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Abstract

A Musculoskeletal Model-based Assistance-As-Needed Paradigm

for Assistive Robotics

Robotic systems which operate collaboratively with their human operators to provide

assistance are becoming reality, and many dierent paradigms for administering this

assistance have been developed. A promising paradigm is Assistance-As-Needed, which

aims to provide physical assistance specic to the individual requirements of the oper-

ator. This requires that the needs of the operator be determined, which is challenging

as they depend on both the task being performed, and the capability of the operator to

perform it. Current solutions use performance-based methods which critique the oper-

ator from observations obtained during tasks, and then adapt assistance based on how

they performed. This approach has shown success in applications such as robotic re-

habilitation. However, empirical performance-based methods have inherent limitations,

primarily due to the numerous observations required before the operator’s assistance

needs can be determined. The ideal Assistance-As-Needed paradigm should be able to

determine the operator’s assistance requirements without prior observations, and with

respect to arbitrary tasks.

This thesis presents a novel Assistance-As-Needed paradigm using models to estimate

the assistance needs of the human operator. An optimisation model is developed which

utilises a publicly available musculoskeletal model representing the human upper limb

to estimate their strength, which is compared to the strength required by the task being

performed to gauge their assistance requirements. An advantage of this model-based
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approach is it allows eects on the operator’s assistance requirements due to task and

physiological factors to be predicted. Furthermore, it avoids many of the limitations

faced by empirical performance-based approaches since it does not require empirical

observations. The model-based paradigm is demonstrated and evaluated in a number

of simulated tasks involving the upper limb. Calculated upper limb strength is analysed

with respect to factors such as the limb position, the direction of force at the hand, and

muscular impairment. The calculated strength is shown to predict behaviours similar to

those described in the literature. Experimental evaluation is performed by implementing

the paradigm on a specially developed robotic exoskeleton to govern the assistance it

provides a subject in a number of experimental tasks. The model-based Assistance-As-

Needed paradigm is shown to successfully govern assistance towards specic muscles

when needed in the tasks performed. Means of improving the paradigm, including

methods for tting the model to the subject, and the inclusion of additional physiological

factors in the calculation of their assistance requirements is discussed.
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Chapter 1

Introduction

There is much interest in the development of robots that interact and operate in physical

contact with humans. These systems can provide assistance to their human operators as

they both work collaboratively to perform physical tasks. For tasks which are physically

intensive like those in industry, robots can assist workers and reduce the risk of injury.

Likewise in health care, robots can assist care givers during the physically demanding

task of patient handling. Another application is robotic rehabilitation where patients

receiving treatment for conditions such as stroke are assisted by a robotic system as they

perform physical therapy. Physically assistive robotic systems continue to be developed

for an increasing variety of applications. The success of such technology relies on the

robot providing assistance suited to the application, with some requiring assistance to

be administered in a specic manner in order for the desired benets to be achieved.

Many dierent paradigms for providing a human with physical robotic assistance have

been developed and continues to be an ongoing topic of research.

A promising paradigm is Assistance-As-Needed (AAN) which aims to provide a human

with assistance specic to their requirements with respect to the task being performed.

This paradigm has been shown to achieve better outcomes in certain applications when

compared to alternative assistance paradigms. For a robot to assist its human operator

according to their individual requirements necessitates that these assistance require-

ments rst be determined. The assistance required is dependent on both the task being
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CHAPTER 1. INTRODUCTION

performed and the capability of the operator to perform it. Determining an opera-

tor’s capability is a challenge because human capability is highly complex and variable.

A solution is to utilise empirical approaches which observe and critique the perfor-

mance of the operator performing tasks. A measure of their assistance requirements

is then derived from how well the tasks were executed. This is sometimes referred

to as performance-based assistance and has shown success in providing assistance well

suited to the needs of the operator. However empirical performance-based approaches

have inherent disadvantages. Numerous observations of previous task performances are

needed to gauge the operator’s assistance requirements, before which either excessive or

insucient assistance can be provided. Performance-based AAN also requires the tasks

to be well dened to be able to critique them based on some performance criterion.

This thesis presents a new AAN paradigm utilising models to estimate the assistance

requirements of the human operator. It combines a task-requirement model with an

operator-capability model to calculate how capable the operator is at performing de-

sired tasks. An estimate of the assistance required by the operator can then be derived

and subsequently used to govern the assistance provided by a robot during task exe-

cution. A benet of this approach is that no observations are needed to estimate an

operator’s assistance requirements, avoiding the limitations associated with empirical

AAN methods. A musculoskeletal model is used to represent the physical capabilities

of the operator. An optimisation model is developed to calculate the strength of the op-

erator taking into consideration limb pose, muscular impairment, and interaction forces

during task execution. The operator’s estimated strength is compared with the strength

required to perform the task to gauge their assistance requirements.

1.1 Background and Motivation

Modern robotics have been utilised to assist humans ever since they were rst put

into service for General Motors in 1961 [Hägele et al., 2008]. However only recently

are robotic systems which physically interact with humans being realised, and their

introduction into practice becoming reality. Traditional industrial robots, like those

2
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shown in Figure 1.1a do not physically interact with humans, rather they assist by

performing on our behalf repetitive, labour intensive tasks. Inherent safety risks require

that they remain isolated from any direct human contact whilst in operation.

(a) (b)

Figure 1.1: Examples of robotic systems. (a) Traditional robot manipulators
used in industry (www.kuka.com). (b) Hybrid assistive limb (HAL) full-body ex-
oskeleton, developed by Cyberdyne Inc (www.cyberdyne.jp).

The desire to have robots and humans work together has resulted in the research

eld of physical human-robot interaction, with ensuring human safety being of pri-

mary concern [De Santis et al., 2008]. New robotic methodologies such as low inertia

[Hirzinger et al., 2002; Zinn et al., 2004], mechanically compliant [Bicchi and Tonietti,

2004; Pratt and Williamson, 1995], or actively compliant [Hirzinger et al., 2001] robotic

systems have resulted in practical solutions that satisfy the tradeo between ensuring

safety whilst maintaining performance. The result has been a paradigm shift, with

robots emerging out from the isolated connements of traditional industry applications

to operate alongside and collaboratively with humans in industrial, nonindustrial and

domestic domains.

3
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Many manual tasks performed in industry are physically intensive and hence the

risk of injuries such as Musculoskeletal Disorders (MSD) are high. MSD are condi-

tions involving nerves, tendons, muscles, and the skeleton [U.S. Department of Health

and Human Services, 1997] accounting for 130 million health care encounters and cost

between $45 to $54 billion dollars annually in the United States [National Research

Council et al., 2001]. Causes include the repeated and prolonged performance of tasks,

particularly those requiring large physical exertion, or a mismatch between the task’s

physical demand and the person’s biological compatibility [Kumar, 2001]. With safe

and practical solutions available, physically assistive robots such as intelligent assist

devices (IAD) [Colgate et al., 2003] and exoskeletons [Brown et al., 2003; Dollar and

Herr, 2008; Kawamoto et al., 2003] like that shown in Figure 1.1b are being developed.

Such technologies can mitigate the risks leading to MSD and other injuries, providing

large personal and societal benets.

Continuing research is also seeing physically assistive robots being developed for more

exotic applications outside of traditional industry. The use of robotics in health care is

gaining attention, largely driven by the realisation that populations around the world

are ageing [United Nations. Dept. of Economic and Social Aairs. Population Divi-

sion, 2002]. In Australia the population aged over 65 will increase from 13% in 2007

to an estimated 23% in 2056, with a decline in the working population [Australian Bu-

reau of Statistics, 2009]. This dierence in age distribution is illustrated in Figure 1.2.

Pressure from an ageing population requiring increased health services, combined with

a decreasing working population capable of providing it will have signicant implica-

tions on existing health care systems [Swan, 2010]. Robotics has been identied as a

technology capable of mitigating the health care burdens of an ageing population by

assisting in a number of health care tasks beneting both health providers and patients

[Flandorfer, 2012; Meng and Lee, 2006; Sparrow and Sparrow, 2006]. For instance,

occupations involving patient handling have the highest incidence of MSD for any oc-

cupational group due to their physical demands [Morse et al., 2008]. Robotic systems

are being developed to physically assist nurses during patient handling in anticipation

of population ageing [Hu et al., 2011a; Yamamoto et al., 2004]. Another application

4
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Figure 1.2: Age distribution forecast in Australia from 2007 to 2056. Graph
reproduced from [Australian Bureau of Statistics, 2009].
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Figure 1.3: Stroke in Australia, by age and sex. (a) Prevalence in 2003. (b)
Incidence in 1997. Graphs reproduced from [Senes, 2006].
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is the rehabilitation and management of physically incapacitating disabilities such as

stroke. Stroke is a leading cause of adult disability in the United States [Lloyd-Jones

et al., 2009] with direct medical cost of $28.3 billion annually [Heidenreich et al., 2011].

With incidence increasing with age (shown in Figure 1.3) the prevalence in the US is

forecast to increase by 24.9% between 2010 and 2030, and increase the direct annual

costs by 238% [Heidenreich et al., 2011]. Much cost results from long term management

as 15%-30% of suerers are left permanently disabled, with 20% still requiring institu-

tional care three months after injury [Lloyd-Jones et al., 2009]. Studies using robots

during therapy for disabilities such as stroke have shown benets when compared to

little therapy [Takahashi et al., 2008] or conventional non-robotic therapy [Coote et al.,

2008; Hesse et al., 2005; Housman et al., 2009; Lum et al., 2002; Pohl et al., 2007].

There is clear motivation to utilise physically assistive robots for industrial and health

care applications. However for such technology to be benecial it is essential that they

operate in a manner suitable for the application. This can require assistance to be pro-

vided in a particular way, otherwise the desired benets are not realised and outcomes

may be worse than without using the technology all together. Consider a robot provid-

ing interaction forces to assist in lifting heavy objects. If the wrong forces are provided

(e.g. forces that don’t contribute towards a desired objective) then the technology may

provide more hindrance than assistance. Alternatively, in specic applications unique

benets may be achieved by providing assistive forces in an ingenious manner. Kaze-

rooni [1998] describes an exoskeleton-type robot assisting in a jackhammer task. Acting

as a mechanical interface between the tool and operator, the robot can be programmed

to reect only the low-frequency forces to the operator to remove the high-frequency

components which produce fatigue [Kazerooni, 1998]. This achieves dierent benets

compared to attenuating jackhammer forces without removing the high frequency com-

ponent. Another example is robotic rehabilitation where it is essential that assistance

be provided in such a way to promote recovery. Utilising a suitable assistance paradigm

is instrumental to the rehabilitation of the patient [Cai et al., 2006; Hogan and Krebs,

2004]. Inappropriate assistance paradigms can produce worse results when compared to

traditional non-robotic therapy [Hidler et al., 2009; Hornby et al., 2008]. This demon-
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strates how dierent techniques for providing robotic assistance can produce dierent

benets, or determine if any benet is achieved at all.

The Assistance-As-Needed (AAN) paradigm is an example of providing physical as-

sistance in a specic manner. Providing assistance specic to the needs of the operator

can achieve certain benets and be used to meet higher objectives relating to the ap-

plication. For example in many applications an objective is to encourage the operator

to contribute in the task being performed by providing the minimum amount of assis-

tance the operator requires to successfully perform it. This AAN paradigm has achieved

greater outcomes when compared to other assistance paradigms for specic applications.

For example to achieve ecacious neurorehabilitation following a stroke it is essential

that the patient actively participates during therapy [Hogan et al., 2006]. AAN which

promotes active participation by limiting assistance to the minimum the patient re-

quires has been shown to be well suited for this application. The AAN paradigm is also

applicable in other applications, for example Lynch et al. [2002] discusses a paradigm

for materials handling. The robot enforces motion constraints only in specic directions

the operator requires assistance due to little control or high risk of injury.

1.2 Research Question

Although the AAN paradigm has been shown to be well suited for specic applications,

there are challenges in developing robotic systems which provide assistance based on

the specic requirements of the operator. A measure of their assistance requirements

is needed, and obtaining this measure is dicult. Firstly the assistance the operator

requires depends on the task being performed. The more dicult a task is to accomplish,

the more assistance required to perform it. Furthermore the task’s requirements can

vary, either inherently during its execution, or from external disturbances. A worker

performing a materials handling task requires greater assistance the heavier the load

being lifted. A stroke patient supporting their upper limb against gravity has a reduced

range of motion because certain limb positions require more strength than they can

exert. The strength requirements of this task, and hence the assistance requirements
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of the patient change depending on their limb position. Such variations should be

accounted for when providing assistance as needed.

Secondly, the needed assistance also depends on the capability of the operator to per-

form the task. This introduces challenges as the capability of a person in performing

physical tasks varies amongst the population [Amell, 2004]. For applications in health

care where the operator has an impairment, variation in physical capability is further

exacerbated [Arva et al., 2004; Bohannon and Andrews, 1987; Mercier and Bourbonnais,

2004]. Other factors, both physiological and task related aect the ability to accomplish

physical tasks. Limb posture, motion, external forces, and fatigue are some examples.

Overall the human body is a highly complex system and estimating the physical capa-

bility of an individual is a challenge.

A solution is to use empirical performance-based methods to determine the assistance

an operator requires when performing tasks [Emken et al., 2005; Krebs et al., 2003;

Wolbrecht et al., 2007, 2008]. These approaches critique the operator as tasks are

executed to derive a performance measure, which is subsequently used to adapt robotic

assistance. The better the operator is judged to have performed, the less assistance

it is deemed they require, and assistance is adjusted accordingly. A disadvantage of

this approach is that numerous observations of tasks being executed are required. The

robot is essentially required to learn the appropriate assistance to provide based on

observation. This learning can take time, during which the assistance may be either

insucient or excessive in relation to the operator’s true requirements. If a disturbance

(e.g. an external force) is introduced, the system learns its eect on the assistance

requirements of the operator based on changes in their task performance. Again this

requires observations before it can adapt accordingly to the disturbance. If assisting

in a number of dierent tasks, each task’s requirements as well as the capability of the

operator to perform each task is likely to be unique. This requires more observations

for the more variations of tasks to be assisted. Furthermore it is required that the tasks

are well dened so they can be critiqued and a measure of the operator’s performance

during the task’s execution can be derived. In an industrial or rehabilitation context

this is acceptable as applications commonly involve the repeated execution of a few, well
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dened tasks. However is it desirable (or even inevitable) that in the future physically

assistive robotic technology will be used outside of such structured environments to

assist workers performing manual duties, or the incapacitated during activities of daily

living. In this scenario the robot is required to assist in numerous variations of tasks,

with operators requiring dierent levels of assistance for each.

The ideal Assistance-As-Needed system would be capable of determining the appro-

priate assistance the operator requires, specic for each task and for the individual

operator. Furthermore it would not be limited to tasks for which observations of past

performances are available. If a disturbance is measured or anticipated, it would be

able to predict its eect on the assistance requirements of the operator and adjust ac-

cordingly. These features require the use of a model to be able to predict assistance

requirements.

1.3 Scope

The work in this thesis investigates a model-based Assistance-As-Needed paradigm for

physically assistive robots. The paradigm utilises two models as the basis for estimat-

ing the assistance requirements of a human operator for desired tasks. The rst model

represents the task being performed and is used to calculate the physical strength ca-

pabilities required in order for it to be performed. The second model represents the

human operator and is used to estimate their individual physical strength capability

with respect to the desired task. Results of the two models are combined to gauge the

assistance required by the operator, and subsequently used to control a robotic system

providing assistance.

A musculoskeletal model is used to represent the operator with their physical capabil-

ity dened at the muscular level. An optimisation model is developed which applies this

muscular capability towards the desired task. With a model that adequately represents

the operator, eects from limb position, movement, impairment, task variation, and

other factors can be calculated. The advantage of this approach is that factors aecting

the operator’s assistance requirements can be predicted, without the need for previous

9
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observation or measurement of task performances. Furthermore since the capability of

the operator is represented at the muscular level and is independent of the task being

performed, their assistance requirements for arbitrary tasks can be estimated and is not

limited to tasks for which previous observations are available.

The use of a model representing a system as complex as the human body raises many

questions. This thesis investigates the feasibility of using a musculoskeletal model to

estimate the capability of a human operator, and subsequently govern robotic assistance.

The development of musculoskeletal models or their adaption to represent a human

operator is outside the scope of this work, but is considered for future work. The

scope is limited to assisting the upper limb only, however wider use of the approach

presented may be applicable (e.g. for the lower limbs). Strength is used as the measure

representing the operator’s assistance need. It is understood that other factors, not

just strength, are involved in the ability to accomplish tasks. Such factors are not

incorporated in this present work, but their consideration in future work is discussed.

The AAN paradigm has gained attention in the eld of rehabilitation robotics and

hence many references will be made to this specic application. However the model-

based AAN paradigm this thesis presents is not limited to this, with potential benets in

many applications where robotic assistance based on the operator’s physical capabilities

is required.

1.4 Contributions

The following are the main contributions from the work presented in this thesis:

• Development and demonstration of a framework for model-based robotic

Assistance-As-Needed consisting of two models to estimate the assistance require-

ments of a human operator with respect to desired tasks.

• An optimisation model is developed utilising a musculoskeletal model to estimate

the physical strength capabilities of a human’s upper limb at the hand. Applica-

tion of this model to estimate the eects of limb pose, task variation, and physical
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impairment on a subject’s strength is presented. The calculated eects on strength

were consistent with behaviours described in the literature and with anticipated

results.

• A technique for analysing how physical impairment at the muscular level aects

a subject’s capability for performing physical tasks. This technique allows the

magnitude of an impairment and its distribution across dierent muscles to be

analysed in terms of its eect on a person’s strength at their hand, and their

assistance requirements for dierent tasks. It also allows analysis of the tasks

most aected by dierent muscular impairments.

• Practical evaluation of the model-based Assistance-As-Needed paradigm utilising

a musculoskeletal model. A robotic exoskeleton platform was specially developed

to implement the paradigm. The robot provided assistance to a subject performing

a number of experimental tasks as the model-based AAN paradigm attempted

to adapt assistance to their specic physiological needs. Results showed that

assistance was targeted towards the requirements of the subject, giving promise

to the proposed paradigm and encouraging future research.

• Development of an experimental robotic exoskeleton platform specially designed

for evaluation of the model-based AAN paradigm. The platform is capable of

providing controllable assistance to the upper limb during physical tasks. Analysis

demonstrated the suitability of using virtual loads to evaluate utilising the robot

to assist in numerous tasks with variations. This platform is a valuable tool for

research and continues to be used.

The following list are publications resulting from the research presented in this thesis:

• Carmichael, M.G., Liu, D., Estimating Physical Assistance Need Using a Mus-

culoskeletal Model, IEEE Transactions on Biomedical Engineering, volume 60,

pp.1912-1919, 2013.

11



CHAPTER 1. INTRODUCTION

• Carmichael, M.G., Liu, D., Experimental Evaluation of a Model-based Assistance-

As-Needed Paradigm using an Assistive Robot, Engineering in Medicine and Biol-

ogy Society, EMBC, 2013 Annual International Conference of the IEEE , pp.866-

869, Jul. 3 2013-Jul. 7 2013.

• Carmichael, M.G., Liu, D., Admittance Control Scheme for Implementing Model-

based Assistance-As-Needed on a Robot, Engineering in Medicine and Biology So-

ciety, EMBC, 2013 Annual International Conference of the IEEE , pp.870-873,

Jul. 3 2013-Jul. 7 2013.

• Carmichael, M.G., Liu, D., A Task Description Framework for Robotic Rehabili-

tation, Engineering in Medicine and Biology Society, EMBC, 2012 Annual Inter-

national Conference of the IEEE , pp.3086-3089, Aug. 28 2012-Sept. 1 2012.

• Carmichael, M.G., Liu, D., Towards Using Musculoskeletal Models for Intelligent

Control of Physically Assistive Robots, Engineering in Medicine and Biology So-

ciety, EMBC, 2011 Annual International Conference of the IEEE , pp.8162-8165,

Aug. 30 2011-Sept. 3 2011.

• Carmichael, M.G., Liu, D., Waldron, K.J., Investigation of Reducing Fatigue and

Musculoskeletal Disorder with Passive Actuators, Intelligent Robots and Systems

(IROS), 2010 IEEE/RSJ International Conference on , pp.2481-2486, 18-22 Oct.

2010.

1.5 Thesis Structure

Chapter 2 reviews work related to the model-based AAN paradigm this thesis presents.

Existing approaches for controlling assistive robots and the assistance they provide are

reviewed, with a focus on the Assistance-As-Needed paradigm. Current AAN method-

ologies are described including the challenges they face and their limitations. The

methodologies used in musculoskeletal modelling are also reviewed.

Chapter 3 presents the framework for model-based AAN used for estimating the

assistance requirements of a person performing physical tasks. A generalisation of the

12
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AAN paradigm is used as the basis for the framework which uses models to calculate

task requirements and human capabilities. Two case studies simulating upper limb

tasks demonstrate the framework, and how it can be used to estimate the assistance

requirements of a person with respect to physical tasks.

Chapter 4 develops an optimisation model to estimate the capability of a human to

perform physical tasks. The optimisation utilises a musculoskeletal model to calculate

the strength of a human’s upper limb at the hand in directions the task requires. The

model is used to estimate strength and how it is aected by limb pose, direction of exter-

nal force during task execution, and muscular impairment. Evaluation of the estimated

upper limb strength produced qualitative results consistent with the literature.

Chapter 5 implements the model-based AAN paradigm on a specially developed upper

limb robotic exoskeleton. The robot assists a subject performing tasks with the model-

based AAN paradigm governing the assistance the robot provides. Evaluation of the

paradigm is made on its ability to target assistance towards the subject’s muscles dened

as impaired when they are required by the tasks performed.

Chapter 6 summarises the work presented in this thesis and its contributions. The

outcomes of this work and topics for future work are discussed.

13
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Related Work

This chapter reviews work related to the model-based Assistance-As-Needed (AAN)

paradigm that is presented in this thesis. Section 2.1 introduces examples of assistive

robotic systems currently available or being developed for various applications. Focus

is on systems which provide physical assistance, however other forms of assistive robot

are also presented.

Section 2.2 provides a non-exhaustive review of control methodologies commonly

utilised by robotic systems to provide physical assistance. Dierent control schemes

and their suitability for use in applications where robot and human are in physical in-

teraction are discussed. Assistance paradigms operating above these control schemes to

govern their assistance are also reviewed, with a focus on the AAN paradigm.

Section 2.3 reviews the methodologies used in musculoskeletal modelling. The model-

based AAN paradigm developed in this thesis makes use of musculoskeletal models to

estimate the physical capabilities of the human operator, and hence a background is

required. Applications using musculoskeletal models are also detailed.

14
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2.1 Assistive Robotics

Robots provide assistance to humans in many dierent forms and for a wide range of

applications. This thesis relates to robots that provide assistance in the AAN paradigm

which inherently expects the operator to contribute (when possible) to the task be-

ing performed. Hence AAN is typically used for applications where the human and

robot work collaboratively to perform physical tasks. This section presents examples

of assistive robotic systems used in a number of dierent applications, with a focus on

physically assistive systems relevant to the AAN paradigm. Some examples of assistive

robots less relevant to AAN are also described.

2.1.1 Industry

Modern robotic systems were rst designed for industry, so it is not surprising that the

rst examples of robots working in physical collaboration with humans were developed

for industrial applications. A common motivation for robotics in industry is to reduce

the risk of injury inherent in physically intensive tasks. A form of robot often used

to meet this objective is the Intelligent Assist Device (IAD). IADs are single or multi-

axis devices that assist their human operators by providing a variety of benets such

as strength augmentation and motion guidance [Colgate et al., 2003]. The strength

and endurance of the robot is exploited while the human operator provides the signals

required for ne motion control. A common form of IAD is an overhead hoist mounted

on a ceiling, wall, or gantry like that shown in Figure 2.1a. It uses an actuated cable

to reduce the eective weight of lifted objects, controlled by the movements of the

operator’s hands detected using sensors. The operator is proximate to the load being

lifted and controls the task via direct physical interaction with either the robot or the

load itself. This gives the operator the advantage of immediate apprehension as tasks

are performed, allowing easy correction of minor issues (e.g. obstructions such as cables

during assembly) and provides haptic feedback [Bicchi et al., 2008]. This is in contrast

to teleoperation where the operator is distanced from the task and controls the robot

by other means, such as a joystick or a master device.
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Advancements in robotics are seeing more sophisticated systems such as robotic ex-

oskeletons and human extenders being developed. Exoskeletons like that shown in

Figure 2.1b can be considered as a less structured form of IAD, having a kinematic

design matching that of its operator allowing it to follow their motions. Like IADs they

can assist workers performing physical tasks. The Wearable Agri-Robot [Toyama and

Yamamoto, 2009] is a full body exoskeleton designed for farming tasks required to be

performed by hand. Development is motivated by increasing pressures expected to be

placed on the agriculture industry due to an ageing population. The robot has 10 active

joints (shoulders, elbows, hips, knees, ankles) actuated by motors and has a total weight

of 30kg.

(a) (b)

Figure 2.1: Physically assistive robotic systems for industrial applications. (a)
Intelligent Assist Device (IAD) [Colgate et al., 2003]. (b) The Wearable Agri-Robot
exoskeleton [Toyama and Yamamoto, 2009].

2.1.2 Assisted daily living

Robots can be used to assist during activities of daily living. Many robotic systems are

being developed for applications in elderly care, largely due to the population ageing

that is predicted around the world. Honda has developed assistive devices to assist with

walking [Honda, 2009]. The Stride Management Assist (Figure 2.2a) is a wearable device

designed for people who have weakened leg muscles but are still capable of walking. The
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system weighs 2.8kg and provides assistance to the hips using two brushless DC motors.

Sensors measuring hip angle are used to provide cooperative assistance which lengthens

and regulates the wearer’s walking stride making it easier to walk. Another device is the

Bodyweight Support Assist (Figure 2.2b) designed to assist persons who have weakened

leg muscles, or healthy persons during physically demanding tasks. Weighing 6.5kg, the

system uses motors to help support a percentage of the wearer’s body weight, reducing

the load in the hips, knees and ankles during activities such as walking, climbing or

descending stairs, or standing in semi-crouched positions. Both systems operate for

approximately 2 hours powered by a rechargeable lithium ion battery.

(a) (b)

Figure 2.2: Walking assist devices from Honda (www.walkassist.honda.com).
(a) Stride Management Assist device. (b) Bodyweight Support Assist device.

Wearable robots can assist persons with physical impairments to replace the func-

tionality lost in their impaired limbs. The Independent Walk Assist (Figure 2.3a) is

being developed by Toyota to support independent walking for people whose ability to

walk has been impaired from leg paralysis or other causes. Mounted on the impaired

limb it detects the wearer’s intention using thigh position and foot load sensors. It then

assists bending of the knee as the leg is brought forward to facilitate natural walking

and provide reliable support when body weight is supported by the knee. The system

weighs 3.5kg and is aimed for commercialisation from 2013 [Toyota, 2011].
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Providing assistance to both the upper and lower body is the HAL-5 (Hybrid Assistive

Limb) full body exoskeleton [Kawamoto et al., 2003; Sankai, 2011] shown in Figure 2.3b.

Sensors are used to measure joint angle, acceleration, and oor reaction force. It also

uses bioelectrical sensors to measure the wearer’s muscle activity from which their own

joint torque is estimated, and subsequently used to control the assistive torque provided.

This allows HAL to assist a healthy person in activities such as standing, walking,

climbing up and down stairs, and lifting objects up to 70kg. Because the support is based

on bioelectrical signals, interaction with it is more intuitive than with manual control

inputs like a joystick. When used as an assistive device by someone with a physical

impairment the bioelectrical signals alone are sometimes not enough since such signals

can be aected by the impairment. For such applications HAL uses a hybrid approach

using an autonomous control that observes the wearer to identify their intention. This

autonomous control can make use of what bioelectric signals are available to provide

the appropriate support to the user. The system runs for 2 hours and 40 minutes on

battery and has a total weight of 23kg [Sankai, 2011].

(a) (b)

Figure 2.3: Exoskeletons for replacing lost functionality due to impairment. (a)
Independent Walk Assist device from Toyota [Toyota, 2011]. (b) HAL-5 (Hybrid
Assistive Limb) exoskeleton from Cyberdyne Inc (www.cyberdyne.jp).
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The aforementioned examples of robots for assisted daily living all worked collab-

oratively with the wearer to augment their capabilities (or the capability remaining

after impairment). Assistive robots can also provide the support required when the

operator has lost all functionality due to severe impairment. Figure 2.4 shows a num-

ber of exoskeleton devices developed recently which allow paraplegics who have lost all

functionality in their lower limbs to walk.

(a) (b) (c)

Figure 2.4: Lower limb exoskeletons for paraplegics. (a) ReWalk from Argo
Medical Technologies (www.rewalk.com). (b) Ekso from Berkeley Bionics (www.
eksobionics.com). (c) Rex from Rex Bionics (www.rexbionics.com)

The ReWalk exoskeleton from Argo Medical Technologies (Figure 2.4a) is a commer-

cial device currently available in Europe. It provides battery powered support to the

wearer’s knees and hips to enable paraplegics to stand upright, walk and climbs stairs

with the aid of crutches. An on-board computer uses motion sensors to detect subtle

changes in the user’s centre of gravity which it uses to control movement. Users achieve

walking by repeated body shifting to produce sequences of steps. Another system is the

Ekso (Figure 2.4b) from Berkeley Bionics which is a hydraulically actuated exoskele-

ton allowing paraplegics to stand and walk with the assistance of crutches or a walker.

Using force and motion sensors it interprets the wearer’s intentions to orchestrate the

appropriate stride. Powered by lithium batteries it drives actuators at the knees and
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hips allowing walking speeds up to 1.6 km/h. It is expected to be available for private

use in 2014. Another system is the REX exoskeleton by Rex Bionics (Figure 2.4c). This

system takes a dierent approach to assisting persons with impaired mobility. The robot

supports the wearer’s legs providing stable support whether the system is powered on

or o. Commands are given to the robot from the user via control pad and joystick to

perform motions such as standing, sitting, walking, turning, ascending and descending

stairs. Since the system is fully stable the user does not require the use of crutches

or a walker to stand. The REX can walk continuously for over two hours and weighs

approximately 38kg. The REX has been commercially available since 2011.

2.1.3 Rehabilitation

Rehabilitation is gaining much interest in the eld of robotics. An objective of re-

habilitation robotics is to improve the eciency and ecacy of patient recovery from

conditions such as stroke, cerebral palsy, spinal cord injury or other incapacitating dis-

abilities requiring lengthy physical rehabilitation post injury. Recently a number of

robotic systems for providing therapy have become commercially available.

The InMotion Arm Robot (Figure 2.5) is a system based on the MIT Manus [Krebs

et al., 1998] designed to assist the upper limb of patients as they perform therapy for

stroke, cerebral palsy and other neurological conditions. It assists the patient’s shoul-

der and elbow during horizontal planar movements as therapy is performed. A visual

interface instructs the patient to perform specic arm movements within the context of

a video game. Assistance is provided to help the patient initiate and coordinate move-

ments, during which the performance of the patient is assessed. This is used to adapt

assistance accordingly [Krebs et al., 2003] as well as provide clinicians with quantiable

feedback on the progress of the patient during therapy.

Commercially available from Hocoma are a range of robotic systems for the rehabilita-

tion of both the upper and lower limbs. An example is the ArmeoPower, an upper limb

exoskeleton for neurorehabilitation shown in Figure 2.6a. Based on the ARMin robot

[Nef et al., 2006], this system uses six active degrees of freedom to provide arm support
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Figure 2.5: The InMotion Arm Robot by Interaction Motion Technologies (www.
interactive-motion.com).

(a) (b)

Figure 2.6: Rehabilitation devices available from Hocoma (www.hocoma.com). (a)
ArmeoPower upper limb rehabilitation robot. (b) LokomatPro lower limb rehabil-
itation robot.
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in a large 3D workspace. Patients utilise their arm as they perform a range of games

and motivational exercises designed to simulate regular activities of daily living. The

system provides motivational feedback to the patient whilst it adjusts the assistance it

provides based on the patient’s needs and personal recovery. Monitoring of recovery is

done by assessing the patient’s ability to move using measures such as reaching distance,

reaction time, velocity, precision, coordination, range of motion, strength and limb sti-

ness. Another system from Hocoma is the LocomatPro, a lower limb exoskeleton shown

in Figure 2.6b. It is a treadmill-based system which administers functional locomotion

therapy to the lower limbs of a patient using four actuators located at the knee and

hip joints. An active body weight support system provides gravity compensation to the

patient. Measuring gait and patient activity using force sensors in the robot’s drive

system, it adapts assistance using performance measures such as hip and knee stiness,

strength, and range of motion. The system enables a single therapist to administer the

therapy, unlike manual training which is labour intensive, requires sucient sta, and

can only be performed in relatively short sessions.

2.1.4 Other examples of assistive robots

There are many other types of assistive robots that can operate with varying levels of

physical interaction with the user. Robotic prosthetics like the Luke Arm from DEKA

[Adee, 2008] shown in Figure 2.7a can return some of the functionality which was lost

due to a missing limb. Other robotic devices can provide assistance by performing

dedicated every day tasks in the home. Robotic feeders like the MySpoon shown in

Figure 2.7b can help the elderly or disabled feed themselves, reducing the aid required

by care givers. Robots can also assist health care givers during patient handling which

is a physically intensive task. An example is the RIBA-II (Robot for Interactive Body

Assistance) [Riken, 2011] shown in Figure 2.7c which is a mobile robot with two arms for

lifting and carrying patients. Assistance provided by robots is not limited to physical

assistance. Socially assistive robots can provide a number of benets through non-

physical social interaction. Shown in Figure 2.7d is the Paro robotic pet modelled o a

baby harp seal. Used in animal assistance therapy, it is designed to elicit an emotional
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response and calming eect in the patients of hospitals and nursing homes. Using tactile

sensors it responds to petting with sounds and movements. It has been commercially

available since 2004.

