

Advanced Control in Smart Microgrids

Jiefeng HU

M.E. (Electrical Engineering), B.E. (Electrical Engineering)

School of Electrical, Mechanical and Mechatronic Systems University of Technology, Sydney, Australia

A thesis submitted to the University of Technology, Sydney for the Degree of Doctor of Philosophy

June 2013

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

Acknowledgements

First of all, I would like to express sincere gratitude and appreciation to my supervisor, Professor Jianguo Zhu, for his invaluable guidance, enthusiastic help, and consistent encouragement throughout the entire research project. I am also thankful to Associate Professor David G. Dorrell, the co-supervisor, for his fruitful discussions and useful suggestion.

Also, I would like to thank Dr. Glenn Platt, the external co-supervisor, from the Commonwealth Scientific and Industrial Research Organisation (CSIRO) for his kind support and encouragement. His rich industrial experience and advices broadened my mind of microgrids, which had a very positive impact on this work.

Thanks also go to my laboratory colleagues, in particular Dr. Greg Hunter and Dr. Gang Lei, of the Centre for Electrical Machines and Power Electronics, University of Technology, Sydney (UTS), for their helpful advices, technical support and friendship.

I appreciate the support provided by Professor Qishuang Ma from Beijing University of Aeronautics & Astronautics and Dr. Xiaoying Kong from UTS. I am also thankful to Professor Josep M. Guerrero from Aalborg University, Denmark, for his valuable discussions on smart microgrid technologies.

I would also like to express my deepest gratitude to my parents for their support and encouragement. Their inspiring suggestions and practical experience sharing are very important and helpful when I made my own decisions on various occasions.

Finally, I want to express my deepest love to Jenny Mok, for her encouragement and understanding throughout the thesis project.

TABLE OF CONTENTS

CERTIFICATE OF AUTHORSHIP/ORIGINALITY	I
ACKNOWLEDGEMENTS	II
TABLE OF CONTENTS	III
LIST OF SYMBOLS	VI
LIST OF ABBREVIATIONS	VIII
LIST OF FIGURES	XI
LIST OF TABLES	XVI
ABSTRACT	XVII
1. INTRODUCTION	1
1.1 Distributed Generation	1
1.2 Control of Power Converters for Distributed Generation1.2.1 Control Strategies of A Single Converter	3 3 13
1.3 The Concept of Microgrids	21
1.4 Research Objectives	
1.5 Outline of the thesis	
References	
2. WIND POWER GENERATION	36
2.1 Introduction2.1.1 Wind Power Generation System2.1.2 State of Art of Wind Power Generation Techniques	36 36 44
 2.2 Grid Synchronization and Flexible Power Regulation 2.2.1 DFIG Modeling	47 47 49 50

2.2.4 A New Strategy for Grid Synchronization and Flexible Power Regulation Strategy	55
2.3 Numerical Simulation and Experimental Verification2.3.1 Numerical Simulation2.3.2 Experimental Verification	59 59 63
2.4 Summary of the Chapter	71
References	73
3. SOLAR PHOTOVOLTAIC (PV) POWER GENERATION	79
3.1 Introduction	79
3.1.1 Principle and Configuration of PV systems	79
3.1.2 Power Converters and Controllers for PV systems	82
3.2 Islanded Operation	91
3.2.1 System model	91
3.2.2 Voltage control in islanded mode	93
3.3 Grid-connected Operation	96
3.3.1 Flexible Power Regulation	96
3.3.2 Switching Frequency Reduction	99
3.4 Numerical Simulation and Experimental Verification	. 100
3.4.1 Numerical Simulation	. 100
3.4.2 Experimental Verification	. 103
3.5 Summary of The Chapter	. 106
References	. 107
4. MULTI-OBJECTIVE MODEL-PREDICTIVE CONTROL FOR HIGH POWER CONVERTERS	. 112
4.1 Introduction	112
4.2 Multi-Objective Model-Predictive Control	. 114
4.2.1 Concept of Multi-Objective Model-Predictive Control	. 115
4.2.2 Discrete-time Digital Implementation	. 119
4.2.3 Switching Frequency Reduction	. 120
4.2.4 System Stability Improvement	. 121
4.2.5 Computational Time Reduction	. 122
4.3 Numerical Simulation and Experimental Verification	. 123
4.3.1 Numerical Simulation	. 123
4.3.2 Experimental Verification	. 126
4.4 Summary of The Chapter	. 133

