Hydrothermal synthesis of α-MnO$_2$ and β-MnO$_2$ nanorods as high capacity cathode materials for sodium ion batteries†

Dawei Su,a Hyo-Jun Ahnb and Guoxiu Wang*a,b

Two types of MnO$_2$ polymorphs, α-MnO$_2$ and β-MnO$_2$ nanorods, have been synthesized by a hydrothermal method. Their crystallographic phases, morphologies, and crystal structures were characterized by XRD, FESEM and TEM analysis. Different exposed crystal planes have been identified by TEM. The electrochemical properties of α-MnO$_2$ and β-MnO$_2$ nanorods as cathode materials in Na-ion batteries were evaluated by galvanostatic charge/discharge testing. Both α-MnO$_2$ and β-MnO$_2$ nanorods achieved high initial sodium ion storage capacities of 278 mA h g$^{-1}$ and 298 mA h g$^{-1}$, respectively. β-MnO$_2$ nanorods exhibited a better electrochemical performance such as good rate capability and cyclability than that of α-MnO$_2$ nanorods, which could be ascribed to a more compact tunnel structure of β-MnO$_2$ nanorods. Furthermore, the one-dimensional architecture of nanorods could also contribute to facile sodium ion diffusion in the charge and discharge process.

1 Introduction

Li-ion batteries are considered to be the most advanced power sources for portable electronic devices and electric vehicles. However, the high cost of Li-ion batteries and limited Li reserves hampered their applications for large-scale energy storage such as for renewable energy and smart electric grids. In this regard, Na-ion batteries have emerged as an alternative due to the low cost, abundant supply (4th most abundant element in the earth’s crust) and widespread terrestrial reserves of sodium mineral salts. Na-ion batteries have similar features to Li-ion batteries: non-aqueous electrolytes, alkali insertion electrodes, and stable diffusion barrier of Na-ion. However, the higher ionization potential and larger ionic diameter of Na (1.02 Å versus Li (0.76 Å)) limit the structural variability and choice of Na insertion materials in crystalline materials. Therefore, finding and optimizing suitable electrode materials are crucial for the development of Na-ion batteries. So far, considerable progress has been achieved. Hard carbon materials with a large interlayer distance and disordered structure, which facilitate Na ion insertion and extraction, have been studied as anode materials.8-10 Alternative oxide anodes such as Na$_2$Ti$_3$O$_7$ (ref. 9) and TiO$_2$-nanotubes16 have also been recently investigated. For cathode materials, layered oxides, Na$_2$CoO$_2$,22 Na$_2$O$_2$($\text{Ni}_{1/3}$Fe$_{1/3}$Mn$_{1/3}$)O$_2$,22 NaCrO$_2$,22 Na$_3$V$_2$O$_7$ (ref. 15) and a new type of bi-layered Na$_3$V$_2$O$_7$ (ref. 16), have been investigated. However, they are all limited by either low capacity or poor cyclability. In addition, a framework material based on the phosphate polymerion, olivine NaFePO$_4$, has also been reported by Zaghib et al.27 It demonstrated a 147 mA h g$^{-1}$ initial specific capacity, but its reversibility is poor (50.6 mA h g$^{-1}$ in the second cycle). Fluoride-based cathode materials, NaMF$_3$ ($M = \text{Fe, Mn, V and Ni}$),18,19 have been prepared with the aim to overcome the low theoretical specific capacity of polyamionic cathodes, but they still did not achieve the satisfactory specific capacities (ranging from 30 to 170 mA h g$^{-1}$). Manganese oxides have large-size tunnels, which could be a potential cathode host to accommodate Na ion insertion and extraction.20-22 Many previous investigations focused on sodium intercalated manganese oxide materials.21-23 Recently, MnO$_6$ octahedra and MnO$_3$ square pyramids were found to form large, double ion channels in orthorhombic Na$_4$Mn$_8$O$_{16}$ (Na$_{0.48}$MnO$_3$) and offer 130 mA h g$^{-1}$ capacity.21-23 They also exhibited stable cycling performance, owing to their capability to tolerate stress during structural changes. Morales et al. reported that layered P2-Na$_{0.8}$Mn$_2$O$_3$ can deliver a 150 mA h g$^{-1}$ capacity in the first cycle.24-25 However, this material showed a poor capacity retention with more than 50% capacity loss after only 10 cycles. Manganese dioxide has many different types of polymorphs, and all of them have large open tunnels, which can accommodate guest cations.21-26 Therefore, they can be potentially used as cathode materials for Na-ion batteries. Herein, we report the

