
 1

Mathematical Modelling and Efficient 

Algorithms for Autonomous Straddle 

Carriers Planning at Automated 

Container Terminals 
 

by 

 

Shuai Yuan 

 

 

 

 

A thesis submitted in fulfilment 

of the requirements for the degree of 

Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

University of Technology, Sydney 

Faculty of Engineering 

 

October 2013 

 

 



 2

 

CERTIFICATE OF AUTHORSHIP/ORIGINALITY 

 

 

 

 

 

I certify that the work in this thesis has not previously been submitted for a degree nor 

has it been submitted as part of a requirement for a degree except as fully 

acknowledged within the text. 

 

I certify that the thesis has been written by me. Any help that I have received in my 

research work and preparation of the thesis itself has been acknowledged. In addition, I 

certify that all information sources and literature used are indicated in the thesis. 

 

 

Signature of Candidate 

 

 

 

 

_______________________________ 

(Shuai Yuan) 

Sydney, October 2013 

 

 

 

 

 



 3

Abstract 

In the past several decades, automation of handling equipment has been a worldwide 

trend in seaport container terminals. Increasing automation of yard handling vehicles 

not only reduces the cost of terminal operation, but also increases the efficiency of 

container transport. However, the primary loss of performance in the transhipment 

process is caused by the uncoordinated allocation and scheduling of quay cranes, yard 

vehicles and land-side operations. Hence, integrating transhipment processes is 

imperative for a fully automated container terminal. This thesis aims to study an 

integrated process and develop practically deployable strategies and algorithms, with 

the practical example of the Patrick AutoStrad container terminal, located in Brisbane, 

Australia. 

 

The thesis first formulates two mathematical models: The Comprehensive Model is an 

analytical optimisation model which integrates the quay-side, yard and land-side 

operational sub-problems of the Patrick AutoStrad container terminal. Derived from the 

comprehensive model, the Job Scheduling Model is formulated to focus on the 

optimisation of job scheduling, as job scheduling plays a more important role than path 

planning, and resource utilisation and port operation are more dependent on job 

scheduling. 

 

To solve the Comprehensive Model, a job grouping approach is proposed for solving 

the integrated problem, and experimental results show that the job grouping approach 

can effectively improve the time related performance of planning container transfers. 

Solving the Job Scheduling Model using a global optimisation approach is expected to 

provide higher productivity in automated container terminals. Hence, a modified 

genetic algorithm is proposed for solving the job scheduling problem derived from the 

integrated mathematical model of container transfers. Moreover, the live testing results 

show that the proposed algorithm can effectively reduce the overall time-related cost of 

container transfers at the automated container terminal. 

 

Last but not least, a new crossover approach is proposed in order to further improve the 

solution quality based on the modified genetic algorithm, and it can also be directly 
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applied in solving the generic multiple travelling salesmen problem using the two-part 

chromosome genetic algorithm. The experimental results also show that the proposed 

crossover approach statistically outperforms the existing approaches when solving the 

job scheduling problem and the standard multiple travelling salesmen problem.  
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Nomenclature 

Indices: 

 

v   index of the ASC. 

q    index of the QC. 

g    index of the TK. 

j   index of the job. 

n   index of the positional node which indicates a position on the map. 

l   index of the link between positional nodes on the map. 

s   index of the schedule. Each schedule contains a list of jobs which need 

to be finished in order, and each schedule can be assigned to any ASC, 

but one schedule cannot be shared by multiple ASCs. It is not a 

complete solution, but it can be a possible sub-solution for some jobs. 

 

Sets: 

 

V    set of all ASCs, V  is the total number of ASCs in the fleet. 

Q    set of all QCs, Q  is the total number of QCs. 

G    set of all TKs, G  is the total number of TKs. 

J   set of all jobs, J  is the total number of jobs. 

HJ   set of jobs with high priority for scheduling and these jobs usually are 

time critical or considered as urgent tasks and HJ J⊂ . 

S    set of all schedules.  
YJ    set of yard-to-yard jobs. 

vδ    planned trajectory of ASC ( v ) including the travelling nodes and 

associated times. Please refer to Section 3.4.1 for more detail. 

N    set of all positional nodes, N  is the total number of nodes in the map. 

L    set of all links, L  is the total number of links on the map. 
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Vectors: 

 

sJ   vector of jobs in schedule s . That is, a list of jobs that will be done by 

an ASC in the defined order. 
D
qJ    vector of jobs associated with discharging QC q . 

U
qJ    vector of jobs associated with uploading QC q . 

E
gJ    vector of jobs associated with exporting TK g . 

I
gJ    vector of jobs associated with importing TK g . 

G
vJ   vector of potential jobs grouped by ( v ). 

( )lockN n  vector of locked nodes associated with the node ( n )  of an ASC to 

prevent all vehicle collisions. 

 

Parameters: 

 

qm    the total number of discharging containers for QC q. 

qn    the total number of uploading containers for QC q. 

ge   the total number of containers for exporting TK g. 

gr    the total number of containers for importing TK g. 

I
vp    the initial position of ASC v. 

ab   parameter for defining pick-up job sequence. { }0,1 : ( )ab = a,b∀ . Let 

1=ab if and only if job a needs to be picked up before job b is picked up, 

else 0=ab . 

ab   parameter for defining set-down job sequence. { }0,1 : ( )ab = a,b∀ .  

Let 1=ab  if and only if job a needs to be set-down before job b is set-

down, else 0=ab . 

ju   the pick-up position of job j. The position is generated by the yard 

management system. 

jd   the set-down position of job j. The position is generated by the yard 

management system. 
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jsy  a binary parameter. 1jsy = if and only if the candidate schedule s has job j, 

otherwise 0jsy = . 

0t   plan starting time.  

pickuptΔ   time required for an ASC to pick up a container. 

setdowntΔ   time required for an ASC to set down a container. 

acctΔ  time associated with acceleration of an ASC moving from zero velocity 

to maximum (constant) velocity. 

dectΔ  time associated with deceleration of an ASC from its maximum 

(constant) velocity to zero velocity. 
QCtΔ    the turnaround time of each QC unloading/uploading a single container. 
TKtΔ   the turnaround time of an ASC performing TK importing/exporting for a 

single container within the TK area. 

D
qt   the starting time of QC q operations (discharging/unloading) which is 

predefined a priori as part of the QC schedule. For each discharging QC 

we assume that no container from QC q can be picked up by an ASC at 

the buffer before the time ( D
qt + QCtΔ ). 

U
qt   the starting time of QC q operations (uploading) which is predefined a 

priori as part of the QC schedule. For each uploading QC we assume 

that no container can be set-down at buffer by an ASC before the time 

( U
qt + QCtΔ ). 

E
gt   the starting time of TK g operations (exporting) which is predefined a 

priori as part of the TK schedule. For each exporting TK we assume that 

no container from TK g can be picked up by an ASC at the TK gate 

before the time ( E
gt + TKtΔ ). 

I
gt   the starting time of TK g operations (importing) which is predefined a 

priori as part of the TK schedule. For each importing TK we assume that 

no container from TK g can be set-down by an ASC at the TK gate 

before the time ( I
gt + TKtΔ ). 

ozw   the minimum theoretical travel time between node o  and node z . A 

look-up table built based on Dijkstra’s algorithm is used for all 

positional nodes. 
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R
jσ  the predefined parameter which specifies the container door alignment at 

the setdown node ( jd  ) for job ( j ). Let R
jσ =1 if the container door is 

aligned, otherwise R
jσ =0. Here, {0,1}R

jσ ∈ , depending on the actual job 

type. 
S
jσ  the predefined parameter which specifies the container door’s initial 

alignment at the pickup node ( ju  ) for job ( j ).Let S
jσ =1 if the container 

door is aligned, otherwise S
jσ =0. Here, {0,1}S

jσ ∈ , depending on the 

actual job type. 

ijf  a flip flag of each physical link which relates the container alignment 

during traversal of the link. Let 1ijf = if container alignment is changed 

when an ASC carrying a container from node ( i N∈ ) to node ( j N∈ ), 

otherwise 0ijf = . The flip flag of each link is encoded within the map. 

abcψ  Patrick yard predefined traversal information between ( a b c→ → ).  Let 

1abcψ =  if an ASC needs to decelerate and adjust direction and then 

accelerate for traversing from node a  to node c  via node b , otherwise, 

0abcψ = . This information is encoded within the map. 

jε  the minimum theoretical processing time based on Dijkstra’s algorithm 

(from pickup to setdown) for job ( j ). 
 

