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Abstract

Active learning (AL) aims to construct an accurate classifier with the minimum
labeling cost by actively selecting a few number of most informative instances for
labeling. AL traditionally relies on some instance-based utility measures to as-
sess individual instances and label the ones with the maximum values for training.
However, such approaches cannot produce good labeling subsets. Because instances
exist some explicit / implicit relations between each other, instance-based utility
measure evaluates instance informativeness independently without considering their
interactions. Accordingly, this thesis explores instance correlation in AL and uti-
lizes it to make AL’s more accurate and applicable. To be specific, our objective is
to explore instance correlation from different views and utilize them for three differ-
ent tasks, including (1) reduce redundancy for optimal subset selection, (2) reduce
labeling cost with a nonexpert labeler and (3) discover class spaces for dynamic
data.

First of all, the thesis introduces existing works on active learning from an
instance-correlation perspective. Then it summarizes their technical strengths/
weaknesses, followed by runtime and label complexity analysis, discussion about
emerging active learning applications and instance-selection challenges therein.

Secondly, we propose three AL paradigms by integrating different instance cor-
relations into three major issues of AL, respectively. 1) The first method is an
optimal instance subset selection method (ALOSS), where an expert is employed
to provide accurate class labels for the queried data. Due to instance-based utility
measures assess individual instances and label the ones with the maximum values,
this may result in the redundancy issue in the selected subset. To address this

issue, ALOSS simultaneously considers the importance of individual instances and

ix



the disparity between instances for subset selection. 2) The second method intro-
duces pairwise label homogeneity in AL setting, in which a non-expert labeler is
only asked “whether a pair of instances belong to the same class 7. We explore label
homogeneity information by using a non-expert labeler, aiming to further reducing
the labeling cost of AL. 3) The last active learning method also utilizes pairwise
label homogeneity for active class discovery and exploration in dynamic data, where
some new classes may rapidly emerge and evolve, thereby making the labeler inca-
pable of labeling the instances due to limited knowledge. Accordingly, we utilize
pairwise label homogeneity information to uncover the hidden class spaces and find
new classes timely. Empirical studies show that the proposed methods significantly

outperform the state-of-the-art AL methods.





