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Abstract

This thesis presents the development of a generalised risk analysis, modelling and

management framework for intelligent agents based on the state-of-art techniques

from knowledge representation and uncertainty management in the field of Artificial

Intelligence (AI). Assessment and management of risk are well established common

practices in human society. However, formal recognition and treatment of risk are

not usually considered in the design and implementation of (most existing) intelligent

agents and information systems. This thesis aims to fill this gap and improve the

overall performance of an intelligent agent. By providing a formal framework that

can be easily implemented in practice, my work enables an agent to assess and manage

relevant domain risks in a consistent, systematic and intelligent manner.

In this thesis, I canvas a wide range of theories and techniques in AI research that

deal with uncertainty representation and management. I formulated a generalised

concept of risk for intelligent agents and developed formal qualitative and quanti-

tative representations of risk based on the Possible Worlds paradigm. By adapting

a selection of mature knowledge modelling and reasoning techniques, I develop a

qualitative and a quantitative approach of modelling domains for risk assessment and

management. Both approaches are developed under the same theoretical assumptions

and use the same domain analysis procedure; both share a similar iterative process to

maintain and improve domain knowledge base continuously over time. Most impor-

tantly, the knowledge modelling and reasoning techniques used in both approaches

share the same underlying paradigm of Possible Worlds. The close connection between

xiv



xv

the two risk modelling and reasoning approaches leads us to combine them into a hy-

brid, multi-level, iterative risk modelling and management framework for intelligent

agents, or HiRMA, that is generalised for risk modelling and management in many

disparate problem domains and environments. Finally, I provide a top-level guide on

how HiRMA can be implemented in a practical domain and a software architecture

for such an implementation. My work lays a solid foundation for building better

decision support tools (with respect to risk management) that can be integrated into

existing or future intelligent agents.



Chapter 1

Introduction

Risks exist in almost every aspect of life. As intelligent beings, humans need to assess

and manage risks under various circumstances almost constantly. Even a simple act

of crossing a road involves identifying dangerous incoming traffic, assessing the risk

of possible collision and taking appropriate actions to reduce such a risk. Most of us

can handle this task effortlessly. In more complex task domains such as operating an

oil refinery or investing in a foreign company, assessing and managing risks becomes

complicated but being able to deal with risks systematically and effectively is critically

important for operations in these domains. That is, any loss of life, contamination of

the environment or heavy monetary loss due to failure in recognising and managing

risk would be disastrous. Clearly, the capability of risk handling should be viewed as

an important characteristic of intelligence.

With ever increasing processing power and sophistication in software, more and

more computer (or generally information) systems are taking over the tasks that used

to be performed by people. Such systems range from simple traffic (light) controllers

to advanced flight control systems on modern aeroplanes; from managing mundane

business transactions to automated electronic share trading systems (Hendershott

& Riordan 2009); even automated driverless cars will soon enter into our daily life

(Markoff 2011). Clearly, it is necessary for these systems to be able to handle risks

associated with these tasks that used to be managed by people. Till now, most

existing computerised systems do not conceptualise, assess or manage risk explicitly.

1
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The task of handling risks is usually subsumed into the functions that handle error

or failure conditions specific to the problem domain. Consequently, a “risk” handling

mechanism found in one system cannot be transferred into a different system. Systems

are designed to handle specific conditions and have no or little ability to infer or reason

about risks, especially in open and evolving environments. There is little attention

to treat risk management as an important integrated functionality for most of the

existing information systems. There seems to be little investigation of the meaning

of risk from the perspective of an intelligent agent or information system, and how

to model and manage risks in such a system.

In this thesis, I present my research work in building a Hybrid iterative Risk

Management framework for intelligent Agents (HiRMA), based on the existing re-

search work in the field of Artificial Intelligence (AI). I view an intelligent agent or

information system1 mainly as a software system that is designed and implemented

according to some pre-defined goals and objectives for operating in a specific problem

domain. The agent (Figure 1.1) has certain prior knowledge about the domain. It

continuously takes relevant domain information from its operating environment and

produces decision making outcomes that can be acted on for reducing risks associated

with the domain.

In order to develop this risk modelling and management framework, I first inves-

tigate and formalise a concept of risk specifically for intelligent systems, since there

is no clear definition of risk for such a system. I canvas the wide field of Artificial

Intelligence and adapt a selection of mature AI technologies, particularly in the ar-

eas of knowledge representation and uncertainty management, in building the risk

modelling and management framework. Throughout this thesis, I draw upon two

disparate but challenging domains, namely, treasury risk management for businesses,

and risk management for mobile robots, to illustrate the key challenges in the research

and my approach in addressing these issues.

Fluctuations in foreign currency exchange (FX) rates present significant risk to a

1In this thesis, I use “intelligent agent” and “intelligent information system” interchangeably as
I focus on risk management and decision making capabilities of agents and systems.
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Figure 1.1: An intelligent agent as a black box, adapted from Poole et al. (1998).

business’ viability, particularly in a global economy. A mobile robot playing soccer

must be able to use its background knowledge and interpret sensory information to as-

sess the risks (with respect to its goals) present in a competition environment. For an

example, a ball passing from a robot to another carries risks such as interception from

an opponent robot. Whereas in foreign exchange market, it is crucial to be able to

respond to ever changing market conditions and minimise various risks presented for

many companies to remain viable (Abbott 2009). Being able to deal with various risks

rationally and effectively is crucially important for an intelligent system to perform

its functions and achieve its objectives. Unfortunately, the concept of risk usually

has different meanings for different domains, and there is no precise and generally

accepted definition for risk. In the real world, people frequently operate in complex

and dynamic environments where dealing with various risks in a consistent manner is

difficult and laborious. Utilising works from AI research, we can develop intelligent

software tools or agents to assist us in dealing with risks. However, managing risks

has not been a main focus in AI research, even though there is a strong tradition and

extensive work in dealing and modelling uncertain information in decision making2.

This thesis explores risk management and takes a holistic approach in developing a

2There are some recent works done by Dubois et al.(2011) closely related to this thesis.
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formal and practical framework for risk management in open, dynamic and complex

environments based on an integration of the existing theories and techniques devel-

oped in the AI research. With this research work, I hope to spur further practical

development in intelligent software tools/agents to assist risk management for a wide

range of domains and help to push existing AI theories and techniques into real world

applications, making new and existing information systems more “intelligent”. More

specifically, I aim to achieve the following key objectives:

1. Provide a clear conceptualisation of risk for information systems and a definition

of risk that is general enough to be applicable to information systems in a wide

range of domains; and develop a formal way of evaluating and measuring risks.

2. Develop a new framework for design and development of risk management sys-

tems based on the formal concept of risk and a new approach to represent and

reasoning about risk. This framework will provide formal approaches, based on

an integration of the existing AI theories and methods, to build and maintain

a domain knowledge base for risk modelling purpose. Existing AI reasoning

methods will be used to reason, evaluate risks with the knowledge base. Con-

sequently, I should be able to develop strategies to mitigate or minimise risks

and enhance possible opportunities.

3. The framework will be illustrated and evaluated using practical benchmark

problems.

4. Propose a generic software architecture for implementing the risk modelling and

management framework.

Aligned with the above stated objectives, the main content of this thesis is divided

into seven chapters. To address the first objective, I provide a survey and analysis of

definitions of risk in a range of domains in Chapter 2. From this analysis, I distill the

essential notions found in (almost) all of these definitions: namely, a combination of

uncertainty and consequence. Based on these two key notions, I provide a generalised
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definition of risk that can be adapted for intelligent agents operating in a wide range

of domains. I then analyse the meanings of uncertainty and consequence from the

ground up. The result of the analysis is two formal interpretations for uncertainty and

consequence. I then propose two improved (and formal) measures for representing

qualitative risk and quantitative risk respectively.

Chapter 3 explores a number of key issues that I must address in order to develop

a generalised risk management framework for intelligent agents operate in disparate

problem domains. To this end, I introduce the two benchmark problems briefly

mentioned in the previous paragraphs. I set out a list of key requirements for my

framework and discuss the necessity of these requirements using the benchmark prob-

lems as the supporting examples. Finally, I provide a quick survey of the existing risk

management frameworks with respect to these requirements.

In order to accomplish the second objective, I start with a wide range survey of

knowledge representation and management techniques developed in AI in Chapter

4, focusing on methods in the area of uncertainty management. I analyse these

techniques with respect to the framework requirements and discuss their individual

merits and deficiencies. It should be noted that I only cover the well-known and

mature techniques and discuss the key ideas of these methods. It is simply infeasible to

cover every aspect of research work done over the past five decades within the practical

limits of this thesis. However, I do list the most relevant results and algorithms, and

show how they are integrated in my framework as parts of overall strategy for practical

risk modelling and management. Discussions in Chapter 4 lead to an overview of

the HiRMA framework I developed in this research work. In Chapter 5, I show

what techniques are utilised and integrated together in HiRMA and how they are

interrelated under the Possible Worlds paradigm. Furthermore, I provide a generic

domain risk analysis technique based on the formal risk conceptualisation developed

in Chapter 2.

In Chapter 6 and 7, I present a detailed description and analysis of HiRMA frame-

work in two separate approaches: qualitative and semi-quantitative/quantitative risk
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modelling and management processes respectively. I use the ball passing benchmark

problem to provide detailed illustrations of the two approaches. I highlight the key

features within both processes and match them against the framework requirements.

Limitations within the process are also discussed and model construction and revi-

sion algorithms are provided. In Chapter 8, I bring these two approaches together

to form the unified, multi-level, iterative risk management framework. I demonstrate

how the qualitative risk modelling process may be connected to the quantitative part

of risk modelling process. I provide a pathway to translate a pure qualitative model

into a quantitative model (with additional information) and vice versa. I will show

modelling and decision making strategies an agent may adopt under HiRMA for its

specific domain and operating environment. Finally, I evaluate my framework against

the key framework requirements I set out in Chapter 2 and compare HiRMA against

the well established risk modelling and management methodologies in mainstream

risk management literatures. This completes the objective 2 and 3.

I conclude this thesis with a top-level software implementation architecture based

on the risk modelling and management framework (objective 4). Combined with the

algorithmic recipes listed throughout the thesis, a system implementor should be able

to use the architecture as a guidebook for software implementation. I also suggest few

current technologies that a system implementor may adopt for software development.

Appendix A provides a partial implementation of HiRMA using an extended FX

benchmark problem as an example.

To conclude this introduction, I would like to highlight few key points of this

project:

• I investigate and develop a concept of risk, risk modelling and management for

intelligent information systems and agents from the ground up, with its founda-

tion firmly placed in AI, in particular, in the areas of knowledge representation

and uncertainty management. Therefore, this research work emphasises the

formal treatment of risk and risk model construction. I attempt to minimise
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(if not remove) adhoc nature and descriptiveness commonly found in the main-

stream risk management related literature. Practical implementation of a risk

management framework in intelligent agents demands a normative approach

rather a descriptive one. This is the key difference between this research work

and mainstream risk management related research.

• Another key achievement of this thesis is to explore a relatively untouched

area of application for various AI technologies developed in the past decades.

I consider many AI technologies have been, so far, poorly utilised in many

practical domains. Adopting these technologies in the area of risk management

can help to address real-world problems and further improve the “intelligence”

in so-called intelligent agents.

• In this research, I focus my effort in the mature, solid and proven technologies

(and algorithms) instead of exploring the latest developments in the same area.

This is because practical implementation is one of the main requirements for

the framework.

• The risk modelling and management processes presented in this thesis do not

represent a direct application of chosen knowledge modelling and reasoning

techniques. I modify and integrate the existing methods to satisfy the particular

needs of the framework. However, these custom modifications do not deviate

from the standard methods theoretically.

Finally, the HiRMA framework will provide a set of procedures for system design-

ers and developer who wish to develop risk modelling and management capabilities

for intelligent agents or information systems.



Chapter 2

An Analysis of Risk Related
Concepts

Risk as a concept has been long recognised in human societies. However, risk typ-

ically carries different meanings in different domains under different contexts. For

example, in the health and safety fields, risk is typically viewed from a personal

physical safety perspective; whereas in the management of computer data centres,

risk is usually considered in terms of security of the physical systems and possible

data loss and service disruptions. The connection between risk in disparate fields

remains vague and risk is usually managed in entirely different ways, even though

risk is a fundamental concept. Most software solutions recently developed for dealing

with risk remain domain specific and cannot be applied across different industries

so techniques developed in one area cannot easily be transferred to solve problems

in another (RiskMetrics 1996, Mediregs 2011, Makhoul, Saadi & Pham 2010). Only

recently, have much needed steps been taken towards more general risk assessment

management. In my research, the goal is to build a generalised risk modelling and

management framework for intelligent agents operating in disparate domains. There-

fore, it is essential to formalise the concept of risk and construct a meaning of risk

that can be used to enable intelligent agents to deal with risk in a wide range of

domains. This formalisation of risk will lead to representations of risk so that appro-

priate knowledge representation and management methods developed in AI can be

8
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utilised to model and manage risks.

In this chapter, I will first survey a number of existing definitions for risk found in

risk management literature and examine the underlying concepts and key features of

risk. My study shows that uncertainty and consequence of events (possibly caused by

actions) are fundamental to the understanding of risk in all contexts. I will present

a general definition of risk from the perspective of an intelligent agent and provide a

formal interpretation of uncertainty using the Possible Worlds paradigm. Combined

with different ways of measuring consequence, I investigate both qualitative and quan-

titative representations of risk with respect to the commonly used methods found in

many literatures. I present my own variants of risk representations that formalise and

extend the existing techniques. Finally, I will discuss some of the implications of my

definition and representations of risk.

2.1 Definitions of Risk

The concept of risk, in its general form, is complex and has not been precisely defined

for general applications. Although people share a general notion of risk, it often

carries different technical and practical meanings in different domains and can be

interpreted from different perspectives. I have surveyed risk related literature widely

from various fields. The following prominent definitions of risk illustrate the diversity

and common themes in defining risk related concepts in these fields:

1. InMedical Risk Management, Richards et al. (1983) states “a risk is an exposure

to the chance of injury or financial loss”.

2. Tapiero (2004) states “Risk results from the direct and indirect adverse con-

sequences of outcomes and events that were not accounted for”, “risk involves

(i) consequences, (ii) their probabilities and their distribution, (iii) individual

preferences, and (iv) collective, market and sharing effects.”
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3. Cool (2001) defines risk as the “absolute value of probable loss” in the area of

econometrics.

4. Kaplan and Garrick (1981) represent risk as a set of triplets {〈si, pi, xi〉}, i =
1, 2, ...N where si is a scenario, pi is the likelihood of the scenario and xi is the

consequence of the scenario.

5. In Risk Analysis (Aven 2008), risk is “the combination of (i) events A and the

consequences of these events C, and (ii) the associated uncertainties U”.

6. ISO1 Guide 73 (ISO 2009b) defines risk as follows, “Risk can be defined as the

combination of the probability of an event and its consequences”.

7. ISO 31000:2009 (ISO 2009a) changes the definition of risk to the “effect of

uncertainty on objectives”; “Risk is often expressed in terms of a combination

of the consequences of an event (including changes in circumstances) and the

associated likelihood of occurrence”.

Within the seven definitions stated above, the first four are specialised risk defini-

tions from three practical domains, namely, medical health (and insurance), finance

and econometrics; while the remaining three are generalised definitions of risk from

the risk management literature and the international standardisation body ISO. The

definitions from specific domains focus on the chance of events; their probabilities are

mainly concerned with the negative effect of such events such as “injury or financial

loss”. The generalised definitions emphasise that a risk is the combination of proba-

bility of an uncertain event with its effect or consequence. The effect or consequence

of an event is also no longer exclusively associated with negativity or loss in these

definitions. Interestingly, the latest standard definition of risk in ISO 31000 moves

away from the past emphasis on the likelihood of an event to the likelihood of an

effect on objectives.

1International Organisation for Standardisation, i.e. ISO, is an international body that sets
worldwide proprietary, industrial and commercial standards.



11

Clearly, uncertainty and consequence are two key underlying concepts that appear

consistently across all these definitions. Note that, even though the word “probabil-

ity” is frequently used in some of the definitions, it is just one particular mechanism

for representing uncertainty and used in the specialised domains such as finance. The

majority of generalised definitions of risk still use uncertainty. In this thesis, I will

make a clear distinction between uncertainty and probability. The consequence of an

event can only be meaningfully evaluated with respect to a domain, its context and

objectives. This important aspect of consequence is clearly reflected in the shift of

focus in ISO 31000. In addition, a consequence is anything that deviates from the

expected outcomes (ISO 2009a)(note 1). It can have either positive or adverse effects

on objectives, goals or desired outcomes.

2.2 Conceptualising Risk for Intelligent Agents

From the range of risk definitions discussed in the previous section, none of the ex-

isting definitions of risk fully satisfies what is required for the HiRMA framework.

My generalised risk analysis, modelling and management framework’s key design ob-

jective is to assist agents operate in a variety of task domains. The specialised risk

definitions (definition 1 to 4) are tailored to work well in their respective problem

domains, e.g. using probability to represent uncertainty in finance, but not in others;

whereas the generalised risk definitions do not take the characteristics of a software

agent into consideration. That is, a software agent is usually designed with specific

goals and specific objectives to achieve. In addition, a software agent usually operates

in a well-defined problem domain. Possible events associated with the operation of

the agent can normally be analysed and determined during the design and implemen-

tation of the agent. The existing generalised definitions (definition 5 to 7) require

additional application related details. They do not provide sufficient guidance for

domain knowledge acquisition and systematic development of a working risk model

for an intelligent agent. Nevertheless, the analysis of the existing definitions of risk is
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extremely helpful in formalising the concept of risk for the HiRMA framework. I now

provide a top-level generalised definition of risk for intelligent agents. It is important

to note that we must take the following definition with the formal interpretation of

uncertainty and consequence (discussed in the subsequent sections) together in order

to have a full conceptualisation of risk for intelligent agents.

Definition 1. A risk is a combination of the uncertainty of occurrence of a pos-

sible event that results from an initial event and the associated positive or negative

consequence 2 (or payoff/penalty) of the event on an intelligent agent with respect to

achieving its objective(s).

Note that, an initial event is an event identified by risk analysts that is relevant to

the system for risk analysis and can trigger subsequent relevant events to occur. For

example, the end of financial year could be used as an initial event when we analyse

a financial management system.

Definition 2. A (risk) scenario is the possible resultant event associated with a

risk.

Uncertainty and consequence used in the above definition should have following

general characteristics:

• Uncertainty . The occurrence of an event is not certain. It may or may

not happen. The likelihood of its occurrence depends on the domain context

and various factors associated with the domain environment in which an agent

operates.

• Consequence . Consequences are highly dependent on the agent’s goal/a-

genda, the environment the agent is operating in, and to the agent’s capabilities.

2In risk analysis and management literature, ‘consequence’ is widely used instead of ‘payoff’ or
‘penalty’. I use ‘consequence’ with the word ‘payoff’ or ‘penalty’ interchangeably.
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A consequence could have either positive (payoff) or negative impact3(penalty)

and it must have relevant meaning for the stake-holders.

The characteristics of the key notions indicate that risk is highly dependent on

the problem domain and associated environment. Therefore, this definition of risk

for intelligent agents still uses the ambiguous terms of uncertainty, consequence and

combination in order to accommodate risk modelling in a wide range of domains as

possible. However, these terms will be formalised when the definition is applied to a

concrete domain. I now give a detailed analysis of these terms under qualitative and

quantitative conditions in the following sections.

2.3 Uncertainties, Probabilities, Belief and Possi-

ble Worlds

One of the main causes of confusion in defining risk is that the meaning of uncertainty

is typically ill-defined. Determining risk in any domain requires the formalisation of

uncertainty and it could be different in different domains. Therefore, I need to allow

for adoption of a number of concrete forms of uncertainty depending on the specific

domain and context. For example, in risk management of foreign exchange, there

is abundant historical trading data and related quantitative information from which

one can carry out statistical analyses to determine a model for uncertainty based on

the theory of probability. In this case, probability is a suitable representation for

uncertainty since it is a faithful computational model for statistical data and can

be derived relatively easily from the large amount of quantitative data available. In

other domains such as investment in a middle eastern country like Iran (Waring &

Glendon 1998), building a risk profile for a country involves many complex factors

such as political stability, historical background that are not easily quantifiable and

3In common usage, risks are usually associated with the negative consequences.
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information for these factors is typically based on the opinions from so-called ex-

perts in the field, and as thus, may be inherently biased. Therefore, it is difficult

to formulate appropriate probabilities and I need to use alternative representations

for uncertainty. Furthermore, I need methods to capture and express uncertainty

in a domain for which an agent only has qualitative and/or categorical information.

Since one of the key requirements for the risk modelling and management framework

is adaptability in many disparate domains, I need to accommodate both qualitative

and quantitative domain information. Consequently, my generalised definition of risk

should not constrain the key notion of uncertainty under one particular form of repre-

sentation. One should choose an appropriate form of representation when he (or she)

applies HiRMA to a specific problem domain. In order to provide an unambiguous

response to the fundamental question of “what is uncertainty”, I invoke the concept

of possible worlds as an elegant philosophical foundation upon which to represent

or encode uncertainty at different levels of abstraction. More importantly, a possi-

ble worlds approach also provides a common foundation from which I can build a

pathway to ‘link’ different uncertainty representations.

2.3.1 Possible Worlds Paradigm

Possible worlds or alternative universes are those worlds whose characteristics are

different from our own. The Possible Worlds paradigm is a world view in which

there are alternative plausibilities beside the world as we know it. There could be

worlds where anything that one could imagine is true as long as each world remains

logically consistent. Formally, possible worlds are models or knowledge bases (sets

of propositions or sentences) that describe possible worlds (Stalnaker 1976). The

Possible Worlds paradigm plays a crucial role in the development of modal logics

(Blackburn, de Rijke & Venema 2002)4 and provides an intuitive interpretation of

belief. That is, if an agent believes a proposition A, it means that the agent believes

4Modal logic is beyond the scope of this thesis and I will not discuss this topic further apart from
providing few references.
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A holds in all the worlds the agent can view as possible. Uncertainty arises when an

agent is unable to determine which world from all possible worlds (that are consistent

with the agent’s belief) is the actual world that the agent inhabits. Uncertainty

reflects the fact that the agent has incomplete knowledge (or incorrect) information

about the actual world. However, it does not mean that the agent has no knowledge in

regard to the uncertainty. We can, in fact, encode such knowledge into the relational

structure of the possible worlds.

2.3.2 Encoding Uncertainty in a Likelihood Order

Based on an agent’s existing knowledge, we can map a set of possible worlds into a

preorder {≤: w ∈ Ω} , where Ω is the set of possible worlds and ≤ is a reflective and

transitive relation over Ω. We can interpret this comparative relation as: if u ≤ v, u

is a world that is at least as plausible as world v. In addition, the preorder ≤ must

have at least one world w such that w ≤ v for all v �= w. This smoothness condition

ensures that there is at least one most plausible candidate that corresponds to the

real world. With this likelihood order structure, an agent can make a qualitative

assessment of uncertainty within a domain according to its current knowledge. For

example, the belief of logical entailment from proposition D to propositions S1 and

S4 can be represented as a simple preorder structure of possible worlds as shown

graphically in Figure. 2.1, in which every circle represents a possible world. We use

→ to represent a logical entailment and � to represent its negation.

In this example, world w4 in which D entails both S1 and S4 is less plausible

than other worlds that D only entails S1 or S4 or neither5. Even though an agent

is still uncertain which world corresponds to the actual world, it believes, according

to its current knowledge, w1 is more plausible than w2; w2 is more plausible than

w3 and w3 is more plausible than w4. This likelihood preorder gives us a qualita-

tive representation of the uncertainty in the domain. An additional advantage that

5The reason for using smaller circles to represent higher plausible worlds will become clear in
Chapter 6 in which I map likelihood preorder structures into Systems of Spheres.
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Figure 2.1: Possible worlds in a likelihood preorder.

this preorder structure brings is that it is also conducive to systematic revision of

the knowledge base. When new information is acquired, the existing preorder may

be modified to reflect the agent’s updated knowledge base and consequently a new

assessment of the uncertainty can be derived. A mechanism such as Belief Revision

(and update) (Gärdenfors 1992, Peppas 2007) provides a systematic approach to re-

vise knowledge and maintaining this preorder. In addition, this likelihood preorder is

equivalent to comparative possibility relation (Lewis 1973) and strongly tied to the

qualitative possibility theory (Dubois & Prade 1998). We can, in fact, translate this

likelihood order into a fuzzy set (Ω,m) in which every possible world is an element of

the set Ω and the member function of the fuzzy set m maps Ω to [0, 1] (Zadeh 1965).

The likelihood of a possible world w is represented as the grade of membership of w

in (Ω,m).
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2.3.3 Encoding Uncertainty in Probability

We can now give a reinterpretation of probability from the possible worlds paradigm

by associating each possible world with a measure, i.e. a real value. For a finite num-

ber of possible worlds, the measure6 of world w, denoted as μ(w), has two properties:

• 0 ≤ μ(w) for all w ∈ Ω.

• ∑
w∈Ω μ(w) = 1.

The probability of a formula a is the sum of the measures of all possible worlds in

which a is true (i.e. w |= a). Formally, the probability of a is expressed as

P (a) =
∑
w|=a

w. (2.1)

It can be easily shown that this semantics of probability is consistent with the

axioms of probability (DeGroot & Schervish 2002). One remaining question is how

the measure of a possible world is determined. Intuitively, a more plausible world

shall have higher probability measure than less plausible worlds, i.e. the measures of

possible worlds reflect an agent’s belief of the likelihood of all possible worlds. We can

say the probability measure quantifies the preorder structure of the possible worlds.

Using the previous example, we can assign measures to the four possible worlds (Fig-

ure. 2.1). By taking D → S1 as a formula a and following equation 2.1, we have the

probability of D entails S1 is 0.5.

I conclude Section 2.3 by highlighting the following:

• Uncertainty is an integral part of risk and it can be represented in many forms

using the Possible Worlds paradigm. Probability is one of such representations.

• My risk modelling and management framework requires appropriate represen-

tations for uncertainty with respect to the types of domain knowledge available.

6This measure is same as probability measure.
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• The Possible Worlds paradigm provides a solid philosophical foundation for

modelling knowledge of uncertainty both qualitatively and quantitatively.

2.4 Measuring Consequence

I now turn my attention to consequence. According to ISO 31000 (ISO 2009a), con-

sequence is anything that deviates from the desired outcome. From the perspective

of an intelligent system, the desired outcomes are in direct correspondence with the

designed objectives of the system. Any deviation from the desired outcome that is

beneficial for achieving the system objectives is considered to be positive (payoff),

whereas deviations that have adverse impact on achieving the objectives are consid-

ered to be negative (penalty). Measuring the extent of deviations is dependent on

whether the system objectives and outcomes are quantifiable. I treat quantitative con-

sequence and qualitative consequence separately, as different modelling mechanisms

can be applied and used.

2.4.1 Qualitative Consequence

In some problem domains, consequence cannot be easily quantified. For example, the

current market condition perceived by individual investors cannot be fully expressed

in numbers meaningfully. In these cases, we collect all plausible scenarios, including

the desired outcome, and arrange them in a preference order {≤: s ∈ S}, where

S is the set of all plausible scenarios. α ≤ β means scenario β is preferred over

α. Furthermore, if d is the desired outcome and α ≤ d ≤ β, it means that α is

a scenario of negative consequence; whereas β is a scenario of positive consequence.

This preferential order mirrors the similar approach used in encoding uncertainty in a

likelihood order. It can also be converted into a fuzzy set (S, c) in which the member

function c grades all possible scenarios. With reference against the desired outcome,

c can be further mapped into a set of common categorical consequences, for example,
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{Severe, Bad,Minor,Good, Excellent}.

2.4.2 Quantitative Consequence

For a task domain with quantifiable outcomes, consequences can be measured, in

real values, as the “distances” between the expected outcomes and actual results.

For example, all financial outcomes can be monetized. Therefore, consequences can

be naturally measured in terms of dollars. Any loss is normally treated as negative

consequence and takes on a negative value while any financial gain is positive conse-

quence associated with a positive value. In this case, we assume a financial neutral

position is the expected outcome and is designated with a reference value of zero.

This is not always the case as the expected outcome may not be the financially neu-

tral position and we may assign a different reference value to the expected outcome.

Non-zero reference values are useful in situations that the actual outcome, while it

does not match with the expected outcome, partially achieve the objective or still

remains useful. Formally, I define a quantitative consequence as the following:

Cs = Os −Od, (2.2)

where Od is a reference value assigned to the desired outcome and Os is a value

assigned to a scenario scaled against the reference value.

2.5 Combining Uncertainty and Consequence

Armed with the formal interpretation of uncertainty at both qualitative and quanti-

tative levels and how consequence may be evaluated and measured, I can now inves-

tigate how risk may be described as the combination of uncertainty and consequence

at these two levels. I assume each plausible scenario (or scenarios7), i.e. a resultant

event from an initial event, has a specific consequence for an agent tied directly with

7We may have multiple scenarios occur simultaneously. In this case, we can summarise them into
a compound scenario.
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it. Different scenarios may lead to the same consequence for an agent. The same

scenario may lead to different consequence for different agents. However, I do not

consider the case in which a scenario may have many consequences.

2.5.1 Risk Matrix for Qualitative Risk Representation

Risk matrices are a common technique used in risk assessment to represent risk

(Aven 2008, Waring & Glendon 1998). It is usually presented in a table form, as

shown in Table 2.1, with columns representing categorical likelihood or probability

bands and rows representing categorical consequences. With the formal qualitative

interpretation of uncertainty discussed in Section 2.3, we can replace classical proba-

bility bands found in most of risk management literature with a preorder structure of

possible worlds (or an equivalent fuzzy set derived from the comparative possibility

relation of possible worlds). A conventional probability band or likelihood category

can be regarded as a possible world or a set of consecutive possible worlds with sim-

ilar plausibilities in the preorder structure (Table 2.2). This small but significant

modification of the risk matrix not only removes the “ad hoc-ness” in the technique

enforcing a natural order in rows of risk matrix table, but also enriches it by placing

the corresponding domain model (from risk analysis) directly in the table. Assuming

each domain model is dominated with one particular scenario, there is no need for

a secondary mechanism to associate the scenarios with its risk categorisation. One

possible drawback of this modified risk matrix is that a large number of possible

worlds and possible consequences may make the risk matrix table large, unwieldy

and difficult to read for people. However, intelligent agents or information systems

can store and access them in large databases. Note that C1 ... C4 in Table 2.1 and

2.2 are generic terms for qualitative consequence labels.

To compare an arbitrary pair of risks in a risk matrix, e.g. (R1, R4) in Table 2.2, we

first assign ordinal numbers to rows (Ordinalc) and columns (Ordinalw) of the matrix

according to the likelihood order and preference order respectively with 1 attached

to the least plausible world and consequence of lowest preference. A comparative
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Consequence
Likelihood

Rare Unlikely Possible Likely
C1 *
C2 *
C3 *
C4 *

Table 2.1: A conventional risk matrix.

Consequence
World w {≤: w ∈ Ω}
w1 w2 w3 w4

C1 R1

C2 R2

C3 R3

C4 R4

Table 2.2: A risk matrix with possible world preorder structure.

risk ranking can thus be calculated from Ordinalc × Ordinalw associated with the

risk. Therefore, R4 is more favourable compared with R1. Note that, a colour coding

scheme is normally used in risk management literature instead of this “quantification”

procedure, though the underlying semantics are the same.

2.5.2 Quantitative Risk Measure

Risk needs to be quantified in many domains. We need a quantitative measure for

representing risk. In mainstream risk management literature (Aven 2008, Waring &

Glendon 1998), quantitative risk is usually represented using expected probability

(or value) given by the summation of the products of probabilities of the scenarios

and their quantified consequences. However, this approach does not take account

of the risk attitude of a respective stakeholder. This missing dimension may have

significant impact on risk analysis of a target domain with multiple stakeholders. For

example, a company may have a number of shareholders with various interests in

the company. Consequences due the operation of the company will have different

meaning and impacts for individual shareholders. Therefore, different stakeholders
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may have different risk attitudes towards the operational and strategic outcomes

of the company. My risk analysis and the measure for risk should reflect this risk

attitude. To this end, I adopt expected utility for quantifying risk.

2.5.2.1 Expected Utility

An Expected Utility(EU) (Savage 1954) is commonly used in finance8 to provide a

quantitative expression of the uncertain prospect of rewards and an investor’s attitude

towards the ‘risks’ of such rewards (Tapiero 2004). It can be expressed in a general

form as follows:

EU =
n∑
j=1

Pju(cj) (2.3)

where Pj is the subjective probability of an event j, cj is the consequence of event j,

u is the utility function and n is number of possible events. In this thesis, I use the

simple lottery form of the expected utility which considers only one event with two

possible outcomes, i.e. the event occurs and the event does not occur. Consequently,

a simplified version of Equation 2.3 can be given as:

EU = Pu(c1) + (1− P )u(c2), (2.4)

where we have two possible quantitative consequences c1 and c2. The use of this

simple lottery form greatly simplifies the risk metric system. More importantly, it

is a reasonable simplification since complex events of more than two event outcomes

(compound lottery form) can be reduced into this simple form by combining the

probabilities of event outcomes (Fishburn 1970). In other words, a simple lottery

model can be used to model arbitrarily complex compound lottery models.

2.5.2.2 Probability-EU Space

When we render expected utility to null, i.e. EU = 0, it means that an agent (as a

stakeholder) is indifferent towards either results of the event. In other words, neither

8More generally, EU is used in decision making under uncertainty.
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Figure 2.2: Probability-EU space and Probability-Consequence space.

results pose as a ‘risk’ towards the agent. Therefore, we have a point that effectively

represents a ‘zero’ risk point. It connects probability of an event and its utility

function. We can construct a two-dimensional Probability-EU space (Figure 2.2) in

which we place risk data point R. The “distance vector” from the origin to R provides

an effective measure of risk for a stakeholder. We can therefore make comparison of

various risks. Furthermore, with the addition of a third axis stakeholder, it is possible

to study the perceived impact of the same risk for different stakeholders. We define
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an effective risk measure ER2 as following:

ER2 = sin(2 · atan(EU/P )) · (EU2 + P 2), (2.5)

where sin(2 · atan(EU/P )) is a normalisation factor based on the distance vector

angle with respect to EU axis. This factor ensure the effective risk measure goes to

zero when we approach either P or EU axis. Since we can rearrange equation 2.4 as

following:

EU = K · P + u(c2) (2.6)

where K = u(c1) − u(c2), we can now calculate ER2 with known probability P and

utility function u:

ER2 = sin(2 · atan(K + u(c2)/P )) · ((K · P + u(c2))
2 + P 2). (2.7)

Relationship between Probability, Consequence and EU

If the utility function is known and one of the consequences (say c2) is also known

and fixed (i.e. the expected result inline with the objective), we can work out c1

from the probability P and EU . That is, we can map an EU value into a conse-

quence value with the utility function. This means, we can essentially use the utility

function as a translation function to convert the Probability-EU (P-EU) space into

Probability-Consequence (P-C) space (Figure 2.2) which has been used in traditional

risk assessment (Aven 2008). To ensure the validity of Equation 2.6, the following

constraints have to be applied to the equation:

u(c2)− u(c1) �= 0. (2.8)

This means we have to assume the utility for different consequences must be different.

An interesting observation from this translation from P-EU space to P-C space is that

zero consequence does not (necessarily) translate to zero EU value. This means it

is possible to model a situation in which an agent does not satisfy with the neutral

result of an event (i.e. consider the effort is ineffective); or a situation in which the

negative consequence of an event may not be a bad thing for an agent. For example,
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a badly damaged car from a fire may mean an insurance company has to replace it

with a brand new vehicle for the owner who holds an insurance policy, i.e. a beneficial

outcome for the car owner; at the same time it also means the insurance company

will suffer some financial losses.

2.5.3 Application of the Risk Measure

The Probability-EU/Probability-Consequence space and the corresponding risk mea-

sure provide a simple system for evaluating risks for many problem domains. In order

to apply this risk measure to a specific domain, we need to first define the semantics

of consequence for the domain and ensure the corresponding consequences are quan-

tified (see Section 2.4.2). We would also need an effective utility function to calibrate

the Probability-Consequence space. Both tasks are non-trivial and require detailed

study and analysis of the domain. Interestingly, some domains such as in finance,

have already developed their own risk measure, namely Value at Risk (V aR). I will

demonstrate that V aR fits reasonably well within the Probability-EU/Probability-

Consequence space settings.

2.5.3.1 Value at Risk

The concept of Value at Risk (RiskMetrics 1996) is widely used in the financial

industry as a way of measuring risk. VaR is defined as loss of market value, over a

time period of T , that exceeds probability of 1 − PV aR. It is a product of the total

investment and probability of (predefined) maximum tolerable loss (PV aR).

V aR = Itotal ∗ PV aR (2.9)

where Itotal is the total investment.

V aR is applied to various types of financial risks such as interest-rate risk, price
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risk of titles, credit risk and exchange risk. VaR is most notably used in the calcu-

lation of capital reserve in commercial banks. For example, in foreign exchanges, a

commercial bank has a position of one million Australian dollars. With volatility in

AUS/USD exchange rate, if probability of 5% depreciation in Australian dollar (over

a day) is 3.4%. Then, as a result, the V aR is

V aRAUS = 1000000AUS ∗ 0.034 = 34000AUS.

We can directly cast VaR as the risk measure R into the Probability-Consequence

space with associated probability as PV aR on the probability axis (Figure 2.3). From

equation 2.9, we can deduce following with the consequence axis, denoted as X,

quantified in dollar.:

V aR2 = I2total ∗ P 2
V aR = P 2

V aR +X2

X2 = I2total ∗ P 2
V aR − P 2

V aR

X2 = (I2total − 1) ∗ P 2
V aR

since I2total 
 1

X2 � I2total ∗ P 2
V aR

X � V aR (2.10)

Equation 2.10 shows that with total investment Itotal much greater than 1, V aR is

asymptotically aligned with the consequence axis. This is consistent with that both

risk and consequences in the finance industry is measured by monetary values. V aR

can be used to act as a risk constraint in terms of risk management. With known total

investment and maximum tolerated loss, i.e. VaR, we can determine the constraints

we need to place on the probability of loss of investment. If the probability of such a

loss is greater, we might reject the investment.
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Figure 2.3: VaR in Probability-Consequence space.

2.6 Summary

Risk as a general notion is part of everyday discussion. Analysing, assessing and man-

aging risks is an integral part of decision making process in many domains. However,

the definition of risk varies from domain to domain even though the common theme

remains the same. The objective of this chapter is to develop a formal conceptuali-

sation of risk from the perspective of an intelligent agent. This work provides a solid

foundation upon which a generalised risk modelling and management framework can

be developed for intelligent agents. I surveyed the existing risk definitions from a

range of practical problem domains and analysed the essential elements within the

notion of risk, namely uncertainty and consequence. Based on these two general con-

cepts, I presented a top-level definition of risk tailored for intelligent agents. However,

in order to adopt this generalised risk definition for agents operating in specific fields,

I need to formalise the concept of uncertainty and consequence and concrete forms of

representation for both concepts and, thereof, risk.

I provided a formal interpretation of uncertainty based on the Possible Worlds

paradigm. I represent uncertainty qualitatively in a preorder structure of possible

worlds and represent quantitative uncertainty with probability. I highlighted that
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probability is one of many forms of representation for uncertainty. Mainstream risk

management literature distinguishes the difference between uncertainty and proba-

bility. However, they do not provide any alternative representations for uncertainty

apart from probability. In fact, probability (bands) is continually being used in risk

matrices as the representation for qualitative uncertainty. I interpreted the concept

of consequence as deviations from the objectives of an agent. The interpretation is

inline with the similar interpretation found in ISO 31000. Consequence can be rep-

resented qualitatively through a comparative preference order of all possible scenario

with agent’s objective as the referential element; quantitatively using the numerical

distances between the objective and the scenarios.

In order to accurately represent risks in agents, I provided a modified version

of risk matrix using preorder structure of possible worlds which eliminates the ad

hoc-ness in conventional risk matrices. Furthermore, my modified risk matrix have

domain models and associated scenarios directly presented in the table so that we

have results from risk analysis captured in one visual representation. This gives us a

full picture of the current domain knowledge in relation to risk. On the quantitative

side, I presented an alternative measure for risk based on expected utility. Unlike

traditional risk measures with expected value (probability), my risk measure takes

account of the risk attitudes of stakeholders using utility functions. This enables us

to accurately represent risk with respect to individual stakeholders. Even though EU

has been utilised in risk evaluation (Charette 1989, Tapiero 2004, Garvey 2008), my

approach differs from the conventional decision theory approach used previously. I

construct a more intuitive risk measure from a Probability-Expected Utility (P-EU)

space that references on null EU value. The construction of P-EU space does not rely

on any particular type of utility function. P-EU space can be easily translated into

Probability-Consequence (P-C) space which is commonly used to represent expected

value for risk. This translation depends on the utility function of stakeholders which

could be challenging task to model. Finally, I showed the risk measure developed

in the financial industry, namely Value at Risk (VaR) is consistent with P-EU/P-C
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space setting.

In summary, I have analysed and constructed a general definition of risk from

fundamental concepts. I have taken a holistic view of risk on both qualitative and

quantitative levels. My risk definition is based upon the well understood theories

of possible worlds and expected utility that have numerous applications in logic and

decision theories. This formal conceptualisation of risk forms the basis of HiRMA

framework. Furthermore, the qualitative risk representation and numeric risk measure

developed in this chapter can be utilised in assessing risks.