† Electronic supplementary information (ESI) available: N$_2$ absorption isotherms of α-MnO$_2$ and β-MnO$_2$ nanorods, additional FESEM and TEM images of α-MnO$_2$ and β-MnO$_2$ nanorods, CV curves of α-MnO$_2$ and β-MnO$_2$ nanorods, cycle performance of α-MnO$_2$ nanorods, and A.C. impedance spectra of α-MnO$_2$ and β-MnO$_2$ nanorods. See DOI: 10.1039/c3ta00031a
synthesis, structural characterisation and electrochemical performance of α-MnO2 and β-MnO2 nanorods. Both α-MnO2 and β-MnO2 nanorods exhibited the capability for reversible Na-ion storage as cathode materials in Na-ion batteries. In particular, β-MnO2 nanorods demonstrated a high capacity, good rate performance and satisfactory cyclability.

2 Experimental

2.1 Materials synthesis

α-MnO2 and β-MnO2 nanorods were synthesized by a hydrothermal method. For the synthesis of α-MnO2 nanorods, 1.5 mmol KMnO4 and 5 mmol concentrated HCl were added to 15 mL deionized water. The mixture was stirred vigorously for several minutes until a transparent purple solution was formed and then transferred into a Teflon-lined stainless steel autoclave (25 mL in capacity). The autoclave was sealed and heated to 140 °C and maintained for 12 h. To produce β-MnO2 nanorods, 1 mmol (NH4)2SO4 and MnSO4·H2O were dissolved in 20 mL deionized water. 0.2 g of the cationic surfactant cetyltrimethylammonium bromide (CTAB) as a surfactant was added into the solution and was heated to 140 °C for 4 h. The precipitates were cooled down to room temperature, collected by centrifugation and washed with distilled water several times. After drying at 60 °C in a vacuum oven overnight, the final products were obtained.

2.2 Structural and physical characterization

The crystal structure and phase of the as-prepared materials were characterized by X-ray diffraction (XRD, Siemens D5000) using a Cu Kα radiation at a scanning step of 0.02° min⁻¹. The morphology was analyzed by field emission scanning electron microscopes (FESEM, Zeiss Supra 55VP). The crystal structure details were further characterized by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM, JEOL JEM-2011). Selected area electron diffraction (SAED) patterns were recorded by a Gatan CCD camera in a digital format. The specific surface areas were measured by N2 adsorption isotherms using a Quadrasorb SI analyzer at 77 K. Brunauer–Emmett–Teller (BET) surface areas were calculated using experimental points at a relative pressure of P/P0 = 0.05–0.25.

2.3 Electrochemical testing

The electrodes were prepared by dispersing the as-prepared MnO2 nanorods (70 wt%), acetylene carbon black (20 wt%), and poly(vinylidene fluoride) binder (PVDF, 10 wt%) in N-methyl-2-pyrrolidone (NMP) to form a slurry. The resultant slurry was pasted onto an aluminium foil (1 cm × 1 cm) using a doctor blade and dried in a vacuum oven for 12 h, followed by pressing at 200 kg cm⁻². The mass of each electrode was around 1.4 mg. Electrochemical measurements were carried out using two-electrode coin cells with Na metal as counter and reference electrodes and a glass microfibre (Whatman) as the separator. The CR2032-type coin cells were assembled in an argon-filled glove box (UniLab, Mbraun, Germany). The electrolyte solution was 1 M NaClO4 dissolved in a mixture of ethylene carbonate (EC) and propylene carbonate (PC) with a volume ratio of 1:1. Cyclic voltammetry (CV) was carried out on a CHI 660C electrochemistry workstation with a scan rate of 0.1 mV s⁻¹ from 1 to 4.3 V in a two-electrode system. The charge–discharge measurements were performed at ambient temperature at different current densities in the voltage range from 1 to 4.3 V. The A.C. impedance measurement was carried out on a CHI 660C electrochemistry workstation in the frequency range between 100 kHz and 10 mHz.