References	
5. SMART MICROGRID SYSTEM CONTROL	
5.1 Introduction	
5.2 Smart Microgrid Topology	
5.3 Control of Parallel Connected Inverters in Microgrids5.3.1 Voltage Droop Method5.3.2 Flux Droop Method	
 5.4 Coordinated Control of a microgrid with PVs and Gas Microturbine 5.4.1 Microgrid Configuration and Problems Identification 5.4.2 Coordinated Control Strategy 5.4.3 Cases Study 	167 167 171 172
 5.5 Model Predictive Control of Microgrids	
5.6 Summary of The Chapter	199
References	
6. CONCLUSIONS AND FUTURE WORK	
6.1 Conclusions	
6.2 Future Work	
PUBLICATIONS	

List of Symbols

С	Filter capacitance [µF]
D_i	Switching state of phase i ($i = a, b, c$) leg of the IGBT bridges
f_1, f_2, f_{11}, f_{22}	Slopes or derivatives
f_g	Grid frequency [Hz]
$\boldsymbol{i}_{f},\boldsymbol{i}_{L},\boldsymbol{i}_{g}$	Filter current, load current, and grid current [A]
$I_{\rm d}$	Current through the diode [A]
$I_{ m PV}$	Photocurrent of the PV cell [A]
$I_{\rm s}, I_{\rm r}$	Stator and rotor phase current vectors [A]
$K_{p,}K_i$	Gain constant of the Proportional-Integral (PI) controller
L	Line inductance [mH]
$L_{\rm m}, R_{\rm m}$	Magnetizing inductance and resistance per phase $[\Omega]$
$L_{\sigma s}, L_{\sigma r}$	Stator and rotor phase winding leakage inductance $[\Omega]$
$L_{\rm s}, L_{\rm r}$	Stator and rotor phase winding self-inductance $[\Omega]$
L_t	Tie-line inductance [mH]
<i>m</i> , <i>n</i>	Droop coefficients [rad/W, Wb/Var]
Ν	Coincidence point
P_1, P_2	Active power injected by DGs to microgrid [W]
P_L	Active load power [W]
P_g	Active power injected by utility to microgrid [W]
$P_{\text{rated}}, Q_{\text{rated}}$	Active and reactive power rating of the DGs [W]
$P_{\rm s}, Q_{\rm s}$	Stator active and reactive power [W]
р	Number of pole pairs
Q_1, Q_2	Reactive power injected by DGs to microgrid [Var]
Q_L	Reactive load power [Var]
Q_g	Reactive power injected by utility to microgrid [Var]
R	Line resistance $[\Omega]$
$R_{ m L}$	Load resistance $[\Omega]$
R_{PVs}, R_{PVsh}	Intrinsic series and shunt resistances of the PV cell $[\Omega]$
$R_{\rm s}, R_{\rm r}$	Stator and rotor phase winding resistance $[\Omega]$
R_t	Tie-line resistance $[\Omega]$

