
<tr>
<td>French Language and Culture</td>
<td>97x411</td>
</tr>
<tr>
<td>Freshwater Ecology</td>
<td>91117</td>
</tr>
<tr>
<td>Functional Biology</td>
<td>91032</td>
</tr>
<tr>
<td>Geochemical Analysis Techniques and</td>
<td>66950</td>
</tr>
<tr>
<td>Applications</td>
<td></td>
</tr>
<tr>
<td>Geological and Structural Interpretation</td>
<td>66955</td>
</tr>
<tr>
<td>of Potential Field Data</td>
<td></td>
</tr>
<tr>
<td>Geological Mapping</td>
<td>66612</td>
</tr>
<tr>
<td>Geophysics</td>
<td>66510</td>
</tr>
<tr>
<td>German Language and Culture</td>
<td>97x421</td>
</tr>
<tr>
<td>Graduate Clinic Internship (CHM)</td>
<td>99597</td>
</tr>
<tr>
<td>Graduate Clinic Level 1 (CHM)</td>
<td>99632</td>
</tr>
<tr>
<td>Graduate Clinic Level 2 (CHM)</td>
<td>99615</td>
</tr>
<tr>
<td>Groundwater Computing</td>
<td>49554</td>
</tr>
<tr>
<td>Groundwater Geophysics</td>
<td>66016</td>
</tr>
<tr>
<td>Groundwater Modelling</td>
<td>49555</td>
</tr>
<tr>
<td>Groundwater Science Projects</td>
<td></td>
</tr>
<tr>
<td>(GD) F/T, P/T</td>
<td>66022, 66024</td>
</tr>
<tr>
<td>Groundwater Science Projects</td>
<td></td>
</tr>
<tr>
<td>(M) F/T, P/T</td>
<td>66021, 66023</td>
</tr>
<tr>
<td>Haematology 1</td>
<td>91355</td>
</tr>
<tr>
<td>Haematology 2</td>
<td>91358</td>
</tr>
<tr>
<td>Health Sciences 1</td>
<td>99563</td>
</tr>
<tr>
<td>Health Sciences 2</td>
<td>99570</td>
</tr>
<tr>
<td>History and Philosophy of TCM</td>
<td>99620</td>
</tr>
<tr>
<td>Honours (Biological and Biomedical Sciences)</td>
<td>91304</td>
</tr>
<tr>
<td>Honours (Biological and Biomedical Sciences) (2yrs)</td>
<td>91305</td>
</tr>
<tr>
<td>Honours (Chemistry)</td>
<td>65854</td>
</tr>
<tr>
<td>Honours (Environmental Science)</td>
<td>66855</td>
</tr>
<tr>
<td>Honours (Geoscience)</td>
<td>66854</td>
</tr>
<tr>
<td>Honours (Materials Science)</td>
<td>67854</td>
</tr>
<tr>
<td>Honours (Physics)</td>
<td>68854</td>
</tr>
<tr>
<td>Honours Project</td>
<td>99593</td>
</tr>
<tr>
<td>Human Factors/Ergonomic Design</td>
<td>69323</td>
</tr>
<tr>
<td>Hydrogeochemistry</td>
<td>66015</td>
</tr>
<tr>
<td>Hydrogeology</td>
<td>66014</td>
</tr>
<tr>
<td>Immunology 1</td>
<td>91351</td>
</tr>
<tr>
<td>Immunology 2</td>
<td>91359</td>
</tr>
<tr>
<td>In-country Study 1</td>
<td>977xxx</td>
</tr>
<tr>
<td>In-country Study 2</td>
<td>978xxx</td>
</tr>
<tr>
<td>Individual Project – Life Sciences</td>
<td>91399</td>
</tr>
<tr>
<td>Indonesian Language and Culture</td>
<td>97x311</td>
</tr>
<tr>
<td>Industrial Ceramics</td>
<td>67306</td>
</tr>
<tr>
<td>Industrial Metallurgy</td>
<td>67408</td>
</tr>
<tr>
<td>Informatics</td>
<td>48220</td>
</tr>
<tr>
<td>Inorganic Chemistry 1 (Transition Metal</td>
<td>65411</td>
</tr>
<tr>
<td>Chemistry)</td>
<td></td>
</tr>
<tr>
<td>Interpretation of 2D and 3D Seismic Reflection Data</td>
<td>66953</td>
</tr>
<tr>
<td>Introduction to Chinese Herbal Medicine</td>
<td>99567</td>
</tr>
<tr>
<td>Introduction to Geostatistical Data Analysis</td>
<td>66957</td>
</tr>
<tr>
<td>Introduction to Materials</td>
<td>67101</td>
</tr>
<tr>
<td>Introduction to Phase Diagrams and Thermobarometry, An</td>
<td>66952</td>
</tr>
<tr>
<td>Introduction to TCM</td>
<td>99560</td>
</tr>
<tr>
<td>introductory Digital Systems</td>
<td>48441</td>
</tr>
<tr>
<td>Italian Language and Culture</td>
<td>97x411</td>
</tr>
<tr>
<td>Japanese Language and Culture</td>
<td>97x211</td>
</tr>
<tr>
<td>Landscape Design and Plant Culture</td>
<td>91247</td>
</tr>
<tr>
<td>Law of Contract</td>
<td>70211</td>
</tr>
<tr>
<td>Law of Evidence</td>
<td>71216</td>
</tr>
<tr>
<td>Law of Tort</td>
<td>70311</td>
</tr>
<tr>
<td>Legal Aspects of Occupational Health and</td>
<td>69342</td>
</tr>
<tr>
<td>Safety</td>
<td></td>
</tr>
<tr>
<td>Legal Process and History</td>
<td>70113</td>
</tr>
<tr>
<td>Legal Research</td>
<td>70105</td>
</tr>
<tr>
<td>Malaysian Language and Culture</td>
<td>97x331</td>
</tr>
<tr>
<td>Mapping and Remote Sensing</td>
<td>91120</td>
</tr>
<tr>
<td>Mathematical Modelling 1</td>
<td>33130</td>
</tr>
<tr>
<td>Mathematical Modelling 2</td>
<td>33230</td>
</tr>
<tr>
<td>Mathematical Modelling for Science</td>
<td>33190</td>
</tr>
<tr>
<td>Mathematics 1 (Life Sciences)</td>
<td>33101</td>
</tr>
<tr>
<td>Mathematics and Scientific Software</td>
<td>33390</td>
</tr>
<tr>
<td>Mechanical Properties of Materials</td>
<td>67303</td>
</tr>
<tr>
<td>Medical Devices and Diagnostics</td>
<td>91705</td>
</tr>
<tr>
<td>Medical Science 1</td>
<td>91701</td>
</tr>
<tr>
<td>Medical Science 2</td>
<td>91702</td>
</tr>
<tr>
<td>Microbiology 1</td>
<td>91314</td>
</tr>
<tr>
<td>Microbiology 2</td>
<td>91330</td>
</tr>
<tr>
<td>Microbiology 3</td>
<td>91331</td>
</tr>
<tr>
<td>Microsystems and Advanced Treatment Techniques</td>
<td>99626</td>
</tr>
<tr>
<td>Molecular Biology 1</td>
<td>91332</td>
</tr>
<tr>
<td>Molecular Biology 2</td>
<td>91335</td>
</tr>
<tr>
<td>Mountain Ecology</td>
<td>91371</td>
</tr>
<tr>
<td>Neuroscience</td>
<td>91706</td>
</tr>
<tr>
<td>Occupational Hazard Analysis</td>
<td>69312</td>
</tr>
<tr>
<td>Occupational Health and Safety in Society</td>
<td>69311</td>
</tr>
<tr>
<td>Occupational Health and Safety Management</td>
<td>69345</td>
</tr>
<tr>
<td>Course</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Occupational Health and Safety Project</td>
<td>69351</td>
</tr>
<tr>
<td>Open Space Management</td>
<td>91245</td>
</tr>
<tr>
<td>Organic Chemistry 1</td>
<td>65202</td>
</tr>
<tr>
<td>Organic Chemistry 2 (Structure Elucidation and Synthesis)</td>
<td>65508</td>
</tr>
<tr>
<td>Palaeobiology Part I</td>
<td>66942</td>
</tr>
<tr>
<td>Palaeobiology Part II</td>
<td>66949</td>
</tr>
<tr>
<td>Pathophysiology A</td>
<td>99539</td>
</tr>
<tr>
<td>People and the Physical Environment</td>
<td>69335</td>
</tr>
<tr>
<td>Personal Property</td>
<td>70318</td>
</tr>
<tr>
<td>Pharmacology 1</td>
<td>91707</td>
</tr>
<tr>
<td>Pharmacology 2</td>
<td>91709</td>
</tr>
<tr>
<td>Pharmacology of Traditional Chinese Medicine</td>
<td>99622</td>
</tr>
<tr>
<td>Physical Aspects of Nature</td>
<td>68041</td>
</tr>
<tr>
<td>Physical Chemistry 1</td>
<td>66307</td>
</tr>
<tr>
<td>Physical Chemistry 2</td>
<td>65607</td>
</tr>
<tr>
<td>Physical Evidence 1</td>
<td>65541</td>
</tr>
<tr>
<td>Physical Evidence 2</td>
<td>65641</td>
</tr>
<tr>
<td>Physical Metallurgy</td>
<td>67304</td>
</tr>
<tr>
<td>Physical Properties of Materials</td>
<td>67407</td>
</tr>
<tr>
<td>Physics in Action (Physics 2)</td>
<td>68201</td>
</tr>
<tr>
<td>Physiological Systems</td>
<td>91703</td>
</tr>
<tr>
<td>Physiology of Qi, The</td>
<td>99564</td>
</tr>
<tr>
<td>Plant Biotechnology</td>
<td>91218</td>
</tr>
<tr>
<td>Plant Genetics and Breeding</td>
<td>91249</td>
</tr>
<tr>
<td>Plant Pathology</td>
<td>91237</td>
</tr>
<tr>
<td>Plant Physiology</td>
<td>91270</td>
</tr>
<tr>
<td>Plant Production and Growth Media</td>
<td>91233</td>
</tr>
<tr>
<td>Plant Production Systems</td>
<td>91248</td>
</tr>
<tr>
<td>Plant Structure, Function and Culture</td>
<td>91246</td>
</tr>
<tr>
<td>Plants in the Landscape</td>
<td>91250</td>
</tr>
<tr>
<td>Point Location 1</td>
<td>99617</td>
</tr>
<tr>
<td>Pollution Assessment</td>
<td>91111</td>
</tr>
<tr>
<td>Pollution Ecology</td>
<td>91113</td>
</tr>
<tr>
<td>Polymer Science</td>
<td>67305</td>
</tr>
<tr>
<td>Polymer Technology</td>
<td>67409</td>
</tr>
<tr>
<td>Power Electronics</td>
<td>48561</td>
</tr>
<tr>
<td>Electrical Energy Technology</td>
<td>48550</td>
</tr>
<tr>
<td>Practice and Procedure</td>
<td>71005</td>
</tr>
<tr>
<td>Practice Management</td>
<td>99591</td>
</tr>
<tr>
<td>Principles of Chinese Herbal Medicine</td>
<td>99599</td>
</tr>
<tr>
<td>Principles of Chinese Herbal Prescription</td>
<td>99612</td>
</tr>
<tr>
<td>Principles of Forensic Science</td>
<td>65241</td>
</tr>
<tr>
<td>Principles of Pharmcology in Chinese Medicine</td>
<td>99613</td>
</tr>
<tr>
<td>Processing of Seismic Reflection and Ground Penetrating Radar Data</td>
<td>66954</td>
</tr>
<tr>
<td>Professional Scientific Practice A</td>
<td>60811</td>
</tr>
<tr>
<td>Professional Scientific Practice B</td>
<td>60812</td>
</tr>
<tr>
<td>Psychophysiology</td>
<td>91708</td>
</tr>
<tr>
<td>Quantum and Solid-state Physics</td>
<td>68511</td>
</tr>
<tr>
<td>Real Property</td>
<td>70317</td>
</tr>
<tr>
<td>Remedies</td>
<td>71116</td>
</tr>
<tr>
<td>Research Methods</td>
<td>99625</td>
</tr>
<tr>
<td>Research Methods in Applied Physics</td>
<td>68512</td>
</tr>
<tr>
<td>Research Proposal (Occupational Health and Safety)</td>
<td>69353</td>
</tr>
<tr>
<td>Risk Assessment and Management</td>
<td>98708</td>
</tr>
<tr>
<td>Risk Management</td>
<td>69341</td>
</tr>
<tr>
<td>Russian</td>
<td>97x734</td>
</tr>
<tr>
<td>Semi-Arid Ecology</td>
<td>91370</td>
</tr>
<tr>
<td>Signals and Systems</td>
<td>48540</td>
</tr>
<tr>
<td>Software Development</td>
<td>48430</td>
</tr>
<tr>
<td>Spanish Language and Culture</td>
<td>97x501</td>
</tr>
<tr>
<td>Special Reading Assignment – Life Sciences</td>
<td>91398</td>
</tr>
<tr>
<td>Special Topics in TCM (Intermodal and Professional)</td>
<td>99590</td>
</tr>
<tr>
<td>Statistical Design and Analysis</td>
<td>33106</td>
</tr>
<tr>
<td>Surface Hydrology and Groundwater</td>
<td>49551</td>
</tr>
<tr>
<td>Surficial Processes and Products</td>
<td>66409</td>
</tr>
<tr>
<td>Technical Ceramics</td>
<td>67506</td>
</tr>
<tr>
<td>Technology Assessment</td>
<td>48270</td>
</tr>
<tr>
<td>Tectonics and Surface Dynamics</td>
<td>66509</td>
</tr>
<tr>
<td>Terrestrial Ecosystem</td>
<td>91119</td>
</tr>
<tr>
<td>Thai</td>
<td>97x320</td>
</tr>
<tr>
<td>Toxicity Assessment</td>
<td>91114</td>
</tr>
<tr>
<td>Transfusion Science</td>
<td>91340</td>
</tr>
<tr>
<td>Uncertainties and Risks in Engineering</td>
<td>48240</td>
</tr>
<tr>
<td>Uses of Australian Plants</td>
<td>91234</td>
</tr>
<tr>
<td>Vibrations, Quanta and Nucleons (Physics 4)</td>
<td>68411</td>
</tr>
<tr>
<td>Wildlife Ecology</td>
<td>91116</td>
</tr>
</tbody>
</table>
BOARDS AND COMMITTEES