3 Results and discussion

Fig. 1a shows the XRD patterns of α-MnO2 and β-MnO2 nanorods. The product prepared using a KMnO4 precursor solution was identified to be a pure α-MnO2 phase (JCPDS no. 44-0141, tetragonal, I4/m, a = b = 9.78 Å, c = 2.86 Å), while the product prepared using a MnSO4·H2O precursor solution could be identified to be a pure β-MnO2 phase (JCPDS no. 24-0735, tetragonal, P42/mnm, a = b = 4.39 Å, c = 2.87 Å). No impurity phases were observed, when compared to the simulated diffraction patterns of α-MnO2 and β-MnO2 (the black and green solid lines in Fig. 1a, respectively). In general, MnO2 can form several polyhedra since the MnO6 octahedral units can be linked in different ways. α-MnO2 is constructed from the double chains of edge-sharing MnO6 octahedra that are linked at the corners to form a (2 × 2) + (1 × 1) tunnel structure, while β-MnO2 shows a 1D channel (1 × 1) structure composed of individual chains of...
the MnO₆ octahedral units as illustrated in Fig. 1b and c, respectively. The K ions, coming from KMnO₄, can serve as the crucial guest cations to direct the precursor to form a (2 × 2) tunnel structure of α-MnO₂. There is no suitable guest cation in the MnSO₄ precursor, therefore, the small (1 × 1) tunnel of β-MnO₂ will be formed. From the [001] projected direction of the simulated crystal structure, it can be seen that α-MnO₂ has 2 × (1 × 1) and 2 × (2 × 2) tunnels per formula unit with a tunnel density of 0.042 Å⁻², while β-MnO₂ has 2 × (1 × 1) tunnels per formula unit with a tunnel density of 0.104 Å⁻². Therefore, β-MnO₂ has more than twice tunnels per unit area than that of α-MnO₂. It suggests that β-MnO₂ can accommodate more Na ions. The BET specific surface areas were measured by nitrogen adsorption isotherms at 77 K (as shown in Fig. S1, ESI†). α-MnO₂ nanorods have higher surface area (33.54 m² g⁻¹) than β-MnO₂ nanorods (14.15 m² g⁻¹).

Both α-MnO₂ and β-MnO₂ show typical nanorod morphology with uniform size distribution. As shown in Fig. 2a and c, the low magnification FESEM images exhibit the lengths of nanorods extending to a few micrometers. Fig. 2b and d show the cross-sections of α-MnO₂ and β-MnO₂ nanorods, respectively. α-MnO₂ nanorods have a rectangle cross-section, while β-MnO₂ nanorods have a rectangle pyramid tip. Fig. S2 and S3 (ESI†) present more low and high magnification FESEM images of α-MnO₂ and β-MnO₂ nanorods, further illustrating that the as-prepared products consist of 100% 1D nanorods without any particles.

Crystal structures of α-MnO₂ and β-MnO₂ nanorods were analysed by TEM, HRTEM and SAED characterisation (Fig. 3). The individual nanorods are clearly distinguishable (as shown in Fig. 3(a₁) and (b₁), respectively). Fig. 3(a₂) and (b₂) show high magnification TEM images of α-MnO₂ nanorod and a β-MnO₂ nanorod, respectively. Their corresponding SAED patterns are shown as insets. The dot style SAED patterns confirmed the single crystalline nature of α-MnO₂ and β-MnO₂ nanorods. For α-MnO₂ nanorod, the rhombic SAED spot pattern can be well indexed along the [111] zone axis, which indicates that the facet vertical to the electron beam is the (111) crystal plane. The two side facets are the (110) and (110) exposed crystal planes, respectively. α-MnO₂ nanorods were identified to grow along the [112] direction. Additional TEM images and SAED pattern of α-MnO₂ nanorods presented in Fig. S4 (ESI†) further identified the features of the α-MnO₂ nanorods. Therefore, the (110) and (111) crystal planes are exposed facets along the longitudinal direction. Fig. 3(a₃) shows the geometric model of the α-MnO₂ nanorod.