(a) (b)

(c) (d)

Figure 2.7: Other examples of assistive robotic systems for various applications.
(a) The Luke Arm from DEKA (www.dekaresearch.com). (b) MySpoon feeding
robot from Secom (www.secom.co.jp). (c) RIBA-II patient handling robot from
Riken (www.riken.jp). (d) Paro socially assistive robot (www.parorobots.com).

These robotic systems all provide some form of assistance to their human operator.

Typically they do not involve the robot and human working collaboratively together to

share the eort required in performing tasks, and hence they are not particularly relevant

with respect to AAN. However they do demonstrate that there are numerous tasks in

which robots can provide assistance in a wide range of applications and industries.
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2.2 Control of Physically Assistive Robots

The control of robotic systems is a fundamental area of research in robotics. This sec-

tion is a non-exhaustive review of the methodologies and techniques used for controlling

physically assistive robots related to the work in this thesis. To avoid confusion the

terms Control Scheme and Assistance Paradigm are dened here to make a clear dis-

tinction between the lower and higher levels of an assistive robot’s control (represented

in Figure 2.8) and are used consistently throughout this thesis.
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Figure 2.8: Distinction between the control scheme and the assistance paradigm
of an assistive robot. At the lower level the Control Scheme controls the robot’s
active behaviour using feedback from the operator and the environment as tasks are
performed. The Assistance Paradigm operates at a higher level above the control
scheme to govern how assistance is administered to the operator.

Control Scheme: This is what would traditionally be referred to in the literature as

the robot’s control system. It is responsible for controlling the actuation of the robot’s

hardware, usually in the form of a feedback loop using information acquired from the

robot’s sensors (e.g. encoders). This actuation determines the robot’s active behaviour,

and consequently its interaction with the operator and the environment. It is from this

interaction the physical assistance is provided. Some examples of robot control schemes

include trajectory tracking, impedance control, and admittance control.

Assistance Paradigm: This refers to paradigms which operate above the robot’s

control scheme to govern how assistance (provided via the control scheme) is adminis-

tered to the operator. Often assistance is not governed at all, leaving it purely dependent

on the control scheme. For example a robot may use a control scheme to assist in lifting

heavy objects by supporting a percentage of the object’s weight. The simplest assistance
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paradigm would be to set this percentage to some xed value resulting in a constant

level of assistance. Alternatively a more sophisticated paradigm might adjust the per-

centage of the load supported by the robot to achieve some higher level objective, for

example to ensure active participation of the operator.

2.2.1 Control schemes in assistive robotics

Motion control schemes

Industrial robots are traditionally required to perform repeated motions with high posi-

tioning accuracy and repeatability [Hägele et al., 2008] and hence motion-based control

strategies are common. Traditional motion control consists of planning a trajectory

as to perform the desired task whilst avoiding problems such as collisions [Kavraki

and LaValle, 2008], and then controlling the robot as to carry out the planned motion

[Chung et al., 2008]. It typically requires a detailed description of the robotic system

and its environment to be known [Siciliano and Villani, 1999] and hence is suitable for

repetitive, structured, and well dened industrial tasks.

Applications where a robot interacts and provides physical assistance to its human

operator are not suited to pre-planned motions as accurate task planning is required,

and human collaboration is inherently dicult to dene [De Santis et al., 2008]. Motion

control may be used to assist an operator who issues commands from an input device

such as a joystick, however this distances the operator from the task and can require ad-

ditional cognitive eort. Instead it is desirable to control the robot with direct physical

interaction, placing the operator proximate to the task and to provide haptic feedback

[Bicchi et al., 2008]

Although motion control alone is not commonly used as a control scheme for physically

assistive robots, motion control is often used within more sophisticated control schemes.

For example in admittance control the robot is operated such that it moves in response

to measured external forces. An outer control loop uses force measurements to produce

a desired trajectory, and an inner motion control loop is then used to follow it. The
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result is a type of indirect force control scheme.

Force control schemes

Force control schemes are used to control the forces resulting from the robot interacting

with its environment (including its human operator). They are essential in achieving

robust behaviour in poorly structured environments and for safe operation in the pres-

ence of humans [Villani and Schutter, 2008]. Controlling the forces portrayed by the

robot during physical interactions allows means for ensuring safety of the operator, and

hence force control schemes are commonly used in physically assistive robotic systems.

Force control schemes can be categorised as being either direct or indirect [Siciliano and

Villani, 1999].

Direct force control uses measurements from force sensors as feedback to create a

closed force-feedback loop. An example is hybrid control [Raibert and Craig, 1981]

where the force and position in orthogonal directions are controlled simultaneously.

Contact forces are controlled using feedback of the measured force, whilst orthogonal

directions are under position control. This scheme requires a detailed model of the

environment which in most practical situations is not available [Siciliano and Villani,

1999]. A modied scheme is parallel force/position control, which can be used when

a detailed environment model is not available. It combines force and position controls

using a priority strategy such that the force control always prevails [Chiaverini and

Sciavicco, 1993].

Indirect force control uses the motion of the robot to indirectly control interac-

tion forces. Approaches include damping [Whitney, 1977], stiness [Salisbury, 1980],

impedance [Hogan, 1985], and admittance [Kazerooni et al., 1986a,b] based schemes.

A model of a dynamic system (typically spring-mass-damper) is used to relate robot

forces to its motion. The robot is then controlled as to behave as this dynamic system

in response to external interactions. Impedance control uses deviations in position mea-

surements to calculate the reaction forces the desired dynamic system would produce.

These forces are then actuated by the control scheme. Admittance control operates the
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opposite way, reacting to measured external forces by generating appropriate motions.

Later in this work an admittance control scheme is utilised for experimentation. Sec-

tion 5.1.3 describes the admittance control and how it was implemented on the robotic

system. For additional information on the current theory and practices of admittance

control readers are directed towards the literature [Villani and Schutter, 2008].

The performance of force control schemes relies largely on the construction and actu-

ation of the robot. Impedance control requires a robot with accurate position sensing

and high bandwidth force servo capabilities. This implies that actuators should be al-

most ideal force sources and therefore have low inertia and friction, which puts specic

demands on the robot’s design [van der Kooij et al., 2006]. Alternatively, admittance

control requires accurate force sensing and high bandwidth, accurate positioning servo

capabilities. This implies the use of high power actuators and a robot with sti con-

struction [van der Kooij et al., 2006].

These schemes require the robot to be tted with force/torque sensors. If interac-

tion only occurs at the robot’s end-eector then often a sensor is put into the wrist.

Robots with several points of interaction (e.g. a full body exoskeleton) require force

measurements at each interaction point [van der Kooij et al., 2006]. Alternatively, high

precision torque sensing can be incorporated into the robot’s joints directly as done in

the DLR-III robot [Hirzinger et al., 2001].

2.2.2 Physical assistance paradigms

Physical assistance paradigms refer to the manner in which the assistance provided via

a robot’s control scheme is governed as to achieve some higher level objective relevant

to the application. An example is the Assistance-As-Needed (AAN) paradigm, which

is often used to adjust assistance to the specic requirements of the operator with the

objective of maximising operator participation during tasks. This has been shown to

be benecial in applications such as rehabilitation.

The following are examples of dierent assistance paradigms. A taxonomy of such

paradigms has yet to be established, so categorisation is made with best eorts to group
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paradigms based on the mechanisms used to govern assistance. The AAN paradigm is

detailed separately in Section 2.2.3

Force reection

Force reection paradigms aim to control the force that the operator experiences, typi-

cally such that they are a scaled down equivalent of the forces required by the task being

performed. Other common names for this paradigm include force feedback, strength

augmentation or amplication, and load sharing. The robot is operated using some

form of control scheme (e.g. admittance or impedance control) which is arranged such

that the load felt by the operator is some set percentage of the total task load. This

provides the operator with haptic feedback of the task being performed while less eort

is required from them to perform it. The strength and endurance of the robot is ex-

ploited to assist the operator; however the operator has total cognitive control over the

system to decide how the task is performed. Because assistance is the result of reducing

the forces required from the operator, this paradigm is often used in applications which

require large physical eort, for example materials handling.

Force reection was used in one of the rst exoskeleton robots. The Hardiman robot

(Figure 2.9a) developed in the 1960s by General Electric was an early and ambitious at-

tempt at an assistive robot for materials handling. It consisted of a pair of geometrically

superimposed robotic exoskeletons operating in a master-slave conguration. With the

master exoskeleton worn by the operator it would provide them with force feedback

as the slave exoskeleton performed the physically intensive task. The force feedback

was scaled down such that the operator’s strength and endurance would be amplied

by a factor of 25:1 [Makinson, 1971]. Its success was limited and because of instability

problems it was never tested with a human on board [Kazerooni, 2008; Makinson, 1971].

Greater success was achieved by Kazerooni in developing robots to assist manoeu-

vering large loads. These human extenders (Figure 2.9b) did not use a master-slave

conguration but instead acted as a single intermediatory device between the load and

operator. Load forces were transmitted through the robot with sensors used to measure
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robot interaction forces between both the load and operator, which were used by the

robot’s control scheme to generate a motion trajectory. This admittance-type control

scheme is congured such that the force felt by the operator is a scaled down representa-

tion of the force between the robot and the load. The amount of assistance provided is

determined by how much this feedback force is scaled down [Kazerooni, 1998]. IADs in

industry use a similar approach by supporting a xed percentage of lifted loads, scaling

down the apparent weight felt by the operator [Colgate et al., 2003].

(a) (b) (c)

Figure 2.9: Physically assistive robotic systems that use force reection
paradigms. (a) Hardiman by General Electric [Makinson, 1971]. (b) Human
extender [Kazerooni, 1998]. (c) EMG-controlled knee exoskeleton [Fleischer and
Hommel, 2008].

Rather than using sensors to measure the interaction forces between the robot, oper-

ator, and the task being performed, robots such as the knee exoskeleton developed by

Fleischer and Hommel (Figure 2.9c) use electromyography (EMG) signals of the opera-

tor’s muscles to infer the muscular torque in the joints of the operator. This estimate of

operator joint torque is multiplied by some gain and then used to control the assistive

torque provided by the robot [Fleischer and Hommel, 2008]. Since the robot’s torque is

proportional to the torque in the operator’s knee, only a portion of the task force is felt

by the limb. This approach can be considered as another form of force reection.

29



CHAPTER 2. RELATED WORK

Guidance

In applications where a person is maneuvering a load, assistance can be provided not

only by reducing the magnitude of the load felt by the operator, but also in the form

of robotic guidance. Bicchi et al. [2008] describes an IAD designed by Fanuc which

incorporated virtual walls used as a funnel shape to assist moving a payload without

collision.

A novel approach named Collaborative Robots (Cobots) [Peshkin et al., 2001] pro-

vides guidance by enforcing passive constraints on motion. The constraint directions

are actively servo-controlled but no energy is transferred to the load. The system is

passive and therefore is stable and safe. Energy required for motion must come from

the operator working hands-on with the load, but guidance can assist the operator by

slowing down the load and guarding against collisions.

Frequency/tremor suppression

Assistance can be provided by suppressing the frequency component of tasks. For

example when using an assistive robot in a jackhammer task consisting of unwanted

high frequency forces, these forces can be ltered so the operator feels only the scaled-

down low-frequency components of the task [Kazerooni, 1998]. Assistance comes not

only from a reduction of the load felt by the operator, but also how this force feedback

is shaped. Frequency suppression is also implemented in surgical robots to lter out

the tremor in the hands of a surgeon during precise hand motions before such motions

are used to guide the path of surgical instruments under robotic control [Guthart and

Salisbury, 2000; Taylor et al., 2008].

Rocon et al. [2007] developed an exoskeleton to suppress tremor in the upper limb

for persons with disability. Information from sensors measuring limb motion are pro-

cessed to discriminate between voluntary limb movement and tremor. The exoskeleton

then attempts to suppress the tremor using impedance or active compensation control

schemes. Experiments showed success in suppressing a signicant component of tremor

in patients tested.
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Precision/dexterity assistance

Applications such as surgery require precise, dexterous movements. Robots can be used

to enhance these capabilities. The daVinci surgical system [Guthart and Salisbury,

2000] shown in Figure 2.10a uses the robot to position and manoeuver the surgical

instruments. The robot is operated as a slave device, performing operations instructed

by the surgeon at a master console. Dexterity is increased by the robot having a larger

range of motion than the natural range of motion of the surgeon. Scaling of the motion

between the master and slave allows the surgeon to manoeuver surgical instruments

with greater precision than would typically be possible by hand. For example a 3:1

scaling allows a 3cm input from the surgeon at the master end to produce a 1cm output

by the robotic slave, making delicate motions easier to perform [Guthart and Salisbury,

2000].

(a) (b)

Figure 2.10: Robots which scale up or down operator motions. (a) The daVinci
surgical robot system. (b) The Big Arm materials handling system by Raytheon
[Raytheon, 2012].

As well as improving precision by scaling down the movements of a human, robots can

scale up human movement to increase their reach. The Big-Arm Teleoperation System

by Raytheon shown in Figure 2.10b uses a master-slave conguration to allow a human

operator to control either a single or a pair of robotic arms. These large arms have a

reach of over 2 metres and allow large objects weighing up to 180kg to be manipulated

with ease [Raytheon, 2012].
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2.2.3 The Assistance-As-Needed (AAN) paradigm

As its name suggests, the Assistance-As-Needed (AAN) paradigm aims to provide the

operator with assistance specic to their individual requirements. This level of assistance

depends on both the requirements of the task being performed, and the capabilities of

the operator to perform it. For example if the diculty of a task is increased then

the assistance provided by the robot should be increased accordingly. Likewise if the

capability of the operator to perform the task increases, assistance should be reduced.

If the operator does not require assistance, then no assistance should be provided.

The paradigm can be implemented in dierent ways to achieve objectives related

to the application. For example in physically intensive industrial tasks the operator’s

requirement may be dened as the assistance required so that they can accomplish tasks

whilst also being provided enough assistance such that the risk of injury is reduced to

acceptable levels. In an application described by Lynch et al. [2002] robotic trolleys are

used to guide heavy loads manoeuvered by workers with the objective of reducing the

forces between the load and worker in the directions they require greater assistance due

to higher risk of injury.

A common objective is to assist an operator as they perform tasks whilst encouraging

them to contribute as much as they can. This is achieved by providing the minimum

amount of assistance they require in order for the task to be successfully performed. Due

to the nature of this paradigm and how it administers assistance, it has gained much

attention in the area of rehabilitation robotics. Typical rehabilitation for conditions

such as stroke involve patients undergoing physical therapy sessions with the aim of

improving the functional ability of their impaired limbs. Robotic rehabilitation aims

to improve the eciency and ecacy of patient recovery, using robots in the role of

physiotherapists to administer therapy. Therapy often involves the therapist (or robot

in the case of robotic rehabilitation) providing assistance to the patient as they perform

tasks using their impaired limb. These tasks contain motion and/or force components,

and depending on the severity of the patient’s impairment, are often unable to be

performed without the aid of external assistance. Much research has been done on
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developing new control strategies to improve rehabilitation ecacy [Marchal-Crespo

and Reinkensmeyer, 2009]. Outcomes have shown that the quality of the recovery is

largely dependent on how assistance during therapy is provided. For example using a

robot to continuously manoeuver a limb as the patient remains passive has benets such

as preventing contracture [Liebesman and Cafarelli, 1994] and increasing joint integrity

[Lynch et al., 2005], but does not facilitate motor neuron recovery [Hogan et al., 2006].

It has been shown that patient active participation in the performance of tasks during

therapy is essential for facilitating neurorehabilitation [Hogan et al., 2006]. Because the

AAN paradigm inherently forces the patient to actively participate in the performance

of tasks it is well suited for applications such as neurorehabilitation.

The primary challenge in AAN is determining the true assistance requirements of

the operator. Estimating the assistance required to exactly ll the void between the

diculty of the task and the capabilities of the operator (if a void exists at all) is

challenging, mainly due to the highly complex factors aecting a human’s capability to

perform tasks. The physical capability of an operator is specic to the individual, and

varies amongst the population. Furthermore, in health care applications this variation

is exacerbated by any physical impairments resulting from a patient’s disability [Arva

et al., 2004; Bohannon and Andrews, 1987; Mercier and Bourbonnais, 2004]. Adding to

the diculty is that the task itself can vary, either inherently during its execution or

due to external disturbances.

Empirical performance-based AAN

A solution to determining the assistance requirements of the operator is to use empir-

ical methods. As the operator (assisted by the robot) performs a task, task related

measurements obtained from the robot (e.g. movements or force interactions) are ac-

quired. Using this information the performance of the operator is critiqued based on

some predened criterion. Based on how well the operator is deemed to have per-

formed the assistance is adjusted. If the operator performs the task well then they are

provided less assistance, and vice versa. This approach is sometimes referred to as pro-

viding performance-based assistance. Robots providing performance-based assistance
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are prone to a phenomenon called slacking [Israel et al., 2006; Wolbrecht et al., 2008].

Slacking is thought to be a natural consequence of the human motor system adapt-

ing to novel dynamic environments where by the motor system attempts to minimise

both task error and physical eort [Emken et al., 2007; Secoli et al., 2011]. To combat

slacking, performance-based AAN solutions can incorporate a strategy that continually

challenges the operator. A forgetting factor [Emken et al., 2005] can be implemented

which slowly reduces the assistance provided by the robot over time. A generalisation

of a performance-based AAN control is shown in Figure 2.11 where the outer loop rep-

resents the operator’s performance being critiqued and subsequently used to adapt the

robot’s assistance. Depending on the application, this outer loop may operate in real

time to adapt assistance during use. Alternatively this outer loop may operate oine,

using information from previous task sessions to calculate the appropriate assistance to

provide in the next.
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Figure 2.11: Generalisation of performance-based Assistance-As-Needed. The
robot provides assistance to the operator via a control scheme, with feedback used
to critique their performance against some predened criterion. Based on how
the operator is deemed to have performed the assistance is adjusted. A forgetting
factor can be utilised to continually challenge the operator to combat slacking.

Krebs et al. [2003] implemented performance-based AAN using the MIT-MANUS

robot to assist patients performing upper limb movements. Patients performed planar

point-to-point movements cued by a computer game, with the desired task to move the

hand from a start to end point. Tasks were critiqued using four performance measures

[Krebs et al., 2001] which included how well the movement tted a minimum-jerk prole.

This is based on experiments which show typical point-to-point hand movements t the

minimum-jerk prole [Flash and Hogan, 1985]. Other performance measures include
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the ability to initiate, aim, and nalise hand movement [Krebs et al., 2001]. Assistance

is provided by the robot using an impedance control scheme to produce assistive forces

along the desired minimum-jerk trajectory. The amount of assistance is adjusted by

changing the stiness of the impedance control, and the allotted time the patient has to

make movements. In each game session the assistance parameters were adjusted based

on the four performance measures derived in previous games. A separate algorithm

which observed performance over time adapted assistance to continually challenge the

patient [Krebs et al., 2003].

Emken et al. [2005] treated the idea of providing the minimal amount of assistance

needed as an optimisation problem. During therapy of the lower limb, the desired task

was to allow the patient’s foot to achieve a desired step height during the gait swing

phase. Assistance was quantied as the peak upwards force exerted on the limb per

step by the assistive robot. The control was formulated as a weighted optimisation

problem minimising two terms, the kinematic step height error, and the assistive force

provided. This was based on a model of the patient’s leg dynamics, including how their

nervous system adapts to perturbing forces. The result was a control law that uses

the step height error to adjust assistive force, combined with a forgetting factor that

decrements assistance when error is small [Emken et al., 2005]. Assistance is updated

on a step-by-step basis [Emken et al., 2007].

Another example [Wolbrecht et al., 2007, 2008] used the Pneu-WREX robot to assist

stroke patients in upper limb motor training. An adaptive controller used a distributed

spatial grid of radial basis functions to represent the level of assistance required by the

patient to be able to support their arm as they attempt to track desired trajectories

throughout the workspace. Error-based adaption of the radial basis function amplitudes

is performed based on kinematic tracking errors to construct a representation of the

assistive forces required by the patient throughout the workspace. This was combined

with a forgetting factor that exponentially reduced the radial basis function amplitudes,

resulting in a reduction of assistance when the kinematic error is small, and was essential

to combat patient slacking. The result was a robot controller that adapted quickly in

real time to the dierent assistive needs of the patient throughout the dierent areas of
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the workspace [Wolbrecht et al., 2007, 2008].

Limitations of empirical performance-based AAN

Performance-based methods have shown success in applications such as robotic neurore-

habilitation [Emken et al., 2005; Krebs et al., 2003; Wolbrecht et al., 2007]. However

they have inherent limitations due to their empirical nature. These methods calculate

the assistance to provide from observations acquired over time of the operator perform-

ing the task. These are used to critique the performance of the operator, and from this

the robot eectively learns their assistance requirements. However since the robot has

no indication of the operator’s assistance needs before such observations are available,

during this learning process it is likely that the assistance is either excessive or insu-

cient to the true requirements of the operator. Additionally, if the operator’s assistance

requirements are altered due to factors unbeknown to the system, it takes time for the

robot to adapt accordingly since these must be learnt from subsequent observations.

For example if an operator becomes fatigued, and a solely performance-based paradigm

is employed, then only after their performance is observed to have noticeably reduced

will the assistance be increased.

Learning through observation is also problematic if a number of dierent tasks are

being assisted. Dierent tasks have dierent requirements, and the operator has dierent

capabilities of performing each. Even if a robot learns the assistance required in a

number of tasks, the assistance required in a new, previously unobserved task is still

unknown. Ideally, the assistance required in each task would be known so that the robot

can assist each task accordingly. This would require a performance-based paradigm to

obtain numerous observations of each distinct task. If only a few, somewhat similar tasks

are performed, then the variations between them could be ignored; however this limits

the potential applications. For example in robotic rehabilitation, therapy commonly

involves repeatedly performing a small number of well dened tasks. A common scenario

is a patient manoeuvering their hand so as to follow a desired trajectory between targets

that are dened in locations throughout the workspace [Krebs et al., 2003; Wolbrecht

et al., 2007]. In reality, the movements between each of the targets would have unique
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assistance requirements, however they may be considered similar enough so that all

are critiqued and assisted as one task. Although this simplies the paradigm, it has

been shown that separating movements into smaller discrete tasks, critiquing and then

assisting them independently allows assistance to be provided that is better suited to

the requirements of the operator [Rosati et al., 2008]. A caveat of dening a number

of discrete tasks is the more tasks which are dened, the more observations required

to determine the operator’s assistance requirements for each. The work by Wolbrecht

et al. [2007] manages this by using observations to construct a model of the assistance

required as a continuous function across the workspace, rather than separating it into

distinct, independently assisted tasks that would each require observations. This allows

variation in the operator’s assistance requirements due to variation in the task (in this

example, dierent locations of the hand) to be managed by the model. However the

model quickly becomes highly dimensional as more task variables are considered. For

example other task variables may be the direction and magnitude of an external force

(e.g. from interaction with the environment), the position of the elbow if independent

of hand position, or the direction of hand movement which if considered can improve

the assistance provided [Rosati et al., 2008].

A range of dierent metrics have been used in performance-based AAN to critique

the performance of the operator. Selection of this metric needs to be made based on

its suitability for the application, however this then limits the types of tasks in which

the robot can critique and subsequently provide assistance. For example in upper limb

therapy, point-to-point hand movements are commonly critiqued based on a minimum-

jerk prole [Krebs et al., 2003]. Using this metric to evaluate task performance is suitable

as long as only tasks for which minimum-jerk movements indicate good performance are

being assisted. Another factor to be considered is this performance metric is an indirect

measure of their actual assistance requirements. The evaluation of performance, and the

adjustment of assistance, are often expressed in dierent units. For example, assistance

can be controlled by adapting the robot’s stiness (in units of N/m) according to

performance evaluated based on minimum-jerk movement movements [Krebs et al.,

2003]. Another example, assistive forces (in units of N) can be adapted according to
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performance based on kinematic error (in units of m) [Emken et al., 2005]. Even if

the performance metric has a monotonic relationship with the level of assistance being

provided (i.e. as assistance increases, the performance increases) it is unlikely this

relationship will be linear. A non-linear relationship may rely heavily on the previously

mentioned forgetting factor [Emken et al., 2005] for the robot to reach an assistance

equilibrium which is suitable for the operator and the task being performed.

In some applications the aforementioned limitations with empirical performance-based

methods are less problematic. For example, in controlled environments where the tasks

performed may be limited to a small number with little variation, and have well de-

ned criteria of what constitutes good performance from the operator performing them.

However it is desirable, or possibly inevitable that in the future assistive robotics will

be used in less structured environments to assist human operators in a range of ap-

plications. An example would be to assist the disabled or the elderly as they perform

household activities common in daily life. A large number of dierent tasks would be

performed, with each having its own unique and widely varied assistance requirements,

hence the limitations inherent in empirical performance-based AAN are problematic in

such scenarios.

2.3 Musculoskeletal Modelling

Musculoskeletal models provide a means of simulating biological systems and allow

the complex and non-linear relationships of the body including the skeletal structure,

joints, tendons and muscles to be derived. The work presented in this thesis does not

focus on the development of musculoskeletal models, or methods of improving their

representation of biomechanical systems. It does utilise models and methodologies that

are the result of a long history of musculoskeletal modelling research, and outcomes

of this work depend on the musculoskeletal models utilised. It is hence benecial to

present a background on the musculoskeletal modelling methods and theory related to

the work in this thesis.

The following section reviews some commonly used musculoskeletal modelling tech-

38



CHAPTER 2. RELATED WORK

niques. It is not an exhaustive review as many methods and approaches for muscu-

loskeletal modelling exist in the literature. Complexity ranges from relatively simple

rigid representations of body segments combined with straight line representations of

muscle-tendon paths [Maurel and Thalmann, 1999; Seireg and Arvikar, 1989] to complex

nite-element representations [Bai et al., 2008; Blemker et al., 2005]. This review covers

modelling methods common in many musculoskeletal models, including the upper limb

musculoskeletal model utilised later in this thesis [Holzbaur et al., 2005].

2.3.1 Musculotendon Unit (MTU) model

Actuation by muscles in the human body is modelled by musculo-tendon units (MTU).

Each MTU represents a particular muscle or muscle group in the body, along with its

tendons connecting it to the skeleton. Primary use of the MTU model is to calculate

its force producing capabilities given its state (typically length and velocity). There

exists many dierent MTU models in the literature [Schutte et al., 1993; Thelen et al.,

2003; Zajac, 1989] with most models derived from the Hill muscle model which relates

maximum muscle bre tension to its contraction velocity [Hill, 1938].

An example MTU model is shown in Figure 2.12. This lumped-element model uses

separate elements representing individual force-producing components in the MTU. An

active contractile element is placed in parallel with a passive element to represent both

the active and passive force producing capabilities of muscle bre. These elements are

in series with an elastic element representing the tendon attaching the muscle bre at

each end to the skeleton. Lengths of the muscle bre and tendon are denoted as lm and

lt respectively. The total length of the MTU from origin to insertion is denoted as lM .

Many muscles in the human body are pennate, meaning the muscle bers attach

obliquely to the tendon. As a result pennate muscles contain more bers and thus have

higher strength capacity, but do not pull the tendons as far when contracted resulting

in less range of motion [Martini, 2001]. With pennation angle represented as α the total

MTU length lM accounting for pennation is calculated using the geometric relationship
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Figure 2.12: Typical Hill-type musculotendon unit (MTU) model. (a) Physio-
logical representation of a muscle and its tendons. (b) Lumped-element model of
MTU with its geometric dimensions shown. Parallel active and passive components
represents the muscle ber. Elastic elements in series represent tendons. (c) MTU
model with the force relationships between muscle and tendons shown.
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in Equation (2.1).

lM = lt + lm cos α (2.1)

The force-producing properties of muscle and tendon are complex biomechanical func-

tions largely dependent on bre/tendon length and velocity. Zajac [1989] used dimen-

sionless curves (shown in Figure 2.13) to form a normalised MTU model preserving its

force-length-velocity relationships. These normalised curves can then be scaled using

MTU intrinsic parameters listed in Table 2.1 to t the model to represent specic muscle

groups. Functions f̃m
A (·) and f̃m

P (·) represent the curves relating the muscle ber’s nor-

malised length to its normalised active and passive forces (Figure 2.13a), respectively.

These curves are both functions of the muscle ber normalised length l̃m, calculated as

l̃m = lm/Lm
0 where lm is the ber length and Lm

0 is the ber intrinsic optimal length at

which its active force output is maximum. Similarly, function f̃m
V (·) represents the curve

relating muscle ber normalised velocity to its normalised force (Figure 2.13b). This

curve is a function of the muscle ber normalised velocity ˜̇lm, calculated as ˜̇lm = l̇m/V m
0

where l̇m is the ber velocity and V m
0 is the ber intrinsic maximum contraction velocity.

These curves can then calculate muscle ber active and passive forces using Equa-

tions (2.2) and (2.3), respectively. The curve outputs are scaled using parameter Fm
0

representing the muscle ber’s intrinsic maximum isometric force (corresponding to its

optimal length Lm
0 ). The active ber force is also scaled using parameter a called the

muscle’s activation. This represents the level of active force production resulting from

neural excitation. Activation ranges from 0 to 1 with a = 0 indicating a completely

passive muscle, and a = 1 the muscle is at maximum active force output. The total

muscle ber force is the sum of its active and passive components. This net force is

then transmitted via the tendons to the skeleton. After accounting for muscle pennation

the total MTU force output fM is calculated using Equation (2.4).

fm
A = f̃m

A (l̃m) · f̃m
V (˜̇lm) · F m

0 · a (2.2)
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Figure 2.13: Normalised muscle force-length-velocity, and tendon force-strain
curves. Recreated from [Zajac, 1989]. (a) Normalised muscle bre force vs nor-
malised length. (b) Normalised muscle bre force vs normalised velocity. (c) Nor-
malised tendon force vs tendon strain.

MTU scaling parameters
Parameters Description Units

F m
0 Muscle maximum isometric force (N)

Lm
0 Muscle optimal length coinciding with F m

0 (m)
V m

0 Muscle maximum contractile velocity (m/s)
α0 Muscle pennation at optimal length (rad)
Lt

s Tendon slack length (m)

Table 2.1: Intrinsic parameters used for scaling the normalised MTU model.
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fm
P = f̃m

P (l̃m) · F m
0 (2.3)

fM = (fm
A + fm

P ) cos α (2.4)

Calculating MTU force requires the muscle ber length to be determined as its state

is independent to the total MTU length due to tendon elasticity. For example as the

ber is activated and its force increases, the length of the ber shortens due to the

tendon stretching even if the total MTU length remains constant. Fiber length can

be found by equating MTU force output fM to the tendon force f t resulting from its

strain. Function f̃ t(·) represents the curve relating tendon strain to its normalised force

(Figure 2.13c). Tendon strain is represented as εt and calculated as εt = [lt − Lt
s]/Lt

s

where lt is its length and Lt
s is its intrinsic length when slack (f t = 0). The tendon

force is then calculated using Equation (2.5).

f t = f̃ t(εt) · F m
0 (2.5)

The MTU force output given its total length, velocity, and activation requires the

muscle ber length to be found such that fM = f t. Once found, this force is the

total MTU force output transmitted to the skeleton. A convenient simplication is to

assume the tendon is rigid such that muscle ber length is not independent and becomes

geometrically related to the total MTU length [Sapio et al., 2005]. This assumption is

often made as tendons exhibit little stretch during use, around 3% when the muscle

is producing peak isometric force [Zajac, 1989]. With this simplication the muscle

ber length can be calculated as a function of total MTU length using Equation (2.6)

[Fleischer and Hommel, 2008] where α0 is the pennation angle of the muscle ber at its

optimal length Lm
0 .

lm =


(Lm
0 · sin α0)2 + (lM − Lt

s)2 (2.6)
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2.3.2 MTU length, velocity and moment-arms

A muscle and its tendons form a path starting at its origin and ending at its insertion

sites where the tendons attach to the skeleton. The length and velocity of the MTU

along this path is required to calculate MTU force output as discussed in the previous

section. The MTU path is also required to calculate the moment-arms of muscles about

the joints in the skeletal system, which produce joint torque from MTU force.

Early musculoskeletal models used a straight-line approach with MTUs represented

as straight paths between origin and insertion sites [Maurel and Thalmann, 1999; Seireg

and Arvikar, 1989]. This does not take into account eects such as muscles and tendons

wrapping over bones or other parts of the body, and hence is not adequate from an

anatomical and mechanical perspective [Raikova, 1992; Toshev and Raikova, 1985; van

Zuylen et al., 1988]. Another approach called the Centroid Line Approach [Jensen and

Davy, 1975] derived MTU paths from cadaver specimens, measuring the centroid of the

muscle cross section to dene its path. The resulting path only corresponds to the pose

that the cadaver was in when measured [Raikova, 1992].

A more generalised solution is to dene MTU paths by sets of via points dened

in the local reference frames of the bones. Total MTU length equals the sum of the

straight line distances between via points [Delp and Loan, 1995]. This approach can

be combined with wrapping the paths over virtual surfaces to represent muscles and

tendons passing over bone or other bodily structures [Garner and Pandy, 2000].

The MTU lengths change as the skeletal pose is changed. A vector of generalised

coordinate positions q = [q1, q2, · · · , qk]T is used to dene the pose of a musculoskeletal

model consisting of k degrees of freedom. Using the appropriate method, a vector

column of MTU lengths l = [lM1 , lM2 , · · · , lMm ]T for a system with m muscles can be

calculated as a function of q (2.7). The partial derivative of this relationship produces

the Jacobian matrix L (2.8) which can be used to relate generalised coordinate velocities

q̇ = [q̇1, q̇2, · · · , q̇k]T to MTU velocities l̇ = [l̇Ml , l̇M2 , · · · , l̇Mm ]T as shown in Equation (2.9).

l(q) = [lM1 , lM2 , · · · , lMm ]T (2.7)
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L(q) =

⎡
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. . . ∂lMm
∂qk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.8)

l̇ = L q̇ (2.9)

Individual elements in the Jacobian L are partial derivatives of MTU length with

respect to joint position, for single MTU and joint combinations. These elements equate

to the moment-arms of the corresponding MTUs about the skeletal joints [Pandy, 1999].