Sk	Sector division
T _c	Computing time [µs]
Te	Electromagnetic torque [Nm]
Ts	Sampling period [µs]
$T_{\rm V}$	Virtual torque [Nm]
$V_{\rm dc1}, V_{\rm dc2}$	DC source voltage of the Distributed Generation [V]
$V_{\rm i}, V_{\rm c}, E$	Inverter voltage, capacitor voltage, and load-side voltage [V]
V_g	Magnitude of the grid voltage [V]
$V_{\rm s}, V_{\rm r}$	Stator and rotor phase voltage vectors [V]
$\omega_{1,}\omega_{r}, \omega_{s}$	Synchronous, rotor, and slip angular frequency [rad/s]
$\omega_{\rm c}$	Cut-off angular frequency [rad/s]
$\omega_{ m g}$	Grid angular frequency [rad/s]
ψ_s, ψ_r	Stator and rotor flux vectors [Wb]
$\boldsymbol{\psi}_{V}, \boldsymbol{\psi}_{E}$	Inverter flux vector and load-side flux vector [Wb]
$\varphi_{fV}, \varphi_{fE}$	Phase angles of the inverter flux and load-side flux [rad]
φ_V, φ_E	Phase angles of the inverter voltage and load-side voltage [rad]
φ_Z	Phase angles of the line impedance [rad]
δ	Phase angle difference between inverter flux and load-side flux [rad]
λ	Leakage coefficient
λ_2, λ_3	Weighting factors

List of Abbreviations

ADC	Analog to Digital Conversion
ALS	Average Load Sharing
AMI	Advanced Metering Infrastructure
BDFTSIG	Brushless Doubly Fed Twin Stator Induction Generator
CHP	Combined Heat and Power Stations
3C	Circular Chain Control
CSCF	Constant Speed Constant Frequency
CSI	Current Source Inverter
CSIRO	Commonwealth Scientific and Industrial Research Organisation
DAC	Digital to Analog Conversion
DFC	Direct Flux Control
DFIG	Doubly-Fed Induction Generator
DG	Distributed Generation
DPC	Direct Power Control
DSP	Digital Signal Processor
DTC	Direct Torque Control
ESS	Energy Storage System
FACTS	Flexible Alternating Current Transmission Systems
FRT	Fault Ride Through
HVDC	High Voltage Direct Current Transmission Systems
ICT	Information Communication Technology
IEEE	Institute of Electrical and Electronics Engineers
IGBT	Insulated Gate Bipolar Transistor
IGCT	Insulated Gate Commutated Transistor
IPM	Intelligent Power Module
ISR	Interrupt Service Routine
LB	Load Bank
LPF	Low Pass Filter
MOMPC	Multi-Objective Model-Predictive Control
MPC	Model Predictive Control
MPDFC	Model Predictive Direct Flux Control
MPPT	Maximum Power Tracking Point

MS	Master-Slave
MT	Micro-turbine
NIST	National Institute of Standard and Technology
NPC	Neutral-point-clamped
PC	Personal Computer
PCC	Point of Common Coupling
PDPC	Predictive Direct Power Control
PDVTC	Predictive Direct Virtual Torque Control
PEMFC	Proton Exchange Membrane Fuel Cell
PI	Proportional-Integral
PMSG	Permanent Magnet Synchronous Generator
PV	Photovoltaic
PWM	Pulse Width Modulation
RTDX	Real Time Data Exchange
SCADA	Supervisory Control and Data Acquisition
SCIG	Squirrel Gage Induction Generator
SDFC	Switching Table Based Direct Flux Control
SDPC	Switching Table Based Direct Power Control
SGA	Smart Grid Australia
SOC	State of Charge
SPI	Serial Peripheral Interface
SPWM	Sinusoidal Pulse Width Modulation
STATCOM	Static Synchronous Compensator
STS	Static Transfer Switch
SVM	Space Vector Modulation
REIF	Renewable Energy Integration Facility
RF	Radio Frequency
THD	Total Harmonic Distortion
TSR	Tip Speed Ratio
UART	Universal Asynchronous Receiver Transmitter
UPS	Uninterruptible Power Supply
UTS	University of Technology, Sydney
VC	Vector Control
VOC	Voltage-Oriented Control

- VSCF Variable Speed Constant Frequency
- VSI Voltage Source Inverter
- WFSG Wound Field Synchronization Generator