 

Decision variables: 

 

vsX   binary decision variable. 1vsX = if and only if the candidate schedule s is 

selected for ASC v, otherwise 0vsX = . 

S
jT    the planned start time of job j. 

F
jT    the planned finish time of job j. 

DS
qT   the planned time to pick-up the final container for discharging QC q. 

UF
qT    the planned time to set-down the final container for uploading QC q. 

ES
gT    the planned time to pick-up the final container for exporting TK g. 

IF
gT   the planned time to set-down the final container for importing TK g. 
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Dependent variables 

 

( )vP t   position of ASC ( v ) at time (t t0), according to the trajectory planning.  

F
jσ  dependent variable which is the final box alignment associated with the 

trajectory planning of job ( j ), and {0,1}F
jσ ∈ . 
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1.  Introduction 

With the recent advances in autonomous vehicle development, autonomous materials 

handling in complex and dynamic environments has become a reality, as evidenced by 

the opening of the world’s first fully automated container terminal by Patrick 

Stevedores Holdings in 2005. The Patrick AutoStrad container terminal is shown in 

Figure 1-1. 

 

 
Figure 1-1: Satellite view of the Patrick AutoStrad container terminal within the Port of Brisbane at 

Fisherman Islands Australia [Google Earth]. 
 

Unlike many seaport terminals, which utilise yard vehicles that are either manned or 

fixed upon a circuit of tracks (Vis and Harika, 2004), the Patrick AutoStrad container 

terminal environment has been designed for the use of a fleet of fully autonomous 

straddle carriers (ASCs) (Figure 1-2). Each ASC with dimensions of 10m ×  5m × 13m 

and costing over one million dollars, is deployed to transport containers between 

dynamically-specified work points within the terminal. However, the efficient strategies 

and algorithms for planning container transfers at automated container terminals are 

necessarily important to improve the performance of the port operation. This is crucial 

to guarantee that the terminal system can react in the most cost-effective way to meet 

the continuous growth of container transfers. This thesis focuses on problem modelling 

and efficient algorithms for planning container transfers using the practical example of 

the Patrick AutoStrad container terminal. 
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Figure 1-2: ASC transporting a 40-foot container from the quay side as part of a buffer-to-yard task. 

 

This chapter introduces the research work presented in the thesis. It commences with a 

background of the container transfers in an automated container terminal and details 

key research issues. The remaining sections of this chapter describe the objectives of 

the thesis and its main contributions followed by an outline of the thesis. 

 

1.1 Background 
 

At seaport container terminals, both the capacity and frequency of arriving container 

carrying ships have increased steadily during the past several decades (Steenken et al., 

2004, Günther and Kim, 2006). To reduce costs to terminal operators the berthing time 

of these large ships must be as small as possible. This requires efficient use of yard 

vehicles to load, unload and transfer containers during the transportation process.  

 

In recent years, several seaport terminals have been planning or actively working 

towards automating the terminal to some extent (Kim et al., 2004b, Liu et al., 2004). 

Increasing automation of yard vehicles not only reduces the labouring cost of terminal 

operators, but also has the potential to increase the efficiency of the container transport. 

However, as compared with the human operated yard vehicles, there is an ongoing 

requirement to ensure a high degree of coordination and efficiency for all material 

handling equipment participating in the transportation process. 
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Current seaport container terminals around the world employ a multitude of container 

handling equipment, which can be categorised into quay-side, yard and land-side 

resources. Although quay cranes (QCs) are commonly used in seaports for 

uploading/unloading containers to/from ships on the quay-side, different seaports use 

different yard vehicles for transfer containers within the ports. In Patrick AutoStrad 

container terminal, the more than twenty ASCs are issued high level commands from a 

central computer system. They can pick up/set down containers autonomously without 

a human operator, both in the yard and on/off the truck (TK). The navigation system 

allows the ASCs to travel along any planned trajectory while performing collision 

detection and emergency stops. These ASCs are the only vehicles to transfer containers 

amongst the QC area, yard area, and the TK area. Compared to current seaports that use 

human operated ASCs for container transporting, this terminal is unique. 

 

At the Patrick AutoStrad container terminal, like many other seaport terminals around 

the world, one of the main tasks of a fleet of ASCs is to service the QCs such that the 

maximal QC turn-around rate can be achieved (Nelmes, 2005, Yuan et al., 2009, Liu 

and Kulatunga, 2007). This will reduce the ship berthing time. Moreover, the ASCs 

also need to service the TKs, which are used to transfer containers between customers 

and the seaport terminal, such that the TK waiting time is minimised. Finally, the 

seaport operator would like ASCs to perform less urgent yard-to-yard container 

transportation jobs as part of their yard management strategy.  

 

Because ASCs do not require a human driver, the planner not only needs to allocate 

jobs and assign paths to the vehicle, but also needs to plan the paths of each vehicle 

such that collision will not occur. In addition, the planned path should aim at reducing 

the travelling and waiting time of ASCs performing the transportation process, while 

finding a feasible allocation and schedule to complete all necessary jobs.  

 

1.2 Motivation 
 

Within any seaport environment, an effective schedule for the transhipment of 

containers requires efficient allocation and scheduling of quay-side, yard and land-side 

resources. Although the physical operation of these resources is typically decoupled 
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from each other, the overall efficiency of the integrated transhipment process must 

consider their interdependent processes, particularly if there is a high level of 

automation involved. At the Patrick AutoStrad container terminal, uncoordinated 

operations can introduce significant waiting times for QC, ASC idle time, buffer 

contention and extensive waiting time at the TK import. Recently, several researchers 

have suggested that integrating decisions at different levels may improve the efficiency 

of schedules (Meersmans and Wagelmans, 2001, Kozan and Preston, 2007, Kim et al., 

2004a). 

 

The problem of scheduling and path planning of ASCs contains subtle but significant 

differences to the Vehicle Routing Problem (VRP) and Pickup and Delivery Problem 

(PDP) (Savelsbergh and Sol, 1995) widely discussed in the operations research 

literature. In the VRP and PDP, the path networks (or the environments in general) are 

usually of metropolitan scale, and a vehicle is considered as a moving point. Vehicle 

kinematics and dynamics, for example acceleration times and breaking distances, are 

insignificant and are therefore ignored. Multiple vehicles can occupy the same road at 

the same time and thus vehicle collision is not a necessary concern. On the other hand, 

ASCs operate in port environments where a large number of vehicles are concentrated 

into a confined area. The transportation paths are organised such that one section of this 

network is restricted to one vehicle at a given time and thus the vehicles are not able to 

pass or overtake each other. Thus collision avoidance, as well as traffic congestion and 

the dynamic characteristics of the vehicles are very important aspects that need careful 

consideration during planning and scheduling for multiple ASCs. As such, a wide range 

of algorithms have been proposed in the extensive literature related to the VRP (Choi 

and Tcha, 2007, Pisinger and Ropke, 2007, Mester et al., 2007) and PDP (Fu, 2002, 

Bent and Hentenryck, 2006, Nanry and Barnes, 2000), and general optimisation 

software packages that are commercially available (IBM) cannot be directly used to the 

model and solve the scheduling and routing problem in the Patrick container terminal.  