FACULTY BOARD IN SCIENCE

Ex officio members
Dean of the Faculty
Professor A R Moon (Chair)
Associate Dean (Coursework Programs)
Associate Professor R T Buckney
Associate Dean (Research)
Professor E C Leitch
Faculty Administrator
Vacant
Faculty Technical Manager
Mr D C Edwards
Head, Department of Applied Physics
Mrs S W Hogg
Head, Department of Cell and Molecular Biology
Associate Professor A A Piper
Head, Department of Chemistry, Materials and Forensic Science
Professor M A Wilson
Head, Department of Environmental Sciences
Associate Professor C G Skilbeck
Head, Department of Health Sciences
Associate Professor P F Miller

Professors
Professor A R Craig
Professor D Eamus
Professor A M Johnson
Professor R L Raison
Professor G B Smith

Nominated members
Associate Professor H T Nguyen
Faculty of Engineering
Dr T N Langtry
Faculty of Information Technology
Ms C Garman
Faculty of Nursing, Midwifery and Health
Vacant
Institute for Interactive Media and Learning
Ms S Scholfield
University Library

Elected members

Academic staff
Dr G R Anstis
Associate Professor B Ben-Nissan
Dr D J Booth
Associate Professor K R Brown
Dr G Caprarelli
Dr L F DeFilippis
Ms D Edwards
Dr E Frankel
Associate Professor L K Holley
Dr J R Kalman
Associate Professor L Kirkup
Associate Professor P F Logan
Dr G M Nicholson
Ms A Pulkownik
Dr P J Ralph
Associate Professor C Rogers
Dr A M Simpson
Dr J C Swann
Dr J Tarran
Ms R I Ward
Ms J R Wyndham
Mr C Zaslawski

Support staff
Mr A J Barnes
Mr J-P Guerbois
Dr M Lake
Mr J Phillips
Ms N Richardson
Mr G Stockton
Ms C Zappia

Student members
Vacant

Appointed member
Professor M J Knight
COURSE ADVISORY COMMITTEES

Aim of the Course Advisory Committees
The Course Advisory Committees are Faculty-based committees whose aim is to provide a link between the Faculty, its Departments, professional bodies, industry, commerce and graduates. It is anticipated that these committees will assist the Faculty by offering advice on relevance and appropriateness of the Faculty’s courses and alert the Faculty to current and future trends in industry and in the professions. Members of these committees provide advice and counsel to the Faculty for a variety of purposes, including Faculty Developmental Reviews, reviews by AVCC standards panels and accreditation of courses by professional associations.

Composition of the Course Advisory Committees
Course Advisory Committees in the Faculty of Science usually have a majority of members external to the Faculty, normally including the following:
• a Chairperson external to the University who is eminent in the field
• the Dean of the Faculty
• the Head of the relevant Department
• one or more staff members of the Department
• external members from business and/or industry, professional associations and recent graduates of the Faculty.