Chapter 3

Requirements for a Generalised
Risk Management Framework

From the conceptual analysis of risk in Chapter 2, the concept of risk and its as-

sociated notions are highly dependent on task domain, its environment and agents’

objectives in question. This is the main reason that risk cannot be modelled and

represented accurately and precisely without a detailed analysis of the domain and

its context from the perspective of the key stakeholder, i.e. agent. Therefore, I need

to analyse and model the task domain and agent’s objectives systematically through

a stepwise knowledge engineering process, in order to assess and manage risks. We

cannot discuss and develop a risk management framework for intelligent agents with-

out concrete examples. In this chapter, I will first present two benchmark problems

from two disparate fields: autonomous mobile robot soccer player and managing for-

eign (currency) exchange (FX) in small-medium companies. They will be used to

discuss some common characteristics found in many real-world domain environments

and the challenges they bring with respect to risk modelling and management. I will

set out a number of key requirements for the generalised risk management framework

to address the challenging issues raised from the discussion so that the framework

can be applied to a wide range of domains. I will evaluate some of the most common

risk management methodologies in mainstream literature against these requirements

and demonstrate the need for a new solution.

30
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3.1 Benchmark Problems for Risk Modelling

3.1.1 Benchmark Problem 1 - Ball Passing Problem

Figure 3.1: Ball passing between robots

For many years, RoboCup1 has been one of driving forces advancing and appli-

cation of theoretical ideas in AI to real world problems and has successfully pushed

the boundaries of the research field (Kitano 1998, Takahashi, Edazawa, Noma &

Asada 2006, Seekircher, Laue & Röfer 2011). Robots are decision making agents

and must respond to changes in a fast moving game environment. Uncertainty is

high with each event during a game. There are many challenges with complex conse-

quences. One of key challenges in robot soccer matches is ball passing between two

robot team mates (Figure 3.1). There is still little deliberate ball passing between

robots after many years of competition. The few successful ball passing events that

occurred in competitions were usually unintentional coincidences. The ball passing

1www.robocup.org
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problem, despite its small scope, presents a rich scenario which enables the explo-

ration and analysis of various risk factors and events involved in passing a ball from

one robot to another in a game situation; the development of risk models of increas-

ing sophistication to handle more aspects of the problem. The Ball Passing Problem

is an excellent benchmark problem because it is a challenging real world problem

where empirical data and results can be collected and the performance of sophis-

ticated risk modelling methods can be examined, compared, tested, and evaluated.

I give a more detailed description for the Ball Passing Problem in the following section

Problem Description

A standard match of RoboCup standard league consists of two opposing teams each

with four NAO2 robots. During the game play, a NAO robot Ra from the red team

is in control of the soccer ball and it has an opportunity to pass the ball to one of

its team members Rb. There is some distance between robot Ra and Rb. Ra can

only kick the ball to a certain distance. A NAO from the opposing team is closing

in to intercept the soccer ball. Ra can either pass the ball to Rb or take no such an

action. If Ra decides to pass the ball to Rb, we may have Rb takes the possession of

the ball; ball may be intercepted or the ball simply does not reach Rb. Many factors

could affect the result of passing the ball. All robots on the field must follow the rules

stipulated in the RoboCup Standard Platform Rule Book (2011).

3.1.2 Benchmark Problem 2 - Foreign Exchange (FX)

The Australian dollar is one of the most traded currencies on the open foreign ex-

change market. It is also one of the most volatile currencies in the market. It is cru-

cial for many companies in the business of importing/exporting goods in Australia to

manage their foreign exchange exposures carefully in order to avert/minimise possible

loss due to fluctuations in the exchange rate (Abbott 2009). However, a domain such

2NAO is the standard robot platform used in the current RoboCup standard platform league.
Check www.aldebaran-robotics.com for details.
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as the foreign exchange market is extremely complex and dynamic. There are many

macroeconomic and microeconomic factors influencing the Australian dollar exchange

rate. Therefore, modelling and managing the risks is difficult task. For our purpose,

I consider a simple risk modelling scenario from the perspective of a medium size

importer of electronic goods.

Problem Description

A medium size importer of electronic goods wants to minimise its risk exposure due

to fluctuations in foreign exchange markets. The objective is to maintain a neutral

FX position and no significant financial loss due to changes in Australia-US dollar ex-

change ratio. The importer regularly orders large batches of electronic goods directly

from manufactures located overseas. Orders normally take one to two months to be

fulfilled and shipment of goods takes two weeks. The importer has options to make

payment in full at the beginning or in several instalments during the entire business

transactions. In order to keep a neutral FX position, the importer has the options of

currency hedging; maintain a large foreign currency reserve; or do nothing. Financial

gain or loss may occur due to fluctuations of Australia dollar during the business

transactions period.

3.2 Framework Requirements

The two benchmark problems described in the previous section highlight some of

the major practical issues that my risk modelling and management framework must

address; the framework must be able to accurately capture and model the relevant

knowledge (in relation to risk) of a problem domain in a real-world environment. Re-

call that the goal of this research is to adapt, extend and integrate well established AI

theories and techniques used in modelling uncertainty as a means to enable intelligent

agents to reach effective and optimal decisions that take account of domain risks.

Before I can embark on the development of the framework, I need to identify and
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analyse some aspects of the intrinsic nature of real-world domains and environments

to which my framework will be applied. A closer look at the benchmark problems

allows us to observe three critical and challenging features present in these practical

domain environments:

• Complexity: Many risk factors (or variables) are involved and interrelated in

the task domain. Some variables are quantitative in nature; whereas other vari-

ables are qualitative and cannot be quantified appropriately. In the relatively

simple robot soccer match domain environment, we have quantitative variables

such as kicking distance between the robots and kicking power of a robot; other

variables such as the ability of ball interception of opposing robot team are dif-

ficult to measure and quantify3; whereas impacts of some of the soccer match

rules are purely qualitative. For example, the illegal defender rule (rule 4.13)

in RoboCup Standard Platform Rules Book (2011).

• Openness: In practice, we may not know all of the possible variables involved

in the domain, and we may not have sufficient information in relation to known

variables. With regard to foreign exchange, there are many hidden variables in

global currency exchange markets that are unknown to a large number of market

participants (Lyons 2001). For a small-medium sized enterprise trading goods

internationally, it has much less information and historical data of exchange

rates in comparison to large financial institutions that specialise in currency

trading. This means that we cannot assume we have a complete information

about the domain when we develop the risk model for any real world application.

• Dynamics: The domain environments evolve and change over time. Relation-

ships between variables may evolve and the number of relevant variables in the

domain may also change. Information available often changes and new informa-

tion may contradict previous background knowledge. In the FX, the Australia

3Some readers may argue this variable might be measured and learned by repeatedly play matches
with the opponent. In reality, such opportunities are very rare. In addition the opponent is not
static either and its capabilities are constantly evolving and changing.



35

dollar is traditionally “tied” to resource exports and global economic outlook.

The global economic environment is constantly evolving. Ten years ago, eco-

nomic fortunes in China had little influence on the Australia dollar. In contrast,

nowadays, current heavy investments in infrastructure in China have significant

influence on the Australian exchange rate, due to the significant increases in

commodity exports to China. Clearly, any risk models built ten years earlier

need to be revised in accordance with the evolving environment.

A practical framework for risk analysis, knowledge capture and risk modelling

must carefully address the challenges of complexity, openness and environmental

dynamics. Therefore, I identify the following key design requirements for my risk

management framework in correspondence to these challenges

1. The framework should provide a standard methodology for analysing and mod-

elling knowledge in relation to risk for disparate domains from the perspective

of an intelligent agent. This is the overarching requirement for the framework.

More specifically,

2. The framework should make no specific assumption that complete knowledge

is available for the task domain modelling; i.e. it is based on an “Open World

Assumption”4.

3. The framework should support intelligent agents that are able to continuously

acquire and incorporate new domain knowledge over time.

4. The framework should handle both quantitative and qualitative domain knowl-

edge.

5. The framework should capture causal relationships among the domain vari-

ables to ensure the stability of the risk model. The causally connected risk

4Open World Assumption is the assumption that the truth value of a statement is not known. It
represents a notion that no single agent has the complete knowledge of a domain.
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model generated from the framework can support the development of appro-

priate treatments to influence the desirable and undesirable variables in the

system.

6. The framework should accommodate frequent update and revision of the exist-

ing knowledge base in order to reflect changes in the domain environment. In

particular, the framework should capture the evolution of the causal structures

of domain risk models as opposed to the changing (operational) states of the

models.

3.3 Existing Risk Management Methodologies

Risk analysis and management has been actively studied for decades. In this section, I

take a quick survey of several predominant methodologies that have been widely used

in many fields. I summarise their features and evaluate them against the framework

requirements discussed in the previous section.

3.3.1 Fault Tree Analysis (FTA)

Fault Tree Analysis (FTA) was first developed to analyse the reliability of control

systems (Watson 1961). The method essentially translates a physical system into a

structured logic diagram that consists of causes and one top event of interest con-

nected largely with AND and OR logic gates. The top events of interest are undesired

system states that resulted from some sub-system functional faults (event). They are

usually generated from a preliminary hazard analysis as the first step in the Fault

Tree Analysis. A functional layout of entire physical system is also produced in order

to show all functioning components in the system and their interconnections. This

forms the basis for fault tree construction. Furthermore, system boundary conditions

are defined to specify what situation the fault tree is generated. Figure 3.2 shows a

typical fault tree with a corresponding physical system layout.
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Figure 3.2: An example of a fault tree (Stephans 2005).

Fault tree construction is manual and laborious. There are numerous software

tools available to assist the construction task (Lee, Grosh, Tillman & Lie 1985). Fault

trees can be evaluated both qualitatively and quantitatively. Qualitative evaluation

is based on expansion or reduction of the top event of a fault tree through boolean

algebra to determine the minimal path sets and the common cause failures. Quanti-

tative evaluation of fault trees extends the qualitative evaluation method and relies

on the rate of occurrence, fault duration of all basic events and statistical dependency

of basic events in order to determine the probability of the top event.

Fault tree analysis is a classic top down system failure analysis technique. The

system must be fully analysed and modelled for proper fault tree construction. It

is well suited for static systems that do not change over time. FTA cannot handle

open-ended systems that require continuous modifications and extensions. Although
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FTA (with extensions) can be used for quantitative evaluation, the technique is inher-

ently qualitative and uses boolean algebra for its basic deductive operations, unlike

formal probabilistic models rely on conditional probability and Bayesian Theorem.

Therefore, FTA only partially meets the framework requirements.

3.3.2 Event Tree Analysis (ETA)

Figure 3.3: An example of an event tree (Andrews & Dunnett 2000).

Event Tree Analysis (ETA) is a bottom up deductive system analysis technique.

ETA has a tree structure (Figure 3.3) similar to fault tree without binary logic gates.

An event tree does not require a top event of interest as in FTA. From an initial

event, an ETA (binary) branches out based on decisions or actions to trace out every

permutation of the entire system operations. Each path from the initial event will

end with a success or failure state. One of key advantages of ETA is that no single

end event must be identified at the beginning of the analysis unlike FTA. However,

every operational path of the system must be obtained through the analysis. ETA

complements the FTA method in analysing and modelling static systems in which

full knowledge can be obtained.
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3.3.3 Failure Mode and Effects Analysis (FMEA)

Failure Mode and Effects Analysis (FMEA) is a simple inductive system analysis

method to reveal possible failures in a system and provide prediction on the effects of

the failures on the entire system. Similar to FTA and ETA, FMEA requires systematic

analysis of components of a system, examining the criticality of their failures on the

system. FMEA technique takes a tabular form as shown in Figure 3.4. It lists all the

components in the system and describes the function of each component. The table

identifies all possible ways that a component may fail and its effects on the other

units within the system and the system itself.

Figure 3.4: An example of a FMEA table (Aven 2008).

The key advantage of FMEA is its simplicity. There is no additional graphical

notation and operator. The tabular format provides a summary of an entire system.

However, FMEA focuses only on system failure modes and does not model other

undesired events. FMEA does not scale well with complex systems with large numbers
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of components and subunits5. FMEA also suffers the same limitation suitable for

static and closed systems.

3.3.4 Probabilistic Models

The probabilistic (Bayesian) model has become a popular tool for risk modelling and

management in recent years (Singpurwalla 2006, Kelly & Smith 2011). Unlike the

previous methods that were born out of system analysis, probabilistic risk modelling

was derived from the (conditional) probability theory. The method is best suited for

quantitative risk analysis and modelling. Probabilistic models can also incorporate

additional knowledge after their initial model construction. There are well developed

techniques for model refinement so that risk models can be continuously improved

based on new information. However, probabilistic models do not perform well for

open systems for which there is no sufficient knowledge available for modelling. I will

give a more in-depth analysis of this method in Section 4.4.3.

Figure 3.5: An example of a Hierarchical Holographic Model (Liu & Jiang 2012).

5For these systems, FTA gives a better modelling solution with its graphical representation.
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3.3.5 Hierarchical Holographic Models

The Hierarchical Holographic Model (HHM) (Haimes 1981) was designed for system

analysis and modelling for large scale complex systems. The method decomposes

a system into multilayered sub models that connect together through overlapping

objectives, constraints and input-output systems. HHM provides a holistic view of the

modelled system and address different aspects of the system via separate sub models.

Each sub model can be either qualitative or quantitative. HHM also provides a natural

correspondence with complex systems hierarchical objectives and sub objectives. Due

to its complexity, HHM has only been adopted in a few systems with multi-facet sub

systems (Boudreau, Davis, Delery, Korbich, Lambert, Vogel, Tawney & Bennett 2005,

Blais, Henry, Lilley, Pan, Grimes & Haimes 2009) and there is no technique in dealing

with open systems.

3.3.6 Dealing with Uncertainty under Partial Ignorance

In recent years, risk analysis practitioners are increasingly aware that quantitative

risk analysis cannot fully rely on (single) probability in dealing with uncertainty

(Guyonnet, Come, Perrochet & Parriaux 1999, Helton, Johnson & Oberkampf 2004,

Colyvan 2008). Uncertainty can also arise from the incomplete knowledge acquired

from domain experts due to their partial ignorances. Dubois et al. (2010, 2011) gave

a comprehensive account of how to represent and propagate uncertain information

more accurately using various techniques such as fuzzy interval and upper and lower

bound probabilities. This helps to improve the accuracy of an existing risk model

in dealing with uncertain inputs. However, the construction of the risk model itself

may be derived from the incomplete knowledge of experts. There is no well known

techniques in dealing with uncertain information for risk model construction.
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Methodology

Feature Requirements
Continuous Iterative Qualitative Causally

Openness Knowledge Model + Stable
Inputs Revision Quantitative Model

Fault Tree
√
*

√

Event Tree
√
*

√

FMEA
√
*

√

Probabilistic
√ √ √

HHM
√ √

Note:
FMEA - Failure Mode and Effects Analysis.
HHM - Hierarchical Holographic Model.√
* - Only supports these features through extensions.

Table 3.1: A feature comparison of the existing risk management methodologies.

3.3.7 A Comparison with the Framework Requirements

Most of above described techniques for risk analysis and management were developed

from system analysis. They are designed for closed and static systems, i.e. all at-

tributes of the system are known, and do not change over time. All above methods

supports both qualitative and quantitative analysis and evaluation. However, apart

from probabilistic model and HHM, the rest are qualitative in nature, i.e. they were

not initially designed for quantitative evaluation and were not based on a formal the-

ory of probability. Hierarchical Holographic Model is the only (hybrid) method that

can build system models with both qualitative and quantitative sub models. How-

ever, its complexity causes to few adoptions in real-world environments. Finally, apart

from probabilistic models, all existing techniques do not have built-in mechanisms to

handle model revisions upon domain changes. They do not rely on knowledge man-

agement techniques (developed in AI) that can be easily implemented in software

agents. There is also no formalised and theoretically sound transformation mecha-

nism to convert a qualitative model to a quantitative model, and vice versa. Table
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3.1 gives a summary of surveyed risk techniques with respect to the framework re-

quirements stated in Section 3.2. I conclude this chapter with a view that no mature

risk management technique currently available fully satisfies with the requirements.

A new generalised risk management solution for intelligent agents is required.



Chapter 4

Knowledge Representations and
Management in Complex and
Uncertain Environments

The central theme of this thesis is the application of existing AI theoretical works in

the areas of knowledge representation and management for risk management in in-

telligent agents operating in complex and uncertain environments. In this chapter, I

will review a number of prominent and mature knowledge modelling and uncertainty

management techniques. I will review the key features of these techniques and discuss

their merits and shortcomings with respect with the key framework requirements dis-

cussed in the previous chapter. Most of the techniques discussed in details here will be

incorporated into my final risk management framework for intelligent agent. There-

fore, the literature review presented this chapter also serves as a reference material

that provides sufficient theoretical background knowledge for system developers who

implement the risk modelling and management framework in software. For readers

who understand these techniques, it is safe to bypass the main descriptive parts of the

chapter content and jump straight to the final discussion section of each technique

labelled with ‘*’.

One of the critical requirements for modelling risk is the ability to capture and

represent relevant domain knowledge in relation to the risk. Without the appropriate

representation for the existing knowledge about risk, we have no basis for automated

44
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reasoning and management of risks. In the first section, I provide a brief review of

classical logics, specifically first and second order logic, that have long been used

to accurately represent static information and knowledge through sets of predefined

systems since the beginning of AI. However these techniques do not work well when we

have an incomplete picture of the domain in question; and give rise to the classical

frame problem (McCarthy & Hayes 1969) in a changed domain environment due

to an action. A number of solutions to these problems are offered by the class of

so-called non-monotonic logics. Non-monotonic logics are constructs, based on the

classical logics, that can support non-montonic reasoning. That is, they can provide

tentative logical conclusions based on existing knowledge. However, the conclusions

may be withdrawn or changed in light of new information. I review the classical

default logic, autoepistemic logic and circumscription in the second section. These

techniques all suffer from a common problem that of high computational complexity,

particularly in face of changing domain knowledge that requires updates in defaults,

or expansion/extension1; and in determining whether a formula is true in all minimal

models in circumscription.

In the third section, I discuss an alternative class of non-monotonic formalism,

Belief Revision(BR) under the so-called AGM postulates. It provides a logic based

mechanism for integrating new information with the existing domain knowledge while

maintaining the overall consistency of the knowledge base. AGM based BR provides

a better solution in terms of incorporating inconsistent qualitative domain knowl-

edge under an open world environment in comparison with the previously discussed

methods. Furthermore, AGM based BR can be subsumed under qualitative part of

possibility theory discussed in Section 4.6. I utilise this method for qualitative risk

modelling due to its intuitiveness and simplicity.

All above methods are not designed to capture and model quantitative uncertainty.

I give a detailed discussion on several prominent techniques such as Bayesian-based

1This happens when newly required information is in conflict with the existing domain knowledge.
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probabilistic model and Transferable Belief Model developed for modelling and man-

aging numerical uncertainty in Section 4.4, 4.5 and 4.5.11. These techniques will

play an important role in the quantitative risk modelling portion of the HiRMA

framework. Finally, the possibility theory discussed in Section 4.6 provides an ele-

gant theoretical framework that can manage uncertainty with both qualitative and

quantitative knowledge. Even though the HiRMA framework does not use possibility

theory explicitly, the theory provides the crucial underlying support for HiRMA.

At the end of this chapter, I review two disparate approaches in capture causal

inference knowledge from subjective opinions of domain experts and from available

statistical domain knowledge. The first approach uses a logic based reasoning test to

capture experts’ belief in the causal inference relations within a domain; whereas, the

second approach distills the factual causal inference information of a domain based

on the structural analysis of a statistical Bayesian network of the domain. Both

approaches play a critical role in the construction of stable causally connected risk

models in Chapter 6 and 7.

4.1 Classical Logic

Classical logic in AI is a formalism for declarative representation of knowledge to-

gether with sound and complete deductive reasoning mechanisms2. The most pop-

ular form of classical logic is first order logic. It uses the language of first order

predicate formulas to represent knowledge. An important subset of first order logic

is the so-called propositional logic. The key difference between propositional logic

and first order logic is in their expressive power. Propositional logic is strictly less

expressive that first order logic. That is, every sentence that can be expressed in

the propositional language can also be expressed in first order logic, the reverse is

however not true. In addition, propositional logic is decidable: given sufficient time

2In fact, mathematical logicians had developed declarative knowledge formalisms long before the
advent of Artificial Intelligence. However, they are not interested in automated reasoning.
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there is a computational reasoning process will eventually terminate with an answer

of true or false; whereas first order logic is only semi-decidable. There are decidable

fragments in first order logic, e.g. database systems, datalog, some description logics.

The following sections give further details on both propositional and first order logic.

4.1.1 Propositional Logic

The language of propositional logic (or propositional signature) is made of non-empty

set of symbols called atoms. An atom is consist of two basic elements:

• Constant. A constant is a word or numerals (words consisting only of digits).

• Predicate symbol. A predicate symbol is also a word defined as a symbol in the

language.

A set of atoms connected by a number of logical connectives forms a predicate formula.

Predicate formulas are used to represent specific knowledge in propositional logic.

There are three types of logical connectives and each connective has its own semantics.

Specifically, they are:

• 0-place connective: ⊥ (contradiction) and � (tautology).

• Unary connective: ¬ (not).

• Binary connective ∧ (and), ∨ (or), → (implication) and ↔ (equivalence).

Using the Ball Passing Problem as an example, we can use atom SA to express

“robot A is stationary” and “robot B is moving” as ¬SB. Therefore, to represent

the notion that either robot A or B is moving, we can use a predicate formula as

¬SA ∨ ¬SB.

4.1.1.1 Interpretation and Knowledge Base

The language of propositional logic also includes two truth values TRUE and FALSE.

An interpretation of a propositional language is a function that maps atoms into
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x ¬(x)
FALSE TRUE
TRUE FALSE

Table 4.1: Truth-valued function associated with unary connective.

{TRUE, FALSE}. Every propositional connective has a corresponding truth-valued

function associated with it (see Table 4.1 and 4.2). The semantics of a propositional

formula is given by the truth value to which an interpretation maps the formula. It

is noteworthy that propositional logic is a decidable logic system. That is, the logical

validity of any propositional formula can be determined through use of truth-valued

functions.

4.1.1.2 Forms of Propositional Formula

In propositional logic, a propositional formula can take a number of forms depending

on the logical connectives are used. A clause is a formula made of a disjunction of

literals, e.g. ¬SA ∨ ¬SB; a formula is in so-called Conjunctive Normal Form (CNF)

if it is a conjunction of clauses, i.e. clauses connected with ∧ connectives. On the

other hand, a disjunction of conjunctions of atoms is called Disjunctive Normal Form

(DNF). Any arbitrary formula can be converted into a Negation Normal Form (NNF)

which is made of only conjunctions and disjunctions of literals. Formulas in NNF can

then be converted into CNF using logic equivalence relationships such as (A∨(B∧C))
to ((A ∨ B) ∧ (A ∨ C)). The significance of transforming an arbitrary propositional

formula into a clausal form is that we can use automated clausal theorem provers to

logically deduce the formula to TRUE or FALSE, if we have a complete knowledge

base.
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x y ∧(x, y) ∨(x, y) → (x, y) ↔ (x, y)
FALSE FALSE FALSE FALSE TRUE TRUE
FALSE TRUE FALSE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE FALSE FALSE
TRUE TRUE TRUE TRUE TRUE TRUE

Table 4.2: Truth-valued function associated with the binary connectives.

4.1.2 First Order Logic

First order logic extends both the syntax and semantics of propositional logic. It

has a set of symbols (or signature) that are made of function constants and predicate

constants. A non-negative integer called arity is assigned to each symbol such that

a function constant with n arity has n number of arguments; whereas a predicate

constant with n arity represents relations between n elements. As a special case,

0-nary function constants are called object constants and 0-nary predicate constants

are the propositional constant.

Object variables (or variables) in first order logic are elements of fixed infinite se-

quence of symbols. Terms of a first order signature consist of both variables and func-

tional constants. An atomic formula is in the form of predicate constant P (t1, ..., tn)

of arity n where each ti is a term of first order signature. A first order formula is

formed from a number of atomic formulas connected by a number of propositional

connectives.

For example, we can express such a statement that the “distance between two

teammates robot A and robot B is 20 centimetres and there is an opposition robot C

near robot A” as the following formula:

Distance(RobotA,RobotB, 20) ∧ Team(RobotA,RobotB) ∧
Nearby(RobotA,RobotC) ∧ ¬Team(RobotA,RobotC)

where RobotA, RobotB and RobotC are constant symbols representing robot A, B and

C respectively; Team, Distance and Nearby are all predicate constants. Together
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with the ∧ binary connective, we have a formula that maps to TRUE under (current)

interpretation.

Finally, first order logic introduces two quantifiers ∀ (for all), ∃ (exists) which

are used to qualify formulas. The key difference between propositional logic and first

order logic is that both function and predicate constants in first order logic can take

a greater than zero number of arguments. Combined with ∀ and ∃ quantifiers, first

order logic has greater expressive power than propositional logic. It provides simple

representation of knowledge applicable for an arbitrary set of object instances whereas

propositional logic can only handle individual objects effectively. However, first order

logic is not a decidable logic system in general. We cannot easily determine the logical

validity of individual formula independently.

4.1.3 Second Order Logic

Compared with first order logic, the main feature of second-order logic is its signature

which consists of function variables and predicate variables instead of function and

predicate constants. That is, we assume an infinite set of function variables of arity

n for each n > 0 and an infinite set of predicate variables of arity n for each n ≥ 0.

Function variables can form terms with object variables in the same way as function

constants. Similarly, predicate variables can form atomic formula in the same way as

predicate constants. Both ∀ and ∃ quantifiers can be applied to function variables

and predicate variables in addition to object variables. Therefore, second-order logic

has a much richer syntax and more expressive power. For example, we can express

possible composition of any two functions but the following sentence which is not

possible under a first order language.

∀αβ∃γ∀x(γ(x) = α(β(x)))

Because of this richness in its expressive power, second-order logic has many appli-

cations such as defining transitive closure(Lifschitz, Morgenstern & Plaisted 2008, p.
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17)3. For our interest, in particular, second-order logic is used in the definition of

circumscription, one of the prominent non-monotonic logics. However, the expres-

sive power of second-order logic also leads to highly complex theorem provers4 that

typically require human guidance for effective usage e.g. the HOL prover (Gordon

& Melham 1993). From a practical view of modelling and reasoning about risk, the

language of second-order logic does not provide significant benefits and is computa-

tionally unattractive.

4.2 Non-Classical Logic

The usefulness of classical logic is severely limited by its monotonic nature. The logical

consequences reached by classical logic reasoning cannot be invalidated or revised by

new information. An agent uses classical logic can only add new information that

is consistent with the existing knowledge into its knowledge base. As its knowledge

base grows, more conclusions can be drawn. However, no new conclusions can ever

contradict old conclusions, so the body of true facts simply grows monotonically.

This kind of reasoning can be used to model information safely only in a closed

static world. However, the real world is neither closed nor static. An intelligent

agent typically possesses incomplete information about real-world environments, and

often new information is discovered to be in contradiction with existing information.

Furthermore, things used to be true can become false as the environment evolves. For

example, in the Ball Passing Problem, robot Amay reach a conclusion that it is safe to

pass the soccer ball to its closest neighbour robot B based on the its current knowledge

that robot B is its teammate. However, as the game dynamic quickly changes, an

opposing robot C may come in to challenge for ball possession, in which case it is

no longer be safe to pass the ball to robot B. Hence, the conclusion an intelligent

agent, in this case robot A, previously reached may be incompatible/inconsistent with

3There is even proposal to formalise mathematics using second-order logic (Väänänen 2001).
4In addition, the deductive systems for second-order logic lack completeness.
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incoming new information. Agents must be able to revise and update their knowledge

base consistently. Several classes of non-monotonic logic reasoning were developed to

address this limitation in the classic logic.

4.2.1 Default Logic

The representative formalism of Default Logic was developed by Reiter (1980) based

on rules like if A is true, and B is consistent with the knowledge base then deduce

C. In contrast, propositional logic can only express if A is true, then C is true.

Default logic formalises the intuition that we should be able to deduce new conclusions

not on the basis of hard evidence, but on the absence of contrary evidence and on

the basis of consistency with what is known. This ability is particularly important

for hypothetical reasoning and in risk management when we have only incomplete

information at hand. It allows an intelligent agent to “jump” to a conclusion based

on its current knowledge.

4.2.1.1 Syntax of Default Logic

In default logic, a default theory T is a pair of (W,D), where W is a set of predicate

logic formulas (i.e. facts or axioms) and a countable set of defaults D = δi, ...δn. A

default δ is in the form of

ϕ : ψ1, ..., ψi
χ

where ϕ is the prerequisite (denoted as pre(δ)), ψ1, ..., ψi are the justifications (or

assumptions denoted as just(δ)), and χ is the consequent of δ (denoted as cons(δ)).

ϕ, ψ and χ are all predicate formulas. We can represent a rule of thumb that “it

is safe to pass a soccer ball to a friendly nearby robot B” in the robot soccer as a

default

Nearby(RobotB) : Friendly(RobotB)

SafePass(RobotB)
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where Nearby(RobotB) is the prerequisite, Friendly(RobotB) is the justification and

SafePass(RobotB) is the consequent.

4.2.1.2 Semantics of Default Logic

An informal interpretation of a default ϕ:ψ1,...,ψi

χ
is that “based on the current knowl-

edge, if ϕ is known and ψ1, ..., ψi are also consistent with the current knowledge, we

can conclude χ”. Given a default theory (W,D), current knowledge is obtained by

applying successive defaults δ in our default set D as long as application of δ does

not lead to inconsistency. The semantics of default logic can be given in terms of

an extension which is defined as the current knowledge satisfying certain conditions.

Formally, we can define an extension E as following (Reiter 1980):

Definition. Given a default theory T = (W,D) and a set of formulas E. Let ΛT (E)

be the least set of formulas that contains W , is closed under logic conclusion and

closed under D with respect to E. E is an extension of T if and only if E = ΛT (E).

This fixed-point definition implies that we can determine E is an extension of

T by using E as the initial belief set and check whether we can obtain exactly the

same E through applications of available defaults. The definition gives us no clue of

how to compute the extension E. We have to guess possible extension E first and

check its validity. This leads to severe limitation of practical applications of default

logic. To resolve this limitation, an alternative operational definition of extension

was developed Antoniou et al. (1994) that gives rise to a process model to calculate

extensions.

4.2.1.3 Operational Semantics of Default Logic

Given a default theory T = (W,D), let Π = (δ0, δ1...) be a finite or infinite sequence

of defaults from D. That is, we apply defaults in the sequence order in Π. For

each sequence Π of a finite length of k, we define two sets of first order formulas,
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In(Π) = Th(W ∪ {cons(δ)|δ occurs in Π}), and Out(Π) = {¬ψ|ψ ∈ just(δ) for some

δ occurring in Π}. In(Π) represents the current knowledge after the defaults in Π

have been applied; and Out(Π) represents the formulas that should not be part of

current knowledge even after subsequent application of other defaults. Π is a process

of T if and only if δk is applicable to In(Π) for every k such that δk is in Π.

For a given process Π of T , Π is successful if and only if In(Π) ∩ Out(Π) = φ.

It fails, otherwise. Π is also closed if and only if every δ ∈ D applicable to In(Π)

already occurs in Π. This conforms to the desired property of an extension E that E

should be closed under application of defaults in D. We now can give an alternative

definition for extension (Antoniou & Sperschneider 1994):

Definition. A set of formula E is an extension of a default theory T if and only if

there exists some closed and successful process Π of T such that E = In(Π).

It has been shown that this definition is equivalent to the fixed-point definition

(Antoniou & Sperschneider 1994). Compared with the original definition, the opera-

tional definition for extension provides a path way to construct extensions mechani-

cally instead of “guessing”. We can search through the In(Π) space and any In(Π)

that is successful and closed is an extension of T .

4.2.1.4 Variations of Extensions

The ability to generate extensions systematically does not guarantee the existence of

an extension for an arbitrary set of defaults. Classic default logic also does not obey

semi-monotonicity, i.e. addition of a new default should yield more information not

less. One way to address these issues is to restrict defaults to be normal defaults, i.e.

their consequent is their own justification. This class of default theories is strictly less

expressive than the classical default theories and sometimes produces counterintuitive

results. It turns out that the the less restrictive semi-normal default theories can give

more reasonable results (Etherington 1987). An alternative approach is to modify the

concept of extension such that at least one extension exists. Several variants of default
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logic have been carefully studied, for example, justified default logic (Lukaszewicz

1988) seeks for maximal successful processes Π as the modified extension of T ; and

constrained default logic (Schaub 1992) enforces joint consistency of justifications of

applied defaults. For further details on these approaches, we point readers to above

referenced materials.

4.2.1.5 *Applicability of Default Logic

Default logic offers an elegant solution for logic based reasoning in domains that we

have only limited knowledge. It addresses the issues raised from exceptions of rules

in static and closed worlds through use of defaults5. In default logic, the knowledge

base of a domain is captured as sets of known facts and defaults and is represented

in the form of extensions. When new domain information is acquired in the form

of facts, any existing default that is in conflict with the new information will have

to be retracted, and consequently, extensions of the default theory will have to be

recomputed. Addition of new defaults will also trigger similar re-computation of ex-

tensions. This means, every revision of domain knowledge base will incur a heavy cost

of extension calculation. Furthermore, default logic works on justified (or grounded)

knowledge and does not have a concept of belief. It is not clear how one may encode

uncertainty related information into a default logic based knowledge base. Therefore,

default logic does not seem to be ideal candidate for capturing and representing risk

related knowledge for the target domains that face frequent knowledge revision with

(potentially conflicting) information in open world environments, where knowledge

may be incomplete and uncertain.

4.2.2 Autoepistemic Logic

Autoepistemic logic (Moore 1985) is another prominent non-monotonic reasoning

formalism. It extends the language of first order logic by introducing a modal operator

5In fact, the Closed World Assumption was introduced by Reiter (1980) and can be expressed as
a default true:¬ϕ

¬ϕ .
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K. This K operator (and its negation) may be applied (repeatedly) to a first order

formula6, i.e. a sentence, such that Kϕ means “I know ϕ (or I believe in ϕ)7”. Apply

a negation of the operator K to a sentence, e.g. ¬Kϕ, means “I do not know ϕ”.

Therefore, the language of autoepistemic logic consists of

• Every closed first order formula (i.e. sentences).

• Kϕ, if ϕ is an autoepistemic formula.

• ¬ϕ,(ϕ ∨ ψ), (ϕ ∧ ψ) and (ϕ→ ψ), if both ϕ and ψ are autoepistemic formulas.

4.2.2.1 Semantics of Autoepistemic Logic

Autoepistemic logic is based on the notion of belief and introspection of a rational

agent. One of the key concepts in the logic is stability. That is,

• If ϕ ∈ E, then Kϕ ∈ E.

• If ϕ /∈ E, then Kϕ /∈ E.

This means if ϕ is in my knowledge (E) then I know ϕ; if ϕ is not in my knowledge

(E) then I do not know ϕ. Formally, the semantics of autoepistemic logic is given by

expansion which is defined as a fixed-point function.

Definition. (Moore 1985) Let T be an autoepistemic theory, a closed set of autoepis-

temic formulas E is an expansion of T if E satisfy the following equality:

Cn(T ∪ {Kϕ|ϕ ∈ E} ∪ {¬Kϕ|ϕ /∈ E}) = E,

where Cn is a consequence operator that collects all logical consequences of the

enclosed formula. An expansion represents a “world view (or belief)” a rational agent

holds according to its own beliefs (and knowledge).

6K cannot be applied to a formula with free variables, i.e. the formula must be quantified.
7We use know and believe interchangeably.
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4.2.2.2 Computation of Expansions

Similar to default logic extension, the fixed-point definition of expansion does not

provide a constructive method of finding expansions. An alternative method was

developed to compute expansions. First we need to introduce few syntactic concepts.

The degree of an autoepistemic formula ϕ, denoted as degree(ϕ), is the maximum

depth of K nesting. For example, degree(K¬Kϕ) = 2. A first order formula has

degree of 0. The kernel of autoepistemic theory T is the set of all first order formulas

that are members of T , i.e. T0.

Definition. (Antoniou & Sperschneider 1993) For an autoepistemic theory T , sub(T )

is the union of sub(ϕ), for all ϕ ∈ T , where sub(ϕ) is defined as:

• sub(ϕ) = ∅ for first order formula ϕ.

• sub(¬ϕ) = sub(ϕ).

• sub(ϕ ∨ ψ) = sub(ϕ ∧ ψ) = sub(ϕ→ ψ) = sub(ϕ) ∪ sub(ψ).

• sub(Kϕ) = ϕ.

It has been shown that it is sufficient to consider belief or non-belief in formulas

in sub(T ) to determine the expansions of T , and we can devise a computational

procedure to determine the expansions for T (Antoniou & Sperschneider 1993):

Expansion := ∅. AE0 is a set of kernel autoepistemic formulas.

Partition sub(T ) into a partition of beliefs E(+) and a partition of non-beliefs

E(−).

for all partition E(+) and E(−) of sub(T ) do

E(0) := {ϕ ∈ AE0|T ∪ {Kϕ|ϕ ∈ E(+)} ∪ {¬Kϕ|ϕ /∈ E(−)} |= ϕ}
if E(+) ⊆ E(0) and E(−) ∩ E(0) = ∅ then

Expansion := Expansion ∪ {E(0)}
end if

end for
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4.2.2.3 *Relation with Default Logic

Autoepistemic logic shares many similarities with default logic. Both expansions and

extensions are defined as fixed-point functions from which their respective nonmono-

tonic inference relations are defined. Both logics are required to work within certain

contexts. Central to autoepistemic logic is the notion of belief; whereas default logic

is rooted in facts and justified knowledge. Expansions allow self-justifications whereas

extensions do not. In others words, a formula ϕ is justified through Kϕ∧¬K¬ψ ⊃ ϕ,

relying on believing in ϕ (as long as no information contradicting ψ). In extension, a

default ϕ:ψ
ϕ

cannot be applied until ϕ is derived independently. This key difference sets

these two logics apart. In fact, it has been shown that default logic can be viewed as

a “restricted” version of autoepistemic logic (Denecker, Marek & Truszczyński 2003).

The concept of belief (or belief set) used in autoepistemic logic is the central concept

that allows the logic to be characterised in terms of possible world structures. This

matches nicely with the requirement of capturing and representing uncertainty. How-

ever, similar to default logic, autoepistemic logic only deals with static worlds and

suffers from the same problem of recomputing everything from scratch in light of new

information. This deters us from adoption of autoepistemic logic in our framework.

4.2.3 Circumscription

Both default logic and autoepistemic logic discussed previously provide their non-

monotonic reasoning functionalities by modifying classical logic with additional syn-

tactical constructs of defaults and the modal operator K respectively. Circumscrip-

tion (McCarthy 1980), however, does not take this approach and makes use of the

unmodified language of classical logic. Instead, circumscription transforms a logical

sentence A into a logically stronger sentence A∗ by minimising the extents of predi-

cate (or functions) within the sentence A. For example, we can express “professors

normally teach” as the following first order formula:

∀x(prof(x) ∧ ¬abnormal(x) ⊃ teaches(x)).
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Naturally, we do not expect a professor to be abnormal in most situations. Circum-

scription uses exactly this intuition that “we do not expect an entity to be abnormal

unless we have explicit information that tells us otherwise”, and minimise the extents

of abnormal so that we can draw the conclusion without the need to have a complete

picture of the target domain. We provide formal definition of circumscription in the

following section.

4.2.3.1 Syntax of Circumscription

Let us first define some useful abbreviations in order to express the formal definition

of circumscription in a clear form. Let P and Q be two predicate symbols of the same

arity n such that:

P = Q stands for ∀x1...xn((P (x1, ..., xn) ≡ Q(x1, ..., xn)),

P ≤ Q stands for ∀x1...xn((P (x1, ..., xn) ⊃ Q(x1, ..., xn)),

P < Q stands for (P ≤ Q) ∧ ¬(P = Q).

These formulas mean: P and Q have the same extent; the extent of P is a subset of

the extent of Q; and the extent of P is a proper subset of the extent of Q respectively.

Definition. (McCarthy 1980) Let A(P ) be a first order sentence containing the pred-

icate constant P . Let p be a predicate variable of the same arity as P . The circum-

scription of P in A(P ), denoted as CIRC[A(P );P ], is the second order sentence:

A(P ) ∧ ¬∃p[A(p) ∧ p < P ].

The second order formula ¬∃p[A(p) ∧ p < P ] means we cannot find a predicate p

which has smaller extent than P . In other words, P is the predicate symbol with the

minimum extent and CIRC[A(P );P ] is the original first order sentence modified by

the predicate P of minimum extent. We can further generalise this definition by intro-

ducing additional predicates and functional constants such that multiple predicates

are minimised in parallel with respect to other varying functional symbols.
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Definition. (McCarthy 1980) Let P = P1, ..., Pk be a sequence of predicate constants,

Z = Z1, ..., Zm a sequence of function constants. Let A(P,Z) be a first order sentence

containing the predicate constants Pi and function constants Zi. Let p = p1, .., pk and

z = z1, ..., zm be predicate/function variables of the same type and arity as P1, ..., Pk

and Z = Z1, ..., Zm respectively. The circumscription of P in A(P,Z) with varied Z,

denoted as CIRC[A(P,Z);P ;Z], is the second order sentence:

A(P,Z) ∧ ¬∃pz[A(p, z) ∧ p < P ].

4.2.3.2 Semantics of Circumscription

Minimisation of the extent of predicates in circumscription can be explained in terms

of a preference relation on the models of circumscribed sentence A. We prefer a model

M1 over a model M2 if the extent of predicate P is smaller in M1 than in M2 and

both M1 and M2 share the same universe and agree on the fixed constants. Put this

in a formal language:

Definition. (McCarthy 1980) Let M1 and M2 be structures, |M | denoted as the

universe of M , and M�C� is the interpretation of the (individual or function or

predicate) constant C is M . P is a sequence of predicate constants; and Z is a

sequence of predicate (or function) constants. M1 is at least as P ;Z-preferred as M2,

denoted as M1 ≤P ;Z M2, whenever the following conditions hold :

• |M1| = |M2|,

• M1�C� =M2�C� for every constant C which is neither in P nor Z,

• M1�Pi� ⊆M2�Pi� for every predicate constant Pi in P .