 

Generally, there are three major features which make the problem unique and 

challenging, compared to those well-studied operational issues (Choi and Tcha, 2007, 

Pisinger and Ropke, 2007, Mester et al., 2007, Fu, 2002, Bent and Hentenryck, 2006, 

Nanry and Barnes, 2000). First of all, the Patrick AutoStrad terminal is fairly confined 

and complex. There are more than twenty ASCs in a 0.2 square kilometre area occupied 
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mostly by storage space of multi-level stacked containers, which greatly restricts the 

number of possible paths all ASCs can travel at any one time. Secondly, ASCs are free-

ranging within the container terminal and must take into account collision avoidance 

between each other when travelling within the yard. Thirdly, coordination of resources 

is not only required for ASCs but also needed for QC and TK. Thus, an effective 

coordination strategy should take into account other port resources which may affect 

the overall productivity of the terminal. Scheduling container transfers must consider 

time-critical jobs, such as QC and TK related jobs that are required to be conducted 

within the pre-defined time. Otherwise this could result in expensive waiting costs of 

QC or TK.  

 

Therefore, it is essential to develop an integrated problem model and efficient 

algorithms for the Patrick AutoStrad terminal. 

 

1.3 Aims  
 

To address the issues of ineffective or inefficient planning of resources in the 

transshipment process, it is necessary to investigate and develop an analytical model 

which integrates quay-side, yard and land-side operations. In addition, strategies and 

algorithms are required so as to enhance the operational performance. These initiatives 

will, in turn, provide the tools to intelligently schedule jobs to ASCs by taking into 

account the current state of ASCs, the environment, traffic conditions and the jobs’ 

requirements. They will also serve to maximise productivity. 

 

Therefore, the objectives of this research are to mathematically model a complicated 

planning problem and develop efficient algorithms for improving the operational 

performance of the automated container terminal. Specifically, the research work will: 

 

• Develop an analytical optimisation model for planning container transfers at an 

automated container terminal. 

• Investigate efficient algorithms for optimising the planning operations. 

• Test and evaluate the developed mathematical models and algorithms. 
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1.4 Contributions 
 

The major contributions of this thesis are: 

 

• It formulates two mathematical models of container transfers. With the features 

of using ASCs, our formulated models are different from the existing terminal 

models. The first one is an analytical optimisation model of container transfers, 

which integrates the scheduling of ASCs and the collision free path planning of 

ASCs. The model also considers many of the practical constraints present in a 

dynamic container terminal. The second formulated model focuses on job 

scheduling optimisation, which is derived from the integrated model.  

 

• It proposes a job grouping approach for planning container transfers with the 

integrated model. The proposed job grouping approach is an enhancement based 

on the existing sequential approach, and it can effectively improve the 

efficiency of the schedule for yard jobs, while reducing the waiting time of QCs, 

TKs and ASCs. 

 

• It proposes a modified genetic algorithm (GA) for optimising job scheduling 

with the job scheduling model. A practical contribution is that the proposed 

approach has been fully implemented on a trial basis in the live scheduling 

system at the Patrick container terminal, and it effectively improves the 

performance of the seaport container terminal. 

 

• It comes up with a novel crossover method based on the modified GA for 

improving solution quality. Compared to the existing crossover approaches for 

the two-part chromosome GA, the proposed crossover method can effectively 

enhance the search ability and performance. Also, the proposed method can be 

easily used in solving the classic MTSP with performance improvements as well. 

 

1.5 Publications 
 

Parts of the research work have been published in the following papers: 
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Journal articles: 
 

1. Shuai Yuan, Bradley Skinner, Shoudong Huang and Dikai Liu. “A new 

crossover approach for solving the multiple travel salesmen problem using 

genetic algorithms”, European Journal of Operational Research, Vol. 228(1), 

2013, pp. 72-82. 

 

2. Bradley Skinner, Shuai Yuan, Shoudong Huang, Dikai Liu, Binghuang Cai, 

Gamini Dissanayake, Haye Lau, Andrew Bott and Daniel Pagac. “Optimisation 

for job scheduling at automated container terminals using genetic algorithm”, 

Computers & Industrial Engineering, Vol. 64(1), 2013, pp. 511-523. 

 
 

3. Shuai Yuan, Bradley Skinner, Shoudong Huang, Dikai Liu, Gamini 

Dissanayake, Haye Lau and Daniel Pagac. “A job grouping approach for 

planning container transfers at automated seaport container terminals”, 

Advanced Engineering Informatics, Vol. 25(3), 2011, pp. 413-426. 

 

Peer reviewed conference papers: 
 

4. Shuai Yuan, Bradley Skinner, Shoudong Huang, Dikai Liu, Gamini 

Dissanayake, Haye Lau, Daniel Pagac and Timothy Pratley. “Mathematical 

Modelling of Container Transfers for a Fleet of Autonomous Straddle Carriers”, 

Proceedings of 2010 IEEE International Conference on Robotics and 

Automation (ICRA 2010), Anchorage, Alaska, USA, May 3-8, 2010, pp. 1261-

1266. 

 

5. Shuai Yuan, Haye Lau, Dikai Liu, Shoudong Huang, Gamini Dissanayake, 

Daniel Pagac and Timothy Pratley. “Simultaneous Dynamic Scheduling and 

Collision-Free Path Planning for Multiple Autonomous Vehicles”, Proceedings 

of 2009 IEEE International Conference on Information and Automation (ICIA 

2009), Zhuhai, China, June 22 - 25, 2009, pp.522-527. 
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1.6 Thesis outline 
 

This thesis consists of seven chapters. The thesis is organized as follows, which is 

shown in Figure 1-3.  

 

 
Figure 1-3: The structure of the thesis 

 

The thesis is structured so that the first two chapters outline the research and provide 

background for the research. Chapter 3 gives two mathematical models. Chapter 4 presents 

a job grouping approach for solving the integrated problem, which takes into account path 

planning and job scheduling. Chapter 5 focuses on solving the job scheduling problem, and 

presents a modified genetic algorithm. Chapter 6 presents a new crossover approach and 

the improvements on scheduling performance. Conclusions and future directions are 

presented in Chapter 7. Detailed outlines of each chapter appear below:  

 

Chapter 2 provides a literature review of previous works on container transhipment, 

classic problem models related to scheduling, and solution methods. Some typical 

approaches in different container handling processes are presented, and the scheduling for 
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automated vehicles and solution techniques are introduced, and also three classic problem 

models which are similar to the scheduling problem are reviewed. 

 

Chapter 3 provides two mathematical models of automated container transfers in a 

complex environment. The comprehensive model not only covers the essential 

consideration of collision avoidance in relation to a fleet of large vehicles in a confined 

area, the model, but also deals with many other difficult practical constraints, such as 

multiple levels of container stacking and sequencing, variable container orientations, and 

vehicular dynamics that require finite acceleration and deceleration times. The job 

scheduling model is derived from the comprehensive model with the focus on optimisation 

of job scheduling. 

 

Chapter 4 proposes a job grouping approach for improving the existing sequential 

planning. It is combined with a guiding function that encourages early starting and 

finishing for schedule robustness. The performance of the existing sequential planning 

method and the proposed job grouping approach are evaluated and compared statistically 

using a pooled t-test for 30 randomly generated yard configurations. The experimental 

results show that the job grouping approach can effectively improve the overall 

performance. 

 

Chapter 5 introduces a GA-based optimisation approach to solve the job scheduling 

problem. This chapter focuses on scheduling for container transfers and encodes the 

problem using a two-part chromosome approach which is then solved using a modified GA. 

The modified GA-based approach has been fully implemented on a trial basis in the live 

scheduling system at Patrick container terminal and it effectively improves the performance 

of the seaport container terminal. 