Terms of Reference for the Course Advisory Committees
• To consider and make recommendations to the Dean on any matters referred to it by the Vice-Chancellor, Faculty Board, the Dean, Associate Deans or the Head of Department.
• To examine course planning documentation for the review of an existing course as well as new courses planned for introduction by the Department (or multidisciplinary group). The committee must meet at least once prior to the course accreditation documentation being presented to Faculty Board. The committee should examine and comment upon the proposals. This need not necessarily involve a detailed look at the curriculum, but the committee could consider matters such as objectives, balance and appropriateness of the proposed student outcomes. Minutes of the meetings of the advisory committee should be forwarded with a letter from the Chair and incorporated in the documentation submitted to Faculty Board.

In addition, advisory committees are expected to report on the following:
• the Department’s place in the profession(s)
• future developments within the Department and potential impact of strategic plans on the Faculty
• adequacy of resources supplied by the University to the Department (needs versus supply)
• value, nature and scope of the professional experience component (if any) of the Department’s courses
• admissions and enrolment policies and practice of the Department
• graduation rates in the Department
• any other matters as appropriate.

In the case of a multidisciplinary course, the terms of reference are to be adapted to refer to the course’s impact on the profession(s), the Faculty’s strategic plan, resources, policies, admission and enrolment practices, graduation rates and any other matters as deemed appropriate.
Course Advisory Committee in Applied Chemistry – Forensic Science

Internal members
Professor A R Moon
Dean, Faculty of Science
Associate Professor R T Buckney
Associate Dean (Coursework Programs)
Professor M A Wilson
Head, Department of Chemistry, Materials and Forensic Science
Dr C Roux
Course Director – Forensic Science
Department of Chemistry, Materials and Forensic Science

External members
Mr A E Hodda
Deputy Director, Division of Analytical Laboratories, The Institute of Clinical Pathology & Medical Research (ICPMR)
Dr C J Lennard
Director, Scientific Unit, Forensic Services, Australian Federal Police
Dr M A Raymond
Director, Forensic Services Group, New South Wales Police Services
Dr J Robertson
Assistant Secretary, Forensic Sciences Division, Australian Federal Police
Dr A Ross
Director, National Institute of Forensic Science
Mr Z Skopec
Director, Australian Forensic Drug Laboratory (AFDL)

Course Advisory Committee in Cell and Molecular Biology

Internal members
Professor A R Moon
Dean, Faculty of Science
Associate Professor R T Buckney
Associate Dean (Coursework Programs)
Associate Professor A A Piper
Head of Department

External members
Dr C Bunn
Principal Research Scientist, Biotech Australia

Associate Professor L Burnett
Director, Pacific Laboratory Medicine Services
Northern Sydney Area Health Service
Mr L Chia
Regional Customer Support Manager, Abbott Diagnostics Division
Dr A Field
Deputy Director and Senior Staff Specialist, Department of Anatomical Pathology, St Vincent’s Hospital
Associate Professor R Flower
Scientific Head of Transfusion, Department of Haematology and Transfusion Services, Royal North Shore Hospital
Dr J Isbister
Head, Department of Haematology, Royal North Shore Hospital
Professor M Meerkin
Managing Pathologist, Sugerman's Pathology Pty Ltd
Dr P Molloy
Research Scientist, CSIRO Division of Biomolecular Engineering
Dr R Pritchard
Head, Department of Microbiology, Royal North Shore Hospital
Dr V Witey
Principal Scientist (Biochemical Genetics), NSW Newborn Screening Program, New Children's Hospital

Course Advisory Committee in Chemistry

Internal members
Professor A R Moon
Dean, Faculty of Science
Associate Professor R T Buckney
Associate Dean (Coursework Programs)
Professor M A Wilson
Head, Department of Chemistry, Materials and Forensic Science
Associate Professor A T Baker
Dr J R Kalman
Course Director, Chemistry
Course Advisory Committee in Earth and Environmental Science

Internal members
Professor A R Moon
Dean, Faculty of Science
Associate Professor R T Buckney
Associate Dean (Coursework Programs)
Associate Professor C G Skilbeck
Head, Department of Environmental Sciences

External members
Dr A S Andrew, Principal Research Scientist
CSIRO, Division of Petroleum Resources
Dr A R Collins
Consultant
Mr L Gilligan
Assistant Director, Minerals
Department of Mineral Resources
Dr J Hunt
Senior Project Manager, Environment
ADI Limited, Major Projects Group
Mr R N Lees
Managing Director,
Michelago Resources N L
Mr M Smith
General Manager, Exploration,
Austpac Gold N L

Course Advisory Committee in Health Sciences

Internal members
Professor A R Moon
Dean, Faculty of Science
Associate Professor R T Buckney
Associate Dean (Coursework Programs)
Associate Professor P Miller
Head of Department

External members
Ms C Berle
Traditional Acupuncturist,
Chair, National Acupuncture Branch,
Australian Natural Therapists Association
Associate Professor J Duke
Faculty of Nursing, Royal Melbourne
Institute of Technology
Ms V Ibbotson
Clinical Nurse Consultant,
HIV/Infection Control, Department of Microbiology, Royal North Shore Hospital
Dr L Oliver
Chief Physicist, Department of Clinical Oncology, Royal North Shore Hospital
Dr K Watson
Senior Lecturer, Acupuncture Course Coordinator, Victoria University of Technology

Course Advisory Committee in Materials Science

Internal members
Professor A R Moon
Dean, Faculty of Science
Associate Professor R T Buckney
Associate Dean (Coursework Programs)
Professor M A Wilson
Head, Department of Chemistry, Materials and Forensic Science
Associate Professor A Ray

External members
Dr P Bryant
Thomson Marconi Sonar Pty Ltd
Mr J Byrnes
Consultant
Dr R Grant (Chair)
Development Chemist, Dow Corning Australia Pty Ltd
Mr I Johnson
Marketing Development Manager, ICI
Ms J Liston
Principal Packaging Technologist, Unifoods
Dr D Taylor
Managing Director, Taylor Ceramic Engineering

Course Advisory Committee in Occupational Health and Safety

Internal members
Professor A R Moon
Dean, Faculty of Science
Associate Professor R T Buckney
Associate Dean (Coursework Programs)
Associate Professor P Miller
Head, Department of Health Sciences
Dr D Cobbin
Senior Lecturer

External members
Mr G Douglas
Coordinator, OH&S Education Unit, Workcover Authority of NSW
Dr B Emerson
Member Federal Safety Education Committee, Safety Institute of Australia
Mrs C Kellehear
Senior Occupational Health Nurse Adviser, Workcover Authority of NSW
Ms S Kidziak
Principal Consultant Occupational Health, Safety and Environment, Chamber of Manufacturers of NSW
Ms D Nalty
Rehabilitation Coordinator, Catholic Schools Office

Course Advisory Committee in Physics

Internal members
Professor A R Moon
Dean, Faculty of Science
Associate Professor R T Buckney
Associate Dean (Coursework Programs)
Ms S W Hogg
Head of Department
Professor G B Smith
Professor of Applied Physics

External members
Mr N Crothers
Technical Development Manager, Australian Consumers' Association
Mr B Hutton
Head, Diagnostic Physics Group, Department of Nuclear Medicine, Westmead Hospital
Mr C J Paddison
Production Manager, JDS Uniphase Pty Ltd
Professor A Samarin, FTS
Consultant
Dr M Swain
Senior Principal Research Officer, CSIRO Division of Applied Physics
Dr J Warner
Fund Manager, First State Managed Investments
Professor of Physics and Dean of Science
A R Moon, BSc, PhD (Melb), FAIP

Professor of Geology and Associate Dean (Research)
E C Letch, MSc (Auck), PhD (UNE), FGS

Associate Professor and Associate Dean (Coursework Programs)
R T Buckney, BSc (Hons), PhD (Tas), MAIBiol

Executive Administrative Assistant to the Dean
C A Crane

Executive Administrative Assistant to the Associate Dean (Coursework Programs)
G L Angus, BBus (UTS)

Executive Administrative Assistant to the Associate Dean (Research)
L Bantermalis

Faculty Administrator
Vacant

Administrative Officers, Coursework Programs
B J Kitto, BA (Macq)
D A R Tudge, Dip HRM (TAFE)

Administrative Officer, Research
R D Seneviratne

Publications and Promotions Officer
J P Kuster, BCom (Bond)

Administrative Assistant
Vacant

Microstructural Analysis Unit
Director
M Phillips, BSc (UNSW), PhD (UTS), GAIP

Research Fellow
M Stevens-Kalceff, BSc (ANU), PhD (UNSW), MAIP

Scientific Officer, X-ray Facility
M Berkhan, BAppSc (UTS)

Scientific Officer, EM Facility
R Wuhrer, BAppSc (UTS)

Scientific Officer
K E McBean, BAppSc (Hons) (Tas)

Faculty technical staff
Faculty Technical Manager
D Edwards, E&C Cert

Project Engineer
R W Peters, DipTech (Mech Eng), BE (NSWIT)