LIST OF FIGURES

Fig. 1.1 Typical configurations of DG systems. (a) wind turbine system, and (b) PV	
system	. 2
Fig. 1.2 Control methods of power converters	.4
Fig. 1.3 Block diagram of VOC	. 5
Fig. 1.4 Block diagram of DPC	. 6
Fig. 1.5 Block diagram of SVM-DPC	. 7
Fig. 1.6 Block diagram of fuzzy logic control	. 8
Fig. 1.7 Block diagram of sliding mode control	.9
Fig. 1.8 Block diagram of deadbeat based predictive control	10
Fig. 1.9 Block diagram of model predictive control	11
Fig. 1.10 Block diagram of vector-sequence-based predictive control	12
Fig. 1.11 Block diagram of the centralized control	14
Fig. 1.12 Block diagram of the current chain control (3C)	15
Fig. 1.13 Block diagram of MS control	16
Fig. 1.14 Block diagram of ALS control, (a) average current sharing, (b) average power	er
sharing	18
Fig. 1.15 Block diagram of the conventional droop control	20
Fig. 1.16 Microgrid system	22
Fig. 1.17. Smart city	23
Fig. 1.18. Existing microgrid installations around the world	24
Fig. 2.1 Wind power generation system	36
Fig. 2.2 Cost share of a variable speed wind system	37
Fig. 2.3 Turbine output power characteristics for different wind speeds.	38
Fig. 2.4 CSCF system with squirrel-cage induction generator	39
Fig. 2.5 Wound field synchronous generator system	40
Fig. 2.6 Permanent magnet synchronous generator system	41
Fig. 2.7 Doubly fed wound induction generator system	42
Fig. 2.8 Prototype of a 30 kW CBDFIG at UTS	42
Fig. 2.9 Squirrel cage induction generator system	43
Fig. 2.10 MPPT strategies: (a) Wind speed measurement, (b) Power versus rotor speed	d
characteristic	45
Fig. 2.11 Torque, rotor flux, active power, and reactive power derivatives against roto	r
flux position at sub-synchronism. (a) torque and flux derivatives, (b) active and reactive	'e
power derivatives	52
Fig. 2.12 Possible voltage vectors generated by the inverter and sector division	52
Fig. 2.13 Waveforms for three vectors based predictive direct control	53
Fig. 2.14 Control diagram of DFIG	55
Fig. 2.15 One step delay in digital implementation	58
Fig. 2.16 Responses of virtual torque and rotor flux when system starts to operate in	
Mode 1. (a) CDVTC, (b) PDVTC.	60

Fig. 2.17 Responses of stator induced voltage and rotor currents when system starts to
operate in Mode 1. (a) CDVTC, (b) PDVTC61
Fig. 2.18 Stator voltage and rotor current spectrum analysis. (a) CDVTC (stator voltage
THD = 6.22% , rotor current THD = 2.54%), (b) PDVTC (stator voltage THD = 2.06% ,
rotor current THD = 0.69%)
Fig. 2.19 Responses of virtual torque, rotor flux, rotor currents and stator currents at
grid connection instant. (a) CDVTC, (b) PDVTC
Fig. 2.20 Responses of transition from Mode 1 to Mode 2 and power regulation in
Mode 2
Fig. 2.21 Laboratory setup. (a) DFIG and its control centre, (b) part of the control panel
of ControlDesk from dSPACE
Fig. 2.22 Experimental results of stator induced voltage and rotor currents when system
starts to operate in Mode 1. (a) CDVTC, (b) PDVTC, (c) PDVTC at 800 rpm66
Fig. 2.23 Experimental results of one-step delay compensation using model based
prediction. (a) CDVTC with and without compensation, left: without compensation,
right: with compensation, (b) PDVTC with and without compensation, left: without
compensation, right: with compensation
Fig. 2.24 Experimental results of grid connection. (a) CDVTC, (b) PDVTC68
Fig. 2.25 Experimental results of power regulation. (a) constant reactive power, (b)
constant active power
Fig. 2.26 Experimental performances with and without rotor position sensor. (a) with
rotor position sensor, (b) without rotor position sensor70
Fig. 2.27 Sensorless scheme validation. (a) active power error, (b) estimated sector, (c)
reactive power derivative for the first active vector, (d) reactive power derivative for the
second active vector
Fig. 3.1 PV output power measured in two different days79
Fig. 3.2 Centralized PV configuration
Fig. 3.3(a) PV panels in strings with individual inverters, (b) PV panels in a multi-string
configuration
Fig. 3.4 AC-Module power electronics configuration
Fig. 3.5 Single-phase single-stage PV power electronics
Fig. 3.6 Single-phase multiple-stage PV power electronics
Fig. 3.7 Three-phase PV topology with line-frequency transformer
Fig. 3.8 Example of the control scheme for PV systems
Fig. 3.9 Equivalent circuit of a PV cell
Fig. 3.10 Current versus voltage characteristic of a PV cell. [3.5]
Fig. 3.11 Inverter possible output voltage vectors
Fig. 3.12 One-phase model of inverter-based PV system
Fig. 3.13 Basic principle of MPC
Fig. 3.14 Block diagram of voltage control
Fig. 3.15 Block diagram of MPC-based power regulation
Fig. 3.16 Simulation results of PCC voltage and load current
Fig. 3.17 Simulation results of grid synchronization and connection101

