A Dissertation submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Opportunistic Cooperative Retransmission Enhancements for the IEEE 802.11 Wireless MAC

Brett Hagelstein

2013

University of Technology, Sydney,
Faculty of Engineering and Information Technology
Centre for Real Time Information Networks

${\bf Supervisor}$

Dr. Mehran Abolhasan

Co-Supervisors

Dr. Daniel Franklin

Prof. Farzad Safaei

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor

has it been submitted as part of requirements for a degree except as fully acknowledged

within the text.

I also certify that the thesis has been written by me. Any help that I have received in

my research work and the preparation of the thesis itself has been acknowledged. In

addition, I certify that all information sources and literature used are indicated in the

thesis.

Signature of Student:

Date:

TABLE OF CONTENTS

	Pa	ge
Title Pa	ge	i
Advisor	Committee	iii
Certifica	te of Original Authorship	iii
Content	3	v
List of I	igures	civ
List of T	'ables	XX
List of A	lgorithms	xxi
List of A	bbreviationsx	xii
List of I	arameters	xiii
Abstrac		XV
Acknow	edgements	xvii
Chapter	1: Introduction	1
1.1	Opportunistic Retransmissions	1
	1.1.1 MAC Protocol Design	3
	1.1.2 Analysis and Comparison of Protocols	4
1.2	Thesis Statement	5
1.3	Objectives and Overview of this Thesis	5
1.4	Related Publications	7

Chapter	2:	Literature Review	11
2.1	Introd	uction	11
2.2	Coope	rative Diversity Foundation Work	12
2.3	Transr	mission Orthogonality	13
2.4	On-De	emand Cooperation	15
2.5	Relay	Selection Methods	16
	2.5.1	Relay Nomination Scheme	17
	2.5.2	Link Quality Evaluation Metrics	18
	2.5.3	Ideal Node Placement	20
	2.5.4	Contending Relay Set	21
2.6	Coope	rative Retransmission Collisions	21
2.7	Oppor	tunistic Routing Protocols to Improve Throughput	22
	2.7.1	GeRaF	23
	2.7.2	ExOR	24
	2.7.3	<i>r</i> DCF	25
	2.7.4	CoopMAC	26
	2.7.5	CoopMAC-Zhao	27
2.8	Oppor	tunistic Retransmissions for Reliability	29
	2.8.1	CMAC	29
	2.8.2	PRCSMA	30
	2.8.3	OC-MAC	31
	2.8.4	HARBINGER	32
	2.8.5	SCARQ	33
	2.8.6	Shah, Mehta, and Yim	34
	2.8.7	Bletsas et al	34
	2.8.8	Xiong, Libman, and Mao	36
	2.8.9	DQCOOP	37
	2.8.10	ExOR-Wang	38
	2.8.11	NCSW	39

		2.8.12	NCSW-Yi	39
		2.8.13	SCA	40
		2.8.14	CD-MAC	41
		2.8.15	UTD MAC	42
		2.8.16	2rcMAC	42
		2.8.17	Madan $et~al$	44
		2.8.18	$\Delta\text{-MAC}$	44
		2.8.19	PRO	46
	2.9	MAC i	in Routing	47
		2.9.1	Link Layer Models	48
		2.9.2	Cooperative MACs with Multi-hop Routes	49
	2.10	Evalua	ation Methods	50
		2.10.1	Real-World Test-Bed Experiments	50
		2.10.2	Comparing Retransmission Protocols in Analytic Models $\ \ . \ \ . \ \ .$	51
	2.11	Conclu	nsion	52
Ch	apter	3:	DAFMAC Cooperative Retransmission Protocol	55
	3.1	Introd	uction	55
	3.2	Object	cive of Cooperative Retransmission Protocols	55
	3.3	Overhe	ead of Cooperative Retransmission Protocols	56
		3.3.1	Purpose of Coordination Update Transmissions	56
		3.3.2	Broadcast Update Frame Implementation	57
		3.3.3	Broadcast Update Channel Usage	58
		3.3.4	Estimating the Overhead of Cooperative Protocols	59
		3.3.5	Allowable Collision Rate for Equivalent Performance	61
		3.3.6	Discussion of Protocol Overhead	62
	3.4	DAFM	IAC Cooperative Retransmission Protocol	63
	3.5	DAFM	IAC Cooperative Contention Resolution Strategy	66
		3.5.1	Algorithm Parameters	66