Services/Stores Officer (St Leonards)
E Soliman

Faculty Information Technology staff
Faculty Information Technology Manager
A C Air, BAppSc (UTS)

Information Technology Officer
J Tang

Mechanical Workshop
Manager
C Lidster

Senior Laboratory Craftspersons
J Edgington
P J Fanos

Electronic Workshop
Senior Technical Officer (City)
A Wong

Senior Technical Officer (St Leonards)
J J Stafford

Department of Applied Physics
Senior Lecturer and Head of Department
S W Hogg, BSc (UWA), MAppSc (NSWIT), MAIP

Professor of Applied Physics
G B Smith, BSc (UNE), PhD (Monash), FAIP

Professor of Physics
A R Moon, BSc, PhD (Melb), FAIP

Associate Professors
L Kirkup, BSc (Sheff), MSc (Lond), PhD (Pais), MInstP, CPhys, MAIP
P F Logan, MSc (Syd), PhD (ANU), GradDipEdStud (ACAE), MInstP

Senior Lecturers
G R Anstis, BSc (Monash), PhD (Adel), MAIP
M Braun, BSc (Melb), MAppSc (QIT), PhD (Flin), MACPSEM, MIEEE, MIPEM
D C Green, BSc (Q'ld), PhD (Syd), MAIP
W Kalceff, BSc (Syd), PhD (UNSW), DipEd (Syd Teach Coll), MAIP
K McGuffie, BSc (Edin), PhD (Liv), MAIP, GAICD

Lecturers
J Schulte, MSc (Darmstadt), DSc (Oldenburg)
P Swift, BSc (Tas), PhD (Syd)

Research Fellows
F Jahan, BSc MSc (Rajsh), PhD (Brun)
A V Radchik, BSc, PhD (Odessa)
A J Reuben, BA (Syd), MAppSc, PhD (UTS)
Adjunct Professor
R W Cheary, BSc, PhD (Aston)

Honorary Associates
E P A Sullivan, MSc, PhD (Syd), MAIP
R L S Woolcott, BSc, PhD (Syd), MAIP

Research Associate
J Franklin, BSc (ANU)

Research Assistants
A Searle
W Yan

Department Administrative Assistant
E Couttie

Senior Technical Officers
G McCreedie
G Stockton, BAppSc (NSWIT), DipEd (KCAE)

Technical Officer
N Maharaj, BEd (UNE), DipEd (USP – Fiji)

Technical and Computing Support Officer
M T Smith, BAppSc (UTS)

Laboratory Cleaner
C Withycombe

Department of Cell and Molecular Biology

Associate Professor and Head of Department
A A Piper, BSc (Hons) (Monash), DPhil (Oxf)

Professor of Immunology
R L Raison, BSc (Syd), PhD (Monash), FAIBiol

Professor of Microbiology
A M Johnson, BAppSc (SAIT), MEdMgmt, PhD (Flin), MA (Hons), DSc (W’gong), FASM, FAIBiol

Associate Professors
K W Broady, BSc (Hons), PhD (UNSW), MASM
J T Ellis, BSc (Hons) (Reading), PhD (Liv)

Senior Lecturers
K Cordatos, BSc, DipEd (Syd), MEd (UNE), GradDipTertEd (UNSW), CT (ASC), CFIAC
M W Davey, BSc (Q’ld), PhD (ANU)
A M George, MSc, PhD (Syd)
L F Gibson, BSc (Hons) (Edin), PhD (Melb), FASM, MAIBiol
A D Kidman, BSc (Syd), MSc (UNSW), PhD (Hawaii), MAPsS
R L Orwell, BSc, PhD (UNSW)
A M Simpson, BSc (Hons), PhD (Syd)
N C Smith, BSc (Hons), PhD (ANU)
J C Swann, BSc, PhD (Adel)

Lecturers
L F Chew, MSc (UNSW)
R Shepherd, BSc (Hons) (Lond), MSc (Lond), PhD (CNAAn)
T Sztynda, MSc, PhD (Melb), MASEP, MANZPSS, MMSA
N B Woodland, BSc (UNE)

Adjunct Professors
J Isbister, BSc (Med) (Hons), MB BS Hons (UNSW), FRACP, FRCPA
M Meerkin, BSc (Melb), MB BS (Monash), FRCPA, FAAACB, FACB

Honorary Associates
G Grohmann, BSc (Hons) (UNSW), PhD (Syd)
R Munro, MB BS (Syd), MRCP, FRCPath, FRCPA, DpBact, FASM
K Robinson, BSc (Hons), PhD (Witw)
J Walker, MSc, PhD (Syd)

Department Administrative Assistant
M Leung

Laboratory Managers
W Booth, BSc (Q’ld), MAppSc (QUT), PhD (Syd) – Biochemistry
J Phillips, BSc (UNSW), MASM, MAIBiol

Senior Technical Officer
J Khoury, BAppSc (NSWIT), MASM, MAIBiol

Technical Officers
C Akaratos, BSc (Syd)
T Baragith
L Kwon, BSc (UNSW)
V Taylor-Perkins, BioTechPathCert (TAFE)
J Thorpe
Z Winiarski, BAppSc (UJ, Krakow), MAppSc (UTS)

Laboratory Cleaner
O Petroff

Immunobiology Unit

Professor and Head of Unit
R L Raison, BSc (Syd), PhD (Monash), FAIBiol

Associate Professor
K W Broady, BSc (Hons), PhD (UNSW), MASM

Senior Lecturer
N C Smith, BSc (Hons), PhD (ANU)

Technical Officer and Laboratory Manager
R C Gorman, BSc (Hons) (UNSW)

Senior Research Associate
A Tseng, BSc (Portland), MAppSc, PhD (UNSW)
Research Associates
R Dunn, BSc (Hons) (Cape Town), MSc (Natal), PhD (Syd)
Y Husaini, BSc (Hons), MSc, PhD (Ban)

Research Assistants
S D Adams, BSc (Hons) (UCT)
D Jones, BSc (Syd)
S J Lemke, BSc (Hons) (W'gong)
J Moses, BSc (Hons) (UNSW)
M Padula, BSc (Hons) (Macq)
S Sekulowski, BSc (Hons) (Lond)

Molecular Parasitology Unit
Professor and Head of Unit
A M Johnson, BAppSc (SAlT), MEdMgmt, PhD (Flin), MA (Hons), DSc (W'gong) FASM, FAIBiol

Associate Professors
K W Broady, BSc (Hons), PhD (UNSW), MASM
J T Ellis, BSc (Reading), PhD (Liv)
A A Piper, BSc (Hons) (Monash), DPhil (Oxf)

Senior Lecturers
C Conn, BSc, PhD (Melb)
M W Davey, BSc (Q'ld), PhD (ANU)
D A Morrison, BSc, PhD (Syd), MAIBiol
N C Smith, BSc (Hons), PhD (ANU)

Technical Officer and Laboratory Manager
M Johnson, BAppSc (UTS)

Postdoctoral Fellows
N Beebe, BSc, DipClinBiochem (Griff), PhD (Q'ld)
S Belli, PhD (Monash)
K Miller, BSc (Hons), PhD (ANU)

Research Assistant
C Ryce, BSc (UNSW)

Molecular Genetics Unit
Associate Professor
A A Piper, BSc (Hons) (Monash), DPhil (Oxf)

Senior Lecturers
M W Davey, BSc (Q'ld), PhD (ANU)
A M George, MSc, PhD (Syd)
A M Simpson, BSc (Hons), PhD (Syd)

Research Assistant
M Comacho, BSc (UC San Diego)

Health Psychology Unit
Senior Lecturer and Head of Unit
A D Kidman, BSc (Syd), MSc (UNSW), PhD (Hawaii), MAPsS

Administrative Officer
J Harrop, RN Psych

Administrative Assistant
V Usher

Research Officers
S Edelman, BSc (Monash), DipEd, MA Psych (Syd)
B Goodenough, BSc (Hons) (Psych), PhD (UNSW)
K Pauncz, BA (Hons) (Psych) (UNSW)

Department of Chemistry, Materials and Forensic Science
Professor of Chemistry and Head of Department
M A Wilson, PhD, DSc (Auck), CChem, FRACI

Associate Professors
A T Baker, BSc (Hons), PhD (UNSW), CChem, FRACI
B Ben-Nissan, BSc (ITU), MSc, PhD (UNSW), MIMMA
R W Jones, BSc, DipEd (Melb), PhD (Cantab), CChem, MRACI
A S Ray, BSc (Hons), MSc (Calc), PhD (UNSW), MIMMA
W Stern, BSc, PhD (UNSW), ASTC, CChem, FRACI