Similarly, the exposed facet of the β-MnO₂ nanorod (vertical to the electron beam) can be identified as the (110) crystal plane based on the rectangle SAED spot pattern (Fig. 3(b₃) along the [110] zone axis. β-MnO₂ nanorods grow along the (001) direction. If tilted 45° around the [001] axis, the SAED spot pattern can be indexed along the [010] zone axis (Fig. S5c and d, ESI†), indicating that the other two exposed facets of the β-MnO₂ nanorod are (110) and (110) crystal planes. The schematic model of β-MnO₂ nanorods is presented in Fig. 3(b₄), from which it is evident that the β-MnO₂ nanorod is enclosed within the (110) and (110) crystal planes along the longitudinal

Fig. 2 (a) and (c) are low magnification FESEM images of α-MnO₂ nanorods and β-MnO₂ nanorods, respectively. (b) and (d) are high magnification FESEM images of α-MnO₂ nanorods and β-MnO₂ nanorods, showing the cross-section of nanorods.
direction. The lattice resolved HRTEM images of α-MnO₂ and β-MnO₂ nanorods are shown in Fig. 3(a1) and (b1), respectively. Their corresponding Fast-Fourier-Transform (FFT) patterns are shown as the insets in Fig. 3(a1) and (b1). The FFT pattern of α-MnO₂ nanorods can be simulated by formula units of the tetragonal crystal structure along the [111] projected direction (presented as the inset (middle) in Fig. 3(a1)). When turned 42° along the [110] axis, the tunnels towards the (001) crystal plane can be directly observed. For the β-MnO₂ nanorod, two orthogonal crystal planes (110) and (001) with 0.31 and 0.28 nm lattice spacings were identified. The (110) crystal plane presents a rectangular atom arrangement as simulated along the [110] projected direction (middle inset in Fig. 3(b1)).

Electrochemical properties of α-MnO₂ and β-MnO₂ nanorods as cathode materials in Na-ion batteries were investigated by constant charge and discharge cycling. Fig. 4 shows the voltage profiles of α-MnO₂ and β-MnO₂ nanorods at a low current density of 20 mA g⁻¹ in the first and second cycles. For α-MnO₂ nanorods, the initial specific discharge and charge capacities are 278 and 407 mA h g⁻¹, respectively. At the second cycle, they dropped to 204 and 250 mA h g⁻¹. No obvious discharge potential plateau appeared during charge and discharge cycling. β-MnO₂ nanorods exhibited an initial discharge capacity of 298 mA h g⁻¹ which then dropped to 240 mA h g⁻¹ in the second cycle. Although the initial discharge potential plateau is not obvious, β-MnO₂ nanorods evolved a discharge voltage plateau between 3.0 V and 2.0 V in the second cycle. The electrochemical reaction between Na⁺ ions and cathode hosts was further studied by cyclic voltammetry (as shown in Fig. S6, ESI†). The cathodic and anodic peaks are consistent with the charge–discharge voltage plateau. β-MnO₂ nanorods showed a low over-potential after the first cycle. Two redox peaks at 2.36 and 2.66 V correspond to Na⁺ insertion into/extraction from the β-MnO₂ crystal structure.29,30

