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Abstract

ABSTRACT

This thesis presents various advanced control strategies in smart microgrid
applications.

In recent years, due to the rapid depletion of fossil fuels, increasing demand of
electricity, and more strict compulsory government policies on reduction of greenhouse
gas emissions, renewable energy technologies are attracting more and more attentions
and various types of distributed generation (DG) sources, such as wind turbine
generators and solar photovoltaic (PV) panels, are being connected to low-voltage
distribution networks. Because of the intermittent nature of the renewable energy
sources, it would be a good idea to connect these DG units together with energy storage
units and loads to form a local micro power system, known as microgrid. This PhD
thesis project aims to develop new and competitive control methods for microgrid
applications.

Based on a review of the state of the art of the wind power techniques, a new
predictive direct control strategy of doubly fed induction generator is proposed. This
method can achieve fast and smooth grid synchronization, and after grid connection, the
active and reactive power can be regulated flexibly, which enables the wind power
systems contributing to the grid voltage support and power quality improvement. The
proposed strategy is simple and reliable, and presents excellent steady-state and
dynamic performance.

A new control approach using the model predictive scheme is developed for a PV
system in microgrid applications. In the islanded operation, the inverter output voltage
is controlled stably for the local loads. A simple synchronization scheme is introduced
to achieve seamless transfer, and after being connected to the utility grid, the PV system
can inject both active and reactive power into the grid flexibly within its capacity.

As the capacity of DGs getting larger, the power conversion efficiency becomes
more important. In order to reduce the switching loss, a multi-objective model-
predictive control strategy is proposed for the control of high power converters. By
revising the cost function properly, the switching frequency can be reduced
considerably without deteriorating the system performance. The control strategy is
simplified using a graphical algorithm to reduce the computational burden, which is

very useful in practical digital implementation where high sampling frequency is
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required. The proposed method is very flexible and can be employed in both AC/DC
and DC/AC energy conversions in microgrids.

For a microgrid consisting of several DG units, various system level control
methods are studied. A novel flux droop control approach is developed for parallel-
connected DGs by drooping the inverter flux instead of drooping the inverter output
voltage. The proposed method can achieve autonomous active and reactive power
sharing with much lower frequency deviation and better transient performance than the
conventional voltage droop method. Besides, it includes a direct flux control (DFC)
algorithm, which avoids the use of proportional-integral (PI) controllers and PWM
modulators.

For a microgrid system consisting of a 20 kW PV array and a 30 kW gas
microturbine, a coordinated control scheme is developed for both islanded and grid-
connected operations. The experimental results from a renewable energy integration
facility (REIF) laboratory confirmed the feasibility of the control strategy. The response
of this microgrid under the condition of grid faults is investigated and the relevant
protection mechanism is proposed.

Given the intermittent nature of the renewable energy sources, and the fluctuated
load profile, an appropriate solution is to use energy storage systems (ESS) to absorb
the surplus energy in the periods when the power production is higher than the
consumption and deliver it back in the opposite situation. In order to optimize the power
flow, a model predictive control (MPC) strategy for microgrids is proposed. This
method can flexibly include different constraints in the cost function, so as to smooth
the gap between the power generation and consumption, and provide voltage support by

compensating reactive power during grid faults.
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