	3.5.2	Contention Delay Algorithm	69
3.6	Simula	ted DAFMAC Retransmission Performance	70
	3.6.1	Network Topology and Algorithm Parameter Configuration	70
	3.6.2	Dynamic SNR Offset Experiment	70
	3.6.3	Simulated Protocol Performance and Discussion	72
3.7	Retran	asmission Overhead Comparison	75
3.8	Practic	cal Test-bed Proof of Concept	75
	3.8.1	DAFMAC Implementation Details	75
	3.8.2	Test-bed Configuration	76
	3.8.3	Test-bed Simulation Performance Baseline	77
	3.8.4	Experimental Test-bed Results	77
	3.8.5	Discussion	79
3.9	Conclu	sion	79
Chapter	4:	DAFMAC Relay Selection Algorithm	81
4.1	Introd	uction	81
4.2	Retran	smission Delay Algorithms	82
	4.2.1	Basic Delay Algorithm	82
	4.2.2	Received Signal Strength Measurement and Storage	83
	4.2.3	Relay Scoring Function Review	84
	4.2.4	Delay Shapes and Collision Regions	85
	4.2.5	Scoring Function Collision Comparison	86
4.3	Optim	al Algorithm Parameter Derivation	88
	4.3.1	Deriving the Optimal Link Quality Weighting, $a_{r,d}$	89
	4.3.2	Collision Mitigation with Random Delay Component, a_X	91
	4.3.3	Optimising the Delay Range (s_{max}) for Maximum Throughput	94
4.4	Preferr	ring Successful Relays	97
	4.4.1	Algorithm Implementation	98
	449	Effect on Retransmission Collisions	gg

4.5	Retran	smission Performance
	4.5.1	Basic Simulation Configuration
	4.5.2	Saturated 802.11b Network Throughput
	4.5.3	Individual Flow Fairness in a Saturated 802.11b Network 103
	4.5.4	802.11b Frame Jitter
	4.5.5	Saturated 802.11g Network Throughput Performance 106
	4.5.6	Mobile Network Performance
4.6	Energy	Consumption to Throughput Efficacy
4.7	Delay	Algorithm Complexity
4.8		ace of Hidden Nodes, and RTS/CTS frames, on DAFMAC
4.0		mance
4.9	Conclu	sion
Chapter	5:	General Cooperative Retransmission Model
5.1	Introd	uction
5.2	Coope	rative Retransmission Model
	5.2.1	Assumptions and Nomenclature
	5.2.2	Probability of Successful Relaying
	5.2.3	Probability of No Valid Relays
	5.2.4	Probability of Collision
	5.2.5	Probability of Data Retransmission Failure
	5.2.6	Probability of ACK Retransmission Failure
5.3	Examp	ble Slot Probability Derivation
	5.3.1	ARQ Slot Probability Calculation
	5.3.2	CMAC Slot Probability Calculation
	5.3.3	DAFMAC Slot Probability Calculation
	5.3.4	Δ -MAC Slot Probability Calculation
	5.3.5	PRO Slot Probability Calculation
5.4	Preferi	red Relay Outcome Derivation

	5.4.1	Introduction to Preferred Relays
	5.4.2	DAFMAC Time-out Probability Modifications
	5.4.3	Retransmission Outcome Model
	5.4.4	Preferred Relay as a Markov Process
	5.4.5	Preferred Relay State Transition Probability
	5.4.6	Creating and Solving the Markov Model
5.5	Model	Validation
	5.5.1	Link Quality Relationship
	5.5.2	Scenario Configuration
	5.5.3	QualNet Simulation Comparison
	5.5.4	Preferred State Convergence
	5.5.5	Monte Carlo Simulation Convergence
5.6		amination of DAFMAC Collisions with Random Component ting
	5.6.1	Re-creation of Previous Analytic Model Results
	5.6.2	Detailed Retransmission Outcome
5.7	Analyt	cic Comparison of Example Retransmission Protocols
	5.7.1	Configuration
	5.7.2	QualNet Receiver Model
	5.7.3	Judd and Steenkiste's Receiver Model
	5.7.4	Protocol Performance Discussion
5.8	Conclu	asion
Chapter	6:	Opportunistic Retransmissions in Multi-hop Networks 167
6.1	Introd	uction
6.2	Overvi	ew of Routing Protocols
6.3	Perfori	mance Analysis
	6.3.1	Simulation Configuration
	632	AODV - Light Load