The relation ≤P ;Z is a transitive and reflexive relation. A structureM is said to be

≤P ;Z-minimal within a set of structures M when there is no structure M ′ ∈ M such
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that M ′ ≤P ;Z M . The process of circumscription of a sentence can be understood

as preferentially selecting a model of A (over other models) in which the extent of

predicate P is minimal. That is,

Proposition 1. (McCarthy 1980) M is a model of CIRC[A;P ;Z] if and only if M

is ≤P ;Z-minimal among the models of A.

Nonmonotonic reasoning is achieved through restricting logical entailment to the

most preferred models. Formulas that entail from the original sentence A can still be

entailed from the logically stronger A∗.

4.2.3.3 Applicability of Circumscription

Circumscription deals with incomplete knowledge and solves the frame problem by

identifying the most preferred (or most expected) models of A over other models

and restricting entailment to the most preferred models. Syntactically, a preferential

relation between models of A is established from calculating the extent of predicates

within A and the most preferred model of A is the predicate with the minimal extent.

For this, circumscription translates a first order formula into a second order formula

which is not even semi-decidable. This means there is no general theorem prover

we can use to do sceptical inference, i.e. determine whether a formula is true in all

minimal models. Therefore, apart from certain special cases (Lifschitz 1985) first

order circumscription is highly uncomputable (Schlipf 1986). Furthermore, similar to

default logic and autoepistemic logic, circumscription assumes a static world and an

environment with changing information will force a repeat of circumscription process.

4.2.4 *Incomplete Knowledge and Changing Information

So far I have surveyed three prominent nonmonotonic reasoning formalisms that fo-

cus on dealing with incomplete knowledge. Having only limited domain knowledge

is extremely common in practical real-world environments. However, this is only
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one key characteristic of many real-world environments. As I have discussed ear-

lier in the framework requirements section of the previous chapter, most domains we

are interested continuously evolve and change. Any viable framework must support

the continuous acquisition of new information and deal with changing information.

All three formalisms discussed above essentially ignore this important issue which

prevents the effective adoption of these nonmonotonic reasoning techniques in many

practical applications.

For this thesis, I assume that an agent has limited knowledge of the domain and

environment in which it operates. After all, uncertainties (as in risk) only arise when

we have incomplete domain knowledge. I expect that intelligent agents build up their

knowledge base in a gradual and timely fashion by continuously acquiring new domain

information. Therefore, the framework requires methods that can effectively handle

new, potentially conflicting (with the existing knowledge base) information.

In the following sections, I introduce Belief Revision based on the so-called AGM

postulates8, an alternative class of nonmonotonic reasoning that has been developed

in (almost) parallel with above discussed formalisms over the past thirty years. Belief

Revision are mechanisms concerned with revising and maintaining existing knowledge

bases. I will review and discuss the foundation, syntax, semantics and algorithms

of AGM based BR in much detail since it will become one of the main pieces in

the qualitative risk management introduced in Chapter 6. In addition, AGM Belief

Revision is strongly related to possibility theory. I will discuss their connection in

Section 4.6.2.1.

4.3 Belief Revision

Belief Revision (BR) develops formal mechanisms and processes for modifying and

maintaining knowledge repositories with new information. The new information may

8From here on, Belief Revision (or BR) in this thesis refers specifically to AGM based Belief
Revision.
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not be consistent with the existing knowledge; some of existing knowledge may be

retracted in order to maintain the consistency. Therefore, the very nature of BR

matches nicely with the main assumption and requirements of HiRMA framework.

4.3.1 AGM Paradigm

Seminal work of Alchourrón, Gärdenfors and Makinson gave rise to the so called

AGM paradigm (Alchourron, Gardenfors & Makinson 1985) which has been the dom-

inant framework for logic-based belief revision. AGM provides number of postulates

for expansion (adding knowledge), contraction (retracting knowledge) and revision

(modifying knowledge) operations on a classical logic theory that represents a set

of beliefs. These postulates ensure that any belief changes that adhere to them are

logically consistent and respect the principle of minimal change, i.e. making mini-

mum amount of changes that are absolutely necessary but no more. We give a brief

summary of these postulates. For a more detailed description, see (Gärdenfors 1992).

4.3.1.1 Preliminaries

AGM requires a formal language L that is closed under all Boolean connectives and

a simple logical consequence relation � such that:

1. � α for all tautologies.

2. if � (α → β) and � α, then � β.

3. � is consistent, i.e. � L.

4. � satisfies the deduction theorem. That is, {α1, α2, ..., αn} → β iff � α1 ∧ α2 ∧
... ∧ αn → β.

5. � is compact.
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4.3.1.2 Postulates for Expansion

The expansion operation takes a new sentence/information α (with its logical conse-

quences) and add to a belief set K; resulting K is expanded by α.

(K+1) For a sentence α and a belief set K, K + α is a belief set. (Closure)

(K+2) α ∈ K + α.

(K+3) K ⊆ K + α.

(K+4) If α ∈ K, then K + α = K.

(K+5) If K ⊆ H, then K + α ⊆ H + α.

(K+6) For all belief sets K and all sentences α, K +α should be the smallest belief

set that satisfies (K+1) to (K+5).

4.3.1.3 Postulates for Revision

The revision operation takes a new sentence/information α that is not fully consistent

with the belief set K and add to the K. Some existing sentences in K are removed

in order to incorporate the new information and remain consistent.

(K*1) For a sentence α and a belief set K, K ∗ α is a belief set. (Closure)

(K*2) α ∈ K ∗ α.

(K*3) K ∗ α ⊆ K + α.

(K*4) If ¬α /∈ K, then K + α ⊆ K ∗ α.

(K*5) If α is consistent, then K ∗ α is also consistent.

(K*6) If � α ↔ β, then K ∗ α = K ∗ β.

(K*7) K ∗ (α ∧ β) ⊆ (K ∗ α) + β.
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(K*8) If ¬β /∈ K ∗ α, then (K ∗ α) + β ⊆ K ∗ (α ∧ β).

Among these eight postulates: (K*1) and (K*5) are self-explanatory. (K*2) states

that after revision, the result belief set should always include new information. (K*3)

and (K*4) means when new information is consistent with the existing belief set,

there is no reason to remove any existing belief in the belief set. These two postulates

carry the notion of minimal change in a limited way. (K*6) means that syntax of

new sentence has no effect on the revision process. The last two postulates (K*7) and

(K*8) are known as the optional postulates concerning composite Belief Revision.

They, again, carry the expression for the minimal change principle. They basically

state that for any two sentences α and β, expansion (with minimal change) of K to

include both α and β should be the same as the expansion of K + α by β if β is

consistent with K + α.

4.3.1.4 Postulates for Contraction

The contraction operation retires an existing sentence from K without adding any

new information.

(K−̇1) K−̇α is theory.

(K−̇2) K−̇α ⊆ K.

(K−̇3) If α /∈ K, then K−̇α = K.

(K−̇4) If � α, then α /∈ K−̇α.

(K−̇5) If α ∈ K, then K ⊆ (K−̇α) + α.

(K−̇6) If � α ↔ β, then K−̇α = K−̇β.

(K−̇7) (K−̇α) ∩ (K−̇β) ⊆ K−̇(α ∧ β).

(K−̇8) If β /∈ K−̇(α ∧ β), then K−̇(α ∧ β) ⊆ K−̇α.
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Postulates (K−̇1) and (K−̇2) are self-evident. (K−̇3) tells us if the sentence is not

in the initial belief set K, then contraction should not change K. (K−̇4) means all

sentences can be removed from the belief set K (in principle), apart from tautologies.

(K−̇5) postulate is called the recovery postulate. It means by removing and later

adding the same sentence α, we should recover the original belief set. This postulate

is often considered to be overly restrictive (Gärdenfors 1992) and often not satisfy by

belief base revision. The sixth postulate is in parallel with the one in revision postu-

late. The last two postulates are also analogous to the last two revision postulates.

They also express the principle for minimal change. That is, a belief that survives

the contraction of α and β should not be affected by contraction of α ∧ β. K−̇α is

the minimal change of removing α. It contains (at least) all the beliefs of K−̇(α∧ β)
when α /∈ K−̇(α ∧ β).

4.3.1.5 Belief Contraction versus Belief Revision

The belief contraction and revision operations are closely related. In fact, it has

been shown through Levy and Harper identities that, there is one-to-one relationship

between revision and contraction functions (Gärdenfors 1988).

K ∗ α = (K−̇¬α) + α (Levy) (4.1)

K−̇α = (K ∗ ¬α) ∩K (Harper) (4.2)

That is, an AGM compliant contraction function can be generated from an existing

revision function and vice versa. Therefore, obtaining one belief change operator,

either contraction operator or revision operator, is sufficient for modifications of a

knowledge repository within the AGM framework.

4.3.2 Belief Operator Selection

In most cases, there are multiple belief change functions satisfy all of the AGM

postulates. Some extra-logical information of some epistemic ordering is needed to
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select the most appropriate unique function for belief change. There are two main

approaches for solving this problem, namely, epistemic entrenchment developed by

Gärdenfors et al. (1988) and System of Spheres (Grove 1988).

4.3.2.1 Epistemic Entrenchment

The concept of Epistemic Entrenchment represents the resistance of a belief α against

change. “It is formally defined as a preordering relation ≤ on L, encoding the rela-

tive ‘retractability’ of individual belief” (Peppas 2007). For example, α ≤ β means

that β is less easily given up (by an agent) than the α. To define the meaning of

an epistemic entrenchment ordering more precisely, five additional postulates were

introduced (Gärdenfors & Makinson 1988):

(EE1) If α ≤ β and β ≤ χ, then α ≤ χ.

(EE2) If α � β then α ≤ β.

(EE3) α ≤ α ∧ β or β ≤ α ∧ β.

(EE4) When K is consistent, α /∈ K iff α ≤ β for all β ∈ L.

(EE5) If α ≤ β for all α ∈ L, then � β.

(EE1) obviously states ≤ is transitive. However, (EE2) is less clear, since it means

logically stronger beliefs are at least as entrenched as the weaker ones. This axiom can

be understood using the principle of minimal change. To remove a logically stronger

belief β, it requires α also to be removed, whereas removing α does not require

removal of β. This means removing β causes more information loss. Hence, (EE2)

adheres to the minimal change principle. (EE3) is a direct result from contraction

of α ∧ β in AGM. Since removal of α ∧ β means either α or β (even both) would

have to be removed, it implies that α or β is no more entrenched than α ∧ β. An

epistemic entrenchment order can define a contraction operation as (Gärdenfors &

Makinson 1988)
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β ∈ K−̇α iff β ∈ K and either α < α ∨ β or � α

It turns out, not surprisingly, we can generally find more than one preordering ≤ that

conforms to the five axioms stated above for a fixed belief set K. This is to due to

the inherited subjective nature of preordering. An agent can elect to use different

epistemic entrenchment ordering schemes depending on its perspective. This issue

also exists in different forms in other BR operator constructions such as System of

Spheres. AGM Belief Revision does not address this issue at all. Determining the

preordering to be used, is a critical issue for successful applications of Belief Revision.

In fact, there is a strong connection between epistemic entrenchment ordering with

specific application of Belief Revision, since it requires ”meaning” which can only be

discussed within a certain domain/context. The meaning of risk is crucial for our

application of BR in the risk management framework.

4.3.2.2 System of Spheres

Figure 4.1: A System of Spheres

System of Spheres (Grove 1988) models the complete theories in a nested sphere

structure S similar to Figure 4.1. The smallest sphere in the centre of S is the initial



69

belief set [K]. The rest of spheres which represent all possible (consistent) world-

s/theories are ordered based on some relative plausibility rule. The more plausible a

world is, the closer it is to the centre of S. All sentences α ∈ L will be members of

the largest sphere S.

Formally, a System of Spheres S must adhere to the following rules (Grove 1988):

(S1) S is totally ordered by set inclusion; that is, if V, U ∈ S, then V ⊆ U or U ⊆ V .

(S2) [K] is the smallest sphere in S; i.e. [K] ∈ S, if V ∈ S, then [K] ⊆ V .

(S3) ML ∈ S and is the largest sphere in S.

(S4) If a sentence α ∈ L and [α] intersects any sphere in S, then there must have a

smallest sphere in S intersecting α.

Noted (S4) is also known as Limit Assumption. It ensures there exists a smallest

sphere that contains every α. The smallest sphere that intersects [α] is denoted as

c(α). The Belief Revision function for the system of spheres comes out naturally as

(Peppas 2007):

K ∗ α =

{ ⋂
(c(α) ∩ [α]) α is consistent

L otherwise
(4.3)

Compared with epistemic entrenchment, the system of spheres provides a more in-

tuitive representation of ordered belief sets as extra-logical information is inherently

encoded in the nested structure. It provides a means of constructing revision func-

tions. Both epistemic entrenchment and system of spheres construction are, however,

only capable of once-off revision. Further revision operations would require an up-

dated ordering relation rather than just an updated belief set. Therefore, iterated

revision requires more sophisticated machinery to be able to revise the revision func-

tion itself. The solution is provided by Ordinal Conditional Functions(OCF) and a

more generalised transmutation process.
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4.3.3 Belief Base Change

One of the fundamental assumptions of the AGM paradigm is that agents’ belief

sets are modelled as theories. Theories could consist of infinite number of sentences;

implementations of revision functions within AGM paradigm are computationally

infeasible. We could only realise our Belief Revision applications based on the finite

representations of theories, i.e. belief bases (Nebel 1998, Hansson 1999). Furthermore,

it is common to distinguish between explicit beliefs (Grove 1988, Gärdenfors 1992,

Nayak 1994), beliefs that agents accept in their own right, and those beliefs that are

the logical entailments of the explicit beliefs. The derived beliefs should be removed

once their supporting explicit beliefs are gone. Therefore, research in belief base

revision has more practical significance.

Most work on belief base revision starts from a theory base B and a preference

ordering on the sentences in B; they provide various methods of revising B under

existing preference ordering. There are two approaches to the belief base revision

problem. One approach, belief base revision operation, focuses on developing paral-

lel revision operations for belief bases instead of belief theories. It takes account of

explicit beliefs and derived beliefs and only operates on explicit beliefs (Nebel 1998).

The end results from the revision operations are also belief bases. Revision opera-

tions on belief bases can be transformed into revisions on theories by logical closure

(Hansson 1999).

The other type of belief base revision is called belief base revision scheme. This

approach can be considered as a construction model for contraction (or revision)

functions similar to selection functions, epistemic entrenchment. Belief base revi-

sion schemes work on explicit belief bases and generate theories as the end results.

Therefore, they are more useful than the belief base revision operation for practical

considerations. It has been proven that base-generated contract functions satisfy all

AGM contraction postulate (K-1) to (K-8) (Rott 1993).

Similar to the introduction of epistemic entrenchment to represent full ordering of

beliefs on theories; the concept of ensconcement was introduced to represent a total
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ordering on belief base B. Ensconcement satisfies the so-called Priority Consistency

Condition (PCC) (Rott 1991):

Proposition 2. For all α ∈ B, if B′ is a non-empty subset of B that entails α then

there is a β ∈ B′ such that β � α.

� is an ensconcement ordering relation and β � α means β is a weaker belief

than α. Furthermore, it has been shown that PCC is a necessary and sufficient

condition for ensconcement ordering to be extended to a full epistemic entrenchment

ordering (Rott 1991) and ensconcement generated revision functions are AGM revision

functions (Williams 1994a, Williams 1994b).

4.3.4 Iterative Belief Revision

4.3.4.1 Ordinal Conditional Functions (OCF)

An OCF function κ is a function that maps a set of possible worlds to set of ordinals

such that at least one world has an ordinal value of zero. The world with zero κ

value are the most plausible worlds, whereas the larger κ value a world r has, the

less plausible the world. In addition to the OCF, a degree of firmness d is used as

an additional input information for revision. This degree of firmness indicates how

an agent should accept the new information. The new revision process produces not

only the revision of K by α but also a new OCF defined as following:

κ ∗ 〈α, d〉(r) =
{
κ(r)− κ(α) r ∈ [α]

κ(r)− κ(¬α) + d otherwise
(4.4)

This process is called conditionalisation (Spohn 1988). It essentially means that all α

worlds shift downwards (decrease κ value) against ¬α worlds till the most plausible α

world reaches zero value; and, at the same time, the ¬α worlds shift upwards (increase

κ value) till the most plausible of them is at d from zero. Not only the knowledge set

(where κ(K) = 0) is modified, so are the total ordering of all possible worlds.
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4.3.4.2 Transmutations

An alternative process to conditionalisation is called adjustment (Williams 1994b).

Compared with the conditionalisation, it minimises number of changes to the grades

of possible worlds. The only worlds that change their grades are the most plausible α

worlds (changes to zero) and ¬α worlds with grades smaller than d (Williams 1994b).

κ ◦ 〈α, d〉(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if r ∈ [α] and κ(r) = κ(α)

d if r ∈ [¬α] and κ(r) = κ(¬α)
or κ(r) ≤ d

κ(r) otherwise

(4.5)

Both conditionalisation and adjustment processes are transmutations that modify an

ordinal conditional function under the constraints of revision and contraction postu-

lates described in Section 4.3.1.3 and 4.3.1.4. We will use the adjustment as the main

risk model revision mechanism in the new framework introduced in Chapter 6.

4.3.4.3 Ordinal Epistemic Functions

In contrast to Ordinal Conditional Functions, an Ordinal Epistemic Function(OEF) is

a function E that maps formulae (or sentences) in a language to the class of ordinals.

It satisfies the following conditions (Williams 1994b):

(OEF1) For all α, β ∈ L, if α � β, then E(α) ≤ E(β).

(OEF2) For all α, β ∈ L, E(α) ≤ E(α ∧ β) or E(β) ≤ E(α ∧ β).

(OEF3) � α if and only if E(α) = O, where O is the ordinal we defined for our

system.

(OEF4) If α is inconsistent, then E(α) = 0.

Basically, an OEF ranks all formulae in L: the higher ordinal is assigned to a formula,

the more entrenched (or firmly believed) the formula is in our system. In particular,

formulae that are self-contradictory has lowest ranking of zero. That is, we do not
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believe it at all. Note, the ordering in OEFs is opposite of the ordering in OCFs. We

can define various transmutation strategies for OEFs similar to those transmutations

for OCFs such that (α, i)-conditionalisation for E is:

E ∗ (α, i)(β) =
{

−E(¬α) + E(β) if α ∧ ¬β �⊥
−E(α) + E(β) + i otherwise,

(4.6)

and (α, i)-adjustment for E becomes:

E ◦ (α, i)(β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if E(¬α) = E(¬α ∨ β)
E(β) if E(¬α) < E(¬α ∨ β)

and E(β) > i

i if E(¬α) < E(¬α ∨ β)
and E(β) ≤ i < E(¬α ∨ β)

E(¬α ∨ β) otherwise.

(4.7)

It has been shown (Williams 1994b) that OCF and OEF are closely related to each

other. In fact, they are similar as long as all nontautological formulae α, β satisfies

the following condition:

E(α) ≤ E(β) if and only if C([¬α]) ≤ C([¬β]).

Furthermore, if and only if, all non tautological formulae have the same relative

ranking with respect to both E and C, then OCF and OEF are equivalent; their

transmuted knowledge sets are also equivalent. Therefore, in the rest of this thesis,

we use system of spheres/OCF and epistemic ranking structure/OEF interchangeably

when we discuss transmutation process in our risk modelling. The main advantage

of the OEFs over the OCFs is that they are more practical in terms of actual imple-

mentation in computation.

Algorithm 1 below lists an transmutation algorithm for OEFs calledmaxi-adjustment.

The maxi-adjustment algorithm is a variant of standard adjustment transmutation

procedure and its sentence ranking adjustment is based on Sphon’s notion of reason

(Spohn 1983). That is, β is a reason for α, if and only if raising the epistemic rank
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of β will also raise the epistemic rank of α. Information should only be retracted if

there is a good reason to do so. Maxi-adjustment can be implemented as an anytime

algorithm so that it can produce a partial solution that approximates the final trans-

mutation solution if it is interrupted, and the longer it runs a better approximation

it produces. This property is important of resource bound intelligent agents.

Algorithm 1 Maxi-adjustment Algorithm

Require: A partial entrenchment ranking E; a sentence α with a natural number i
representing the new desired ranking for α

Ensure: A new partial entrenchment ranking E ′

1: if α ∈ dom(E) then
2: degreeα = E(α).
3: else
4: degreeα = Degree(E,α).
5: end if
6: max degree = max(E(dom(E)).
7: if degreeα > i then
8: E ′ =MoveDown(α, degreeα, i, E)
9: else if degreeα < i then
10: if degreeα = 0 then
11: degree¬α = Degree(E,¬α).
12: else
13: degree¬α = 0.
14: end if
15: if degree¬α > 0 then
16: E ′ =MoveDown(α, degree¬α, 0, E).
17: end if
18: E ′ = E.
19: E ′ =MoveUp(α, i, E)
20: else
21: E ′ = E.
22: end if
23: return E ′.
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Algorithm 2 Maxi-adjustment Algorithm: Degree, MoveUp and MoveDown func-
tions.

24: function Degree(E,α)
25: degree = max degree.
26: while {β : degree ≥ E(β)} � α and degree �= 0 do
27: degree = degree− 1.
28: end while
29: E(α) = degree.
30: return degree
31: end function
32: function MoveDown(α, i, j, E)
33: for k = max degree down to i+ 1 do
34: for all β ∈ dom(E) do
35: if E(β) = k then
36: E ′(β) = k.
37: end if
38: end for
39: end for
40: for k = i down to j do
41: minimum set = ∅.
42: for all {β : E(β) = k} do
43: if (β ∧ dom(E ′)) � α then
44: minimum set = minimum set ∪ {β}.
45: end if
46: end for
47: for all {β : β ∈ dom(E) ∧ β /∈ minimum set} do
48: E ′(β) = k.
49: end for
50: end for
51: return E ′.
52: end function
53: function MoveUp(α, i, E)
54: for k = max degree down to i+ 1 do
55: for all β ∈ dom(E) do
56: if E(β) = k then
57: E ′(β) = k.
58: end if
59: end for
60: end for
61: E ′(α) = i.
62: for k = i− 1 down to 1 do
63: E ′(β) = Degree(E ′, α � β).
64: end for
65: return E ′.
66: end function
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4.4 Bayesian Probabilistic Model

Both the classical logics and the standard non-monotonic logics only deal with quali-

tative data, they cannot handle numerical information9 usually required to represent

uncertainty10. Most common and mature methods of representing uncertainty use

probability. One of most popular probabilistic models in AI is the so-called Bayesian

Network (BN) (Pearl 1988). A Bayesian Network consists of an intuitive Directed

Acyclic Graph (DAG) that uses nodes to represent domain variables and directed

arcs between nodes represent dependencies between the variables. Mathematically,

BN can be viewed as a joint probability distribution of variables and it handles nu-

merical non-monotonic reasoning nicely. Because of these useful features, BNs have

been extensively studied since their first formal introduction by Pearl (1988). Numer-

ous extensions and techniques for BN construction, network learning (both structure

learning and parameter learning), refinement and inferences have been developed

since. In this section, we will give a detailed survey of BNs and review the main

concepts and algorithms developed for BN in the past thirty years. A large part of

this review is based on a recent book by Darwiche (2009) which gives a comprehensive

account of these developments in BN.

4.4.1 Conditional Probability

In Section 2.3.3 we introduced a semantic definition of probability that can be used to

represent uncertainty. However, we usually do not have direct access to the (absolute)

probability of a proposition A; rather we have the probability of A based on some

evidence. Conditional probability captures the intuition that the “probability of B

based on the observation of variable A”. Formally, such a conditional probability,

denoted as Pr(B|A), is the sum of the measures of the possible worlds in which both

9There are various extensions to classical logics that supposed to accommodate numerical infor-
mation or probabilities. However, I avoid these variations since classical logics are fundamentally
qualitative and should be used where they are naturally fit.

10This does not mean that we accept that uncertainty can only represented or captured with
numbers.
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A and B are true. That is,

Pr(B|A) =
∑

w|=A∧B
Pr(w|A).

A normalisation constant 1/Pr(A) for the worlds that satisfy A is used to ensure the

sum of the measure of the worlds remains at 1. Hence,

Pr(B|A) =
1

Pr(A)

∑
w|=A∧B

Pr(w)

=
Pr(A ∧ B)

Pr(A)

The last form above is known as Bayes conditioning11 (Pearl 1988). It is the direct

consequence of the following commitments:

• Worlds that contradict evidence A have probability of zero.

• Worlds that have zero probability will always have zero probability.

• Worlds that are consistent with evidence A will maintain their relative proba-

bilities.

A direct result from a repeated application of Bayes condition is the so-called chain

rule (Pearl 1988):

Pr(A1 ∧ A2 ∧ ... ∧ An) = Pr(A1|A2 ∧ ... ∧ An)Pr(A2|A3 ∧ ... ∧ An)...P (A1) (4.8)

The rule plays an important role in the calculation of joint probability from the

conditional probabilities in Bayesian networks.

4.4.2 Conditional Independence

Independence is a dynamic notion. Independent events may become dependent given

new evidence; at same time, dependent events may become independent given new

11We assume that Pr(A) will always have a positive value.
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evidence. Therefore, a more general definition of independence is needed so that an

event α is conditionally independent of event β given evidence γ (Pearl 1988).

Pr(α|β ∧ γ) = Pr(α|γ).

This means, with the evidence of γ, the probability of α does not change in light of

the additional evidence of β. Since conditional independence is symmetric, we have α

conditional independent of β given γ if any only if β is conditional independent of α

given γ. To emphasise the symmetry, conditional independence is frequently defined

as following:

Pr(α ∧ β|γ) = Pr(α|γ)Pr(β|γ)

Conditional independence plays a key role in defining the Markovian assumption

(Section 4.4.3) which the Directed Acyclic Graph (DAG) is based on.

4.4.3 Bayesian Networks

Figure 4.2: A Directed Acyclic Graph for the Ball Passing Problem.

A BN is graphically represented as a DAG (Figure. 4.2) that uses nodes12 to

represent propositional variables and directed arcs between nodes represent the de-

pendencies between the variables. For a given node V , any node that has an arc

12We uses node and variable interchangeably.
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point into V is a parent node of V ; descendants of V are the nodes that have arcs di-

rectly from V . Mathematically, BN belongs to a class of mathematical models called

Markovian Models that assume every variable in a model is conditionally independent

(denoted as I)of its non-descendants variables given its parent variables are known

(Pearl 1988), i.e.

I(V, Parents(V ), Non Descendants(V )) for all variables V in DAG G.

The DAG of a Bayesian network graphically captures this so-called Markovian as-

sumption among the variables. Each node X in the DAG is also coupled with a set of

conditional probabilities Pr(X|U)13 for every value of X and every instantiation of u

of its parents U. For a simple DAG shown in Figure 4.2, four conditional probabilities

are needed, namely,

Pr(k), P r(o), P r(p|k, o), P r(i|k, o).

where k, o, p and i are the values of the respective variables. The conditional proba-

bility for a variable P is expressed in a table form known as a Conditional Probability

Table (CPT) for variable P . Examples of Pr(p|k, o) and Pr(i|k, o) are shown below:

K O P Pr(p|k, o)
true true true 0.16
true true false 0.84
true false true 0.82
true false false 0.18
false true true 0
false true false 1
false false true 0
false false false 1

K O I Pr(i|k, o)
true true true 0.62
true true false 0.38
true false true 0
true false false 1
false true true 0
false true false 1
false false true 0
false false false 1

Table 4.3: Conditional Probability Tables (CPT) for Pr(p|k, o) and Pr(i|k, o).

Note that the following constraints ensure that the total probability of variable P

13This is sometime referred as network families.
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(being either true or false) remains at one, given the values of its parent variables.

Pr(p|k, o) + Pr(¬p|k, o)
Pr(p|k,¬o) + Pr(¬p|k,¬o)
Pr(p|¬k, o) + Pr(¬p|¬k, o)

Pr(p|¬k,¬o) + Pr(¬p|¬k,¬o)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= 1.

That is, the conditional probability of variable P is normalised. Normalisation of

conditional probability reflects the fact that BN is based on the Closed World As-

sumption. With both the conditional probability for every variable and the Marko-

vian independence assumption, a Bayesian Network as a whole defines an unique joint

probability distribution of all variables in the network. Therefore, BN can be used

to model the probability distributions in the domains that satisfy the Markovian

independence assumption and associated properties14. Using various BN inference

techniques, the probabilities of any subsets of the network variables, i.e. the marginal

distributions, are defined as (Pearl 1988)

Pr(x1, ..., xm) =
∑

xm+1,...,xn

Pr(x1, ..., xn), (4.9)

where Pr(x1, ..., xn) is the joint distribution of a BN and m ≤ n. This can be used to

answer queries, using the Ball Passing Problem as an example, the probability of the

ball being successfully passed to a team member in presence of a nearby opposition

robot or find out the most probable explanation for a team member did not receive

the ball after it was kicked by its teammate.

In the following sections, we will first give a concise discussion on the current

progress in constructing Bayesian networks before moving on to a brief survey of BN

inference mechanisms.

4.4.4 Bayesian Network Construction

A BN is usually constructed in three distinct steps. The first step is to define a set

of variables and their (possible) values to be used in the graphical network. The

14Such as symmetry, decomposition etc. We omit discussion these properties.
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variables can be categorised into three types: evidence, query and intermediate vari-

ables. Evidence variables are the variables provide direct observational data; whereas

query variables are the variables used to ask questions. Intermediate variables are the

variables that have relationships with evidence and/or query variables; they connect

the evidence variables and query variables together to form a relationship map in a

DAG. Using a knowledge engineering procedure for risk management (I will intro-

duce the knowledge management procedure in Section 5.3.), evidence variables can

be easily identified from the description of the initial event and environment; query

variables correspond to the scenarios and any associated factors are the intermediate

variables. Identification of network variables and their values is a critical step that

maps out the boundary of domain knowledge; and it defines the final quality of the

model constructed for the domain.

The second step is to define the structure of the network, i.e. the relationships

between the variables. A causal interpretation for the network structure says variable

A is a direct cause of variable B, if there is a directed arc from node A to node B (Pearl

2000). Once the network structure is determined, we need to work out the network

parameters, i.e. CPT, for each variable in the network. Determining the network

structure and parameters of a BN is not a simple task. For a (quantitative) data poor

problem, only the inputs from domain experts are available to model the network.

There is no formal systematic procedure for the model construction. The CPTs of

these manually constructed models only reflect the subjective beliefs of the experts.

Furthermore, increasing number of variables in the network make determining CPTs

increasingly difficult. We will discuss these knowledge engineering and model building

issues for data poor problems in Chapter 7 and show our new framework can provide

a more systematic way to build a DAG based model from experts’ knowledge. On

the other hand, for data rich problems, there are a number of techniques developed

in learning the network structure and estimating CPTs from data. We provide a

summary of the standard techniques in the following sections.
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4.4.4.1 Learning Network Parameters from Complete Data

When we have a known Bayesian network structure such as the one depicted in

Figure 4.2 and a set of data samples for the variables in the network (Table 4.4 (a)),

we can estimate the network parameters such as Pr(p|k, o) directly from the dataset.

Note that each row of the dataset represents a complete instance of observed values

of the network variables. From such a dataset D, we can summarise an empirical

Case K O P
1 true true true
2 true false false
3 true false true
4 true true false
5 false true false
6 true false false
7 true true false
8 true true false
9 true false true
10 true true false
11 true false true
12 false false false
13 true false true
14 true false true
15 true false true
16 true true false

(a) Complete dataset

K O P PrD(.)
true true true 1/16
true true false 5/16
true false true 6/16
true false false 2/16
false true true 0/16
false true false 1/16
false false true 0/16
false false false 1/16

(b) Empirical distribution

Table 4.4: A complete set of data samples and empirical distribution for ball passing
BN.

distribution as shown in Table 4.4 (b). The empirical probability of instantiation k,

o, p is simply the frequency of its occurrences in the dataset.

PrD(k, o, p) =
D#(k, o, p)

N
,

where D#(k, o, p) is the number of instances of an instantiation of k, o, p in the

dataset D and N is the size of the dataset. We can estimate the network parameter
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Pr(p|k, o) with k, o and p are true as follows:

Pr(p|k, o) = PrD(k, o, p)

PrD(k, o)
=

1/16

6/16
= 1/6.

Therefore, for a given BN and a complete dataset generated from the network, we

can estimate a parameter θx|u using the empirical probability (Darwiche 2009).

θmlx|u = PrD(x|u) =
D#(x,u)

D#(u)
. (4.10)

Clearly, the parameter estimate θx|u is dependent on the given dataset D. Increasing

the size of the dataset, the distribution of estimate θmlx|u will asymptotically approach

a normal distribution with variance of

Pr(x|u)(1− Pr(x|u))
NPr(u)

,

according the Law of Large Numbers (Grinstead & Snell 1997). In other words, the

accuracy of the estimate depends on the size of the dataset and the probability of

the parent instantiation Pr(u). Another important property for parameter estimate

is the likelihood of the estimate.

L(θ|D) =
N∏
i=1

Prθ(di), (4.11)

where θ is the set of all parameter estimates for a given network structure and di

is a complete instantiation of all the variables in the dataset D. L(θ|D) represents

the probability of observing the dataset D under these estimates. The convenient

log-likelihood function is defined as

LL(θ|D) = logL(θ|D) =
N∑
i=1

logPrθ(di). (4.12)

It turns out that the estimate defined by the empirical probabilities (Equation 4.10)

is the only estimate that maximises the likelihood function. Consequently, these

estimates are called maximum likelihood (ML) estimates and defined as following

(Darwiche 2009)

θml = argmax
θ
L(θ|D).
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This important result implies that we can derive empirical distribution based es-

timates by maximising the likelihood function. In fact, when we are dealing with

incomplete data, we take exactly this approach in which we seek estimates that max-

imise the likelihood function. In the next section, we will highlight some of the key

ideas in learning parameters with incomplete data.

4.4.4.2 Learning Network Parameters from Incomplete Data

We have shown in the previous section that we can derive unique, asymptotically

normal network estimates from a complete dataset. However, in practice, we often

face datasets with missing values (e.g. Table 4.5). The cause of incomplete data

could be that we are unable to observe a variable directly15 or in some cases, we have

missing data values due to various reasons, for example, robots have limited field of

view and they may not observe the opponent or the outcome of the ball passing.

Case K O P
1 true true ?
2 true false ?
3 true false ?
4 true true ?
5 false true ?
6 true false ?

(a) A dataset with an hidden
variable.

Case K O P
1 true ? true
2 true false false
3 true false ?
4 true true false
5 false true ?
6 true ? false

(b) A dataset with missing
values.

Table 4.5: Examples of incomplete dataset.

All available techniques for estimating network parameters are iterative search

methods that require an initial estimates θ0 and search for new estimates that max-

imise the likelihood of getting the observed data. These algorithms differ only in

terms of searching strategies they employ. One of the popular learning methods is

15Such a variable is called a hidden or latent variable.
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called Expectation Maximisation (EM) (Dempster, Laird & Rubin 1977). It first in-

stantiates all the missing values in the incomplete dataset inferenced from the initial

estimate. The completed dataset defines an expected empirical distribution and the

probability of an instantiation (or event) can be computed from the number of its

occurrences in the dataset. The expected empirical distribution of dataset D under

network parameter θi is defined as the following (Dempster et al. 1977):

PrD,θi(α) =
1

N

∑
dj ,cj |=α

Prθi(cj|dj), (4.13)

where α is an event and Cj are the variables with missing values in case dj. dj, cj |= α

means that event α is satisfied by complete case dj of cj. New estimates can then

be computed from the expected distribution, similar to the computation in learning

from the complete dataset:

θi+1
x|u = PrD,θi(x|u) =

PrD,θi(x,u)

PrD,θi(u)
, (4.14)

The new likelihood for θi+1
x|u , i.e. expected likelihood function, is (Dempster et al. 1977)

L(θi+1|D) =
N∏
j=1

Prθi(dj). (4.15)

It has been shown that the log-likelihood functions of EM estimates cannot decrease

after each iteration, i.e. LL(θi+1|D) ≥ LL(θi|D). This means the new parameter

estimates after an iteration are guaranteed to be better or equal to the estimates

from which they are derived. Therefore, the EM algorithm (Algorithm 3) guarantees

parameter estimates converge. It is important to note that the EM algorithm is

sensitive to the initial estimates θ0; different θ0 may converge to different parameters.

That is, we can only find a local maxima of likelihood function. It is common to run

the EM algorithm multiple times and choose different initial estimates each time to

ensure we find an optimal maxima of the likelihood function. Another issue of the

EM method is its slow convergence when a large fraction of data is missing.
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Algorithm 3 The EM Algorithm (Lauritzen 1995)

Require: Bayesian network structure G with families XU. Initial parameterisation
of G, θ0. Dataset of size N , D.

Ensure: EM parameter estimates for structure G.
1: k = 0
2: while θk �= θk−1 do
3: cxu = 0 for each family instantiation xu
4: for i = 1 to N do
5: for each family instantiation xu do
6: cxu = cxu + Prθk(xu|di) (from inference on (G, θk).
7: end for
8: end for
9: compute parameter θk+1 from θk+1

x|u = cxu/
∑

x∗ cx∗u
10: k = k + 1
11: end while
12: return θk

An alternative approach to the EM algorithm is to treat parameter learning as a

problem of optimising a non-linear function. Again, we start with an initial parame-

ter estimate θ0x|u and step through the parameter space in searching for a maximum

likelihood function by an increment of δix|u, i.e. θ
i+1
x|u = θix|u+δ

i
x|u. The value for the in-

crement δix|u is usually determined using gradient information. Specifically, we need to

maximise the log-likelihood function LL(θ|D) based on the gradient δLL(θ|D)/δθx|u

while maintaining the constraints θx|u ∈ [0, 1] and
∑

x θx|u = 1. It has been shown

that (Russell, Binder, Koller & Kanazawa 1995)

δLL(θ|D)

δθx|u
=

N∑
j=1

Prθ(xu|dj)
θx|u

, when θx|u �= 0. (4.16)

This means we can calculate the gradient from the family marginals using inference

algorithms (Section 4.4.5) without the need to compute derivatives. The performance

of the gradient-based algorithms is significantly influenced by the learning rate. Se-

lecting a proper learning rate will greatly speed up the convergence. In terms of

computational complexity, the gradient-based algorithms are at the same level as the

EM algorithm, since both approaches require computation of all family marginals for
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every distinct cases in the dataset as shown in Equation 4.13 and 4.16. Next, I will

turn my attention to methods for discovering the structure of a BN from data.

4.4.4.3 Learning Network Structures

Previously, we assume the structure of a BN is known and we have a set of corre-

sponding data for the network. We estimate the values of the network parameters

that maximise the probability of observing the given dataset. In this section, we

take a similar approach to find the network structure itself from data. That is, we

search for network structures that maximise the probability of observing the given

dataset. We define a log-likelihood function for structure G, LL(G|D), similar to the

log-likelihood function for network parameter estimates LL(θ|D). It has been shown

that LL(G|D) can be effectively decomposed into a number of subcomponents, one

for each family X|U in the Bayesian network structure (Darwiche 2009):

LL(G|D) = logL(G|D) = −N
∑
X|U

ENTD(X|U), (4.17)

where D is a complete dataset of size N and ENTD(X|U) is the conditional entropy

defined as

ENTD(X|U) = −
∑
x|u

PrD(x|u)log2PrD(x|u).

An effective way to search for a network structure that maximises the likelihood value

is to decompose the network, starting with an empty set of parents for a variable X

and successively adding variable Ui to the set with the edge Ui → X. However, it

turns out, by adding more parents and the corresponding edges to a variable, we never

decrease the log-likelihood of the resulting structure. The search for a structure that

maximises the log-likelihood function will end up with a complete DAG in which no

more edges can be added. This complete DAG structure reveals no useful feature

of the Bayesian model and is practically useless in terms of inference and reasoning.

A complete DAG represents an overfit of the known data. A common approach for

avoiding the problem of overfitting is to invoke the principle of Occam’s Razar. That
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is, we should prefer simpler models over more complex models. A better scoring

function than the log-likelihood function for determining an optimal structure for a

dataset is needed. A simple solution is to add a penalty term to the existing log-

likelihood function (Bouckaert 1993):

Score(G|D) = LL(G|D)− ψ(N) ∗ ||G||, (4.18)

where ψ(N) is a penalty weight and ||G|| is the dimension of a DAG G defined as

||G|| =
N∑
i=1

||XiUi||

||XiUi|| = (X#
i − 1)U#

i ,

in which X#
i denotes the number of instantiations of variable X. The Score(G|D)

can be further decomposed as

Score(G|D) =
∑
XU

Score(Xi,Ui|D), (4.19)

where

Score(Xi,Ui|D) = −N ∗ ENTD(Xi|Ui)− ψ(N) ∗ ||XiUi||. (4.20)

Clearly, the penalty term ψ(N)∗||G|| depends on the number of independent variables

in DAG G. This term acts as a counter-balance to the log-likelihood function so that

simpler models are preferred over more complex models even though the more complex

models have higher log-likelihood values. The penalty weight ψ(N) in turn controls

the impact of the penalty term. Therefore, we can adjust our model preferences by

changing the penalty weight. One of the popular choices for ψ(N) is log2N
2

because

it allows the penalty term to dominate the score function while N is small but its

influence decreases as N grows. The score function based on this penalty weight is

called minimum description length (Rissanen 1978) score16. To further reduce the

search space for the network structure, we assume a total ordering on the network

variables so that we can exhaustively search network structures for variables in order.

16It is also known as Bayesian information criterion.
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Algorithm 4 The K3 Algorithm

Require: Node Xi in a total order of nodes.
Ensure: Ui with maximum Score(Xi,Ui|D) for variable Xi.
1: Predi = {X1, X2, ..., Xi−1}
2: Parents Ui = φ
3: Scoremax = Score(Xi,Ui|D)
4: while Ui �= Predi do
5: Let Xj be the node in the Predi \Ui that maximises Score(Xi,Ui ∪Xj|D)
6: Scorenew = Score(Xi,Ui ∪Xj|D)
7: if Scorenew > Scoremax then
8: Scoremax = Scorenew
9: Ui = Ui ∪Xj

10: else return Ui and Scoremax
11: end if
12: end while

The algorithm based on this approach is called theK3 algorithm (Bouckaert 1993).