The cycling performances of α-MnO₂ and β-MnO₂ nanorods are shown in Fig. 5. β-MnO₂ nanorods demonstrated a much better cyclability than that of α-MnO₂ nanorods. β-MnO₂ nanorods maintained 145 mA h g⁻¹ discharge capacity after 100 cycles. However, α-MnO₂ nanorods only delivered a capacity of 75 mA h g⁻¹ after 100 cycles. The rate capabilities of β-MnO₂ nanorods were also tested at different current densities (Fig. 5b). β-MnO₂ nanorods delivered a discharge capacity of 246 mA h g⁻¹ at 50 mA g⁻¹, 188 mA h g⁻¹ at 100 mA g⁻¹, and 176 mA h g⁻¹ at 200 mA g⁻¹ current densities. Although the specific capacity gradually decreases with increasing current density, a high initial discharge capacity (96 mA h g⁻¹) has been achieved at 400 mA g⁻¹. Even at 800 mA g⁻¹, 88 mA h g⁻¹ discharge capacity was still obtained. After 100 cycles, they all stabilised at acceptable values of 93 mA h g⁻¹ at 50 mA g⁻¹, 70 mA h g⁻¹ at 100 mA g⁻¹, 68 mA h g⁻¹ and 55 mA h g⁻¹ at 400 mA g⁻¹ and 800 mA g⁻¹, respectively. The rate performance of β-MnO₂ nanorods is much better than that of α-MnO₂ nanorods (Fig. S7, ESI†) and previously reported cathode materials for Na-ion batteries.11,14,20,21,23,25 From the Nyquist plots of the A.C. impedance spectra (Fig. S8, ESI†), we can observe relatively low impedance of β-MnO₂ nanorods (both fresh cell and after 5

![Fig. 4](image-url) The discharge and charge profiles of α-MnO₂ and β-MnO₂ nanorods in the 1st and 2nd cycles. Current density: 20 mA g⁻¹.

![Fig. 5](image-url) (a) Cycling performances of α-MnO₂ and β-MnO₂ nanorod electrodes at a current density of 20 mA g⁻¹. (b) Discharge capacity vs. cycle number of the β-MnO₂ nanorod electrode at high current densities of 50, 100, 200, 400, and 800 mA g⁻¹.
cycles). Therefore, the charge transfer resistance of β-MnO$_2$ nanorods is much lower than that of the α-MnO$_2$ nanorods.

The excellent electrochemical performance of β-MnO$_2$ nanorods could be ascribed to the compact and dense (1×1) tunnel-structure in β-MnO$_2$ crystals. The radius of Na ion (1.02 Å) is much smaller than the size of the (1×1) tunnel (2.3 Å–2.3 Å)28,31 Therefore, Na ions can facilely insert and extract along the (1×1) tunnels in β-MnO$_2$ nanorods. Fig. 6 illustrates the Na ion transportation in β-MnO$_2$ nanorods. We can see that Na ions intercalate/de-intercalate in the compact (1×1) tunnels along the [001] direction, resulting in a high Na storage capacity and good cyclability. In contrast, the $(2 \times 2) + (1 \times 1)$ two-tunnel structure in α-MnO$_2$ is not stable, inducing a low capacity and poor cyclability.29

4 Conclusions

α-MnO$_2$ and β-MnO$_2$ nanorods have been synthesized by a hydrothermal method. FESEM and TEM analyses confirmed the nanorod morphology and single crystalline nature of the as-prepared products. When applied as cathode materials in Na-ion batteries, β-MnO$_2$ nanorods exhibited a much better electrochemical performance than that of α-MnO$_2$ nanorods, which could be ascribed to the more compact tunnel-structure of β-MnO$_2$. β-MnO$_2$ nanorods also demonstrated a good high rate performance and durable cyclability. More specifically, β-MnO$_2$ nanorods delivered a high reversible Na ion capacity of 298 mAh g$^{-1}$ at 20 mA g$^{-1}$ current density. After 100 cycles, the electrode maintained a capacity of 145 mAh g$^{-1}$. β-MnO$_2$ nanorods could be a promising high capacity cathode material for Na-ion batteries.

Acknowledgements

This work was financially supported by the Australian Research Council (ARC) through the ARC FT project (FT110100800). We also acknowledge the support from the National Research Foundation of Korea through the WCU (R32-20093) project.

Notes and references