Senior Lecturers
C Conn, BSc, PhD (Melb)
M Dawson, BPharm, PhD (Syd), CChem, MRACI, MPS
L A Evans, BAppSc (Hons) (NSWIT), PhD (Murd), CChem, MRACI
G L Heness, BAppSc (NSWIT), MAppSc (UTS), PhD (Syd), Graduate Certificate in Higher Education, (UTS)
J R Kalman, BSc, PhD (Syd), CChem. MRACI
M Mulholland, BSc, PhD (UNSW)
H Patney, MSc (Hons) (Punjab), PhD (Flin), CChem, MRACI
C Roux, BSc, PhD (Lausanne), MfSS, MIAI
M G Stevens, MSc, PhD (Syd), MRACI
B Stuart, BSc (Hons), MAppSc (Syd), PhD (Lond), DIC Chem
W Y Yeung, BSc (Eng), PhD (HK), MIMMA, FRMS, FIM (UK), CPEng, CEng (UK)

Lecturers
E Da Pasquier, PhD (Lausanne)
B J Reedy, BSc, PhD (Syd) MRACI, CChem
P Thomas, BSc, PhD (Lond), DIC
R Ward, BSc (Syd), DipEd (CSturt), MEd (Syd), CChem MRACI

Emeritus Professor
J Unsworth, BSc (Wales), MSc (UMIST), PhD (Macq), CChem, CPhys, FAIP, FPRI, SMIEEE
Honorary Associates
J P Byrne, BSc, PhD (Syd), CChem, MRACI
J K Crass, MAAppSc (NSWIT), PhD (UTS)
W R Day, MSc (UNSW), ASTC, MRACI, FAIFST
G P Norton, BSc (Syd), PhD (UNSW), CChem, FRACI
G M Renwick, BSc (St And), PhD (Monash), MRACI, CChem
R J Sleet, MSc, PhD (Syd), CChem, FRACI
M Wilson, BSc (N'cle), PhD (UNSW), MIEAust

Department Administrative Assistant
E Koirala

Technical Manager
A Rubel, BSc, MSc (MechEng) (Idaho)

Scientific Officers
N Booth, BAppSc (Materials Science) (UTS)
J P Guerbois, DipBuildMatSc (CNAM, Paris)
J Keegan, DipTech (Sc), BAAppSc (NSWIT)

Senior Technical Officers
A Barnes
J Holmes

Technical Officers
D Cohen, DipTech (Sc) (NSWIT)
M Daraphet
A Harris, BAAppSc (UTS)
G Grindrod, PatiTechCert (STC), AdvCertHort (Ryde TAFE), MAIH, AssDipAppSc (Ryde TAFE)
M Lake, BSc (Hons), PhD (Syd), MAIP
P J Maynard, BSc (Hons), PhD (Syd)
L H Xiao, PhD (HK)

Research Scientists
K Kannangara, BSc (Columbo), PhD (Hawaii)
G Lee, BSc (Hons) PhD (UNSW)

Laboratory Cleaner
N Djordjevic

Department of Environmental Sciences

Associate Professor and Head of Department
C G Skilbeck, BSc (Hons), PhD (Syd), MAIG

Professor of Geology
E C Leitch, MSc (Auck), PhD (UNE), FGS

Professor of Environmental Science
D Eamus, BSc (Hons) (Sussex), PhD (Wales)

Associate Professors
K R Brown, BSc, PhD (UNSW), MAIBiol
R T Buckney, BSc (Hons), PhD (Tas), MAIBiol
D Cheng, BSc (Hons), TTC, PhD (Tas), MASI, MAMSA, MFBA, MAIBiol

Senior Lecturers
D Booth, BSc (Hons) (Syd), MSc (Queens U), PhD (Oregon State)
G Caprarelli, MSc, PhD, DipEngGeol (Rome)
L F De Filippis, BSc (Hons), PhD (LaT), MAIH
E Frankel, BSc (Natal), PhD (Syd)
K A Johnson, MSc Agr (Krakow), PhD (UTS), MAIBiol, MAI, MASH, MISH, MIPTCS, MAIAST
R Lim, MSc (Mal), PhD (Wat), MAIBiol
D A Morrison, BSc, PhD (Syd), MAIBiol
U Munro, DipBiol (Frankfurt), PhD (UNE)
P Ralph, BAAppSc (NSWIT), MAIBiol, PhD (UTS)
J Tarran, BSc (Hons), DipEd, PhD (UNSW), MAIH

Lecturers
B B Dent, BSc (UNSW), GradDipEd (KCAE), MSc (UTS), MAIH, MAIG
A Pulkownik, BSc, MSc (Syd)
J Renwick, BAAppSc (BiomedSc) (NSWIT)

Adjunct Professors
M D Burchett, BSc, PhD (Syd), DipEd (UNE), MAIBiol, PIAH
B J Franklin, BSc (Syd), PhD (UNSW), MAIG, PGAA
B Marshall, BSc (Lond), PhD (Brist), GradDipMgt (CIAE), ARCS, FGS, MAIMM, MAIG

Honorary Associates
J Chapman, BSc (Hons) (UNSW), PhD (Syd), DipEnvStud (Macq), MAIBiol
C Francis
R Goldsack, BSc (Hons), PhD (UNSW), CChem, MRSC, MRACI
J Mercer, MSc (NZ), PhD (Syd)
S R Sangameshwar, MSc (Mys), MSc, PhD (Sask), FGS, MAIMM, MAIG, FGAC
F L Sutherland, MSc (Tas), PhD (James Cook)

Honorary Research Associate
M Ahsanullah, MSc (Karachi), PhD (Lond)

Department Administrative Assistant
M Paterson

Laboratory Managers
G Goldsack, DipMedTech (AIMLT), AAIMS, MAIBiol, CBIol, MBiol
N Richardson, DipMedTech (STC), MSc (Hons) (UTS)

Senior Technical Officers
L M Callan, BAAppSc (Hons) (NSWIT), MSc (UTS)
P Jones, TechCertBIol (SydTech), BAAppSc, MEd (UTS)
Technical Officers
J Easton, BAppSc (NSWIT), CertSciPhotog, MSc (UTS)
R Hungerford, BAppSc (Hons) (NSWIT)
C Wojak, BiolTechCert (STC)

Research Assistants
G Amos, BSc (UTS)
R Alquezar, BSc (UTS)
F Melville, BSc (UTS)

Technical Assistant
T Ye

Department of Health Sciences

Associate Professor and Head of Department
P F Miller, MSc, PhD (Man), DipTertiaryEd (UNE), MAIBiol

Professor of Behavioural Science
A R Craig, BSc (Hons), PhD (UNSW), MAPsS, BMCP

Associate Professors
L K Holley, BAppSc (DDIAE), MAAppSc (Medical Physics) (QIT), PhD (Macq), DipLaw (BAB), MAIP, MACPSEM, MIEEE, MAIIHE
D K Martin, BOptom (Hons), MBiomedE, PhD (UNSW)
C Rogers, BA (ICOM), DipAc, DSc (CP), LectAc (HKCCA), MACAc

Senior Lecturers
D M Cobbin, MSc, PhD (Syd), PhD (Macq), Tech Cert (William Balmain TC), MAPsS
G M Nicholson, BSc (Hons), PhD (Syd), MIST, MANS

Lecturers
W Cochran, BA, DipTchg, DipTCM, CertAcu
D Edwards, BSc (Hons) (Syd), MAAppSc (ClinBiochem) (UTS)
M Garvey, BA (Syd), PracDipAc (ACA), CertAdvAc (NCTCM), DipChMass (NC), DipSwedMass (SydCChiro), MLitt (UNE), MACAc
Y Lin, MBBS (China), PhD (UNSW)
X Qu, BMed, MMed (Beijing University of TCM), PhD (Syd)
D van Reyk, BAppSc (UTS), PhD (Syd)
J R Wyndham, MSc, MPH DipEd (Syd), Graduate Certificate in Higher Education (UTS), MAIBiol, MPH
C X Yang, DipAppSc (Biochem) (Swinburne), CertAdvAc (GCTCM), PracDipAc (ACA), MSc (UNSW), MACAc
C Zaslawksi, BAppSc (Phy) (Syd), PracDipAc (ACA), CertAdvAc (GCTCM), DipChHerb (COM), MHLthScEd, MACAc

Graduate Research Assistant
D Massey

Administrative Officer
R Hayes, AdvCertPblcAdmin (Syd Tech)

Administrative Assistant
S K Pan

Laboratory Manager
B Peters, BAppSc (NSWIT), Cert Urban Pest Control (Syd Tech), MAIBiol

Clinic Managers
P Meier
C L Zhou

Technical Officers
P J Lawrence

Research Assistants
G Amos, BSc (Hons)
R Alquezar, BSc (UTS)
F Melville, BSc (UTS)

Department Administrative Assistant
D Massey
Lecturers
A Pulkownik, BSc, MSc (Syd)
J Renwick, BAppSc (BiomedSc) (NSWIT)