It is a greedy algorithm that produces a set of parents for variable Xi that maximises

the score function Score(Xi,Ui|D), i.e. local optimal. To identify the optimal set of

network structures, we need optimal search algorithms in which the K3 algorithm is

used as a starting point. A notable optimal search algorithm is based on branch-and-

bound depth first search. It first uses the K3 algorithm to compute the maximum

score for every variable in the network. The entropy values from the maximum scores

are then used to arrange the network variables in a tree order. The depth first search

starts from the node with the lowest entropy and moves to the nodes with higher

entropy. At each step, a single variable is added to the parent set of node X and

evaluates Score(Xi,Ui|D). The score is compared with the best score the search has

obtained so far. Since the depth first search ensures every parent set is visited, search

is guaranteed to terminate with an optimal parent set. This algorithm can be further

optimised by applying an upper bound of score calculated based on the largest parent

sets rooted at Xi to the search tree and pruning any subtree that does not return a

better score than the best one found so far. The Algorithm 5, uses this optimisation

to improve its search efficiency.
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Algorithm 5 The Depth First Branch-and-Bound Search Algorithm with K3

Require: Node Xi

Ensure: Parent set Ui maximum Score(Xi,Ui|D) for variable Xi.
1: Execute K3 and produce Ui with Scoremax.
2: Arrange variables in the tree order of {Xk1 , ..., Xki−1

} such that ENTD(Xi|Xk1) ≤
... ≤ ENTD(Xi|Xki−1

).

3: Penalty p1 =
log2N

2
∗ (X#

i − 1); T = φ.
4: Call procedure DFBnB(T,Xk0 , p1).
5:

6: procedure DFBnB(T,Xkj , p)
7: Score = −N ∗ ENTD(Xi|T )− p.
8: if Score > Scoremax then
9: Scoremax = Score and Ui = T .
10: end if
11: Let W be the set of variables after Xkj in the tree order.
12: Boundupper = −N ∗ ENTD(Xi|T,W ).
13: for all Xq ∈ W do
14: pnew = p ∗X#

q .
15: if Scoremax < Boundupper − pnew then
16: Call procedure DFBnB(T ∪ {Xq}, Xq, pnew)
17: end if
18: end for
19: end procedure
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4.4.5 Inferences in Bayesian Networks

The main use of Bayesian Networks is to provide answers to queries through network

inference. In other words, BN can compute the marginal distribution of a (set of)

target variables using network inference. The marginal distribution of target variables

can be calculated without any data (or evidence). This is known as prior marginal.

At the same time, we can also ask for the probability of the target variables based

on data from some observed variables (or evidence), i.e. posterior marginal. For

example, network inference can be used to estimate the likelihood of ball interception

without any given data. On the other hand, by observing the ball being kicked by

robot RA and the distance between RA and its teammate RB, a BN can be used to

predict on the probability of a successful pass. In the case of detecting an unsuccessful

ball pass, the robot can also draw up the most likely explanation using BN that the

ball was intercepted by an opponent and subsequently take an appropriate response.

Because of these practical uses of network inference, the majority of work in BN is

related to either the development of new efficient network inference algorithms or the

improvement of existing inference algorithms. Bayesian network inference algorithms

can be grouped into two categories: exact inference and approximate inference. I will

provide a broad summarisation of both types of algorithms in the following section.

4.4.5.1 Exact Inference

Exact Bayesian network inference algorithms can be summarised into three types:

inference by variable elimination, inference by factor elimination and inference by

conditioning. We give a slightly more detailed summaries for the first two approaches

and briefly touch on the last approach.

Inference by Variable Elimination (VE) is normally used to calculate prior

and posterior marginal of a set of target variables in a Bayesian network (Zhang &

Poole 1994). For example, we can use the VE method to calculate the marginal of

P in the Ball Passing Problem. The basic idea of VE is to construct a marginal

probability distribution over the target variables, in our case variable P , by summing
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Algorithm 6 Prior Marginal Calculation with Variable Elimination

Require: Bayesian network G; target variables Q and π ordering of variables not in
Q.

Ensure: The prior marginal Pr(Q).
1: S = CPTs of G.
2: for i = 1 to the length of π do
3: f =

∏
j fj, where fj ∈ S and contains variables π(i).

4: fi =
∑

π(i) f .
5: Replace all factors fj in S with fi
6: end for
7: return

∑
f∈S f

Algorithm 7 Posterior Marginal Calculation with Variable Elimination

Require: Bayesian network G; target variables Q; e instantiation of some variables
in G and π ordering of variables not in Q.

Ensure: The joint marginal Pr(Q, e).
1: S = {fe : f is CPT of G and fe = f(x) if x ∼ e }.
2: for i = 1 to the length of π do
3: f =

∏
j fj, where fj ∈ S and contains variables π(i).

4: fi =
∑

π(i) f .
5: Replace all factors fj in S with fi
6: end for
7: return

∑
f∈S f
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up the remaining variables in the given network, i.e. variables K, O and I (Figure

4.2). Specifically, the remaining variables are eliminated one by one when all rows

in the network joint probability distribution that agree on the values of all variables

are merged except for the variable being eliminated. Once all the non-target vari-

ables are eliminated from the distribution, we are left with the marginal probability

distribution of the target variables. It is not necessary to construct the joint prob-

ability distribution used in VE since the joint distribution can be factored into a

set of conditional probabilities according to the chain rule (Equation 4.8). Such a

conditional probability is a factor function over variables X that maps each instanti-

ation of the variables X to a non-negative number, denoted as f(x). Summing out a

variable X from a factor f over variables X is another factor over variables X \ {X}
denoted as

∑
x f . The process of summing out every variable in variables X is called

marginalising variables X. The order of variable elimination has no effect on the end

results since the summation operation is commutative. Another key property of the

summation operation is that ∑
X

f1f2 = f1
∑
X

f2,

if the variable X appears only in f2. This means, it is not necessary to multiply all the

factors together before the summation operations when some factors do not have the

variables to eliminate. It also means summing out variables as early as possible and

as many as possible will greatly reduce the size of the factors and the computation

required for factor multiplication. Therefore, selecting which variables should be

eliminated earlier, i.e. the order of variable elimination, can have significant impact

on the computation cost. The Algorithm 6 and 7 listed above show the calculation

of prior marginal Pr(Q) and joint marginal of Pr(Q, e) using VE respectively; and

Algorithm 8 below presents a method of choosing an variable elimination order by

always eliminating the variable that leads to constructing the smallest factor possible.

Inference by Factor Elimination (FE) is a variation of the variable elimina-

tion method. Instead of eliminating the non-target variables one at a time, the FE
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Algorithm 8 Minimum Degree Elimination Order

Require: Bayesian network G; variables X in G.
Ensure: The ordering π of variables X.
1: I =InteractionGraph(G)
2: for i = 1 to number of variable in X do
3: π(i) = a variable in X with smallest number of neighbours in I.
4: Add an edge between every pair of non-adjacent neighbours of π(i) in I.
5: Delete variable π(i) from I and X.
6: end for
7: return π
8: function InteractionGraph(G)
9: Graph I with all variables appear in G and no edges between any variables.
10: for factor f = f1 to fn do
11: Connect all variables appear in f pair-wisely in I.
12: end for
13: return an undirected graph I
14: end function

algorithm eliminates factors that do not contain the target variables step by step.

Generally, the factor elimination process follows a few basic steps:

1. Organise factors of a Bayesian network into a tree structure (e.g. Figure 4.3)

with a factor that contains the target variables selected as the root node (i.e.

double circled node).

2. Choose a leaf node factor from the tree for elimination.

3. The selected factor is eliminated by summing up all variables that exist only in

the factor and then multiply into the nearest neighbour of the factor.

4. Repeat above two steps till all the leaf nodes are removed from the tree. The

elimination then moves to the new leaf nodes and continues the process untill

it reaches the root node.

5. After the root node is reached, the marginal of the target variables can be

computed from the projection over the target variables.
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Figure 4.3: A (nonminimal) jointree for the Bayesian network shown in Figure 4.2.

Note that the variable summation operations used in step 3 and 5 are factor project

operations which are defined as

project(f,Q) =
∑

vars(f)\Q
f

This project operation simply sums out all variables in factor f but not in Q. The

prominent feature in this FE approach is that a tree structure is used for the organising

the elimination process. This tree structure plays a similar role as the elimination

order used in VE algorithms. The most commonly used tree structure is so-called the

jointree which is defined as follows:

Definition. (Lauritzen & Spiegelhalter 1988) A jointree for a DAG G is a pair (T ,C)

where T is a tree and C is a function that maps each node in i in tree T to a cluster

Ci. A jointree must satisfy the following properties,

• The cluster Ci consists of a set of nodes from G.

• Each family X|U of the Bayesian network must appear in some cluster Ci.
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• If a node appears in two clusters Ci and Cj, it must also appear in every cluster

Ck on the path between nodes i and j in the jointree. This property is also known

as the jointree property or the running intersection property.

The intersection of two connecting clusters i and j in a jointree, i.e. Ci ∩Cj, is the

separator of edge i− j, denoted as Sij.

The standard method for constructing a jointree was first introduced by Lauritzen

and Spiegelhalter (1988). It first turns a DAG into a so-called moral graph in which

all parent nodes of a child node are connected pairwise and the direction on all graph

edges are dropped. The resulting undirected graph is further triangulated (using

maximum cardinality search) such that for every cycle of length n ≥ 4 there must

be a chord which connects a pair of nonconsecutive nodes in the cycle. A fully

triangulated graph is then broken up into a set of cliques17 and reordered into a tree

structure according to the maximum note in each. Such a tree structure satisfies the

intersection property of the jointree (Lauritzen & Spiegelhalter 1988) and is, therefore,

a proper jointree. The full jointree construction procedure is listed in Algorithm 9

below.

The corresponding FE algorithm that uses jointree is called the Jointree Algorithm

and is listed in Algorithm 10.

Notice that, at step 4 of Algorithm 10, the factor of node j is updated by the

projection of its neighbour i, after i is removed from the tree. We can view this process

as node i passing a message to its single neighbour j, while it is being eliminated. In

addition, node i cannot pass its message to j until it receives all messages from its

neighbours k �= j (otherwise, it does not satisfy the criteria at the step 3). In fact,

the entire FE process can be viewed as messages computed and propagated from

the leaf nodes to some root node of a tree (Pearl 1988). A significant advantage of

this message passing formulation is that the message computed at each node can be

reused when we want to change the root node and compute a different marginal. For

17A clique is a maximal subset of nodes that have edges between all nodes.
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Algorithm 9 Construction of a Jointree

Require: A Bayesian DAG network G.
Ensure: A jointree (T ,C) for G.
1: G′ =MoralGraph(G)
2: Ordering α =MaximumCardinalitySearch(G′)
3: G′′ =FillingComputation(G′, α)
4: Let C(G′′) = a set of cliques of G′′ (they are clusters).
5: Order cliques according to the maximum note and connect into a tree (T ,C).
6: return The jointree (T ,C).
7: function MoralGraph(G)
8: Let var(G) be a set of variables in G.
9: for all Xi ∈ var(G) do
10: for all Xj, Xk ∈ Parents(Xi) do
11: Connect Xj and Xk with an undirected edge.
12: end for
13: end for
14: Remove directions in all directed edges between variables.
15: return an undirected graph.
16: end function
17: function MaximumCardinalitySearch(Undirected graph G)
18: Let var(G) be a set of variables in G and edge(G) be a set of edges in G.
19: for i = 1 to number of nodes in G - 1 do
20: Let set(i) = φ
21: end for
22: for all v ∈ var(G) do
23: Let size(v) = 0 and add v to set(0).
24: end for
25: Let i = n and j = 0.
26: while i ≥ 1 do
27: v = extract any node from set(j).
28: α(v) = i; α−1(i) = v and size(v) = −1.
29: for all {v, w} ∈ edge(G) and size(w) ≥ 0 do
30: Delete w from set(size(w));
31: Decrement size(w) by 1 and add w to set(size(w)).
32: end for
33: Decrement i by 1 and increment j by 1.
34: while j ≥ 0 and set(j) = φ do
35: Decrement j by 1.
36: end while
37: end while
38: return An ordering α.
39: end function
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example, in Figure 4.3 (b), when we compute the marginal for OKI, i.e. moving the

root node from KPO to OKI, most of the messages computed from calculating the

marginal KPO are still valid for computing the OKI marginal. Only one additional

message from node KPO to OKI needs to be computed (shown as the dashed-line

in Figure 4.3). In other words, the amount of computations required for calculating

multiple marginals can be greatly reduced by caching the message computed at each

node of a jointree. This is the key advantage that FE algorithms offer over the VE

algorithms. We can compute the marginals over every cluster of a jointree with a pull

and push message passing scheme. Specifically, we first select a root node from the

jointree and collect (or pull) messages from all its leaf nodes. We then distribute (or

push) message from the root node towards the leaf nodes. The entire computation

for every marginals requires total 2(m− 1) messages18 and the computation of every

message bounded by O(exp(w)) where w is the width of the jointree19. This means,

the total computation complexity of FE methods is O(n · exp(w)), compared with

O(n2 · exp(w)) for the VE methods.

Algorithm 10 The Jointree Algorithm for Prior Marginal Calculation

Require: A Bayesian network G; target variables Q; jointree (T ,C) for the CPTs
of network G and φi is the factor assigned to the cluster Ci.

Ensure: The prior marginal of Pr(Q).
1: Choose a root node r in tree T where Q ⊆ Cr.
2: while tree T has more than one node do
3: Remove a node i �= r having a single neighbour j from tree T , i.e. a leaf node.

4: φj = φj ∗ project(φi,Sij)
5: end while
6: return project(φr,Q)

18With m nodes, m− 1 edges and two messages per edges.
19Defined as the size of the largest cluster minus one.
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Algorithm 11 Filling Computation Algorithm for Jointree construction.

40: function FillingComputation(Undirected graph G, α)
41: for i=1 to number of nodes in G do
42: Let w = α−1(i); f(w) = w and index(w) = i.
43: for all {v, w} ∈ edge(G) and α(v) < i do
44: Let x = v
45: while index(x) < i do
46: index(x) = i and add {x, w} to edge(G) ∪ FillIn(α) (add fill-in

edge).
47: x = f(x)
48: end while
49: if f(x) = x then
50: f(x) = w.
51: end if
52: end for
53: end for
54: return G with edges of edge(G) ∪ FillIn(α).
55: end function

4.4.5.2 Approximate Inference

All exact inference methods for BN have computational complexity in the order of

O(exp(w)). Therefore, in practice, they are only suitable for relatively small networks

with relatively small tree width. For any arbitrary large scale network of thousands

variables, the practical usefulness of exact inference algorithms is severely constrained

by limited computational resources available. Consequently, an active branch of BN

research is the development and improvement of approximate mechanisms for BN

inference. System designers we can make appropriate tradeoffs between the accuracy

and computational requirement of network inference. Due to the physical limitation

of this review, I will discuss only one mature class of approximation methods based

on stochastic sampling.

Inference with Stochastic sampling is a method of estimating the probability

of some event in a Bayesian network by generating a series of random instantiations of

the network variables according to the network probability distribution and counting

the fraction of instantiations at which the event is true. For example, to estimate the
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K O P I
x1 true false false false
x2 false false false false
x3 true true false false
x4 true false true false
x5 true false true false
x6 true false false false
x7 true false true false
x8 true true false true
x9 true true false true
x10 true true false false

Table 4.6: A set of samples generated from network Figure 4.2.

probability of ball interception by an opponent robot, i.e. i = true, we generate 10

random simulated situations (Table 4.6) by traversing through the network illustrated

in Figure 4.2 from parents to children. At each node X, we draw a instantiation

of the variable X according to its conditional probability Pr(X|u) where u is an

instantiation of parent nodes of X. We then count the number of samples that have

i = true and the estimate for P (i = true) is 2/10. To estimate the conditional

probability Pr(i = true|o = true), we first estimate Pr(i ∧ o = true) and Pr(o =

true) from the samples and then calculate the ratio Pr(i ∧ o)/Pr(o), i.e. 1/2. This

procedure is called direct sampling and shown in Algorithm 12. Direct sampling is a

special instance of the general stochastic sampling approach in which the probability

of an event is formulated using expected value of some function f(X) (DeGroot &

Schervish 2002), i.e.

Ex(f) =
∑
x

f(x) · Pr(x),

and the quality of estimation is measured by the variance:

V ar(f) =
∑
x

(f(x)− Ex(f))2 · Pr(x).
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For direct sampling of an event α, we define a function α′(X) that maps each instan-

tiation x to a number as following:

α′(x) =

{
1, if α is true in instantiation x

0, otherwise.

The corresponding expectation and variance are:

Ex(α′) = Pr(α)

V ar(α′) = Pr(α)Pr(¬α).

The main reason for using expectation functions in stochastic sampling is to

utilise many expectation related theorems to control the quality of the approxima-

tion outcomes. One of the key theorems, the central limit theorem (DeGroot &

Schervish 2002) states that

Theorem 1. As the sample size n tends to infinity, the sample distribution of a

function f(x) converges to a normal distribution with the sample mean, defined as

Avgnf(x) =
1
n

∑n
i=1 f(x

i), and sample variance, defined as S2
n(f) =

1
n−1

∑n
i=1(f(x

i)−

Avgn(f))
2, asymptotically approaches the expectation μ and variance σ2 of function

f(x).

This result implies that the accuracy of estimates for the expectation value of

function f(x) monotonically improves with the increase of sample size. Furthermore,

the quality of probability estimation in the sampling algorithm can improve by care-

ful selection of function f(x) with tighter variance σ2. Reducing the variance is

particularly important when estimating the probability of rare events or estimating

probabilities that are conditioned on rare events. The standard method of dealing

with such problems is to sample from an alternative distribution P̃ r(x) that focuses

on the instantiations consist with the rare event. This technique is called importance

sampling (Rubin et al. 1988). It introduces an importance sampling function for event
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Algorithm 12 Approximate Inference with Direct Sampling(Darwiche 2009).

Require: A Bayesian network N ; event α for probability estimation and n sample
size.

Ensure: An estimation of the probability Pr(α).
1: P = 0.
2: for i = 0 to n do
3: x =SimulateBN(N)
4: if α is true in instantiation of x then
5: P = P + 1.
6: end if
7: end for
8: return P/n.
9: function SimulateBN(Bayesian Network N)
10: Let π = a total order of network variables with parents precede their children.
11: Let n is the number of network variables.
12: Let Σ be the trivial variable instantiation.
13: for i = 0 to n do
14: Let X be the variable at position i in order π.
15: u = values of parents of X in instantiation Σ.
16: x = value of X sampled from probability distribution of Pr(X|u).
17: Append value x to instantiation Σ.
18: end for
19: return Σ.
20: end function
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α, denoted as α̃, and is defined as follows

α̃(x) =

{
Pr(x)/P̃ r(x), if α is true in instantiation x

0, otherwise,

where Pr(x) is the true distribution induced by the network and P̃ r(X) is the

importance distribution that emphasises the instantiations consistent with event α.

P̃ r(X) must satisfy the condition that P̃ r(x) = 0 only if Pr(x) = 0 for all instantia-

tions x in which α is true. The expectation and variance of an importance sampling

function α̃ with respect to the importance distribution P̃ r(X) are

Ex(α̃) = Pr(α)

V ar(α̃) =
∑
x|=α

Pr(x)2

P̃ r(x)
− Pr(α)2.

This means, as long as the importance distribution assigns a greater probability

to event α, i.e. P̃ r(x) > Pr(x) for all instantiations x implicate event α, the variance

V ar(α̃) is guaranteed to be less than the variance of direct sampling Pr(α)Pr(¬α).
In terms of estimating conditional probability Pr(α|β) based on rare event β, the

variance is no longer dependent on Pr(β) but the importance distribution P̃ r(β)

such that

V ar(Pr(α|β)) = Pr(α|β)Pr(¬α|β)
nP̃ r(β)

.

Clearly, the key element in reducing the variance when using importance sampling is

the selection of importance distribution P̃ r(x) which is non-trivial in practice. One

popular form of importance sampling, the so-called likelihood weighting method, that

uses P̃ r(x) induced from a modified network based on the available evidences. This

modified network Ñ , i.e. likelihood-weighting network (Figure 4.4), is obtained from

the original network N by deleting edges going to nodes E that have been instantiated

with evidence e. The corresponding CPTs for these nodes are reset such that for

E ∈ E is instantiated to e in evidence e θ̃e = 1 and θ̃e = 0 otherwise.

It has been shown (Shachter & Peot 1989) that for a network N and its corre-

sponding likelihood network Ñ based on evidence e, the respective distribution Pr(X)
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and P̃ r(X) has the following property:

Pr(x)/P̃ r(x) =
∏
θe|u

θe|u ≤ 1,

where θe|u is the network parameters range over variable E ∈ E and e|u is consistent

with instantiation x. This result implies that the variance of likelihood weighting

cannot be larger than the variance of direct sampling. The ratio Pr(x)/P̃ r(x) can be

efficiently computed for any instantiation x from the product of all network parameter

eu of the CPTs of evidence variables that are consistent with x. The result sampling

algorithm is shown in Algorithm 13.

Figure 4.4: Conversion of a Bayesian network (left) to a likelihood weighting network
(right) based on evidence on variables B and E. The CPTs for B and E are modified
such that, for example, if B = b and E = ē, then θb = 1, θb̄ = 0 and θe = 0, θē = 1.
This figure is taken from Darwiche (2009).

4.4.6 *Limitations of Bayesian Networks

Bayesian networks have become one of the dominant technologies in modelling and

managing uncertain information in the last thirty years. Despite its success, it pos-

sesses several inherent limitations that make Bayesian network unsuitable for certain

domains and environments. First, as a probabilistic model, BN relies on the Closed
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Algorithm 13 Approximate Inference with Likelihood Weighting.

Require: A Bayesian network N ; evidence e and n sample size.
Ensure: An estimation of Pr(e) and Pr(x|e) for each value x of variable X.

1: let Ñ be the likelihood weight network for N with evidence e.
2: let P = 0 (estimate for Pr(e)).
3: let P [x] = 0 for each value x of variable X. (estimate for Pr(x, e)).
4: for i = 1 to n do
5: x =SimulateBN(N)
6: W =

∏
θe|u, where E ∈ E and eu ∼ x.

7: P = P +W .
8: P [x] = P [x] +W for each variable X and its values x consistent with x.
9: end for
10: return P/n and P [x]/P .

World Assumption. It assumes complete knowledge of the domain in terms of its

variables and their associated data. Various techniques have been developed (such

as the method described in Section 4.4.4.2) for dealing with missing values and in-

corporation of latent variables for dealing with unknown variables, Bayesian network

cannot explicitly capture and represent ignorance. For example20, we may have good

knowledge on the probability of bronchitis B caused by dyspnoea D, hence the con-

ditional probability Pr(B|D). However, Pr(B|D̄) is not well-defined and its nature

is unknown to us. Pr(B|D̄) is not a suitable representation for the situations that

bronchitis is caused by factors other than dyspnoea. Therefore, BN is not well suited

for domains that are either not well defined or well understood. Furthermore, BN

is not conductive to knowledge revision. Refinements of a Bayesian network, e.g.

(Buntine 1991) only improve the probabilistic model by refining the network struc-

ture and parameters with additional data. However, it cannot cope with introduction

of new variables or deletion of existing variables in the system.

Second, BN is restricted to probabilities as its inputs. Many complex environ-

ments have information that is difficult to formulate into probability (i.e. does not

satisfy the axioms of probability). Proponents of BN often insist that BN “is not

20This is an example that appeared in the reviewer feedback section of Lauritzen (1988) paper
made by Smets.
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about numbers or probability” but a non-monotonic inference mechanism based on

conditional probabilities. However, in a wide range of practical domains that have

qualitative information or a mixture of qualitative and quantitative information, BN

construction heavily relies on the inputs from domain experts. Without a clear gen-

eral guideline for formulating probability for variables that lack quantitative data

support, domain experts are often reluctant to give inputs or give incorrect inputs

(due to misunderstanding of BN)21 to the required prior and conditional probabilities.

Third, automated network construction (learning) and its refinements require con-

siderable amounts of meaningful data (Zuk, Margel & Domany 2006). In many envi-

ronments, such as the robotic soccer for the Ball Passing Problem, obtaining sufficient

quantitative data is infeasible since opportunities of competing with a realistic op-

ponent are rare. This makes automated model construction impossible. Finally,

it is difficult to directly and fully integrate classical logics with probabilistic model

such as BNs, although some steps have been taken in that direction (Richardson &

Domingos 2006).

I conclude this brief survey on BN with a view that Bayesian probabilistic model is

an important and well-developed technique for managing uncertainty information and

performing non-monotonic reasoning. I adopt BN as one of the major components in

my risk management framework. However, due its inherent limitations, BN cannot

fully satisfy the framework requirements (Section 3.2) that the new framework intends

to address. I need to further explore alternative methods that can be utilised in

combination with BN in order to cover a wide range of problem domains.

4.5 Transferable Belief Model

The Transferable Belief Model (TBM) is a model for representing quantified beliefs

for uncertainty (Smets 1998). Beliefs could be quantified by credibility, subjective

21Anecdotal evidence based on the spontaneous discussion occurred in the Bayesian network work-
shop at UAI 2009. In the workshop, many participants shared their personal experiences that
majority BN users did not know how to use BN properly.
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support or strength of opinions. Beliefs are represented with probability functions

or belief functions (Shafer 1990). The core of TBM is two representation levels for

beliefs: the credal level where beliefs are entertained, and the pignistic level where

beliefs are considered and used to make decisions. Both levels could use probability

functions for quantified beliefs. However, use of probability functions is only required

when a decision or betting is involved (Ramsey 1931b). Therefore, in TBM, proba-

bility functions are usually used at the pignistic level for making decisions, whereas

belief functions are used to quantify uncertainty at the credal level. An important

advantage of using belief functions at the credal level is that normalisation of beliefs

is less of a concern. Translation between the two levels is achieved through the use

of pignistic transformation functions (Smets 1990). In the following section, we give

a formal definition of belief functions and related concepts. We provide some details

on the combination rules for belief functions and a generalised Bayesian theorem for

conditional belief functions. Finally, we discuss the necessary pignistic transformation

function for translating the belief function at credal level to the probability functions

used in the pignistic level. TBM with its combination rules and transformation func-

tions will form the basis of the quantitative risk management approach presented in

Chapter 7.

4.5.1 Belief Function

Shafer first used belief functions to model uncertain knowledge with evidence theory

(1976). From the possible world perspective: the set of all possible worlds Ω is the

frame of discernment, which is a finite set of mutually exclusive elements. Let R be

the power set of Ω consists of 2Ω atoms of Ω. A belief function is a function bel that

maps R to [0,1] (Smets 1998) such that:

1. bel(∅) = 0;

2. bel(A1∪A2∪...An) ≥
∑

i bel(Ai)−
∑

i>j bel(Ai∩Aj)..−(−1)nbel(A1∩A2∩...An),
for all A1, A2,...,An ∈ R.
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Another key concept in TBM is the basic belief assignment(bba) which is related to

the belief functions such that:

m(A) =
∑

B:B∈R,φ �=B⊆A
(−1)|A|−|B|bel(B) (4.21)

and ∑
A∈R

m(A) = 1 (4.22)

bel(A) =
∑

B:B∈R,φ �=B⊆A
m(B) (4.23)

for all A ∈ R, A �= φ; |A| is the number of atoms of R in A.

The non-negative value of m(A) for A ∈ R is called the basic belief mass(bbm)

at A. The total amount of specific support for A is provided by the sum of all bbm

given to subsets of A. The focal elements of a bba mΩ are the subsets A of Ω such

that mΩ(A) is positive. A categorical belief function on Ω focused on A∗ ⊆ Ω is a

belief function with bba mΩ that satisfies

mΩ(A) =

{
1 if A = A∗,

0 otherwise.

A categorical belief function is equivalent to a classical propositional formula; when

all bbas are categorical, the TBM is equivalent to propositional logic. Furthermore,

we can define a plausibility function pl : 2Ω → [0, 1] and commonality functions

q : 2Ω → [0, 1] from belief functions such that (Smets 1998)

pl(A) = bel(Ω)− bel(¬A) and pl(∅) = 0

q(A) =
∑
A⊆B

m(B) and q(∅) = 1,

where ¬A is the complement of A with respect to Ω. TBM also adopts the principle of

minimal commitment such that subsets of Ω do not receive more support (bbm) than

is justified. In other words, if there are many belief functions that satisfy constraints
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in a domain, the belief function that gives the smallest degree of belief to every subsets

of Ω is adopted.

Based on these basic concepts, we introduce several TBM concepts that will play

crucial roles in the new framework when dealing with (subjective) quantitative domain

information.

4.5.2 Simple Support Function

A simplified version of a belief function is called a simple support function. It consists

of only two non-null basic belief masses. One gives support to Ω; the other gives

support to a specific subset of Ω, A. We let Ax to be the simple support function

with belief mass of m(A) = 1 − x and m(Ω) = x. That is, proposition A has belief

support 1−x; and x support for all other possible worlds that do not include A. Note

that, categorical belief functions are a special class of simple support functions.

4.5.3 Vacuous Belief Function

In TBM, we can represent total ignorance with a vacuous belief function. A vacuous

belief function, usually denoted as T , is a belief function that m(Ω) = 1, hence,

bel(A) = 0 ∀A ∈ R, A �= Ω and bel(Ω) = 1. This means, belief of all possible worlds

is true and anything is possible. However, there is no specific belief in any subset of

worlds, i.e. the vacuous belief function is a categorical belief function focused on Ω.

The vacuous belief function is the least committed belief function among all belief

functions on Ω.

4.5.4 Latent Belief Structure

Another key feature of TBM is its ability to represent the conflicting belief “there

are some reasons to believe A” and “there are some reasons not to believe A” simul-

taneously. TBM uses a latent belief structure to represent such a state of belief. A



110

latent belief consists of a pair of belief functions (C,D) where C and D represent

a confidence and a diffidence component respectively. The classical belief state can

be represented by (C, T ) where T is the vacuous belief function. It has only the

confidence component. On the other hand, (T,D) has only the diffidence component

which means we only have reasons not to believe A. These pure belief states can also

be represented using simple support functions such as (Ax, T ) and (T,Ay), where

x, y ∈ [0, 1].

4.5.5 The Λ Operator and Apparent Belief

Finally, we also need to ensure that, as the overall effect, the confidence component

and diffidence component can effectively counter-balance each other. When they

are numerically equal, they cancel each other out completely and we end up with

an apparent vacuous belief function T . Consequently, a Λ operator is introduced

to transform a latent belief structure into an apparent belief function22 such that

Λ(Ax, Ax) = T . The apparent belief function is effectively a normal belief function.

In Section 7.1.1.5, we propose a modification of the Λ operator: Λ̇ which computes

the relative strength of a causal connection.

4.5.6 Rules of Combination

In most environments, it is frequently required that information from different sources

are to be combined together. A number of combination rules have been proposed to

provide different strategies for combining disparate evidences. The most well-known

combination rule is so-called Dempster’s rule of combination defined as follows:

Definition 3. Given two bbas mΩ
1 and mΩ

2 , the result from the Dempster’s rule of

22This transformation operator is limited to cover transformation into valid belief function space.
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combination of mΩ
1 and mΩ

2 is

m12(A) =
∑

X∩Y=A �=∅

mΩ
1 (X)mΩ

2 (Y )

1−K
, ∀A ⊆ Ω, (4.24)

where

K =
∑

X∩Y=∅
mΩ

1 (X)mΩ
2 (Y )

and m12(∅) = 0.

Note that 1 − K is a normalisation constant that ensures combination results

remain less than or equal to 1. In particular, K is a measure of the amount of conflict

between two bbas (or two pieces of evidence). This means that any conflict between

two pieces of evidence is discounted from the combination result. Consequently, the

Dempster’s rule of combination produces counterintuitive results when it is used to

combine two pieces of highly conflicting information (Zadeh 1979). This issue reflects

the underlying closed world assumption adopted by the combination rule asm(∅) = 0,

i.e. “nothing” is unknown. In TBM, the Dempster’s rule of combination is replaced

with an alternative combination rule, the so-called TBM conjunctive combination

rule (Smets 2007), to accommodate possible contradictory information:

Definition 4. Given two bbas mΩ
1 and mΩ

2 , the result from the TBM conjunctive

combination rule of mΩ
1 and mΩ

2 is

m12(A) =
∑

X∩Y=A

mΩ
1 (X)mΩ

2 (Y ), ∀A ⊆ Ω. (4.25)

TBM conjunctive combination rule is an unnormalised version of the Dempster’s

rule of combination. Instead of normalising the combination result, TBM conjunc-

tive combination rule adopts the Open World assumption and allows m(∅) > 0. In

addition to conflicting evidences, m(∅) could also be caused by the frame of discern-

ment is not exhaustive or there is a positive belief that the two bbas mΩ
1 and mΩ

2

do not correspond to the same object. A positive mass on the empty set indicates
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that additional analysis and knowledge is required for the domain and some evidences

should be either discounted or rejected entirely. In addition to the TBM conjunc-

tive combination rule, a disjunctive combination rule was also introduced in TBM

(Smets 1993):

Definition 5. Given two bbas mΩ
1 and mΩ

2 , the result from the TBM disjunctive

combination rule of mΩ
1 and mΩ

2 is

m12(A) =
∑

X∪Y=A

mΩ
1 (X)mΩ

2 (Y ), ∀A ⊆ Ω. (4.26)

This rule is used to combine separate pieces of evidence when it is known that

either piece holds true.

4.5.7 Conditional Belief Function and Rules of Conditioning

Analogous to conditional probability, a conditional belief function bel(B ��
�A) can be

defined to represent the degree of belief in B given a context in which A holds (Smets

1993):

m(B ��
�A) =

∑
X⊆¬A

m(B ∪X), if B ⊆ A ⊆ Ω

= 0, otherwise

bel(B ��
�A) = bel(B ∪ ¬A)− bel(¬A), ∀B ⊆ Ω

pl(B ��
�A) = pl(A ∩ B), ∀B ⊆ Ω. (4.27)

Equation 4.27 represents an unnormalised conditioning process in which supporting

mass m(B) given to B is transferred to A ∩ B by conditioning on A. A normalised

version of this rule is called Dempster’s rule of conditioning. Under TBM, this redis-

tribution of belief mass is called specialisation. Belief mass m(B) is transformed with

a specialisation matrix SA on A, i.e. mA(B) = SA ·m0(B) where m0 is the original

bbm. In fact, it has been shown that rules of conditioning are the least committed

specialisation (Klawonn & Smets 1992). Combination rules discussed in the previous

section are also cases of specialisation (Smets 1998).



113

4.5.8 Generalised Bayesian Theorem

In TBM, the Bayesian theorem of conditioning is generalised for (conditional) belief

functions. Given three frames of discernment X, Y and Θ and our knowledge of X, Y

and Θ is represented by belx(. ��
�θi) and bely(. ��
�θi) ∀θi ∈ Θ. X and Y are conditionally

independent given θi, ∀θi ∈ Θ and

belΘ(. ��
�x, y) = belΘ(. ��
�x) � belΘ(. ��
�y),

where � denotes the TBM conjunctive combination operation. We can deduce the

following with belX(X|θi) = 1 and belY (Y |θi) = 1, ∀x ⊆ X, ∀θ ⊆ Θ (Smets 1993):

belΘ(θ ��
�x) =

∏
θi∈¬θ

belX(¬x|θi)−
∏
θi∈Θ

belX(¬x|θi) (4.28)

belΘ(θ|x) = K · belΘ(θ ��
�x)

plΘ(θ ��
�x) = 1−

∏
θi∈θ

(1− plX(x|θi)) (4.29)

plΘ(θ|x) = K · plΘ(θ ��
�x)

qΘ(θ ��
�x) =

∏
θi∈Θ

plX(x|θi) (4.30)

qΘ(θ|x) = K · qΘ(θ ��
�x)

Note that | and ��
� represent normalised conditional and unnormalised conditional

respectively. They are connected through a normalisation constant K that

K−1 = 1−
∏
θi∈Θ

belX(¬x|θi) = 1−
∏
θi∈Θ

(1− plX(x|θi)).

The equations above form the so-called normalised Generalised Bayesian Theorem(GBT).

A more general form of GBT removes the normalisation constant K and becomes:

belΘ(θ ��
�x) =

∏
θi∈¬θ

belX(¬x ��
�θi)−

∏
θi∈Θ

belX(∅ ��
�θi) (4.31)

plΘ(θ ��
�x) = 1−

∏
θi∈θ

(1− plX(x ��
�θi)) (4.32)

qΘ(θ ��
�x) =

∏
θi∈Θ

plX(x ��
�θi) (4.33)
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Furthermore, if every belX(x ��
�θi) is replaced with a probability function P (.|θi) and

a priori belief is provided with a probability function P0(θ), the normalised GBT is

reduced to the standard Bayesian theorem.

4.5.9 Evidential Network

A direct application of conditional belief function and GBT is that we can construct a

graphical model similar to a Bayesian network for modelling uncertainty in a domain.

This is the so-called evidential network in which nodes represent domain variables

and edges between nodes represent the correlation between the variables. Instead of

using conditional probabilities, an evidential network uses conditional belief functions;

and conditional probability tables are replaced by tables that contain bbms from

the conditional belief functions. Table 4.7 shows an example of a conditional belief

function (extracted from Xu et al. (1994)). Suppose A and B are two variables with

frames ΘA = {a,¬a} and ΘB = {b,¬b} respectively. Θ = {ab, a¬b,¬ab,¬a¬b} is

denoted as {1, 2, 3, 4} so that subset {ab, a¬b} can be denoted as 12.

a ¬a ΘA

b m(14) +m(134) = m(23) +m(123) = 0
0.1 + 0.1 = 0.2 0.1 + 0.1 = 0.2

¬b m(23) +m(234) = m(14) +m(124) = 0
0.1 + 0.1 = 0.2 0.1 + 0.1 = 0.2

ΘB m(123) +m(124)+ m(134) +m(234)+ m(14) +m(23) +m(123)+
m(1234) = 0.6 m(1234) = 0.6 m(124) +m(134)+

m(234) +m(1234) = 1

Table 4.7: An example of a conditional belief function represented in a table of bbms.

Evidential networks can be divided two subcategories, namely networks with undi-

rected edges and networks with directed edges. Reasoning in undirected networks uses

a valuation-based system (Shenoy & Shafer 1990). Inferences are drawn through joint

valuation by combining all the valuations on the joint product space and/or marginal
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valuation on a subdomain by variable elimination. This generalised inference ap-

proach appears as the jointree algorithm in Bayesian network. For directed evidential

networks, a more computationally efficient algorithm was developed based on GBT

and the TBM disjunctive combination rule (Yaghlane & Mellouli 2008). In practice,

modelling reasoning is frequently accompany by decision making. It is more useful

to convert an evidential network into a probabilistic model and utilise inference algo-

rithms developed for Bayesian network, since those algorithms are often more mature

and computationally efficient. In the next section, we discuss the transformation from

belief functions to probabilities.

4.5.10 Pignistic Transformation

When we are required to make decisions that take risk into consideration, beliefs

at the credal level must be transformed into a probability functions so that they

can be used to select the best decision. Such a transformation is called a pignistic

transformation. The final probability function, the so-called pignistic probability

function, is a function of the original belief function (Smets 1990), denoted as BetP :

BetP (w) =
∑

A:w⊆A∈R

m(A)

|A|(1−m(∅)) for any atom w of R, (4.34)

where |A| is the number of atoms of R in A and

BetP (A) =
∑

w:w∈At(R),w⊆A∈R
BetP (w) ∀A ∈ R.

The pignistic transformation depends on the structure of the frame from which the

(betting) decision is made. The betting frame A is a set of atoms in R on which stakes

are assigned. A stake given to each atom is independent of the stakes given to the

other atoms. A betting frame R is defined and an appropriate stake is assigned to

each atom of R in order to define a pignistic transformation for a belief model at the

credal level. Different betting frames will lead to different pignistic transformation

functions and betting frames should be defined according to some utility function.
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Note that, as a special case, if probability is used as the belief function on the credal

level, the pignistic transformation is an identity transformation (Smets 1998). For

details of pignistic transformation, justifications for having a two level model and

implications of the pignistic transformation, we point readers to the works of Smets

(1990, 1988, 2005).

4.5.11 *TBM versus Probabilistic Model

Transferable Belief Models are closely related to probabilistic models, i.e. Bayesian

network. In particular, directed evidential networks closely resemble BN graphically.

However, they are significantly different in several key areas:

• BN provides one level modelling solutions that solely rely on (conditional) prob-

abilities, whereas TBM is a two-level solution that uses belief function for mod-

elling and probability for decision making. In other words, TBM separates the

modelling and decision making process.

• Because of the use of probability, the fundamental assumption that BN uses is

the Closed World assumption; it cannot model ignorance appropriately. TBM,

on the other hand, is based on the open world assumption and can model both

partial and complete ignorance. Being able to model ignorance leads to a more

sensible solution under some circumstances (Smets 1988). In fact, we regard

this as the key advantage that TBM has over the BN, since we do not assume

an agent has a complete knowledge of the domain (Framework Requirement 2

in Section 3.2).

• Models in BN can be either constructed manually with inputs from human

experts or constructed automatically from domain data. Automated model

construction relies on abundant quantitative domain data whereas the manual

construction relies on subjective probabilities generated from experts, i.e. it is

assumed that human expert can generate probability reliably. TBM do not have
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algorithms for automated model construction directly from data. Instead, TBM

focuses on utilising subjective degrees of belief, i.e. belief function, normally

acquired from human experts. The use of belief functions puts less demands on

human experts and can handle unknowns and conflicting inputs from different

sources through appropriate use of combination rules. More importantly, TBM

offers a systematic way to transform belief functions to subjective probabilities.