 

Chapter 6 proposes a new crossover approach for further improvement of the solution 

quality. It adopts the two-part chromosome representation technique which has been 

proven to minimise the size of the problem search space. The existing crossover methods 

for the two-part chromosome representation have two limitations, but they have been 

overcome by the proposed approach. Also, the proposed method can be directly used to 

solve the standard MTSP. The experimental results show that TCX can improve the 
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solution quality of the GA compared to the existing crossover approaches for both the 

scheduling problem and the MTSP. 

 

Chapter 7 summarises the research work presented in this thesis. Conclusions are then 

drawn about the research and avenues for future work are proposed. 
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2. Literature Review 

 
This chapter provides a literature review of previous works on container transhipment 

and classic problem models related to scheduling, and reviews solution methods. This 

chapter is organised as follows: Section 2.1 reviews typical approaches used in different 

handling processes; Section 2.2 reviews three classic problem models which are related 

to the scheduling problem. Section 2.3 introduces some aspects of GAs for the 

optimisation problems considered in this thesis, and Section 2.4 summarises the chapter. 

 

2.1 Container Handling in Transhipment 
 
Current seaport container terminals around the world employ a multitude of container 

handling equipment, which can be categorised into quay-side, yard and land-side 

resources. There are several notable surveys which provide comprehensive overviews 

of the operational research applications and optimisation models related to the 

transhipment of containers within seaport container terminals (Steenken et al., 2005, 

Vis and Koster, 2006, Vis and Harika, 2005, Bierwirth and Meisel, 2009, Crainic and 

Kim, 2006). This section presents container handling schemes according to quay-side, 

yard, land-side and the integrated situation. 

 

2.1.1 Quay-side Container Handling Schemes 
 

Quay-side container handling is performed using specialised QCs, which are mounted 

on tracks located orthogonal to the quay. Crossover of QCs during motion is not 

possible. Typically, QCs are able to move along the quay into locations called bays, 

where they are parked prior to performing container movement tasks. Dividing the 

workload of a ship into non-overlapping bay areas, provides each bay exclusive access 

to a single QC and associated quay buffers. This avoids interference between individual 

cranes, but increases the need for providing a sufficient workload for each QC. 

Identical QCs are normally employed to load or discharge containers between berthed 

ships and predefined buffer areas located on the quay as shown in Figure 2-1.  
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Figure 2-1: Typical QCs employed at the container Terminal in Brisbane, Australia. 

 
Containers are transported one or two (in case of a twin lift of 20-foot containers) at a 

time, usually in a fixed sequence and processed without pre-emption. Such precedence 

constraints arise due to a vessel’s predefined stowage plan provided by the shipping 

operators. According to the stowage plan, there is usually a loading list for each 

assigned QC. The load sequencing problem has been studied in detail (Gambardella et 

al., 2001). An unloading plan, which indicates which container should be unloaded and 

in which area it is situated in the ship, is given before the arrival of the ship. Within a 

defined area the QC driver can freely determine the order in which the containers are 

unloaded. The unload sequencing problem has also been examined in detail 

(Gambardella et al., 2001, Kim et al., 2004a). 

 

The Quay Crane Scheduling Problem (QCSP) considers the starting and ending time of 

each job in a set of jobs assigned to a set of QCs servicing a vessel. Minimising the 

berthing or handling time of a ship is achieved by minimising the makespan of the QC 

schedule. Computing the minimum makespan for the QCSP with parallel identical 

machines and constraints is considered to be NP-hard for two or more QCs. Further, no 

job pre-emption and non-uniform processing times are employed (Bierwirth and Meisel, 

2009).  

 

One of the first discussions on the QCSP was provided in the late 20th century 

(Daganzo, 1989). The simple static QCSP was formulated as a mixed integer program 
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that was solved exactly for a small number of ships and QCs. The author of the study, 

Daganzo, was able to minimise crane idle time and increase berthing throughput, while 

minimising the berthing time of vessels. In another later study (Kim and Park, 2004), 

the authors proposed an analytical formulation of the QCSP. Using a meta-heuristic 

search algorithm called GRASP, near optimal solutions were found. In addition, a 

lower bound on the optimal performance was proposed using the branch and bound 

method. However, both these studies assume complete availability of yard resources 

when transporting containers from the yard to the QC loading area.  

 

In order to reduce complexity of the integrated problem, this research does not consider 

the berth allocation problem (BAP) or the quay crane allocation problem (QCAP). 

These sub-problems have been suitably solved at the Patrick AutoStrad container 

terminal. As such, the integrated approach presented in this study incorporates the 

QCSP sub-problem and not the BAP or QCAP. 

 

Imai et al. (2003) introduced the service priority of the ship in dynamic berth allocation 

circumstances. They first attempted to utilise the Lagrangian relaxation; however, they 

found that the relaxed problem is reduced to the quadratic assignment problem (QAP), 

which is difficult to solve in polynomially bounded computation time. Consequently, 

they applied a genetic algorithm for this problem. Imai et al. (2007) solved the berth 

allocation problem at indented berths for mega-containerships by a GA. 

 

2.1.2 Yard Container Handling Schemes 
 

When the container terminal is designed, the type of material handling equipment that 

carries out the transport of containers between the quayside and the storage yard should 

be determined at the strategy level. Vehicles like forklift TKs, yard TKs or straddle 

carriers can be used at a manually operated terminal; while at an automated terminal, 

automated guided vehicles (AGV) or automated lifting vehicles (ALV) are the most 

common equipment. Different types of container transport equipment have also been 

studied (Baker, 1998, Vis and Harika, 2004, Duinkerken et al., 2006, Yang et al., 2004). 
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Unlike many seaport terminals, which utilise yard vehicles that are either manned or 

fixed upon a circuit of tracks (Vis and Harika, 2004), the Patrick AutoStrad container 

terminal environment has been designed for the use of a fleet of fully ASCs. ASCs are 

classified as ALVs. They are capable of independently lifting a container, transporting 

the container from the pickup location and setting down the container at a destination. 

The pickup and setdown of containers can occur at ground level or from/to a multiple 

level stack of containers. The use of ASC effectively decouples the unloading/loading 

operations performed by the QC from the transportation of the container within the yard 

stack. However, the operations performed by the ASC and QC intersect at a buffer area. 

The buffer area provides the temporary storage of containers during the transhipment 

process by acting as an operational interface between QCs and ASCs. 

   
One of the decisions at the tactical level is the determination of the necessary number of 

transport vehicles. The fleet sizing problem has been examined in depth (Steenken, 

1992, Vis et al., 2001, Koo et al., 2004). An important decision at the operational level 

is to determine which vehicle transports which container by which route. The general 

VRP has been studied at length (Bish et al., 2001, Narasimhan and Palekar, 2002, Li 

and Vairaktarakis, 2004).  

 

The fleet sizing and vehicle routing procedure by Koo et al. (2004) uses a two-phase 

heuristic Tabu Search algorithm. This system is used for container ports with several 

yards. The goal of the procedure is to find the smallest required fleet size and a route 

for each vehicle to fulfill all transportation requirements within a static planning 

horizon. A computational study shows solutions of good quality in comparison with 

two other existing methods. It also assumes that the vehicles’ travel time is constant 

between two points. 

 

The Autonomous Straddle Carrier Scheduling Problem (ASCSP) considers the starting 

and ending time of each yard job in a set of yard jobs assigned to a fleet of ASCs 

servicing a set of QCs. The issue is to minimise the usage of ASCs in the transhipment 

process, while finding a feasible and efficient schedule. This requirement aims to 

reduce costs associated with performing yard-side operations, while solving the 

allocation and scheduling sub-problem for yard resources, namely a fleet of ASCs.  
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2.1.3 Land-Side Container Handling Schemes 
 

Land-side operations are the phase of container handling operations to transport from/to 

customers or other terminals. As such, containers need to be moved from/to the yard 

stack to/from other modes of transportation like road, rail or waterways (Vis and Koster, 

2006). The amount of delay time of external TKs for receiving and delivery operations 

is the most important performance measure for the customer service level. The external 

TK sequencing problem was studied in the early 21st century (Kim and Park, 2003). 