Administrative Officer
J Monk

Laboratory Manager
N Richardson, DipMedTech (STC), MSc (Hons) (UTS)

Senior Technical Officer
P Jones, TechCertBiol (STC), BAppSc, MEd (UTS)

Centre for Materials Technology

Director
G B Smith, BSc (UNE), PhD (Monash), FAIP (Professor of Applied Physics)

Deputy Directors
B Ben-Nissan, BSc (ITU), MSc, PhD (UNSW), MIMMA

(Associate Professor in Materials Science)
M Phillips, BSc (UNSW), PhD (UTS), GAIP

Secretary
K Kannangara, BSc (Sri Lanka), PhD (Hawaii)

Members
A R Moon, BSc, PhD (Melb), FAIP (Dean of Science and Professor of Physics)
A T Baker, BSc (Hons), PhD (UNSW), CChem, FRACI

(Associate Professor of Chemistry)
A S Ray, BSc (Hons), MSc (Calc), PhD (UNSW), MIMMA

(Senior Lecturer in Materials Science)
J Schulte, MSc (Darmstadt), DSc (Oldenburg) (Lecturer in Applied Physics)
J Unsworth, BSc (Wales), MSc (UMIST), PhD (Macq), CChem, CPhys, FAIP, FPRI

(Emeritus Professor in Materials Science)
M A Wilson, PhD, DSc (Auck), CChem, FRACI

(Professor of Chemistry)

National Centre for Groundwater Management

In conjunction with the Faculty of Engineering

Professor of Groundwater Management and Centre Director
M J Knight, BSc, PhD (Melb), FGS, MIE (Aust), MAIMM

Senior Lecturer and Deputy Director
N P Merrick, MSc (Syd), GradDipDataProc (NSWIT)

Senior Lecturers
R G McLaughlan, BSc (Melb), GradDipCivEng, MAppSc, PhD (UNSW), Graduate Certificate in Higher Education (UTS)
W A Milne-Home, BSc (Leicester), MSc (Lond), PhD (Alta), CertEngGCH (UNSW)

Office Manager
P Xu

Principal Scientist
D Yates, BAppSc (Hons) (UNSW), GradDipEnvStud (Macq)

Administrative Assistant
L Dixon
INDEX

A
Abstudy 9
Administrative Law 142
Advanced Digital Systems 136
Analogue and Digital Control 138
Analytical Biochemistry 116
Analytical Chemistry 1 92
Analytical Chemistry 2 93
Analytical Chemistry 3 94
Anatomical Pathology 118
Animal Ecophysiology 119
Applications 7
 International students 7
 Non-award and cross-institutional study 7
 Postgraduate 7
 Undergraduate 7
Applied Clastic Basin Analysis 99
Applied Palaeontology 99
Aquatic Ecology 112
Atoms, Photons and Orbits (Physics 3) 105
Australian Biota 116
Austudy 8

B
Bachelor of Health Science in Traditional Chinese Medicine 48
Bachelor of Health Science in Traditional Chinese Medicine (Honours) 49
Bachelor of Medical Science 51
Bachelor of Medical Science/Bachelor of Arts in International Studies 77
Bachelor of Medical Science/Bachelor of Business 78
Bachelor of Medical Science/Bachelor of Engineering 79
Bachelor of Medical Science/Bachelor of Laws 74
Bachelor of Science (Honours) 53
Bachelor of Science (Honours) in Applied Chemistry 44
Bachelor of Science (Honours) in Applied Chemistry – Forensic Science 44
Bachelor of Science (Honours) in Applied Physics 47
Bachelor of Science (Honours) in Environmental Science 64
Bachelor of Science (Honours) in Geoscience 64
Bachelor of Science in Applied Chemistry 41
Bachelor of Science in Applied Physics 45
Bachelor of Science in Biomedical Science 54
Bachelor of Science in Biotechnology 58
Bachelor of Science in Earth and Environmental Science 62
Bachelor of Science in Environmental and Urban Agriculture 69
Bachelor of Science in Environmental Biology 65
Bachelor of Science/Bachelor of Arts in International Studies 75
Bachelor of Science/Bachelor of Business 77
Bachelor of Science/Bachelor of Engineering 79
Bachelor of Science/Bachelor of Laws 71
Behavioural Sciences 121
Biochemistry 1 116
Biochemistry 2 116
Biological Evidence 113
Biological Hazards and Toxicology 108
Bioreactors and Bioprocessing 119
Biotechnology 113
Boards and committees 160
Bridging courses 29
 Chemistry bridging course 29
 Insearch – Foundation Program 29

C
Campus life 13
 Child care 13
 Co-op Bookshop 13
 Radio Station 2SER-FM 13
 Students’ Association 13
 UTS Gallery and Art Collection 13
 UTS Union 13
Capstone Project (6cp) 129
Carbonates in Petroleum Exploration 100
Cells, Genetics and Evolution 109
Centres 21
 Centre for Biomedical Technology 21
 Centre for Ecotoxicology 21
 Centre for Materials Technology 22
 Cooperative Research Centre for Aquaculture 22
 Cooperative Research Centre for Renewable Energy 22
 National Centre for Groundwater Management 23
Chemical Safety (Management) 108
Chemical Safety and Legislation 93
Chemistry 1A 91
Chemistry 1C 92
Chemistry 2A 91
Chemistry 2C 92
Chemistry and Pharmacology of Illicit Drugs 95
Chemistry bridging course 29
Chemistry Learning Resources Centre 11, 28
Child care 13
Chinese Diagnostic System 1 125
Chinese Diagnostic System 2 126
Chinese East Asia 154
Chinese Herbal Formulae 126
Chinese Herbal Practice 1 124
Chinese Herbal Practice 2 124
Chinese Language and Culture subjects 144
Chinese Massage (Tuina) 124
Chinese Medical Classics 127
Circuit Analysis 137
Classics of Chinese Herbal Medicine 125
Clinic – Level 2 and Point Location 2 126
Clinical Bacteriology 117
Clinical Biochemistry 1 118
Clinical Biochemistry 2 118
Clinical Features of Disease 124
Clinical Practice 1 127
Clinical Practice 2 127
Clinical Practicum 127
Clinical Theory and Clinic – Level 3 126
Clinical Theory and Clinic Level 1 125
Co-op Bookshop 13
Coal Exploration and Mining Geology 100
Coastal and Marine Ecology 112
Coastal Environmental Assessments 100
Coastal Resource Management Unit 19
Coastal Resource Policy 122
Code of Conduct for students of the UTS College of Traditional Chinese Medicine 26
Committees 160
Comparative Social Change 144
Complex Forensic Cases (Chemistry) 95
Complex Forensic Cases (Law) 143
Composites 104
Computational Mathematics and Physics 129
Computer laboratories 11
Computing and Mathematics for Science 129
Computing for Groundwater Specialists 140
Computing Study Centre 11
Contaminated Site Management 96
Contemporary China 155
Contemporary Europe 155
Contemporary Japan 155
Contemporary Latin America 155
Contemporary South-East Asia 155
Convergent Margin Tectonics 98
Cooperative Research Centre for Aquaculture 22
Cooperative Research Centre for Renewable Energy 22
Coral Reef Ecosystems 112
Corporate Law 142
Corrosion and Degradation of Materials 104
Costs, other 8
Course fees 7
Course fees for international students 8
Courses
 Postgraduate 84
 Undergraduate 36
Criminal Law 141
Crustal and Mantle Processes 97
Cytopathology 120

D
Data Acquisition and Distribution 139
Data Analysis in Occupational Health and Safety 108
Dates, Principal for 2001 14
Deformation Processes 102
Diploma in Scientific Practice 38
Disease States 127

E
Earth Materials 97
Earth Resources 97
Earth Science 1 96
Ecological Principles and Modelling 110
Electrical Energy Technology 137
Electromagnetics and Optics 107
Electronics 106
Electronics and Interfacing 107
Electrotechnology and Data Analysis 106
ELSSA Centre 11
Email accounts for students 11
Energy Science and Technology 106
Engineering and Groundwater Geology 98
Engineering Communication 133
Engineering Economics and Finance 134
Engineering for Sustainability 132
Engineering Management 135
Engineering Practice 1 130
Engineering Practice 2 131
Engineering Practice Preview 1 131
Engineering Practice Preview 2 132
Engineering Practice Review 1 131
Engineering Practice Review 2 132
Environment, Health and Safety 23
Environmental and Quaternary Geology 98
Environmental Chemistry 94
Environmental Law and Science 143
Environmental Management 112
Equity and diversity 12
Equity and Trusts 142
Eukaryotic Microbiology 118
Evaluating Occupational Health and Safety (Construction Industry) 108
Experimental Design and Sampling 110
Extractive Metallurgy 92