	6.3.3	AODV - Heavy Load
	6.3.4	OLSR - Settling Time
	6.3.5	OLSR - Light Load
	6.3.6	OLSR - Heavy Load
	6.3.7	Protocol Comparison Discussion
6.4	Conslu	sion
Chapter	7:	Conclusions and Future Research Opportunities
7.1	Summ	ary of Results and Contributions
	7.1.1	Literature Review
	7.1.2	DAFMAC Cooperative Retransmission Protocol
	7.1.3	DAFMAC Relay Selection Algorithm
	7.1.4	General Cooperative Retransmission Model
	7.1.5	Opportunistic Retransmissions in Multi-hop Networks 187
7.2	Future	Work
	7.2.1	DAFMAC Protocol Development and Evaluation
	7.2.2	Analytic Retransmission Model
7.3	Conclu	asions
Bibliogr	aphy	

LIST OF FIGURES

Figure 1	Figure Number		
1.1	The traditional source-coordinated relay model finds an alternate path around a poor link by sending frames via a relay		
1.2	The opportunistic relay model attempts a direct transmission (possibly over a poor link) where neighbours overhear the failed frame and cooperatively retransmit on behalf of the source		
2.1	User 1 transmits frame 'A' and user 2 transmits frame 'B' in the first slot, then retransmit each other's frame in the second slot	. 13	
2.2	Cooperation timing sequence using different relay transmission techniques, where numbers correspond to the time slot in which the frame is sent, from the perspective of a single source node [19]		
2.3	Approximate node layout for example scenario used to illustrate the protocol transmission sequence	. 22	
2.4	Cooperative retransmission sequence for GeRaF [112], nodes 3 and 4 are in the region closest to the destination, their CTS frames would collide but node 4 did not decode the frame, node 3 sends a CTS, then receives the data frame and forwards it to the destination		
2.5	Cooperative retransmission sequence for ExOR [17], node 4 is ranked as closest to the destination but failed to decode the data frame, node 3 is the closest node to the destination that decoded the frame and is the relational content of the cooperative retransmission sequence for ExOR [17], node 4 is ranked as closest to the destination but failed to decode the data frame, node 3 is		
2.6	Cooperative retransmission sequence for r DCF [109], node 2 is selected as the relay by the source node and retransmits the data frame at a higher rate	. 26	
2.7	Cooperative retransmission sequence for CoopMAC I [74] is a very similar frame transmission sequence to r DCF (see Figure 2.6)	. 26	
2.8	Cooperative retransmission sequence for CoopMAC II is faster because there is no explicit messaging to or from the relay node [74]	. 27	
2.9	Cooperative retransmission sequence for CoopMAC-Zhao when the source elects to use the relay [107]		
2.10	Cooperative retransmission sequence for CoopMAC-Zhao when the relay cannot reduce the combined transmission time, but the failed frame is opportunistically retransmitted [107]	. 28	