Fig. 3.18 Simulation results of flexible power regulation. (a) SDPC, (b) proposed MPC
strategy
Fig. 3.19 Laboratory test bench
Fig. 3.20 Experimental results of islanded mode
Fig. 3.21 Experimental results of grid synchronization
Fig. 3.22 Experimental results of flexible power regulation. (a) active power steps of
SDPC, (b) reactive power steps of SDPC, (c) active power steps of proposed MPC
strategy, (d) reactive power steps of proposed MPC strategy 105
Fig. 4.1 AC/DC converter structure
Fig. 4.2 Possible voltage vectors
Fig. 4.3 Control block of SDPC
Fig. 4.4 Basic principle of MPC
Fig. 4.5 Schematic illustration of MOMPC concept
Fig. 4.6 Switching paths of vectors: the green dashed lines standing for no switching,
the black solid lines one-state change, the red dashed lines two-state change, the red
solid lines three-state change
Fig. 4.7 Active power trajectories and switching position with N-step prediction 121
Fig. 4.8 Simulated steady-state performance. (a) SDPC.I, and (b) SDPC.II 124
Fig. 4.9 Simulated steady-state performance. (a) MOMPC.I, and (b) MOMPC.II 125
Fig. 4.10 Simulated steady state performance. (a) MOMPC.III, λ_2 =70, and (b)
MOMPC.IV, $\lambda_2 = 70$, $\lambda_3 = 0.12$
Fig. 4.11 Laboratory test bench: (1) Semikron intelligent power module based AC/DC
converter, (2) control unit, (3) inductors, (4) DC resistive load, (5) three-phase auto-
transformer, (6) three-phase isolated transformer, (7) Tektronix current probe, and (8)
voltage probe
Fig. 4.12 Experimental results. Left: CH1-grid phase A voltage, CH3 and CH4-
converter input currents; Right: CH2-DC-link voltage, CH3-active power, CH4-reactive
power. (a) SDPC.I, THD = 16.68%, f_{sw} = 1562 Hz, (b) SDPC.II, THD = 11.04%, f_{sw} =
5017 Hz, (c) MOMPC.I, THD = 11.72%, f_{sw} = 2439 Hz, (d) MOMPC.II, THD = 7.16%,
$f_{sw} = 4482 \text{ Hz.}$ 128
Fig. 4.13 Experimental results of frequency reduction scheme and system stability
improvement. Left: CH1-grid phase A voltage, CH3 and CH4-converter input currents;
Right: CH1-PWM signals of upper leg of phase A, CH3-phase A current, (a)
MOMPC.III, λ_2 =70, THD = 14.38%, f _{sw} = 1953 Hz, (b) MOMPC.IV, λ_2 =70, λ_3 =0.12,
THD = 7.75% , $f_{sw} = 2638$ Hz
Fig. 4.14 Experimental results of computing time reduction algorithm MOMPC.V,
CH1: grid phase A voltage, CH3 and CH4: converter input currents; CH2: DC-link
voltage, CH3: and active, CH4: reactive power, λ_2 =70, λ_3 =0.12, THD = 7.89%, f _{sw} =
2623 Hz
Fig. 4.15 Line current spectrum, 60 mA/div, 1 kHz/div, Sa=20 kSa, (a) SDPC.I, (b)
SDPC.II, (c) MOMPC.I, (d) MOMPC.II, (e) MOMPC.III, (f) MOMPC.IV 131
Fig. 4.16 Experimental results of dynamic response of SDPC.II, (a) active and reactive
power, (b) three-phase input currents