F
Faculty information 17
Boards and committees 160
Centres 21
Faculty of Science 17
Faculty Mission Statement 17
Message from the Dean 17
Staff list 165
Units within the Faculty 19
Federal Constitutional Law 142
Fees and costs 7
Field Studies 1 96
Financial help 8
Abstudy 9
Austudy 8
Youth Allowance 8
Fire and Explosion Investigation 95
Fisheries Resources 111
Fold Belts and Cratons 97
Forensic Imaging 93
Forensic Research Project 95
Forensic Toxicology 1 94
Forensic Toxicology 2 95
Foundations of Helping and Caring 143
Foundations of Physics 105
Foundations of TCM 122
Freedom of Information 12
French Language and Culture subjects 145
Freshwater Ecology 111
Functional Biology 110

G

General information 5
Geochemical Analysis Techniques and Applications 101
Geological and Structural Interpretation of Potential Field Data 102
Geological Mapping 98
Geophysics 98
German Language and Culture subjects 147
Graduate Certificate in Pilates Method 84
Graduate Clinic Internship (CHM) 124
Graduate Clinic Level 1 (CHM) 127
Graduate Clinic Level 2 (CHM) 125
Graduate Diploma in Hydrogeology and Groundwater Management 85
Groundwater Computing 140
Groundwater Geophysics 96
Groundwater Modelling 140
Groundwater Science Projects (GD) F/T, P/T 96
Groundwater Science Projects (M) F/T, P/T 96

H

Haematology 1 118
Haematology 2 119
Health Psychology Unit 20
Health Sciences 1 123
Health Sciences 2 123
HECS 8
History and Philosophy of TCM 126
Honours (Biological and Biomedical Sciences) 115
Honours (Biological and Biomedical Sciences) (2yrs) 115
Honours (Chemistry) 95
Honours (Environmental Science) 99
Honours (Geoscience) 99
Honours (Materials Science) 105
Honours (Physics) 107
Honours degree courses 37
Honours Project 124
Human Factors/Ergonomic Design 108

Hydrogeochemistry 96
Hydrogeology 96

I

Immunobiology Unit 20
Immunology 1 118
Immunology 2 119
In-country Study 1 155
In-country Study 2 156
Individual Project – Life Sciences 120
Indonesian Language and Culture subjects 149
Industrial Ceramics 103
Industrial Metallurgy 104
Informatics 133
Information for Science students 23
Inorganic Chemistry 1 (Transition Metal Chemistry) 93
Inorganic Chemistry 2 (New inorganic Materials) 93
Insearch – Foundation Program 29
International Studies electives 34
International Studies subjects 144
Interpretation of 2D and 3D Seismic Reflection Data 102
Introduction to Chinese Herbal Medicine 123
Introduction to Geostatistical Data Analysis 103
Introduction to Materials 103
Introduction to Phase Diagrams and Thermobarome, An 101
Introduction to TCM 123
Introductory Digital Systems 136
Italian Language and Culture subjects 149

J

Japanese Language and Culture subjects 151
Jumbunna CAISER 11

L

Landscape Design and Plant Culture 114
Law of Contract 141
Law of Evidence 143
Law of Tort 141
Legal Aspects of Occupational Health and Safety 109
Legal Process and History 140
Legal Research 140
Library, UTS 9

M

Malaysian Language and Culture subjects 152
Mapping and Remote Sensing 111
Maps 177
Masier of Health Science in Traditional Chinese Medicine 86
Master of Occupational Health and Safety Management 87
Master of Occupational Health and Safety Management (Honours) 88
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science in Hydrogeology and Groundwater Management</td>
<td>89</td>
</tr>
<tr>
<td>Mathematical Modelling 1</td>
<td>128</td>
</tr>
<tr>
<td>Mathematical Modelling 2</td>
<td>128</td>
</tr>
<tr>
<td>Mathematical Modelling for Science</td>
<td>128</td>
</tr>
<tr>
<td>Mathematics 1 (Life Sciences)</td>
<td>129</td>
</tr>
<tr>
<td>Mathematics and Scientific Software</td>
<td>129</td>
</tr>
<tr>
<td>Mathematics Study Centre</td>
<td>11</td>
</tr>
<tr>
<td>Mechanical Properties of Materials</td>
<td>103</td>
</tr>
<tr>
<td>Medical Devices and Diagnostics</td>
<td>121</td>
</tr>
<tr>
<td>Medical Science 1</td>
<td>120</td>
</tr>
<tr>
<td>Medical Science 2</td>
<td>121</td>
</tr>
<tr>
<td>Microbiology 1</td>
<td>116</td>
</tr>
<tr>
<td>Microbiology 2</td>
<td>116</td>
</tr>
<tr>
<td>Microbiology 3</td>
<td>117</td>
</tr>
<tr>
<td>Microsystems and Advanced Treatment Techniques</td>
<td>126</td>
</tr>
<tr>
<td>Molecular Biology 1</td>
<td>117</td>
</tr>
<tr>
<td>Molecular Biology 2</td>
<td>117</td>
</tr>
<tr>
<td>Molecular Genetics Unit</td>
<td>20</td>
</tr>
<tr>
<td>Molecular Parasitology Unit</td>
<td>20</td>
</tr>
<tr>
<td>Mountain Ecology</td>
<td>119</td>
</tr>
<tr>
<td>National Centre for Groundwater Management</td>
<td>23</td>
</tr>
<tr>
<td>Neuroscience</td>
<td>121</td>
</tr>
<tr>
<td>Non-award and cross-institutional study Applications</td>
<td>7</td>
</tr>
<tr>
<td>Occupational Hazard Analysis</td>
<td>108</td>
</tr>
<tr>
<td>Occupational Health and Safety in Society</td>
<td>107</td>
</tr>
<tr>
<td>Occupational Health and Safety Management</td>
<td>109</td>
</tr>
<tr>
<td>Occupational Health and Safety Project</td>
<td>109</td>
</tr>
<tr>
<td>Open Space Management</td>
<td>114</td>
</tr>
<tr>
<td>Organic Chemistry 1</td>
<td>92</td>
</tr>
<tr>
<td>Organic Chemistry 2 (Structure Elucidation and Synthesis)</td>
<td>93</td>
</tr>
<tr>
<td>Other services</td>
<td>12</td>
</tr>
<tr>
<td>Freedom of Information</td>
<td>12</td>
</tr>
<tr>
<td>Student complaints</td>
<td>12</td>
</tr>
<tr>
<td>Student Ombud</td>
<td>12</td>
</tr>
<tr>
<td>Palaeobiology Part I</td>
<td>99</td>
</tr>
<tr>
<td>Palaeobiology Part II</td>
<td>101</td>
</tr>
<tr>
<td>Pathophysiology A</td>
<td>123</td>
</tr>
<tr>
<td>People and the Physical Environment</td>
<td>108</td>
</tr>
<tr>
<td>Personal Property</td>
<td>141</td>
</tr>
<tr>
<td>Pharmacology 1</td>
<td>121</td>
</tr>
<tr>
<td>Pharmacology 2</td>
<td>122</td>
</tr>
<tr>
<td>Pharmacology of Traditional Chinese Medicine</td>
<td>126</td>
</tr>
<tr>
<td>Physical Aspects of Nature</td>
<td>105</td>
</tr>
<tr>
<td>Physical Chemistry 1</td>
<td>93</td>
</tr>
<tr>
<td>Physical Chemistry 2</td>
<td>94</td>
</tr>
<tr>
<td>Physical Evidence 1</td>
<td>94</td>
</tr>
<tr>
<td>Physical Evidence 2</td>
<td>94</td>
</tr>
<tr>
<td>Physical Metallurgy</td>
<td>103</td>
</tr>
<tr>
<td>Physical Properties of Materials</td>
<td>104</td>
</tr>
<tr>
<td>Physics in Action (Physics 2)</td>
<td>105</td>
</tr>
<tr>
<td>Physics Learning Centre</td>
<td>12, 29</td>
</tr>
<tr>
<td>Physiological Systems</td>
<td>121</td>
</tr>
<tr>
<td>Physiology of Qi, The</td>
<td>123</td>
</tr>
<tr>
<td>Plant Biotechnology</td>
<td>112</td>
</tr>
<tr>
<td>Plant Genetics and Breeding</td>
<td>115</td>
</tr>
<tr>
<td>Plant Pathology</td>
<td>113</td>
</tr>
<tr>
<td>Plant Physiology</td>
<td>115</td>
</tr>
<tr>
<td>Plant Production and Growth Media</td>
<td>113</td>
</tr>
<tr>
<td>Plant Production Systems</td>
<td>114</td>
</tr>
<tr>
<td>Plant Structure, Function and Culture</td>
<td>114</td>
</tr>
<tr>
<td>Plants in the Landscape</td>
<td>115</td>
</tr>
<tr>
<td>Point Location 1</td>
<td>125</td>
</tr>
<tr>
<td>Pollution Assessment</td>
<td>110</td>
</tr>
<tr>
<td>Pollution Ecology</td>
<td>110</td>
</tr>
<tr>
<td>Polymer Science</td>
<td>103</td>
</tr>
<tr>
<td>Polymer Technology</td>
<td>104</td>
</tr>
<tr>
<td>Postgraduate courses</td>
<td>84</td>
</tr>
<tr>
<td>Graduate Certificate</td>
<td>84</td>
</tr>
<tr>
<td>Graduate Diploma</td>
<td>85</td>
</tr>
<tr>
<td>Master's degrees (by coursework)</td>
<td>86</td>
</tr>
<tr>
<td>Postgraduate degrees by research</td>
<td>90</td>
</tr>
<tr>
<td>Power Electronics</td>
<td>139</td>
</tr>
<tr>
<td>Practice and Procedure</td>
<td>142</td>
</tr>
<tr>
<td>Practice Management</td>
<td>124</td>
</tr>
<tr>
<td>Principles of Chinese Herbal Medicine</td>
<td>125</td>
</tr>
<tr>
<td>Principles of Chinese Herbal Prescription</td>
<td>125</td>
</tr>
<tr>
<td>Principles of Forensic Science</td>
<td>92</td>
</tr>
<tr>
<td>Principles of Pharmacology in Chinese Medicine</td>
<td>125</td>
</tr>
<tr>
<td>Prizes and scholarships</td>
<td>29</td>
</tr>
<tr>
<td>Processing of Seismic Reflection and Ground Penetrating Radar Data</td>
<td>102</td>
</tr>
<tr>
<td>Professional Scientific Practice A</td>
<td>91</td>
</tr>
<tr>
<td>Professional Scientific Practice B</td>
<td>91</td>
</tr>
<tr>
<td>Psychophysiology</td>
<td>122</td>
</tr>
<tr>
<td>Quantum and Solid-state Physics</td>
<td>106</td>
</tr>
<tr>
<td>Radio Station 2SER-FM</td>
<td>13</td>
</tr>
<tr>
<td>Real Property</td>
<td>141</td>
</tr>
<tr>
<td>Remedies</td>
<td>142</td>
</tr>
<tr>
<td>Research Methods</td>
<td>126</td>
</tr>
<tr>
<td>Research Methods in Applied Physics</td>
<td>107</td>
</tr>
<tr>
<td>Research Proposal (Occupational Health and Safety)</td>
<td>109</td>
</tr>
<tr>
<td>Risk Assessment and Management</td>
<td>122</td>
</tr>
<tr>
<td>Risk Management</td>
<td>108</td>
</tr>
<tr>
<td>Russian</td>
<td>152</td>
</tr>
<tr>
<td>Scholarships</td>
<td>29</td>
</tr>
<tr>
<td>Science Education</td>
<td>37</td>
</tr>
<tr>
<td>Second majors</td>
<td>80</td>
</tr>
<tr>
<td>Semi-Arid Ecology</td>
<td>119</td>
</tr>
<tr>
<td>Service fees</td>
<td>7</td>
</tr>
</tbody>
</table>
Signals and Systems 137
Software Development 135
Spanish Language and Culture subjects 152
Special Reading Assignment – Life Sciences 120
Special Topics in TCM (Intermodal and Professional) 124
Staff list 165
Statement of good practice and ethics in informal assessments 24
Statistical Design and Analysis 128
Student information
 Bridging courses 29
 Code of conduct for students of the UTS College of Traditional Chinese Medicine 26
 Complaints 12
 Environment, Health and Safety 23
 Feedback from academic staff 24
 Information for Science students 23
 Inquiries 6
 Learning Centres 11
 Statement of good practice and ethics in informal assessments 24
 Student Ombud 12
 Student Services Unit 9
 Workload guidelines 24
Student support centres 28
 Chemistry Learning Resources Centre 28
 Physics Learning Centre 29
Students’ Association 13
Subjects
 Alphabetical list of 157
 Descriptions 91
 International Studies 144
 Offered by other faculties 128
Support for student learning 9
Surface Hydrology and Groundwater 140
Surficial Processes and Products 97