Bayesian networks lack a similar formal strategy to capture knowledge from

human experts.

Compared with TBM, Bayesian probabilistic models have received significantly

more research attentions in the past three decades. Accordingly, its modelling and

reasoning algorithms are mature and efficient; its related software tools are well de-

veloped. However, BN should be not applied without careful consideration of the

respective domain causal relationships are modelled. TBM, as a generalised belief

modelling framework, is best for modelling in domains that have characteristics un-

suited for BN. Specifically, domains that are not well understood, and/or do not have

sufficient quantitative information and the main sources of domain knowledge are hu-

man experts with different opinions. We conclude this section with a view that TBM

and probabilistic models complements each other. In the risk management frame-

work, we shall adopt appropriate modelling strategies based on the characteristics of

problem domains.

4.6 Possibility Theory

The previously discussed approaches for managing incomplete and uncertain knowl-

edge are all specialised in dealing with either qualitative or quantitative information

or beliefs. None of them is designed to take account of both qualitative and quantita-

tive knowledge. Possibility theory, initially introduced by Zadeh (1978) and further

developed by Dubois and Prade (1988), straddles between the qualitative/quantita-

tive divide and can be utilised to model problems in complex domains. In fact, the
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overall possibility theory consists of two separate theories, one is qualitative and the

other is quantitative. Both theories are built upon a common notion of possibility and

share the same kind of set-functions. However, their operations, namely, conditioning

and combination mechanisms, are distinctively different. The qualitative possibility

theory is closely related to the non-monotonic reasoning, whereas the quantitative

possibility theory can be regarded as a special case of belief function and probabil-

ity in general. Therefore, we still need to select appropriate possibility theory for

the purpose of modelling uncertainty in risk, depending on the problem domain. In

this section, we review the key concepts of the possibility theory and discuss their

implications and possible usage in the new risk management framework.

4.6.1 Possibility Distributions

A key concept in possibility theory is a possibility distribution, commonly denoted as

π, which is defined as a mapping from a set of possible situations U to a bounded total

ordered scale (L,<). The referential set U is a finite set of mutually exclusive situa-

tions which is the same as the frame of discernment in belief functions23. The total

ordered scale (L,<) could be on any scale interval that has maximum and minimum

operations, and an order-reversing map function24. Typically, a unit interval [0, 1] is

used as the ordered scale. A possibility distribution is generally associated with a

random variable x ranging within U , denoted as πx, that represents the knowledge

about the state of affairs distinguishing what is plausible from what is less plausible.

Specifically, πx(u) = 0 means x = u is impossible, whereas πx(u) = 1 means x = u

is totally possible. The degree of possibility for x = u is reflected in the values of

πx(u) between 0 and 1. A possibility distribution is normalised, if ∃u, πx(u) = 1. This

means, the referential set U represents a complete range for x such that at least one

element of U is fully possible.

Using a possibility distribution, we can represent a state of complete knowledge

23In this thesis, we only consider the finite cases.
24The order-reversing operation ensures the ordering among the possibility degree is meaningful.
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by E = u0 for some u such that πx(u0) = 1 and πx(u) = 0 for u �= u0, i.e. only

x = u0 is possible. On the other end of the scale, a state of complete ignorance can

be represented by E = U and πx(u) = 1, ∀u, i.e. every u is totally possible. Further-

more, given two possibility distributions, πx and π
′
x, for the same variable x such that

πx < π′
x, then πx is more informed about values of x and hence puts more restrictions

on the plausible values of x than π′
x. πx is said to be more specific than π′

x, and

πx makes π′
x is redundant. Based on this notion, a principle of minimal specificity

was introduced (Dubois & Prade 1987). It states that for a given set of constraints,

the best representation of the state of knowledge is the the least specific possibility

distribution that is compatible with the constraints. This distribution assigns the

maximum possibility degrees to the elementary states of affairs in agreement with

the constraints. This principle of minimal specificity plays a crucial role in the com-

bination and conditioning of beliefs in the possibility theory, in the same spirit as the

principle of minimal changes in Belief Revision.

4.6.2 Possibility and Necessity Measures

In possibility theory, the uncertainty or incompleteness of information is captured by

means of set-functions and assigning degrees of confidences to the occurrence of the

associated events. The extent of the information described by πx that is consistent

with the existing knowledge is given by a possibility measure defined as:

Π(A) = maxu∈Aπx(u) (for finite cases).

The value of Π(A) equals to the greatest possibility degree one element of A can

obtain according to πx. This possibility measure conforms to the maxitivity axiom

(similar to probability measure conforms to the axioms of probability)

Π(A ∪ B) = max(Π(A),Π(B)), (4.35)

along with Π(∅) = 0 and Π(U) = 1. A counterpart to a possibility measure is

a necessity measure which represents the degree of certainty of A. The necessity
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measure is defined with possibility measure of ‘not A’ so that

N(A) = 1− Π(¬A),

since A ∪ ¬A = U and if the occurrence of ‘not A’ is not possible then A is certain.

This duality relationship between possibility and necessity is a graded version of

possibility and necessity found in modal logics, i.e. �A = ¬♦¬A. It represents a

weak relationship between Π(A) and Π(¬A) that is markedly different from the strong

correlation between Pr(A) and Pr(¬A) in probability theory. That is, while N(A) =

1 means that A is certainly true; N(A) = 0 means A is not certain but could still be

possible, i.e. Π(A) can be greater than zero. On the other hand, Π(A) = 1 expresses

A is entirely possible but says nothing about Π(¬A). The strong Pr(A)+Pr(¬A) = 1

relation found in probability theory reflect the ‘closed world’ and additive nature of

the theory. Possibility theory does not share the same characteristics. It is also easy

to show that N(A) > 0 implies Π(A) = 1 and Π(A) ≥ N(A). Necessity measures

also satisfy the dual of the maxitivity axiom, i.e.

N(A ∩ B) = min(N(A), N(B)).

4.6.2.1 Comparative Possibility Relation

In qualitative possibility theory, the uncertainty relations among events is represented

using the so-called comparative possibility relation ≥Π on a set of events A, B etc.

A ≥Π B means A is more plausible than B, i.e. A is more consistent with the available

knowledge than B. Comparative possibility relation is functionally equivalent to the

likelihood order we use to encode uncertainty relation among a set of possible worlds

described in section 2.3.2. Technically, comparative possibility relation can be defined

by the following axioms:

1. A ≥Π B or B ≥Π A. (Completeness)

2. A ≥Π B and B ≥Π C, then A ≥Π C. (Transitivity)
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3. U >Π ∅, where >Π is the strict part of ≥Π ordering.

4. U ≥Π A ≥Π ∅.

5. A ≥Π B → C ∪ A ≥Π C ∪ B.

Note that axiom 5 means if A is at least consistent as B with the available knowledge,

it implies that A or C is at least consistent in relation to B or C. It has been shown

that the only set-functions that satisfy the comparable possibility relation axioms are

possibility measures (Dubois 1986).

A counterpart to the comparable possibility relation is the qualitative necessity

relation defined by duality as A ≥N B ≡ ¬B ≥Π ¬A. Qualitative necessity relations

are closely related to the epistemic entrenchment relation in AGM based Belief Re-

vision (Dubois & Prade 1991). Information with higher necessity is less easily given

up than the knowledge with less necessity. In parallel, qualitative possibility relation

is closely related to revision functions. Suppose K ′ = K ∗A, both A and B are in K ′

if and only if A ∧ B >Π A ∧ ¬B. In other words, B is in K ′ if B is more consistent

with input A than ¬B. Belief change operations in AGM based BR correspond to

possibility theory operated on integers (Dubois, Moral & Prade 1998). An Ordinal

Epistemic Function is essentially a necessity measure and adjustment process can be

cast into possibility framework by representing an epistemic state as a finite set of

weighted formulas with a lower bound of necessity degree (Benferhat, Dubois, Prade

& Williams 2002). Furthermore, under the qualitative possibility theory, a System

of Spheres (Grove 1988) that represents a nested set of possible worlds can be rein-

terpreted as the level cuts {u|μW (u) ≥ α} = Wα, α ∈ L − {0}, of a fuzzy set W of

possible worlds based on the available knowledge, where μW is the member function

of W . We can associate a possibility distribution π with a total preorder ≥π such

that u ≥π u′ ≡ π(u) ≥ π(u′). This induces a well-order partition of U , namely,

{E1, ..., En+1} with the following property,

∀u ∈ Ei, ∀u′ ∈ Ej, π(u) > π(u′) iff i < j for i < n+ 1, j > 1.

En+1 is a subset of impossible states with π(u) = 0.
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The strong connection between the qualitative possibility theory and Belief Re-

vision suggests that Belief Revision, particularly when it is cast into the possibility

framework, should play an important role in managing uncertainty caused by incom-

plete domain knowledge.

4.6.2.2 Conditioning and Combination in Qualitative Possibility

A conditional possibility measure is defined with a set function Π(·|A) in which

∀B,B ∩ A �= ∅,Π(A ∩ B) = min(Π(B|A),Π(A)).

With the principle of minimal specificity of the possibility theory, we have the least

specific solution, when B ∩ A �= ∅, as

Π(B|A) = 1, if Π(A ∩ B) = Π(A)

= Π(A ∩ B), otherwise. (4.36)

Conditional possibility measures closely resemble conditional probability without the

renormalisation process. Instead, conditional possibility measures simply move the

most plausible elements of A to nominal 1. The corresponding possibility distribution

is defined as

π(u|A) = 1, if π(u) = Π(A), u ∈ A

= π(u), if π(u) < Π(A), u ∈ A

= 0, if u /∈ A. (4.37)

By duality, conditional necessity measure is defined as N(B|A) = 1 − Π(¬B|A).
A direct result from this definition is that Π(A) > 0, N(B|A) > 0 ↔ Π(A ∩ B) >

Π(A ∩ ¬B). This means, B can only be accepted according to A if and only if B

is more plausible than ¬B when A is true. This possibility conditionalisation is ex-

tended to fuzzy sets (A,α) as uncertain inputs where α is a degree of necessity, for

Belief Revision (Dubois & Prade 1997). In particular, it has been shown that adjust-

ment (Williams 1994b) can be reformulated in the form of possibilistic conditioning
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(Benferhat, Dubois, Prade & Williams 2010). The combination of qualitative possi-

bility distributions for a variable requires a possibility scale common to all possibility

distributions. Combining comparative possibility distribution is not possible because

of the impossibility of combining comparative relation (due to Arrow’s impossibility

theorem (Arrow 1950)). There are two modes of combination of possibility distri-

bution on a common scale L, namely conjunctive and disjunctive modes. They are

equivalent to an intersection and union of fuzzy sets respectively. Specifically, for two

possibility distributions π and π′, we have

π∩ = min(π, π′)(conjunctive)

π∪ = max(π, π′)(disjunctive)

The conjunctive mode corresponds to the pooling together of fully reliable informa-

tion from two sources, while removing elements not considered to be possible in one

source. The conjunctive combination rule leaves the resultant π unnormalised if the

sources are in conflict. In this case, a qualitative normalisation process is required

to move the possibility values that have greatest possibility degree 1. The disjunc-

tive combination rule simply combines all available information. This potentially

leaves faulty information hidden within the result. The disjunctive combination rule

is the only one that is consistent with the axiom of possibility theory. Conjunctive

and disjunctive combination rules closely resemble the conjunctive and disjunctive

combination rules for belief functions.

4.6.2.3 Quantitative Possibility Measure

In quantitative possibility theory, a numerical possibility measure (and the corre-

sponding possibility distribution) is the same as the possibility measure defined in

qualitative theory if U is finite. When U becomes infinite, the equivalence breaks

down since the numerical possibility measure no longer conforms to the finite maxi-

tivity axiom Equation 4.35. An infinite maxitivity axiom must be adopted instead:

Π(
⋃
i∈I
Ai) = supi∈IΠ(Ai) (4.38)
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Therefore, a possibility distribution π exists on U such that Π(A) = supu∈Aπ(u), and

N(A) = 1−Π(¬A). The meaning of numbers in numerical possibility measures differ

significantly to the qualitative case. In the qualitative theory, the numbers have no

meanings up to a monotone transformation; whereas the numbers in the numerical

possibility measure have meanings in absolute numerical values. The interpretation

of the numbers in quantitative possibility measures can take several different forms.

In particular, a quantitative necessity measure is interpreted as a belief function that

gives minimum support in TBM (Smets & Kennes 1994); a numerical possibility mea-

sure can be viewed as a upper bound of an unknown probability in generalised prob-

ability theories. However, we should note that a possibility measure is significantly

different from a probability measure in various aspects so it cannot be subsumed un-

der probability. Most notably, possibility measures are non-additive. The necessity

measure and the possibility measure are weakly related through N(A) = 1−Π(¬A);
whereas 1− Pr(¬A) is Pr(A) in probability theory. Possibility theory makes a clear

distinction between what is believed (necessity measure) and what is possible (pos-

sibility measure); whereas probability theory does not. These discrepancies exist

between the quantitative possibility theory and probability theory are due to the

closed world assumption on which probability theory is based. Quantitative possi-

bility theory is more closely connected with belief functions and TBM in terms of

handling incomplete domain information.

4.6.2.4 Conditioning and Combination in Quantitative Possibility

The key differences between qualitative and quantitative possibility theories are in

their respective conditioning and combination operations. The qualitative condition-

ing is based on the min operation which is problematic in the infinite case due to

lack of continuity, as Equation 4.36 implies that a → b = 1 if a < b and a → b = b

if a > b. Instead, the quantitative conditioning is a product-based conditioning that
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closely resembles the conditioning in probability theory:

∀B,B ∩ A �= ∅,Π(B|A) = Π(A ∩ B)

Π(A)
, (4.39)

if Π(A) �= 0. The corresponding conditional possibility distribution is

π(u|A) =
π(u)

Π(A)
, ∀u ∈ A

= 0, otherwise. (4.40)

The dual conditional necessity measure is N(B|A) = 1−Π(¬B|A). This corresponds
to Dempster’s rule of conditioning specialised for possibility measures (Shafer 1976).

In terms of combination operations for numerical possibility measures, the basics

of the conjunctive and disjunctive combination rules used in qualitative case still

apply with an additional normalisation. If π and π′ are two possibility distributions

to be combined to form π∩, the the normalised conjunctive rule is

π∩ =
min(π, π′)

supu∈Umin(π(u), π′(u))
.

This rule can be considered as an extension of Dempster’s rule of conditioning which

can be recovered with π′ = uA. The dual disjunctive combination rule can be ex-

pressed in the form of 1 − (1 − a) ∗ (1 − b) where ∗ is the conjunctive combination

operation. It can be used without normalisation for merging information from two

unreliable sources.

4.6.3 *Connecting Qualitative and Quantitative Uncertainty

From the previous sections, the possibility framework provides two tightly connected

techniques for both qualitative uncertainty modelling and quantitative uncertainty

modelling based on a common concept of possibility measure (and corresponding

distribution). It demonstrates that a set of possible worlds in a comparative possi-

bility relation, or a functionally equivalent likelihood preorder is a viable solution for

encoding uncertainty qualitatively. Belief Revision is functionally important for man-

aging uncertainty in a knowledge base with incomplete domain information. On the
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quantitative side, the numerical possibility measure can be viewed as a special case

of belief function which is subsumed under the transferable belief model. Possibility

theory offers the crucial theoretical insight into how we may bridge qualitative and

quantitative uncertainty, and therefore risk, modelling. Now I turn my attention to

how we may capture and model causal relations found in a domain.

4.7 Capturing Causal Connections

One of the key requirements for the risk management framework is to capture the

causal connections among the domain factors/variables associated with risks in a tar-

get domain. Therefore, we need effective method(s) to capture the causal structure

within the domain. Causality and causal relations have been long studied and debated

by philosophers and AI theoreticians (Davidson 1967, Spohn 1983, Pearl 2000, Bon-

nefon, Neves, Dubois & Prade 2008). I do not intend to add to this debate, but to

review two theoretical methods that may be used to distill causally based connections

between domain variables from the knowledge of human experts and quantitative data

respectively.

4.7.1 Ramsey Test

The Ramsey Test is a test for conditionals derived from the work of F.P. Ramsey

(1931a). It gives a criterion for the rational acceptance of epistemic conditionals “if

A then B”:

A conditional “if A then B”, denoted as A > B, is rationally accepted in

a given state of belief K if and only if B is accepted in K after the K

is revised with A as a new piece of information, i.e. K ∗ A.

The epistemic conditional of the hypothetical modification of K with A must

precede the inclusion of B in K captures the belief that A is an epistemic reason for

B. It is only accepted with the hypothetical modifications of beliefs about the world,
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i.e. B ∈ K ∗ A (assume K is a belief set, A and B are sentences). In other words,

the Ramsey Test can be used to capture the subjective belief that A is a cause of

B. It fits naturally with our goal of capturing the subjective knowledge (or beliefs)

of the causally based inference relationships from the domain experts for the purpose

of modelling risk. Furthermore, the Ramsey Test is such an intuitive criterion that

it can be translated into direct queries for experts to obtain domain knowledge (see

Section 7.1.1.1 for example).

4.7.1.1 Compatibility with Belief Revision

The formulation of the Ramsey Test relies on the revision of a given belief set with the

antecedent of the conditional. However, the standard Ramsey Test has be shown to

violate certain AGM Belief Revision postulates (Gärdenfors 1988). Under the AGM

paradigm, the Ramsey Test takes a following form:

For every belief set K, A > B ∈ K if only if B ∈ K ∗ A.

This implies that Belief Revision has to be a monotonic function. That is, if a belief

set G is included in another belief set K, then G ∗ A is also included in K ∗ A. This
monotonicity is in direct conflict with the combined effect of the expansion postulates

(K + 1), (K + 2) and (K + 3) (Section 4.3.1.2) and leads to the so-called impossi-

bility theorem (Gärdenfors 1988). A number of approaches have been proposed to

resolve this inconsistency between the Ramsey test and Belief Revision through ei-

ther weakening the Ramsey test (Lindström & Rabinowicz 1992) or weakening the

AGM postulates (Lindström & Rabinowicz 1998). A third approach is to investigate

the validity of the underlying assumption used in the impossibility theorem. That is,

the assumption that an epistemic conditional such as A > B should be a member of

the belief set K. According to Levi (1988), the evaluation of the consequent of an

epistemic conditional A > B, i.e. B, is not based on the current belief set K; but on

the potential revision of K with the antecedent A. Therefore, the conditional should

not belong to the belief set K but belong to an associated corpus RL(K) of epistemic



128

appraisals. Levi defines RL(K) to be the smallest set of sentences that satisfies the

following conditions:

1. K ⊆ RL(K);

2. if B ∈ K ∗ A, then A > B ∈ RL(K);

3. if B /∈ K ∗ A, then ¬(A > B) ∈ RL(K);

4. RL(K) is closed under truth-functional consequence.

RL(K) contains all the beliefs of an agent together with the epistemic conditionals

that represent the evaluation of the agent’s beliefs. Based on RL(K), a pair of

modified Ramsey Tests were developed.

(Levi’s Ramsey Test) For any sentence A, B and for any belief set K,

A > B is accepted in RL(K) if and only if B ∈ K ∗ A.

(Levi’s Negative Ramsey Test) For any sentence A, B and for any belief set K,

¬(A > B) is accepted in RL(K) if and only if B /∈ K ∗ A.

The standard monotonicity is not derivable from the Levi’s Ramsey Test. Even

when we introduce a weaken version of monotonicity that is permitted by the Levi’s

Ramsey Test25, the situation which gives rise to the impossibility theorem is (itself)

impossible. The Levi’s version of Ramsey Test solves the incompatibility problem

between the standard Ramsey Test and AGM Belief Revision postulates by provid-

ing a non-propositional interpretation to epistemic conditionals and separating them

from the classic belief sets. I adopt the same approach in capturing experts’ causal

domain knowledge in our knowledge engineering risk modelling process (see Chapter

6). That is, I treat the epistemic conditionals that represent the experts’ beliefs of

the domain causal inference relations separately from the factual domain knowledge

in the risk modelling process. In fact, the risk model in the new framework is largely

built upon epistemic conditionals; and maintained through the manipulation of these

conditionals. I will provide detailed discussions in the following chapters.

25That is, for all consistent belief sets G,K and sentence A, if RL(G) ⊆ RL(K) then G∗A ⊆ K∗A.
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4.7.2 Inductive Causation

Instead of solely relying on subjective causal knowledge from human experts, it is

possible to extract causal structures from the available statistical data through a

so-called inductive causation (Pearl 2000) process under the probabilistic/Bayesian

network modelling framework. A causal structure is a DAG in which each link rep-

resents a direct functional relationship between two domain variables. How each

variable is causally inferred by its parents is captured in a form of linear structural

equation (Pearl 2000, p.27) such that changes in the parent(s) has deterministic effect

on the variable.

Such a causal structure can be inferred from a minimal and stable probabilistic

model and reconstruct the structure of the corresponding DAG. A minimal model

is the model with the simplest structure consistent with the statistical domain data.

Stable means that any changes in the probability distribution does not introduce

extraneous conditional independences in the network. It turns out that there is an

unique minimal causal structure for every distribution26 (Pearl 2000). A partial di-

rected DAG, or a pattern, can be generated from a stable probability distribution

using a so-called IC algorithm (Algorithm 14) based on the concept of intervention.

That is, a causal relationship between two variables can be inferred through a third

variable that acts as a virtual external control to influence or manipulate the be-

haviour of the two variables. The IC algorithm provides a systematic way to find the

variables that qualify as virtual controls. Note that, Spirtes et al. (1991) provides a

systematic way of searching for the set Sab in the second step of Algorithm 14 and

an improved IC algorithm that handles latent variables is listed in Pearl (2000, p.53).

The partial directed graph generated from the application of IC algorithm reveals

the underlying causal structure of an existing probabilistic model. Specifically, edges

that are unidirectional are genuine causation; bidirectional edges are spurious asso-

ciations; whereas undirected edges are relationships with their causation relations

26Up to d-separation equivalence and assuming there is no hidden variables.
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undetermined. Therefore, we can utilise the IC algorithm to extract causal struc-

tures from probabilistic models or validate an existing Bayesian network is indeed a

causal model by comparing the causal structure generated from IC algorithm with

the existing structure.

Finally, I would like to reiterate the key difference between the Ramsey Test and IC

algorithm: causal knowledge distilled from experts using the Ramsey Test represents

the subjective belief of a causal relationship between two variables; whereas the IC

algorithm extracts factual causal knowledge from probabilistic models that derived

from statistical data. Both methods shall be adopted in the new risk management

framework only in the situations that are compatible with their inherent natures.

4.8 *Summary

In this chapter, I have reviewed a number of important theoretical techniques in

modelling knowledge and managing (numerical) uncertainty in a problem domain.

Classical logic such as the propositional/first order logic uses a symbolic system to

represent conceptual domain knowledge. They provide the basic building block fa-

cility for construction of a formal domain model. However, classical logic lacks the

capability to revise (and update) knowledge bases consistently. I then reviewed three

prominent non-monotonic logics, namely default logic, autoepistemic logic and cir-

cumscription. All three approaches have their individual merits and shortcomings.

One common problem they all share is the high computational cost, particularly when

there are inconsistencies in the acquired domain knowledge. They are also not con-

ductive to frequent, iterated knowledge revision/update and do not meet the critical

requirement of our risk modelling framework. In light of this analysis, I gave a de-

tailed review of a fourth approach and showed that Belief Revision is an intuitive and

relatively simple mechanism that can be used to construct and maintain a consistent

knowledge model of risk for an intelligent agent. Therefore, Belief Revision will play a

critical part in the qualitative risk modelling and management for the new framework
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Algorithm 14 Inductive Causation (IC) Algorithm

Require: A stable probability distribution P̂ on a set of variables V .
Ensure: A partial directed graph, i.e. pattern, compatible with P̂ .
1: for all pairs of variables in {(a, b)|a, b ∈ V, a �= b} do
2: search for a set Sab such that a and b is conditionally independent with respect

to Sab.
3: if Sab is not found then
4: connect a and b with an edge in an undirected graph G.
5: end if
6: end for
7: for all pairs of nonadjacent a and b in G do
8: if a and b has a common neighbour c then
9: if c /∈ Sab then
10: add arrow head at c as a→ c← b.
11: end if
12: end if
13: end for
14: for all undirected edges a — b in graph G do
15: if there is a c→ a such that c and b are not adjacent then
16: change the edge to a→ b.
17: end if
18: if there is a chain a→ c→ b then
19: change the edge to a→ b.
20: end if
21: if there are two chains a—c → b and a—d → b such that c and d is not

adjacent then
22: change the edge to a→ b.
23: end if
24: if there are two chains a—c → d and c → d → b such that c and d is not

adjacent and a and d are adjacent then
25: change the edge to a→ b.
26: end if
27: end for
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that will be discussed in the next chapter.

I reviewed two important and related knowledge modelling and reasoning tech-

niques, i.e. Bayesian Network and Transferable Belief Model. Both techniques model

numerical uncertainty. BN relies on (conditional) probability and works under Closed

World assumption, i.e. it assumes a complete domain knowledge; whereas TBM uses

mainly belief function and can handle ignorance. Models built in TBM can be trans-

lated to a BN model with a formal transformation function, the pignistic transforma-

tion function. I use both techniques in the quantitative part of the new framework. I

also reviewed possibility theory. It provides two separate schemes for modelling uncer-

tainty either qualitatively or quantitatively based on a common concept of possibility

(distribution). Possibility theory is not adopted directly in the current form of new

framework because the convenience of using integer in BR is preferred and readily

usable (pignistic) transformation function available in TBM. Nevertheless, possibility

theory does provide a strong theoretical support to the hybrid approach used in the

framework.

Finally, I reviewed two techniques that can be used to distill causal knowledge

from domain experts or probabilistic domain models. I use the Ramsey test to cap-

ture experts’ beliefs in the causal inference relations through simple queries. On the

other hand, the inductive causation algorithm provides a systematic way to recover

causal structures from Bayesian probabilistic models through structural analysis of

the models. Both methods ensure the final product generated from the risk modelling

process is a causally connected model that can be used to assess and reason about

the domain risks. I am now ready to present an overview of HiRMA and give a broad

discussion of the techniques I utilise for the new risk management framework.



Chapter 5

An Overview of HiRMA

The in-depth analysis of risk as a formal concept for intelligent agents and the ex-

tensive review of the key knowledge representation and management methods have

prepared the solid foundation for me to develop a generalised risk management frame-

work for agents. In this chapter, I give a top-level introduction of the Hybrid, iterative

Risk Management framework for Agents, HiRMA. I will first present the architecture

of the framework. A high level discussion on the theoretical techniques adopted at

three abstraction layers and the theoretical interrelationships between these methods

will be provided. Next, I will give an overview of a typical iterative risk modelling

and management process under HiRMA. This overview prepares us for the detailed

formal presentation of HiRMA beginning with an introduction of a simple domain

risk analysis technique based on the generalised risk concept discussed in Chapter

2. This knowledge engineering process is the first step in the risk management pro-

cess. My technique is significantly influenced by the analysis techniques developed

by Aven(2008) and the recommendations from ISO 31000 (2009a). I will use the two

benchmark problems to illustrate the analysis technique. The final section of this

chapter is the formal theoretical assumptions that underpin the specific risk mod-

elling and management approaches developed in this thesis. Details of these methods

will be presented in Chapter 6 and 7 respectively.
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5.1 Three-level Framework Architecture

In order to provide a general solution for disparate domains, we need to deal with

domain knowledge that is either qualitative or quantitative in nature (Requirement

4 Section 3.2). Under HiRMA framework, domains are grouped under three ab-

stractions based on the characteristics of their domain knowledge. Corresponding

modelling methodologies are organised accordingly, as shown in the following table.

Abstract Theoretical Model Knowledge Model Application
Level Foundation Revision Belief Value Type Level
High Propositional/ Belief Qualitative Deterministic Strategic

Possibilistic Revision Semi- Level
Logic deterministic

Medium Transferable Rank Semi- Semi- Tactical
Belief Model Revision Qualitative/ deterministic/ management

Quantitative Probabilistic Operational
level

Low Bayesian Model Quantitative Probabilistic Operational
(causal) Selection level
Network

Table 5.1: A high-level theoretical architecture of HiRMA.

High Level Abstraction: Relevant domain knowledge, e.g. domain environment,

is categorical and cannot be easily quantified. Consequently, the corresponding

domain model for risk must be qualitative in nature. The domain information

is mostly distilled from the abstract knowledge from domain experts. The resul-

tant model is used for qualitative risk assessments and strategic decision making

in which no specific “numbers” are involved. A good example is risk modelling

and assessment work required for an international company prior to its deci-

sion on making strategic investments or entering into a new market in a foreign

country. Modelling and assessment of the country’s political and commercial

environments are highly qualitative and the final assessment and decision would
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be categorical. The approach developed in Chapter 6 is specifically designed for

this type of problem domain.

Medium Level Abstraction: At this level, domain knowledge is a mixture of

qualitative information and quantified opinions from domain experts. The re-

sultant model may be used for either qualitative or quantitative risk assessment

and related decision making. The ball passing problem is a representative prob-

lem falls under this category. The Transferable Belief Model (TBM) based

modelling approach presented in Chapter 7 is designed for domains at this ab-

straction level.

Low Level Abstraction: Domain information is raw numerical data received di-

rectly from the sensors of an agent or other data collection mechanisms. Statis-

tical analysis can be performed on the data. The framework uses modelling and

reasoning techniques developed in Bayesian network and produces probabilistic

(causal) model for risk evaluation and related decision making.

Table 5.1 gives a high level summary of the key domain characteristics and the

corresponding techniques used in HiRMA organised in three knowledge abstraction

levels.

Figure. 5.1 shows the theoretical inter-relational mapping of the chosen meth-

ods under the context of HiRMA. Specifically, HiRMA framework accommodates a

wide spectrum of problem domains. Risk models developed for domains at the high

abstraction end are open world qualitative models. The underlying uncertainty rep-

resentation for qualitative risk is a System of Spheres of possible domain models that

are captured using classical logic. Belief Revision is the main mechanism for risk

model construction (and modifications). At the other end of the spectrum, i.e. do-

mains in low level abstraction, risk models are closed world quantitative models. I

use probability to represent the underlying uncertainty for quantitative risks. Tech-

niques developed for probabilistic Bayesian models are used for risk modelling and

management. For domains in the medium abstraction, HiRMA uses belief functions
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Figure 5.1: High level theoretical relationships between qualitative and quantitative
modelling approach for risk modelling and management.

to represent uncertainty for domain risk. The Transferable Belief Model is the basis

for risk model at the abstraction level. I developed a corresponding rank revision

mechanism for risk model construction and revisions (see Chapter 7). A TBM based

risk model can be transformed into a qualitative model or quantitative model1. This

provides the crucial linkage between the risk models in high abstraction and the

models in the low abstraction. Although, possibility theory is not directly utilised in

HiRMA, it provides a strong theoretical connection for the methods used in high and

medium level abstractions. Finally, every knowledge representation and management

method utilised in HiRMA can trace its root to Possible Worlds paradigm and is in

accordance to the fundamental analysis of risk in Chapter 2.

1It may require additional knowledge inputs.
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5.2 Iterative Risk Modelling Process

At the heart of the HiRMA framework is an iterative risk modelling process, Figure

5.2, that can integrate new information with the existing domain knowledge while

maintaining the consistency of the knowledge base. This modelling process ensures

that an agent can continuously revise and improve its knowledge of the domain. This

process represents the overarching strategy of improving an agent’s risk management

capability in HiRMA. It reflects my fundamental thinking in dealing with risks, more

specifically the uncertainties associated with risks. That is, risks arise from imperfect

understanding of a problem domain. The ultimate goal of risk management is to

improve an agent’s ability to minimise risks in its task domain. By improving the

agent’s knowledge of the problem domain, the uncertainties associated with risks is

inherently reduced. The agent can make more accurate assessments and make bet-

ter decision(s) in dealing with the risks. This becomes particularly important for

complex domain environments that evolve with time. To deal with changing domain

environment, there are often separations between model revision, learning and update

in uncertainty modelling and management literature. The iterative modelling process

(and algorithms) in HiRMA essentially unifies model learning and revision together.

A risk model in HiRMA framework captures the causally based relations that relevant

for a domain based on the latest domain information. As for environmental changes

due to actions, HiRMA takes a “passive” approach and does not model actions ex-

plicitly. In fact, actions are treated as part of an initial context and risk analysis and

modelling are carried out in the initial context (see the following section and Chapter

6 and 7). New domain environment changes will trigger a reanalysis of domain and

new initial contexts will be created. This follows the conventional approach in the

mainstream risk analysis literature.

Separate risk modelling and management mechanisms are developed in correspon-

dence to the domain knowledge abstractions discussed in the previous section. In

particular, the iterative modelling mechanisms work particularly well at medium and

high abstraction levels of the framework under the Open World Assumption. The
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Figure 5.2: A typical risk modelling and management process in HiRMA (at medium
domain knowledge abstraction).

Belief Revision based model revision algorithm and rank revision with combination

of belief functions (discussed in the following chapters) can be used for initial model

construction and subsequent model modifications. A clear (and natural) separation

of domain modelling and decision making in which domain models are developed and

maintained in an open world setting that permits missing knowledge and the model

is “collapsed” down to a closed world setting through formal model translation mech-

anisms when decision making is required. This open to closed model transformation

process captures another fundamental thinking in dealing with risk in a complex

evolving environment. That is, we recognise that an agent does not have complete

knowledge of its domain under most circumstances. The agent shall keep an open

mind and improve its knowledge continuously. However, when it is time to take a

concrete action, i.e. doing a risk assessment or making decisions, it shall base its

actions on what it knows best. The model translation from an open world to a closed

world setting is the key that connects modelling process and decision making process

together. In particular, the pignistic transformation from TBM (Section 4.5.10) en-

ables the connection between the medium abstraction and the low abstraction in the
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framework. I will present the details of these mechanisms in the following chapters.

5.3 A Knowledge Description Template for Risk

Analysis

In order to understand a problem domain and model its associated risks, we must be

able to develop an unambiguous description of the domain and a clear understanding

of the domain environment in which an intelligent agent operates. We also need to

have a clear description of the design objectives of the agent. Within the domain

environment, we analyse and identify plausible scenarios that result from some initial

“triggering” context and evaluate the scenarios against the agent’s objectives. To

assist a knowledge engineer to systematically analyse and model a task domain, I

provide a simple domain knowledge description template (Table 5.2) in which the

domain is analysed and described in terms of Objective, the Environment, the Ini-

tial Context, all possible Scenarios and all other Associated Factors. This analysis

technique closely resembles the descriptive risk analysis technique developed in Aven

(2008) with respect to the generalised risk definition introduced in the previous chap-

ter. Concepts described under these five categories form the basic building blocks of

a risk model for an agent. Further analysis and additional information helps make

causal connections among these concepts and form an ever increasingly complete

model that an agent uses to build up its domain knowledge in relation to risk.

In the following sections, I will reformulate the two benchmark problems (de-

scribed in Chapter 3) using the knowledge description template. Note that, both

benchmark problems have been simplified so as to focus the main discussion on the

framework without being lost in specific domain details. In later chapters, I mainly

use the first problem for explanation and illustration of HiRMA framework; while

using the second problem to discuss some interesting issues in developing a risk mod-

elling and management framework.
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CATEGORY DESCRIPTION
Objective A specific objective an agent intends to accomplish.

Environment A general description of the working environment
that the agent operates for achieving the objective.

Initial Context An initial triggering event or context for
achieving the goal.

Scenarios All plausible events resulted from the
initial context/event.

Associated Factors Factors within the environment that have direct or
indirect influences towards occurrence of the scenarios.

Table 5.2: A domain knowledge description template for knowledge engineer under-
taking risk analysis.

The Ball Passing Problem

Objective: Pass a ball between two NAO robots.

Environment: A RoboCup NAO soccer match with two opposing teams and each

team is comprised of several identical robots.

Initial Context: a NAO robot Ra is in control of a ball and attempts to kick the

ball towards one of its teammates, Rb.

Scenarios: Possible results from the initial context are summarised in the Table

5.3, which lists both qualitative and quantitative consequences (i.e. payoff) of

each scenario is calculated using the approach described in Section 2.4.1 with

subjective inputs from human experts. For quantitative consequences, I use a

pre-determined payoff range of [−1, 1]; assign positive values to the preferred

scenarios. S1 represents the most preferred result with respect to the stated

objective; whereas S2 represents an exactly opposite outcome. Therefore, I

assign 1 and −1 to S1 and S2 respectively. S3 and S4, although, not preferred

results, are not as undesirable as S2. They are assigned with smaller negative
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values.

SCENARIO DESCRIPTION PAYOFF
S1 Ball kicked and caught by Rb. Excellent 1
S2 Ball kicked and intercepted Severe -1

(by an opposition robot).
S3 Failed to kick the ball. Minor -0.2
S4 Ball kicked and did not Bad -0.5

reach Rb (no interception)

Table 5.3: A simplified analysis of possible scenarios.

Associated Factors/Variables:

• Distance (D): Distance between Ra and Rb is less than twenty centimetres

(in this example analysis),

• Nearby Robots (NR): Any nearby robots (either friendly or hostile ex-

cluding Rb) could possibly intercept the ball.

The above description represents a simplified snapshot of ball passing problem

which allows us to highlight important features of my risk analysis and modelling

approach. Clearly, in a more detailed analysis, many other variables such as kicking

power of the robot could be added into the model.

The Foreign Exchange Problem2

Objective: Maintain a neutral foreign exchange position.

Environment: Australia-US dollar exchange rate fluctuates 0.5% on weekly ba-

sis. The firm imports large quantities of electronic goods that take one to two

months to manufacture and two weeks for shipment. Payments for the goods

could be paid in single or multiple instalments.

2An extended version of this problem is presented in the appendix.
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Initial Context: The firm makes a large order and the payment for the goods will

be made in two separate instalments.

Scenarios: Possible foreign exchange positions are summarised in the Table 5.4.

Note that, currency hedging refers to various strategies to mitigate financial loss

SCENARIO DESCRIPTION PAYOFF
S1 Overseas manufacturer willing to Excellent 0.9

absorb the risk.
S2 No currency hedging. Financial Severe -1

losses due to lowering AUD$.
S3 No currency hedging. Good 0.7

Financial gain due to rise of AUD$.
S4 100% currency hedging. No net Minor 0.2

losses and cost of hedging.

Table 5.4: A simplified analysis of possible scenarios for FX risk in Australian Dollars.

due to currency fluctuations. A good example of currency hedging is keeping

a certain size of foreign currency reserve in banking institutions. Any hedging

method normally has some cost associated with it. Similar to the previous

benchmark problem, I assign appropriate qualitative and quantitative payoff

to the scenarios listed in Table. 5.4 according to their monetary cost to the

importer.

Associated Factors/Variables:

• Official Interest Rate (I),

• Inflation (IF ),

• Global manufacturing demand (G),

• Currency hedging costs (CH),

• And many more, some known and some unknown.
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5.4 Theoretical Assumptions

The base assumption of HiRMA framework is that we can capture and model do-

main knowledge using classical logic. Specifically, I assume a finite language L with

the usual representations of tautology and contradiction, closed under usual boolean

connectives. Let Ω be a set of worlds that corresponds to the interpretation of L. I

assume that the conceptual knowledge described under the five categories of the do-

main knowledge description template (Section 5.3), such as those in the Ball Passing

Problem, are well defined using language L. That is, there is no conceptual overlap

between the knowledge described under these categories and they are self-consistent.

In other words, Ω is well partitioned for the task domain. I will denote atoms that

form the partitions of Ω by capital Roman letters. The language should also be suffi-

cient to describe all possible relationships between the concepts. An agent possesses

the domain knowledge K in correspondence to a (set of) worlds in Ω. Furthermore,

I adopt the Open World Assumption under qualitative and TBM based quantitative

risk modelling. That is, I assume the agent does not have a complete knowledge of

the task domain. The agent, however, is able to continuously acquire new information

about the domain.



Chapter 6

Risk Management with Qualitative
Knowledge

In this chapter, I start the detailed discussion on HiRMA, focusing on how to model

and manage risks associated with qualitative domain knowledge. Chapter 7 will

discuss risk modelling and management with semi-quantitative and numerical infor-

mation. In Chapter 8, I will bring all parts together to form a unified and coherent

framework. I will discuss how risk models developed at the qualitative level may be

linked with models developed at the quantitative level and how a qualitative model

may be transformed into a quantitative one, and vice versa.

I build a qualitative risk model based largely on classical logic in the following

sections. A qualitative risk model can be viewed a set of plausible (world) models in a

comparative likelihood order (Section 2.3.2) or a System of Spheres (Section 4.3.2.2).

With the availability of additional domain information, the qualitative risk model can

be iteratively revised with methods developed in Belief Revision (Section 4.3). It also

can be easily cast as a model within the qualitative possibility framework. When an

agent is required to make risk management related decisions, the entire risk model

collapses to a single self-consistent and most plausible domain model for reasoning and

decision making. Throughout this chapter, I use the Ball Passing Problem (Section

3.1.1) to illustrate the qualitative risk modelling and management process in HiRMA.
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6.1 Qualitative Epistemic Reasoning Model

The first task for developing a model of risk is to design an appropriate language to

describe and represent specific knowledge associated with risks in a domain. A risk

model must be able to formally represent the notions captured through the knowledge

engineering process described in Section 5.3. Specifically, the model should be able

to represent the end scenarios, and the initial context with various factors within

the domain environment that can lead to these scenarios. The causal connections

among the factors and scenarios must be represented so that an ontological map

of these relationships can be developed to be used in reasoning and managing the

factors associated with the domain risks. In the following sections, I will first present

an epistemic reasoning model schema for model construction, and introduce the key

operator that captures the causal connections between two domain variables. I then

give a set of additional postulates that allow the construction of a qualitative graphical

risk model based on Directed Acyclic Graph (DAG).