2.11	Cooperative retransmission sequence for CMAC [93]. All nodes that decode the source frame enter a CSMA/CA channel access contention to retransmit the frame	30
2.12	Cooperative retransmission sequence for PRCSMA [9], all nodes that decode the source frame enter a CSMA/CA channel access contention to retransmit the frame	30
2.13	Cooperative retransmission sequence for OC-MAC [105]	31
2.14	Cooperative retransmission sequence for HARBINGER [106] is similar to ExOR (see Figure 2.5) with the exception that once node 3 sends the ACK, nodes 1 and 2 remain silent to let 3 retransmit the data frame	32
2.15	Cooperative retransmission sequence for SCARQ [12], node 2 is selected by the relay during the feedback stage, node 4 decodes the retransmission and joins the cooperative set in the second round	33
2.16	Cooperative retransmission sequence for Shah $et\ al$'s retransmission protocol [92], nodes 2 and 3 are quantised to the 'best' slot and collide during the first attempt, node 3 drops out and node 2 retransmits the data frame	34
2.17	Cooperative retransmission sequence for Bletsas <i>et al</i> 's protocol with NACK feedback [20], adapted to the IEEE 802.11 frame structure. The collision rate is mitigated by spreading the contention over a large number of delay slots	35
2.18	Cooperative retransmission sequence for Xiong <i>et al</i> 's protocol [101] is very similar to DQCOOP. However the cooperative relay selection typically uses fewer time slots	36
2.19	Cooperative retransmission sequence for DQCOOP [8]. All nodes send feedback bits in contention slots if they receive the data frame and the destination sends a feedback frame to select the relay(s). Relays then enter a second round of contention to resolve potential collisions before forwarding the data frame	37
2.20	Cooperative retransmission sequence for ExOR-Wang [99] where the nominated destination and relays are $\{D,4,1\}$. Nodes 2 and 3 participate opportunistically between relays 4 and 1. Node 3 knows that node 2 is more centrally located, so node 3 does not participate to avoid a collision	38
2.21	Cooperative retransmission sequence for NCSW [40], nodes that hear both the data frame and the NAK simultaneously retransmit the data frame using distributed space-time codes	39
2.22	Cooperative retransmission sequence for CD-MAC [81] where node 1 is the cooperative partner for the source and node 4 cooperates with the destination	<i>4</i> 1

2.23	Cooperative retransmission sequence for UTD MAC [4], where retransmission begins before another device can access the channel				
2.24	4 Cooperative retransmission sequence for 2rcMAC [61], node 3 offers the fastest total transmission, but is backed up by node 2 if it fails				
2.25	5 Cooperative beamforming retransmission sequence for Madan <i>et al</i> 's protocol [78], where nodes 1, 2, and 3 send a training sequence to the destination, which selects nodes 2 and 3 to retransmit the data frame				
2.26	26 Cooperative retransmission sequence for Δ -MAC [87], node 2 has the best joint PDR to both source and destination and is the nominated relay .				
2.27	Cooperative retransmission sequence for PRO [77], node 4 is ranked as closest to the destination but does not participate because it did not decode the data frame, node 1 does not participate because the cooperation threshold is already met	46			
3.1	The impact of the Δ -MAC overhead is significantly greater than PRO because of the forced custom RTS/CTS transaction for all data transmissions	60			
3.2	The minimum equivalent collision rate for PRO is between 5% and 8%, while Δ -MAC has a significantly higher overhead	62			
3.3	The same example scenario where N_s transmits a frame that is received by N_1 , N_2 , and N_3 , but not by N_d or $N_4 cdots $	65			
3.4	Timing diagram of a DAFMAC cooperative retransmission $\ \ldots \ \ldots \ \ldots$	65			
3.5	DAFMAC protocol flow chart for the source node N_s (a) and all relays N_i (b) during a cooperative attempt	67			
3.6	A random layout for $\rho_n \approx 4$; participating relays are a subset of the one-hop neighbours, and transmissions from nodes in the interference zone can consume the channel	68			
3.7	Cooperative success is consistently high when $SNR_{off} \propto \rho_n$	72			
3.8	DAFMAC cooperation has significantly greater probability of a successful retransmission than traditional 802.11 ARQ	73			
3.9	The probability of successful cooperation increases with node density despite the increase in retransmission collision rate	74			
3.10	Experimental layout of physical test-bed	77			
3.11	QualNet simulations show DAFMAC significantly increases throughput for higher path loss channels				
3.12	Collisions are the primary cause for retransmission failures when using more than one relay in this pathological scenario	78			