2.3.3 Muscular joint torque produced by MTU forces

Forces produced by the MTUs result in torque produced about the skeletal joints. With

the MTU forces represented as vector f = [fM
1 , fM

2 , · · · , fM
m ]T the muscular torque

τ M = [τM
1 , τM

2 , · · · , τM
k ]T about the skeletal joints resulting from the MTU forces can

be calculated using Equation (2.10). The negative sign is due to the convention of

muscle length shortening when producing a positive force.

τ M = [−L]T f (2.10)

2.3.4 Rigid body kinematics

Position and orientation of body segments are represented in terms of reference frames

assigned to one or more bones in the model. Skeletal movement is provided by joints

describing the transformations between frames as functions of generalised coordinates

[Delp and Loan, 1995] previously dened as q = [q1, q2, · · · , qk]T . This approach can

be used to model the movement of physiological joints as being ideal, operating about
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xed axes of rotation [Chéze et al., 1996; Huang et al., 1994; Lenarcic and Umek, 1994]

and is generally sucient for simple joints [Maurel et al., 1996].

Movement not adequately represented by joints with a xed rotation axis can be de-

scribed as functions of generalised coordinates derived empirically from biomechanical

investigation [Delp and Loan, 1995]. The axis of elbow rotation has been reported to

translate as a function of elbow angle [Chao and Morrey, 1978]. Similarly the knee

has been modelled as a planar joint consisting both translational and rotational move-

ment [Schutte et al., 1993; Yamaguchi and Zajac, 1989], or approximated by a 4-bar

mechanism [Baydal-Bertomeu et al., 2008].

Transformations dened as functions of generalised coordinates can also be used to

simplify the representation of highly complex articulations such as the human shoulder,

which is described as one of the most complicated articulations in the human body

[Engin, 1980]. Including clavicle and scapular movement the shoulder can be modelled

as having as many as 11 degrees of freedom [Maurel and Thalmann, 1999] making cal-

culations such as inverse dynamics dicult to solve. The degrees of freedom can be

reduced by dening multiple joint motions as functions of a reduced number of gener-

alised coordinates. Lin et al. [2005] simplied the shoulder rhythm of an upper limb

model by constraining scapula position and orientation as a function of humerus move-

ment based on empirical data from Fung et al. [2001]. Movement of the scapula alters

muscle moment-arms [Holzbaur et al., 2005; Lin et al., 2005] and hence not accounting

for it is a source of model inaccuracy. Using prescribed motions to reduce the degrees

of freedom in the model, while still allowing realistic scapula movement can provide a

balance between model accuracy and complexity.

With the kinematics of the musculoskeletal system dened, the relationship between

generalised coordinates q and the global position of a point within a body segment can

be derived. Let column vector x = [x1, x2, x3]T represent the global cartesian position

of a point dened locally in a body segment, for example x is at the centre of the

hand. Using the kinematics dened within the musculoskeletal model, the relationship

between the position of point x in global coordinates and the generalised coordinates q

of the model can be calculated, represented by Equation (2.11). The partial derivative
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of this relationship produces the kinematic Jacobian matrix Jv (2.12) which can be

used to relate generalised coordinate velocities q̇ to the velocity of point x as shown in

Equation (2.13).

x(q) = [x1, x2, x3]T (2.11)

Jv(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x1
∂q1

∂x1
∂q2

. . . ∂x1
∂qk

∂x2
∂q1

∂x2
∂q2

. . . ∂x2
∂qk

∂x3
∂q1

∂x3
∂q2

. . . ∂x3
∂qk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.12)

ẋ = Jv q̇ (2.13)

With an external load applied to the musculoskeletal model at point x, the Jaco-

bian matrix Jv can calculate the resulting torque loads experienced on the skeletal

joints. With the external force applied to point x dened in global coordinate as

FE = [F E
1 , F E

2 , F E
3 ]T , the resulting joint loads represented as τ E is calculated using

Equation (2.14).

τ E =

Jv

T FE (2.14)

If the external load contains a moment component then this can be included by using

a wrench instead of a pure force, and utilising a kinematic Jacobian that includes the

relationship between the generalised coordinate velocities and the angular velocities of

the body segment.

2.3.5 Rigid body dynamics

The dynamics of the musculoskeletal system are tantamount to the canonical joint space

formulation of a robotic system [Featherstone and Orin, 2008]. Each body segment is
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treated as rigid and is assigned inertial properties equivalent to that of the respective

body segment in a human. The joint space dynamics are represented by Equation

(2.15) where H(q) is the joint space inertia matrix, C(q, q̇) represents centrifugal and

Coriolis eects, and τ G(q) are the joint torques required to support the system against

gravity. Vector τ M are the joint torques produced by MTU forces which are calculated

using Equation (2.10). Vector τ E are joint torques from an external load applied to the

musculoskeletal system, calculated using Equation (2.14).

H(q) q̈ + C(q, q̇) + τ G(q) = τ M + τ E (2.15)

2.3.6 Muscle activation dynamics

As previously mentioned, muscle activation is dened as a and represents the level

of active force production in the muscle bers of a MTU, ranging from 0 to 1. This

activation is the result of neural excitation, which is dened as u and also ranges from 0

to 1. The conversion of neural excitation u into muscle activation a is not instantaneous

and is often modelled as a rst order system. It is assumed that the activation dynamics

and the muscle’s force-producing contraction dynamics are uncoupled [Zajac, 1989].

For naturally excited muscle, activation has a faster time constant compared with

deactivation [Schutte et al., 1993; Zajac, 1989]. With muscle activation having time

constant of Ta when fully excited (u = 1) and Td when fully unexcited (u = 0) the

change in muscle activation ȧ can be related to activation a and neural excitation u

using Equation (2.16) [Thelen et al., 2003].

ȧ = u − a

T

⎧
⎪⎪⎨
⎪⎪⎩

T =
[

u
Ta

+ (1−u)
Td

]−1
, for u ≥ a

T = Td , for u < a

(2.16)
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2.3.7 Musculoskeletal model applications

Musculoskeletal models have been successfully applied in various applications to analyse

a number of clinical issues. For example models of the human shoulder have been used to

analyse shoulder stability, rotator cu tears, shoulder arthroplasty and tendon transfers

[Favre et al., 2009]. Applications typically involve the simulation of the human body

with most analyses categorised into two groups; forward and inverse analyses.

Inverse analyses

Inverse analyses use the recorded motions and external forces of a person performing

activities of interest, and inversely solve the dynamic system to analyse the muscu-

loskeletal system. A common example is to use the walking gait of subjects recorded

using motion capture technology. An inverse kinematics solution creates a trajectory

for the musculoskeletal model that best ts that recorded motion, then inverse dynamic

calculations are performed to estimate the joint torques required to achieve this motion.

Further inverse analysis can calculate solutions for the forces, activation and neural

excitation in individual muscles during the recorded activity. The human body has

244 kinematic degrees of freedom [Morecki et al., 1984], and a conservative estimate

of 630 muscles, meaning on average each degree of freedom is actuated by 2.6 muscles

[Prilutsky and Zatsiorsky, 2002]. This highlights the redundancy of the human body

which results in innite solutions to computing muscle activations corresponding to the

dynamic state of musculoskeletal models. This indeterminacy is commonly addressed

using optimisation methods guided by a cost function related to some physiological met-

ric. Examples of such cost functions include the minimisation of muscle stress [Collins,

1995; Crowninshield et al., 1978; van der Helm, 1994] or the sum of muscle forces to the

n-th power [Collins, 1995; Forster et al., 2004; van der Helm, 1994], maximise endurance

[Brand et al., 1986; Nieminen et al., 1995; Pedersen et al., 1997], and minimise metabolic

cost [Anderson and Pandy, 2001; Happee and der Helm, 1995]. The estimation of indi-

vidual muscle forces has been successfully applied in a variety of clinical investigations,

and is an ongoing topic of research in musculoskeletal modelling [Favre et al., 2009].
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Forward analyses

An alternate approach for analyses using musculoskeletal models are forward analyses,

based on using the predicted motions resulting from neural excitation. Rather than

using a reference trajectory to inversely calculate the kinematics and dynamics of the

musculoskeletal system, forward dynamics is used with muscle excitation as the input

from which the resulting motion of the musculoskeletal system is calculated. Comparing

the calculated trajectory against an experimentally obtained reference trajectory, the

muscle excitations can be optimised such that the forward dynamic motion result closely

matches the experimental data [Thelen et al., 2003]. An advantage of using forward

dynamics is that it is less dependent on the kinematic and force measurements, and

also inherently includes muscle dynamics in the solution [Erdemir et al., 2007].

Forward analyses are not limited to using motion as the basis for calculating the

solution. The dierence between computed and measured joint torque can also be used

as the optimisation criterion, as done in [Buchanan et al., 2005] to simulate ankle joint

torque during isokinetic and walking tasks. It is also not required that the optimisation

criteria be obtained experimentally. Other criteria calculated from the motion resulting

from the forward simulation can be used to nd the solution. For example in a pedaling

task the optimal muscle excitation and coordination was calculated using a forward

analysis with maximum-speed used as the optimisation objective [Raasch et al., 1997].

2.3.8 Musculoskeletal models in robotics

There are examples in the literature of musculoskeletal models used in the control

of robotic systems. To date the author is unaware of any attempt to utilise a muscu-

loskeletal model to estimate the assistance needs of a person for the purpose of providing

robotic assistance within an AAN paradigm.

Khatib et al. [2004] utilised a full body musculoskeletal model as the basis for govern-

ing the motion of a humanoid robot. The purpose was to nd solutions to the robot’s

kinematic redundancy with human-like motions. Using the musculoskeletal model, the
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redundancy was resolved by controlling the robot to position itself such that the mus-

cular eort in the musculoskeletal model is minimised, which resulted in human-like

motions.

Fleischer and Hommel [2008] used a musculoskeletal model of the leg to calculate

the relationship between muscle excitation and the resulting torque about the knee.

Using measured EMG signals the resulting muscular torque was calculated using the

musculoskeletal model. This estimated torque was used as a reference from which

assistive torque provided by an exoskeleton was controlled. The system acts as a torque

amplier, using the estimated knee torque calculated from the musculoskeletal model

based on EMG measurement. It does not use the musculoskeletal model to estimate a

subject’s capabilities and subsequently their assistance needs.

Research by Ueda et al. [2010] is to date the closest relating to the work in this thesis

in terms of utilising a musculoskeletal model for controlling a robot. It aims to induce

predictable muscle activation patterns in a subject’s upper limb such that analysis of

neurological impairment can be performed. Firstly the desired change in muscle activity

is dened in terms of ratio change. A musculoskeletal model is then used to calculate

the exoskeleton torques required to induce this change in muscle activation by applying

interaction forces between the robot and the subject’s upper limb. Experiments mea-

suring the muscle activity demonstrated the feasibility of achieving expected changes

in muscle activations. Motivation for this research is the idea that by using a robot to

apply unique loads to subject’s limbs to induce predictable changes in muscle activity,

dierences between anticipated and measured muscle activity may provide useful diag-

nostic information to assist in identifying impairments and plan tailored therapies for

specic disorders.

2.4 Summary

Robots which operate collaboratively with humans to provide physical assistance have

been developed for a variety of applications in industry and health care. However the

success of such technology relies on that they provide assistance in a manner suitable
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for the application. Numerous methods have been developed for controlling robots so

as to provide assistance to the operator, as well as many paradigms to govern how this

assistance is given. An example to governing physical assistance is the AAN paradigm

which aims to provide the operator with the amount of assistance specic to their re-

quirements to successfully perform the task. Currently, typical AAN paradigms use

empirical performance-based approaches where the robot learns the assistance require-

ments of the operator by observing and critiquing their performance. Although this

approach has shown success in applications such as robotic rehabilitation, empirical

approaches have inherent limitations due to the need of observations of the operator

performing tasks on which to derive an estimate of their assistance requirements. In

this thesis a model-based AAN paradigm is developed. It uses a musculoskeletal model

representing the operator to avoid the limitations associated with empirical AAN meth-

ods. Such models are used for simulating the biomechanics of the human body and have

been successfully applied in various clinical and robotic applications.
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A Framework for Model-based

Robotic AAN

The Assistance-As-Needed (AAN) paradigm aims to provide a human operator with

assistance specic to their needs as they perform physical tasks. This means that assis-

tance should be adjusted with respect to both the task being performed and the operator

performing it. As the diculty of the task changes (e.g. an object being carried becomes

lighter) then assistance should be changed accordingly. Likewise if the operator’s capa-

bility to perform the task changes (e.g. they become fatigued) then ideally assistance

should also be adapted. Deriving an estimate of the operator’s assistance requirements

is the main challenge with the AAN paradigm. Current solutions typically use empir-

ical approaches where the performance of the operator is critiqued, from which their

assistance requirements are inferred. As detailed in Section 2.2.3, approaches that use

an operator’s performance to gauge assistance requirements have inherent limitations.

The ideal AAN implementation requires that the operator’s assistance requirements

for the task being performed be known, and subsequently be provided by the assistive

robot during the task. It also requires that this can be achieved for any task. Since

dierent tasks have dierent requirements, and since it is impossible for a robot to learn

the operator’s assistance requirements for every possible task, the ideal system would

be able to predict their assistance requirements even without the need for empirical
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observation. These ideals form the motivation behind the model-based paradigm devel-

oped in this thesis. If a model is available from which the assistance requirements of the

operator can be calculated with respect to arbitrary tasks, then there is no need to ob-

serve task performance. Furthermore, the model may be used to predict how assistance

should be adapted in response to factors relating to the task and the operator.

In this chapter a framework is presented to estimate the assistance requirements of a

human with respect to physical tasks. A two-model framework is used, the rst model

calculating the requirements of the task being performed. The second model uses a

musculoskeletal model to estimate the capability of the operator to perform the task.

Results from these models are used to gauge the assistance requirements of the operator.

After presenting this framework it is then demonstrated by applying it to two typical

activities of daily living. Lastly, the peculiarities of estimating the assistance needs

of a human using a musculoskeletal model to provide AAN are discussed. Alternative

model-based approaches are compared, and the benets of the musculoskeletal model

based approach (in particular for applications such as rehabilitation) are discussed.

3.1 Framework

Consider the generalised scenario of a person performing a physical task whilst being

assisted by a robot working in collaboration with them. An arbitrary physical task

requires some amount of physical capability for it to be performed. In turn, the human

has some amount of physical capability to be able to perform the task. If they have

capability greater than or equal to what the task requires, then by this denition they

are capable to perform it without the need for external assistance. Alternatively if

the human’s physical capability is less than the requirements of the task, then they

are unable to perform it to the required suciency. There is a gap between the task’s

requirements and the human’s capability, which is conceptually illustrated in Figure 3.1.

Assistance provided by a robot working collaboratively with the human is thought of

as reducing the requirements of the task, or alternatively increasing the capabilities of

its human operator. The eect is that the gap between task requirement and human
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Figure 3.1: Generalisation of Assistance-As-Needed, represented as the gap be-
tween the requirements of a task and the capability of a human to perform it. (a)
Requirements of a task. (b) Capability of a human to perform a task. (c) The gap
between the task requirements and the human’s capability as the task is executed.

capability is supplemented by the assistance provided by the robot. With the objective

of providing AAN such that the human (assisted by the robot) is capable of meeting

the requirements of the task, this gap then signies the amount of assistance which

should be provided by the AAN paradigm. By denition providing assistance less than

this amount means the operator cannot perform the task as it is dened. Alternatively,

providing assistance greater than this still allows the task to be performed, but provides

more assistance than what the human requires. If the capability of the operator is

greater than what the task requires (i.e. the gap is negative) then no assistance should

be provided. It is on this basis that the framework for the model-based AAN paradigm

is developed.
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3.1.1 Structure

The framework developed for model-based AAN is shown in Figure 3.2. It is separated

into two levels. At the lower level the robot is controlled by a control scheme as it

provides assistance to its human operator via physical interaction with them and the

environment. The control scheme remains generalised as various types may be utilised

(see Section 2.2.1). Later in Chapter 5 an admittance-based control scheme will be

implemented.
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Figure 3.2: The model-based Assistance-As-Needed framework.

The higher level of the framework is responsible for determining the assistance re-

quirements of the operator. Sensory information from the robot is used to obtain task

and operator related information such as limb position, velocity, and force interaction

between the robot, the operator and their environment. This information is used by

two models to determine the required assistance. A Task Model (TM) calculates the

strength the task requires from the operator for it to be performed. A Strength Model

(SM) represents the operator and is used to calculate (with respect to the task being

performed) how much physical strength capability they have to perform it. This estima-

tion of operator strength will be derived using a musculoskeletal model, as is discussed

later. Results from these two models are combined to determine the assistance require-

ments of the operator, which is then fed to the robot’s control scheme. This forms an

outer control loop operating at the higher level of the framework to govern how the

lower level control scheme administers robotic assistance to the operator.
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This framework is designed taking many factors into consideration. Strength is used

to represent both the task’s requirements and the operator’s capability. Section 3.2

denes the term strength in the context of this thesis and the justication for using it as

the measure on which assistance is based. The capability of an operator to perform tasks

is aected by numerous complex factors. Calculating assistance requirement based on

strength allows many factors (e.g. limb position, external forces, physical impairments)

to be considered during this calculation. The result is a single measure that represents

the operator’s assistance requirement for the task being performed, whilst encapsulat-

ing numerous factors which aect the operator’s strength. Because this calculation is

performed in the high level of the framework, the result can be used with a wide range

of control schemes to adapt parameters so as to adjust the assistance it provides. For

example the result could adjust the stiness of an impedance control scheme [Krebs

et al., 2003], or the gain in a force augmentation scheme [Kazerooni, 1990]. This al-

lows existing control schemes to be easily incorporated into the framework, simplifying

integration with currently available robotic systems.

Another reason for abstracting the assistance requirement calculation from the robot

control scheme is the computational cost. A musculoskeletal model will be utilised to

estimate the operator’s strength capability. Analyses utilising musculoskeletal models

(see Section 2.3.7) typically require computationally expensive numerical techniques

such as inverse dynamics and optimisation methods. As the operator performs a task

their assistance requirements continually change, and hence their strength capability

needs to be continually calculated during task execution. It is anticipated that such

calculations are unable to be performed at the same rate the robot control scheme

operates at, which can be at rates of 1kHz or greater. However since the operator’s

assistance requirement is calculated at a higher level, it may be calculated at a slower

rate with the result fed into the low level control scheme at this slower rate. Applications

in which the operator’s assistance requirements do not change quickly may allow this

high level computation to be performed at relatively low rates. The minimum rate

required for this calculation depends on the specic application. Aspects regarding real

time calculations are later discussed in Section 6.2.4.
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3.2 Strength as the Measure of Capability

In this thesis the capability of a subject to perform tasks, and consequently their assis-

tance requirements, is determined based on their strength. The term strength is dened

as the maximum force that a person can physically exert [Kumar, 2004]. Because this

thesis focuses on tasks using the upper limb with interaction occurring at the hand, the

term strength is used (unless stated otherwise) to represent the maximum magnitude of

force that can be exerted by a subject at their hand. Occasionally, the term will be used

explicitly referring to the maximum torque or force that can be exerted at the joints or

in the muscles of the upper limb.

There are many factors that determine the requirements of dierent tasks. Physical

tasks commonly involve interaction with the environment [Matsumoto et al., 2011],

and hence require the ability to express forces (i.e. strength). The tasks can also

require a person to have the dexterity needed to control this interaction, for example

to manipulate an object as required in an assembly task. From the perspective of the

person performing the task, there are numerous factors that determine if they can meet

a task’s requirements. Whether they have the required strength is determined by a

number of complex physiological factors. Tasks which require large physical eort or

lengthy durations of force production are aected by factors such as fatigue. Tasks

such as surgery require precise coordinated movements. These as well as other physical

and cognitive factors aect the capability of a person to perform tasks. Representing

all the factors relating to task requirements and human capabilities in a model is an

immense challenge and outside the scope of this project. For practicality the model-

based approach developed in this thesis uses the strength at the hand as the measure by

which both the requirements of a task, and the capability of an operator to perform it,

are represented and subsequently compared to determine the assistance requirements of

the operator.

There are several rationales for using strength as the measure from which the assis-

tance requirements of an operator are derived. Firstly, a model-based approach requires

the task requirement and the operator capability to be combined in order to determine
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the gap. It is not useful to use two incompatible metrics, for example using the positional

accuracy as the measure of the task’s requirement, then comparing this to the strength

capability of the operator. The two metrics must be able to be related through some

relationship to determine a gap representative of the operator’s need for assistance. It

is convenient to use the same two metrics so that a measure of the gap between them

can be found directly. Strength (represented in Newtons) is a metric which both the

task requirement and the operator capability can be represented and easily combined.

Secondly, strength is relatively easy to calculate using a model compared with other

possible metrics. The forces required by a task where an object is manoeuvered can be

calculated if the object’s trajectory and inertial properties are known. Alternatively, if

unknown the forces may be measured directly using sensors. The strength capability of

the operator can also be derived, either from the literature [Kumar, 2004] or calculated

from a model [Chan and Erig, 1991; Roman-Liu and Tokarski, 2005]. Other factors

aecting the ability to perform tasks are not as easy to implement in a model; for

example muscle synergies which are hypothesised for controlling limb coordination but

are not well understood [Tresch and Jarc, 2009].

Lastly, strength is a major determinant of limb functionality [Canning et al., 2004;

Mercier and Bourbonnais, 2004]. In a disability such as stroke it is common for the

limb functionality of patients to be diminished. Regimes for rehabilitation often fall

into the categories of either force (i.e. strength) or motion, with debate as to which is

the preferred approach [Hogan et al., 2006]. Canning et al. [2004] showed that both limb

strength and dexterity contribute to limb functionality, however it was determined that

strength was the bigger factor [Canning et al., 2004]. Furthermore, strength training

has been shown to increase limb functionality after stroke [Morris et al., 2004; Ouellette

et al., 2004; Patten et al., 2006; Weiss et al., 2000]. It is for these reasons described why

strength is selected as the measure of capability.
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3.3 Task Model (TM)

The Task Model (TM) is developed for calculating the strength required by the operator

to perform tasks involving the upper limb. As discussed in Section 2.2.3 the AAN

paradigm has gained attention in robotic rehabilitation. This therapy often involves

patients performing tasks designed to mimic Activities of Daily Living (ADLs). The

TM is developed with ADLs used to provide a realistic context for the type of tasks the

AAN paradigm is commonly applied to. A study by Matsumoto et al. [2011] analysed

the needs of people in every day life by logging the ADLs performed. The frequency of

the ADLs recorded is shown in Figure 3.3. Lifting was the predominant activity, being

included in 43% of recorded user-involved behaviours. Other upper limb tasks such

as putting down, manipulating and carrying objects are also often performed in daily

life [Matsumoto et al., 2011]. Such upper limb activities include both movement of the

limb and physical interaction with the environment. Based on this the TM is developed

using these two components; limb motion and external force.

� ��� ���� ���� ����
����	�
���������	���
������������

�����
�
�	���
����
�������

�������
�������������
��
���
�	�����������������

��
��	����
�
������
��
�����
��

����
�
���� �
������
�	��
����
��
��
����	�����������������

�����
������
�����������
�����
��
�����
��������

�	���
�
���������
�
�����	�����������������

�������
������������
�	���
�
���
 �
�
�����
�

����
����� �


Figure 3.3: The frequency distribution of Activities of Daily Living (ADLs) per-
formed in every day life. The results are reproduced from [Matsumoto et al., 2011].
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3.3.1 Limb motion

Motion denes the position, velocity, and acceleration of the limb as the task is carried

out. It is assumed the task is performed by interacting with the environment at the

operator’s hand. The upper limb is kinematically redundant, meaning the hand can be

placed in a desired position/orientation using innite combinations of shoulder, elbow,

and wrist joint angles. This means motion of the hand alone does not fully dene the

motion of the upper limb. This redundancy needs to be considered when calculating limb

strength, since limb joint strength varies with position. A set of generalised coordinates

representing the positions of the joints in the limb is used. This fully denes the limb

motion with the additional benet of allowing the same generalised coordinates to be

used in the strength model developed later. The position of the joints in a limb with k

degrees of freedom are dened as q = [q1, q2, · · · , qk]T .

The velocity and acceleration of the limb are dened by q̇ = [q̇1, q̇2, · · · , q̇k]T and

q̈ = [q̈1, q̈2, · · · , q̈k]T , respectively. However for slow motions the dynamic eects may

be ignored. In a study by Rosen et al. [2005] the upper limb motions of 24 ADLs

were recorded, and using inverse dynamics the joint loads due to gravity, inertial, and

centrifugal/Coriolis eects were calculated. Results showed the overall shape of the joint

load torques were dictated solely by the low frequency gravitational load in all ADLs,

which was larger than the remaining dynamic loads combined. This suggests that for

typical ADL tasks it is appropriate to ignore the dynamic loads and assume quasi-static

conditions (q̈ = q̇ = 0).

3.3.2 External force

The upper limb physically interacting with the environment results in external loads

applied to the limb. It is assumed this interaction only occurs at the hand, and is

represented by force u·ST . Term u = [ux, uy, uz]T is a unit vector denoting the direction

of the external force dened in the work space. Parameter ST is the scalar magnitude

of this external force. For simplicity it is assumed this load is a force acting through

the centre of the hand, so moment loads about the hand are not considered.
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3.3.3 Usage

An illustration of the TM is shown in Figure 3.4 with the limb motion (q, q̇, q̈) and the

external force interaction at the hand (u·ST ) dened. For the operator to perform the

task as it is dened they are required to match the limb motion (q, q̇, q̈) whilst opposing

an external force at the hand in direction u with magnitude ST . If an external force of

magnitude ST in the direction of u cannot be opposed whilst the motion is carried out,

then by denition the task is unable to be performed. Thus for a task dened by q, q̇,

q̈, u, and ST , the task’s strength requirement (at the hand in the direction of u) to be

capable of performing it is represented by the scalar magnitude ST .

u · ST

u
(q1, q̇1, q̈1)

(q2, q̇2, q̈2)

ST

Figure 3.4: Example of the Task Model (TM). The external force u·ST represents
the limb interaction with the environment.

Implementation of the TM depends on the application and the hardware available.

Typically with assistive robotics it is possible to use the system’s sensors to determine

the position of the operator, particularly for wearable robots such as exoskeletons. From

the motion of the robot, the operator’s limb motion (q, q̇, q̈) may be derived. If the

robot acts as a mechanical interface between the operator and task then forces between

the operator, robot and task can be sensed (e.g. using force/torque sensors) to directly

measure the external force required during task execution. From these measurements

the direction u and magnitude ST of the task’s external force can be calculated. Al-

ternatively the task’s strength requirement ST may be calculated from the TM as a

function based on knowledge of the task being performed and the sensory information

available, as generalised by Equation (3.1). Some examples of this are provided in the
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following section. In simulations performed later in this thesis, the external force will be

either explicitly dened based on the task, or derived as a function of the limb motion.

ST = f (q, q̇, q̈, u) (3.1)

3.3.4 Examples

The generic TM can be implemented to accommodate variation in a specic task. Hence

a single model can be used in tasks containing variable factors, rather than requiring to

switch between several dierent models. The following examples demonstrate how the

TM may be applied to some upper limb tasks.

The rst example shown in Figure 3.5 involves a task requiring the operator to carry an

object of known mass (m) in their hand. Assuming the object is moved by the operator

in an unexceptional manner, dynamic forces between the object and the subject may be

ignored. In this case the external force applied to the operator’s hand has the magnitude

equal to the weight of the object (ST = mg, where g = 9.81m/s) and its direction (u)

is in the direction of gravity. The task’s strength requirement ST is constant and

independent of limb motion.

Direction of
gravity

Object of mass m
carried in the hand

Direction of the
external force u
dened in the

direction of gravity

Magnitude of external force
dened as equal to the weight of

the carried object (ST = mg)

Figure 3.5: Example of applying the TM to a task where the operator is required
to carry an object of known mass. The direction of the external force at the
operator’s hand (u) is dened in the direction of gravity. The task requirement ST

is dened as equal to the weight of the object being carried.

The second example shown in Figure 3.6 involves the operator performing a sandblast-

63



CHAPTER 3. A FRAMEWORK FOR MODEL-BASED ROBOTIC AAN

ing task. A nozzle of mass m is held in their hand and blasts sand in the direction it is

pointed, producing a reaction force of known magnitude FR in the opposite direction.

The operator is required to statically hold the nozzle as the blasting is performed. The

external force applied to their hand is the sum of both the nozzle’s weight force (mg)

and its reaction force (FR). The magnitude of the weight force is assumed constant

and in the direction of gravity, similar to the previous example. The reaction force is

assumed to have a constant magnitude, but its direction depends on the orientation of

the nozzle. From an assistive robot worn by the operator the position of their limb (q)

can be derived, and from this the orientation of the nozzle is calculated. The net ex-

ternal force is then calculated by combining the nozzle’s weight force in the direction of

gravity with the reaction force in the direction opposite to where the nozzle is pointed.

Direction of
gravity

Nozzle with mass m

ST calculated from
the nozzle’s weight
and reaction forces

combined

q1

q2

q3

Nozzle’s weight
force (mg)

Nozzle’s reaction
force (FR)

Vector u calculated from
the nozzle’s weight and

reaction forces combined

Figure 3.6: Example of applying the TM to a sandblasting task. The operator
holds a nozzle of mass m with its weight force mg in the direction of gravity.
The blasting produces a reaction force FR in the opposite direction to where the
nozzle is pointed. The external force applied to the operator at the hand is the
combination of the nozzle’s weight and its reaction force. To calculate this requires
the orientation of the nozzle to be known. With the position of the operator’s limb
(represented in the gure by q1, q2, q3) derived from the robot, the orientation of
the nozzle and subsequently u and ST can be calculated.

The third example shown in Figure 3.7 involves a stroke patient manoeuvering their

hand as part of a rehabilitation exercise. As they move their hand from Point A to

Point B, a spring (possibly a virtual spring) with known stiness is connected between

the hand and Point C which produces a disturbance force. The patient is required to

oppose this force as they move their hand during the exercise. In this example, the

external force applied to the hand depends on its location relative to Point C. The
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robot, attached to the patient, is used to derive the position of their limb (q), and from

this the position of the hand relative to Point C is calculated. The direction of the

spring force applied to the hand (u) is calculated such that it points from the hand

towards Point C. The magnitude of this force is calculated from the distance between

the hand and Point C, multiplied by the stiness of the spring.

Distance from hand to Point C, calculated from
the position of the operator’s limb

q1

q2

Spring between the hand and
Point C with known stiness

Vector u points from the hand to Point C

Point A

Point B

Point C

ST calculated from distance between the hand
and Point C, multiplied by the spring’s stiness

Figure 3.7: Example of applying the TM to a rehabilitation exercise. As the
operator moves their hand from Point A to B, a spring with known stiness attached
between the hand and Point C produces a disturbance force. The magnitude and
direction of this force is calculated from the position of the operator’s limb which
is derived from a robot attached to the operator. With the hand position known,
the direction of the force at the hand (u) is calculated such that it points from the
hand to Point C. The magnitude of the force (ST ) is calculated from the distance
between the hand and Point C multiplied by the spring’s stiness.

3.4 Strength Model (SM)

The Strength Model (SM) is developed to calculate the strength capability of the op-

erator to perform the desired task. It complements the TM and hence shares some

similarities. Like the TM, the SM uses limb motion and external force to dene the

task for which the model is being applied. Motion is again dened by the generalised

coordinate positions, velocities, and accelerations (q, q̇, q̈) of the limb. The external

force representing interaction with the environment during task execution is again ap-

plied to the hand with direction represented by unit vector u. The magnitude of this
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force is represented by scalar variable F E (unlike the TM where magnitude ST was set

depending on the strength requirements of the task). An example is shown in Figure 3.8.

u · F E

u

F E

(q1, q̇1, q̈1)

(q2, q̇2, q̈2)

Figure 3.8: Example of the Strength Model (SM). The external force u · F E is
the limb’s interaction with the environment during the task.

The SM is used to calculate the strength of the operator, which corresponds to the

maximum magnitude of external force (F E) they can exert at the hand. The value

of F E is not explicitly set but rather is a variable with its maximum referred to as

the strength capability of the operator, dened as SP = max[F E ]. Since the purpose

of the SM is to calculate operator strength with respect to the task, this maximum

magnitude of external force must be producible whilst the task is being performed as

required. That is, this strength must be calculated taking into account eects dependent

on q, q̇, q̈, and u since this is what constitutes the task. The limb motion dictates the

dynamic and gravity loads that the limb needs to overcome whilst the external force

is being opposed. The position of the limb and direction of the external force dictates

how much load is placed on each of the joints in the limb from the external force.

Additionally the maximum magnitude of external force the upper limb can oppose

is limited by constraints imparted by the physiology of the operator. The problem

of calculating operator strength capability SP for a desired task (whilst obeying task

and physiological constraints) is formalised in Equation (3.2). Once calculated the

operator’s strength capability (SP ) is used with the strength requirements of the task

(ST ) to gauge the capability of the operator with respect to the task and estimate their

assistance requirements.
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Calculate strength capability : SP = max

F E

For the task dened by :
{
q, q̇, q̈, u

} (3.2)

The steps for calculating SP are illustrated in Figure 3.9. A musculoskeletal model

(MM) of the upper limb is used to represent the operator, and it is from this model their

physical strength capability to be able to perform desired tasks is derived. This MM

is used along with the limb motion dened by q, q̇, q̈ to calculate the load torques at

each joint resulting from gravity and dynamic eects. For typical ADL movements the

dynamic loads may be ignored as discussed in Section 3.3.1. Next, as discussed in Sec-

tion 2.3.1 the force each muscle can produce depends on its length, velocity, and a num-

ber of intrinsic properties. The force capability of each muscle is calculated with respect

to the task’s limb motion. The torque that each muscle can produce about the joints

in the limb, and subsequently how the joint torque contributes to the strength at the

hand is calculated using kinematic relationships between the muscles, joints and hand.