U
Uncertainties and Risks in Engineering 133
Undergraduate courses 36
 Honours degree courses 37
 Pass degree courses 36
Science Education 37
Second majors 80
Units within the Faculty 19
 Coastal Resource Management Unit 19
 Health Psychology Unit 20
 Immunobiology Unit 20
 Molecular Genetics Unit 20
 Molecular Parasitology Unit 20
 UTS College of Traditional Chinese Medicine 20
University Graduate School 9
Uses of Australian Plants 113
UTS College of Traditional Chinese Medicine 20
UTS College of Traditional Chinese Medicine Policies 27
UTS contacts 176
UTS Gallery and Art Collection 13
UTS Union 13

V
Vibrations, Quanta and Nucleons (Physics 4) 106

W
Wildlife Ecology 111
Workload guidelines 24

Y
Youth Allowance 8

T
Technical Ceramics 104
Technology Assessment 135
Tectonics and Surface Dynamics 97
Terrestrial Ecosystems 111
Thai 154
Toxicity Assessment 111
Transfusion Science 117
UTS CONTACTS

University of Technology, Sydney

Postal address
PO Box 123
Broadway NSW 2007
Australia
telephone (02) 9514 2000
international +61 2 9514 2000
fax (02) 9514 1551
e-mail info.office@uts.edu.au
www.uts.edu.au

City campus

Broadway
• Building 1 (Tower Building)
 1 Broadway, Ultimo
• Building 2
 1 Broadway, Ultimo
• Building 3 (Bon Marche Building)
 Cnr Harris Street and Broadway, Ultimo
• Building 4
 Cnr Thomas and Harris Streets, Ultimo
• Building 6 (Peter Johnson Building)
 702–730 Harris Street, Ultimo
• Broadway Terraces
 9, 11 and 13 Broadway, Ultimo
• Magic Pudding Childcare Centre,
 Thomas Street, Ultimo

Haymarket
• Building 5
 Corner Quay Street and Ultimo Road,
 Haymarket, Sydney

Blackfriars
• Corner Blackfriars and Buckland Streets,
 Chippendale
• Blackfriars Childrens Centre
 Buckland Street, Chippendale

Small Street
• 3 Small Street, Ultimo

Quay Street
• 10 Quay Street, Haymarket, Sydney
• Prince Centre
 8 Quay Street, Haymarket, Sydney

Wembley House
• 839–847 George Street, Sydney

Harris Street
• 645 Harris Street, Ultimo

Student housing
• Bulga Nguurra
 23–27 Mountain Street, Ultimo
• Geegal
 82–84 Ivy Street, Chippendale

Australian Technology Park
• Corner Garden, Cornwallis and
 Boundary Streets
 Eveleigh NSW 1430

Kuring-gai campus
• Eton Rd, Lindfield
 (PO Box 222, Lindfield NSW 2070)

St Leonards campus
• Dunbar Building
 Corner Pacific Highway and
 Westbourne Street, Gore Hill
• Clinical Studies Building, Centenary
 Lecture Theatre and West Wing
 Reserve Road, Royal North Shore Hospital
• Gore Hill Research Laboratories
 Royal North Shore Hospital

Yarrawood conference and
research centre
• 689 Springwood Road
 Yarramundi NSW 2753

Stroud field station
• 2605 The Bucketts Way
 Booral NSW 2425
City campus

KEY

→ Entry / Exit

 Disabled access

 ▬ Main bus stop

 □ UTS shuttle bus

 P Parking

 1 Building numbers

 C Child care

Broadway

Thomas Street

Building 2

Tower Building

Building 4

Sports Centre

Alumni Green

University Hall

Ban Marsha Building

Main Entry

Gut Guthrie Theatre

Peter Johnson Building

Go-go Bookshop
Maps 179

Haymarket

Blackfriars

KEY
- Entry / Exit
- Disabled access
- Main bus stop
- UTS shuttle bus
- Parking
- Building numbers
- Child care

[Map of Haymarket with labels A, B, C, D, Business, Library, Education, Darling Harbour, Quay Street, Darling Drive, and Union]

[Map of Blackfriars with labels 1, 2, 3, 4, 5, 6, 7, Broadway, Buckland Street, Church, The Residence, Shopfront, UTS Graduate School]
St Leonards campus

KEY
- Entry / Exit
- Disabled access
- Main bus stop
- UTS shuttle bus
- Parking
- Building numbers
- Child care

Legend
1. Dunbar Building
2. Research Labs
3. West Wing
4. Centenary Lecture Theatre
5. Clinical Studies

Maps
- Dunbar Building
- Research Labs
- West Wing
- Centenary Lecture Theatre
- Clinical Studies

Directions
- To Chatswood
- ROYAL NORTH SHORE HOSPITAL
- CROWS NEST
- ST LEONARDS
- GREENWICH
- Wollstonecraft Station

Scales
0 km
250 km
500 m