Fig. 4.17 Experimental results of dynamic response of MOMPC.V, (a) active and	
reactive power, (b) three-phase input currents.	133
Fig. 5.1 Smart grid topology	139
Fig. 5.2 Schematic diagram of a simplified microgrid system	141
Fig. 5.3 Microgrid configuration in energy centre of CSIRO	143
Fig. 5.4 Smart microgrid, (a) laboratory setup, (b) schematic topology	144
Fig. 5.5 Equivalent circuit of parallel-inverters-based microgrid	147
Fig. 5.6 Droop characteristics, (a) P - ω droop characteristics, (b) Q - E droop	
characteristics.	148
Fig. 5.7 Control block of voltage and current feedback control	149
Fig. 5.8 Control diagram of the whole microgrid control based on voltage droop	
method.	150
Fig. 5.9 Power flows within microgrid.	153
Fig. 5.10 Per phase current within the microgrid.	153
Fig. 5.11 Response of voltage and AC common bus and current through STS	154
Fig. 5.12 Synchronization of micro- and utility-grids.	154
Fig. 5.13 Equivalent circuit of a DG unit connected to a common AC bus	156
Fig. 5.14 Possible voltage vectors generated by the inverter	156
Fig. 5.15 $P - \delta$ characteristic	159
Fig. 5.16 Equivalent circuit of small signal model of the P – δ droop controller	159
Fig. 5.17 Equivalent circuit of small signal model of the Q – $ \psi_V $ droop controller	160
Fig. 5.18 Block diagram of the proposed flux droop control strategy of micrigrods	163
Fig. 5.19 Microgrid structure under study	164
Fig. 5.20 Dynamic performance of power sharing	166
Fig. 5.21 Voltage across capacitor C_1	166
Fig. 5.22 Microgrid under study	168
Fig. 5.23 Total PV output power measured in two different days	169
Fig. 5.24 PV characteristics. (a) dynamic response to the loss of external grid voltage	e,
(b) dynamic response to the voltage variation.	170
Fig. 5.25 A simplified diagram of a microturbine generation system in a microgrid.	171
Fig. 5.26 The renewable energy integration facility (REIF)	173
Fig. 5.27 Power flow in grid-connected mode	174
Fig. 5.28 Voltage and frequency response in grid-connected mode	174
Fig. 5.29 Active and reactive power sharing in islanded mode	175
Fig. 5.30 Voltage and frequency response islanded mode	175
Fig. 5.31 Microturbine output current	176
Fig. 5.32 Simplified diagram of test system under faults	177
Fig. 5.33 Response of current and voltage during a fault in grid-connected mode (a)	
Currents, (b) PCC Voltage.	178
Fig. 5.34 Voltage and current response to grid fault in islanded mode (a) current at C	СВ2,
(c) PCC Voltage	179
Fig. 5.35 Smart microgrid topology	181
Fig. 5.36 PV system, (a) PV array, (b) Equivalent circuit of the PV cell	181

3		
)		
experimental platform, (b) equivalent circuit of a DFIG in the synchronous reference		
4		
4		
5		
6		
6		
y		
7		
8		
1		
6		
6		
7		
8		
8		