6.1.1 Epistemic Reasoning Model Schema

The qualitative risk management in HiRMA uses an Epistemic Knowledge Repository

that consists of four sets of sentences < C,F, S,R > defined below. The first three sets

contain well-formed sentences that represent conceptual knowledge directly derived

from the domain analysis process discussed in Section 5.3. Specifically,

C is a finite set of sentences called initial contexts, {C1, ..., Ci}, where i is the number

of initial contexts. An initial context is a sentence that describes the condition

under which interaction between various domain factors will eventually lead to

a resultant event, i.e. a scenario. For example, in the study of the Ball Passing

Problem, robot Ra may come into a state in which it decides to kick the ball

in its possession1. We capture this state as an initial context which can be

represented by KickBall(Ra) ∧ BallPossession(Ra) ∈ C. This represents all

1I assume Ra always acts on its decisions.



146

the essentials of a particular circumstance under which a corresponding risk

model can be developed. Note that, the HiRMA framework does not model

actions explicitly.

F is a finite set of sentences that describe K domain factors as {F1, ..., Fk}. In prac-

tice, a domain factor has direct or indirect influence on the scenario from an

initial context. In the Ball Passing Problem, the kicking distance between Ra

(when it kicks the ball) and Rb can be an important factor that influences the re-

sultant event. In the model, we can have a factor such as Distance(Ra, Rb, 20) ∈
F, where Distance(Ra, Rb, 20) is a sentence that expresses that a maximal kick-

ing distance (from Ra to Rb) of 20 centimetres. Factors are reified such that we

can have F1 for {Distance(Ra, Rb, x), x < 20 ∧ x > 0}2.

S is a finite set of sentences called scenarios, {S1, ..., Sj}, that describes j poten-

tial resultant events with direct impact on the agent’s objective(s). For exam-

ple, a scenario in which Rb successfully receives a ball can be represented as

¬BallPossession(Ra) ∧ BallPossession(Rb) ∈ S; whereas a scenario in which

the ball is intercepted3 by a third party Rc and does not reach Rb would be

InterceptedBall(Rc) ∧ ¬BallPossession(Ra) ∧ ¬BallPossession(Rb) ∈ S.

Note that the elements in C, F and S must be consistent with each other. The

fourth set R consists of sentences that are made using the ReasonFor4 schema based

on Levi’s interpretation of the Ramsey Test (Section 4.7.1). It contains epistemic

conditionals between either two factors, or a factor and a scenario. It captures the

domain knowledge that a factor is an epistemic reason for another factor or scenario

under an initial context. For example, when robot Ra makes a decision to kick the

ball in its possession, i.e. under initial context C1, the (short) kick distance between

2For simplicity, I only consider kicking distance less than 20 centimetres in the analysis and
modelling of the ball passing problem.

3Note that, ball interception does not necessarily mean the interceptor possesses the ball in the
end.

4We sometimes use Reason as a shorthand for this predicate when it is a more appropriate word
to use in the following discussion.
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Ra and Rb (of < 20cm), or F1, is (one of) the reason(s) for Rb to have the ball fall in

its possession, i.e. S1. We capture this connection as ReasonFor(F1, S1). Formally,

ReasonFor and its negation are constructed using the Ramsey Test in the following

fashion:

• Cn(C ∪ F ∪ S) = K;

• ReasonFor(α, β) ∈ R, iff β ∈ K ∗ α;

• ¬ReasonFor(α, β) ∈ R, iff β /∈ K ∗ α.

Thus, ReasonFor(α, β) connects a factor, say α, with another factor or scenario,

β. It means α is a reason for β (Spohn 1983). Compared with the normal implica-

tion in classic logic, ReasonFor is a stronger conditional that puts emphasis on the

precedence of antecedent over consequent. ReasonFor also differs from conditional

assertion (Belnap 1970), since it involves hypothetical modification of an existing

knowledge base K with the antecedent and does not have a semantic concept of

whether the antecedent is true. The conditional will not be rejected simply because

the antecedent turns out to be not true. On the other hand, ¬ReasonFor(α, β) means

α is not a reason for β. That is, the consequent cannot coexist with the antecedent

in the knowledge base K.

ReasonFor represents a key structural element in the construction of a qualitative

epistemic reasoning model for modelling domain risks. R is the central repository that

stores the “causal” knowledge of the inference relationships under the presence of a

consistent knowledge base K which contains both the antecedents and consequents.

This differs from the conditional knowledge bases used in cumulative reasoning models

(Kraus, Lehmann & Magidor 1990) that have no additional dependency. The con-

struction and maintenance of R is at the centre of HiRMA’s iterative qualitative risk

modelling process. For now, we have several immediate results that follow directly

from the definition of ReasonFor.
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Lemma 1.

ReasonFor(α, α) ∈ R, (Self Reference)

¬ReasonFor(α,¬α) ∈ R. (Self Consistency)

Proof. From the definition of ReasonFor, we have α ∈ K ∗ α which is the second

BR revision postulate (Section 4.3.1.3), therefore, ReasonFor(α, α) ∈ R. On the

other hand, we have K ∗α must be consistent from the fifth postulate of BR revision.

Therefore, ¬α /∈ K ∗ α.

Lemma 2. If α, β are consistent with K, and ReasonFor(α, β) ∈ R, then we have

K ∗ β ⊆ K ∗ α.

Proof. From the definition of ReasonFor, we have β ∈ K ∗α from ReasonFor(α, β).

Because both α and β do not contradict with the original K, we have K ∗α = K +α

and K ∗β = K+β, using the (K*3) and (K*4) postulates of BR revision. This means

β is already incorporated in K+α as the additional knowledge with ReasonFor(α, β)

and no knowledge is removed. Therefore, K + β ⊆ K + α = K ∗ β ⊆ K ∗ α.

From the lemma above, I can derive another useful result as the following:

Lemma 3. Given α, β are consistent with K, if both ReasonFor(α, β) and

ReasonFor(β, γ) are in R, then we have ReasonFor(α, γ) ∈ R. (Chain of Reasons -

transitivity)

Proof. ReasonFor(β, γ) means γ ∈ K∗β. From Lemma 2, we also haveK∗β ⊆ K∗α,

then γ ∈ K ∗α. Applying the definition of ReasonFor, we get ReasonFor(α, γ).

Lemma 3 gives a transitive property of ReasonFor as long as α and β are con-

sistent with K. This consistency requirement is satisfied under HiRMA assumptions
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that insist domain knowledge derived from the domain analysis do not overlap each

other. Using this transitivity property, an epistemic reasoning chain formed from a

number of existing ReasonFor formulae collapse to a simple ReasonFor formula.

Hence, this property can be used to boost the performance of the model reasoning

process by consolidating the model.

Lemma 4. Given β � γ, if ReasonFor(α, β) then ReasonFor(α, γ). (Chain of

Reasons - derivativity)

Proof. We have β ∈ K ∗ α from ReasonFor(α, β). Since γ is a logical consequence

of β, we have γ ∈ K ∗ α. Hence, ReasonFor(α, γ) by applying the definition of

ReasonFor again.

Lemma 4 extends the chain of reasoning to the derivatives of existing consequents

of ReasonFor.

Lemma 5. If ReasonFor(α, α → β), then ReasonFor(α, β).

Proof. α → β is equivalent to ¬α ∨ β. Hence, (¬α ∨ β) ∈ K ∗ α, according to the

ReasonFor definition. However, due to the consistency constraint of (K*5) postulate

of BR revision, only β ∈ K ∗α is possible. Therefore, we have ReasonFor(α, β).

From an Epistemic Knowledge Repository, I can define a qualitative Epistemic

Reasoning Model that satisfies the following postulates RM1 to RM5. These pos-

tulates ensure the epistemic reasoning model is consistent with the assumptions of

HiRMA. Furthermore, such a model has a graphical representation similar to proba-

bilistic Bayesian models.

(RM1) Cn(C ∪ F ∪ S) = K (Well Structured)

(RM2) C and S are nonempty sets.
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(RM3) If ∀α, β ∈ K, ReasonFor(α, β) ∈ R or ¬ReasonFor(α, β) ∈ R, then α ∈ F;

and either β ∈ F or β ∈ S.

(RM4) ∀α, β ∈ K,α ↔ β, iff ReasonFor(α, β) ∧ ReasonFor(β, α) ∈ R. (Mutual

Causation Exclusion)

(RM5) ReasonFor(α, β) ∧ ReasonFor(α, γ) → ReasonFor(α, β ∧ γ). (Common

Reason)

Postulate RM1 states that an epistemic reasoning model has domain variables in

K, which is a combination of mutually exclusive initial contexts, factors and scenarios.

RM2 ensures that K must contain at least one initial context and one scenario. RM3

constrains the element types of the two terms in ReasonFor formula. That is, the

head term α must be a factor whereas the tail term β could be either a factor or a

scenario. RM4 is a weak form of mutual causation prevention. That is, the situation

that α is a reason for β and at the same time β is a reason for α cannot exist in R

if α and β are not logically equivalent. In other words, I assume that an epistemic

reasoning model contains only acyclic inference relations5. RM5 states that if α is a

reason for β and γ, then it is a reason for the combination of β and γ.

6.2 Qualitative Graphical Risk Model

Our primary visual representation of an epistemic reasoning model is a DAG grouped

under an initial context6(Figure 6.1). Within a directed graph, an oval shaped node

represents a domain factor, a node with rounded square is a scenario. A directed edge

→ between two nodes represents a direct inference relation between the two variables

which captures the notion of epistemic reason. That is, a directed edge that starts

from a node A and ends at a node B means that factor A is a direct reason for B,

i.e. ReasonFor(A,B). An edge of A � B means that A is not a reason for B,

5A future extension of the framework may have this postulate removed.
6An initial context is not directly represented in the directed graph.
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i.e. ¬ReasonFor(A,B). Postulate RM4 ensures the directed graph remains acyclic.

Table 6.1 gives a summary of graphical symbols used in the graphical representation

and their corresponding meanings. Under the qualitative risk modelling in HiRMA,

a graphical epistemic reasoning model for a domain represents one of many possible

models of the domain. In the following sections, I will use the Ball Passing Problem

to illustrate the qualitative risk modelling process.

Graphical Symbol Meaning

An initial context containing an epistemic reasoning model.

A domain factor.

A scenario.

A ReasonFor formula.

A ¬ReasonFor formula.

Table 6.1: Graphical symbols and their corresponding meanings.

6.2.1 Capturing Knowledge in the Ball Passing Problem

Figure 6.1 shows two simple graphical epistemic reasoning models for the Ball Passing

Problem. These models are direct results from the knowledge engineering process

(Section 3.1.1) with inputs from domain experts. In this example, I have two initial

contexts C1 and C2. C1 is an initial context where Ra has made a decision to kick

the soccer ball to Rb, whereas C2 represents an initial context in which Ra has made

no such decision. I have only one factor and two scenarios presented in these simple

models. D represents the distance between Ra and Rb is less than 20 centimetres; S1

and S2 are the two corresponding scenarios described in Table 5.3. Note that, for a
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Figure 6.1: Epistemic reasoning models for ball-passing under two initial domain
contexts.

clearer and more intuitive visual representation, I have eraised the subscripts of all

domain variables and use D to represent the distance factor F1. Under C1, the graph

shows that the soccer ball kicked by Ra at a distance of less than 20 centimetres

will reach and captured by Rb. If Ra does not attempt to kick the ball towards Rb

as in C2, neither S1 and S2 result from D. Initial contexts C1 and C2 need to be

treated separately. Clearly, C1 is in line with the agent’s objective, and therefore, I

will continue the discussion focusing mainly on the C1 model in the following sections.

Syntactically, the graphical models are represented in first order sentences as fol-

lowing:

C1 = KickBall(Ra) ∧ BallPossession(Ra),

C2 = ¬KickBall(Ra) ∧ BallPossession(Ra),

D = F1 = {Distance(Ra, Rb, x), x < 20 ∧ x > 0},

S1 = ¬BallPossession(Ra) ∧ BallPossession(Rb),

S2 = ¬BallPossession(Ra) ∧ BallIntercepted.

C1, C2 ∈ C, F1 ∈ F and S1, S2 ∈ S.
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For C1 I have the following reasons (captured from the experts) in R:

ReasonFor(F1, S1).

¬ReasonFor(F1, S2);

whereas for C2 I have:

¬ReasonFor(F1, S1),

¬ReasonFor(F1, S2).

6.2.2 Risk Modelling in a System of Spheres

The model presented above represents only a small epistemic reasoning model for

determining possible results in association with risk for the problem domain. Results

from this static model are deterministic and it does not capture any information in

relation to uncertainty which is crucial in modelling risk. The model in this form can

be viewed as one of many possible models for the problem domain. As in Section

2.3.2, domain uncertainty is represented qualitatively in a likelihood preorder of all

possible (worlds of) causal inference structures for the domain (Figure 2.1). It is

easy to construct a System of Spheres structure (Section 4.3.2.2) in which all possible

epistemic reasoning models are nested together where the most plausible models stay

within the inner most sphere and the outer most sphere contains the least plausible

model(s) as shown in Figure 6.2. Syntactically, I use partial epistemic entrenchment

ranking structure E with an Ordinal Epistemic Function E (Section 4.3.4.3). I store

all current reason formulas in E according to their individual ranking. Compared with

a static epistemic reasoning model in which consistent reason formulas are stored in

a plain set R, I add additional degree of belief for every reason and store them in E

to represent uncertainty in the system. Furthermore, I can have conflicting reasons

(with different rankings) coexist in E. I continue to useK as the repository for storing

conceptual domain knowledge. Therefore, I have domain model for risk defined as

the following:
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Definition 6. In HiRMA, a qualitative domain model for risk K is a structure of

< K,E >, where K is Cn(C ∪ F ∪ S) and E is an partial epistemic entrenchment

ranking order that stores ReasonFor formulae with their degrees of belief.

Figure 6.2: A ball passing risk model with all possible epistemic reasoning models
captured in a System of Spheres.

6.2.2.1 Epistemic Reasoning Models within a Sphere

It is important to note that neither the likelihood preorder structure nor the corre-

sponding System of Spheres prohibits multiple epistemic reasoning models with the

same likelihood or ranking. In other words, we can have more than one model re-

siding in one ring. It simply means an agent has equal degrees of belief for these

models. Furthermore, models within one sphere are not required to be consistent

with each other. That is, under the qualitative risk modelling framework, it is per-

fectly fine to have conflicting epistemic reasoning models with equal beliefs in the

same sphere as shown in Figure 6.2. In such a case, we have the same degrees of

belief for ReasonFor(D,S2) and ¬ReasonFor(D,S2). Semantically, this means an

agent is unsure (or ignorant) of whether D is a real reason for S2 since the agent has

equal degrees of belief in D → S2 and D � S2.
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Definition 7. A vacuous reason is the coupling of a ReasonFor formula and its

exact negation with an equal degree of belief (or rank).

Therefore, the coupling of ReasonFor(D,S2) and ¬ReasonFor(D,S2) at rank 2

represents D is a vacuous reason for S2 at rank 2. Being able to capture and model

ignorance is a key requirement for HiRMA (Section 3.2). Epistemic reasoning models

of equal ranking must be combined into a single self-consistent model when an agent

is to make risk management decision based on the domain knowledge captured in

these models. I further discuss this topic in Section 6.4.

6.3 Risk Model Construction and Revision

One of the key requirements for the risk modelling and management framework is

to construct risk models and revise them according to the latest available domain

information so that an agent is able to adapt to the changes in the problem domain.

In the qualitative risk modelling, risk model construction and revision are the same

process. That is, an agent is able to bootstrap a risk model and gradually build

up the model using the same iterative model revision process. This iterative model

construction and revision process is largely based on a Belief Revision mechanism.

Revision of a risk model consists of two types of model revision, namely revision of

domain variables and revision of inference relations among domain variables. I discuss

these two types of modifications separately in the following.

6.3.1 Revision of Domain Variables

Change in domain variables typically occurs when there is a change in plausible sce-

narios (due to changes in agent’s objectives) or risk factors (due to changes in domain

environment). Revision of domain variables involves either adding new domain vari-

ables or removing existing variables from the system. Addition of a new variable,

either a risk factor or scenario, means introducing a new node into all epistemic
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reasoning models in the System of Spheres of a risk model. However, an inference

relationship between a newly introduced variable and existing variables in the model

remains unknown untill further information of the inference relation is acquired. That

is, when a variable is initially introduced into the model, an agent is ignorant of its

relationship with other variables in the model.

Proposition 3. For a risk model K, addition of a domain variable, either a factor or

a scenario, satisfies the postulates for expansion in Belief Revision (Section 4.3.1.2).

Proof. Both factor and scenario are sentences. Addition of a sentence to a knowledge

repository K consisting only of sentences does not change the nature of K and modi-

fied K is still a knowledge base with sentences. Hence (K+1) is satisfied. (K+2) and

(K+3) are satisfied by definition of adding a new variable to K. If a variable α is

already in a K, addition of a duplicate does not anything new due to compactness of

language L, therefore (K+4) is satisfied. By the same token, (K+5) and (K+6) are

also satisfied since a variable represents an atomic piece of knowledge. Addition of a

variable has no effect on E in K, i.e. no ReasonFor is added, removed or modified

in E syntactically.

I should note that, domain variables produced from the risk analysis process are

well-defined and there is no partial overlap between the variables according to the

framework assumptions (Section 5.4). This means, the new variable should not “in-

terfere” with any existing variables in K and there should not be any inconsistency

between K and the new variable.

6.3.1.1 Semantics of Variable Addition

Addition of a new variable in K is semantically equivalent to introducing a vacuous

reason into the system. Specifically, if the new variable is a factor f in F, the existing
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epistemic reasoning models at every sphere are duplicated 4n+2m times, where n is

the number of existing factors (in F) and m is the number of scenarios (in S); if the

new variable is a scenario, 2n model duplications are required due to postulate RM3.

A vacuous reason from x to f , i.e. ReasonFor(x, f) and ¬ReasonFor(x, f) where x
is an existing factor in the model, is attached to every pair of duplicated models and

forms a new model pair that represent agent’s ignorance that x is a direct reason for

f . This pairing procedure is repeated for all n factors in the model. In addition, we

also need a pair of domain models that capture the ignorance that f is a direct reason

for x in the system and x could be either a factor or a scenario7. These second model

pairs for ReasonFor(f, x) and ¬ReasonFor(f, x) are not required if f is a scenario

node due to postulate RM3. I will give a concrete example of this process in Section

6.3.3.1. It must be noted that this model duplication and modification process with

vacuous reasons is a virtual operation that offers a formal semantic interpretation of

variable addition within the qualitative risk modelling. It plays an important role

in understanding the model revision process. However, there is no specific syntactic

construct for vacuous reasons under qualitative risk modelling.

6.3.1.2 Removal of a Domain Variable

Removing an existing variable from a risk model is a relatively simple operation.

We simply remove the variable from K and its associated ReasonFor formulas from

E. All corresponding arcs in the graphical model are also removed. The rest of

knowledge repository and structure of the System of Spheres remain unaffected due

to the principle of minimal changes.

Proposition 4. Given a qualitative risk model K, removal of a domain variable,

either a factor or a scenario, satisfies the postulates for contraction in Belief Revision

(Section 4.3.1.4), apart from (K−̇5).

7We do not consider postulate RM4 which prevents mutual causation problematic in this case,
since conflicting models are allowed to coexist at same rank level during the modelling process.
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Proof. Removal of a domain variable and associated reason formulas from a K and E

does not change the nature of K and E. Modified K remains as a domain knowledge

repository consists of sentences. E is also intact with remaining reasons unchanged.

Hence, (K−̇1) is satisfied. It is trivial to prove (K−̇2) and (K−̇3) are satisfied. All

domain variables may be removed from the domain model along with their reasons, the

knowledge repository K and E become empty. Therefore, (K−̇4) is satisfied. (K−̇5)

is too restrictive since we cannot recover the reasons we have removed along with a

variable simply by reintroducing the variable into the system. Every variable and its

associated reasons have unique meanings within the domain context, a simple change

of syntax of their formulas does not change the knowledge they represent. (K−̇6) is

also satisfied. According to the assumption (Section 5.4), all domain variables are

mutually exclusive and there is not overlapping between variables, i.e. for two variable

α and β, α ∧ β = ∅. No variables (with their corresponding reasons) will be removed

in K−̇(α ∧ β). Therefore, both (K−̇7) and (K−̇8) are satisfied.

6.3.2 Revision of Reasons

In qualitative risk modelling, the risk model as a System of Spheres captures all

plausible (epistemic reasoning) model configurations with different combinations of

inference relations (or reasons) among the domain variables. Revision of reasons

is achieved through (expert) inputs on inference relationship between variables, i.e.

the ReasonFor formulas, and modifying their rankings in E accordingly. I employ

the transmutation strategy, maxi-adjustment (Section 4.3.4.2), to perform revision

of reasons. Intuitively, the model revision process essentially shuffles domain models

that are consistent with input information to the inner spheres, while moving models

that are inconsistent with the input to the outer spheres of the system. Using the ball

passing problem as an example, suppose a robot player carries a risk model as Figure
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6.2 and the agent receives new information that gives support to that a ball kicked

from a distance (of 20 centimetres) D will be the reason for both scenario S1 and S2

with a degree of acceptance of 1, i.e. E(ReasonFor(D,S1)∧ReasonFor(D,S2)) = 1.

Using adjustment, the risk model is revised to a configuration shown in Figure 6.3.

Figure 6.3: Revised ball passing risk model after adjustment with
E(ReasonFor(D,S1) ∧ReasonFor(D,S2)) = 1.

6.3.3 Model Construction and Revision Algorithms

By combining the revision procedures of domain variables and inference reasons, I

can now construct an unified mechanism for qualitative risk modelling based on a

modified version of maxi-adjustment transmutation algorithm (Algorithm 16). An

agent can apply the same mechanism for risk model construction and model revision.

For easy discussion, I separate the risk modelling process into a construction phase

and a revision phase. However, there is little technical difference between the two

modelling phases. Domain variables are not ranked and do not participate in the

adjustment process, as they are in K. Reasons between domain variables are placed

on the partial epistemic entrenchment rank structure E according their degrees of

acceptance. The modified maxi-adjustment algorithm takes in new belief input for a

ReasonFor formula and revise its ranking within the E structure. The algoritm also
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ensures that postulate RM4 is enforced by moving down the rank of the formula in

the opposite direction of the current reason with new information.

Algorithm 15 Qualitative Risk Model Construction

Require: Risk analysis for the problem domain. Relevant domain variables, i.e. risk
factors and scenarios with respect to an initial context form a set V . A predefined
maximum ordinal number O. An empty risk model K =< K,E >.

Ensure: A populated qualitative risk model K′ =< K ′,E′ >.
1: Initialise E with dom(E) = ∅; max degree = 0.
2: for all N ∈ V do
3: add N to knowledge repository K.
4: if N is a factor then
5: for X ∈ (V \ {N}) do
6: Solicit inputs on plausible ReasonFor(N,X) (or combination with

other reasons) from domain experts.
7: if ReasonFor(N,X) should be accepted with a degree i then
8: E

′ = Mod-Maxi-Adjustment(ReasonFor(N,X), i,E).
9: end if
10: end for
11: end if
12: end for

Algorithm 15 can be used by an agent to build a risk model for a task domain

based on an initial domain analysis. It assumes an empty risk model K that consists

of an empty K, an empty E with an initial Ordinal Epistemic Function E and a pre-

defined maximum ordinal value O for E. Semantically, O defines an initial number

of nested spheres of the System of Spheres of the risk model. The algorithm goes

through every known risk factor and seeks information on plausible reasons (or plau-

sible combinations of reasons) from the factor to the rest of the system from domain

experts. Once the agent acquires the relevant knowledge (with a degree of acceptance

or confidence), it adds the formula into its knowledge base E and ranks it using the

modified maxi-adjustment (Algorithm 16).

Using the same maxi-adjustment process, Algorithm 17 provides a general proce-

dure for revising an existing risk model. When a new domain variable is introduced

into a model, an agent seeks for information on all plausible reasons for this variable
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Algorithm 16 Modified Maxi-adjustment Algorithm: to ensure acyclicity in risk
model

Require: A ReasonFor(N,X) with a degree of acceptance i, E with OEF E.
Ensure: A revised E

′ with OEF E ′.
1: if ReasonFor(N,X) ∈ dom(E) then
2: degreeReasonFor(N,X) = E(ReasonFor(N,X)).
3: else
4: degreeReasonFor(N,X) = Degree(E,ReasonFor(N,X)).
5: Add ReasonFor(N,X) into E with degreeReasonFor(N,X).
6: end if
7: max degree = max(E(dom(E)).
8: if degreeReasonFor(N,X) > i then
9: E ′ =MoveDown(ReasonFor(N,X), degreeReasonFor(N,X), i, E)
10: else if degreeReasonFor(N,X) < i then
11: if degreeReasonFor(N,X) = 0 then
12: degree¬ReasonFor(N,X) = Degree(E,¬ReasonFor(N,X)).
13: degreeReasonFor(X,N) = Degree(E,ReasonFor(X,N)).
14: else
15: degree¬ReasonFor(N,X) = 0.
16: degreeReasonFor(X,N) = 0.
17: end if
18: if degree¬ReasonFor(N,X) > 0 then
19: E ′ =MoveDown(ReasonFor(N,X), degree¬ReasonFor(N,X), 0, E).
20: end if
21: if degreeReasonFor(X,N) > 0 then
22: E ′ =MoveDown(¬ReasonFor(X,N), degreeReasonFor(X,N), 0, E).
23: end if
24: E ′ = E.
25: E ′ =MoveUp(ReasonFor(N,X), i, E)
26: else
27: E ′ = E.
28: end if
29: return E ′.
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Algorithm 17 Qualitative Risk Model Revision

Require: A qualitative risk model K =< K,E >. A reanalysis of the domain.
Ensure: A modified model K′ =< K ′,E′ >.
1: if A new domain variable N is added then
2: Add-Domain-Variable(N,K,E).
3: else if A N ∈ K is removed from the system then
4: Remove-Domain-Variable(N,K,E).
5: else if New information on a existing ReasonFor(N,X) with degree i then
6: Mod-Maxi-Adjustment(ReasonFor(N,X), i,E).
7: end if
8: procedure Add-Domain-Variable(N,K,E)
9: if N is a factor then
10: for X ∈ K do
11: Solicit inputs on plausible ReasonFor(N,X) and combinations with

other reasons from domain expert/analysis.
12: if ReasonFor(N,X) should be accepted with a degree i then
13: E

′ = Mod-Maxi-Adjustment(ReasonFor(N,X), i,E).
14: end if
15: end for
16: end if
17: for all X ∈ K do
18: if X is a factor then
19: Solicit inputs on plausible ReasonFor(X,N) and combinations with

other reasons from domain expert/analysis.
20: if ReasonFor(X,N) should be accepted with a degree i then
21: E

′ = Mod-Maxi-Adjustment(ReasonFor(X,N), i,E).
22: end if
23: end if
24: end for
25: Add N to domain knowledge base K.
26: end procedure
27: procedure Remove-Domain-Variable(N,K,E)
28: for all ReasonFor(X, Y ) in E do
29: if X = N or Y = N then
30: Remove ReasonFor(X, Y ) and any combinations with other reasons

from E.
31: end if
32: end for
33: Remove N from K.
34: end procedure
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from the existing variables. If the newly added variable is a factor, the algorithm also

attempts to acquire knowledge on plausible reason from the new variable to the rest

of domain variables. Once relevant information on possible reasons is acquired, the

agent adds the reasons into its knowledge base at their corresponding ranks. On the

other hand, if a known variable is being eliminated from the system, the agent simply

removes all reasons associated with the variable and then removes the variable itself.

Revision of individual reason is an application of the modified maxi-adjustment. A

useful property of the risk model construction and revision process is the following:

Proposition 5. Within a ranking structure E, reasons (or combinations of reasons)

that are in direct conflict, e.g. ReasonFor(α, β) and ¬ReasonFor(α, β), should not

be at the same or adjacent rank level.

Proof. This is a direct result from the application of the modified maxi-adjustment

algorithm. That is, adding a ReasonFor(α, β) will ensure its negation (and associated

derivatives) being pushed to the lowest ranks.

The operational complexity of the risk model construction and revision algorithm

at the top level is dependent on the number of domain variables in the system. More

specifically, the complexity for model construction and general revision is O(2n+m),

where m is the number of factors and n is the number of scenarios. As model revision

only involves node addition or removal, the complexity is reduced to O(n). However,

the real complexity of the algorithm lies within the maxi-adjustment it employs. The

maxi-adjustment transmutation is dependent on logical inference used in calculating

the known degree of the reason which is pending for modification. It is well-known

that computation for logic resolution in first order language is undecidable. For a

simple risk model such as the ball passing problem, logic inference used in degree

calculation is still decidable and the overall complexity of the algorithm remains in

polynomial time.
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6.3.3.1 Modelling with the Ball Passing Problem

I now use the Ball Passing Problem to illustrate the qualitative risk modelling process

step by step. Under an initial context of C1, I start from a trivial model of only one

variable D and gradually introduce additional domain variables and variable connect-

ing reasons into the system. This risk model uses a partial epistemic entrenchment

ranking structure E with a maximum ordinal of 2. The entire evolution of the risk

model is displayed graphically in Figure 6.4. The semantic interpretation of the model

evolution can be easily understood using the notions introduced in the previous sec-

tions. That is, addition of a variable introduces a vacuous reason to the existing

epistemic reasoning model(s) at each sphere. This artificial construction represents

an agent’s lack of knowledge on the inference relationships between the new variable

and the rest of the system. Acquisition of information on these relationships shifts the

corresponding reasons (and associated models) apart within the System of Spheres

according to the degree of acceptance of the new knowledge. Removal of a variable

means all epistemic reasons associated with the variable are also taken out of the

system.

The evolution of the risk model shown in Figure 6.4 (page 169) is a semantic

graphical representation that corresponds to a series of syntactical operations on

reasons in model K with an OEF E as following:

Initial: An initial model K =< K,E > with D ∈ K. An empty E with an initial

OEF E, dom(E) = ∅.

Step 1: Add a scenario S1. K = K ∪ {S1}. Semantically, it means the introduction

of a vacuous reason for D → S1 on the existing model.

Step 2: Acquired information that supports ReasonFor(D,S1) with a degree of ac-

ceptance 2. Add (ReasonFor(D,S1), 2) into E using Maxi-Adjustment resulted

with E(ReasonFor(D,S1)) = 2 and E(¬ReasonFor(D,S1)) = 0.

Step 3: Add variable S2. K = K ∪ {S2} and vacuous reason for D → S2.
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Step 4: Add (¬ReasonFor(D,S2), 2) into E. E(ReasonFor(D,S2)) = 0 and

E(¬ReasonFor(D,S2)) = 2 after maxi-adjustment.

Step 5: Add (¬ReasonFor(D,S1) ∧ ¬ReasonFor(D,S2), 1) into E.

E(¬ReasonFor(D,S1) ∧ ¬ReasonFor(D,S2)) = 1.

Step 6: Remove variable S2. K = K \ {S2}. Remove all reasons related to S2, i.e.

¬ReasonFor(D,S1) ∧ ¬ReasonFor(D,S2), ReasonFor(D,S2) and

¬ReasonFor(D,S2)) from E.

6.4 Decision Making under Qualitative Risk Model

In the previous sections, I have developed a mechanism for construction and modi-

fication of a qualitative risk model in a System of Spheres, or formally, a knowledge

base K that consists of an equivalent epistemic entrenchment structure E for reason

formulas and a belief set K for conceptual domain knowledge (i.e. domain variables).

Theoretically, such a structure is rich enough to capture and represent all plausible

model configurations according to their plausibilities based on the available domain

knowledge. It is suitable for further risk analysis, modelling and evaluation in risk

matrix form (Section 2.5.1) in an open world environment. In order to make appro-

priate decisions in relation to domain risks, it is necessary to reconstruct the model,

following the principle of making decisions based on the best of what we know. In

other words, an agent makes qualitative decisions based on the most plausible model

summarised from its knowledge K. For instance, if the risk model for the ball passing

problem is as Figure 6.3, an agent can simply use the epistemic reasoning model in

the inner-most sphere to help to reach a decision. As this particular model for ball

passing is heavily simplified, it does not possess the following technical issues that

exist in a typical risk model:

1. Multiple partially conflicting models with equal plausibility such as Figure 6.2;
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2. The epistemic entrenchment ranking structure E is sufficiently large and do-

main knowledge in terms of epistemic reasons are finely spread across the entire

ranking structure. This means a domain model constructed from reasons at any

individual rank level is only a partial model.

The basic idea for addressing these two problems is merging the epistemic rea-

soning models from the most plausible world outwards with ones in the less plausible

worlds up to a limit that corresponds to a confidence level. Syntactically, I introduce

a merge operator M that collects epistemic reasons and the combinations of reasons

that are consistent with each other from the top epistemic rank downwards, while

removing all the reasons and the combinations of reasons that are in conflict with

more and equally plausible reasons:

M(αi,E)(Ri) =

{
Ri ∪ {αi} if Ci = ∅,
Ri \ Ci otherwise,

if i ≥ j (6.1)

where

Ci = {β : β ∈ Ri ∧ (β ∧ αi |= ⊥)}

and Ri is a consistent set of epistemic reasons (or combinations of reasons) collected

from the highest rank level O to a lower rank of i so far; αi is a reason (or a com-

bination of reasons) at the rank of i that is pending for merging into Ri; j is the

cutoff rank that 0 ≤ j ≤ O. After repeated applications of M on all reasons (and

combinations of reasons) from the highest rank to rank j, a consistent set of epistemic

reasons (to rank j) is generated from E. Formally,

Definition 8. Rj is a consistent set of epistemic reasons, if for all α, β ∈ Rj,

• both α and β are epistemic reasons or combinations of epistemic reasons;

• α ∧ β �|= ⊥.
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The combination of conceptual knowledge K and Rj forms an epistemic reasoning

domain model Kj with a confidence factor of j
O . I call the repeated M operation a

rank merging process. From Figure 6.2, the agent will end up with an epistemic

reasoning model of a single causal connection from D to S1 with a confidence factor

of 1 after the rank merging process.

During this rank merging process, the epistemic reasoning models in the neigh-

bouring spheres are effectively combined together from the inside of the System of

Spheres. The merging process may cause reduction in the knowledge carried by the

resultant K, due the possible conflicts between the reasons in current R and the rea-

sons that are pending for merge. We need to select an appropriate cutoff rank in order

to ensure a good balance between having enough domain knowledge in the resultant

K and maintaining a reasonable confidence level of K, i.e. not to include reasons with

very low rankings. I should note that, Proposition 5 ensures that we do not end up

with an empty R due to a merge of adjacent ranks. However, in some degenerate

cases in which we have a small ranking structure and conflicting reasons cannot be

spread out across the structure clearly, performing the merging process across differ-

ent ranks will yield trivial models that contain no useful knowledge. Therefore, the

effectiveness of the rank merging process depends on how clearly structured agent’s

domain knowledge is.

After the rank merging process, an agent can apply any standard theorem provers

and reason with the resultant K. The logic conclusion from the model represents the

most plausible scenario that could be reached from the initial context. An agent can

be confident in the logical conclusion with a degree of confidence of j
O . The agent can

use this result in comparison with the results (of the same confidence) derived under

other initial contexts to make a final decision. With the ball passing example, we end

up with a result in Figure 6.1. Naturally, a robot soccer player will prefer the model

under C1. In other words, robot Ra concludes that if it does make a ball pass to Rb

when the distance between them is less than 20 centimetres, the most likely result

is the ball will be received by Rb. Therefore, it is safe to carry out the ball passing
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action under this condition.

6.5 Discussion

In this chapter, I have presented the details of a formal process of qualitative risk mod-

elling and management for an intelligent agent using classic logic and Belief Revision.

To develop an appropriate qualitative risk model for a domain in which the agent

operates, The domain and its environment are first analysed using the knowledge

engineering process described in Section 5.3. Knowledge acquired from the analysis

can be represented using classical first order logic. I introduced a simple epistemic

reasoning model schema with a collection of postulates that can be used to construct

a graphical epistemic reasoning model for the domain. In particular, I focus on build-

ing a model that captures causal connections among various factors in the domain

with respect to risks. To this end, I defined ReasonFor that embodies the Ramsey

Test, in order to capture and represent inference relations among the relevant domain

variables. An epistemic reasoning model constructed from the schema represents

only one plausible model for the domain under an initial context. Uncertainty in the

problem domain is captured in a System of Spheres that contains all plausible model

configurations. Within this structure, the epistemic reasoning model that resides in

the inner most sphere is the most plausible model corresponds to the reality; while

models in the outer spheres are less plausible. Plausibility of these models declines

monotonically with increasing sphere levels. Modelling qualitative uncertainty in a

System of Spheres structure is a minor variation of the likelihood preorder structure

discussed in Section 2.3.2. Combined with consequence analysis of the plausible sce-

narios, a full qualitative risk matrix can be constructed for risk assessment. When

it is required to make risk management related decisions, the agent can employ the

most plausible and consistent epistemic reasoning models that generated (up to a

predefined confidence level) from a rank merging process, i.e. making decisions based

on best of what the agent knows.
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By using a System of Spheres structure in the risk modelling, I adopt approaches

developed in Belief Revision directly as the core of the qualitative risk modelling pro-

cess. As I have discussed in Section 2.3.1 and 4.6.2.2, there is a deep underlying con-

nection between qualitative uncertainty modelling and Belief Revision. Uncertainty

in a domain arises from an incomplete domain knowledge that an agent possesses.

The agent is unable to determine what domain model corresponds to the actual state

of the domain due to missing or inaccurate domain knowledge. A natural approach in

minimising uncertainty is to acquire additional information and improve the agent’s

knowledge. Belief Revision provides solid mechanisms for incorporating new informa-

tion and maintaining a consistent knowledge base. In the modelling process, I assume

domain variables do not self-mutate. They are either associated with domain risks

or irrelevant for the modelling purpose. Uncertainty resides in the inference relations

among the relevant variables. Therefore, the model construction and revision centres

around revision of reasons in the model. Reasons are placed in an epistemic entrench-

ment ranking structure E, which is semantically equivalent to a System of Spheres,

according to their degrees of acceptance. The revision algorithm used in the mod-

elling process, i.e. maxi-adjustment, ensures a reason that receives strong support

from domain information is promoted to a high rank, while its negative counterpart

(and derivatives) is demoted to the lowest ranking. This algorithm also ensures the

model constructed from the most plausible reasons for decision making is not a trivial

model that has most its useful relations cancelled out by their negative counterparts

of equal ranking. Furthermore, I must highlight an key feature of this modelling

process: both (initial) model construction and model revision use the same Belief

Revision mechanism. In other words, model construction and revision operationally

are the same process. There are, however, several areas in which the qualitative risk

modelling and management process may be improved and extended in the future. I

briefly discuss two main areas in the following:

Revision Ranking with Risk Matrix: The ordering in the System of Spheres

used in the risk modelling is organised based on the likelihood of domain models.
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The degree of belief (or acceptance) for a causal inference relation between two

domain variables is also based solely on its likelihood. This ordering/ranking

mechanism is not adequate for domains where the plausibility of the domain

model inversely correlates to its consequence. In other words, risk modelling

based on the likelihood of the domain model will obscure unlikely causal events

with extreme consequences. A possible variation for the current revision scheme

is to replace likelihood with a proper risk measure number derived from a risk

matrix that combines the plausibility of a causal relation and effect from the

result of this causal relation (Section 2.5.1). Such an extension enriches the

epistemic ranking structure with additional knowledge of effects of every causal

relations and makes revision of reasons more meaningful in relation to risk. How-

ever, this extension requires exhaustive analysis of every inference relationship

in terms of its effects. In addition, this modification changes the nature of re-

sultant domain model. That is, the domain model is no longer a pure epistemic

reasoning model and the existing postulates need to be modified accordingly.

Revision and Reasoning with Possibility Theory: As I have discussed in Sec-

tion 4.6, the (qualitative) possibility theory is closely related to Belief Revision.

Therefore, a BR based qualitative risk model could be recast under the pos-

sibility theory framework relatively easily. Specifically, the System of Spheres

structure can be converted into a fuzzy set with all plausible epistemic reasoning

models as members of the set, or equivalently, a fuzzy set of epistemic reasons.

Model ranking can be expressed with the member function of the fuzzy set and

model revision becomes conditioning of possibility distribution corresponding to

the fuzzy set. Model reasoning can be carried out using the inference techniques

developed for possibilistic logic.

A risk model under the possibility framework would be theoretically more el-

egant because the framework consists of qualitative and quantitative theories

under the same concept of possibility. Such a risk model would have simi-

lar representations for qualitative and numerical domain information. Decision
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making can be done using works in Dubois et al. (1999, 2001) and Fargier et

al. (2005).

In the next chapter, I investigate risk modelling and management when there is

numerical information available for modelling domain risks. I develop a risk model

construction and revision process that closely resembles the qualitative process pre-

sented in this chapter. In fact, there is a strong connection between the two risk

modelling and management processes.
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Figure 6.4: Evolution of a simple risk model for ball passing problem. ’+’ means
addition and ’-’ means contraction. Vacuous reasons are shown in steps in which new
variables are added for illustration purpose.



Chapter 7

Risk Management with
Quantitative Knowledge

In this chapter, I develop the quantitative part of the HiRMA framework. This part

of the framework is divided into two separate modelling and management approaches

depending on the nature of the quantitative information available. Specifically,

1. information largely consists of abundant numerical data that capture statistical

knowledge of a domain. For example, trading data from a foreign currency

exchange market;

2. information largely consists of subjective opinions from experts. The quantified

information reflects the degree of beliefs of the experts over (causal) relations

among domain variables associated with the risks.