3.13	The DAFMAC implementation significantly improves transmission reliability in weak channels		79
4.1	Contour plots of contention delays using HASF, QRSF, MLSF, and OWSF with $a_{r,d}$ of 0.5, 0.75 and 1.0, respectively, where $t_i \in [0,31]$		87
4.2	OWSF (where $a_{r,d}=1$) results in a lower collision rate than HASF, QRSF or MLSF		88
4.3	The rate of change of F_i^{ow} with respect to $d_{i,d}$ is consistently at its maximum when $a_{r,d}=1.0$ for $d_{i,d}\in[0.1d_{s,d},0.5d_{s,d}]$		90
4.4	Collision probability decreases as a_X increases, however the potential $region$ of collision increases in size		94
4.5	The collision probability $\Pr_{coll}(\mathcal{N}_c)$ is consistently low when $a_X \approx 0.1$ for $s_{max} \in [20, 50]$ and $ \mathcal{N}_n = 15. \dots$. '	95
4.6	The retransmission collision probability $\Pr_{coll}(\mathcal{N}_c)$ exponentially decreases as s_{max} increases		95
4.7	The minimum t_{total} occurs for $s_{max}\approx 50$ for IEEE 802.11b networks $$		97
4.8	The minimum t_{total} occurs for $s_{max} \approx 30$ for IEEE 802.11g networks	. !	97
4.9	Enabling preferred relays significantly reduces the rate of retransmission collisions	. 1	00
4.10	Example uniform random node distribution showing the source and destination nodes of the 10 data flows	. 1	01
4.11	DAFMAC provides the highest total network throughput as the path-loss increases in a larger simulation area	. 1	02
4.12	DAFMAC provides the highest throughput for the high path-loss links in a 100 m \times 100 m simulation area	. 1	04
4.13	DAFMAC provides the most consistent throughput for all flows, as measured using Jain's Fairness Index metric	. 1	04
4.14	DAFMAC has the most consistent jitter with a 2 Mb/s network load	. 1	05
4.15	DAFMAC provides the highest total network throughput for a saturated 802.11g network	. 1	06
4.16	DAFMAC provides the most consistent throughput for all flows using the Jain's Fairness Index metric for a saturated 802.11g network	. 1	07
4.17	DAFMAC provides the highest total network throughput for all node pause times in a mobile (random waypoint) scenario	. 1	08
4.18	The DAFMAC protocol requires the least energy to successfully transmit a bit in an 802.11b network	. 1	10

4.19	Cooperative retransmissions also reduce the total energy per bit in an 802.11g network
4.20	DAFMAC uses a fraction of the resources required by PRO to calculate the contention delay
4.21	Example node placement for hidden nodes transmitting to a common destination, with uniformly distributed neighbours
4.22	A sharp transition is evident at the receiver sensitivity of -90 dBm, where source nodes can sense each other's transmissions
4.23	Cooperative retransmissions reduce the impact of hidden nodes in fading channels
5.1	Examples of the participating relay set for (a) ARQ, (b) DAFMAC and CMAC, (c) Δ -MAC, and (d) PRO
5.2	Visualisation of the slot probabilities of ARQ derived in (5.24), (5.25) and (5.26), CMAC and Δ -MAC have similar plots
5.3	Visualisation of the slot probabilities of DAFMAC derived in (5.38), (5.42) and (5.43), where $a_X T_{max}^D > 1 \dots \dots$
5.4	Visualisation of the slot probabilities of DAFMAC derived in (5.44), (5.45) and (5.46), where $a_X T_{max}^D \leq 1 \dots 133$
5.5	Visualisation of the slot probabilities of PRO derived in (5.60), (5.61) and (5.62), illustrated where $i < N_p^P \dots \dots$
5.6	State diagram and transitional probability notation for a three node system 142
5.7	Retransmission process with a potential preferred relay
5.8	The RSS-PDR relationship obtained from QualNet for IEEE 802.11b. $$ 149
5.9	The analytic model predicts nearly identical retransmission probabilities as observed in an equivalent QualNet simulation using 1 to 5 neighbours - the 90% confidence intervals are barely visible due to the narrow spread of the results
5.10	The variation in preferred state probability between the analytic model and Monte Carlo simulation reduces as $M \to \infty$
5.11	The Monte Carlo simulation converges to the analytic result as the sample size increases
5.12	Example scenario with fixed source and destination nodes with five randomly placed neighbours
5.13	The collision probability with the analytic model exhibits a similar general trend to the simple derivation shown in Figure 4.5, although the comprehensive model shows that the collision rate increases more slowly for larger values of a_X