LIST OF TABLES

TABLE 2.1	Advantages and Disadvantages Compared with Generators	43
TABLE 2.2	Vector Selection Strategy of Predictive Control	53
TABLE 2.3	Direction of Change of Sector	57
TABLE 2.4	Parameters of wind power system	59
TABLE 2.5	Quantitative comparison of steady state at 1200 rpm before grid	
connection .		68
TABLE 3.1	System Parameters of the PV system	. 100
TABLE 3.2	Quantitative Comparison of Steady-state Performance of PV system	. 106
TABLE 4.1	Switching Table of Conventional SDPC	116
TABLE 4.2	Parameters of the MOMPC System in Simulation	124
TABLE 4.3	Parameters of the MOMPC System in Experiment	127
TABLE 5.1	System Parameters of Microgrid Using Voltage Droop Method	152
TABLE 5.2	Vector Selection Strategy of DFC	162
TABLE 5.3	System Parameters of Microgrid Using Flux Droop Method	164
TABLE 5.4	Voltage Deviations for $\Delta P = 0.1$ MW and $\Delta Q = 0.1$ MVar	167

ABSTRACT

This thesis presents various advanced control strategies in smart microgrid applications.

In recent years, due to the rapid depletion of fossil fuels, increasing demand of electricity, and more strict compulsory government policies on reduction of greenhouse gas emissions, renewable energy technologies are attracting more and more attentions and various types of distributed generation (DG) sources, such as wind turbine generators and solar photovoltaic (PV) panels, are being connected to low-voltage distribution networks. Because of the intermittent nature of the renewable energy sources, it would be a good idea to connect these DG units together with energy storage units and loads to form a local micro power system, known as microgrid. This PhD thesis project aims to develop new and competitive control methods for microgrid applications.

Based on a review of the state of the art of the wind power techniques, a new predictive direct control strategy of doubly fed induction generator is proposed. This method can achieve fast and smooth grid synchronization, and after grid connection, the active and reactive power can be regulated flexibly, which enables the wind power systems contributing to the grid voltage support and power quality improvement. The proposed strategy is simple and reliable, and presents excellent steady-state and dynamic performance.

A new control approach using the model predictive scheme is developed for a PV system in microgrid applications. In the islanded operation, the inverter output voltage is controlled stably for the local loads. A simple synchronization scheme is introduced to achieve seamless transfer, and after being connected to the utility grid, the PV system can inject both active and reactive power into the grid flexibly within its capacity.

As the capacity of DGs getting larger, the power conversion efficiency becomes more important. In order to reduce the switching loss, a multi-objective modelpredictive control strategy is proposed for the control of high power converters. By revising the cost function properly, the switching frequency can be reduced considerably without deteriorating the system performance. The control strategy is simplified using a graphical algorithm to reduce the computational burden, which is very useful in practical digital implementation where high sampling frequency is required. The proposed method is very flexible and can be employed in both AC/DC and DC/AC energy conversions in microgrids.

For a microgrid consisting of several DG units, various system level control methods are studied. A novel flux droop control approach is developed for parallelconnected DGs by drooping the inverter flux instead of drooping the inverter output voltage. The proposed method can achieve autonomous active and reactive power sharing with much lower frequency deviation and better transient performance than the conventional voltage droop method. Besides, it includes a direct flux control (DFC) algorithm, which avoids the use of proportional-integral (PI) controllers and PWM modulators.

For a microgrid system consisting of a 20 kW PV array and a 30 kW gas microturbine, a coordinated control scheme is developed for both islanded and gridconnected operations. The experimental results from a renewable energy integration facility (REIF) laboratory confirmed the feasibility of the control strategy. The response of this microgrid under the condition of grid faults is investigated and the relevant protection mechanism is proposed.

Given the intermittent nature of the renewable energy sources, and the fluctuated load profile, an appropriate solution is to use energy storage systems (ESS) to absorb the surplus energy in the periods when the power production is higher than the consumption and deliver it back in the opposite situation. In order to optimize the power flow, a model predictive control (MPC) strategy for microgrids is proposed. This method can flexibly include different constraints in the cost function, so as to smooth the gap between the power generation and consumption, and provide voltage support by compensating reactive power during grid faults.