 

The Patrick AutoStrad container terminal has been designed to support road 

transportation in its land-side operations. Similar to berthed ships, TKs can either be 

importing or exporting containers between the yard and the Truck Import Area (TIA). 

Transporting containers between the yard and the TIA is a land-side operation which 

requires the use of ASC. ASCs are capable of performing pickup and setdown 

operations directly upon TKs located in a bay of the TIA as illustrated in Figure 2-2. 

Minimising the turnaround time of TKs at the TIA can provide greater throughput of 

the overall process provided there are waiting TKs to fill any free TIA bays. Since TK 

movements are booked using the Vehicle Booking System (VBS), and free TIA bays 

are common at the Patrick AutoStrad container terminal, the allocation of TKs to TIA 

bays is greatly simplified to a first-come-first-served (FCFS) algorithm.  

 

 
Figure 2-2: ASC servicing a TK in the TIA at the Patrick AutoStrad container terminal located in 

Brisbane, Australia. 
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Zhao and Goodchild (2010) used simulation to evaluate the use of truck arrival 

information to reduce container rehandles during the import container retrieval process 

by improving terminal operations. A variety of scenarios with different levels of truck 

information and various container bay configurations were modelled to explore how the 

information quality and bay configuration affect the magnitude of benefit. 

 

In a timely study (Ballis and Abacoumkin, 1996), the authors presented a simulation 

model of the port of Piraeus, Greece for performance evaluation of land-side operations 

using TKs. Here, the TKs are serviced by a fleet of ASCs. By incorporating expert 

knowledge from operators into the model, the simulator assesses the different 

configuration of five terminal characteristics. The resulting simulations suggest that the 

‘observed strategy leads to shorter TK service time but increases the traffic conflicts in 

the terminal's internal transport networks’. 

 

2.1.4 Integrated Container Handling Schemes 
 
Probably the first attempt at performing integrated scheduling of different resources at a 

seaport container terminal was performed at the turn of the 3rd millennium (Meersmans 

and Wagelmans, 2001). The authors used a static and a dynamic variation of the beam 

search algorithm to model the problem. A form of rescheduling, variable job horizons 

(i.e. the number of jobs for each handling vehicle to consider ahead) and different 

vehicle dispatching algorithms were also investigated in this extensive study. In 

summary, longer planning horizons (up to 50 containers/QC) provided better 

performance on average. Furthermore, the static beam search performed better than the 

dynamic variation and it was also better than a number of typical dispatching rules in 

that it avoided deadlock situations. 

 

In a rigorous study (Kim et al., 2004a), the authors investigated the integration of two 

decision-making sub-problems. In the first sub-problem, a pickup schedule was 

constructed which determined both the route of a transfer crane (TC), as well as the 

number of containers it must pick up at each yard-bay. In the second sub-problem, the 

load sequence for individual containers was determined. A beam search algorithm was 

applied to solve the load-sequencing problem in the seaport container terminal. The 

algorithm was used to maximise the operational efficiency of TCs and QCs while 
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satisfying various constraints on stacking containers onto vessels. It was shown that the 

beam search algorithm outperforms an ant colony algorithm in the solution values of 

the objective functions and computational time. 

 

In another study (Hartmann, 2004), the author proposed a generalised optimisation 

model that could be simultaneously applied to ASCs, AGVs, stacking cranes and reefer 

workers. A priority rule based heuristic and GA were used to find adequate solutions to 

the optimisation problem. However, this study was performed offline on artificial data, 

which is unable to effectively capture the dynamics of a real seaport container terminal. 

The author suggested the use of a simulation environment as an important direction for 

future research in relation to integrated optimisation problems. 

 

The authors of another significant study (Lau and Zhao, 2007), recognised that most of 

the relevant literature considers the allocation and scheduling for only a single type of 

handling equipment. The authors proposed that optimising just one type of handling 

equipment in the transhipment process discounts the tight coupling between the 

schedules and allocation schemes of the remaining handling equipment. As a result, this 

can produce inefficiencies and sub-optimality in the entire transhipment operation. A 

mathematical programming model and multi-layer (hierarchical) GA were developed 

and used in numerical simulation studies. This multi-objective formulation attempted to 

minimise QC delay time, the total travelling time of AGVs between the quay-side and 

storage blocks, and the total travelling time of AGVs and automated yard cranes 

(AYCs). Static travelling times of AGVs were used in the simulation negating the 

requirement for any path planning algorithm. The fleet size of AGVs varied from 8-to-

16 vehicles, the planning horizon for QCs varied from 8-to-16 tasks per QC and the 

final factor injected uncertainty into the operation times of QCs. With four QCs, 

simulation results were compared with different AGV dispatching rules including, 

earliest due date, fixed AGV-to-QC assignment and nearest-vehicle-first. A multi-

layered genetic algorithm (MLGA) consistently found lower objective function values 

for all simulation experiments. 

 

To address the issues of ineffective or inefficient scheduling of resources in the 

transhipment process, this thesis defines an integrated problem and proposes an 

analytical model which integrates quay-side, yard and land-side operations. 
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2.1.5 Scheduling of Automated Vehicles 
 
Briefly, the scheduling of AGVs is to dispatch a set of AGVs to complete a batch of 

pickup/drop-off jobs to achieve certain goals (e.g. shortest completion time, minimum 

AGV idle time, etc.) under given constraints. As one of the enabling technologies, the 

scheduling of AGVs has attracted considerable attention. In addition, many algorithms 

about the scheduling of AGVs have been proposed (Daniels, 1988, Grunow et al., 2004, 

Kim and Bae, 2004, Kim and Tanchoco, 1991). Recently, more container terminals 

have utilised automated vehicles, like AGVs. As a consequence, the research on the 

scheduling of AGVs becomes important.  

 

In a compelling study (Grunow et al., 2004), the authors proposed a novel heuristic 

dispatching algorithm for a fleet of multi-load AGVs. The analysis performed by the 

authors is based on the distinction of different degrees of AGV availability and a 

definition of assignment patterns which promotes alternative AGV tours to be 

generated with very limited computational effort. Furthermore, the problem is also 

formulated as a mixed integer linear programming (MILP) model. The performance of 

the MILP model is compared to the heuristic dispatching algorithm for different AGV 

fleet sizes. Due to the port layout, this study only investigated the assignment problem 

for a small fleet of AGVs (i.e. a maximum of 6 vehicles). The assignment problem is 

solved while minimising the total lateness of the AGVs. Additional objectives related to 

the QC or land-side operations were not considered. In a similar study (Kim and Bae, 

2004), the authors examined AGV dispatching methods by utilising information about 

locations and times of future delivery tasks. An MILP model is provided for assigning 

optimal delivery tasks to a small fleet of AGVs. A heuristic algorithm is suggested for 

overcoming the excessive computational time needed for solving the MILP model. In 

this study, the dispatching problem is reduced to an assignment problem by defining the 

exact pickup and delivery times of each container for a single QC. 

 

Also of note, a recent study, (Kim and Nguyen, 2009) discussed a method for 

dispatching a small fleet of ALVs for supporting the efficient operations of QCs and 

automated yard cranes (AYC). The problem was introduced as a scheduling problem in 

terms of precedence and buffer constraints. These constraints arise owing to the 
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variable buffer space allocated in the apron and yard upon which QCs, AYCs, and 

ALVs can all release containers. An MILP model and a heuristic algorithm were 

proposed for the ALV scheduling problem, with the aim of minimising both the total 

travel time of ALVs and the total delay in QC operations. The heuristic algorithm was 

used to find solutions to this NP-hard scheduling problem after the authors applied a 

procedure to convert buffer constraints into time-window constraints. Interestingly, the 

effect of the dual cycling at buffers of varying sizes was also analysed, which suggested 

that as the proportion of dual cycling operations increased, the ALV total travel time, 

QC total delay time, and vessel completion (berthing or handling) time decreased. 