5.14	While using a larger value for a_X reduces the collision rate, it increases the data failure rate, therefore the optimal value for success remains as $a_X \approx 0.1 \dots \dots$				
5.15	The retransmission outcome probabilities using a random neighbour layout and the QualNet receiver probability model				
5.16	The retransmission outcome probabilities using a random neighbour layout and Judd and Steenkiste's empirically derived receiver probability model [59]				
6.1	100 uniformly randomly placed nodes with nine (potentially multi-hop) flows				
6.2	DAFMAC provides higher per-flow AODV throughput compared to PRO and plain 802.11				
6.3	DAFMAC provides lower AODV end-to-end transmission latency compared to PRO and plain 802.11				
6.4	DAFMAC provides lower AODV jitter compared to PRO and plain 802.11174				
6.5	DAFMAC provides better AODV throughput over all simulation areas compared to PRO and plain 802.11				
6.6	DAFMAC provides more fairness in throughput across all AODV data flows over all simulation areas compared to PRO and plain $802.11\ldots175$				
6.7	Use of DAFMAC results in less energy being consumed per bit successfully delivered using AODV over all simulation areas compared to PRO and plain 802.11				
6.8	OLSR routing performance converges after approximately 30 seconds 176 converges				
6.9	DAFMAC provides higher per-flow OLSR throughput compared to PRO and plain 802.11				
6.10	DAFMAC provides a lower OLSR end-to-end transmission latency than PRO				
6.11	DAFMAC provides a lower OLSR jitter compared to PRO and plain 802.11178				
6.12	DAFMAC provides the maximum throughput improvement in OLSR routes over all simulation areas				
6.13	DAFMAC provides the fairest throughput for each OLSR data flow over all simulation areas				
6.14	DAFMAC provides the lowest energy consumed per bit successfully transmitted using OLSR over all simulation areas.				

LIST OF TABLES

Table N	Number	P	age
2.1	Summary of protocol features		47
3.1	Timing parameters for 802.11		58
3.2	Example delay calculation for $SNR_{rng} = 7$ and $s_{max} = 10 \dots \dots$.		71
3.3	Example delay calculation if $SNR_{rng} = 16$ and $s_{max} = 10$		71
4.1	Complexity analysis for DAFMAC and PRO	•	113
5.1	Scenario link RSS and transmission PDR values		150

LIST OF ALGORITHMS

3.1	Delay calculation for t_i	 71
5 1	Simulation of the cooperative retransmission	154

LIST OF ABBREVIATIONS

AaF Amplify and Forward

ACK ACKnowledgement (MAC layer frame)

ARQ Automatic Repeat reQuest

BO Back Off

CBR Constant Bit Rate

CDMA Code Division Multiple Access

CFC Call For Cooperation (custom MAC layer frame)

CSI Channel State Information

CSMA/CA Carrier Sense Multiple Access - Collision Avoidance

CTS Clear To Send (MAC layer frame)

DaF Decode and Forward

DAFMAC Decode And Forward MAC (protocol)

DCF Distributed Coordination Function

FDD Frequency Division Duplexing

FDMA Frequency Division Multiple Access

FCS Frame Check Sequence

i.i.d. independent and identically distributed

MAC Medium Access Controller

 ${\bf MIMO} \qquad \quad {\bf Multiple\text{-}Input\ Multiple\text{-}Output}$

MRC Maximal Ratio Combining

NAK Negative AcKnowledgement

PRO Protocol for Retransmitting Opportunistically (MAC protocol)

QoS Quality of Service

RTS Request To Send (MAC layer frame)