These relationships are also calculated from the MM. With the dynamic/graviational

joint loads, force producing capability of the muscles, and the kinematic relationships

calculated from the MM, the nal step is to solve for the largest maximum magnitude

of external force the operator can oppose at the hand in the direction of u. This nal

process of nding SP is an optimisation process which requires the use of numerical

methods.

Calculating operator strength capability as dened in Equation (3.2) can be performed

using dierent model-based approaches. The method utilising a musculoskeletal model

which is developed in this work, and other model-based approaches are compared in

Section 3.6.2, where their benets and limitations are discussed.
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Dened task
(q, q̇, q̈, u)

SP

u

q, q̇

Strength Model (SM)

Musculoskeletal

Optimisation Model

q
Model (MM)

Calculate SP by nding the maximum external load the
operator can oppose at their hand in the direction of u

q, q̇, q̈

Calculate kinematic
relationships

Calculate the force
capability of muscles

Calculate gravitational
and dynamic joint loads

Figure 3.9: Overview of calculating operator strength capability (SP ) using the
SM. The limb motion and direction of external force are dened by q, q̇, q̈, u. The
musculoskeletal model is used to calculate the dynamic and gravitational joint loads
resulting from the task’s motion. The force producing capability of each muscle
in the limb is calculated. Kinematic relationships between the muscles, joints and
the hand are used to allow the contribution of the muscle forces to the strength
at the hand to be calculated. The calculated joint loads, muscle force capabilities
and kinematic relationships are then used in an optimisation model to calculate
the strength of the operator at the hand, in the direction of u.

3.4.1 Upper limb musculoskeletal model (MM)

The model-based AAN framework requires a MM, but it is not specic to any particu-

lar model. Several upper limb models exist in the literature [Garner and Pandy, 2001;

Holzbaur et al., 2005; Maurel et al., 1996]. The MM developed by Holzbaur et al. [2005]

shown in Figure 3.10 is used in this thesis. It was chosen as it is publicly available,

and has been shown to adequately represent upper limb characteristics such as indi-

vidual joint strength [Holzbaur et al., 2005], muscle moment-arms [Gatti et al., 2007]

and limb end-point stiness [Hu et al., 2011b]. It consists of 15 degrees of freedom and
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Figure 3.10: Upper limb musculoskeletal model, image from [Holzbaur et al.,
2005]

50 musculotendon units (MTU, see Section 2.3.1) to model the shoulder, elbow, wrist,

nger and thumb. Shoulder movement has only three degrees of freedom, however clavi-

cle/scapular movement is retained by using regression equations derived experimentally

from de Groot and Brand [2001] to relate their movement to humerus elevation. For

simplicity in this thesis the MM was reduced to the four degrees of freedom relating to

the shoulder and elbow. The remaining joints (hand, nger, thumb) were not of interest

and ignored by making them xed. The MTUs which were made obsolete after reducing

the degrees of freedom were also ignored to increase the speed of calculations involving

the model. Details are provided in Appendix A.1.

This publicly available MM has no inertial properties assigned to the limb segments.

These are required for gravitational and dynamic analyses to be performed. Limb

segment inertial properties based on the average male were assigned to the model. Based

on the average male height and weight (1.75m and 78kg, respectively [Gordon et al.,

1989]) the mass and centre of mass of upper limb body segments are calculated using

anthropometric equations [Winter, 1990]. Principal moments of inertia from Chandler

et al. [1975] are also assigned to the upper limb segments. Details of these mass and

inertial properties are provided in Appendix A.2. The OpenSim software environment

[Delp et al., 2007] is used to obtain the dynamic and musculoskeletal parameters from

the model for analysis.
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3.4.2 Strength calculation assuming uncoupled joints

So far an explicit method for calculating SP using the MM has not been presented.

Development of the method for estimating operator strength, and the evaluation of the

strength results is paramount to the ecacy of the proposed AAN paradigm. Chap-

ter 4 will focus on this since it requires extensive investigation. The focus of the current

chapter is to introduce the framework for model-based AAN. However, to be able to

demonstrate this framework a method of calculating SP is needed, and therefore a sim-

plied method will be briey utilised this chapter. This method makes the assumption

that each joint in the limb is independent, ignoring joint coupling that exists by muscles

which produce torque about multiple joints. Although the assumption of uncoupled

joints is not consistent with physiology, it greatly simplies the calculation of SP which

allows the focus of this chapter to remain on the application of TM and SM within

the model-based AAN framework. Furthermore, demonstrating the limitations of this

uncoupled method provides the motivation for the more sophisticated method that does

consider joint coupling, which is developed and evaluated in Chapter 4.

The uncoupled approach towards calculating SP is similar to a method used by

Ambrose and Diftler [1998] to calculate the strength of a robotic manipulator at its

end-eector based on the torque capabilities at its joints. Each joint is considered an

independent actuator, and its contribution towards producing force in the desired di-

rection at the end-eector is calculated. With the maximum of this force calculated

for each joint, the joint capable of the least force is considered the weakest, with its

corresponding force considered as the strength of the entire robot. Here instead of a

robot with actuators producing torque at the joints, the strength of the upper limb with

joint torque produced by muscles is calculated. Unlike Ambrose and Diftler who did

not account for gravity or dynamic loads, it is included when the uncoupled operator

strength is calculated. The detailed derivation of this uncoupled method is presented

in Appendix B.
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3.5 Framework Applied to Example Tasks

In this section the TM and SM are applied to example tasks to demonstrate the model-

based AAN framework and how it can be used to calculate the assistance requirements

of an operator. As discussed in Section 3.3, the AAN paradigm has gained popularity in

robotic rehabilitation in which therapy often involves patients performing tasks which

mimic activities of daily living (ADL). Therefore typical ADLs which utilise the upper

limb are used to provide a realistic context for the kind of tasks this framework may

be utilised for in the future. During experiment a subject performs two dierent ADL

tasks. Consultation was made with the Human Research Ethics Committee (HREC) at

the University of Technology, Sydney.

Upper limb ADLs commonly involve the lifting and manipulating of objects, with

approximately 90% of objects lifted weighing 300g or less [Matsumoto et al., 2011].

Examples of heavier objects often lifted include a kettle lled with water (1kg) and a

vacuum cleaner (3.8kg) [Matsumoto et al., 2011]. Considering this the two tasks are

designed around the lifting and manipulation of a 600ml water bottle.

3.5.1 Case study 1: drinking task

In this task the subject’s hand is stretched outwards to pick up a water bottle (Fig-

ure 3.11a), which is then brought to the subject’s mouth so as to drink the water

(Figure 3.11b), then returned to the point where it was picked up. This task was de-

signed to incorporate elements common in several ADLs (lifting, picking up, putting

down, carrying, drinking [Matsumoto et al., 2011]). It is also similar to tasks performed

by patients during robotic rehabilitation [Wolbrecht et al., 2008].

Hand movements were made between the mouth (target M) and 10 other targets

located in front of the subject. Each target was reached for twice, resulting in a total of

20 motions to and from the targets. Five targets (A,B,C,D,E) were located on a table

surface approximately 25cm below the origin of the subject’s shoulder joint. Another ve

targets (F,G,H,I,J) were positioned at identical locations except raised to approximately
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(a) (b)

Figure 3.11: Subject performing the drinking task. (a) Hand stretched outwards
to pick up bottle. (b) Hand brought to the subject’s mouth so as to drink from the
bottle. Motion was recorded using Xsens MVN Biomech motion capture system.

3cm above the subject’s shoulder (28cm above the previous ve targets). Dimensioned

positioning of the target locations is shown in Figure 3.12. Each of the targets were

positioned such that the subject’s arm was at full reach when lifting/placing the water

bottle. Targets A, B, C, D and E are each spaced at 15◦ intervals about the shoulder,

with the middle target C directly in front of the shoulder. Similarly, targets F, G, H, I

and J are spaced at 15◦ intervals with target H in front of the shoulder.

No instruction was given to the subject regarding the path or the speed of their hand

during movements. Only the start and end locations where the bottle was moved to

were dened. Motion in between the targets was left to the subject to perform as they

felt comfortable. The drinking task was performed with the subject carrying a water

bottle that was lled with water to weigh 600g.

TM applied to drinking task

As the subject performed the task their motion was recorded using the Xsens MVN

Biomech motion capture system. The recorded motion was processed to extract marker
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Figure 3.12: Locations of the targets in the drinking task. (a) Targets A, B, C,
D, and E are located at table height, approximately 25cm below shoulder height
of the subject. (b) Targets F, G, H, I and J are approximately 3cm above subjects
shoulder height.

points local to the limb segments. The motion of the upper limb MM is tted to match

the recorded motion using inverse kinematics based on least-squares optimisation using

the OpenSim software package [Delp et al., 2007]. After being tted to the recorded

motion the MM generalised coordinate positions (q), velocities (q̇), and accelerations

(q̈) during the motion are available. An example of a motion recorded between two

targets is show in Figure 3.13.

The TM external force represents the hand’s interaction with the environment, which

in this task is the 600g water bottle carried by the subject. This force was not measured

during the drinking task, instead it is dened with u in the direction of gravity, and

magnitude equivalent to the weight of the carried bottle (ST = 6N). Dynamically gen-

erated interaction forces between the bottle and the hand were ignored. The suitability

of ignoring these eects is discussed in Section 3.6.3.
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Figure 3.13: Example of the upper limb motion captured during the drinking
task.

SM applied to drinking task

The SM calculates operator strength capability at a single instant in time. To calculate

strength during the entire task the SM is repeatedly applied to each successive time

instant of the recorded motion. For each time instant, the recorded limb motion (q, q̇, q̈)

and the direction of the external force (u) are utilised, along with the upper limb MM

to calculate the operator strength capability SP (in this chapter using the uncoupled

method detailed in Appendix B). This process is applied to the drinking task as the

hand is moved between the subject’s mouth (target M) and the remaining targets. The

hand is moved starting at target M, towards one of the targets, then back to target M

at the mouth. For each target this motion is repeated twice whilst carrying the 600g

water bottle.

Results

Because the task’s strength requirement was constant during the task (ST = 6N)

the attention is on the operator’s strength capability calculated using the SM. For

each of the movements between the mouth (target M) and the remaining targets

(A,B,C,D,E,F,G,H,I,J) the calculated operator strength SP is shown in Figure 3.14.

The time taken for the subject to complete each movement was relatively consistent,

taking on average 1.74 seconds to move the bottle from mouth to target (and vice versa).
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Due to small variations in the time taken for the subject to complete each movement,

the time axes in the plots are normalised so the strength results corresponding to each

movement’s start and end positions are aligned.

The results indicate that the subject’s strength capability varies as the task is per-

formed. Across all the movements it is observed that this strength reduces as the hand

is extended away from the mouth towards a target, and then increases again as it is

brought back to the mouth. The task was dened with external force being in the

direction of gravity, hence this strength represents the ability of the subject to provide

forces at the hand in the upwards direction. This relationship showing that strength

decreases as the hand is extended is what is expected, both intuitively based on human

experience regarding how strength changes with limb position, and from an understand-

ing of biomechanics. As the hand is extended the bottle’s weight force produces larger

moment loads about the shoulder and elbow, requiring more torque from the subject to

hold it against gravity. Other factors such as changing muscle moment-arms about the

joints are also contributing to this relationship but are less intuitive.

Variations in the speed at which each motion was performed results in the SP curves

having slightly dierent shapes, however a similar prole was observed. Strength ca-

pability with the hand stationary at targets A-J were all similar, however the strength

was marginally larger for target positions at table height (A,B,C,D,E) compared with

those above shoulder height (F,G,H,I,J).

At all times during the task the strength capability remained well above ST = 6N.

This is not surprising since the MM used is based on an average, healthy male who is

expected to be more than capable of supporting the weight of a 600g bottle during this

drinking task. If a robot was assisting via an AAN paradigm then zero assistance would

be provided by the robot since the operator is capable of performing this task (indicated

by SP > ST ). If the task diculty was increased such that its strength requirements

were greater, then assistance may be required by the subject. Figure 3.15a shows the

calculated operator strength for one of the movements compared with the drinking task’s

strength requirement (ST = 6N), and a second strength requirement if task diculty

was increased (ST = 150N). For the task with increased strength requirement it is seen
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that for a portion of the task the subject’s estimated strength is actually reduced below

what is required by the task. This gap is plotted in Figure 3.15b.
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Figure 3.15: Gap between the task’s strength requirement and the subject’s cal-
culated strength during the drinking task movement. (a) Comparison between
the calculated subject strength during drinking task (SP ), the task strength re-
quirement (ST = 6N), and the requirement if the task diculty was increased
(ST = 150N). (b) The gap between the dicult task requirement (ST = 150N)
and the calculated subject strength capability.

3.5.2 Case study 2: sliding task

The second task involves the subject sliding an object in a dened path on a table

surface. This task was designed to incorporate elements common in several ADLs

(manipulating, pulling, pushing [Matsumoto et al., 2011]). It is also similar to tasks

required to be performed by patients during robotic rehabilitation [Krebs et al., 2003].

Targets are located on a table surface in front of the subject approximately 25cm
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below shoulder height, illustrated in Figure 3.16. A 600g water bottle is held in the

subject’s hand as it is slid across the table surface. The bottle is slid in a circle passing

through targets A, B, C and D in a clockwise motion. Again the subject is not instructed

on the speed of the hand motion or the path between the targets.
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��	


��	

Figure 3.16: Locations of the targets in the table sliding task. Targets A, B, C,
and D are located at table height approximately 25cm below shoulder height of the
subject.

TM applied to sliding task

The upper limb motion q, q̇, and q̈ is obtained using the same motion capture system

and processing method used in the previous drinking task (Section 3.5.1). A plot of

the captured hand motion and target locations is shown in Figure 3.17a. This task

involves a person sliding an object across a table surface, therefore the external force

applied to the subject’s hand is in the direction opposing its movement. It is conned

to a horizontal plane parallel with the table to represent friction across this surface. A

larger force would exist if the subject applied force out of the plane, e.g. pressing the

bottle downwards to increase friction. We assume that this is not the case as typical

human motion will endeavour to minimise the forces required. Figure 3.17b shows the

clockwise hand motion, with the external force direction u represented by black arrows
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pointing in the opposite direction of the motion. The magnitude of the external sliding

force was not measured during the task. Instead it is explicitly dened based on typical

forces required to slide objects. A force of ST = 2.5N is used as this is approximately

the force required to pull a 700g bowl across a table surface [Yeong et al., 2009].

(a)
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�

�
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��������	��


�����������
�	���	��

(b)

Figure 3.17: The upper limb motion captured during the sliding task. (a) Hand
movement and target positions plotted based on motion capture data. (b) Direction
of external force vector u shown at intervals during one circular movement. Hand
moves in a clockwise direction with the external force vector opposing the movement
to simulate the friction force of an object being slid on the table surface.

SM applied to sliding task

At each time instant during the sliding task with limb motion and external force di-

rection dened by q, q̇, q̈, and u the SM is used to calculate the subject’s strength

capability SP . The results for the three circular motions are shown in Figure 3.18. The

time axis in between when the hand is at the target locations is normalised such that

they align in the plot for easy visualisation.

Results

The strength plots show a similar pattern as the hand is slid on the table in a circular

motion. Two peaks of strength occur when the hand is located before target B and
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target D. At these two positions the limb and the direction of the external force are

such that the external force is directed parallel with the forearm resulting in push/pull

type actions. For these two actions the moment-arm between the external force at the

hand and the shoulder/elbow joints is less, requiring less strength at each joint as a

result. Alternatively, when the external force is almost perpendicular to the forearm,

the moment-arm of the external force is greater, and the calculated strength is much

less as a result. This behaviour agrees with data in the literature showing push/pull

strength being greater than strength in medial/lateral directions [McCormick, 1970].

However the peak strength result of SP ≈ 1200N is greater than expected. A potential

reason is that joint coupling from muscles producing torque about multiple joints is not

considered in this strength estimation.
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Figure 3.18: The subject’s calculated strength capability (SP ) during the sliding
task. Hand passes through locations A, B, C, D three times in a circular motion.
The three motions are overlayed in the plot. The time in between when the hand
is at the target locations is normalised such that they align in the plot for easy
visualisation.

At all times SP remains greater than ST = 2.5N which is again expected as the

subject should be capable of performing this sliding task. A robot providing assistance

via an AAN paradigm would hence provide zero assistance. As was done in the analy-

sis of the drinking task, the task diculty is increased such that the operator requires

assistance. Figure 3.19a shows the calculated operator strength for one of the circular

movements compared with the task’s strength requirement (ST = 2.5N), and a second

strength requirement if task diculty was increased (ST = 300N). For the task with
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increased strength requirement it is seen that in two locations during the task the sub-

ject’s strength is below what the task requires. This gap is shown in Figure 3.19b. The

two locations where the subject’s strength is above what the task requires correspond

to when the subject is performing push and pull type actions. Locations when the

operator’s strength capability is below the task’s requirement correspond to forces in

the medial and lateral directions, which as discussed are expected to have less strength

[McCormick, 1970].
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Figure 3.19: Gap between the task’s strength requirement and the subject’s
calculated strength during the sliding task. (a) Comparison between the calculated
subject strength during sliding task (SP ), the task strength requirement (ST =
2.5N), and the requirement if the task diculty was increased (ST = 300N). (b)
The gap between the task requirement with increased diculty (ST = 300N) and
the calculated subject strength capability.
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3.6 Discussion

3.6.1 Realism of the SM results

The realism of the strength capability results obtained using the SM directly depends on

the ability of the musculoskeletal model to represent the operator’s physical capabilities.

The MM used has already been shown to adequately replicate certain biomechanical

characteristics of the human upper limb [Gatti et al., 2007; Holzbaur et al., 2005; Hu

et al., 2011b]. However to accurately represent the capabilities of a specic individual

it is likely that tting the model to the operator will be required. The accuracy and

limitations of using the MM to represent an individual operator is mentioned throughout

this thesis, and is discussed in detail in Section 6.2.

The realism of the SM results also depends on the method used to derive the op-

erator’s strength capability from the MM. The demonstration of the AAN framework

performed in this chapter used a method of calculating strength which assumed indepen-

dent, uncoupled joints. Biarticular muscles which produce coupling between joints are

prominent in the upper limb [Koeslag and Koeslag, 1993] and eects from this coupling

are expected to inuence the limb’s strength capability. Strength results will be dier-

ent if this coupling is taken into account, and hence a method using the SM to calculate

strength capability taking into account joint coupling is required. The development and

evaluation of such a SM is the focus of Chapter 4.

3.6.2 Alternatives to muscle-based strength

The model-based AAN paradigm relies on the SM to adequately estimate the opera-

tor’s strength. There are dierent approaches in which the strength can be derived.

This subsection presents a few dierent approaches that utilise denitions of operator

strength in dierent spaces; task space, joint space, and muscle space. The limitations

and benets of each are discussed.
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Strength dened in the task space

Since SP represents operator strength in the task space, it is intuitive to develop a

method for deriving its solution also in the task space. The simplest approach is to

directly use measurements of strength taken in task space. In the literature there

exist anthropometric surveys of human upper limb strengths measured at the hand

[Amell et al., 2000; Das and Forde, 1999; Das and Wang, 2004; McCormick, 1970;

Roman-Liu and Tokarski, 2005]. These sources provide strength information for various

limb positions, with strength at the hand measured in a distinct number of task space

directions (e.g. push, pull, up, down, etc). These measurements provide insight, not

only quantitatively regarding mean values of strength, but also qualitatively on how

factors such as force direction and limb position aect strength.

To calculate operator strength for arbitrary tasks (i.e. any q and u) a generalised

representation of strength is required. Strength measurements in the literature only

provide task space strength for a limited number of distinct limb positions and force

directions. With a large set of measurements available it is possible to estimate strength

within a range of q and u by interpolating between the closest matching measurements

available, or to develop a predictive model using regression techniques. For example

Roman-Liu and Tokarski [2005] derived models of upper limb strength as functions of

seven coordinates dening limb position. These models predict strength at the hand in

pushing and lifting directions only. To develop a similar model capable of predicting

strength in any task space direction requires strength to be measured in numerous task

space directions, and repeated at numerous limb positions to allow regression to be

preformed. This is an enormous number of measurements required and to date the

author is unaware of such a data set being available.

Strength dened in the joint space

Using upper limb strengths dened at the joint level allows generalised analytical solu-

tions to be developed for calculating operator strength capability in task space. There

exists in the literature numerous studies of human limb strength measured at the joint
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level [Amell, 2004; Chan and Andersson, 1999; Hagberg et al., 1995; Hartsell et al.,

1995; Lannersten et al., 1993; Marley and Thomson, 2000; Mayer et al., 1994; Pentland

et al., 1993; Tsunoda et al., 1993; VanSwearingen, 1983; Walmsley and Dias, 1995; Weir

et al., 1992]. A kinematic model representing the upper limb allows the relationship be-

tween force at the hand and strength required at the limb’s joints to be determined as a

function of force direction and limb position. Chan and Erig [1991] developed a model

of strength at the hand. With limb joint positions and external forces at the hands de-

ned, a kinematic model of the body was used to calculate the joint loads resulting from

the external forces at the hands and the weight of the body segments themselves. These

joint loads were then compared to joint strength data available from anthropometric

studies to determine the capabilities of the human to produce the strength required

[Chan and Erig, 1991].

In the literature joint strength is often presented simply as the maximum measured

isometric torque in a given position. In reality it varies with both joint position and

velocity [Kumar, 2004]. Strength measurements of joint torque versus position (e.g.

[Pinter et al., 2010; Winters and Kleweno, 1993]) may be used to account for changing

joint position, and strength measurements at dierent isokinetic velocities (e.g. [Hartsell

et al., 1995; Mayer et al., 1994]) may be used to account for velocity. This allows

operator strength capability to be calculated as a function of q, q̇ and u, but there are

still limitations. Strength measurements of joints with multiple degrees of freedom are

limited to single degree of freedom articulations. Measurements are typically performed

for a number of standard articulations, for example shoulder strength is commonly

categorised into abduction/adduction, exion/extention, and medial/lateral rotation

[Amell, 2004]. For articulations in between those for which strength data is available,

strength must be estimated from the nearest available measurement, or other methods

such as tting a model and using interpolation must be used.

Furthermore, since joint strength is the result of muscle forces acting about each

joint, and biarticular muscles produce torque about multiple joints, there exists cou-

pling between these joints which aect their ability to produce torque and subsequently

contribute to strength at the hand. For example the biceps brachii spans the shoul-
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der, elbow and forearm, and due to its biarticular nature the strength of pronation and

supination in the forearm can be signicantly impacted by its torque contribution about

other articulations [Amell, 2004]. Eects of such coupling may not be reected in the

joint strength data available, particularly if eorts were made to isolate the particular

joint of interest during strength measurement.

Strength dened in the muscle space

The strength capability of the operator in the task space depends on the strength of

the individual muscles in the body. These individual muscles produce torque at the

joints of the limb, which provide the limb with the strength to oppose external force at

the hand. An approach to calculating operator strength capability is to use operator

strength dened at the muscular level, and calculate how this muscular strength can

be applied towards a desired task. A musculoskeletal model (MM) representing the

operator allows the strength capability of their individual muscles to be calculated. As

detailed in Section 2.3.1 a muscle and the tendons connecting it to the skeleton can be

modelled by a musculotendon unit (MTU) model. The MTU models of the operator’s

muscles can estimate the strength each can produce. The MM can calculate how these

forces then contribute to the strength at each joint, and subsequently how this joint

strength relates to the operator’s strength at the hand.

Since the strength capability is derived from a model of strength at the muscular

level, this approach can estimate an operator’s strength capability for arbitrary tasks

dened by q, q̇ and u. Using strength based at the muscular level also provides several

additional benets. The MM encapsulates the relationships between limb pose/velocity

with muscle length/velocity and moment-arms, and hence eects of limb position and

velocity are inherently accounted for when calculating strength. Secondly because a

model representing the physiology of the operator is used, the role of physiological factors

in aecting strength can be investigated. For applications which have an emphasis on

operator physiology this has distinct advantages, for example in robotic rehabilitation

to analyse the eects of physical impairment as discussed in Section 3.6.4.

85



CHAPTER 3. A FRAMEWORK FOR MODEL-BASED ROBOTIC AAN

3.6.3 Quasi-static simplication

When applying the framework, joint loads on the upper limb due to the limb’s dy-

namics were included when calculating the operator’s strength capability. However the

calculation of the task’s strength requirements made some quasi-static simplications.

An external force applied to the hand represented the reaction forces from the water

bottle as it was carried or slid by the subject. This was simplied by only considering

the bottle’s weight or friction force, ignoring reaction forces from the bottle’s dynamics.

The suitability of ignoring such eects is analysed here.

The inertial forces from an object being carried can be estimated from the acceleration

at the hand. The recorded hand motion is used to calculate the acceleration of a

coordinate frame located at the subject’s hand with origin located 8.5cm distal of the

wrist, which was where the water bottle’s centre of mass was approximately located.

The linear and angular accelerations of the hand during the drinking task are shown in

Figure 3.20 and Figure 3.21, respectively. Linear acceleration is seen to remain close to

zero during the task, and was commonly an order of magnitude less than gravity (9.81

m/s2) during the movements recorded. This indicates that for the object carried, the

reaction force is largely dominated by its weight force due to gravity in comparison to

its inertial load.
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Figure 3.20: Linear acceleration (m/s2) of the hand measured during the drinking
task. (a) Acceleration in the dierent task space directions (X,Y,Z) during the task.
Red dotted lines indicate gravity (±9.81m/s2). (b) Histogram of the acceleration
during the task. This histogram shows the distribution of the linear acceleration
with its X-Y-Z components combined by calculating their Euclidean norm, hence
results are positive.
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Figure 3.21: Angular acceleration (rad/s2) of the hand measured during the
drinking task. (a) Acceleration in the dierent task space directions (X,Y,Z) during
the task. (b) Histogram of the acceleration during the task. This histogram shows
the distribution of the angular acceleration with its X-Y-Z components combined
by calculating their Euclidean norm, hence results are positive.

The angular acceleration of the object carried in the hand cannot be compared di-

rectly to gravity to gauge if it is appropriate to ignore. However, with the object’s mass

moment of inertia estimated, the interaction torque at the hand corresponding to the

measured angular acceleration can be estimated. The bottle’s inertial properties are ap-

proximated as a solid cylinder of equivalent size and weight. Because the result depends

on the location of the axis about which the mass moment of inertia is calculated, three

dierent axes are used for comparison. The rst two axes pass through the bottle’s

centre of mass, one along the axial direction and the other in the radial direction. The

third axis is in the radial direction, but located at the very end of the bottle. This

last axis is positioned so as to produce a relatively large mass moment of inertia, and

hence to result in a larger estimate of the inertial loads for the purpose of being conser-

vative. The mass moments of inertia about these three axes are 0.000357 kg.m2/rad2,

0.001459 kg.m2/rad2, and 0.005299 kg.m2/rad2 (calculations are detailed in Appendix

C). From the angular acceleration histogram (Figure 3.21b) it is seen there is negligi-

ble acceleration over 20 rad/s2. Multiplying this angular acceleration with the three

mass moments of inertia calculated results in torque loads of 0.007 N·m, 0.029 N·m,

and 0.106 N·m. To place these calculated loads into context they are compared to the

torque required about the shoulder to hold the 0.6kg bottle in the hand at full reach.

The human arm is approximately 0.6m long from the shoulder to the hand. With the

87



CHAPTER 3. A FRAMEWORK FOR MODEL-BASED ROBOTIC AAN

arm at full reach, the moment produced by the bottle’s weight about the shoulder is

approximately 0.6×0.6×9.81=3.53 N·m. This is over 30 times greater than the inertial

torque load calculated using the largest mass moment of inertia. Considering that this

mass moment of inertia was calculated conservatively suggests that the reaction forces

from the object carried at the hand are largely dominated by its weight force.

Based on these results it appears appropriate to ignore the inertial loads of an object

held in the hand for the ADL tasks that were simulated. This agrees with the literature

describing that the majority of loads on the upper limb during ADLs are due to gravity

[Rosen et al., 2005]. This further suggests that the gravity component alone may be

used during ADL-like tasks to determine the loads on the limb when calculating the

assistance requirements of the operator.

3.6.4 Consideration of physical impairment

The AAN robotic paradigm has gained attention in rehabilitation applications to pro-

vide assistance suited to the needs of patients during therapy. Since patients are im-

paired this produces an additional challenge to provide assistance only as required.

Eects on strength due to disability vary with great diversity, with impairments highly

individual to a patient’s specic injury or illness [Arva et al., 2004].

The signicance of this variability is gauged by analysing upper limb impairment

from stroke. Stroke is chosen as it is a leading cause of long term disability [Lloyd-

Jones et al., 2009] and is often the target of robotic rehabilitation applications. Several

studies have quantied the loss of strength due to stroke in the muscle groups of the

upper limb by comparing strength in paretic versus non-paretic limbs [Bertrand et al.,

2007; Bohannon and Andrews, 1987; Dewald and Beer, 2001; Mercier and Bourbonnais,

2004]. Mercier and Bourbonnais [2004] studied 13 chronic hemiparetic stroke subjects.

They measured paretic and non-paretic limb strength for certain muscle groups and

grip strength. Limb functionality was also measured using various tests like the Box

and Block Test, the Finger-to-Nose Test, the Fugl-Meyer Test and the TEMPA [Mercier

and Bourbonnais, 2004]. Results showed large intra-subject imbalances between muscle
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groups, and high variability in the weakness distribution pattern among the patients was

noted. These results deed conventional teaching of weakness following stroke, which

assumed a gradient distribution of weakness that eected proximal limb segments more

than distal ones [Mercier and Bourbonnais, 2004].

Another study by Bohannon and Andrews [1987] compared the paretic and non-

paretic strength of 69 hemiparetic stroke patients in 7 muscle groups. These were wrist

extensors, elbow exors and extensors, and shoulder internal rotators, external rotators,

extensors and abductors. The mean and standard deviation of these strength measure-

ments are shown in Figure 3.22a. Strength variation in paretic and non-paretic groups

can be gauged from the coecient of variation (CV) calculated by dividing the mean

strength by its standard deviation. A larger CV indicates that strength varies more

about the mean measurement, compared with smaller CV. The CV results shown in

Figure 3.22b indicate that upper limb strength aected by stroke has more variation
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Figure 3.22: Comparison of the strength measured in the paretic versus the
non-paretic upper limbs of stroke patients with hemiparesis, obtained from the
literature [Bohannon and Andrews, 1987]. Upper limb muscle groups measured
are; Wrist Extension (WE), Elbow Flexion (EF), Elbow Extension (EE), Shoul-
der Internal Rotation (IR), Shoulder External Rotation (ER), Shoulder Extension
(SE), Shoulder Abduction (AB). (a) Strength measured for select muscle groups
for paretic and non-paretic upper limbs. Error bars indicate standard deviation of
the measurements. (b) Strength Coecient of Variation (CV) for muscle groups in
paretic and non-paretic limbs.
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than unaected strength (assuming the non-paretic limb is an adequate representation

of unaected limb strength). The additional variation in strength caused by a physi-

cal impairment makes it additionally challenging to determine the operator’s physical

capabilities, and subsequently their assistance requirements.

An advantage of the model-based AAN paradigm is that the estimation of the op-

erator’s assistance requirements are derived from a MM. This model is based on the

physiology that underlies the operator’s ability to produce the strength required to per-

form physical tasks. Using a model which is physiologically relevant allows prediction

of the eects dierent physiological factors (e.g. impairment due to stroke) have on the

operator’s ability to perform tasks. Weakness in the upper limb may be simulated by

reducing the force producing capabilities of individual muscles in the MM. For example,

van Drongelen et al. [2006] modied a MM to mimic muscular impairment representing

lesion and muscle paresis for analyses of the upper limb. The ability to predict the rela-

tionship between physical impairment and how it aects the assistance requirements of

a human subject has the potential for signicant benets, particularly in applications

that have a large emphasis on physiology. Since AAN has gained attention in robotic

applications such as rehabilitation, this advantage is a primary motivation for choosing

to utilise a MM as the basis for estimating operator capability.

3.7 Summary

In this chapter a model-based framework was presented for calculating the assistance

requirements of a human operator such that robotic assistance may be provided using

the AAN paradigm. It consisted of two models, the rst being the Task Model (TM)

used to represent the requirements of the task being performed, dened by the upper

limb motion and external force applied to the hand. The magnitude of external force

(ST ) required to perform the task is used as a measure of the task’s strength requirement.

The second was the Strength Model (SM) used to calculate the strength of the operator

with respect to the desired task. Results from these two models can be used to determine

the gap between task requirement and operator strength capability, and gauge the
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operator’s assistance requirements. Utilising the model-based framework allows these

requirements to be calculated without the need of observations, and hence many of the

limitations inherent with empirical performance-based methods are avoided.

A drinking task that mimicked the subject drinking, and a sliding task mimicking

the subject sliding an object across a table top were simulated to demonstrate this

framework. These two tasks were created based on activities of daily living since these

type of tasks are typical of those performed by patients during rehabilitation, and the

AAN paradigm is gaining interest for use in such applications. Analysis of the dynamic

loads at the hand for the tasks simulated indicated the appropriateness of ignoring

dynamic loads on the upper limb for typical ADL-like tasks. This conclusion agrees

with the ndings of others in the literature [Rosen et al., 2005].

The benets of using a musculoskeletal model (MM) representing the physiology of the

operator in applications where the operator has a physical impairment was discussed.

Using stroke as an example, the variability of impairments and consequently the result-

ing assistance needs of patients was shown using data from the literature. The need for

the ability to examine the role physiology plays in the capability of performing tasks,

particularly in health care applications was highlighted. Since health care applications

such as rehabilitation are primary applications of AAN, this provides large motivation

for developing a SM using a MM in an analysis operating at the muscular level.