However, the authors suggest the performance of the algorithms proposed in their study 

needed to be assessed in a simulated and dynamic environment. Furthermore, this study 

only addressed the dispatching of ALVs and not the integrated scheduling problem 

which includes ALV path planning, automated yard cranes and QC operations.  

 

2.2 Relevant Problem Models for Scheduling 
 
Scheduling plays a central role in logistics management. A wide variety of scheduling 

problems have been studied in the literature. Different scheduling problems address 

different practical situations but focus on a common problem—the efficient use of a 

group of vehicles/machines for executing a set of jobs. There are three models that have 

been studied most widely in the literature: the Multiple Travelling Salesman Problem 

(MTSP), PDP, and Capacitated Vehicle Routing Problem (CVRP).  

 

2.2.1 The Multiple Travelling Salesman Problem 
 

MTSP is a generation of the well-known travelling salesman problem (TSP), which is 

an NP-hard problem. The MTSP is even more difficult than TSP because it aims to find 

a group of Hamiltonian circuits without sub-tours for m (m>1) salesmen to serve a set 

of n (n>m) cities. This leads to the optimum solution of MTSP becoming more 

computationally infeasible as the problem size increases. Compared to the TSP, the 

MTSP is more suitable for modelling real world problems, because it is capable of 

handling more than one salesman. As such, many practical problems have been 

modelled as MTSP, such as print press scheduling (Gorenstein, 1970), crew scheduling 



 39

(Svestka and Huckfeldt, 1973), hot rolling scheduling (Tang et al., 2000), mission 

planning (Ryan et al., 1998) and vehicle scheduling (Park, 2001). Additionally, the 

MTSP can also be extended to many variations. Based on the number of depots, it can 

have single depot or multiple depots. It can also have open or closed tours, where the 

difference is whether the salesmen need to return to their depot(s). Added to this, if the 

salesmen need to pick up loads, it can be cast as the MTSP pick up and delivery 

problem (MTSPPDP) (Wang and Regan, 2002). If the tasks have time-related 

constraints, it arises as the MTSP with time windows (MTSPTW) (Kim and Park, 

2004). There are other combinations of the above forms coming from real world 

applications. In all of the problems, job planning and vehicle scheduling are the most 

commonly researched areas (Bektas, 2006). 

 

Due to the combinatorial complexity of the MTSP, many researchers have tried to relax 

the MTSP to the TSP and use exact algorithms to solve it, yet the results have always 

been unsatisfactory (Bektas, 2006). It is therefore preferable to utilise heuristics to 

obtain a near-optimum solution to the problem, particularly when its search space is 

extremely large. Most of the research on using GAs for the vehicle scheduling problem 

have focused on using two different chromosome designs (i.e. one chromosome 

representation and two chromosome representations) for the MTSP. Both of these 

chromosome designs can be manipulated using classic GA operators developed for the 

TSP; however, they are also prone to produce redundant solutions to the problem. The 

authors in one study (Carter and Ragsdale, 2006) have proposed a GA for the MTSP 

that uses a two-part chromosome representation which effectively reduces the 

redundancy in the search space. The crossover operation for the two-part chromosome 

is separated into two sections. The first section uses an ordered crossover operator, 

while the second section uses an asexual crossover operator so as to ensure that the 

second part of the chromosome remains feasible (with the sum of the values in the 

chromosome equalling n). However, due to the nature of the two-part chromosome, 

Carter has suggested in his doctoral thesis (Carter, 2003) that further research on more 

effective crossover operators will become increasingly important. 

 

Although the TSP has received a great deal of attention, the research on the MTSP is 

relatively limited, and most of the work is related to MTSP applications (Bektas, 2006). 

Apart from GAs, other bio-inspired optimisation algorithms such as ant colony 
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optimisation (ACO), artificial neural network (ANN) and particle swarm optimisation 

(PSO) have been used to solve the TSP/MTSP (Kulkarni and Tai, 2010,). These 

algorithms are used in conjunction with various local improvement/heuristic techniques 

to jump out of local minima and also to reduce the computational cost. For example, 

authors in one study (Liu et al., 2009) have proposed an ACO algorithm for solving the 

MTSP. In the algorithm, the pheromone trail updating and limits followed the MAX-

MIN Ant System scheme, and a local search procedure was used to improve the 

performance of the algorithm. They compared the results of the algorithm with GAs on 

some benchmark instances in the relevant literature, and the computational results show 

that their algorithm was competitive over two objective functions. Some of the 

fundamental ways of solving the MTSP are the expansion of the problem by converting 

it into the standard TSP and the simplification of the problem by using the approach of 

cluster-first-route-second. The work in an early study (Bellmore and Hong, 1974) 

represents one of the first attempts to expand the MTSP by converting it into the 

standard TSP through introducing m-1 imaginary bases/depots. This makes the total 

number of cities to be n + m - 1. This increases the problem size to almost double 

(Bellmore and Hong, 1974, Kulkarni and Tai, 2010,). It also extends the cost matrix to 

(n + m – 1) × (n + m – 1) (Kulkarni and Tai, 2010,, Christofides et al., 1981), making 

the problem computationally tedious as compared to the standard TSP with the same 

number of cities. This becomes worse when the number of cities is very large.  

 

 

2.2.2 Pick-up and Delivery Problem 
 
In the general PDP (Savelsbergh and Sol, 1995), a set of routes has to be constructed in 

order to satisfy transportation requests. A fleet of vehicles is available to operate the 

routes. Each vehicle has a given capacity, a start location and an end location. Each 

transportation request specifies the size of the load to be transported, the location where 

it is to be picked up (the origin) and the location where it is to be delivered (the 

destination). Each load has to be transported by one vehicle from its set of origins to its 

set of destinations without any transshipment at other locations. 
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A lot of work has been done in PDP which initially started in the 1980s (Psarafis, 1980). 

The work can be found in some of the comprehensive literature surveys done over the 

years (Parragh et al., 2008).  

 

With regard to exact methods, Psaraftis (Psarafis, 1980, Psarafis, 1983) and Desrosiers 

(Desrosiers et al., 1986) used dynamic programming techniques to solve the PDP and 

the PDP with time windows, all of them defining the concept of the state of the system 

for each particular problem. Dumas et al. (Dumas et al., 1991) proposed a column 

generation procedure to solve the PDP with time windows, using the Dantzig–Wolfe 

decomposition. Their method was able to solve problems of size up to 50 customers. 

Ruland and Rodin (Ruland and Rodin, 1997) formulated the PDP as a mixed-integer 

programming problem (MIP) and proposed four kinds of valid inequalities for the 

problem, based on the travelling salesman problem with precedence constraints. They 

used a branch-and-cut procedure to solve instances up to 15 customers. Lu and 

Dessouky (Lu and Dessouky, 2004) solved the PDP with time windows using a branch-

and-cut technique, based on new valid inequalities proposed by the authors. They 

solved instances up to 17 customers. More recently, Dumitrescu (Dumitrescu, 2005) 

provided several valid inequalities for solving the travelling salesman problem with 

pickups and deliveries (TSPPD), establishing those among all known inequalities that 

define facets of the TSPPD polytope. 

 

Although many exact methods have been developed for solving variants of the PDP, 

none of them actually avoid the complexity of the problem, limiting their solution 

power to small size problems. This evident drawback motivated the development of 

good heuristics to solve medium and large scale systems. For example, Sexton and 

Bodin (Sexton and Bodin, 1985a, Sexton and Bodin, 1985b) proposed an heuristic 

method to solve the pick-up and delivery problem, based on Benders decomposition. 