For problem domains falling under the first category, HiRMA employs the standard

probabilistic Bayesian network approach with its well developed methods (discussed

in Section 4.4.4.1, 4.4.4.2 and 4.4.4.3) to construct probabilistic models from available

numerical data. The numeric information is obtained through the knowledge engi-

neering process described in Chapter 5. That is, I first work out the relevant domain

variables using the standard domain analysis procedure, and then collect quantitative

data associated with these variables through various data collection mechanisms e.g.

data feed from stock exchange gateways. Once the probabilistic model is constructed,

173
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I use algorithm(s) presented in Section 4.7.2 to recover the causal structure within

the model. Subsequent reasoning on this causal structure and decision making with

respect to risks can be carried out using the range of inference algorithms surveyed in

Section 4.4.5. For further details on the Bayesian modelling approach, I refer readers

to the above mentioned sections in Chapter 4 and the extended external materials

referenced in these sections. In this chapter, I focus my attention on risk modelling

for domains falling under the second category.

I will present an iterative approach for modelling risks based on the Transferable

Belief Model, in a similar fashion to the qualitative risk modelling approach devel-

oped in the previous chapter. Specifically, a quantitative epistemic reasoning model

is developed and maintained in the credal level. It has the similar graphical represen-

tation as a probabilistic Bayesian network. When it is necessary to make decisions

in relation to risk, the model is translated into a probabilistic model through the

so-called pignistic transformation process (Section 4.5.10). Algorithms developed for

Bayesian probabilistic models can then be applied for reasoning and decision making.

In the following sections, I will first discuss the key elements in this quantified risk

modelling technique, in particular quantified reason based on the Ramsey Test and

belief function. I then present the iterative model construction and revision process

based on a real number based ranking structure for quantified reasons, in similar fash-

ion as the qualitative modelling approach. I will also establish a direct connection

between my risk model and the standard direct evidential network. I then discuss the

pignistic transformation as a formal mechanism to translate a model at the credal

level into a probabilistic model at the pignistic level for risk assessment and decision

making. Finally, I compare the TBM based modelling approach with the probabilistic

Bayesian approach. Their respective advantages and disadvantages will be discussed.
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7.1 Quantitative Graphical Risk Model

Similar to the qualitative risk modelling, we need to perform the necessary domain risk

analysis prior to the initial model construction. Initial contexts, factors and scenarios

resulted from the analysis are also expressed in the classical first order language. I use

the same directed acyclic graph as the graphical representation for quantitative risk

models. That is, rounded square nodes (scenario nodes) represent scenarios and oval

shaped nodes (normal nodes) represent factors. Nodes in the quantitative graphic

model are typically single value variables. The arcs between nodes represent the

epistemic reasons between the associated nodes. In addition, the arcs are coupled

with belief functions which represent the degree of beliefs (from experts) in these

inference relations. In other words, the arcs are the quantified epistemic reasons for

the associated domain variables. For example, in Figure. 7.1 a directed arc from node

D to node S1 means that D istance of 20 centimetres is a direct reason for scenario

S1 with a causal strength (explained in later sections) of 0.2. Uncertainty in the

risk model is captured in these inference relations. Also similar to the qualitative

approach, I only allow arcs initiated from normal factor nodes to scenario nodes but

not vice versa.

Central to the quantitative risk modelling is the way we construct and maintain a

consistent knowledge base for risk through manipulation of quantified epistemic rea-

sons. I employ a knowledge repository with a ranking structure RS. The quantified

epistemic reasons between domain variables are stored in RS according to their rela-

tive strengths. Specifically, I map the known inference relations to the rank interval

[0,1] according to their corresponding degrees of belief. Inference relations of rank 0

are implausible reasons in the domain; relations of rank 1 are most plausible reasons

in the model. For conceptual knowledge, i.e. representation of domain variables, I

group them in a belief set K in the same way as the qualitative case. Within the

context of RS, K can be viewed as a set of sentences with rank of 1. In other words,

I do not rank conceptual domain knowledge and “trust” them to be true implicitly.

With the acquisition of new knowledge on the inference relations, I combine existing
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and new beliefs, and revise the rankings of the inference relations; consequently main-

taining the consistency of the knowledge base. Furthermore, this ranking structure

facilitates the generation of the final graphical model for risk reasoning, assessment

and decision making. In the following sections, I will give a detailed technical dis-

cussion on various aspects of this quantitative risk modelling approach. Again, I will

use the same ball passing problem to illustrate the entire modelling process.

Figure 7.1: Evolution of a quantitative epistemic reasoning model for risk: initial
model setup (a) and corresponding ranking structure (b).

7.1.1 Model Quantified Epistemic Reasons

In the quantitative risk modelling process, I focus on capturing the causally based

inference relations among the relevant domain variables because such a model repre-

sents the stable ontological knowledge of the domain. More importantly, an agent can

depend on such a model to take appropriate actions to minimise the consequences

from the undesirable scenarios. However, under normal circumstances, an agent does

not usually possess domain information with absolute certainty. That is, the agent
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may not be entirely certain that variable A is a definite reason for B based on the

available domain information it possesses1. Furthermore, it may not have a full pic-

ture of the domain, i.e. some relevant variables and inference relations may be missing

from its knowledge base. Therefore, it is natural to model uncertainty directly in the

inference relations and taking possible ignorance also into consideration.

7.1.1.1 Lead – Quantified Epistemic Reason

To model domain inference relations with uncertainty, I again invoke the Ramsey Test

(Section 4.7.1) to model inference relations as epistemic reasons, the same way I use it

in the qualitative modelling approach. In addition, I couple an epistemic reason with

a basic belief mass to represent the associated uncertainty. I call such a quantified

epistemic reason a Lead, denoted as LmX→Y , where X and Y are two domain variables.

It means X is a reason for Y with a belief mass m. Formally, I define Lead as the

following:

Definition 9. For a knowledge base K, X and Y are two simple domain variables.

We accept a lead LmX→Y in RS if and only if Y is accepted with a bbm m(LX→Y ) in

K ∗X, where K ∗X denotes ‘K revised by X’.

This formal definition2 can be illustrated through the following queries (to a do-

main expert): “Based on what you already know about a soccer match (K), if robot

Ra kicked the soccer ball towards robot Rb at distance D, will you accept the belief

that the ball will be caught by Rb in situation S1?” and “What value (m) do you put

on this belief?”. The value one attributes might be related to his or her confidence in

the belief or related beliefs. A lead LmD→S1
follows immediately with the answers. In

fact, these questions can be readily used to capture quantified opinions from domain

1Otherwise, if the agent was certain of the causal connection between the variables, it can generate
the final outcome deterministically given known factors, i.e. there is no uncertainty/risk to deal with.

2I deviate from the simple support function convention used in TBM that the actual support
mass is 1− x, i.e. I use bbm value as it is.
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experts. This definition can be regarded as a quantified version of ReasonFor used

in the qualitative risk modelling. A corollary definition is as follows:

Definition 10. A vacuous lead is a lead LX→Y with a bbm m(LX→Y ) = 0 denoted

as TX→Y .

A vacuous lead TX→Y means we are ignorant of whether there is a causal inference

relation from node X to Y . It is semantically equivalent to the vacuous reason used

in the qualitative model.

In terms of graphical representation, LmX→Y is represented as an arc starts from

node X and ends at node Y . A vacuous lead TX→Y is normally not shown in a

graph. However, for illustration purpose, a vacuous lead is sometimes represented

as a dashed arc. It should be noted that all postulates on epistemic reason (Section

6.1.1) are still applicable. In particular, no leads can be initiated from the scenario

nodes to normal nodes or other scenario nodes3; scenario nodes can only have leads

from normal nodes. There is no such a restriction for normal nodes. This ensures the

final graphical model is a DAG.

7.1.1.2 Frame of Discernment ΩX

We also need to define a frame of discernment of possible leads for every variable

in a graphical model. For a normal node X, a frame of discernment, ΩX , is a set

of all possible leads initiated from X to the rest of the nodes. Since a scenario

(leaf) node has no leads initiated from it, its frame of discernment is an empty set.

Therefore, the frame size for a normal node is i − 1 + j where i is the number of

normal nodes and j is the number of scenario nodes and the frame size for a scenario

node is zero. For example in Figure. 7.1(a), the frame of discernment for node D is

ΩD = {LD→S1 , LD→S2} with m(LD→S1) = 0.8 and m(LD→S2) = 0.2. It literally means

that we have reasons to believe (kicking from) the distance (of 20 centimetres) leads

3This reduces the number of leads we have in the system.
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to scenario S1 with a belief support of 0.8; we also have reasons to believe kicking

from this distance will lead to S2.

Figure 7.2: Evolution of a quantitative epistemic reasoning model for risk: Fuse
additional lead information from another source with m(LD→S1) = 0.5, m(LD→S2) =
0.3 and m(ΩD) = 0.2.

7.1.1.3 Data Fusion in Lead

One key feature in the quantitative risk modelling approach is that leads are conduc-

tive to modifications and are able to incorporate new information on the inference

relation. This means we are able to combine belief functions associated with leads

from disparate sources. That is, we can fuse data that may or may not be con-

sistent from different sources. We employ the TBM conjunctive combination rule

(Section 4.5.6) for this data fusion task. Suppose we have an existing model for the

ball passing problem as in Figure. 7.1. Specifically, we have bbm m(LD→S1) = 0.8,

m(LD→S2) = 0.2 and m(ΩD) = 0. We receive new information on these leads from

another source that m(LD→S1) = 0.5, m(LD→S2) = 0.3 and m(ΩD) = 0.2. Note that,

a non-zero m(ΩD) represents partial ignorance of the expert. After the application of
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the TBM conjunctive combination rule, the existing bbms become m(LD→S1) = 0.56,

m(LD→S2) = 0.1 and m(∅) = 0.34 (Figure. 7.2). Non-zero value of m(∅) is a measure

of the amount of conflict between the existing knowledge on these leads and the new

information received. In other words, the resultant leads are not normalised. This is

perfectly acceptable in the credal level of TBM. When it comes to decision making

or fusing with additional data, the inconsistencies are resolved in the following ways:

Decision Making: We can normalise leads using the pignistic transformation func-

tion (Section 4.5.10). Under normal circumstances, we choose the same betting

frame as the frame of discernment Ω. After this transformation process, the

bbms in the example become m(LD→S1) = 0.85, m(LD→S2) = 0.15. This nor-

malised result is equivalent to the result we get from applying the Dempster’s

rule of combination instead of the TBM conjunctive combination rule.

Iterative Data Fusion: The fundamental assumption in the possible world paradigm

is that a world must be self-consistent. Inconsistency that appears the knowl-

edge base is a direct result of an agent’s ignorance in the world. Therefore, we

may transfer the mass allocated for the empty set to Ω to reflect this ignorance

and hence renormalise the bbms. In fact, this redistribution of inconsistency

mass produces the same result as if the Yager’s combination rule was used in

the earlier data fusion (Yager 1987).

7.1.1.4 Latent Lead

We can go one step further and employ a tuple structure similar to the latent belief

structure in TBM so that we have an additional diffidence component in a latent

lead. We can use this diffidence component to represent the cases that we have some

reasons not to believe node X leads to Y . For example, (L0.8
D→S1

, L0.5
D�S1

) means we

have reason to believe (with bbm 0.8) D will lead to scenario S1; at the same time,

we also have reasons to believe (with bbm 0.5) our D will not lead to scenario S1.

This is particularly useful, since incoming new information can reinforce or weaken
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or even dismiss the existing support for the leads between the nodes. With the

latent lead structure, we can handle contradictory inputs from different knowledge

sources. We also have a more powerful way to express the relationships between

variables such as expressing “negative probabilities”4 for the inference relations which

is not possible under conventional probabilistic models. In addition, the latent lead

structure provides a compact form for storing the inference relations in knowledge

base. Note that, an information source may contribute support to either confidence

component or diffidence component of a latent lead structure. However, one cannot

give both confidence and diffidence supports simultaneously for a particular latent

lead. That is, we assume a domain expert does not give contradictory inputs.

Under the latent lead structure, (LX→Y , TX�Y ) and (TX→Y , LX�Y ) (with bbm

m = 1 omitted) represent the two special cases in which we have full confidence

with zero diffidence and no confidence with full diffidence respectively. They become

the categorical belief functions and semantically equivalent to ReasonFor(X, Y ) and

¬ReasonFor(X, Y ) (Section 6.1.1) respectively in the knowledge base. Furthermore,

when we have a latent structure with equally weighted confidence and diffidence

components, for example (L0.2
NR→S1

, L0.2
NR�S1

), it means that we have collected inputs

from experts with exactly opposite views, and the end result is that agent has no

concrete reasons to believe NR would lead to S1. In other words, the confidence

and diffidence components in the latent structure cancel each other out. We are left

with a vacuous lead TNR→S1 and remain totally ignorant whether there should be any

inference relationship from NR to S1.

7.1.1.5 The Λ̇ Operator and Causal Strength

I now introduce a transform operator Λ̇, based on the similar transform operator Λ in

TBM (Section 4.5.5), to map a latent lead structure into an ordinal that represents the

apparent causal strength (or simply causal strength CS) based on the current belief

an agent holds with respect to the corresponding inference relations. We use causal

4Intuitively, this could be regarded as resistance towards having the causal inference relation.
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strength as an overall measure for ranking the inference relation (see the following

section). The Λ̇ operator uses the belief supports of a (latent) lead as the inputs for

calculating the apparent causal strength. The Λ̇ operator has the following properties:

0 ≤ Λ̇((Lux→y, L
v
x�y)) ≤ 1

Λ̇((Lux→y, L
v
x�y)) = 0 if u = v. (7.1)

Notice that, if a latent structure has equal supports for both confidence and diffidence,

then its apparent causal strength is 0. We may have different Λ̇ operators designed

for different domain environments. For example, we may put different discounting

factors on confidence and diffidence components. Without losing generality, we select

a simple transform operator for the ball passing problem:

Λ̇((Lux→y, L
v
x�y)) =

{
u− v if u > v

0 otherwise,
(7.2)

where u, v are in range of [0,1].

7.1.1.6 The Ranking Structure RS

Another key element in the quantitative risk modelling approach is the use of a rank-

ing structure RS for storing domain inference relations according to their apparent

causal strengths as shown in Figure. 7.1(b). Theoretically, the risk knowledge repos-

itory captures all possible inference relations (of various causal strengths) among all

relevant domain variables, i.e. latent leads. The ranking structure starts from rank 0

to a maximum rank of 1. Rank 1 is given to those sentences representing the inference

relations that are definitely plausible to the task domain. Sentences that are the least

plausible with respect to the domain, i.e. vacuous leads have the rank of 0. As far as

we are concerned, they represent things we are totally ignorant. With this ranking

structure, we have a clear picture of relative strengths of causal relationships between

various risk factors and scenarios in the model. When it comes to risk assessment and
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decision making, it is not useful to include all inference relations in the final graphical

model. The ranking system provides a facility to filter out all weak and unnecessary

inference relations such as vacuous leads and leads with only diffidence.

Now we have all the necessary elements to embark on quantitative risk model

construction and revisions. Please note, I assume the inputs are information with

respect to either nodes or the inference relation i.e. leads between nodes.

7.2 Risk Model Construction and Revision

Quantitative risk modelling takes the similar iterative approach that is used in quali-

tative risk modelling. An agent is able to build a risk model from scratch and update

the model continuously using the same model construction/revision process. In this

section, I bring together ideas discussed in the previous sections and develop revision

mechanisms for domain variable and inference relation respectively in similar fashion

as in the qualitative case. I then discuss the model construction and revision process

illustrated with the Ball Passing Problem.

7.2.1 Revision of Domain Variables

Adding or removing a variable can occur when a domain evolves, e.g. a change in

the soccer rule that introduces an additional soccer player into soccer matches. Such

a change requires a re-analysis of the domain. As a result, existing risk factors or

scenarios may be no longer relevant and have to be removed; while new risk factors

or scenario may be added. Under the quantitative risk model structure, addition of

a new domain variable carries a subtle but important additional operation: adding

a variable node means adding all possible vacuous leads between existing nodes and

the newly added node. The frame of discernments of all variables in the system

(including the newly added variable) are expanded to include these vacuous leads.

For example, when node NR is added to a model of Figure 7.2(a), we automatically



184

add four vacuous leads of TD−>NR, TNR−>D, TNR−>S1 and TNR−>S2 , and we have

ΩD = {LD→S1 , LD→S2 , TD→NR} and ΩNR = {TNR→S1 , TNR→S2 , TNR→D}. Intuitively,

it makes sense that when we get to know a relevant notion of nearby robot (NR)

for the first time, we have no idea how NR is related to the existing variable D, S1

and S2. As evidence for these leads emerge, they may become normal leads as their

ranks move above 0. Addition of a normal node will entail additional 2n+m vacuous

leads where n is the number of existing normal nodes and m is the number of existing

scenario nodes; whereas adding a scenario node will entail n vacuous leads. This is

consistent with postulate RM3 (Section 6.1.1).

Removal a domain variable node means all leads, regardless of whether they are

vacuous leads or normal latent leads, between the retiring node and rest of nodes must

also be removed. Technically, it means the frames of discernment of the remaining

nodes are contracted with lead elements associated with the retiring node removed.

In practice, we need to transverse the whole ranking structure RS (in which leads are

stored) to remove all associated leads (Algorithm 19).

Algorithm 18 Node Addition

Require: A quantitative epistemic reasoning model for risk K =< K,RS > A new
domain variable N . Vn is a set of normal nodes, i.e. domain factors in K.

Ensure: A modified model K′ =< K ′, RS ′ >.
1: if N is a domain factor then
2: for all X ∈ K do
3: Add TN→X in RS at rank 0.
4: end for
5: end if
6: for all X in Vn do
7: Add TX→N in RS at rank 0.
8: end for
9: Add the node N to K.

Another important property of variable node revision is that addition or removal

a node does not effect the rest of leads that not associated with the node. That is,

no additional computation is required to adjust the remaining leads. In particular,

removal of a node means that bbms associated with any leads from other nodes into
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Figure 7.3: Evolution of a quantitative epistemic reasoning model for risk: addition
of a risk factor NR (Nearby Robot).

the node are transferred to their respective m(Ω); other leads in the frame are not

disturbed. Take the initial risk model (Figure. 7.1) as an example: removal of S2

means LD→S2 is also removed. The bbm associated with this lead is transferred to

m(ΩD) and the only remaining lead LD→S1 in ΩD is unchanged. This property is due

to the minimum commitment principle used in TBM.

Algorithm 19 Node Removal

Require: A quantitative epistemic reasoning model for risk K =< K,RS >. An
existing variable node X pending for removal.

Ensure: A modified model K′ =< K ′, RS ′ >.
1: Remove X from K.
2: for each lead L in RS do
3: if L ∈ ΩX or L ∈ {LN→X , ∀N ∈ K} then
4: Remove L from RS.
5: end if
6: end for
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7.2.2 Revision of Leads

Revision of a quantified epistemic reason, i.e. a lead, simply means fusing the existing

knowledge with new information for the inference relation (Section 7.1.1.3); recompute

the apparent causal strength (Section 7.1.1.5) and then reshuffle the lead within

the ranking structure RS. For example, in Figure 7.4(a), after addition of node

NR (Figure. 7.3(a)), new information that gives support of 0.7 to the lead from

NR to S2 arrives. We combine the vacuous lead TNR→S2 (automatically introduced

with addition of NR) with a latent lead structure (L0.7
NR→S2

, TNR�S2) using the TBM

conjunctive combination rule so that:

(L0.3
NR→S2

, TNR�S2) � TNR→S2

= (L0.3
NR→S2

, TNR�S2) � (TNR→S2 , TNR�S2)

= (L0.3
NR→S2

, TNR�S2)

Figure 7.4: Evolution of a quantitative epistemic reasoning model for risk: update
lead L0.7

NR→S2
.

Graphically, the ranking structure changes from Figure. 7.3(b) to Figure 7.4(b).

This ranking adjustment process can visualised as the invisible arc from NR to S2
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becoming visible while the lead moves up in the ranking structure RS.

7.2.3 Model Construction and Revision Algorithms

Combining the revisions procedure for domain variables and inference relations of

the variables, we can now provide an unified risk model construction and revision

algorithm based on quantitative knowledge provided by domain experts. As in the

qualitative modelling case, I separate the algorithm into two parts: initial model

construction (Algorithm 20) and model revision (Algorithm 21), for convenience.

Algorithm 20 Quantitative Risk Model Construction

Require: Risk analysis for the problem domain that produces a set of domain
variables V . An empty quantitative epistemic reasoning model for risk K =<
K,RS >. One knowledge source that can provide information on the possible
inference relations among the variables.

Ensure: A populated model K′ =< K ′, RS ′ >.
1: for all N ∈ V do
2: Call Node Addition Algorithm 18.
3: if N is a domain factor then
4: for all possible LN→X ∈ ΩN do
5: Solicit input from the knowledge source for LN→X .
6: if we have support bbm m > 0 for LN→X then
7: LN→X = LmN→X � TN→X .
8: CS = Λ̇(LN→X)
9: Adjust the placement of LN→X in RS according to CS.
10: end if
11: end for
12: else if N is a scenario then
13: do nothing.
14: end if
15: end for

For simplicity, lines 4-10 in Algorithm 20 use simple lead for data fusion with the

TBM combination rule. In fact, the operation is performed on the corresponding la-

tent structure. It is also not necessary to add initial vacuous leads into the knowledge

base in practice, since they have no physical effects on the actual model. They are
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implicitly assumed when we have the relevant variables stored in K.

Algorithm 21 Quantitative Risk Model Revision

Require: A quantitative epistemic reasoning model for risk K =< K,RS >. A
reanalysis of the domain.

Ensure: A modified model K′ =< K ′, RS ′ >.
1: if a new domain variable N is introduced then
2: Call Node Addition Algorithm 18.
3: else if an existing variable N ∈ K is being removed then
4: Call Node Removal Algorithm 19.
5: else if additional information on an existing LN→X with support i then
6: LN→X = LmN→X � LiN→X .
7: CS = Λ̇(LN→X).
8: Adjust the placement of LN→X in RS according to CS.
9: end if

7.2.4 Graphical Probabilistic Model Generation

The model construction and revision process described above ensures the knowledge

repository always remain in a consistent state at the credal level. However, such

a model is not useful for risk assessment and decision making because of the two

following issues:

• Due to the nature of the quantitative modelling process, i.e. introduction of

vacuous leads when a new variable is added; allowing conflicting inputs from

disparate sources, a typical quantitative epistemic reasoning model at the credal

level contains a large number of vacuous leads and “weak” leads with low ranks.

• The model at the credal level accommodates ignorance; that is, it allowsm(Ω) >

0 (or m(∅) > 0). However, the resultant model is not normalised such that it is

not conductive to risk assessment and decision making.

The first issue can be easily resolved by model pruning and generating graphical

models based on “what is important”. Within the ranking system, I use a cutoff
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rank Rcut to exclude all vacuous and weak leads from the model and produce a

graphical epistemic reasoning model that contains only leads with apparent causal

strengths above a desirable level. For example, by excluding all vacuous leads, we

end up with a graph in Figure. 7.4(a) without the dashed arcs. This filtering process

effectively generates graphic models that are close approximations of actual knowledge

repository. Depending on my attitude towards low probability risks, I could choose a

different rank cut-off point for graph model generation depending on the desired risk

profile. A corresponding directed graph can be generated at any time, once a cutoff

rank is selected.

Formally, generation of a graph involves combining all relevant variable nodes

and associated leads (with ranks above the cut-off point) using the TBM disjunctive

combination rule. Note that, the frames of discernment of variables are disjoint,

hence, the frame of discernment for the graph is set of all possible leads among the

normal and scenario nodes. That is,

Ωgraph =
⋃

ΩX , ∀X ∈ V . (7.3)

The frame size |Ωgraph| = |Vn(2|Vn−1|+Vs)|, where Vn is a set of the normal nodes, Vs
is a set of the scenario nodes and V = Vn ∪ Vs.

Finally, in order to perform risk assessment and decision making, we need to trans-

form the epistemic reasoning model for risk at the credal level into a normalised prob-

abilistic model at the pignistic level. The pignistic transformation (Section 4.5.10) is

applied to every lead in the model and associated bbm is translated into probability

according to a betting frame generated from the pruned model with a cutoff Rcut .

The result model normalisation procedure is listed in Algorithm 22. This procedure

truthfully captures the intuition of making assessments or decisions based on what we

know are important.
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Algorithm 22 Quantitative Risk Model Normalisation

Require: A quantitative epistemic reasoning model for risk K =< K,RS >, a cutoff
rank Rcut, V is a set of domain variable in K.

Ensure: A normalised model K′ =< K ′, RS ′ >.
1: for all N ∈ V do
2: Let the betting frame A = ΩN .
3: for all LN→X ∈ ΩN do
4: if Λ̇(LN→X) < Rcut then
5: Discard LN→X from the A and RS.
6: end if
7: end for
8: for all LN→X ∈ A do
9: Apply the pignistic transformation to LN→X .
10: end for
11: end for

7.2.5 Modelling with Ball Passing Problem

I now summarise the quantitative risk modelling process illustrated with the ball

passing problem step by step. The model construction and revision procedure has

already been described in separate steps previously. Here, I pull them together to

present a systematic and coherent view of the entire process. Under an initial context

of C1, I start from a trivial model of only three domain variables, one factor node

and two scenario nodes. I gradually introduce additional knowledge on the inference

relations between these nodes. A factor NR is introduced and later removed from the

system. The entire evolution of the quantitative epistemic reasoning model for risk is

shown in Figure 7.5 (page 195). The semantic interpretation of the model evolution

can be easily understood using the formalism discussed in the previous sections. That

is, addition of a variable introduces a set of associated vacuous leads. This artificial

construction represents an agent’s lack of knowledge on the plausible causal connec-

tions between the new variable and rest of the system. Additional information on

these leads is combined with the known domain knowledge and forces a (re-)shuffle of

the leads within the ranking structure RS according to their updated apparent causal

strengths. Removal of a variable means all leads associated with the variable are also
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removed. When risk assessment is required, every lead in the model is normalised

through the pignistic transformation after pruning vacuous and insignificant leads

from the model. In other words, the quantitative epistemic reasoning model at the

credal level is transformed into a probabilistic model for decision making. Note that,

for a simple model for the ball passing problem, model pruning described in Section

7.2.4 is not necessary and I use the original Ω as the betting frame.

The evolution of the risk model shown in Figure 7.5 is listed as follows:

Initial: An initial model K =< K,RS > with D,S1, S2 ∈ K and vacuous leads

TD→S1 , TD→S2 in RS.

Step 1: Introduce L0.8
D→S1

and L0.2
D→S2

.

Step 2: New input L0.5
D→S1

and L0.3
D→S2

.

Step 3: Add variable NR. K = K ∪ {NR}; add TD→NR, TNR→D, TNR→S1 and

TNR→S2 in RS.

Step 4: Introduce L0.7
NR→S2

.

Step 5: Remove NR and associated leads.

Step 6: Normalise L0.56
D→S1

and L0.1
D→S2

.

7.3 Discussion

In this chapter, I have focused on the development of a quantitative domain modelling

process that takes subjective opinions from domain experts as the main quantitative

domain knowledge for modelling and assessing risk. This modelling process is based

on the Transferable Belief Model and provides an intuitive and effective approach

for generating graphical quantitative epistemic reasoning models for risk analysis and

management. My approach attempts to formalise the process of capturing and mod-

elling domain expert knowledge from a risk perspective in an iterative fashion. It
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requires the same risk analyses as the qualitative risk modelling and management

process described in Chapter 6. In addition to identifications of the initial con-

texts, scenarios, relevant risk factors and epistemic reasons among domain variables,

domain experts are required to provide their (degree of) beliefs on the inference re-

lations. Graphically, all variables are represented in a directed graph as nodes and

directed arcs between nodes represent the causal connections between the correspond-

ing variables. Syntactically, variables and their causal inference relations are stored

in a knowledge base as sentences. The inference relations are placed within a ranking

structure RS according to their apparent causal strengths derived from the experts’

inputs. The model revision is achieved by combining the existing domain knowledge

with new information and adjusting the ranking of the inference relations. Conse-

quently, the knowledge base remains in a consistent state at the credal level. With

a graphical model generated from the knowledge repository, I can perform necessary

risk analysis and reasoning task using the inference techniques developed for DEVN

at credal level. When it is time for making final risk related assessments and decisions,

the quantitative epistemic reasoning model can be transformed into a probabilistic

model using pignistic transformation after pruning out vacuous and weak leads. Fi-

nally, combined with the consequence/pay off resulted from the domain analysis, an

agent can make appropriate risk evaluation and take appropriate actions accordingly.

This modelling and management process faithfully reflects the way of analysing, mod-

elling and managing risks adopted by a rational being based on what it knows best in

real life situations.

Most existing approaches for managing quantified uncertainty, and therefore risk,

are based on the probabilistic Bayesian network approach. Classical Bayesian net-

works are deeply rooted in probability and statistical inference and their constructions

and refinements (Buntine 1996, Murphy 2002) usually require a considerable amount

of numeric data (Zuk et al. 2006) as sample inputs, and there are probabilities to eas-

ily work with (Shafer 1990) (Lauritzen & Spiegelhalter 1988)5. In many environments

5See comments made by Smets.
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such as the ball passing problem, obtaining abundant and meaningful data is just not

practically feasible. The alternative is to use experts’ knowledge from various sources.

However, there is no simple formalism to capture potentially conflicting knowledge

from multiple experts and create a consistent causally based graphical model. The

modelling process introduced in this chapter fills this gap. It is sufficiently general

to be adapted for analysis and management uncertainty in a wide variety of domains

that rely on the subjective belief/probability from domain experts (Twardy, Wright,

Laskey, Levitt & Leister 2009). It also worth noting that my TBM based model does

not preclude the use of data and probabilities theoretically; we can use (conditional)

probabilities, if it is available, as the belief functions in the risk model.

Another key feature of my risk modelling process is that initial model construc-

tion and follow-on model modifications all use the same revision mechanism. It

is possible to construct a risk model in one particular domain environment, and

adapt the model to a similar environment with minimum modifications. Exist-

ing Bayesian based probabilistic models evolution are, in essence, model selections

(Buntine 1991, Ramachandran 1998, Lam 1998) based on datasets. However, the

reality is that data collected is often limited by what “we think we need”. New dis-

coveries, new correlations are often found when different sets of data are combined or

data sets change, and solutions based on hidden variables have inherent limitations.

All these issues are due to the fact that all probabilistic models are based upon the

Closed World Assumption, whereas my TBM based solution use Open World As-

sumption. Specifically, my approach does not use hidden variables (or another other

means) to emulate unknowns. I simply recognise that there are factors and causal

relations may be missing in an agent’s knowledge. My strategy is to continuously

acquire new domain knowledge and revise the existing model. When a new variable

is introduced into the system, the frame of discernment (of the system) is expanded to

include new plausible causal connections, and any missing knowledge (about inference

relations) is assigned to Ω. Conversely, removal of a variable will cause a contraction

of the frame of discernment and the removal of all associated leads according to the
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principle of minimum commitment. Furthermore, the calculation on the degree of

belief for an inference relation relies solely on the supporting evidences the agent has

gathered. The transformation of a belief model into a probabilistic model is also

based on the known evidence and the treatments of beliefs and ignorance. In short,

no artificial constructs (e.g. no hidden variable or artificially setting variable values

to ‘off’ state) are used in the entire modelling process. I believe this approach is

more natural than the pure probabilistic ones under dynamic, uncertain and open

environments that require constant updates/revisions with changing information.

My approach to model construction and revision is currently limited by the fact

my input is restricted to processed information(either by human experts or machines)

for variables and leads between variables and it cannot work directly with raw data.

When there is an abundant amount of quantitative data available for a domain, for

example in genome analysis, the probabilistic Bayesian network provides mature al-

gorithm for model building. Therefore, my modelling approach complements the

probabilistic modelling process. One needs to have a good understanding of a do-

main’s quantitative nature before selecting a more appropriate approach to model the

domain for risk analysis and management.

Finally, belief mass bbm is currently used for ranking evaluation in my method.

It is possible to exclude a lead with low belief of occurrence but with a huge potential

consequence when we are generating the graphical model. I need to use an appropriate

measure for risk, and a better ranking system to reflect measure of risk. To this end,

I need to analyse and study the Λ̇ operator further and to develop more sophisticated

transformation operators.
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Figure 7.5: Evolution of a simple risk model for ball passing problem. ’+’ means
addition and ’-’ means contraction. � means data fusion with TBM conjunctive
combination rule. Vacuous leads are shown in steps in which new variables are added
for illustration purpose.



Chapter 8

A Unified Multi-level Iterative

Framework

In Chapter 6, I have introduced a qualitative risk modelling and management process

and a quantitative approach based on the Transferable Belief Model in Chapter 7.

Albeit with their differences in dealing with different types of domain knowledge,

these two modelling approaches share many fundamental features:

• Both approaches employ the same domain analysis technique for analysis and

acquisition of relevant domain knowledge.

• Both approaches use Open World Assumption and are able to represent igno-

rance in domain knowledge.

• Both approaches are iterative processes that use the same mechanism for both

model construction and revision.

• Both approaches generate intuitive graphical models for risk assessment and

decision making.

In this chapter, I will summarise the two risk management approaches together

under one unified framework, HiRMA, that provides a generalised risk modelling

and management solution for intelligent agents. This generalised solution can be

196
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tailored and applied to a wide range of practical domains according to their individual

characteristics. This chapter consists of two parts. In the first part, I will first

recall the overall architecture of HiRMA presented in Chapter 5. The connection

between the qualitative and quantitative modelling approaches will be established at

the semantic level. Translations between the two model types will be also discussed.

I will then discuss and evaluate HiRMA against the requirements I set out in Section

3.2. In the second part, I will present a framework implementation strategy to guide

knowledge engineers to select the most appropriate mechanism and the associated

algorithms to develop and manage domain models for agents in dealing with risks.

Finally, I will propose a workable generic software architecture for implementation.

8.1 Bridging the Qualitative and Quantitative Di-

vide in Risk Management

In order to accommodate different types of domain knowledge, HiRMA takes a hybrid

approach and classify problem domains into three layers of data abstraction, high,

medium and low. The high abstraction level is for domains in which only qualitative

knowledge can be obtained; the low abstraction level corresponds to domains that

contain massive numerical statistical information. The medium level is for domains

with mixtures of qualitative and quantitative knowledge. Table 8.1 shows (again)

the overall structure of HiRMA. This thesis has focussed on the development of risk

modelling and management approaches in high and medium abstraction levels.

It is not difficult to observe that there is a strong connection between the qualita-

tive models at high abstraction level and TBM based quantified models at medium

abstraction level. A categorical belief function is equivalent to a first order sentence.

A vacuous belief function is equivalent to a coexistence of a sentence with its negation

at the same ranking. In other words, a ReasonFor(A,B) is equivalent to a quantified
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Abstract Theoretical Model Knowledge Model Application
Level Foundation Revision Belief Value Type Level
High Propositional/ Belief Qualitative Deterministic Strategic

Possibilistic Revision Semi- Level
Logic deterministic

Medium Transferable Rank Semi- Semi- Tactical
Belief Model Revision Qualitative/ deterministic/ management

Quantitative Probabilistic Operational
level

Low Bayesian Model Quantitative Probabilistic Operational
(causal) Selection level
Network

Table 8.1: A high-level theoretical architecture of HiRMA.

epistemic reason LA→B with a bbm m(LA→B) = 1; TA→B is equivalent to have a cou-

pling of ReasonFor(A,B) and ¬ReasonFor(A,B) at an equal degree of belief. In

TBM based risk modelling, the causal plausibility (or the apparent causal strength)

of a lead is represented with a numerical ranking in the range of [0, 1]; whereas the

(causal) plausibility of a qualitative epistemic reason is represented with an ordinal

ranking number under the OEF structure. This means, the main syntactical differ-

ence between the qualitative risk model and the TBM based quantitative model is

the ranking structure used to represent the plausibility of inference relations among

the domain variables. Compared with qualitative epistemic reasons, the information

captured in quantified epistemic reason with belief functions is more rich (e.g. bbm,

latent structure) and their manipulations are more sophisticated (i.e. data fusion

with combination rules, Λ̇ operator).

One may appreciate the close connection between qualitative risk model and the

TBM based quantitative risk model further from a more intuitive graphically based

angle. Suppose we assign a weighting real number to every sphere (according to its

likelihood) in the System of Spheres of a qualitative risk model (similar to Figure. 2.1)

instead of an integer; every epistemic reason formula is associated with the weighting
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number of the most inner sphere in which it first appears. Merging all spheres to-

gether will result a single DAG model that is semantically equivalent to a TBM based

graphical risk model. A cutoff rank used in rank merging process for qualitative risk

model performs a similar function as a cutoff rank used in TBM based model for

pruning vacuous/weak leads. Furthermore, from the perspective of possibility theory,

the qualitative risk model and the TBM based quantitative model can be cast under

the qualitative possibility framework and the quantitative possibility framework1.

The use of belief function and TBM at the medium abstraction is crucial in con-

structing a pathway that connects the qualitative risk modelling with the probabilis-

tic risk modelling at the low abstraction level. This is due to fact that probability

cannot represent full/partial ignorance that is allowed in the qualitative open world

risk model. The two level structure of TBM provides us with the transitional path-

way for converting an open world model to a closed world model (and vice versa2).

The pignistic transformation in TBM provides a solid mechanism for perform such a

transition. Overall, a risk model developed at the medium abstraction can be trans-

formed into a pure qualitative model (by categorising the leads) if qualitative risk

assessment or decision making is required; at the same time it can also be translated

into a probabilistic model (through pignistic transformation) if quantitative assess-

ment or decision making is needed. Therefore, in a general sense, the medium level

risk modelling approach is the most flexible method within the overall framework.

I would like to highlight that my unified framework rests on mature uncertainty

modelling theories and techniques that share a common philosophical foundation of

Possible Worlds Paradigm. Chapter 2 has provided a detailed discussion on System

of Spheres and probability under the paradigm of possible worlds; while Section 4.5.1

gives a formal definition of belief function from possible worlds. Figure 5.1 gives a

graphical overview of the modelling theories and techniques used in HiRMA. It shows

the theoretical relationships between these techniques.

1I do not give detailed discussion on this particular topic here due to the limited scope of the
report.

2Since probability is a special class of belief function, I can use the existing probability values as
the initial belief value in the open world model.
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8.2 Framework Evaluation

In Chapter 3, I have identified the three critical challenges for developing a gener-

alised risk management framework. These challenges are domain Complexity, domain

Openness and domain Dynamics. Using the benchmark problems from two disparate

fields, the Ball Passing Problem and the FX problem, I have demonstrated these

challenges are inherent characteristics of many real-world task domains. My risk

management framework must address these issues in order to be practically useful for

many real-world domains. Hence, I have set out a set of key framework requirements

in direct response to these challenges; I have also discussed the limitations of the

mainstream risk management methodologies with respect to these requirements.

The HiRMA framework I have presented in this thesis is designed to meet these

requirements so that it is general enough to be adapted to as many problem domains

as possible. I have shown in details how a specific risk analysis, modelling and man-

agement process may be developed for the Ball Passing Problem under HiRMA in

the previous chapters. A similar solution developed for the FX problem is shown in

the Appendix A. In the following section, I summarise all key framework features

discussed previously in direct correspondence to the framework requirements listed

in Section 3.2.

1. Through the multi-level hybrid architecture, HiRMA does not require complete

knowledge is available for the problem domain under investigation. If the prob-

lem domain is poorly understood and/or with little quantified knowledge, e.g.

the two benchmark problems, the high or medium level approaches with proper

treatment for ignorance may be adopted for risk modelling and management;

whereas, if the domain is well studied with abundant quantitative knowledge

available, the low level probabilistic modelling approach should be utilised.

2. The iterative risk modelling process matches naturally with the assumption

that agents can continuously acquire new domain knowledge. New knowledge

is incorporated into agents’ knowledge base through revision mechanisms listed



201

in Table 5.1. Furthermore, the risk modelling processes at the high and medium

abstractions can incorporate potentially conflicting informations from disparate

sources.

3. HiRMA is able to deal with both qualitative and quantitative domain knowl-

edge. The previous Section 8.1 provides a detailed high-level discussion on this

particular topic.

4. At the high and medium abstractions, the framework uses the notion of epis-

temic reason, which is based on the Ramsey Test, to capture the causally based

inference relationships in a problem domain. At the low abstraction, induc-

tive causation algorithm is used to produce and validate the causal structures

resulted in the probabilistic models.

5. The evolution of domain knowledge is handled with the iterative modelling

processes in the framework.

I conclude that HiRMA achieved the theoretical objectives I have set out in this

thesis. In comparison, most of existing risk analysis and modelling tools only meet

a subset of these requirements. Methods such as fault tree analysis and event tree

analysis (Aven 2008) are born out of system analysis. They produce only qualita-

tive graphical models for risk assessment that do not capture domain uncertainty

inherently3. On the other hand, probabilistic based model (Bedford & Cooke 2001)

typically requires conditional probabilities from domain experts who often have dif-

ficulty producing accurate and meaningful numbers (that sums to 1), while taking

account of their own ignorances. In fact, no risk modelling methods (we surveyed

so far) deal with ignorance explicitly. Furthermore, apart from Hierarchical Holo-

graphic Model (Haimes 1981) and HiRMA that allows for hybrid models, no other

method can build qualitative and quantitative risk models at the same time. Fi-

nally, apart from probabilistic models, none of the existing techniques has built-in

3As an extension, probability was later added to the system to express uncertainty.
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mechanisms to handle model revisions upon domain changes. There is no formalised

and theoretically sound transformation mechanism to convert a qualitative model

to a quantitative model, and vice versa. A comparison between HiRMA and sev-

eral popular risk analysis and modelling techniques with respect to the framework

requirements is summarised in Table 8.2.

Methodology

Feature Requirements
Continuous Iterative Qualitative Causally

Openness Knowledge Model + Stable
Inputs Revision Quantitative Model

HiRMA
√ √ √ √ √

Fault Tree
√
*

√

Event Tree
√
*

√

FMEA
√
*

√

Probabilistic
√ √ √

HHM
√ √

Note:
FMEA - Failure Modes and Effects Analysis.
HHM - Hierarchical Holographic Model.√
* - Only supports these features through extensions.