Although the proposed framework has the potential to provide signicant benets over

other AAN methods (i.e. empirical performance-based AAN) it relies on the ability of

the MM to be able to provide an adequate estimation of the operator’s strength. This

chapter made use of an approach towards calculating operator strength which ignored

joint coupling eects. The necessity of a method to calculate strength which does not

ignore such eects was discussed. The development and evaluation of such a method to

calculate strength is the focus of Chapter 4.
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Chapter 4

Musculoskeletal Model-based

Strength Estimation

In Chapter 3 the framework for a model-based AAN paradigm was presented and demon-

strated on simulated tasks. At the core of this framework is the Strength Model (SM)

used to estimate the strength of the operator with respect to desired tasks. To demon-

strate the framework a method of calculating upper limb strength capability using a

musculoskeletal model (MM) was developed. This method was based on a simplied case

where coupling between the joints in the limb was ignored by calculating the strength

at each joint independently. Coupling has signicant eects on strength as approxi-

mately 65% of the muscles in the upper limb are biarticular, spanning two or more

joints [Koeslag and Koeslag, 1993; Williams et al., 1989].

In this chapter an optimisation model for calculating operator strength at the hand

is developed. Using a MM it takes into account the physiology of the operator, includ-

ing factors aecting strength such as the joint coupling which results from biarticular

muscles. Section 4.1 formulates the optimisation model using parameters from the MM

to nd the maximum force at the hand the operator can oppose. This model takes

into account constraints imparted by the MM physiology, gravitational and dynamic

loads, and task constraints. In Section 4.2 the SM incorporating the developed op-

timisation model is evaluated in its ability to estimate upper limb strength and how
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this strength is aected by factors including limb position, direction of external force,

and physical impairment of the operator. Results are compared with the literature for

validation. In Section 4.3 the model-based AAN framework, utilising the optimisation

model developed in this chapter, is analysed within two case studies. The rst applies

the framework to a drinking task, and the second to a sliding task. In both studies,

physical impairment derived from the literature which is consistent with stroke impair-

ment is simulated in the upper limb. The purpose of these studies are to gain insight

into the potential benets a model-based AAN paradigm utilising a MM can provide, in

particular how it allows the analysis of the role the operator’s physiology plays on their

ability to perform tasks. Lastly in Section 4.4, factors aecting the ecacy of using the

developed optimisation model within the model-based AAN framework are discussed.

4.1 Optimisation Model

4.1.1 Considerations

The Strength Model (SM) presented in Section 3.4 is used in the model-based AAN

framework to calculate the strength capability of the operator at their hand. The

strength is calculated with respect to a specic direction at the hand and with the limb

having a specic motion. This limb motion (represented by q, q̇, q̈) and the direction

at the hand (represented by u) are dened according to the task which the operator is

performing. Figure 4.1 shows an example of the SM. An external force of magnitude

F E is applied to the hand in direction u. The strength capability (SP ) of the operator

corresponds to the maximum magnitude of this external force (F E) that they can oppose

whilst performing the task, i.e. SP = max[F E ].

To calculate the operator’s strength capability, an optimisation model within the SM is

used (see Figure 3.9). This optimisation uses parameters from a musculoskeletal model

(MM) representing the operator’s upper limb to calculate the strength at the hand.

This section formulates the optimisation model for calculating the operator’s strength

capability SP utilising the parameters obtained from a MM. Before this optimisation
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model is derived, there are several considerations made.

u · F E

u

F E

(q1, q̇1, q̈1)

(q2, q̇2, q̈2)

Figure 4.1: Example of the Strength Model (SM). The external force u · F E is
the limb’s interaction with the environment during the task.

Joint torque coupling due to biarticular muscles

In Chapter 3 the strength at the hand was calculated based on the strength in the joint

space of the MM. Joints were analysed individually to determine the maximum magni-

tude of the external load that can be applied at the hand which each joint could oppose,

based on its available joint strength. Because joints were analysed independently, factors

such as joint coupling due to biarticular muscles were not accounted for.

To account for inter-joint coupling, the process of nding the strength at the hand

is performed in the muscle space. Muscle activation determines the active force output

of an individual muscle. For a given muscle’s activation, the resulting torque produced

in each joint the muscle spans is calculated, and subsequently related to the strength

at the hand. An optimisation routine can search this muscle activation space to nd

the maximum external force the limb can oppose at the hand, in the direction of u.

Because muscle activation ranges from 0 to 1 the search space is bounded.

Muscular impairment

It is benecial to incorporate means for examining the eects physical impairments have

on strength. A physical impairment can be simulated by limiting the force producing
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capability of individual muscles. A method used by van Drongelen et al. [2006] limited

the force production of muscles in a MM to mimic muscular impairment from lesions

and muscle paresis. Another method used by Steenbrink et al. [2009] disabled the

forces in select muscles of the shoulder to simulate the eects of rotator cu tears when

investigating glenohumeral stability.

Muscle activation, a, is typically dened as ranging from 0 ≤ a ≤ 1. An upper

bound parameter s is introduced to dene the maximum each muscle can be activated

during the optimisation, eectively limiting the muscle’s force output. Activation upper

bounds are dened by vector s = [s1, s2, · · · , sm]T with each element corresponding to

a single muscle in the MM. Hence the muscle activation vector a = [a1, a2, · · · , am]T is

bounded to 0 ≤ a ≤ s, with each element in s ranging 0 ≤ s ≤ 1. A muscle with its

activation upper bound set to s = 1 has full activation range (0 ≤ a ≤ 1) and hence its

force producing capability is not limited during the optimisation. Its force however is

still limited by the musculotendon unit (MTU) model, see Section 2.3.1. A muscle with

s = 0 is unable to be activated at all and hence is unable to produce any active force.

This allows vector s to be used to simulate physical impairment, with control over the

severity of strength loss and its distribution across the muscle space. This constraint is

formally dened in Equation (4.1).

0 ≤ a ≤ s (4.1)

Strength limit

Using a MM to relate muscle activation to the strength at the hand takes many factors

into account. These include the eects of muscle length and velocity on the ability to

produce muscle force, the moment-arms of muscle force about joints, inter-joint coupling

from biarticular muscles, the joint loads due to gravity and limb dynamics, and the

direction of the external force applied to the hand. Even so, there are other factors

that aect and limit strength in the human body which are not considered. Examples

are fatigue, comfort, pain, and joint stability. The optimisation model may produce a
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large estimation of strength due to limiting factors such as these not being considered.

For example, if the external force applied to the hand is in a direction passing almost

directly through the axes of rotation of the limb’s joints, the torque load that results at

each of these joints is relatively small. Since mathematically it requires little strength

to oppose this load, the optimisation would calculate that a large magnitude of this

external force can be opposed by the operator. In reality other factors would limit the

magnitude of the force which the operator could oppose.

To prevent returning a large result for the operator’s strength, the limit Smax
P is dened

as an upper limit in the optimisation model. Appropriate values for this limit may be

set based on physiological or occupational health and safety limits in the literature. For

example, from a table of the weight of objects which are acceptable for individuals to

lift using both hands, a maximum of around 60kg can be obtained [Gallagher et al.,

2004]. Based on this an approximate strength limit of Smax
P = 300N per upper limb

may be dened. If it is undesirable to limit the result of the optimisation, this limit can

be dened as Smax
P = ∞. This constraint is formally dened in Equation (4.2).

F E ≤ Smax
P (4.2)

4.1.2 Dynamic equation

The objective function is required to calculate F E as a function of the search space

input a to nd its maximum value SP = max[F E ]. The relationship between F E and

a is governed by the dynamic equation of the musculoskeletal system, which is detailed

in Section 2.3.5 and repeated here in Equation (4.3).

Hq̈ + C + τ G = τ M + τ E (4.3)

Before deriving the optimisation model, this dynamic equation is rearranged for con-

venience.
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Joint torque due to the external force

External joint loads τ E are the result of the external force u · F E applied to the hand.

This torque is calculated using Equation (2.14) as τ E = [Jv]T u·F E (see Section 2.3.4).

The kinematic Jacobian matrix Jv (2.12) is a function of the limb position, which is

assumed to be constant during the process of calculating the strength of the operator.

Likewise the direction of the external force is also assumed to be constant. For conve-

nience the Jacobian matrix Jv and the external force direction vector u are combined

to form vector r (4.4) and is assumed constant during the optimisation. Each element

in r is the moment-arm of the external force u·F E acting about the axis of rotation of

one of the k joints in the limb.

r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r1

r2
...

rk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= [Jv]T u (4.4)

τ E = r · F E (4.5)

Joint torque due to the dynamic and gravity loads

The limb motion which the operator is required to perform results in loads which must

be considered when calculating operator strength. Limb velocity and acceleration (q̇, q̈)

determine the dynamic joint loads, and limb position (q) determines the joint loads due

to gravity. The motion of the limb is assumed constant during the calculation of the

operator’s strength capability. For convenience these dynamic and gravitational loads

are combined into vector τ B (4.6) and are assumed constant during the optimisation.

τ B = Hq̈ + C + τ G (4.6)
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Joint torque due to the muscle forces

The muscular torque τ M is the joint torque resulting from MTU forces acting about the

joints in the MM. The MTU force output is a complex relationship (see Section 2.3.1),

with its force being dependent on a number of intrinsic parameters (Table 2.1) and

extrinsic parameters such as length, velocity, and activation. With the position and

velocity of the limb dened (q, q̇) the length and velocity of each MTU is calculated

(see Section 2.3.2). The force output of each MTU in the model can then be calculated

as a function of its activation, as represented by Equation (4.7).

fM
i = fM

i (ai) (4.7)

To derive an optimisation objective function in terms of muscle activation a, the

forces produced by each MTU, and subsequently the muscular joint torque, is separated

into components dependent and independent of muscle activation. The independent

component is calculated as the MTU force output with activation set to zero (a = 0).

This component is referred to as the passive force component, and is represented by

vector fP as shown in Equation (4.8).

fP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

fM
1 (0)

fM
2 (0)

...

fM
m (0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.8)

As activation increases, so does the MTU force output until its maximum at a = 1

is reached. The MTU force component dependent on activation is linearised in this

range and conveniently represented by the linear expression shown in Equation (4.9).

The matrix KA (4.10) is an activation-to-force gain matrix that produces the vector of
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active MTU forces fA from the vector of muscle activations a.

fA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

fM
1 (a1) − fM

1 (0)

fM
2 (a2) − fM

2 (0)
...

fM
m (am) − fM

m (0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= KAa (4.9)

KA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
fM

1 (1)−fM
1 (0)

]
0 · · · 0

0
[
fM

2 (1)−fM
2 (0)

]
· · · 0

...
... . . . 0

0 0 0
[
fM

m (1)−fM
m (0)

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.10)

This linearisation assumes that MTU force changes linearly with activation, and that

the independent passive force component remains constant. As detailed in Section 2.3.1

a muscle’s passive force changes with length, and hence for the assumption to be correct

the tendon must not stretch, otherwise the muscle bers shorten which aects their

passive force. The assumption of a sti tendon is commonly employed in musculoskeletal

analyses [Sapio et al., 2005] because tendon stretch is typically small, around 3% when

the corresponding muscle is producing peak isometric force [Zajac, 1989]. Furthermore,

the linearised force-activation relationship respects the bounds of the MTU force output

when compared to the relationship before the linearisation. Therefore this linearisation

is acceptable in the context of calculating operator strength capability.

The MTU forces (both active and passive) produce torque about the joints in the

MM. The Jacobian matrix L (2.8) relates MTU velocity to generalised joint velocity,

and through the principal of virtual work can calculate the joint torque resulting from

the MTU forces (see Section 2.3.3). Each element in the Jacobian is the moment-arm of

each MTU about each joint axis of rotation [Pandy, 1999] and is used to calculate the

passive torque τ P (4.11) and the active torque τ A (4.12) resulting from both passive
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and active MTU force contributions.

τ P = [−L]T fP (4.11)

τ A = [−L]T fA

= [−L]T KA a

= Kτ a

(4.12)

Matrix Kτ is an activation-to-torque gain matrix created by combining the Jacobian

matrix L and the activation-to-force gain matrix KA as shown in Equation (4.13).

The total muscular torque is the sum of both the active and the passive MTU torque

contributions (4.14).

Kτ = −[KA L]T

, [−L]T KA

(4.13)

τ M = τ P + τ A

= [−L]T fP + Kτ a
(4.14)

4.1.3 Objective function

The objective of the optimisation model is to nd SP = max[F E ] using muscle activa-

tion as the design variables. An objective function is derived that expresses FE as a

function of the muscle activation vector a, from which the solution to SP = max[F E ]

can be calculated. Equations (4.5), (4.6) and (4.14) are substituted into Equation (4.3)

to produce the reformulated dynamic Equation (4.15). This equation describes the dy-

namics of the musculoskeletal system in the joint space, with each row of the expression
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corresponding to one of the k joints in the MM.

τ B


dynamics + gravity

=

active torque  
Kτ a + τ P


passive torque

+

external load  
r·F E (4.15)

In each joint of the musculoskeletal system, the torque resulting from the external

force is dependent on the scalar term F E . The moment-arm vector r determines the

contribution of this term to the load at each joint. To derive a single expression contain-

ing the term F E , a single row of Equation (4.15) can be extracted to produce Equation

(4.16). The row that is extracted is referred to as row i, and consists of the corre-

sponding i-th elements in vectors τ B, Kτ a, τ P and r. The i-th element of the matrix

multiplication Kτ a is represented as [Kτ i]a, where Kτ i is the i-th row of matrix Kτ

(4.17).

τB
i = [Kτ i]a + τP

i + ri ·F E (4.16)

Kτ i =
[
Kτ [i,1], Kτ [i,2], · · · , Kτ [i,m]

]
(4.17)

Equation (4.16) is rearranged into Equation (4.18) to describe F E as a function of

the muscle activation vector a. This requires the expression to be divided by ri which

can result in numerical problems when ri is close to zero. This is avoided by selecting

the row in Equation (4.15) which is extracted to form Equation (4.16) by the row with

the largest magnitude in the vector r. The selection of this row is formally dened by

Equation (4.19).

F E =


τB
i − τP

i

ri


−


Kτ i

ri


a (4.18)

i = argmax
i∈N1|i≤k

[
|ri|

]
(4.19)
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Equation (4.18) expresses F E as a function of two terms. The rst term,


τB
i −τP

i
ri


is

independent of the muscle activation vector a. This term contains values that depend

on task-related parameters such as the limb motion or the direction of the external

force at the hand. As the operator performs a task, these parameters vary over time

and hence this term will change every time the optimisation model is used to calculate

the operator’s strength capability. However at each individual instant during the task

in which the optimisation is performed, this term is assumed constant. Its value τB
i

is taken from the dynamic and gravitational torque vector τ B (4.6) and as discussed

it remains constant during the strength optimisation. Likewise, the value ri is taken

from the moment-arm vector r (4.4) and also remains constant during the optimisation.

The value τP
i is taken from the passive joint torque vector τ P (4.11). This vector is

calculated from the passive MTU force vector fP using the Jacobian matrix L (2.8).

Both of these are functions of the limb’s position (see Sections 2.3.1 and 2.3.2) and

hence also remain constant during the optimisation.

The second term,
[

Kτi
ri

]
a is linearly dependent on muscle activation and hence is

not constant during the optimisation. The solution to SP = max[F E ] is found by

maximising Equation (4.18). This requires its second term to be minimised due to the

minus sign. The resulting objective function is shown in Equation (4.20). The constant

term in this objective function may be disregarded during the minimisation of
[

Kτi
ri

a
]
,

but must be considered afterwards to obtain the correct result for SP .

SP = max
[
F E

]

SP = max


τB
i − τP

i

ri


−

Kτ i

ri


a



SP =


τB
i − τP

i

ri


− min


Kτ i

ri
a


(4.20)
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4.1.4 Optimisation constraints

The objective function (4.20) used to nd SP = max[F E ] is derived from a single row

of the dynamic equation of motion (4.15). Results obtained by using this objective

function by itself only consider a single joint in the musculoskeletal system, and do not

consider the remaining joints. All of the joints in the system need to be considered to

account for inter-joint eects such as coupling from biarticular muscles and to ensure

consistency in the dynamic system. Constraints need to be included to ensure that the

dynamic Equation (4.15) is satised.

An equality constraint is created in the form Aa=b, where A is a constant matrix

of size k×m, b is a constant vector of size k×1, and a is the m×1 vector of muscle

activations which are also the design variables in the optimisation objective function.

This constraint is created from the dynamic Equation (4.15), thereby ensuring it is

satised during the calculation of SP . The steps of rearranging the dynamic equation

to produce the equality constraint in the form Aa=b are provided in Appendix D.2.

After rearranging, expressions for A (4.21) and b (4.22) are produced.

A = Kτ − r
ri

Kτ i (4.21)

b = τ B − τ P + r ·


τP
i − τB

i

ri


(4.22)

The equation Aa = b creates k constraints, with each row corresponding to each of the

k joints in the musculoskeletal system. Constraints are required because the objective

function (4.20) calculates SP by considering only a single joint in the system. However

to ensure that the remaining k −1 joints are consistent with the objective function’s

result requires only k−1 constraints. Substituting (4.21) and (4.22) into Aa = b and

expanding, it is found that one of the rows in the equality constraint equation reduces

to 0 · a = 0. This row corresponds to the same joint which the objective function

(4.20) considers when calculating SP . This redundant constraint is not required and

theoretically does not aect the optimisation result. However in practice, rounding

103



CHAPTER 4. MUSCULOSKELETAL MODEL-BASED STRENGTH ESTIMATION

errors when calculating A or b may result in one side of this redundant constraint to be

marginally non-zero. This may result in the optimisation failing to calculate a solution

due to overly stringent constraints which cannot be met. To avoid this, the rows of

both A and b corresponding to this redundant constraint can be explicitly set to zero,

or removed completely before optimisation.

4.1.5 Summary of the optimisation model

The aim of the optimisation is to nd the combination of muscle activations a which

maximises the magnitude of external force the operator can oppose at the hand. The

search space is bounded with activation ranging between 0 ≤ a ≤ s, with s acting as an

upper bound to analyse the eects of physical impairment at the muscular level. Bound

Smax
P is set for the strength output to limit the SP result. This is required in cases

where the strength result can be large. In summary, the optimisation for calculating

the strength SP of the human operator with respect to a task is the following:

Maximise: F E (4.18)

Subject to: Hq̈ + C + τ G = τ M + [Jv]T u·F E (4.3)

0 ≤ a ≤ s (4.1)

F E ≤ Smax
P (4.2)

(4.23)

The procedure for performing this optimisation is illustrated in Figure 4.2. This

process can be summarised step by step as the following:
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1. The upper limb motion and direction of external force at the hand

are dened based on the task the operator is performing (q, q̇, q̈, u).

2. Using the MM, derive the following parameters: r, Kτ , τ B, τ P .

3. Calculate the constraint terms A (4.21) and b (4.22).

4. Solve optimisation objective function (4.20) using numerical

methods (e.g. linear programming) with the following constraints:

Aa = b 0 ≤ a ≤ s F E ≤ Smax
P

Dened task

q q̇ q̈

τ B τ P Kτ Jv r

SP

Form objective function and constraints

Objective function A

Calculate strength SP using constrained optimisation:

s Smax
P

b

Set MM position and
speed to q and q̇

Objective function input:
Muscle activation

vector a

Optimisation output:
Strength capability SP

Constraints:
Aa = b

0 ≤ a ≤ s
SP ≤ Smax

P

Calculate parameters
required from model

Strength

Optimisation

Musculoskeletal

u

Model (MM)

Model

Model (SM)

Muscular impairment Strength limit

Figure 4.2: Procedure for calculating the operator’s strength capability (SP )
using the optimisation model within the SM framework.
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4.2 Evaluation

In this section the SM utilising the optimisation model developed in Section 4.1 is

evaluated. Strength of the upper limb at the hand is calculated, and how this strength

is aected by factors including limb position, the direction of external force, and physical

impairment is analysed. A number of tasks involving the upper limb are simulated, and

results compared with strength measurements available from the literature. The same

MM of the upper limb used previously (detailed in Section 3.4.1) is utilised.

Before evaluation it is necessary to consider what are the indications that suggest the

SM has the ability to estimate an operator’s strength capability. Obtaining accurate

quantitative estimates of an operator’s strength capability is only a part of what is

required from the SM. It is also required to portray how strength is aected by fac-

tors related to the task being performed, and the physical capacity (or incapacity in

applications such as rehabilitation) of the operator. It is understood that using a MM

to estimate strength which exactly matches some empirically obtained data set is not

the objective. Firstly, strength itself varies from person to person, so no quantitative

strength result will be representative of the entire human population. As an example,

elbow exion strength between the 5th and 95th percentile male population can range

from 42 N.m to 111 N.m [Amell, 2004]. This highlights how much strength varies in

the healthy population. In unhealthy populations, such as stroke patients, variation in

strength is further exacerbated due to their impairment [Arva et al., 2004]. Parameters

within a MM can be tted to a data set so they become a better representation of an

individual [Buchanan et al., 2005; Fleischer and Hommel, 2008; Manal and Buchanan,

2004; Nam and Uhm, 2011]. A process of tting the model to match an available data

set is often performed in the creation of the model itself [Garner and Pandy, 2001;

Holzbaur et al., 2005]. Using strength data available from the literature, it is possible

to t the MM to produce strength estimates which match well to a particular data set.

However this is not the objective of this evaluation. Instead, evaluation of the strength

estimation results will be performed with no eort made to t or adjust the MM’s pa-

rameters as to better t the data. Hence it is expected that the quantitative strength
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results will not equal those published, just as strength amongst the human population

is so widely varied. Instead, the evaluation focuses on the ability of the SM to capture

the behaviour of the strength. In other words, how this strength is aected by factors

relating to the task being performed and the physical capability of the operator. The

SM is evaluated based on how this agrees with behaviour described in the literature,

and anticipated behaviours based on an understanding of biomechanics.

4.2.1 Strength vs force direction

Upper limb strength at the hand varies depending on the direction being considered

[McCormick, 1970]. It is important that this behaviour be portrayed by the SM when

used in the AAN paradigm. The direction of external forces applied to the hand can

vary as tasks are performed. Hence the strength capability of the operator to oppose

such external forces, and consequently the assistance required by the operator varies.

A model-based AAN paradigm is required to estimate how changes in force direction

aect an operator’s assistance requirements.

Method

The SM is used to calculate upper limb strength at the hand in a number of dierent

directions for a specic pose. Results are compared to equivalent strength measurements

in the literature. Evaluation is based on how well the strength results match in terms

of both magnitude and distribution across the dierent directions.

Whole-limb strength measurements made at the hand are required for comparison

with the SM results. It is common for measurements to isolate individual joints in

an attempt to mitigate factors aecting strength such as limb posture [Amell, 2004].

However for evaluation it is exactly such eects we wish the SM to portray. In ergonomic

strength studies, the joints are not isolated during the measurement of strength at

the hand for specic activities (e.g. pushing, pulling, lifting, etc). However often in

such studies the subject’s pose is not specied, or only minimal pose variables are set

(e.g. arm reach length [Kumar and Garand, 1992]) leaving much of the body pose
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undened. The position of the limb is required such that the MM can be positioned

accordingly. Furthermore since the MM is of the upper limb, eects on strength due

to remaining body segments (i.e. torso, lower limbs, etc) should be minimised as much

as possible. For these reasons the strength measurements by McCormick [1970] are

used for comparison. These measurements are of the whole-limb strength at the hand,

measured in six orthogonal directions and ve upper limb positions. The strength of 55

healthy male subjects were measured with the mean and 5th percentile results published.

Subjects were seated during the study making this data set ideal for comparison with

the upper limb MM as eects due to other body segments were minimised.

Upper limb strength is compared against measurements in McCormick [1970] for the

limb position and directions shown in Figure 4.3. The MM generalised coordinates q are

dened such that the upper limb MM is in the equivalent pose which has the humerus

in 30◦ extension and forearm horizontal. The external force direction u is set equivalent

to each of the six force directions (Push, Pull, Up, Down, In, Out). Strength capability

SP is calculated using the SM for each direction. Static conditions (q̇ = q̈ = 0) are

assumed, and no impairment is simulated (s = 1).

��

����

��	
���� ����

Figure 4.3: The six dierent directions for which the strength at the hand is
calculated using the SM, and compared to strength measurements obtained from
the literature [McCormick, 1970]. Arrows indicate the direction of external force
applied to the hand (u).
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Results

The strength capability results calculated by the SM for each direction are shown in Fig-

ure 4.4, along with the corresponding strength measurements from McCormick [1970].

Results are displayed in descending order for convenience. A consistent dierence be-

tween the SM results and the strength data from the literature across all six directions

is observed. This is not surprising as no attempt was made to adjust the MM to t

the data, and upper limb strength varies amongst the population. Both results show a

similar distribution of strength across the six directions. For both, strength is largest

in the Pull direction, followed by the Push and then Up directions. Both data sets

also had strength weakest in the Out direction. The SM estimated the strength for the

In direction as being greater than for the Down direction. In the literature it was the

reverse, however the dierence in strength between these two directions within each of

the data sets was relatively small.
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Figure 4.4: Strength at the hand in six orthogonal directions. Strength mea-
surements from McCormick [1970] are compared with results obtained using the
optimisation method within the SM.

4.2.2 Strength vs limb position

The position of the upper limb plays a large role in determining strength at the hand.

The force producing capability of muscles are aected by their length, which is deter-

mined by the limb position. These forces produce torque at the joints depending on the

moment-arms of the muscles about each joint, which are also determined by the limb’s
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position. Position of the limb also determines the load due to gravity, and which joints

require the greatest strength to oppose an external force applied to the hand. The eect

of upper limb position on strength has been measured in numerous studies [Amell, 2004;

Caldwell, 1959; Kumar and Garand, 1992; McCormick, 1970]. This analysis evaluates

the ability of the SM to predict the relationship between strength and limb position by

comparing estimated strength capability against matching strength measurements from

the literature.

Method

The strength data from McCormick [1970] is again used to compare against the strength

capability estimated from the SM. Strength is calculated at the hand in ve dierent

upper limb positions shown in Figure 4.5. At each position, strength in the six directions

Push, Pull, Up, Down, In, Out (shown in Figure 4.3) is calculated. Strength results

calculated by the SM are compared to the equivalent strength measurements in the

literature [McCormick, 1970].

���� �� ��� ��� ���

Figure 4.5: The ve upper limb positions for which the strength at the hand is
calculated using the SM, and compared to strength measurements obtained from
the literature [McCormick, 1970]. The ve poses have the humerus in −30◦, 0◦,
30◦, 60◦, and 90◦ extension, while the forearm remains horizontal.

The correlation between the results from the SM and the literature is analysed using

the Pearson product-moment correlation coecient (ρ). This value quanties the linear

relationship between the two data sets in the range of −1 ≤ ρ ≤ 1. A value of ρ = 1
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denotes that the two data sets have a strong linear correlation. Alternatively a value of

ρ = −1 indicates a negative linear relationship, and ρ = 0 indicates no linear correlation.

Correlation between the calculated strength and strength from the literature is analysed

for subsets within the strength results. For each of the ve limb poses (−30◦, 0◦, 30◦,

60◦, and 90◦) the correlation coecient ρ is calculated for the subset of strength data

relating to each individual pose. Similarly, for each of the six force directions (Push,

Pull, Up, Down, In, Out) the correlation is calculated for the subset of strength data

relating to each individual direction.

Equation (4.24) is used to calculate ρ for a specic strength data subset, where n is

the size of the subset. When calculating ρ with respect to a single limb pose, n = 6

since this subset consists of strength results from both the SM and from the literature

in each of the six orthogonal force directions at that pose. Alternatively with respect

to a single force direction, n = 5 since this subset consists of strength results for each

of the ve limb poses. For each subset, SP i and SLi are the i-th strength results from

the SM and the literature, respectively. S̄P and S̄L are the average strengths from the

SM and the literature for the subset.

ρ =

n
i=1

[
(SP i − S̄P )(SLi − S̄L)

]

√
n

i=1

[
(SP i − S̄P )2

] n
i=1

[
(SLi − S̄L)2

] (4.24)

Results

Both the SM results and the measurements from the literature are plotted in Figure 4.6

as a function of the limb position. As the arm is fully extended the SM estimates that

strength in the Push (Figure 4.6a) and Pull (Figure 4.6b) directions increases. This

strength increases rapidly when the arm is fully extended (towards 90◦ extension). The

literature results also show an increase in strength as the arm is extended but not to

the same extent. It is reasoned that the rapid increase in strength calculated by the

SM is due to the limb being close to a kinematically singular position. With the arm

fully extended, the external forces in both the Push and Pull directions pass almost
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(d) Down
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Figure 4.6: Upper limb strength capability SP versus limb position, calculated
with the SM and compared to strength measurements from the literature [Mc-
Cormick, 1970]. Each plot corresponds to one of the six external force directions;
(a) Push. (b) Pull. (c) Up. (d) Down. (e) In. (f) Out.
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directly through both the elbow and shoulder joints. This situation was discussed in

Section 4.1.1. The Smax
P constraint may be set to limit excessively large strength results

in situations such as this, however in this analysis it was not utilised (Smax
P =∞).

In the Up (Figure 4.6c), Down (Figure 4.6d), In (Figure 4.6e) and Out (Figure 4.6f)

directions the results calculated by the SM and from the literature show similar strength

behaviours as the hand is extended forward. With humerus extension in the 30◦ to 90◦

range the results show similar trends. In the −30◦ extension position the SM results tend

to show a dierent trend to that in the literature. This is reected by the correlation

value calculated with respect to this limb position which equated to ρ = 0.525. This is

far less compared with the other four limb positions (ρ = 0.779, 0.958, 0.835, 0.952).

When considering a specic direction at the hand (Push, Pull, Up, Down, In, or

Out) the correlation across the dierent limb positions were ρ = 0.768, 0.845, 0.230,

0.529, 0.203, and 0.938 respectively. These values are smaller than those calculated for

a specic limb position, particularly in Up and In directions. This suggests that the

strength model is better at estimating how strength varies across dierent directions at

the hand for a specic limb position, compared to estimating how strength varies across

dierent limb positions for a specic direction at the hand. However it is noted that

only a single motion of the upper limb is analysed, and both the calculated strength

and the strength obtained from the literature for specic directions at the hand show

relatively small variance compared to its mean value across this motion, which may

contribute to poorer correlation values being calculated.

The correlation of the strength data for all poses and force directions was ρ = 0.826.

All of the strength results calculated by the SM, the corresponding strength data from

the literature, and their correlations ρ are shown in Table 4.1.
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External force direction

Push Pull Up Down In Out

U
pp

er
lim

b
po

si
ti

on

−
30

◦ 303.02 136.11 283.34 149.06 73.16 142.87

ρ
=

0.
52

5

[409.18] [278.96] [213.85] [226.20] [236.30] [186.91]
0◦ 315.61 247.79 282.75 114.75 124.30 107.76

ρ
=

0.
77

9

[379.72] [389.82] [249.50] [233.78] [219.19] [159.69]

30
◦ 310.51 398.86 146.64 93.20 125.49 78.25

ρ
=

0.
95

8

[456.89] [465.87] [264.93] [252.58] [233.50] [149.30]

60
◦ 316.70 767.78 67.95 87.27 93.67 70.63

ρ
=

0.
83

5

[546.42] [539.68] [248.93] [205.15] [235.46] [143.41]

90
◦ 928.37 1191.06 16.59 64.39 39.50 49.81

ρ
=

0.
95

2

[614.61] [532.66] [194.76] [181.29] [218.34] [146.49]

ρ=0.768 ρ=0.845 ρ=0.230 ρ=0.529 ρ=0.203 ρ=0.938

Table 4.1: Upper limb strength at the hand in ve dierent limb positions and
in six dierent directions; comparison between the strength calculated by the SM,
and strength data obtained from the literature. Strength units are in Newtons (N).
Values not in brackets (e.g. 123.45) are results calculated by the SM. Values in
brackets (e.g. [123.45]) are from the literature [McCormick, 1970]. Correlation ρ
is calculated for each limb position, and each force direction subsets.

4.2.3 Strength vs muscle impairment

This analysis evaluates the ability of the SM to depict the eect physical impairment

has on the strength capability of an operator. In applications such as rehabilitation,

physical impairment can reduce the capability of a subject to perform physical tasks.

The extent of this reduction of capability, and how it manifests itself depends largely

on the impairment of the individual [Arva et al., 2004]. The ability to estimate how

a specic impairment aects a subject’s capability to perform tasks, and hence aects

their assistance requirements is useful in AAN applications.
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Method

The relationship between a physical impairment and its eect on upper limb strength is

observed by simulating impairments at the muscular level. Three dierent impairment

types are simulated, localised into three distinct muscle groups; biceps, triceps, and

deltoid. Impairment is simulated by limiting the activation of the muscles in each of

these groups. This is done by setting the corresponding elements in vector s to s = 0.01,

limiting the muscle’s active force output to replicate the eects of an impairment during

the optimisation. Table 4.2 details which MTUs in the MM have their activations limited

for each of the three impairments.

Impairment MTUs impaired in MM (s = 0.01)
No impairment None
Impaired biceps BIClong, BICshort
Impaired triceps TRIlong, TRIlat, TRImed
Impaired deltoid DELT1

Table 4.2: Names of the MTU models in the upper limb MM which have their
activation limited to simulate impairment. The MTUs listed have their correspond-
ing elements in the s vector set to s = 0.01. MTU names correspond to the muscles
in the upper limb MM [Holzbaur et al., 2005]. MTUs which are not listed in an
impairment have do not have their activation limited (s = 1).

There is no comprehensive data available in the literature detailing the relationship

between impairments at the muscular level and the eects of such impairments on upper

limb strength at the hand. The ideal approach to obtaining this information would be

to measure the hand strength of subjects before and after controlled impairments are in-

troduced into specic muscle groups. Of course this is not feasible due to many factors,

most notably ethical and safety concerns. Instead, the eect of localised muscle impair-

ments on hand strength are anticipated based on an understanding of biomechanics.

These expected behaviours are then compared to the SM results.

To visualise the eect of impairment on the strength capability, the SM is used re-

peatedly to calculate strength as the direction vector u is swept 360◦ about the hand in

the vertical plane. At each direction, the operator’s strength capability SP is calculated.