They decomposed the problem into a routing problem (hard) and a scheduling problem 

(easy). 

 

In the recent years, some sophisticated approximate techniques have been used for 

solving dynamic PDP instances, mainly GAs (Haghani and Jung, 2005, Osman et al., 

2005), and various metaheuristics (Li et al., 2005, Tarantilis et al., 2005, Bianchessi and 

Righini, 2007). Cordeau and Laporte (Cordeau and Laporte, 2003) developed a tabu 
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search heuristics for the DARP with time windows, where the objective was to 

minimise routing costs. Moreover, Cordeau (Cordeau, 2006) developed a branch and 

cut algorithm to solve the same type of problem. 

 

2.2.3 Capacitated Vehicle Routing Problem 
 

The CVRP is a combinatorial optimisation and integer programming problem seeking 

to service a number of customers with a fleet of vehicles. In the CVRP, one has to 

deliver goods to a set of customers with known demands on minimum-cost vehicle 

routes originating and terminating at a depot. The vehicles are assumed to be 

homogeneous and have a certain capacity. The CVRP literature is vast. Classic 

heuristics for the problem have been surveyed by Laporte and Semet (Laporte and 

Semet, 2002), and metaheuristics have been surveyed by Gendreau et al. (Gendreau et 

al., 2002) and more recently by Cordeau et al. (Cordeau et al., 2004). CVRP heuristics 

have typically been tested on 14 instances containing between 50 and 199 customers. In 

the early 1990s very good metaheuristics for the CVRP were developed such as the 

parallel tabu search by Taillard (Taillard, 1993). Significantly, most of the solutions to 

the 14 classic instances found in these studies have to date not been improved upon. 

More recently, some larger instances have been introduced containing between 240 and 

1200 customers (Li et al., 2005, Golden et al., 1998). These new instances seem to have 

spurred a new interest into metaheuristics for the CVRP as indicated in the survey by 

Cordeau et al (Cordeau et al., 2004). Until recently, exact methods for the CVRP were 

dominated by branch-and-cut methods. One of the best branch-and-cut algorithms for 

the CVRP was developed by Lysgaard et al. (Lysgaard et al., 2004). Recent research 

results indicate that branch-and-cut-and-price algorithms are viewed as a more 

promising approach (Fukasawa et al., 2004). For the CVRP, the largest problem that 

has been solved to optimality contains 135 customers. 

 

Furthermore, the CVRP can be extended to VRPs with Time windows (VRPTW) by 

associating time windows with the customers. The time window defines an interval 

during which the customer must be visited. Solving the VRPTW to optimality has also 

received much attention. The current state of the art exact methods are proposed by 

Kallehauge et al. (Kallehauge et al., 2001), Irnich and Villeneuve (Irnich and 
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Villeneuve, 2003) and Chabrier (Chabrier, 2006), and all follow the branch-and-price 

framework. The two first mentioned approaches also strengthen the obtained lower 

bound by adding valid inequalities to the LP formulation. The size of the instances that 

consistently can be solved to optimality is rather limited as unsolved instances with 50 

customers exist, but some large-scale instances can be solved. For example, Kallehauge 

et al. (Kallehauge et al., 2001) report that a 1000 customer instance has been solved. 

Solving problems of this size using exact methods is possible only if the instance has a 

certain structure and the time constraints are very tight. These observations justify the 

research into heuristics for the VRPTW because industrial routing problems demand 

robust algorithms for large-sized instances. Additionally, the VRPTW has been the 

target of extensive research and almost every type of meta-heuristic has been applied to 

the problem. For recent surveys on state of the art VRPTW research it is worthwhile to 

recommend the survey by Cordeau et al. (Cordeau et al., 2002) that describes both 

exact and heuristic methods, and the survey by Bräysy and Gendreau (Bräysy and 

Gendreau, 2005) that focuses on meta-heuristics. It is hard to single out a few VRPTW 

metaheuristics as no particular heuristics dominates all the other heuristics in all areas.  

 

2.2.4 Discussion 
 
Basically, CVRP is similar to the path planning problem in ASCs, since both of them 

seek to service a number of customers/containers with a fleet of vehicles, and with the 

time window they do not want to block or collide with each other. MTSP and PDP are 

very similar to the job scheduling of ASCs, because their common objective is to 

efficiently allocate the jobs to resources (i.e. salesman or vehicle). In this research, the 

problem of scheduling ASCs has subtle but significant differences to the MTSP, PDP 

and CVRP.  

 

(1). In general, MTSP, PDP and CVRP do not have sequence constraints on visiting 

cities or nodes, and salesmen or vehicles are normally allowed to conduct jobs in any 

order. In the particular problem that this thesis addresses (i.e the operation requirements 

at a container terminal), the job conducting sequence has to be taken into account, 

particularly for coordinating QC and TK related jobs.  
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(2). MTSP, PDP and CVRP do not have to deal with constraints such as servicing QCs 

and TKs, which adds complex timing dependence for related jobs. Due to the timing 

dependence of all resources (i.e. ASCs, QCs and TKs), it is not suitable to use time-

window based approaches (e.g. MTSP with time-window and PDP with time-window) 

to deal with the correlated job sequence and timing constraints.  

 

(3). The performance metrics for ASC scheduling are based on practical operations at 

Patrick AutoStrad terminal, which are different from the general MTSP, PDP and VRP. 

The objectives in this research are not only related to ASCs (e.g. minimising total travel 

time, which is a linear function), but also include the performances of QCs and TKs 

(e.g. QC waiting time and TK waiting time which are non-linear functions). Since those 

studied approaches (Bektas, 2006, Dumas et al., 1991, Li and Lim, 2001, Ruland and 

Rodin, 1997, Savelsbergh and Sol, 1995, Park, 2001) to solving MTSP, PDP and 

CVRP are often for linear objective functions with linear constraints, they cannot be 

directly used to the model and solve the problem at the Patrick AutoStrad Terminal. 

 

2.3 Optimisation with Genetic Algorithms 
 

GA is an optimisation method which is very easy to understand and is easily transferred 

to existing simulations and models, and various modified GAs have been utilised to 

solve many container handling problems. Imai et al. (2006) solved a multi-objective 

simultaneous stowage and load planning problem by GA. Imai et al. (2007) solved the 

berth allocation problem at indented berths for mega-containerships by GA. Lee et al 

(Lee et al., 2008) used GA to solve the quay crane scheduling problem. Golias et al. 

(2009) proposed the dynamic BAP with customer service differentiation based on 

respective agreements. They formulated their BAP as a multi objective problem and 

developed a GA-based heuristic. 

 

GAs have been already viewed as a relatively new optimisation technique that can also 

be applied to solving many problems such as MTSP, PDP and VRP. The basic ideas 

behind GAs evolved in the mind of John Holland at the University of Michigan in the 

early 1970s (Holland, 1975). GAs were not originally designed for highly constrained 

optimisation problems but were soon adapted to order based problems like TSP (Carter, 
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2003, Goldberg and Lingle, 1985). The development of effective GA operators for 

TSPs led to a great deal of interest and research to improve GAs’ performance for 

solving this type of problem.  

 

In a nutshell, GAs work by generating a population of numeric vectors (called 

chromosomes), each representing a possible solution to a problem. The individual 

components (numeric values) within a chromosome are called genes. New 

chromosomes are created by crossover (the probabilistic exchange of values between 

vectors) or mutation (the random replacement of values in a vector). Mutation provides 

randomness within the chromosomes to increase coverage of the search space and help 

prevent premature convergence on a local optimum. Chromosomes are then evaluated 

according to a fitness (or objective) function, with the fittest surviving and the less fit 

being eliminated. The result is a gene pool that evolves over time to produce better and 

better solutions to a problem (Carter, 2003). The GA's search process typically 

continues until a pre-specified fitness value is reached, a set amount of computing time 

passes, or until no significant improvement occurs in the population for a given number 

of iterations. 