Table 8.2: A feature comparison between HiRMA and the existing risk management
methodologies.

After completing this theoretical discussion on the HiRMA framework, I now

turn my attention to the practical implementation of the framework. In the following

sections, I provide prospective knowledge engineers and system developers with a high

level guide for implementing HiRMA framework in intelligent agents.

8.3 Risk Modelling Strategies

Prior to the software design and implementation of HiRMA, the target domain and the

capabilities of the intelligent agent operating in the domain should be fully analysed
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Figure 8.1: A flowchart for selecting appropriate risk modelling and management
process.

by the knowledge engineers and system designers. More specifically, the fundamental

natures of the domain, in terms of the complexity and openness of its domain knowl-

edge, and dynamics of its environment should be fully investigated. The functions (or

objectives) of the agent should be carefully defined. Possible scenarios and associated

consequences should be fully analysed with respect to the agent’s goals. Additional

domain variables should also be studied against the specific domain environments.

Section 5.3 provides a simple working template for such domain analyses. Once the

initial analysis is completed, the system developer should select the most appropriate
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modelling techniques from HiRMA for the target domain. Figure 8.1 gives a simple

flowchart for determining which modelling process should be adopted for implemen-

tation. Note that, the flowchart is partitioned into the risk modelling and the risk

assessment/decision making sections in order to highlight the necessary model trans-

formations required in the respective modelling and management approaches. In par-

ticular, a TBM based model should be converted into either a pure qualitative model

or a probabilistic model depending on the type of assessment or decision is required.

If the domain knowledge is largely comprised of quantified subjective opinions from

domain experts, I recommend that the TBM based risk modelling approach should

be adopted instead of the probabilistic modelling method. This is due to the fact that

human experts are usually not good at producing meaningful probability and inputs

from different experts are likely to be inconsistent with each other. The TBM based

approach provides a formal conflict (in evidence) resolution and belief normalisation

(pignistic transformation) mechanism for generating more meaningful probabilities

for the risk model. A probabilistic model, on the other hand, simply assumes the

subjective probability provided by the experts are meaningful and consistent.

8.4 A Generic Software Architecture

I now present a top-level software design for implementing the risk modelling and

management framework. This design can be used for a full or a partial implementation

of the framework. Figure. 8.2 gives a schematic overview of this generic software

design. Each rounded rectangular box represents a top-level software module or

subsystem. The system takes data input from either human domain experts or data

feed from other computerised systems. Risk models are constructed and maintained

using one of the modelling approaches described in previous chapters. They are stored

physically in relational databases. In fact, two databases are used, one database

contains the full risk model; the other contains the consolidated risk model ready for

risk assessment and decision making. The conversion between the full risk model and
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Figure 8.2: A schematic diagram of a generic software architecture for implementation
of the HiRMA framework.

the consolidated risk model is done using the translation algorithm with respect to

the selected modelling method. The conversion process can be controlled by users.

Users may provide additional information for the conversion process. Intermediate

and consolidated risk models can be visualised using a graphical presentation module

and assessment results can be displayed using risk matrices or risk measure plot

described in Section 2.5.1 and 2.5.2.2. This system should form an integral part of

an intelligent agent or information system. I provide some additional comments for

the key components of the system in the following:

Data Input Subsystem: When one implements a graphical user input interface

for collecting domain information for domain experts, we should use the same

graphical representation described in the earlier chapters. The user interface

should prompt user with a series of questions (similar to questions in Section

7.1.1.1) to capture causally based domain inferencing information. Users should
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be able to edit directed edges from one domain node to another so to provide

information interactively.

The data input subsystem should also have a data preprocessor unit to validate

and cleanse data collected from user inputs and other data sources, e.g. ensure

quantified data does not go beyond the predefined range, so that data we feed

into the subsequent system module is valid and meaningful.

Model Manager: One should implement the selected risk model construction and

revision algorithm in this module. Domain knowledge is stored in a relational

database. I recommend that domain variables and inference/reasoning relations

between domain variables are stored in separated tables. In particular, the infer-

ence relation table should contain references to the domain variable tables and

have a data field containing the ranking information of the inference relation.

The model construction and revision algorithms works mainly on this table,

therefore, some optimisation techniques, e.g. data caching, may be considered

for optimising system performance.

Model Consolidation: This module should convert the risk model provided from

the Model Manager into a normalised model for risk assessment and decision

making. It should maintain a separate database so that the “raw” knowledge

base constructed from the Model Manager is not destroyed. Execution of this

module should be controlled carefully for optimal system performance since

model consolidation is only required when an agent needs to assess risk and

make decisions. System users should have the control of the model consolidation

process. For a performance critical system with minimum resources, e.g. the

robot soccer system, we take the entire modelling and consolidation process

offline and operate the risk reasoning system on a robot with the consolidated

risk model generated from the offline process.

Risk Reasoning & Assessment: Respective reasoning/inference algorithms should

be implemented in this module, i.e. automated theorem provers for qualitative
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model; various exact and approximated inference algorithms for probabilistic

models. Results from the reasoning process is presented in qualitative risk ma-

trix or quantified risk measure that can be used in further action planning and

execution.

Graphical Visualisation: This module accesses the databases maintained by the

Model Manager and Model Consolidation modules and present the respective

risk models graphically. It should also be able to display the results from the

Risk Reasoning & Assessment module in their appropriate forms. The visual-

isation module may also be integrated with the graphical user data input and

system control subsystems as an integrated graphical system interface for users.

Users can, therefore, have a clear picture of internal workings of the agent in

terms of managing domain risks and have the key controls of the entire process.

Finally, in terms of actual implementation technology, conventional combination

of data processing, communication and database technologies may be adequate for

small scale systems. For large scale systems with high data volume, a large number

of data source and distributed processing nodes, the recent streaming computing

technology(Gedik, Andrade, Wu, Yu & Doo 2008) may be a better programming

model for implementing the iterative data flow process found in my framework. This

concludes the main presentation of this thesis.



Chapter 9

Conclusions

The goal of this thesis is to apply mature and proven knowledge representation, mod-

elling theories and reasoning techniques developed from the field of Artificial Intelli-

gence in the area of risk modelling and management. Specifically, I have focused on

developing a practical risk modelling and managing framework for intelligent agents

and information systems so that these systems can assess and manage risks in their

respective domains autonomously and intelligently. Since the concept of risk has not

been fully developed from the perspective of an intelligent agent, I have formalised

a concept of risk and provided a generalised definition of risk for intelligent agents

based on the fundamental notions of uncertainty and consequence (with respect to

an agent’s objectives). As uncertainty is also a poorly defined concept, I have in-

vestigated the notion of uncertainty from the first principles. I provided a formal

interpretation and a number of representations of uncertainty for intelligent agents

from the possible worlds paradigm. Specifically, uncertainty is represented qualita-

tively with a likelihood preorder structure of possible worlds; quantified uncertainty

is represented using probability or belief function both of which are formulated from

possible worlds. These uncertainty representations lead to

1. A modified version of risk matrix which is commonly used in risk management

literature to represent qualitative risk. Compared with the standard risk matrix,

208



209

the modified version has a formal underlying paradigm of possible worlds and is

more expressive in terms of representing possible domain models (in a likelihood

order) directly in the table instead of probability bands.

2. A quantified risk measure that is based on the probability and expected utility

theory. This risk measure captures an agent’s attitude towards risk. It pro-

vides a more accurate way of assessing risk with respect to individual agent (or

stakeholder).

Overall, the modified risk matrix and the quantified risk measure offer concrete,

truthful and disparate representations of risk that are essential for intelligent agents

to be able to analyse and assess risks in their respective domains.

My fundamental analysis of “what risk means” for an intelligent agent enables us

to develop a simple but effective template for risk analysis based on five important

categories, namely, the agent’s tasks/objectives, domain environment, initial context,

scenarios and associated (risk) factors. Using this template, a knowledge engineer, in

collaboration with domain experts, can work out relevant variables associated with

the domain risks. My analysis in “how risk can be represented” for an agent reveals

disparate uncertainty representations (and risk representation) developed under the

Possible World paradigm. This work essentially sets up a selection criteria for the

knowledge representation and uncertainty management theories to be adopted in my

risk modelling and management framework.

The risk modelling and management framework, i.e. HiRMA, developed in this

thesis is intended to be a generalised solution that can be applied and implemented in

a wide range of practical domains. Through the analysis of two practical benchmark

problems (Section 5.3), namely, the ball passing problem in robotic soccer and risk

management of foreign exchange for small enterprises, I observed three critical and

challenging issues commonly exist in many real-world domains and environments,

i.e. complexity, openness and dynamics. Accordingly, I developed a set of concrete

requirements that the HiRMA framework must satisfy in order to address these chal-

lenges (Section 3.2). I used these requirements as a set of important criteria (in
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addition to be consistent with the possible worlds paradigm) to select appropriate

knowledge representation and uncertainty management methodologies. Finally, these

requirements are also used as the key metrics in the evaluation of the framework.

As a major part of this thesis, I have devoted considerable amount of effort in

surveying a wide array of theoretical works in knowledge representation and uncer-

tainty management developed in AI from the past fifty years. My survey ranged from

the classical first order logic to non-monotonic logics; from qualitative knowledge

representation with pure propositional language to quantitative representation with

probability. I have focused on the well-known uncertainty management methodolo-

gies such as Bayesian network; discussed their merits and deficiencies with respect to

the key challenges. I reached a firm conclusion that no single theory in knowledge

representation and uncertainty management techniques can provide a complete and

satisfactory solution to the issues of complexity, openness and dynamics. Each indi-

vidual modelling and reasoning technique is applicable to a specific set of domains

and environments. I concluded that a hybrid framework that is comprised of a num-

ber of techniques would offer a better generalised solution for covering a wide range

of disparate domains. Techniques that ensure a causally connected domain model is

developed for dealing with domain risks were also highlighted in the literature review.

The core of this thesis is a multi-level hybrid iterative risk modelling and man-

agement framework I developed based on an integration of the key knowledge repre-

sentation and uncertainty management techniques of classical logics, Belief Revision,

Transferable Belief Model and probabilistic Bayesian Network. I presented the frame-

work in two separate parts, the qualitative and the quantitative risk modelling and

management. Both parts adopt the same iterative approach towards risk modelling

and use the knowledge representation in accordance to the nature of domain informa-

tion available. Specifically, I use sentences in classical logic to represent domain vari-

ables; the causally based inference relations between domain variables are represented

qualitatively with epistemic ReasonFor formulas, or quantitatively with quantified

epistemic reasons (or leads) with belief functions or probabilities. The uncertainty
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associated with domain risk is captured in possible domain models in a System of

Spheres, conditional belief function or probability. In other words, my risk mod-

elling framework focuses on capturing the domain uncertainty, or (more accurately)

an agent’s beliefs (based on the available domain knowledge) in the inference rela-

tionships within a domain. This modelling approach is based on the reasoning that if

an agent is certain of the inference relations between the relevant domain variables,

then it can deterministically derive the final outcome from a (set of) initial conditions

and therefore no risk to speak of. To ensure the framework produces the required

causally based domain models, I use the Ramsey Test to capture causal knowledge

from domain experts and inductive causation algorithm to validate the final (proba-

bilistic) models are causally connected. In summary, the HiRMA framework tackles

the three key challenges in the following ways:

Complexity: By providing multiple risk modelling approaches that work at differ-

ent data abstraction levels, system developers can select the most appropriate

modelling and reasoning techniques from HiRMA for implementation in their

target domains. Furthermore, a model constructed at one data abstraction level

can be translated to a functionally equivalent model at another abstraction level

through a formal conversion mechanism, e.g. the pignistic transformation mech-

anism.

Openness: By adopting modelling and management technologies based on the Open

World Assumption, risk models are developed and maintained in an open world

setting in which partial ignorances are allowed. Additional domain knowledge

can be continuously integrated into the existing model. The “open” risk models

are collapsed down to a closed world model for risk assessment and decision

making.

Dynamics: Using an iterative process to continuously update model with newly



212

acquired information, the new knowledge is integrated with the existing knowl-

edge through a formal model revision mechanism such as the modified maxi-

adjustment algorithm for rank maintenance. Risk models are being continuously

modified and improved along with evolving domains.

The approaches adopted in HiRMA reflect my fundamental stance towards risk

modelling and management that an agent is not presumed to possess a complete

knowledge or data of its domain and environment. However, it (should) have the abil-

ity to acquire new information about the domain (through sensors or other means)

and actively acquire such knowledge. The agent keeps an “open mind” and treats its

(partial) ignorance about the domain during the entire risk modelling management

process in a formal and consistent manner. The agent constantly maintains and up-

dates its domain model according to the latest information to ensure the changes in the

domain environment are taken into account. When the agent is required to carry out

formal risk assessments and/or making decisions in relation to the domain risks, the

agent makes the assessment and the decisions based only on what it currently knows

about the domain. “Unknowns” are removed from the system and the risk model is

normalised based on the existing knowledge and preferences. The resultant model is

then used for reasoning and decision making. In other words, the agent maintains its

domain model for risks on the open world credal level, and only translates the model

to a closed world model when risk assessment and decision making is required. In

this way, an agent is able to retain as much domain knowledge as possible, including

conflicting information and possible ignorance, in its open model; at the same time

only uses the logically consistent and most plausible domain knowledge in its deci-

sion makings. I should also note that, the HiRMA framework does not prohibit the

development of closed world model. The framework uses the Bayesian probabilistic

modelling and reasoning techniques when the target domain is well-understood and

has abundant quantitative domain information available.

In summary, HiRMA integrates the well developed knowledge representation and

reasoning techniques in the formal logics and the probabilistic methods in modelling
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and managing risks for a wide range of practical domains. The framework makes a

clear separation between domain risk modelling and risk assessment/decision mak-

ing. Formal translation mechanisms are employed to prepare the model developed

in the modelling process for decision making based on the what the agent currently

knows best, i.e. knowledge above a certain confidence level. Consequently, the entire

risk modelling and management process can be easily implemented in a modularised

fashion so that a variety of system requirements or limitations can be satisfied. For

example, in a system with limited computational resources such as robotic soccer

players, the modelling process have to be implemented offline and only a normalised

model is running directly on robots for intelligent risk assessment and decision mak-

ing.

The framework is flexible enough such that a system developer can select a par-

tial implementation that is mostly suitable for the immediate problem domain. The

algorithms incorporated in the framework are directly derived from the mature mod-

elling and reasoning algorithms developed in the respective AI technologies. System

developers can implement most of the algorithms with relative ease and can utilise

many existing implementations available in the public domain, e.g. Bayesian network

learning implementation in Weka1. Together with its solid theoretical foundations,

the diverse representations for modelling risks in disparate environments, the itera-

tive process for model improvement and the formal model transformation mechanisms

for risk assessment and decision makings and the corresponding mature algorithms,

I believe HiRMA provides a well balanced and workable solution for modelling and

managing risk in intelligent agents from many domains.

With the research work done in this thesis, I have brought risk management and

AI, two seemingly unrelated fields of study together by giving an alternative and more

formalised approach to risk management, while extending the application of AI into

a relatively unexplored area. More importantly, I have filled an important but often

neglected area in the designing and implementation of intelligent systems.

1http://www.cs.waikato.ac.nz/ml/weka
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In the next step in the evolution of my research work is to implement HiRMA

framework in a real world oriented system situated in a more complex domain envi-

ronment so that I can physically demonstrate the crucial benefits HiRMA brings. To

this end, we are planning to apply HiRMA in the area of Human Robot Interaction

(HRI) particularly on service robots such as PR22 because being able to interact with

people safely will critically affect the adoption of these robots in the general commu-

nity. I hope to develop quantifiable metrics to show the benefits of HiRMA. Finally,

I hope to continue improving the framework and promote HiRMA for wide adoption

in the development of intelligent agents.

2http://www.willowgarage.com/pages/pr2/overview.



Appendix A

An Extended FX Example

In this appendix, I extend the FX benchmark problem 3.1.2 to demonstrate a possible

implementation of HiRMA at median and high abstraction level. I should note that

this extended example remains a simplified model, and actual implementation for

deployment in the real world environment will require further development of the

model constructed below. Furthermore, I present the overall implementation and do

not go through every step of the process.

A.1 Initial Risk Analysis

Objective: Maintain a neutral foreign exchange position for a median size electric

goods importing firm in Australia (AU).

Environment: The Australia-US dollar exchange rate fluctuates 0.5% on weekly

basis on average, may vary more violently (> 5%) due to fast changing global

environment. The firm imports large quantities of electronic goods that take

one to two months to manufacture and two weeks for shipment. Payments for

the goods could be paid in single or multiple instalments.

Initial Context: The firm makes a large order and the payment for the goods will

be made in two separate instalments.
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Scenarios: Possible foreign exchange positions are summarised below.

SCENARIO DESCRIPTION PAYOFF
S1 Overseas manufacturer willing to Excellent 0.9

absorb the risk.
S2 No currency hedging. Financial Severe -1

losses due to lowering of AUD$.
S3 No currency hedging. Good 0.7

Financial gain due to rise of AUD$.
S4 100% currency hedging. No net Minor 0.2

losses and cost of hedging.

Table A.1: An analysis of possible scenarios for FX risk in Australian Dollars (AUD).

Associated Factors: All factors listed below consider their corresponding varia-

tions in a period of two months.

• Variation in AUD above 5% (V C),

• Variation in AUD below 5% (MC),

• Differential Interest between US and AU (DI),

• Interest Rate in AU (IR),

• Inflation in AU (IF ),

• Current Account deficit (CA),

• Public and private Debt in AU (PD),

• Demand in Resources (DR),

• Growth rate in Asia (GA),

• Manufacturer’s Willingness to retain orders (MW ),

• Global manufacturing Demand (GD),

• Europe/US Debt Crisis (DC),

• Currency Hedging costs (CH),

• Hedging in full(HG).
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A.2 Analysis and Selection of Modelling Process

As small/median size company specialised in import, I may not have abundant

amount of quantitative foreign exchange data available for analysis and modelling.

Knowledge about FX are obtained mainly from experts from financial institutions,

outlook guidances from government reports, economic news and the company’s past

operational experiences (e.g factor MW ). It is unlikely that the firm has full knowl-

edge of the FX market and most of existing knowledge are partially quantifiable.

Hence, according to the methodology selection flowchart Figure 8.1, I adopt the TBM

based modelling and management process for my implementation.

A.3 Knowledge Databases for Modelling FX risk

A.3.1 Database Structure for K

Figure A.1: Database schema for a FX risk model at credal level.
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Figure A.11 shows a graphical database schema for the risk model. I store do-

main risk factors and scenarios in the FXVariable table. Normal factors have null

consequence whereas scenarios have references to the FXConsequence table. The

is meta flag indicates whether the variable is a meta-variable that is a combination

of concrete variables. Meta-variables are used to to capture epistemic reasons between

a domain variable and a combination of other variables, e.g. DC is a reason for GD

and MW at the same time. MetaVariableRecord is used to record the many-to-many

relationships between meta-variables and associated concrete variables. Depending

on the data type of rank and neg rank attributes, an entry in FXReason table is either

a ReasonFor formula with its negation, or a quantified epistemic reason, i.e. latent

Lead. Integer ranks mean qualitative reasons, and Decimal ranks imply quantitative

reasons. neg rank is the ranking for the negation of a reason. Both antecedent and

consequent are foreign reference keys from FXVariable table. Note, antecedent must

not be NULL, whereas consequent can have a NULL value. In fact, a FX reason with

a NULL consequent represents Ωantecedent. When I add a variable, e.g. MW into the

FXVariable table, I should also have a corresponding ΩMW with rank of 1.0 in the

FXReason table. Listing A.1 shows the data definition in PostgreSQL2 SQL syntax:

serial is auto incremented integer and boolean data type is used for is scenario

flag.

create table FXConsequence (

id ser ia l primary key ,

weight decimal ,

ca tegory varchar (10)

) ;

create table FXVariable (

symbol varchar (20) primary key ,

d e s c r i p t i o n text ,

i s meta boolean default false ,

consequence integer references FXConsequence on delete restr ict

default null

1Generated with dbwench2: www.dbwrench.com.
2http://www.postgresql.org
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) ;

create table I n i t i a lCon t e x t (

symbol char (3 ) primary key ,

d e s c r i p t i o n text

) ;

create table MetaVariableRecord (

meta var varchar (20) references FXVariable on delete cascade

not null ,

component varchar (20) references FXVariable not null

) ;

create table FXReason (

id ser ia l primary key ,

i n i t i a l c o n t e x t char (3 ) references I n i t i a lCon t e x t on delete

cascade not null ,

antecedent varchar (20) references FXVariable on delete cascade

not null ,

consequent varchar (20) references FXVariable ,

rank decimal ,

neg rank decimal

) ;

Listing A.1: Data schema for K in PostgreSQL.

A.3.2 Database Structure for K
c

For assessing risks and decision making, I need to first normalise the risk model at

credal level. I use a second database Kc to store the resultant model after the consol-

idation process. The schema for Kc shown in Figure A.2 differs slightly from K with

FXConsolidatedReason without the neg rank field. In addition, the consequent field

in FXConsolidatedReason cannot be NULL. These schema changes are the results

of normalisation of the model.
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Figure A.2: Database schema for a consolidated FX risk model.

create table FXConsolidatedReason (

id ser ia l primary key ,

i n i t i a l c o n t e x t char (3 ) references I n i t i a lCon t e x t on delete

cascade not null ,

antecedent varchar (20) references FXVariable on delete cascade

not null ,

consequent varchar (20) references FXVariable not null ,

rank decimal

) ;

Listing A.2: Modified data schema K
c in PostgreSQL.

A.3.3 Populated Knowledge Database K

I use a mixture of C/C++ and PL/pgSQL language to implement the entire TBM

based risk modelling framework. The core algorithms 20 and 21 are implemented in

PL/pgSQL (shown in the following section) to acquire and populate the database.

The A “snapshot” of the model is shown graphically in Figure A.3 (for initial context

C1). I use add_variable to insert domain factors and scenarios; use revise_reason

to fuse and revise the quantitative epistemic reasons. Removal of variables and reasons

are carried out with remove_variable and remove_reason respectively. Following
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are the actual data stored in a PostgreSQL database.

−−− I n i t i a lCon t e x t

symbol | d e s c r i p t i o n

−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
C1 | Payment in two in s ta lment s with in two months and no hedging .

C2 | Payment in two in s ta lment s with in two months and f u l l y hedged .

−−− FXConsequence

id | weight | category

−−−−+−−−−−−−−+−−−−−−−−−−−
1 | 0 .9 | Exce l l en t

2 | −1.0 | Severe

3 | 0 .7 | Good

4 | 0 .2 | Minor

−−− FXVariable

symbol | d e s c r i p t i o n | i s meta | consequence

−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−−

S1 | Overseas manufacturer w i l l i n g to absorb the r i s k . | f | 1

S2 | No currency hedging . F inanc i a l l o s s e s due to lower ing o f AUD. | f | 2

S3 | No currency hedging . F inanc i a l ga in due to r i s e o f AUD. | f | 3

S4 | 100% currency hedging . No net l o s s e s and co s t o f hedging . | f | 4

VC | Var ia t ion in AUD above 5%. | f |
MC | Var ia t ion in AUD below 5%. | f |
DI | Var ia t ion in D i f f e r e n t i a l I n t e r e s t between US and AU. | f |
IR | Var iat ion in I n t e r e s t Rate in AU. | f |
IF | Var ia t ion in I n f l a t i o n in AU. | f |
CA | Var ia t ion in Current Account d e f i c i t . | f |
PD | Var ia t ion in Publ ic and p r i va t e Debt in AU. | f |
DR | Var iat ion in Demand in Resources . | f |
GA | Var iat ion in Growth ra t e in Asia . | f |
MW | Var ia t ion in Manufacturer Wi l l i ngne s s to r e t a i n o rde r s . | f |
GD | Var ia t ion in Global manufacturing Demand . | f |
DC | Europe/US Debt C r i s i s . | f |
CH | Currency Hedging c o s t s . | f |
HG | Hedging in f u l l . | f |
GDMW | Meta GD+MW | t |

−−− FXReason

id | i n i t i a l c o n t e x t | antecedent | consequent | rank | neg rank

−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−+−−−−−−−−−−
13 | C1 | CH | | 1 .0 | 1 .0

14 | C1 | HG | | 1 .0 | 1 .0

23 | C1 | MC | S1 | 0 .3 | 0 .0

24 | C1 | MC | S2 | 0 .4 | 0 .0

25 | C1 | MC | S3 | 0 .3 | 0 .0

2 | C1 | MC | | 0 .0 | 1 .0

26 | C1 | VC | S2 | 0 .8 | 0 .0

27 | C1 | VC | S3 | 0 .1 | 0 .0

1 | C1 | VC | | 0 .1 | 1 .0

28 | C1 | MW | S1 | 0 .3 | 0 .0

10 | C1 | MW | | 0 .7 | 1 .0

29 | C1 | DI | VC | 0 .1 | 0 .0

3 | C1 | DI | | 0 .9 | 1 .0
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30 | C1 | IF | VC | 0 .18 | 0 .0

31 | C1 | IF | MC | 0 .67 | 0 .0

5 | C1 | IF | | 0 .15 | 1 .0

32 | C1 | PD | IF | 0 .4 | 0 .0

7 | C1 | PD | | 0 .6 | 1 .0

33 | C1 | IR | IF | 0 .5 | 0 .0

34 | C1 | IR | DI | 0 .5 | 0 .0

4 | C1 | IR | | 0 .0 | 1 .0

35 | C1 | CA | VC | 0 .05 | 0 .0

6 | C1 | CA | | 0 .95 | 1 .0

36 | C1 | DR | VC | 0 .95 | 0 .0

8 | C1 | DR | | 0 .05 | 1 .0

37 | C1 | GA | DR | 0 .9 | 0 .0

9 | C1 | GA | | 0 .1 | 1 .0

38 | C1 | GD | GA | 0 .53 | 0 .0

11 | C1 | GD | | 0 .47 | 1 .0

39 | C1 | DC | GDMW | 0 .75 | 0 .0

12 | C1 | DC | | 0 .25 | 1 .0

−−− FXConsolidatedReason with c u t o f f 0 .01

id | i n i t i a l c o n t e x t | antecedent | consequent | rank

−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−
99 | C1 | GA | DR | 1.00000000000000000000

94 | C1 | IF | MC | 0.74500000000000000000

95 | C1 | IF | VC | 0.25500000000000000000

88 | C1 | MC | S3 | 0.30000000000000000000

89 | C1 | MC | S2 | 0.40000000000000000000

90 | C1 | MC | S1 | 0.30000000000000000000

102 | C1 | DC | GDMW | 1.00000000000000000000

86 | C1 | VC | S3 | 0.15000000000000000000

87 | C1 | VC | S2 | 0.85000000000000000000

100 | C1 | MW | S1 | 1.00000000000000000000

91 | C1 | DI | VC | 1.00000000000000000000

92 | C1 | IR | DI | 0.50000000000000000000

93 | C1 | IR | IF | 0.50000000000000000000

98 | C1 | DR | VC | 1.00000000000000000000

101 | C1 | GD | GA | 1.00000000000000000000

96 | C1 | CA | VC | 1.00000000000000000000

97 | C1 | PD | IF | 1.00000000000000000000

Listing A.3: Data in the database fxrisk in PostgreSQL.

A.4 Functional Code Snippets

This section contains a number of PLpg/SQL functions that implements the core

algorithms in Chapter 6.
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Figure A.3: A snapshot of the quantitative epistemic reasoning model for FX risks.

A.4.1 add variable

add_variable creates a variable entry, either a factor or scenario in the FXVariable

table. It also creates an entry in FXReason for Ωantecedent.

create or r ep l a c e func t i on add var i ab l e ( context char , sym varchar , d e s c r i p text , con

varchar ) r e tu rn s boolean as $$

de c l a r e

conq r id FXConsequence . id%type default null ;

v a r r i d FXVariable . symbol%type default null ;

i c r i d I n i t i a lCon t e x t . symbol%type default null ;

begin

select symbol into va r r i d from FXVariable where symbol=sym ;

i f v a r r i d i s not null then

r a i s e no t i c e ’ Var iab le % a l ready e x i s t s ’ , sym ;

re turn fa l se ;

end i f ;

i f con = ’ ’ then

insert into FXVariable ( symbol , d e s c r i p t i o n ) values (sym , de s c r i p ) ;

select symbol into i c r i d from I n i t i a lCon t e x t where symbol=context ;

i f not found then

r a i s e no t i c e ’Unknown i n i t i a l context %’ , context ;

r e turn fa l se ;

end i f ;

−−− I donot i n s e r t a l l p l a u s i b l e vacuous l e ad s in to RS.
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−−− Ins tead I s e t m(Omega)=1.

insert into FXReason( i n i t i a l c o n t e x t , antecedent , consequent , rank , neg rank ) values (

i c r i d , sym , null , 1 . 0 , 1 . 0 ) ;

else

select id into conq r id from FXConsequence where category = con ;

i f not found then

r a i s e no t i c e ’No % type consequence i s a v a i l a b l e . ’ , con ;

r e turn fa l se ;

end i f ;

insert into FXVariable ( symbol , d e s c r i p t i on , consequence ) values (sym , desc r ip ,

conq r id ) ;

end i f ;

r e turn true ;

end ;

$$ language p lpg sq l ;

Listing A.4: add variable function.

A.4.2 add metavariable

add_metavariable creates a meta variable that a composite of several concrete do-

main variables. It creates entries both FXVariable (with is meta set to true) and

MetaVariableRecord table.

create or r ep l a c e func t i on add metavar iab le ( context char , sym varchar , d e s c r i p text ,

cons varchar array ) r e tu rn s boolean as $$

de c l a r e

v a r r i d FXVariable . symbol%type default null ;

begin

select symbol into va r r i d from FXVariable where symbol=sym ;

i f v a r r i d i s not null then

r a i s e no t i c e ’ Var iab le % a l ready e x i s t s ’ , sym ;

re turn fa l se ;

end i f ;

insert into FXVariable ( symbol , d e s c r i p t i on , i s meta ) values (sym , desc r ip , true ) ;

begin

f o r i in 1 . . a r r ay l eng th ( cons , 1) loop

insert into MetaVariableRecord (meta var , component ) values (sym , cons [ i ] ) ;

end loop ;

exception

when i n v a l i d f o r e i g n k e y then

r a i s e no t i c e ’Component va r i ab l e % not found ’ , cons [ i ] ;

delete from FXVariable where symbol=sym ;

re turn fa l se ;

end ;

r e turn true ;

end ;

$$ language p lpg sq l ;

Listing A.5: add metavariable function.
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A.4.3 remove variable

remove_variable remove domain variables (including meta variables) from the database.

It also remove all leads associated with the variable (using function remove_associated_reason)

The bbms assigned to the removing leads are reassigned to the corresponding Ω leads.

create or r ep l a c e func t i on remove var iab l e (sym varchar ) r e tu rn s boolean as $$

de c l a r e

meta rec record ;

begin

−−− remove a s soc i a t ed meta v a r i a b l e

f o r meta rec in select ∗ from MetaVariableRecord where component=sym loop

execute r emove a s soc i a t ed r ea son ( meta rec . meta var ) ;

end loop ;

delete from MetaVariableRecord where component=sym ;

execute r emove a s soc i a t ed r ea son (sym) ;

−−− d e l e t e the ac tua l v a r i a b l e and i t s a s so c i a t ed l ead through cascade .

delete from FXVariable where symbol=sym ;

end ;

$$ language p lpg sq l ;

create or r ep l a c e func t i on r emove a s soc i a t ed r ea son (sym varchar ) r e tu rn s boolean as

$$

de c l a r e

d e l r e c record ;

n u l l r e c record ;

begin

f o r d e l r e c in select ∗ from FXReason where consequent=sym loop

select ∗ into nu l l r e c from FXReason where antecedent=d e l r e c . antecedent and

consequent i s null ;

i f found then

update FXReason set rank=nu l l r e c . rank+d e l r e c . rank where antecedent=d e l r e c .

antecedent and consequent i s null ;

end i f ;

end loop ;

delete from FXReason where consequent=sym ;

end ;

$$ language p lpg sq l ;

Listing A.6: remove variable function.

A.4.4 remove reason

remove_reason deletes individual epistemic reasons and reassigns their bbms to the

corresponding Ω leads.
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create or r ep l a c e func t i on remove reason ( context char , ant varchar , con varchar )

r e tu rn s boolean as $$

de c l a r e

d e l r e c record ;

n u l l r e c record ;

begin

select ∗ into d e l r e c from FXReason where i n i t i a l c o n t e x t=context and antecedent=

ant and consequent=con ;

i f found then

update FXReason set rank=rank+d e l r e c . rank where i n i t i a l c o n t e x t=context and

antecedent=ant and consequent i s null ;

delete from FXReason where i n i t i a l c o n t e x t=context and antecedent=ant and

consequent=con ;

else

r a i s e no t i c e ’ Unable to f i nd ep i s t emic reason %−>% in context %’ , ant , con , context ;

end i f ;

r e turn true ;

end ;

$$ language p lpg sq l ;

Listing A.7: remove reason function.

A.4.5 revise reason

revise_reason revise and update quantitative epistemic reasons in FXReason table.

It implements TBM rule of combination for fusing quantitative data from disparate

sources. Note that, this function focuses on normal lead. It can be easily adapted to

take in latent lead structure.

create or r ep l a c e func t i on r e v i s e r e a s o n ( context char , ant varchar , cons varchar

array , bbms decimal array ) r e tu rn s boolean as $$

de c l a r e

myrec record ;

metarec record ;

con var record ;

mrec c MetaVariableRecord . component%type ;

krec record ;

t o t a l we i gh t decimal default 0 . 0 ;

omega weight decimal ;

new weight decimal ;

begin

−−− check f o r the e x i s t ance o f Omega

select ∗ into myrec from FXReason where antecedent=ant and i n i t i a l c o n t e x t=context

and consequent i s null ;

i f not found then

r a i s e no t i c e ’Unknow antecedent va r i a b l e %’ , ant ;

r e turn fa l se ;

end i f ;

i f a r r ay l eng th ( cons , 1) <> a r r ay l eng th (bbms , 1) then
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r a i s e no t i c e ’ s i z e o f con % i s not the same as the s i z e o f bbm %’ , a r r ay l eng th (

cons , 1) , a r r ay l eng th (bbms , 1) ;

r e turn fa l se ;

end i f ;

f o r i in 1 . . a r r ay l eng th (bbms , 1) loop

t o t a l we i gh t = to t a l we i gh t + bbms [ i ] ;

end loop ;

i f t o t a l we i gh t > 1 .0 then

r a i s e no t i c e ’ t o t a l weight o f input bbmsi % i s above 1 .0 ’ , t o t a l we i gh t ;

r e turn fa l se ;

end i f ;

omega weight := 1.0− t o t a l we i gh t ;

−−− implement TBM combination ru l e

f o r i in 1 . . a r r ay l eng th ( cons , 1 ) loop

select ∗ into krec from FXReason where antecedent=ant and i n i t i a l c o n t e x t=context

and consequent=cons [ i ] ;

i f not found then

insert into FXReason( i n i t i a l c o n t e x t , antecedent , consequent , rank , neg rank )

values ( context , ant , cons [ i ] , bbms [ i ] , 0 . 0 ) ;

else

new weight := bbms [ i ]∗myrec . rank+bbms [ i ]∗ krec . rank+omega weight∗ krec . rank ;

−−− check f o r meta v a r i a b l e s t ha t conta ins current consequent cons [ i ]

f o r metarec in select ∗ from FXReason where antecedent=ant and i n i t i a l c o n t e x t=

context and consequent<>cons [ i ] loop

f o r mrec c in select t . component from MetaVariableRecord t where t . meta var=

metarec . consequent loop

i f mrec c = cons [ i ] then

new weight := new weight + metarec . rank∗bbms [ i ] ;

end i f ;

end loop ;

end loop ;

f o r j in 1 . . a r r ay l eng th ( cons , 1 ) loop

select ∗ into con var from FXVariable where symbol=cons [ j ] ;

i f found and con var . i s meta and cons [ j ]<>cons [ i ] then

f o r mrec c in select t . component from MetaVariableRecord where meta var=

cons [ j ] loop

i f mrec c = cons [ i ] then

new weight := new weight + krec . rank∗bbms [ j ] ;

end i f ;

end loop ;

end i f ;

end loop ;

update FXReason set rank = new weight where antecedent=ant and i n i t i a l c o n t e x t=

context and consequent=cons [ i ] ;

end i f ;

end loop ;

−−− update Omega

select sum( rank ) into new weight from FXReason where antecedent=ant and

i n i t i a l c o n t e x t=context and consequent i s not null ;

update FXReason set rank = 1.0−new weight where antecedent=ant and i n i t i a l c o n t e x t=

context and consequent i s null ;

r e turn true ;

end ;

$$ language p lpg sq l ;

Listing A.8: revise reason function.
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A.4.6 consolidate reason

consolidate_reason implements a version of pignistic transformation (with minor

simplification) to transform the risk model K to a consolidated model Kc. It populates

the FXConsolidatedReason with normalised leads.

create or r ep l a c e func t i on c on s o l i d a t e r e a s on ( context char , c u t o f f decimal ) r e tu rn s

boolean as $$

de c l a r e

l e a d r e c record ;

tmp var varchar ;

tmp count integer ;

tmp omega decimal ;

c s decimal default 0 . 0 ;

begin

i f c u t o f f > 0 .5 or c u t o f f < 0 .0 then

r a i s e no t i c e ’ I nva l i d e c u t o f f po int %. Must be between [ 0 . 0 −0 . 5 ] ’ , c u t o f f ;

r e turn fa l se ;

end i f ;

delete from f x c on so l i d a t ed r e a s on ;

f o r l e a d r e c in select t .∗ from f x r ea son t join f x v a r i a b l e x on t . i n i t i a l c o n t e x t=

context and t . antecedent=x . symbol and t . consequent i s not null loop

−−− c a l c u a l a t e causa l s t r eng t h

i f l e a d r e c . rank > l e a d r e c . neg rank then

cs = l e ad r e c . rank − l e a d r e c . neg rank ;

else

cs = 0 . 0 ;

end i f ;

i f c s >= cu t o f f then −−− add to the con so l i d a t e reason t a b l e f i r s t

insert into FXConsolidatedReason ( i n i t i a l c o n t e x t , antecedent , consequent , rank )

values ( context , l e a d r e c . antecedent , l e a d r e c . consequent , c s ) ;

end i f ;

end loop ;

−−− use b e t t i n g frame as same as the known reasons in the conso l i da t ed database .

−−− user may have opt ion to s e l e c t d i f f e r e n t b e t t i n g frame in the f u tu r e

implementation

f o r tmp var , tmp count , tmp omega in select t . antecedent , count ( t . ∗ ) ,(1.0−sum( t . rank ) )

from f x c on so l i d a t ed r e a s on t where t . i n i t i a l c o n t e x t=context group by t .

antecedent loop

−−− r e d i s t r i b u t i o n o f m(Omega) to a l l e x i s t i n g reasons assuming con s i s t en t world

and a l l

−−− c o n f l i c t i n g informat ion are due to our ignorance , i . e . t r e a t m( phi )=0.

tmp omega = tmp omega / tmp count ;

update f x c on so l i d a t ed r e a s on set rank=rank+tmp omega where i n i t i a l c o n t e x t=context

and antecedent=tmp var ;

end loop ;

r e turn true ;

end ;

$$ language p lpg sq l ;

Listing A.9: consolidate reason function.



Appendix B

Published Conference Papers

Wang, X. & Williams, M.-A., (2011), ‘Risk, Uncertainty and Possible Worlds’, Pri-

vacy, security, risk and trust (PASSAT), 2011 IEEE Third International Conference

on Social Computing, pp. 1278-1283.

Al-Sharawneh, J.,Williams, M.-A., Wang, X. & Goldbaum, D, (2011), ‘Mitigating

Risk in Web-Based Social Network Service Selection: Follow the Leader’, The Sixth

International Conference on Internet and Web Applications and Services, pp. 156-

164.

Wang, X. & Williams, M.-A., (2010), ‘A Practical Risk Management Framework for

Intelligent Information Systems’, Proceedings of The Fourteenth Pacific Asia Confer-

ence on Information Systems (PACIS), pp. 1866-1873.

Wang, X. & Williams, M.-A., (2010), ‘A Graphical Model for Risk Analysis and

Management’, Knowledge Science, Engineering and Management, Springer Berlin /

Heidelberg, vol. 6291 of Lecture Notes in Computer Science, pp. 256-269.

229



Bibliography

Abbott, R. (2009), Managing Foreign Currency Exposures, Tech. rep., Crane Group

Limited.

Alchourron, C. E., Gardenfors, P. & Makinson, D. (1985), ‘On the Logic of Theory

Change: Partial Meet Contraction and Revision Functions’, The Journal of

Symbolic Logic, vol. 50, no. 2, pp. 510–530.

Andrews, J. & Dunnett, S. (2000), ‘Event-tree analysis using binary decision dia-

grams’, Reliability, IEEE Transactions on, vol. 49, no. 2, pp. 230–238.

Antoniou, G. & Sperschneider, V. (1993), ‘Computing Extensions of Nonmonotonic

Logics’, Proceedings of the Fourth Scandinavian Conference on Artificial Intel-

ligence Electrum, IOS Press B.V., pp. 20–30.

Antoniou, G. & Sperschneider, V. (1994), ‘Operational concepts of nonmonotonic

logics part 1: Default logic’, Artificial Intelligence Review, vol. 8, pp. 3–16.

Arrow, K. J. (1950), ‘A Difficulty in the Concept of Social Welfare’, The Journal of

Political Economy, vol. 58, pp. 328–346.

Aven, T. (2008), Risk Analysis, Wiley.

Bedford, T. & Cooke, R. (2001), Probabilistic Risk Analysis: Foundations and Meth-

ods, Cambridge University Press.

230



231

Belnap, J., Nuel D. (1970), ‘Conditional Assertion and Restricted Quantification’,
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