Results are plotted in a polar plot with its origin located at the hand. For each direction
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Figure 4.7: Visualisation of the SM results using a polar plot. With the limb mo-
tion dened by q, q̇, q̈, operator strength is calculated using the SM. The direction
of external load u is rotated 360◦ as strength SP is calculated at xed intervals.
Strength results are plotted as a polar plot with origin at the hand, as shown above.
The result is a strength prole polar plot.

that SP is calculated, the strength result is plotted as a point. Distance from the point

to the polar origin represents the magnitude of the SP result, while the direction from

the point to the origin indicates the direction of u for which SP was calculated. The re-

sulting polar plot produces a strength prole as demonstrated in Figure 4.7. The outer

circle of the plot indicates the Smax
P boundary, which was set to 300N in this analysis.

Strength is calculated with the hand positioned at chest height in front of the body.

The polar plots are calculated with and without each of the three impairments present.

The impaired strength plots can then be compared with each other and with the strength

plot calculated with no impairment. This allows both the magnitude and directions in

which the dierent impairments aect strength at the hand to be easily visualised, and

a qualitative comparison between the dierent impairments made.
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Results

Results are shown in Figure 4.8. In each subplot the strength prole without any

impairment applied is shown. Subplots 4.8b, 4.8c and 4.8d are overlaid with the strength

proles resulting from impaired biceps, triceps, and deltoid, respectively. It is seen that

each of the impairments produces a decrease of strength capability (compared with

no impairment) in some direction. The direction of this strength decrease depends

on which muscle group is impaired. Impairing the biceps (Figure 4.8b) resulted in a

loss of strength in the upwards direction, and towards the torso. Impaired deltoids

(Figure 4.8d) resulted in a loss of strength also in the upwards direction, but away from

the torso. Impaired triceps (Figure 4.8c) reduced strength downwards and away from

the body.

(a) No impairment (b) Impaired biceps

(c) Impaired triceps (d) Impaired deltoid

Figure 4.8: The eect of muscular impairment on strength at the hand. Plot (a)
shows the strength calculated with no impairment applied. The remaining plots
are overlaid with the strength results calculated with impairment localised in the
following muscle groups; (b) Biceps. (c) Triceps. (d) Deltoid.

From an understanding of biomechanics these eects on strength is what could be
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expected for this upper limb pose and the types of impairments introduced. In the

upper limb position simulated, the biceps and anterior deltoid are both used in lifting

motions. It is therefore expected that their impairment would result in weakness in

the upwards direction. Alternatively, the triceps is largely responsible for downwards

movements, and therefore impairment would result in downward weakness, as predicted

by the SM.

4.3 Assistance Estimation Considering Impairment

Chapter 3 demonstrated the model-based AAN framework applied to example tasks

utilising the upper limb. It was shown how the framework estimated the strength ca-

pability of the subject, how this capability varied during the task, and how it could be

used to estimate their assistance requirements. Since the optimisation model developed

in Section 4.1 operates in the muscle space of a MM representing the subject, it is possi-

ble to investigate the role physiology plays with respect to the capability of performing

tasks.

In this section the framework is applied within two case studies which analyse the

eects physical impairment have on the ability to perform simulated tasks. Muscle

impairment proles based on data from stroke patients are applied to the MM as the

strength capability of a person is estimated. Observing how their strength capability

varies with dierent applied impairments allows the relationship between muscle impair-

ment and a person’s assistance requirements to be analysed. Ideally, these results would

be compared with empirical data which describe how impairments at the muscular level

aect someone’s ability to express forces at the hand and perform tasks. Validation

of the model-based AAN could then be made using a statistical analysis of its ecacy

in estimating this relationship. This would require a large controlled study involving

numerous patients with diering impairments to be performed. Each patient’s impair-

ment would need to be quantied at the muscular level. Their assistance requirements

with respect to numerous dierent tasks would then need to be determined through a

series of experiments. It is not known if such a study has been performed in the past,
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and at the current stage of this research implementing a study of such magnitude is not

feasible. In the literature there have been studies quantifying impairment due to stroke

at the physiological level. Using this information, averaged muscle impairment proles

which are consistent with that of stroke are created. Creating impairment proles for

specic patients is discussed later in Section 6.2.3.

The averaged stroke impairment proles are used in the two case studies to observe

the eects such impairments have on the strength at the hand, and consequently the

assistance needs of a person. The results provide insight into the possible eects such

impairments may have on a person’s ability to perform tasks. It also demonstrates how

incorporating a MM into an AAN paradigm has the potential to provide signicant

benets, such as the capability of analysing physiological factors with respect to an

individual’s assistance requirements.

4.3.1 Impairment due to stroke

Impairment proles are created based on a study in which the strengths of 69 stroke

patients were recorded [Bohannon and Andrews, 1987]. The patients had hemiplegia,

meaning the weakness due to their stroke was predominantly located in one side of their

body. Strengths in both paretic and non-paretic upper limbs were recorded for seven

limb articulations; wrist extension, elbow exion, elbow extension, shoulder internal

rotation, shoulder external rotation, shoulder extension, and shoulder abduction. The

mean and standard deviation of the measured paretic and non-paretic strengths are

shown in Figure 4.9a. The amount of strength remaining after a stroke (referred to

as the residual strength) is calculated by normalising the mean paretic strength by the

mean non-paretic strength for each articulation. The normalised standard deviation (σ)

of the residual strength is calculated by dividing the paretic strength standard deviation

by the non-paretic strength mean. The normalised residual strengths and normalised

σ for each articulation are shown in Figure 4.9b. These normalised residual strengths

provide a basis on which the dierent upper limb impairment proles consistent with

stroke are derived. Figure 4.9b suggests that the mean residual strength after a stroke is
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in the range of approximately 17% to 35% across the dierent upper limb articulations.

Residual strength σ is around 30%, indicating that the residual strength has large

variation about the mean. Bohannon and Andrews [1987] noted that many patients

were unable to produce any strength in one or more articulations.
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Figure 4.9: Measured strength comparison between the paretic and non-paretic
upper limbs of stroke patients with hemiparesis, obtained from the literature [Bo-
hannon and Andrews, 1987]. Strength is grouped by muscle group based on the
following upper limb articulations; Wrist Extension (WE), Elbow Flexion (EF), El-
bow Extension (EE), Shoulder Internal Rotation (IR), Shoulder External Rotation
(ER), Shoulder Extension (SE), Shoulder Abduction (AB). (a) Strength measured
for select muscle groups for paretic and non-paretic upper limbs. Error bars indi-
cate standard deviation of the measurements. (b) Paretic strength measurements
normalised by the non-paretic strength measurements. The bars are the mean
paretic strength normalised by the mean non-paretic strength. The error bars is
the paretic standard deviation normalised by the mean non-paretic strength.

Impairment proles are created by dening several s vectors which limit muscle activa-

tion during the calculation of strength capability. Limiting muscle activation replicates

impairment by reducing the amount of active force a muscle can produce. Each element

in the s vector ranges from 0 to 1, with s=0 fully impairing a MTU, and s=1 producing

no impairment at all. The normalised residual strengths also range from 0 to 1, and are

used to set the level of impairment in the s vector. Five dierent impairment proles

are created. The rst prole s0 represents no impairment (s0 =1) and is used to provide

a benchmark representing a healthy subject not impeded by stroke. Four other proles

are created from combinations of the mean and σ of the normalised residual strengths

120



CHAPTER 4. MUSCULOSKELETAL MODEL-BASED STRENGTH ESTIMATION

shown in Figure 4.9b. In order from the least impaired to the most impaired these are;

s1 = (mean+σ), s2 = (mean+σ/2), s3 = (mean), and s4 = (mean−σ/2). These ve

levels of impairment for the seven upper limb articulations in Bohannon and Andrews

[1987] are shown in Figure 4.10.
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Figure 4.10: Strength impairment proles with various impairment severity, de-
rived from the literature [Bohannon and Andrews, 1987]. Impairments are sorted
by muscle group based on the following upper limb articulations; Wrist Extension
(WE), Elbow Flexion (EF), Elbow Extension (EE), Shoulder Internal Rotation
(IR), Shoulder External Rotation (ER), Shoulder Extension (SE), Shoulder Ab-
duction (AB).

To derive the vector s for an impairment, each MTU in the model is associated with

one of the seven upper limb articulations. Its level of impairment is then set using the

values from Figure 4.10 depending on the articulation it was assigned, and the severity

of the impairment prole (s0, s1, s2, s3 or s4). Each MTU is assigned to an articulation

by determining which articulation it contributes to the most by examining the MM’s

activation-to-torque gain matrix Kτ (4.13). Each element in matrix Kτ represents

the active torque produced about a joint in the MM by a fully activated muscle. Each

column corresponds to an individual muscle, and each row to a specic joint. Taking the

column from Kτ corresponding to the MTU in question, the row containing the element

with the largest magnitude corresponds to the joint which produces the most torque

as a result of the MTU’s activation. This joint and the sign of the torque produced

about it are then used to relate the MTU to one of the seven articulations. Since the

data from Bohannon and Andrews [1987] does not provide strength measurements for
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shoulder adduction and shoulder exion, muscles which produce these articulations are

impaired as if they produced shoulder abduction and shoulder extension, respectively.

Appendix A.3 lists the impairment vectors s0, s1, s2, s3 and s4 for all MTUs in the MM.

4.3.2 Case study 1: drinking task

The drinking task detailed in Section 3.5.1 is simulated in this case study. The task

involves a subject carrying a water bottle as it is moved from their mouth and placed on

a table surface in front of them. The motion of the subject’s upper limb was recorded

using a motion capture system (Xsens MVN Biomech) and used to derive the generalised

coordinates (q, q̇, q̈) for the MM. The bottle carried in the hand had mass of 0.6kg. In

the AAN framework the carried bottle is represented by external force u·ST at the hand,

with direction vector u pointed in the direction of gravity and ST = 6N . Figure 4.11

shows the recorded upper limb motion as the hand is extended from the subjects mouth

and the bottle placed on the table surface in front of them. At each time instant of

the recorded motion the SM is used to calculate operator strength capability SP . This

process is performed ve times, each with a unique impairment prole (s0, s1, s2, s3,

s4) to simulate the eects of stroke.

Figure 4.12a shows the calculated strength capability SP for the task for each impair-

ment prole. As expected the strength at the hand decreases as the hand is extended

away from the subject’s torso. It is observed that the impairment proles aect the

calculated strength capability of the operator. As the severity of the impairment is

Figure 4.11: Upper limb motion recorded during the drinking task.
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Figure 4.12: Results for the drinking task. (a) Calculated strength capability at
the hand during the task. Each curve represents the operator with dierent severity
of impairment (s0, s1, s2, s3, s4). (b) Enlarged view showing the calculated strength
capability with impairment prole s4 applied. (c) Gap between the drinking task
strength requirement ST and the estimated strength capability SP of the subject
with impairment prole s4.
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increased, the calculated strength at the hand reduces. Hence the gap between the

operator’s strength capability SP and the task’s strength requirement ST = 6N reduces

as well. For the four least severe impairments (s0, s1, s2, s3) the operator’s capability

remains greater than what is required by the task (i.e. SP > ST ). For the most severe

impairment (s4) the subject is estimated as having less strength than the task requires

(SP < ST ). This strength is small compared to the others, making it dicult to visu-

alise in the plot. An enlarged view the strength with impairment prole s4 is shown

in Figure 4.12b. It is seen that the gap between SP and ST is not constant, but varies

during the task. Interestingly the results suggest that less assistance is required in the

middle of the movement, compared to the start and end positions.

4.3.3 Case study 2: sliding task

The second case study simulates the sliding task detailed in Section 3.5.2 in which

the subject slides a water bottle in a circular motion on a horizontal table surface in

front of them. Again the motion was recorded using a motion capture system from

which the MM generalised coordinates are derived. A single circular motion shown in

Figure 4.13a is used. A horizontal friction force of magnitude ST = 2.5N (based on

Yeong et al. [2009]) is applied to the hand representing the friction force resulting from

sliding the bottle. The unit vector u dening the direction of this external force is

pointed such that it is parallel with the table surface and in the opposite direction of

hand movement, as shown in Figure 4.13b. At each time instant of the recorded motion

the SM is used to calculate operator strength capability SP . Similar to the previous

analysis this process is repeated for each unique impairment prole (s0, s1, s2, s3, s4).

Figure 4.14a shows the calculated strength capability SP for the task for each im-

pairment prole. The estimated strength capability varies during the task, showing

a similar shape to that estimated for the same task in Chapter 3 (see Figure 3.18).

Interestingly there is a visible dierence between the calculated strengths using the op-

timisation model developed in Section 4.1 versus the method used in Chapter 3. The

maximum strength which was noted as being unrealistically large (≈ 1200N) is reduced
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Figure 4.13: Upper limb motion recorded during the sliding task. (a) The hand
movement and target positions based on motion capture data. (b) The direction of
the external force vector u is shown at intervals during one circular movement. The
hand moves in a clockwise direction with the external force vector opposing the
movement to simulate the friction force of an object being slid on a table surface.

to around 700N . This strength corresponds to when the subject is sliding the bottle

towards their torso in a pulling motion, and is a much more realistic value for the max-

imum strength that a typical person would be capable of performing in this type of

action. Dierences in the results are attributed to one method accounting for eects

due to joint coupling, while the other method does not. This highlights the necessity

of developing the optimisation model which estimates strength taking such eects into

account.

It is observed that the impairment proles aect the calculated strength capability

of the operator. Similar to the analysis of the drinking task, as severity of impairment

is increased the strength at the hand reduces. For the least severe impairments (s0,

s1, s2, s3) the operator’s capability remains greater than what is required by the task

(i.e. SP > ST ). For the most severe impairment (s4) the subject is estimated as having

less strength than what the task requires (SP < ST ) during certain portions of the

movement. An enlarged view of the strength with impairment prole s4 is shown in
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Figure 4.14: Results for the sliding task. (a) Calculated strength capability at the
hand during the task. Each curve represents the operator with dierent severity of
impairment (s0, s1, s2, s3, s4). (b) Enlarged view showing of the calculated strength
capability with impairment prole s4 applied. (c) Gap between the drinking task
strength requirement ST and the estimated strength capability SP of the subject
with impairment prole s4.
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Figure 4.14b. It is seen that the gap between SP and ST varies during the task. At two

distinct times during the task the subject’s strength is estimated as being greater than

the friction force required to slide the bottle. These times are approximately when the

hand is passing the B and D targets. Due to the direction of the friction force at these

times, the task represents actions similar to that of pushing and pulling. As the sliding

task is performed, and the hand motion changes such that the task transitions into

medial and lateral hand movements, the estimated strength of the operator decreases.

This behaviour is expected and matches with the literature [McCormick, 1970]. During

these segments of the task the estimated strength drops below the strength requirements

of the task. The gap between ST and SP is plotted separately in Figure 4.14c.

4.4 Discussion

4.4.1 Representation of physical impairment

A key benet of the MM-based AAN approach is the ability to investigate the role phys-

iology plays in physical capabilities, and hence the assistance requirements of a person.

This chapter examined the eects of physical impairment on operator strength at their

hand by setting limits on the degree to which certain muscles could be activated, reduc-

ing their active force output capability. This is a convenient approach as implementing it

only requires the upper bounds of the muscle activation search space in the optimisation

to be set according to the impairment being simulated. Other methods which reduce

the force producing capabilities of muscles in a MM have been used to mimic the eects

of physical impairment [van Drongelen et al., 2006]. It is understood that there are

many other factors that can contribute to an injury limiting the capability of a person

to perform physical tasks. For example abnormal muscle synergies following a stroke

can reduce the ability to coordinate limb movement [Hogan et al., 2006]. Mechanical

injuries such as tears in the muscle or tendon may not be adequately represented by

limiting muscle activation since this only limits the active force producing components

in the MTU.
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Injuries which manifest themselves through muscular weakness can be the result of

very dierent mechanisms of injury. Neuromuscular disease can cause muscular weak-

ness either directly or indirectly. Direct neuromuscular disease directly aects the mus-

cle pathology such as in the muscular dystrophy group of diseases. Indirect causes can

be due to a loss or reduction in the ability to activate or control motor neurons that

produce muscle activation. This can be caused by diseases such as stroke, multiple

sclerosis, or cerebral palsy. Regardless of the cause of the weakness, we make the as-

sumption that weakness in the muscle domain can be mapped by assigning each muscle

a value representing its weakness in relation to baseline active force output.

4.4.2 Eect of joint coupling on strength estimation

A motivation for the optimisation model developed in this chapter is the necessity to

consider eects from biarticular muscles spanning multiple joints when calculating oper-

ator strength capability. This is in contrast to the simplied method used in Chapter 3

which calculated strength assuming the joints in the limb were independent and un-

coupled. Muscles which span multiple joints place additional constraints which need

to be satised when the operator’s strength is calculated. Without such constraints it

is possible that a larger solution for the strength would be calculated, and hence may

result in the assistance requirements of an operator being underestimated compared to

if this coupling is taken into account.

This is observed by comparing the strength results obtained from these two methods

of calculating strength. The rst is the optimisation model developed in this chapter,

Section 4.1 which accounts for joint coupling. The second is the strength calculation

that was utilised in Chapter 3 which assumed independent joints. These two methods

are used to recreate the same strength polar plots created in Section 4.2.3. This allows

the dierence between the strength results to be visually observed.

The calculated strength results from both the methods are shown in the same polar

plot in Figure 4.15. Both results show a similar shape, with many of the polar points

aligning in the plots. In two distinct regions of the plot, dierences between the strength
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results are observed (lled in yellow). This dierence is attributed to one method taking

into account joint coupling, while the other does not. As expected, in these regions

the method assuming uncoupled joints produced larger strength results compared with

the method that accounted for joint coupling. The largest dierence in these results is

approximately 15% of the coupled strength. This demonstrates that the simplication of

assuming independent joints, although convenient and computationally ecient, comes

with the cost of less condence in the strength result.
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Figure 4.15: Dierences in the strength results calculated with and without
considering joint coupling. In the two regions highlighted, dierences between the
strength results are observed.

4.4.3 Redundancy

There are many dierent methods for utilising musculoskeletal models (see Sec-

tion 2.3.7). A common objective is to nd a solution to the muscle forces or activation

patterns required for a specic task or motion to be performed. A challenge with such

analyses is that there are an innite number of solutions for the muscle utilisation that

can perform a specic task. This is due to the human body having signicant redun-

dancy [Prilutsky and Zatsiorsky, 2002]. Optimisation methods are typically employed

to nd a solution, utilising a cost function based on some form of physiological ratio-

nale [Erdemir et al., 2007]. For example a solution may be found that minimises the

total muscle stress. Although such methods have been applied successfully in a num-

ber of clinical investigations, there currently exists no proven solution to solving this

redundancy problem and continues to be a topic of ongoing research.
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The model-based AAN paradigm that is presented in this thesis is dierent in the

sense that it is not being used to estimate the physiological state of the operator during

the task. Instead, the MM is used to gauge the maximum potential of the operator

in terms of strength. The advantage is that, given the constraints imparted by the

task being performed and the physiology of the musculoskeletal system, there exists a

single solution to the maximum strength which the operator is able to achieve. Hence

this approach which is based on determining the maximum strength of the operator

is a convenient method of utilising the MM within the framework of a robotic control

system, whilst avoiding the problems associated with solving the redundancy in the

muscle space.

4.4.4 Ignored activation dynamics

The activation of a muscle behaves similar to a rst order dynamic system (see Sec-

tion 2.3.6). Therefore, given the activation of a muscle at a specic instant in time, the

range of activation possible at the next time instant is limited by that muscle’s acti-

vation dynamics. Taking these dynamics into account aects the strength calculation

in two ways. Firstly, it adds constraints into the optimisation which would often limit

the strength result to a lower value. Secondly it means that the strength cannot be

calculated at each time instant independently, but rather is dependent on the previous

activation state of the subject.

At this early stage of research the activation dynamics of the operator’s muscles are

ignored. This removes the requirement of the actual activation state of the operator to

be calculated, avoiding the redundancy problems previously discussed. It also allows

the strength capability of the upper limb to be calculated at each time instant during

a task, independent of the previous states of the operator or the task. No constraints

are considered when calculating operator capability with respect to previous states.
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4.5 Summary

In this chapter an optimisation model for calculating the strength capability of a human

operator was formulated and evaluated. The optimisation model uses parameters from

a MM representing the operator to calculate the maximum strength at the hand, in a

specic direction and for a specic limb motion. Unlike the method used in Chapter 3 to

calculate strength, this optimisation model operates at the muscular level, taking into

account eects such as joint coupling resulting from biarticular muscles. A comparison

of the results obtained with and without considering such eects showed dierences in

strength estimation, justifying the need for its development.

The ability of the developed optimisation model to calculate strength was evaluated

by estimating upper limb strength with respect to limb position, force direction, and

physical impairment. The calculated relationship between upper limb strength with

both force direction and limb position agreed well with strength results from the liter-

ature. These results are promising since no eort was made to adjust the MM as to

better match with the results. The calculated relationship between strength at the hand

and impairments in the biceps, triceps and deltoid muscle groups produced qualitative

behaviours consistent with expectations based on an understanding of biomechanics.

Lastly, the optimisation model was applied to two upper limb tasks. The model-

based AAN framework was used to calculate the relationship between the operator’s

physiology and their assistance requirements for the two tasks. Impairment proles

used for analysis were derived from a study of stroke patients. The eects of dierent

impairment severity on the operator’s assistance requirements were observed.
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Chapter 5

Experimental Validation of

Model-based AAN

In Chapter 4 an optimisation model for calculating the strength capability of an oper-

ator was developed and tested. It was applied in a number of simulated tasks using a

musculoskeletal model (MM) of the upper limb [Holzbaur et al., 2005]. The strength of

an operator at their hand, and how this strength is aected by factors such as limb posi-

tion, direction of force at the hand, and impairment at the muscular level was calculated.

The results were shown to be consistent with data from the literature. The model-based

Assistance-As-Needed (AAN) framework was also applied in two case studies in which

upper limb tasks were simulated. It was demonstrated how the framework can be used

to estimate the changing assistance requirements of an operator during tasks, and how

these requirements vary due to physical impairment. It remains to be shown how the

model-based paradigm for providing robotic AAN performs in a real world scenario.

In this chapter the model-based AAN framework is implemented on an experimental

robotic system for evaluation. A specially developed exoskeleton is used to assist a

subject performing a number of physical tasks involving the upper limb. Tasks which

require the use of dierent muscle groups in the limb are performed. To evaluate the

paradigm, the subject is assumed as having various physical impairments localised to

specic muscles, reducing their ability to perform tasks. The assistance provided by
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the robot to the subject in each task is controlled by the model-based AAN paradigm,

taking into account the impaired muscles and the task being performed. The paradigm

is evaluated on how eectively it provides assistance targeted towards the impaired mus-

cles, only when tasks are performed which require them to be utilised. Measurements

of the force interaction between the subject and the robot, and the subject’s muscle

activity are used in the analysis.

This chapter is organised as follows. Section 5.1 details the robotic exoskeleton plat-

form which was specially developed to evaluate the model-based AAN paradigm. This

includes details regarding the hardware, its physical interaction with the subject, and

how it is operated to provide the subject with a controllable level of assistance. Sec-

tion 5.2 introduces the experimental method, including the tasks which the subject

performs, and the muscular impairment proles that are applied. Also detailed is the

method by which the AAN paradigm calculates the assistance to provide the subject in

each of the tasks, and how their muscle activity is measured and processed. Section 5.3

presents the experimental results which are used for analysing the ecacy of the AAN

paradigm. Section 5.4 summarises the experimental results and the evaluation of the

model-based AAN paradigm.

5.1 Exoskeleton Platform

5.1.1 Physical interaction with the operator

The assistive robot used for experimentation is the exoskeleton shown in Figure 5.1. It

is a specially developed robotic exoskeleton with three degrees of freedom (two at the

shoulder, one at the elbow) mounted on a grounded platform. The exoskeleton acts

as a mechanical interface between the operator and the task being performed, similar

to the concept of a human extender [Kazerooni, 1990]. The robot interacts with the

environment to provide the forces required to perform desired tasks. An admittance

control scheme operates the robot such that a scaled down version of the force required

to perform the task is felt by the operator. The amount of assistance to be provided to
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Figure 5.1: The exoskeleton platform developed to evaluate the model-based
AAN paradigm. Dotted labels indicate components obscured by the robot or the
subject.

the operator is set by how much this force is scaled down.

This exoskeleton platform is classied as an external-force system [Pons, 2008]. It

couples with the operator’s hand to transfer a portion of the task load externally to the

ground. There is no other physical interaction between the operator and the robot apart

from at the hand. This is in contrast to an internal-force exoskeleton which attaches

to the limb of the operator at multiple locations and provides assistive forces between

the body segments where it attaches. Both types are illustrated in Figure 5.2. An

external-force exoskeleton was developed as it is well suited for the model-based AAN

framework. The framework determines the operator’s assistance requirements based on

their strength at the hand, and it is at their hand that the exoskeleton provides assis-
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tance. Additionally, coupling with the operator at the hand requires a less demanding

kinematic design, and it reduces the risk of potentially unsafe interaction forces between

the robot and the operator in comparison to internal-force exoskeletons [Pons, 2008].
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Figure 5.2: Dierence between external-force and internal-force exoskeleton sys-
tems. External-force exoskeletons, like the platform specially developed to analyse
the model-based AAN paradigm, couple with the operator only at their hand. As-
sistance is provided by transferring a portion of the task’s load to the ground.
Internal-force exoskeletons attach to the operator at multiple locations on their
body.

5.1.2 Exoskeleton hardware

Each joint is actuated using high torque brushless DC motors and a planetary gear

reduction with ratio 91:1. This combination of a high torque motor with a low reduc-

tion gearbox was chosen to reduce the inertia reected at the joints and increase its

back-driveability. This increases the intrinsic safety of the robot with regard to physical

human-robot interaction. Safety is also considered in the link design by using large, hol-

low, thin-walled members to produce rigid yet lightweight links. The shoulder actuators

are located on the links, and couple to each of the joints directly via their gearbox. The

elbow actuator and its gearbox are located at the base of the robot, with a Bowden cable

transmission used for remote actuation. This removes the mass of the elbow actuator

and gearbox from the links of the exoskeleton, which increases operator safety.

The operator controls the exoskeleton directly through physical interaction with the

robot via a handle. A 6-axis load cell at the base of the handle measures interaction
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forces between the robot and the hand of the operator. A second 6-axis load cell at the

end-eector measures the interaction between the robot and the task being performed,

for example the reaction forces when lifting a mass. The exoskeleton control scheme

is executed in MATLAB’s xPC Target environment. The xPC Target computer is a

Diamond Systems Poseidon single board computer with integrated data acquisition

capabilities. Additional details regarding the hardware of the exoskeleton are provided

in Appendix E.

5.1.3 Control scheme

The exoskeleton is operated using an admittance control scheme (see Section 2.2.1).

Measured forces applied to the robot at the end-eector are used to control the end-

eector motion in cartesian space. The system behaves as an admittance by using the

measured forces to produce a velocity response. Force interaction between the robot

and operator (represented as FH) and the external task force (represented as FE) are

combined into a single net force at the end-eector, represented by vector FEE . This

is multiplied by an admittance gain (b) to produce a reference velocity (ẋ), where

vector x is the position of the robot’s end-eector in cartesian space. Reference joint

velocities are calculated using Equation (5.1) where J is the kinematic Jacobian of the

robot. Reference joint velocity θ̇r is integrated over time to produce a reference position

trajectory θr, then both are fed to the robot’s motion control scheme.

θ̇r =
[
J−1

]
ẋ (5.1)
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Figure 5.3: Robot motion trajectory created using an admittance control scheme.

The motion is controlled using a simple form of computed-torque control [Chung et al.,
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2008] shown in Figure 5.4. To track the reference position and velocity trajectories

in joint space a PD controller was used as a more sophisticated controller was not

required. The errors between the measured joint position and velocity (θ and θ̇) and

their reference trajectories (θr and θ̇r) are multiplied by gains KP and KD respectively,

and combined to form the PD controller’s output. The output is multiplied by mass

matrix M of the robot dynamic system to compute the desired torque to be actuated

at the joints. The robot’s gravity load is compensated, fed forward from a model of

the system. It is common to compensate for Coriolis and centrifugal non-linearities,

however this is not included as operation of the exoskeleton is relatively slow speed

and these eects are assumed to be negligible. The desired joint torque is actuated

using motor controllers operating in current control mode to produce the motor current

corresponding to the desired torque.
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Figure 5.4: PD controller used to track the motion trajectory created from the
admittance control scheme.

The robot’s end-eector (and consequently the operator’s hand) moves in response to

both the operator force FH and the external task force FE via the admittance control

scheme. For the operator to statically oppose the external force they are required

to exert an equal and opposite force such that the net force is zero (FEE = 0) and

subsequently no end-eector motion occurs. Assistance is provided by scaling down

the external force before it is fed into the admittance control as shown in Figure 5.5.

Parameter A, ranging between 0 ≤ A ≤ 1, represents the amount of assistance to be

provided to the operator. A = 0 means zero assistance is provided, and A = 1 means

that the robot is providing all of the force required to perform the task. The external

force is scaled down by the gain 1−A such that when A = 0 a gain of 1 is applied
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to FE . In this case, to statically oppose the external force the operator is required to

exert an opposing force of equal magnitude. As parameter A is increased the external

force is scaled down linearly, until A = 1 at which point it is scaled down equivalent

to FE = 0. By scaling down the measured external load force before it is fed into the

admittance controller, less force is required from the operator to oppose its eects on

the resulting robot motion. The assistance level (0 ≤ A ≤ 1) is calculated and set by

the model-based AAN paradigm operating above the admittance control scheme. The

calculation of A is detailed in Section 5.2.3.
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Figure 5.5: The combination of force measurements before they are fed to the
admittance control scheme. The measured forces between the robot and the oper-
ator (FH), and the robot and the task being performed (FE), are combined before
being fed into the admittance control scheme to control the robot. Assistance is
provided to the operator by scaling down the external task force by a gain of 1 − A
before it is fed into the admittance control scheme. The parameter A, in the range
of 0≤ A≤ 1, is used to set the level of assistance.

In the experiment detailed next, instead of feeding the measured force between the

robot and task into the admittance control, a simulated force created in software will

be used to create a virtual load. This is explained in Section 5.2.6.

5.2 Experiment

For ethical and practical reasons the experiment was performed with a healthy, unim-

paired subject. This places limitations on the experimental approaches which can be

taken. The subject has greater strength compared with a physically impaired person

whom would be a typical recipient of robotic AAN in applications such as rehabilitation.

This means that to physically challenge the subject requires tasks involving larger forces.

Such large forces have the risk of causing physical injury, particularly with prolonged

or repeated exposure. Also, since the strength of the subject is greater than the robotic
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exoskeleton itself, experiments involving such large loads have a risk of damaging the

robot. Furthermore, in Chapter 4 the model-based framework was already evaluated by

comparing the calculated strength of the operator against empirical upper limb strength

measurements of healthy subjects from the literature. Repeating a similar analysis does

not provide much additional insight into the model-based paradigm. For these reasons

the experimental evaluation does not involve tasks which require the subject to operate

at and beyond their physical strength capability.

Experimental evaluation is performed by analysing the paradigm’s ability to provide

robotic assistance targeted towards the requirements of the subject based on dierent

muscular impairments. Dierent tasks require the use of dierent muscles, hence a

subject inicted with a muscular impairment requires assistance based not only on the

severity of the impairment, but also on which muscles are impaired and if these muscles

are required for the task being performed. A robot providing AAN to compensate for

an impairment localised to specic muscle groups should ideally provide assistance only

in tasks which the impaired muscles limit the subject from performing. Alternatively,

for tasks not utilising the impaired muscles, the assistance should be minimal since the

remaining non-impaired muscles would be capable of performing it. It is on this basis

that the ability of the model-based AAN paradigm to provide assistance specic to the

requirements of the subject is evaluated.

The experiment involves a healthy subject performing a series of physical tasks utilis-

ing their upper limb. Although the subject is not physically impaired, they are assigned

proles which dene impairments localised to specic muscle groups in the upper limb.

These impairment proles give the subject a virtual assistance requirement. Tasks are

then performed with the robot providing assistance governed by the AAN paradigm.

The performance of the paradigm to govern the assistance such that it is targeted

towards the impaired muscles, but only when they are required by the task being per-

formed, is evaluated by measuring the subject’s muscle activity using electromyography

(EMG).
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5.2.1 Tasks

The tasks require the subject to hold their upper limb in the position shown in Figure 5.6.

While in this position, an external force equivalent to 5kg (49N) is applied to the hand.

This magnitude of force was chosen as it was found to produce a noticeable change in

the measured EMG whilst not being so large that the subject was physically strained.

The 5kg load is applied to the hand in six dierent orthogonal directions, with each

direction constituting a unique task. As a result, each task requires the use of dierent

muscles in the limb to oppose this force depending on its direction. These six tasks are

labelled T1 to T6 and are shown in Figure 5.7. Moment loads at the subject’s hand are

minimal since the torque measured at the handle would cause the robot to move, and

a requirement of the task is that the subject hold their arm in a static position.

Figure 5.6: The subject’s upper limb position during the experiment.

To orchestrate these tasks requires a 5kg load to be applied to the end-eector of the

robot in the appropriate direction. When the load is in the direction of gravity (as is

task T3 shown in Figure 5.7) this could be achieved by attaching a 5kg mass to the

robot. The other ve directions however require the use of some apparatus to direct

the external force in the direction required. A solution is to use a virtual force dened

in software with the magnitude and direction that is required. This force is fed into

the admittance control scheme of the robot as if it were an external force measured by

the robot’s sensors. The robot behaves as if an external load was applied, requiring

the subject to provide an opposing force at their hand in order to hold their arm in a

static position. This allows tasks with external forces in any direction and with any

magnitude to be experimentally analysed without the need for complex apparatus. The

use of virtual loads was validated in a separate experiment detailed in Section 5.2.6.
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T1 T2 T3

T4 T5 T6

Figure 5.7: The six tasks (T1, T2, T3, T4, T5, and T6) performed by the subject in
the experiment. All tasks have the upper limb in the position shown in Figure 5.6.
Black arrows indicate the direction of the 5kg external force applied to the sub-
ject’s hand, corresponding to unit vector u used in the process of calculating the
operator’s strength capability.