TDMA Time Division Multiple Access

LIST OF PARAMETERS

 $d_{a,b}$ distance between points a and b

 N_b the best relay node as identified using the relay selection algorithm

 N_d the destination node

 N_i the *i*th node, used to refer to any node

 N_s the source node

 \mathcal{N}_c the set of relays contending for retransmission, $\mathcal{N}_c \subseteq \mathcal{N}_p$

 \mathcal{N}_n the total set of nodes that are neighbours to both N_s and N_d

 \mathcal{N}_p the set of relays participating in the retransmission process, $\mathcal{N}_p \subseteq \mathcal{N}_n$

 ρ_n (average) number of neighbours of each node

 $RSS_{a,b}$ received signal strength at node N_b for transmission sent by node N_a , typi-

cally represented in dBm

SNR_{off} minimum link quality offset (used only in proof of concept relay selection

algorithm)

 SNR_{rnq} range of expected SNR values between the lowest and highest path loss

 t_i contention delay generated by node N_i

 T_{difs} distributed inter-frame space

 T_{phy} duration of physical layer training sequence

 T_{sifs} short inter-frame space

 T_{slot} slot time for the MAC CSMA/CA back off sequence

ABSTRACT

Cooperative retransmission protocols improve wireless transmission reliability by providing distributed channel diversity. Unfortunately, this diversity comes at the cost of increased protocol complexity and processing overhead, which limits the scalability of cooperative protocols in large networks.

This Thesis introduces DAFMAC, an opportunistic retransmission protocol which operates without any explicit control messaging. DAFMAC uses passive transmission observations to select a suitable opportunistic relay using a distributed algorithm. The immediate benefit of reducing overhead is to enable a greater proportion of channel time available for data transmissions. The DAFMAC retransmission algorithm is compared to contemporary protocols through extensive simulations to evaluate network performance. The key result is that DAFMAC is able to meet or exceed the performance improvements of "coordinated" retransmission algorithms such as PRO and Δ -MAC, for metrics which include total network throughput, individual link fairness, energy efficiency, end-to-end transmission time and jitter. A proof-of-concept implementation of DAFMAC was deployed in a physical test-bed and was shown to significantly improve throughput in high path-loss links.

This Thesis also derives a general retransmission model which is applicable to many distributed cooperative algorithms. Due to the complexity of implementing cooperative protocols in simulators, algorithms are typically only compared to traditional non-cooperative ARQ retransmissions. Further, analytic models typically include naïve simplifications that makes meaningful comparisons between algorithms impossible. The analytic model presented in this Thesis calculates the opportunistic retransmission outcome probability and includes detailed failure-mode results which may be used to rapidly compare algorithm performance with different configuration parameters in addition to comparing different protocols. Using the straightforward design principles of a retrans-

mission algorithm, the model is able to accurately reproduce the cooperative performance results of a full state-based simulation. The retransmission model is independent of the channel model to facilitate performance analysis in different scenarios.

ACKNOWLEDGEMENTS

There are many people who supported me in my Ph.D. journey, both professionally and personally, and to whom I owe a great deal of gratitude.

Firstly, I would like to thank my supervising committee for their continual guidance and support. Dr Mehran Abolhasan, thank you for providing the opportunity to begin my journey into post-graduate research, always being a source of encouragement, and having an endless source of new ideas to investigate. Dr Daniel Franklin, thank you for tirelessly providing guidance in a diverse range of areas including technical writing, simulation code development and debugging, and operating systems, just to name a few. Prof Farzad Safaei, thank you for constantly providing new perspectives, both when I could not see past the complexity of a problem, and then in increasing the rigorousness of the solution.

To my colleagues in CRIN and ICTR; Nidhal, Abhinay, Bappi, Ali and Craig, thank you for the interesting discussions, technical support and motivation. My time as a Ph.D. student was enriched for having shared it with you.

Thank you to my parents, Vaughn and Pam, for instilling and fostering my pursuit for knowledge from a very young age. I truly appreciate the sacrifices you have willingly made over the years to support me in so many endeavours.

Most importantly, thank you to my wife, Christine, for getting me through the Ph.D. process in one piece, more or less. It was a journey for both of us, and I am eternally grateful for your saint-like patience and motivation.