5.2.2 Impairment proles

Various impairment proles are dened with impairment localised to the following upper

limb muscle groups; biceps, triceps, anterior deltoid, lateral deltoid, posterior deltoid,

pectoralis major, infraspinatus, and latissimus dorsi. These muscle groups are shown in

Figure 5.8. Impairments are implemented using the s vector to limit muscle activation

during the strength capability optimisation (see Section 4.1). For each of the eight

muscle groups a unique impairment prole (s1, s2, s3, s4, s5, s6, s7, s8) is dened by

setting the vector elements corresponding to the impaired muscles to the arbitrary value

of s = 0.01. The names of the impaired MTU models in the upper limb MM [Holzbaur

et al., 2005] for each impairment prole are listed in Table 5.1. Prole s0 has no muscles

impaired (s0 = 1) and is used to obtain a benchmark strength estimate of the subject

without any impairment.
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Figure 5.8: Muscles of interest during the experiment.

Impairment Muscle Corresponding MTU names
prole group in the upper limb model

s0 None —–
s1 Biceps BIClong, BICshort
s2 Triceps TRIlong, TRIlat, TRImed
s3 Anterior deltoid DELT1
s4 Lateral deltoid DELT2
s5 Posterior deltoid DELT3
s6 Pectoralis major PECM1, PECM2, PECM3
s7 Infraspinatus INFSP
s8 Latissimus dorsi LAT1, LAT2 ,LAT3

Table 5.1: MTU impairment proles used during the experiment. Eight proles
are dened with impairment localised to specic muscle groups by setting the
corresponding elements in the vector s to s = 0.01. This replicates impairment
by limiting muscle activation. The MTU names in the upper limb MM [Holzbaur
et al., 2005] corresponding to the impaired muscle are listed for each impairment.
Remaining non-impaired muscles are set s = 1. Prole s0 represents the subject
without any impairment.
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5.2.3 Assistance calculation

The model-based AAN paradigm calculates the assistance requirements of the subject

and subsequently controls the level of assistance the exoskeleton provides. Firstly, the

subject’s strength capability SP for each task (T1 to T6) is calculated with each impair-

ment prole (s0 to s8) applied. This is calculated by the Strength Model (SM) (see

Section 3.4) utilising the optimisation model developed in Section 4.1. The upper limb

MM [Holzbaur et al., 2005] (detailed in Section 3.4.1) is used to represent the subject.

The generalised coordinates of the model (q) are dened such that its position matches

that of the subject performing the tasks (shown in Figure 5.6). The direction of the

external force at the subject’s hand (u) is dened corresponding to the task the subject

is performing (shown in Figure 5.7). Quasi-static conditions are assumed in each task

(q̇ = q̈ = 0) and only the one upper limb position is considered.

From the strength capability SP calculated for each task and with each impairment

prole applied, the assistance parameter A is derived with the aim of providing robotic

assistance suited to the requirements of the subject. Notation for SP and A, calculated

with respect to task Ti and impairment sj , is as follows:

S
[i,j]
P = Subject strength capability SP

calculated for task Ti and impairment sj

A[i,j] = Assistance parameter A

calculated for task Ti and impairment sj

For example, the subject’s strength capability and assistance parameter calculated

for task T5 with impairment prole s3 applied is represented as S
[5,3]
P and A[5,3] respec-

tively. The results of the strength capability SP calculated for each task and with each

impairment prole applied are shown in Table 5.2.

Two dierent methods for deriving parameter A from the calculated strength capa-

bility of the subject have been conceived. They are described as follows.
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Impairment prole
Task s0 s1 s2 s3 s4 s5 s6 s7 s8

T1 355.05 289.66 320.42 178.25 270.15 355.05 235.16 275.23 355.05
T2 280.05 280.05 214.34 280.05 280.05 238.41 280.05 213.07 208.87
T3 246.89 134.07 246.89 147.23 209.83 246.89 190.18 200.81 246.89
T4 98.57 98.57 19.63 98.57 98.57 98.57 98.57 98.57 98.57
T5 123.58 114.68 117.20 102.64 123.16 123.58 90.48 123.58 101.95
T6 99.79 99.79 99.00 99.09 87.42 97.34 99.05 25.93 99.79

Table 5.2: The subject’s strength capability SP , calculated for each task, and for
each impairment prole. Units are in Newtons.

Assistance calculated from strength gap

This method calculates A directly from the gap between the task’s strength requirement

and the operator’s strength capability. Each task requires the operator to oppose a

49N external force at the hand; hence the task strength requirement is ST = 49N . For

each task with an impairment prole applied the subject’s strength capability SP is

calculated. By comparing ST and SP the percentage of the task load which the subject

is unable to oppose is estimated, and parameter A is set such that this portion of the

load is supported by the robot. If the result is negative (i.e. SP > ST ) then it is set to

A = 0 since no assistance is required. This calculation is shown in Equation (5.2).

A[i,j] = max


ST − S
[i,j]
P

ST
, 0


(5.2)

This method is suited for applications where the strength of the operator is often less

than the requirements of the tasks. For example in robotic rehabilitation, a patient

due to their injury may be unable to perform the therapy without assistance. In the

experiment performed this chapter the subject is not impaired, and hence is capable

of performing each task unassisted. There is no gap between ST and SP , and for this

reason a dierent method for calculating A is used.
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Assistance calculated from strength loss due to impairment

This method derives the assistance parameter A based on the calculated eect each

impairment has on the subject’s capability to perform each task. The strength at the

hand with an impairment prole applied is compared to the strength when no impair-

ment (s0) is present. The amount of strength lost due to the impairment is normalised

by the strength calculated with no impairment, and used to set the percentage of the

external task load the robot supports. This method is used to calculate A for each task

and with each impairment prole applied using Equation (5.3). The results are shown

in Table 5.3.

A[i,j] = S
[i,0]
P − S

[i,j]
P

S
[i,0]
P

(5.3)

It is hypothesised that this method for calculating the assistance required due to

muscular impairment will be less sensitive to errors in strength estimation, compared

to the rst method of directly using the gap between ST and SP . If the MM is not an

accurate representation of the subject’s physical capabilities, then error in the strength

estimation will skew the calculated assistance requirements of the subject. However it

is plausible that even if the MM is poor at representing the magnitude of the subject’s

physical strength, the relative strength loss at the hand due to a relative strength loss

in a muscle group may still be similar in both the MM and the subject. This hypothesis

Impairment prole
Task s0 s1 s2 s3 s4 s5 s6 s7 s8

T1 0.00 0.18 0.10 0.50 0.24 0.00 0.34 0.22 0.00
T2 0.00 0.00 0.23 0.00 0.00 0.15 0.00 0.24 0.25
T3 0.00 0.46 0.00 0.40 0.15 0.00 0.23 0.19 0.00
T4 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.00 0.00
T5 0.00 0.07 0.05 0.17 0.00 0.00 0.27 0.00 0.18
T6 0.00 0.00 0.01 0.01 0.12 0.02 0.01 0.74 0.00

Table 5.3: Results for the assistance parameter A that is calculated for each
task, and for each impairment prole. Results are calculated using Equation (5.3).
Assistance is in the range 0 ≤ A ≤ 1, where A = 0 is the robot providing zero
assistance, and A = 1 is the robot providing 100% assistance by fully supporting
the external task load.
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is based on the previous analyses in Chapter 4 showing that the MM was capable of

calculating the qualitative behaviour between strength and factors such as limb position

and force direction, even through no eort was made to adjust the MM to better t the

data. For these reasons this approach is expected to be more robust in the presence of

strength estimation errors.

5.2.4 Experimental procedure

Before each experiment the robot’s assistance level is set using parameter A depending

on the task being performed and the impairment prole applied. The values for A were

precalculated using the method described, and are shown in Table 5.3.

Next the subject grips the exoskeleton handle and initiates the task by holding a

trigger. Once their upper limb is moved into the desired position, a virtual force repre-

senting the external task force of ST = 49N is applied to their hand. After this force has

been statically opposed with their upper limb kept stationary for more than 2 seconds,

the subject releases the trigger to end the task. EMG and force measurements made

during this time are saved for post analysis. This procedure is repeated for each of the

six tasks, and with each of the nine impairment proles applied.

5.2.5 EMG acquisition

The subject is tted with surface EMG electrodes measuring the muscle activity of the

eight upper limb muscle groups listed in Table 5.4. Each measured muscle corresponds

to one of the muscle groups impaired in impairment proles s1 to s8. Measurements are

made using the Bagnoli surface-EMG system from Delsys sampled at 10kHz. Additional

technical details regarding EMG acquisition are provided in Appendix F. Electrode

placement is shown in Figure 5.9 and is based on the literature [Konrad, 2005].

During the experiments the raw EMG signals are acquired. These signals undergo a

series of post-processing steps before a measurement indicative of the muscle’s activation

is obtained. Notch ltering is applied to eliminate any noise resulting from the mains
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Muscle number (m) Muscle group name
1 Biceps
2 Triceps
3 Anterior deltoid
4 Lateral deltoid
5 Posterior deltoid
6 Pectoralis major
7 Infraspinatus
8 Latissimus dorsi

Table 5.4: Muscle groups measured using EMG and their associated numbering

Figure 5.9: Example of surface EMG electrode placement.

power supply. Next a high-pass lter is used to remove DC bias and any low-frequency

artifacts that might be present. The signal is then rectied such that all of its values

are positive. Lastly, the signal is passed through a low-pass lter to smooth the signal

and produce a linear envelope. Zero-phase low-pass ltering is performed by processing

the signal in both forward and reverse directions to achieve zero phase distortion. This

creates additional attenuation of the signal which is counteracted by doubling the signal

before low-pass ltering is applied. These processing steps are illustrated in Figure 5.10,

and an example EMG signal at each stage of processing is shown in Figure 5.11. The

noticeable low-frequency artifact seen in Figures 5.11a and 5.11b is added deliberately

to highlight the eect of the high-pass lter. During the experiments low-frequency

artifacts like this were not observed.

The measured EMG signals are voltages resulting from the muscles being neuro-

logically activated, however these signals by themselves do not provide a quantitative
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Figure 5.10: EMG signal processing sequence.

measure of the muscle’s activation or the force the muscle is producing. Furthermore,

signals are aected by factors such as skin impedance and electrode placement relative

to the muscle. To obtain a measurement which has some relevance in terms of how much

each muscle is being used requires the signals to be normalised. Once the electrodes

have been attached and before the tasks are performed, the subject performs a series of

Maximum Voluntary Contractions (MVC). This involves the subject performing static

exercises which maximise the activation of their upper limb muscles. Dierent exercises

are performed specic to each muscle group to achieve maximum excitation. EMG

measurements made during the MVCs undergo the same processing previously detailed

to produce a linear envelope. The largest MVC measurement for each muscle is used

to normalise subsequent EMG measurements made during experimental tasks. Once

normalised, the EMG then represents the amount the muscle is utilised in the task,

with a value of 0 representing totally unused, and 1 representing the muscle being used

at full capacity (e.g. during MVC). The presence of crosstalk, which is the unwanted

measurement of neighbouring muscles, was also analysed prior to the experiments. This

was done using the muscle function testing method [De Luca, 1997] and was determined

to not be signicant in the EMG measurements.

For each experimental task performed the EMG for the eight muscles measured are

acquired, ltered, and normalised. Each signal is then averaged during the time the

subject was statically performing the task to produce a single value representing the

mean muscle usage. EMG results are represented as E
[i,j]
m where m is the muscle for

which the EMG is measured (see Table 5.4), i is the task being performed, and j is the

impairment prole applied to the subject during the task.
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(a)

(b)

(c)

(d)

(e)

Figure 5.11: An example EMG signal at each stage of the ltering process. Shown
is an eight second measurement sampled at 10kHz. Filtering process is as follows:
(a) Unltered EMG signal. (b) Signal after notch ltering. (c) Signal after high-
pass lter. (d) Signal after being doubled and rectied. (e) Signal after zero-phase
low-pass lter (overlaid with previous EMG signal in grey).
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5.2.6 Virtual load forces

The tasks require an external force applied to the robot’s end-eector which the subject

(assisted by the robot) is required to oppose. Rather than applying a physical external

force onto the robot using some mechanical apparatus, a convenient alternative is to use

a virtual external force dened in software. This virtual force can mimic the external

force FE that would be measured by the force sensor. The admittance controller uses

this force, just like it would with a real measured external force, to produce a resulting

robot motion. This greatly simplies the process of experimentally performing tasks

which cannot be performed by simply attaching a mass to the robot’s end-eector. For

example tasks with horizontal forces would require an apparatus to produce forces in

the desired directions.

To validate the use of virtual loads implemented in software, an analysis is performed

to test if outcomes using virtual loads are consistent with those if a genuine external

load is used. The subject carries an object at shoulder height at a number of distances

in front of their chest, as shown in Figure 5.12. As the hand is extended away from

the chest it becomes more dicult to hold against gravity. The eort required by the

subject is measured by the EMG activity of the biceps, triceps, anterior deltoid, lateral

deltoid, and posterior deltoid muscles.
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Figure 5.12: Hand positions during the experiment to analyse the suitability of
using virtual forces to mimic physical loads.
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This experiment is performed with the three variations shown in Figure 5.13, and

are described as follows:

1. The mass is held entirely by the subject in free space. The robot is not used at

all, apart from being positioned such that its end-eector provides a visual guide

for the subject to position their hand.

2. The mass is attached to the robot’s end-eector and held in position by the

subject. Assistance is set to A = 0 such that the operator is required to fully

support the object against gravity via the robot’s admittance control. A display

showing the actual and desired end-eector positions was used to guide the subject.

3. No mass is attached to the robot, instead a virtual force dened in software mim-

icking the weight force of the mass is fed into the admittance control. Assistance

was set to A = 0 and a display showing end-eector position guided the subject.

����

�����	

���

(a)

����
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(b)
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(c)

Figure 5.13: The three experiment variations implemented during the experiment
to analyse the suitability of using virtual forces to mimic physical loads. (a) A real
load is held, and supported against gravity by the subject without the robot utilised
at all. (b) A real load is attached to the robot, and supported against gravity by
the subject through the robot’s admittance control. (c) A virtual load is applied to
the robot, and supported by the subject through the robot’s admittance control.
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These three experiment variations were repeated with external loads (either mass or

an equivalent virtual force) of 0kg, 2.5kg and 5kg. Each combination of load variation

and load magnitude was repeated three times with the EMG results in all three averaged

together. This was performed in an alternating fashion so as to mitigate artifacts in the

EMG measurement which may develop over time. Figure 5.14 summarises the results

with each subplot corresponding to a single muscle with one of the load magnitudes

applied. In each plot, measured EMG versus the hand position for each of the three

experiment variations is shown. The triceps, lateral deltoid and posterior deltoid muscles

all show little change in activity during the task. The biceps and anterior deltoid muscles

show noticeable change in activity, hence the analysis will focus on these two muscles

with their measured EMG shown in detail in Figure 5.15.

For the biceps (Figure 5.15a) and the anterior deltoid (Figure 5.15b) their measured

EMG activity increases as the magnitude of the external load is increased. As expected,

it also increases as the hand is extended outwards away from the subject’s chest. The

results show that the curves for each of the three variations are relatively consistent.

Dierences between the curves can be partly attributed towards the fact that the robot

is not completely back-drivable, with its friction assisting the subject in holding the

load against gravity. Comparing the EMG at dierent load magnitudes the results

show similar muscle utilisation for the three task variations. This indicates that the

subject performing this task is required to exert similar amounts of muscle eort to

perform it, irrespective of whether the load is real or the result of a virtual force dened

in software. From this it is assumed to be appropriate to use a virtual external force to

evaluate the model-based AAN paradigm.
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Figure 5.14: The experiment validating the use of virtual external loads; results
for all muscles. Each subplot shows the measure EMG for a single muscle (biceps,
triceps, anterior deltoid, lateral deltoid, or posterior deltoid) and for a magnitude
of external load (0kg, 2.5kg, or 5.0kg). The horizontal axes in each plot corresponds
to the position that the hand is in during measurement. The vertical axes are the
measured normalised EMG ranging from 0 to 1.
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Figure 5.15: The experiment validating the use of virtual external loads; results
for biceps and anterior deltoid muscles. The plots show the measured EMG of a
single muscle versus the hand position of the subject. Each curve corresponds to a
magnitude of the load (0kg, 2.5kg, or 5kg) implemented with one of the variations
shown in Figure 5.13. (a) Results for the biceps muscle. (b) Results for the anterior
deltoid muscle.
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5.3 Experimental Results

5.3.1 Muscle activity for dierent tasks

Before evaluating the AAN paradigm it is worthwhile to visually observe the EMG

results obtained for the dierent tasks and at dierent levels of assistance. This provides

insight into the relationship between the tasks performed, the muscle usage in the tasks,

and the assistance provided. Tasks performed with no impairment (i.e. s0) received

no assistance (A = 0). For comparison tasks were also performed with the assistance

explicitly set to A = 0.5 and A = 1 (rather than determined by the model-based AAN

paradigm). The mean EMG measurements for each task at these three set levels of

assistance are shown in Figure 5.16.

Because the robot is an external-force exoskeleton providing assistance at the hand

it is expected that assistance is received by all muscles in the limb. It is observed

that as assistance is increased, the EMG for all muscles decreases. Muscles which had

the largest EMG when A = 0 showed the largest decrease, however even muscles with

comparatively small EMG levels are seen to reduce their measured activity in response

to increased assistance. This supports the notion that external-force exoskeletons have

inherent limitations in targeting assistance to individual muscle groups.

The EMG measurements made when no assistance is provided (A = 0) indicate

which muscles are utilised the most for each task. Comparing which muscles produced

the largest EMG in each task it is seen that, as expected, dierent tasks utilise certain

muscles more than others. This supports the notion that impairments localised in

specic muscle groups are likely to have a greater eect on certain tasks depending if they

require the use of the muscles which are impaired. This strengthens the reasoning behind

why an AAN paradigm capable of estimating assistance need at the muscular level is

benecial, particulary in applications which assist subjects with physical impairment

such as in robotic rehabilitation.
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Figure 5.16: Measured EMG for each task at dierent levels of robotic assistance.
The plots show the EMG measured at three dierent levels of assistance (A = 0,
A=0.5, A=1) during each of the six tasks (T1 to T6) for a single muscle. (a) Biceps.
(b) Triceps. (c) Anterior deltoid. (d) Lateral deltoid. (e) Posterior deltoid. (f)
Pectoralis major. (g) Infraspinatus. (h) Latissimus dorsi.
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5.3.2 Assistance at the hand

For all of the experiments the force measured between the subject’s hand and the robot

(FH) was recorded. This measurement represents the amount of force the subject was

required to apply at the handle of the exoskeleton to oppose the virtual task load and

keep their hand stationary. Comparing the magnitude of this force with the magnitude

of the task load ST gives a measurement of the actual assistance the subject received at

their hand. For task Ti with impairment sj applied, the mean magnitude of force FH

measured during the task is represented as F
[i,j]
H . Assistance at the hand ranging from

0 to 1 is then calculated using Equation (5.4), where ST = 49N .

A
[i,j]
H = 1 −

(
F

[i,j]
H

ST

)
(5.4)

AH is plotted against the desired level of assistance A in Figure 5.17 for each of the

experimental tasks performed. As expected a linear relationship is observed. When

zero assistance is desired (A = 0) the force at the subject’s hand closely matches the

magnitude of the virtual task force, meaning almost zero assistance is being provided.

As assistance is increased the measured hand force decreases linearly until full assistance
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Figure 5.17: The assistance measured at the subject’s hand versus the desired
assistance to be provided. The correlation coecient between the measured and
desired assistance is ρ = 0.995.
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is provided (A = 1) and negligible hand force is measured. The measured assistance

at the hand matches well with the desired assistance with a correlation coecient of

ρ = 0.995. This shows that the robot was capable of providing the level of assistance

desired.

5.3.3 Assistance at the muscles

Calculating how much EMG measurements decrease as a result of the robot provid-

ing assistance, compared to the EMG measured when no assistance was provided

allows the assistance received at the muscular level to be quantied. If E[i,j] =

[E[i,j]
1 , E

[i,j]
2 , · · · , E

[i,j]
8 ]T is the vector of EMG measurements for task Ti and impair-

ment sj , the assistance at the muscular level is estimated by the normalised change in

the EMG vector. This is calculated using Equation (5.5), where E[i,j] is the norm of

the vector E[i,j].

A
[i,j]
E = E[i,0] − E[i,j]

E[i,0] (5.5)
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Figure 5.18: The assistance at the subject’s muscles calculated by the change
in EMG, versus the desired assistance to be provided. The correlation coecient
between measured and desired assistance is ρ = 0.887.
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The desired assistance A for all the experiments is plotted against the calculated

muscular assistance AE in Figure 5.18. A linear relationship similar to that shown in

Figure 5.17 is observed, however there is more variation about the ideal result. This

can be attributed to the noise and other measurement artifacts inherent in EMG mea-

surements. Regardless, the desired assistance matches relatively well with the measured

assistance based on EMG, with a correlation coecient of ρ = 0.887.

5.3.4 Assistance targeted for impaired muscles

The objective of the AAN paradigm in this experiment was to provide targeted assis-

tance for impaired muscles when the task being performed requires them. It is dicult

to quantify exactly how much dierent tasks rely on the physical capabilities of specic

muscles. It is logical that the more a muscle is utilised in a task (compared to other

tasks), the more that particular task relies on that muscle. Based on this, the measured

EMG is used to infer how much each task relies on each of the muscles. Consider a

single muscle m. How much this muscle is required in task Ti is inferred by its EMG

measured in the task with no assistance provided (i.e. E
[i,0]
m ). The task with the largest

EMG measurement for muscle m is considered to require the most assistance if that

same muscle was impaired. Alternatively, the task with the smallest EMG for muscle

m is considered to require the least assistance if that muscle was impaired.

The AAN paradigm is evaluated as follows: Firstly an impairment prole (sj) is

selected. Next, one of the muscle groups (m) for which EMG was measured is selected.

Then for all tasks (Ti, where i = {1, 2, 3, 4, 5, 6}) the assistance provided by the AAN

paradigm for impairment sj (A[i,j]) is correlated with the measured EMG of muscle m

with no assistance provided (E[i,0]
m ). The correlation result is represented as C[m,j] and

is formalised in Equation (5.6).

This correlation calculation is repeated for all combinations of impairment prole sj

(excluding s0) and EMG muscle m. The result forms the 8×8 matrix shown graphically

in Figure 5.19. The elements in the diagonal of the matrix C[m,j] are the correlation

results when the muscle which is impaired (and hence the assistance should be targeted
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towards), and the EMG indicating how much a muscle is required, are for the same

muscle (i.e. m = j). Because the paradigm should ideally provide greater assistance for

tasks in which the impaired muscles produce larger EMG measurements, the diagonal

should ideally show strong correlation results.

C [m,j] = corr

⎛
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Figure 5.19: Correlation between the assistance provided for a specic impaired
muscle (A[i,j]), and the EMG measured for each muscle without assistance (E[i,0]

m ),
for each of the experimental tasks performed (i = {1, 2, 3, 4, 5, 6}). The elements
in the diagonal of the matrix correspond to the correlation between the assistance
provided for a specic impaired muscle, and the EMG measured without assistance
for that same specic muscle (i.e. m = j). The results range from -1 to 1. Negative
results are black as to make the positive correlation results easier to visualise. The
results in the diagonal show reasonably strong correlation results, indicating that
assistance was targeted towards the impaired muscles when tasks which required
them were performed.
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Observing the diagonal in Figure 5.19 (highlighted in blue) shows a reasonably strong

correlation. The results for muscles m1, m2, m3, m6, and m7 all show correlation greater

than 0.5. Muscles m4, m5, and m8 show less correlation, but are still above zero and are

noticeably larger than many of the other o-diagonal correlation results. Figure 5.20

shows the EMG measurements and the assistance provided in each task which were

correlated to produce these diagonal results. These are plotted side by side for each

muscle. Indeed for muscles m1, m2, m3 and m7 there is noticeable similarity between

the measured EMG and the assistance provided. For muscles m4, m5, m6 and m8 there

was less similarity which is reected by the correlation coecients calculated.

The o-diagonal results in Figure 5.19 with strong correlation represent cases where

the AAN paradigm inadvertently assisted non-impaired muscles when tasks which re-

quired them were performed. Some of this may be attributed to the fact that when

external-force exoskeletons provide assistance to the hand, all muscles receive assis-

tance and hence some amount of cross-assistance is to be expected. Averaging the 56

o-diagonal correlation results produces a mean correlation of -0.143, while the 8 diago-

nal correlation results produce a mean of 0.574. These results suggests the model-based

AAN paradigm was reasonably successful in providing assistance targeted for when it

was needed, based on the impairments assigned in specic muscle groups.

There are several factors anticipated as contributing towards lowering the correlation

results that were obtained. One factor is the large redundancy in the musculoskele-

tal system. Multiple muscles work together when performing tasks, each with dierent

amounts of contribution towards the task. When assistance is provided the relative con-

tributions of the muscles is likely to change, hence when providing assistance targeted

towards a specic muscle this may cause the actual assistance it receives to not be as

expected. Another factor is the stability of the shoulder. The glenohumeral joint is the

most commonly dislocated major joint of the human body, with its stability primarily

ensured by proper coordination of muscular forces [Favre et al., 2009]. Several studies

have identied muscles including the lateral deltoid, posterior deltoid, pectoralis ma-

jor and latissimus dorsi as prominently contributing to shoulder stability, or instability

[Ackland and Pandy, 2009; Steenbrink et al., 2009; Yanagawa et al., 2003]. These same
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Figure 5.20: Comparison between the assistance provided by the AAN paradigm
(A[i,j]) with muscle m impaired, and EMG for that same muscle measured with
no assistance provided (E[i,j]

m ). Each plot show the results obtained in each exper-
imental task (T1 to T6). Plots are provided with respect to each individual muscle
impaired.
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muscles produced the lowest correlation results. It is speculated that not considering

joint stability when estimating the upper limb strength may be a contributing factor

to why these muscles did not achieve as good results as other muscles. Even so, over-

all the results showed the model-based AAN paradigm was capable of predicting the

tasks which would be the most aected by particular muscular impairments, and then

providing assistance accordingly.

5.4 Summary

In this chapter the model-based AAN paradigm was implemented on a robotic exoskele-

ton platform for experimental evaluation. The robot assisted a healthy subject as they

performed a number of tasks involving their upper limb. Although the subject did

not have any physical impairments, for the purpose of evaluation a number of various

impairment proles dened at the muscular level were assigned to the subject. The

amount of assistance the subject received was determined by the AAN paradigm, based

on the task being performed and the muscular impairment applied.

Evaluation was based on the ability of the paradigm to provide assistance targeted

towards tasks which rely on the muscles dened as impaired. Using EMG measurements

of the subject’s muscle activity during the tasks, the reliance of each task on dierent

muscle groups was inferred. This was then correlated to the assistance provided by

the AAN paradigm when these same muscles are dened as impaired. The results

showed that the paradigm was relatively successful in providing assistance targeted

towards tasks requiring the use of impaired muscles. Assistance targeted to individual

impaired muscles resulted in positive correlation with respect to all muscles. Most had

a correlation greater than 0.5, the largest being 0.94 (infraspinatus) and the lowest

being 0.14 (lateral deltoid). The average correlation with respect to all the muscles was

0.574. This was signicantly greater than the average when assistance was miss-targeted

towards non-impaired muscles, which was -0.143. From the results it is speculated that

accounting for shoulder stability will improve the ability of the paradigm to target

assistance towards specic upper limb muscles.
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Conclusion

This thesis presented a musculoskeletal model-based Assistance-As-Needed (AAN)

paradigm for governing the assistance provided by physically assistive robots. This

paradigm allows the assistance requirements of an operator performing upper limb tasks

to be predicted without the need for observations, unlike empirical performance-based

methods currently used. The integration of a musculoskeletal model (MM) representing

the operator allows the inuence of physiological factors such as muscular impairments

to be analysed with respect to the tasks the operator is performing. This capability is

of particular benet in applications with an emphasis on operator physiology, such as

robotic rehabilitation. The paradigm is developed based on a generalisation of AAN,

with strength at the hand used as the measure by which the operator’s assistance re-

quirements are derived. Models were developed and utilised within the framework to

calculate the assistance requirements of an operator performing physical tasks. To es-

timate the strength of the operator at the hand, an optimisation model was developed

to calculate the strength using a publicly available MM of the upper limb. Evaluation

of this novel model-based AAN paradigm was performed in both simulation and by

implementation on a specially developed robotic exoskeleton, and its ability to provide

assistance specic to the requirements of the operator demonstrated.
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6.1 Summary of Contributions

6.1.1 A novel model-based AAN framework

A framework for a model-based AAN paradigm is developed to calculate the assistance

requirements of an operator performing upper limb tasks. Providing the assistance re-

quired by an operator is generalised into the problem of supplementing the gap between

the requirements of the task being performed, and the capability of the operator to per-

form it. The framework is then developed with models used to calculate the operator’s

assistance requirements based on their strength at the hand. A Task Model (TM) is

developed which calculates the strength requirements of the task being performed. A

Strength Model (SM) is developed which calculates the strength capability of the oper-

ator using a musculoskeletal model representing their upper limb. Using these models

the assistance requirements of the operator is gauged, and then subsequently utilised as

the basis for governing the assistance provided by a robot. This novel framework allows

the changing assistance requirements of an operator to be calculated with respect to

the task being performed, without needing empirical observations as is the case when

using performance-based AAN methods.

6.1.2 Optimisation model for calculating strength

An optimisation model was developed which utilises parameters from an upper limb

MM representing an operator to calculate their strength at the hand. Unlike simpler

methods of calculating strength based at the joint level of a model, this method operates

at the muscular level and accounts for joint coupling resulting from biarticular muscles.

Comparison between the strength calculated with and without considering the eects

of joint coupling showed that ignoring such eects inuences the strength result. The

strength estimation was evaluated by calculating upper limb strength at the hand using

a publicly available MM. Strength was calculated and analysed with respect to factors

which aect strength including limb position, the direction of force at the hand, and

muscular impairment. Outcomes were compared with data obtained from the literature.
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Analysis showed that the strength optimisation was capable of calculating upper limb

strength behaviours similar to those described in the literature, even through no attempt

to t the MM to match the data was made.

6.1.3 Analysis of physical impairment

A technique for analysing the eects that physical impairment at the muscular level have

on the capability to perform physical tasks was developed. The method developed uses

a vector to enforce upper bounds on the muscle activations in a MM during strength

calculation, limiting their force producing capabilities to mimic impairment. Observing

how strength varies in response to dierent impairment proles allows the eects of

impairments to be analysed. Insight may be gained into how the strength at the hand

is aected by the severity of impairment, and by the distribution of the impairment

across the muscle space. It also allows insight into which tasks are more aected by

specic muscular impairments.

6.1.4 Practical validation on a robotic system

The model-based AAN paradigm has been implemented and demonstrated on a real

robotic platform. The paradigm governed the assistance provided by the robot to a

subject as various experimental tasks were performed. The subject was assigned virtual

impairments isolated to specic muscle groups in the upper limb. The assistance was

provided to the subject during numerous tasks, with the paradigm taking into account

the impairment they were assigned. Assistance provided to the subject was quantied

by their interaction forces at the hand, and their muscle activity measured using EMG.

Changes in the measured EMG were correlated to the muscles which were dened as

impaired, and hence requiring greater assistance. The results have demonstrated that

the model-based AAN paradigm provided assistance specically targeted to when the

subject required it, based on the impairment prole assigned.
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6.1.5 Development of a robotic exoskeleton

A robotic upper limb exoskeleton was specially developed for implementing the pre-

sented AAN paradigm. It uses an admittance control scheme to assist the operator

by supporting a controllable percentage of an external load at the hand. Analysis of

a subject’s muscle activity as they are assisted by the exoskeleton shows that it is ca-

pable of providing a controllable level of assistance. The use of virtual external loads

implemented in software to mimic physical external loads is shown to be acceptable

for the experimental tasks that are performed, and permits the use of virtual loads to

simulate a wide variety of task scenarios. This platform is a valuable tool for research

and continues to be used.

6.2 Discussion and Limitations

Using models as the basis for implementing an AAN paradigm can overcome many of

the limitations inherent in empirical performance-based paradigms. However, as well

as providing a number of benets, a model-based approach also introduces its own

limitations which need to be considered. This section discusses the model-based AAN

paradigm and its limitations.

6.2.1 Reliance on the musculoskeletal model

An obvious limitation is that the ecacy of the model-based paradigm relies ultimately

on the models being capable of estimating the true assistance requirements of the op-

erator. This is challenging as the human body is a complex system with many factors

aecting a person’s capability to perform tasks. Musculoskeletal models have been

shown to adequately represent the human body and have been successfully applied in

numerous clinical applications [Favre et al., 2009]. The particular model used in this

thesis has been shown to represent upper limb characteristics such as individual joint

strength [Holzbaur et al., 2005], muscle moment-arms [Gatti et al., 2007] and limb sti-

ness [Hu et al., 2011b] to an adequate accuracy. However as mentioned throughout this
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thesis there is signicant variation amongst the human population. For a MM to be

an accurate representation of an individual it is expected that parameters within the

model will need to be adjusted to t the model to the subject.

Sophisticated models contain numerous parameters which can be utilised for tting.

For example the model used in this work [Holzbaur et al., 2005] contains 50 MTU

models, each containing ve intrinsic parameters (see Table 2.1) which can be used to

scale the models to represent specic muscles and tendons. This alone provides 250

potential parameters for tting the model. Additionally, modications can be made to

the shapes of the MTU force-length-velocity curves, the MTU paths on the skeleton,

the skeletal kinematics, limb inertial properties, and more. Fitting of complex models

may be simplied by exploiting common human characteristics, e.g. estimating muscle

volume and cross-sectional area from an individual’s total muscle volume [Holzbaur

et al., 2007b]. Although many factors aect limb strength, a strong correlation between

strength and muscle volume suggests a model may be tted through a reduced set of

parameters [Holzbaur et al., 2007a]. For example, adapting the MTU intrinsic maximum

isometric force (F m
0 ) alone may allow a generic upper limb model to represent a subject’s

strength at the hand to an accuracy that is adequate for the application.

Methods of adapting models to t empirically obtained data have been described in

the literature. Garner and Pandy [2003] optimised MTU parameters including peak iso-

metric force, optimal muscle-ber length, and tendon slack lengths for 26 muscle groups

of the upper limb. Using a two-phase, nested optimisation procedure and knowledge of

muscle volume and the minimum and maximum physiological lengths of the MTUs, pa-

rameters were estimated based on comparing the calculated maximum joint torque with

the measured torque from subjects [Garner and Pandy, 2003]. Buchanan et al. [2005]

tted a lower extremity model using a forward-inverse optimisation method to adapt

numerous parameters by minimising the error between recorded and model-predicted

movements. These parameters were related to the muscle activation dynamics, muscle

optimal lengths, and tendon slack lengths [Buchanan et al., 2005]. Special attention

may be given to parameters for which the model’s strength is highly sensitive. For ex-

ample MTU force has been shown to be sensitive to tendon slack length [Fleischer and
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Hommel, 2008; Nam and Uhm, 2011]. Fleischer and Hommel [2008] optimised tendon

slack lengths for three extensor and three exor muscles spanning the knee based on

measured EMG and joint torque. Nam and Uhm [2011] also optimised tendon slack

lengths for ve knee extensor muscles using measured knee torque assuming full activa-

tion. Manal and Buchanan [2004] developed a numerical method for calculating tendon

slack length for a single muscle, based on multiple muscle length measurements.

In this thesis a generic upper limb MM was able to estimate strength at the hand

with its qualitative behaviour consistent with empirical data from the literature. This

was encouraging as no eort was made to adjust the model as to better t the data.

Fitting the MM to specic subjects is anticipated to improve the ecacy of the model-

based AAN paradigm, and hence MM tting in the context of this AAN paradigm is

highlighted for future work and is discussed further in Section 6.3.3. Musculoskeletal

modelling continues to be an ongoing area of research, and it is anticipated that as

models continue to be developed their accuracy in representing individuals or the human

body in general will continue to improve.

6.2.2 Factors other than strength aecting tasks

This work used strength as the metric by which both the task’s requirements and the

operator’s capability are measured. Reasons for using strength were discussed in Sec-

tion 3.2. The human body is a complex system with many factors other than strength

aecting how much assistance an individual requires when performing tasks. For exam-

ple following a stroke the coordination capabilities of a patient can be impaired [Hogan

et al., 2006]. Assistance regimes for robotic rehabilitation have been developed which

use motion assistance (rather than force, i.e. strength) as the mechanism by which

therapy is based [Hogan et al., 2006]. Depending on the application other factors such

as fatigue, joint stability, ergonomic and cognitive factors may also prominently con-

tribute in determining the assistance requirements of an individual. The inclusion of

some of these factors into the presented AAN paradigm is an idea for future work, and

is discussed further in Section 6.3.2.
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6.2.3 Denition of the subject’s impairment

A major advantage of the model-based AAN paradigm is, because it incorporates a

musculoskeletal model representing the subject, the eect of physiological factors such

as impairments on their assistance requirements with respect to tasks can be analysed.

Impairments were dened in the muscle space of the subject by setting constraints on the

amount each muscle can be neurally activated. Observing the eects such constraints

have on the estimated strength of the subject provides insight into how such impairments

aect their need for assistance. This requires that a quantitative description of the

subject’s physical impairment at the muscular level be available. The benets and

technical limitations of tting musculoskeletal models to individual patients (including

their impairment) and then using the model to perform optimal treatment has been

discussed in the literature [Fregly et al., 2012]. Standardised assessment methods such

as the Fugl-Meyer Assessment used by physiotherapists to evaluate motor and sensory

impairment following a stroke already exist and are commonly used. It is speculated

that a standardised assessment method may allow clinicians to quantify the strength

of subjects (or lack of) at the muscular level, however the feasibility and accuracy of

estimating impairment at the muscular level has yet to be determined.

It is noted that a model of the physiological mechanism which is responsible for

the impairment is not required, if the eects of the impairment can be adequately

represented as a loss of strength at the muscular level. Specic types of impairment

or other physiological factors may not be appropriately simulated by limiting muscle

activation as was done in this work, however other approaches may be suitable. For

example the eects due to tendon transfer surgery may be simulated by changing the

location of the tendon insertion locations [Magermans et al., 2004]. Spasticity may

be simulated by incorporating a model of the stretch reex response to simulate the

velocity-dependent eects of the impairment [Koo and Mak, 2006]. The AAN paradigm

that was presented permits a wide range of impairments to be simulated due to it

containing a model of the musculoskeletal system.

170



CHAPTER 6. CONCLUSION

6.2.4 Real time computation

A motivation for designing the model-based AAN framework in a two-level hierarchy

was so the computationally expensive calculation of operator strength can be abstracted

from the assistive robot’s high rate control scheme. Regardless, in the practical imple-

mentation it was found that the framework was still unable to be run in real time,

since the strength estimation required too much time to compute. Experimental evalu-

ation with the robotic exoskeleton resorted to precalculating the operator’s assistance

requirements before the tasks were performed. This was acceptable as the subject’s

limb position and the direction in which strength is calculated was known before hand

and remained constant during each task.

The optimisation for calculating strength is a simple linear problem and by itself is

quick to compute. An investigation of the calculations involved found that the majority

of computational time required was in the calculation of the muscle Jacobian matrix

L. Currently all musculoskeletal related calculations are performed using libraries from

OpenSim v2.0. Newer versions have since been developed boasting speed improvements

in calculations such as muscle moment-arms and dynamics. Implementing the frame-

work with these newer libraries may provide the speed improvements required to run

the framework in real time. If not, other means may be employed to quicken the online

computation. For example polynomial models representing MTU lengths and moment-

arms as functions of generalised coordinates may be created oine using regression

techniques [Menegaldo et al., 2004] then used to quickly derive the parameters required

for optimisation in real time.

6.3 Future Work

6.3.1 Trials with impaired subjects

The experimental evaluation of the model-based paradigm performed in Chapter 5 in-

volved assisting a healthy subject based on virtual impairments dened in their upper

limb. The paradigm was successful in governing the assistance provided by the robot
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such that it was targeted towards the tasks which required the subject to utilise muscles

dened as impaired. These results are promising and encourage further evaluation of

the paradigm and its ability to estimate the assistance requirements of dierent individ-

uals. Further evaluation of the paradigm’s ecacy in predicting the eects of physical

impairment requires empirical data from real impaired participants. Future work in-

volving trials with participants that have real impairments is intended to broaden the

evaluation of the model-based paradigm.

6.3.2 Strength estimation improvement

Ecacy of the AAN paradigm may be improved by considering factors in the estimation

of operator strength capability which currently are not considered. An example of

one such factor is shoulder joint stability. Studies considering shoulder stability using

musculoskeletal models has been described in the literature [Magermans et al., 2004;

Steenbrink et al., 2009; van Drongelen et al., 2006]. A stability constraint can be created

and included along with the existing constraints during the strength optimisation. It

is anticipated that adding this constraint may, in certain cases, reduce the strength

estimation result, similar to the way the additional constraints from biarticular muscles

was shown to reduce the strength estimated compared to when they were not considered.

Implementation of this constraint within the strength capability estimation, and analysis

of its eect on the results are planned for future research.

6.3.3 Fitting the MM to individual subjects

The model-based AAN paradigm achieved encouraging results, particularly considering

a generic model of the upper limb was used. It is anticipated that tting the MM to the

subject will improve the paradigm’s ecacy. As discussed, several methods for tting

models using numerous dierent techniques have been detailed in the literature. In

the work presented, estimated strength at the hand is used to calculate the subject’s

assistance requirements. Using strength measurements to t models typically involves

adapting the model such that its maximum producible torque about each joint matches
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the measured joint strength of a subject. Fitting the MM to the subject based on

joint strength is likely to improve the accuracy of the estimated strength at the hand,

particularly if the model was a poor representation of the subject to begin with. However

within the context of this work which uses strength at the hand, it is logical to also use

strength measured at the hand to t the model to the subject.

A proposed procedure for this is as follows. Firstly the subject’s strength at the

hand is measured for a specic limb position, measured in numerous directions in the

workspace. This is then repeated for a suciently large number of dierent limb po-

sitions throughout the work space. Using the MM to be tted, strength at the hand

is estimated using the approach presented in this thesis. Estimated and measured

strengths are then compared for equivalent arm positions and directions at the hand. A

non-linear optimisation procedure recursively adapts select parameters within the MM

to minimise the error between the measured and estimated strength at the hand.

This proposed approach to tting the model has several potential benets within

the context of the work in this thesis. Firstly since the same form of strength (i.e at

the hand, as opposed to about the joints) is used to t the model as is later used in

the AAN paradigm, strength estimates made after tting may be more accurate to

the empirical data, particularly near the limb positions and force directions for which

strength measurements were used for tting. Secondly, factors that aect strength at

the joints are inherently included in the strength measured at the subject’s hand. This

includes factors such as the limb’s pose, and joint coupling due to biarticular muscles.

These same eects are also included when using the MM to estimate strength at the

hand when tting is performed. However when tting based on joint strength, such

eects may not be consistent in both the empirically measured and MM estimated

strengths. For example elbow strength can signicantly vary with shoulder exion

[Winters and Kleweno, 1993], hence if both the subject and the MM were not in identical

limb positions when elbow strength was measured and estimated, then the tting would

be skewed.

It is not known how many measurements would be required to adequately t the

model. If it is a large number then the eort in obtaining them may be comparable to
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an empirical approach where the subject’s assistance needs are estimated by measuring

their performance during numerous tasks. Even so, the model-based method is more

powerful as it has the capability of predicting assistance need for tasks which the model

was not tted with. Future work is needed to investigate this method of tting the MM

to individuals, and the resulting eect it has on the ecacy of the model-based AAN

paradigm.

6.3.4 Hybrid model-empirical AAN paradigm

In the literature exists examples of robotic systems utilising empirical performance-

based methods to implement the AAN paradigm [Emken et al., 2005; Kim et al., 2010;

Krebs et al., 2003; Wolbrecht et al., 2007]. These systems critique the operator during

tasks to create a performance measure, which is then used to adapt the assistance the

robot provides. For example the Active Leg Exoskeleton (ALEX) assists the lower limbs

of a subject as they walk on a treadmill [Kim et al., 2010]. As the subject walks their

foot trajectory is compared to a predened healthy trajectory. Assistance is provided

by supplying a compliant force to the leg which encourages the foot towards the desired

footpath. The error between the actual and desired trajectories is used to control the

magnitude of assistive force the robot provides.

Using a subject’s performance to control assistance is convenient in that for many tasks

a suitable performance metric indicative of their assistance needs can be calculated. A

limitation is that numerous observations are required before an estimate of these needs

can be derived. Furthermore assistance can only be estimated for the specic tasks

observed. The model-based AAN paradigm presented in this thesis overcomes many of

these limitations. However since their assistance requirements are derived from a model,

it is essential that the model be capable of adequately estimating the capabilities of the

operator. As was discussed, methods of improving this estimation by tting the model

to the individual and making it a better representation of their physical capabilities can

be performed. This requires that empirical measurements of the operator are available

which the model can be tted to.
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These two approaches (empirical and model-based) have opposing advantages and lim-

itations. An idea deserving further research is the combination of the model-based AAN

with current empirical methods. Using the model-based AAN paradigm, an assistive

robot may provide assistance to an operator. Simultaneously, as tasks are performed the

performance of the operator is observed. Quantitative data representing the capabilities

of the operator are recorded, for example the forces expressed at the hand measured by

a force/torque sensor. As measurements are accumulated over time, the musculoskeletal

model may be repeatedly tted to match the operator’s observed performance. Ideally

the model would converge over time to become an accurate representation of the oper-

ator’s physiological capabilities, improving the accuracy of the subsequent calculations

made utilising the model.

This proposed hybrid approach introduces a number of new challenges. Methods for

adapting the musculoskeletal model based on the operator’s observed performance need

to be researched. In the example of the ALEX robot, this would require the subject’s

error in following the desired foot trajectory to be mapped to its physiological causation,

and then adapting the musculoskeletal model to represent this. This also requires the

ability to identify the error due to actual impairment, as opposed to voluntary error

by the subject. Similar methods for the reverse procedure, using the musculoskeletal

model to estimate the assistance required to follow the foot trajectory, also need to be

created.

Despite the challenges, this hybrid approach provides a number of signicant benets.

In the ALEX example, the musculoskeletal model would be tted to the subject during

the walking exercise. However once an adequately accurate musculoskeletal model is

available it could also be used to estimate assistance need in dierent types of tasks,

for example as the subject transitions between sitting and standing, or during running.

Additionally, since representation of the operator’s capability is physiologically relevant,

the model may be used as a tool by physiotherapists to observe the severity of a patient’s

impairment, how this impairment is distributed across their muscles, track impairment

over time and plan therapy accordingly. Such information would also provide motivation

for a patient during rehabilitation.
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A Upper Limb Musculoskeletal Model

The musculoskeletal model used in this thesis to estimate human strength is the publicly

available model of the upper limb created by Holzbaur et al. [2005]. This model consists

of 15 degrees of freedom and 50 MTU models.

A.1 Reduction to four degrees of freedom

To reduce computational complexity the upper limb model was reduced to the 4 joints

of the shoulder and elbow. Remaining joints were eectively disabled by ignoring them

in any calculations. Table A.1 lists the generalised coordinates in the model, and if they

were or were not utilised during analysis.

MTUs which do not produce torque about these 4 joints were also ignored in any cal-

culation. This reduced the eective number of MTUs from 50 down to 37. This greatly

reduced the computational time required for calculations, in particular the calculation

of the muscle Jacobian L. Table A.2 lists the MTUs that did not span the shoulder

and elbow joints, and hence were not utilised. Alternatively, listed in Table A.3 are the

MTUs that did span the shoulder and elbow, and hence were utilised.
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Coordinate name Utilised in model?
elv_angle Yes
shoulder_elv Yes
shoulder_rot Yes
elbow_exion Yes
pro_sup No
deviation No
exion No
cmc_exion No
cmc_abduction No
mp_exion No
ip_exion No
2mcp_exion No
2mcp_abduction No
2pm_exion No
2md_exion No

Table A.1: List of the generalised coordinates in the upper limb musculoskeletal
model [Holzbaur et al., 2005]. Details regarding which coordinates were utilised
during analysis, and which were ignored are listed.

MTU number Label Name
19 SUP Supinator
31 PQ Pronator quadratus
34 FDSM Flexor digitorum supercialis
35 FDSI Flexor digitorum supercialis
36 FDPL Flexor digitorum profundus
37 FDPR Flexor digitorum profundus
38 FDPM Flexor digitorum profundus
39 FDPI Flexor digitorum profundus
45 EIP Extensor indicis propius
46 EPL Extensor pollicis longus
47 EPB Extensor pollicis brevis
48 FPL Flexor pollicis longus
49 APL Abductor pollicis longus

Table A.2: List of MTUs that are not utilised in the upper limb musculoskeletal
model [Holzbaur et al., 2005].
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MTU number Label Name
0 DELT1 Anterior deltoid
1 DELT2 Lateral deltoid
2 DELT3 Posterior deltoid
3 SUPSP Supraspinatus
4 INFSP Infraspinatus
5 SUBSC Subscapularis
6 TMIN Teres minor
7 TMAJ Teres major
8 PECM1 Pectoralis major clavicle
9 PECM2 Pectoralis major sternum
10 PECM3 Pectoralis major ribs
11 LAT1 Latissimus dorsi Tvert
12 LAT2 Latissimus dorsi Lvert
13 LAT3 Latissimus dorsi Iliac
14 CORB Coracobrachialis
15 TRIlong Triceps brachii long
16 TRIlat Triceps brachii lat
17 TRImed Triceps brachii med
18 ANC Anconeus
20 BIClong Biceps long
21 BICshort Biceps short
22 BRA Brachialis
23 BRD Brachioradialis
24 ECRL Extensor carpi radialis long
25 ECRB Extensor carpi radialis brev
26 ECU Extensor carpi ulnaris
27 FCR Flexor carpi radialis
28 FCU Flexor carpi ulnaris
29 PL Palmaris longus
30 PT Pronator teres
32 FDSL Flexor digitorum supercialis
33 FDSR Flexor digitorum supercialis
40 EDCL Extensor digitorum communis
41 EDCR Extensor digitorum communis
42 EDCM Extensor digitorum communis
43 EDCI Extensor digitorum communis
44 EDM Extensor digiti minimi

Table A.3: List of MTUs that are utilised in the upper limb musculoskeletal
model [Holzbaur et al., 2005].
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A.2 Upper limb mass and inertia properties

The upper limb musculoskeletal model [Holzbaur et al., 2005] used in this thesis is not

provided with mass or inertial properties assigned. However performing dynamic anal-

yses requires inertial properties to be known. Such properties are obtained from the

literature. The body segment mass and centre of mass are calculated using anthropo-

metric equations from Winter [1990] for the average male height and weight (1.75m and

78kg [Gordon et al., 1989]). Principal moments of inertia (Ixx, Iyy, Izz) are taken from

Chandler et al. [1975].

Mass and inertial properties are assigned to the following upper limb body segments;

upper arm, forearm, and hand. In the MM by Holzbaur et al. [2005] these segments

correspond to the bodies labelled as; humerus, radius, and capitate, respectively. The

musculoskeletal modelling software suite OpenSim [Delp et al., 2007] requires every body

in the musculoskeletal system to have assigned non-zero inertial properties to perform

dynamic analyses. Therefore remaining bodies are assigned negligible mass and inertial

values (1 × 10−8).

Upper arm Forearm Hand

Body label in MM Humerus Radius Capitate

Centre of Mass (m) [0,-0.142,0] [0,-0.110,0] [0,-0.0940,0]

Segment Mass (kg) 2.184 1.248 0.468

Ixx (kg-m2) 0.01330 0.00669 0.000615

Iyy (kg-m2) 0.00220 0.00088 0.000215

Izz (kg-m2) 0.01327 0.00645 0.000754

Table A.4: Mass and inertial properties assigned to the upper limb musculoskele-
tal model.
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A.3 Upper limb impairment consistent with stroke

Impairment proles
MTU ART s0 s1 s2 s3 s4

DELT1 SE 1 0.582 0.441 0.300 0.159
DELT2 AB 1 0.577 0.434 0.291 0.148
DELT3 SE 1 0.582 0.441 0.300 0.159
SUPSP AB 1 0.577 0.434 0.291 0.148
INFSP ER 1 0.453 0.326 0.198 0.071
SUBSC IR 1 0.641 0.494 0.347 0.199
TMIN ER 1 0.453 0.326 0.198 0.071
TMAJ SE 1 0.582 0.441 0.300 0.159
PECM1 AB 1 0.577 0.434 0.291 0.148
PECM2 AB 1 0.577 0.434 0.291 0.148
PECM3 AB 1 0.577 0.434 0.291 0.148
LAT1 SE 1 0.582 0.441 0.300 0.159
LAT2 SE 1 0.582 0.441 0.300 0.159
LAT3 SE 1 0.582 0.441 0.300 0.159
CORB AB 1 0.577 0.434 0.291 0.148
TRIlong SE 1 0.582 0.441 0.300 0.159
TRIlat EE 1 0.601 0.440 0.279 0.119
TRImed EE 1 0.601 0.440 0.279 0.119
ANC EE 1 0.601 0.440 0.279 0.119
BIClong EF 1 0.500 0.364 0.228 0.092
BICshort EF 1 0.500 0.364 0.228 0.092
BRA EF 1 0.500 0.364 0.228 0.092
BRD EF 1 0.500 0.364 0.228 0.092
ECRL EF 1 0.500 0.364 0.228 0.092
ECRB EE 1 0.601 0.440 0.279 0.119
ECU EE 1 0.601 0.440 0.279 0.119
FCR EF 1 0.500 0.364 0.228 0.092
FCU EF 1 0.500 0.364 0.228 0.092
PL EF 1 0.500 0.364 0.228 0.092
PT EF 1 0.500 0.364 0.228 0.092
FDSL EF 1 0.500 0.364 0.228 0.092
FDSR EF 1 0.500 0.364 0.228 0.092
EDCL WE 1 0.450 0.308 0.166 0.024
EDCR WE 1 0.450 0.308 0.166 0.024
EDCM WE 1 0.450 0.308 0.166 0.024
EDCI WE 1 0.450 0.308 0.166 0.024
EDM EE 1 0.601 0.440 0.279 0.119

Table A.5: MTU impairment proles based on the study of stroke patients [Bo-
hannon and Andrews, 1987]. Each MTU corresponds to a muscle in the upper
limb model [Holzbaur et al., 2005]. For each MTU, its major articulation (ART) is
determined as either; elbow exion (EF), elbow extension (EE), shoulder internal
rotation (IR), shoulder external rotation (ER), shoulder extension (SE), shoulder
abduction (AB). Four dierent impairment proles, each with dierent impairment
severity are created. Each prole denes values in the s vector to replicate impair-
ment by limiting muscle activation. Note: MTUs in the MM which do not span
the shoulder or elbow are not listed, as these joints (i.e. wrist, ngers) were not of
interest.
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B Strength Capability Calculation with Uncoupled Joint

Simplication

The following is the method used in Chapter 3 to calculate the strength at the hand

of the human operator using a musculoskeletal model. It is simpler than the method

developed and evaluated later in Chapter 4 since it analyses the joints in the model

independently when calculating limb strength. As a result, eects such as joint coupling

from biarticular muscles are not considered.

As described in Section 3.4, the strength at the hand is calculated in a direction dened

by the unit vector u, and with the limb having a motion dened by the generalised

coordinates q, their velocity q̇, and acceleration q̈. With this dened, the strength is

calculated as the maximum magnitude of external force which the limb can oppose at

the hand. To calculate this the dynamic equation of the musculoskeletal system is used,

which was introduced in Section 2.3.5 and is repeated here for convenience:

Hq̈ + C + τ G = τ M + τ E

The external torque τ E results from the external force u · F E applied to the hand of

the upper limb. This is expressed as τ E = [Jv]T u · F E as was detailed in Section 2.3.4.

The muscular torque τ M is the result of muscle forces acting about the joints in the

limb. This is expressed as τ M = [−L]T f , where f is the column vector of MTU forces

as was detailed in Section 2.3.3. The result is the following dynamic equation:

Hq̈ + C + τ G = [−L]T f + [Jv]T u·F E

For convenience this equation is rearranged by combining the dynamic and gravita-

tional loads into vector τ B = Hq̈ + C + τ G, and combining the terms [Jv]T and u into

r = [Jv]T u. The result is the following dynamic equation:
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τ B = [−L]T f + r · F E

This method of calculating strength considers joints as being independent. Each row

in this dynamic equation corresponds to a single joint in the musculoskeletal system.

To analyse a single joint, a single row of this equation is analysed individually. If the

i-th joint is being considered, then the i-th row of this dynamic equation is extracted

to produce the following expression:

τB
i = [−Li]T f + ri · F E

The term τB
i is the i-th element in vector τ B. The term ri is the i-th element in

vector r. The term Li is a vector, created by taking the i-th column of the Jacobian

matrix L.

From this equation, the strength of the operator (with respect to the i-th joint) can

be found by calculating the maximum magnitude of the external force (F E) which can

be opposed. The equation is rearranged into the following form:

F E = τB
i

ri
+ [Li]T

ri
f

The strength of the operator is calculated by determining the MTU forces which max-

imise F E . The elements in the vector f are the forces that each MTU is producing,

which subsequently produces torque at the joints and contributes to opposing the ex-

ternal force at the hand. The calculation of the forces produced by the MTU models

was detailed in Section 2.3.1. The force produced by the j-th MTU in a musculoskeletal

system consisting of m MTU models is represented here as fM
j . This force is a function

of the muscle’s activation, which is represented as aj . Activation ranges from 0 ≤ a ≤ 1,

where a = 0 represents the muscle being totally inactivated, and a = 1 represents the

muscle being fully utilised to produce active force output. Using this representation,

the MTU force vector f is rewritten as follows:
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f = [ fM
1 (a1), fM

2 (a2), · · · , fM
m (am) ]T

The forces produced by the MTU models contribute either positively or negatively

to opposing the external force. The MTU forces in the f vector are always positive,

so whether or not a specic MTU contributes positively to opposing the external force

is determined by if Lji

ri
> 0. The term Lji is the element in the i-th column and in

the j-th row of the Jacobian matrix L. MTU models which are determined to have a

positive contribution should be fully utilised (i.e. a = 1) to oppose the external force

at the hand. Alternatively, the remaining MTU models should be utilised as little as

possible (i.e. a = 0). Still considering the i-th joint independently, the strength of the

operator is found using the following equation.

max[F E ]i = τB
i

ri
+

m∑

j=1

 Lji

ri
· fM

j (aj)


⎧
⎪⎪⎨
⎪⎪⎩

aj = 1, for Lji

ri
> 0

aj = 0, for Lji

ri
≤ 0

The result of max[F E ]i is the calculated strength at the hand, only considering the

i-th joint alone. When this is recalculated for the remaining k − 1 joints the result will

be dierent. With this strength repeatedly calculated with respect to each of the k

joints in the limb, the eective strength of the whole limb (considering all of the joints)

is limited by the weakest joint. Therefore the operator strength capability SP is taken

as the minimum of the strength values calculated using this equation for all the joints

in the upper limb. This is represented as follows:

SP = min
i∈N1|i≤k


max[F E ]i



This is the method used in Chapter 3 to calculate the strength SP at the hand of a

human with respect to the desired task.
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C Water Bottle Inertial Properties

In Section 3.6.3 the inertial loads of a bottle carried in the hand is analysed. The

bottle used was lled with water to weigh 0.6kg, had a height of 16cm and a diameter

of 6.9cm. Treating it as a cylindrical homogeneous solid object, its mass moment of

inertia is calculated for the three axes (z, x, w) shown in the gure below. Axes x and

y have equal mass moment of inertia.

x

y

z

x

y

z

h

rw

w

m = 0.6kg

h = 0.16m

r = 0.0345m

Centre of mass

Iz = mr2

2 = 0.6 × 0.03452

2 = 0.000357
(

kg · m2

rad2

)

Ix = Iy = m(3r2 + h2)
12 = 0.6(3 × 0.03452 + 0.162)

12 = 0.001459
(

kg · m2

rad2

)

Iw = m(3r2 + 4h2)
12 = 0.6(3 × 0.03452 + 4 × 0.162)

12 = 0.005299
(

kg · m2

rad2

)
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D Strength Capability Calculation Considering Joint

Coupling

The following is the detailed derivation of the objective function and the constraints used

in the optimisation model for calculating operator strength presented in Section 4.1.

D.1 Optimisation objective function

The objective function is derived from the MM dynamic Equation (2.15):

Hq̈ + C + τ G = τ M + τ E

Substitute in Equations (4.5), (4.6), and (4.14):

τ B = Kτ a + τ P + r·F E

Extract a single row (the i-th row) depending on Equation (4.19):

τB
i = [Kτ i]a + τP

i + ri ·F E

where, Kτ i =
[
Kτ [i,1], Kτ [i,2], · · · , Kτ [i,m]

]

Rearrange into a solution for F E :

F E =


τB
i − τP

i

ri


−


Kτ i

ri


a

Formulate function for nding SP = max[F E ]:

SP = max
[
F E

]
= max


τB

i − τP
i

ri


−

Kτ i

ri


a
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Take the constant


τB
i −τP

i
ri


term out from the maximisation:

SP =


τB
i − τP

i

ri


+ max


−

Kτ i

ri


a



Complete the objective function by turning into a minimisation problem:

SP =


τB
i − τP

i

ri


− min


Kτ i

ri
a



D.2 Optimisation constraints

The constraints are derived from the MM dynamical Equation (2.15):

Hq̈ + C + τ G = τ M + τ E

Substitute in Equations (4.5), (4.6), (4.11) and (4.12):

τ B = τ P + τ A + r·F E

Rearrange and divide each side by the scalar term F E to produce a proportional

relationship:

r·F E = τ B − τ A − τ P

r ∝ [τ B − τ A − τ P ]

Divide each side by their elements in corresponding rows. This normalises each side

of the equation, allowing it to be equated. The i-th row, depending on Equation (4.19),

is used to normalise to avoid numerical problems when ri is close to zero:
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r
ri

= τ B − τ A − τ P

τB
i − τA

i − τP
i

Substitute in the expression for τ A in terms of a. The i-th element in τ A is expressed

by the i-th row of matrix Kτ .

r
ri

= τ B − τ P − Kτ a
τB

i − τP
i − Kτ ia

Then rearrange into the form Aa = b:

r
ri

[
τB

i − τP
i − Kτ ia

]
= τ B − τ P − Kτ a

r
ri

[τB
i − τP

i ] − r
ri

[Kτ ia] = τ B − τ P − Kτ a

Kτ a − r
ri

[Kτ ia] = τ B − τ P − r
ri

[τB
i − τP

i ]


Kτ − r

ri
Kτ i


a = τ B − τ P + r


τP

i − τB
i

ri



From this, expressions for A and b are taken:

Aa = b, where: A = Kτ − r
ri

Kτ i

b = τ B − τ P + r


τP
i − τB

i

ri
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E Robotic Exoskeleton Platform

The following are details of the hardware contained in the robotic exoskeleton that was

used for experimentation in Chapter 5.

E.1 Actuation

Actuation is performed using three brushless DC motors (Maxon EC-90). High voltage

motors (42V) are used as they have a higher torque to weight ratio compared to the

equivalent lower voltage motors. The motors have a at design resulting in a higher

torque output. This allows a gearbox with a reduced gear ratio to be used. A planetary

gearbox with ratio 91:1 is used (Maxon GP 52 C). Its low ratio and good eciency

(≈75%) allows the joint to be back-driven by the operator, even when the motor is

providing torque to the joint. The maximum torque that can be actuated at each joint

is 32 N.m, limited by the rated torque of the gearbox.

Motor controllers (Maxon DEC 70/10 4-Q-EC Amplier) are used to operate the

motors in current-control mode. The controllers are fed the desired motor current, which

is calculated based on the desired joint torque and other factors such as the motor’s

torque/current constant, joint friction, and the ratio and eciency of the gearbox.

E.2 Sensing

Sensing of the interaction between the robot, the human operator, and the environment

is performed using force/torque sensors located at the end-eector of the robot. Two

6-axis ATI Nano25 sensors measure both force and torque in three axes each.

The joint position and velocity of the exoskeleton are measured using a combination

of potentiometers and hall eect sensors. The brushless DC motors used to actuate

each joint contain hall eect sensors for sensing the motor’s position. A microcontroller

utilises the hall eect sensor outputs as an encoder to monitor the position of the

motor. The derivative of this signal is used to measure the velocity of each joint.

When rst powered on the robot is unable to determine its position from the hall eect
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sensors themselves. Located at each joint are potentiometers which allows the robot to

determine its absolute position when rst powered.

E.3 xPC Target computer

The exoskeleton’s control scheme is operated on a single board computer running

the MATLAB xPC Target environment. The target computer operated with a Task-

Execution-Time of 0.0015 seconds (666Hz). Specications of the computer and its data

acquisition capabilities are detailed in Table E.1.

Computer Specications
Manufacturer Diamond Systems
Name Poseidon
Processor 1.0GHz VIA Eden (single core)
RAM 512Mb DDR2
Data Acquisition Specications
Analog Inputs 32 single-ended or 16 dierential channels
A\D resolution 16 bit
Max sample rate 250kHz

Table E.1: xPC Target computer specications
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F EMG Processing

EMG was measured using the Bagnoli sEMG system from Delsys. Analog output was

measured using a 16-bit analog to digital convertor from National Instruments (USB-

6210). Data was sampled at 10kHz using MATLAB to acquire and post process the

signals. EMG was processed in the following order:

Notch lter A notch (bandstop) lter removed line noise. Two Chebyshev II IIR

digital lters were cascaded to remove 50Hz and 100Hz noise. The 50Hz lter had

pass and stop band frequencies set to 48/52Hz and 49.5/50.5Hz respectively. The

100Hz lter had pass and stop band frequencies set to 98/102Hz and 99.5/100.5Hz,

respectively.

Highpass lter A Butterworth IIR highpass lter with a pass frequency of 20Hz re-

moves DC bias and low frequency artifacts from the signal.

Rectify The signal is rectied and doubled. The doubling is performed to counter the

attenuation eect which results from the lowpass lter which is applied afterwards.

Lowpass lter A Butterworth IIR lowpass lter with cuto frequency of 5Hz smoothes

the signal to produce a linear envelope. Zero-phase ltering by processing the

signal in both the forward and reverse directions is used to achieve zero phase

distortion. This can be performed since ltering is performed in post-processing

and not required to be performed online.
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F.1 Matlab code

The following is the EMG processing in MATLAB code. Lowpass ltering is performed

using the function filtfilthd available from:

www.mathworks.com.au/matlabcentral/fileexchange/17061-filtfilthd.

% define DAQ frequency (Hz)

fs = 10000;

% 50Hz bandstop filter

d = fdesign.bandstop(’Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2’,48,49.5,50.5,52,1,60,1,fs);

Hdn1 = design(d,’cheby2’);

% 100Hz bandstop filter

d = fdesign.bandstop(’Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2’,98,99.5,100.5,102,1,60,1,fs);

Hdn2 = design(d,’cheby2’);

% 20Hz high pass filter

d = fdesign.highpass(’Fst,Fp,Ast,Ap’,15,20,30,1,fs);

Hdhp = design(d,’butter’);

% 5Hz low pass filter

d = fdesign.lowpass(’Fp,Fst,Ap,Ast’,3,5,1,30,fs);

Hdlp = design(d,’butter’);

% Combine 50Hz and 100Hz notch into single filter

Hdn = dfilt.cascade(Hdn1,Hdn2);

%% Apply processing to EMG data, stored as ’EMG0’

EMG0; % Raw EMG signals

EMG1 = filter(Hdn, EMG0); % EMG after notch filtering

EMG2 = filter(Hdhp,EMG1); % EMG after highpass filtering

EMG3 = 2*abs(EMG2); % EMG after rectification

EMG4 = filtfilthd(Hdlp, EMG3); % EMG after lowpass filtering
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