 

The key to finding a good solution using a GA lies in developing a good chromosome 

representation of candidate solutions to the problem. A good GA chromosome should 

reduce or eliminate redundant chromosomes from the population. Redundancy in the 

chromosome representation refers to a solution being able to be represented in more 

than one way and appearing in the population multiple times. These multiple 

representations increase the search space and slow the search. So far, the two-part 

chromosome technique (Carter and Ragsdale, 2006) has been viewed as the more 

suitable representation with minimum redundancy for MTSP.  

 

In (Singh and Baghel, 2009), the authors proposed a new grouping GA based approach 

for the MTSP and compared their results with other approaches available in the 

literature. Their results showed that the approach outperformed the other approaches on 

two objectives, particularly for the computation time. However, in the two proposed 

approaches (Carter and Ragsdale, 2006, Singh and Baghel, 2009), they both adopted 

some local heuristic search techniques, which are designed to provide a very good 

starting point for GAs (as a seed).  
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In general, GAs are global optimisation techniques (Bo et al., 2006, Cus and Balic, 

2003, Smith and Smith, 2002, Goldberg, 1989, Holland, 1992) that avoid many of the 

shortcomings that exist in classical local search techniques. In particular, crossover is a 

very powerful mechanism for introducing new genetic material and maintaining genetic 

diversity, but with the defining property that good parents also produce well-

performing offspring or even better offspring. Although using a local optimisation 

technique can speed up the overall search process, it is difficult to tell the real search 

ability of a crossover method. Hence, in this thesis, crossover operators are compared 

without any local optimisation so as to show differences of search ability with different 

crossovers. 

 

Generally, one-point crossover and two-point crossover have been used as two basic 

genetic crossover operators for many problems (Chatterjee et al., 1996, Kellegöz et al., 

2008). One-point crossover is the most basic crossover operator proposed by Holland 

(Holland, 1975), and the specific operation process is as follows: select a crossover 

point in the individual string stochastically, the two point before and after the crossover 

point exchange their structure, then two new individuals are generated. One-point 

crossover tends to treat some loci preferentially as the segments exchanged between 

two parental chromosomes always contain the endpoints of the gene string. To reduce 

such positional bias, two-point crossover can be used. Two-point crossover (Holland, 

1975) can also be viewed as the improvement to the one-point crossover. The 

difference between them is that, two-point crossover chooses two points in the two 

individual strings which are mated with each other, and then the gene segments are 

exchanged between the selected two crossover points. In an early study (Spears and De 

Jong, 1991), Spears and De Jong found that two-point and in particular multi-point 

crossover encourages exploration of the search space due to the increase in gene 

disruption. This helped prevent premature convergence to highly fit individuals thereby 

making the search more robust. 

 

There have also been many attempts to discover appropriate crossover operators for 

TSP, and the most widely used crossover operators are: the ordered crossover operator 

(ORX), the cycle crossover operator (CYX) and the partially-matched crossover 

operator (PMX). The ORX (Davis, 1985, Gen and Cheng, 1997) was proposed by 
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Davis, which constructs an offspring by choosing a subsequence of one parent and 

preserving the relative order of genes of the other parent. This crossover operator has 

been commonly used in GAs for solving many problems, particularly for TSP, MTSP 

(Bektas, 2006, Kulkarni and Tai, 2010,). The CYX (Oliver et al., 1987) was proposed 

by Oliver et al., which attempts to create offspring from the parents where every 

position is occupied by a corresponding element from one of the parents. The PMX 

(Goldberg and Lingle, 1985) was suggested by Goldberg and Lingle, which builds 

offspring by choosing a subsequence of a chromosome from one parent and preserving 

the order and position of as many genes as possible from the other parent. However, 

these crossover methods cannot be directly applied in the GA with the two-part 

chromosome representation. In (Carter and Ragsdale, 2006), Carter and Ragsdale 

proposed a combined crossover approach ORX+A (ORX combined with an asexual 

crossover (Chatterjee et al., 1996)) for the two-part chromosome representation. They 

employed the ORX for the first part of the chromosome, and used an asexual crossover 

for the second part of chromosome. Chapter 6 provides an overview of the existing 

approach, and we propose a new crossover approach, and compare the performance 

with the three crossover methods (ORX+A, CYX+A and PMX+A) for the two-part 

chromosome. 

 

2.4 Summary 
 
This chapter provides a literature review on previous works which are closely related to 

this research. Three key container handling schemes have been reviewed, which are 

associated with quay-side, yard, land-side operations and the integrated process. 

Subsequently, the scheduling of AGVs has also been discussed with the related work. 

Furthermore, three classic problem models: MTSP, PDP and CVRP have been 

reviewed, and the related solution techniques have been presented. These approaches 

have proved to be applicable in some cases, but cannot be directly applied to container 

scheduling directly. Last, optimisation with GAs has been reviewed. 

 

Most achievements on the port automation are related to the optimisation of the 

container handling process, such as using modified GA for solving the QC 

scheduling/allocation problem and container storage problem. For the general studied 
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problems, such as MTSP, PDP and CVRP, these can be cast into many practical 

problems and the solution methods correspondingly vary to a strong degree.  

 

This thesis studies an integrated process and develops practical deployable strategies 

and algorithms for scheduling container transfers. A comprehensive mathematical 

model is presented in Chapter 3. Chapter 4 presents a job grouping approach for solving 

the integrated problem. Chapter 5 presents a modified GA for solving the scheduling 

problem. Chapter 6 presents a new crossover approach for further improvement. 
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3. Mathematical Modelling for 
Automated Container Transfers 

3.1 Introduction 
 
This chapter formulates two mathematical models for automated container transfers: a 

comprehensive model and a job scheduling model. There may be multiple formats for 

the problem formulation, yet our formulation is based on the mixed integer 

programming with extra specific constraints from the container terminal. 

 

Apart from the essential consideration on collision avoidance of a fleet of large vehicles 

in a confined area, the comprehensive model also deals with many other practical 

constraints, such as the presence of multiple levels of container stacking and 

sequencing, variable container orientations, and vehicular dynamics that require finite 

acceleration and deceleration times. Based on the comprehensive model, a job 

scheduling model is formulated to focus on the optimisation of ASC job scheduling. 

Due to the expensive computational cost for solving a large problem in the 

comprehensive model, production managers of the automated container terminal are 

usually more concerned with the job scheduling part, as resource utilisation and port 

cost are more dependent on the job scheduling.  

 

3.2 Overview of the Patrick AutoStrad Container Terminal 
 
A yard environment map has been developed to model the actual Patrick AutoStrad 

container terminal, which is at the container terminal located within the Port of 

Brisbane at Fisherman Islands, Australia. The model formulation includes all the 

container handling subsystems of an automated container terminal. Figure 3-1 

illustrates the static seaport environment from which a map was developed consisting 

of 18380 positional nodes and 83155 predefined links. It includes a set of QCs located 

within bays ready to perform either uploading or dispatching operations between a 

berthed container ship and associated buffer nodes located in lanes on the quay-side of 

the yard. The yard stack and TIA are also illustrated. The areas labelled MXA and 
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MXB are used for the temporary storage of containers being transported between the 

yard and the TIA. 

 
Currently, there is a fleet of 30 ASCs operating within the yard environment. The 

working area is strictly confined and ASCs can travel freely from position to position, 

along paths amongst the defined links. Thus, the problem of optimising the assignment 

of tasks to ASCs (task allocation) is complicated by the additional requirement of 

ensuring safety through collision-free path planning, while attempting to meet the 

overall objective of minimising the turnaround time of berthed ships and TKs docked at 

the TIA. 

 

 
 

Figure 3-1: Schematic diagram of the static seaport environment showing berth, QCs, bays, special nodes 
(QC and TK gates), TIA, and nodes in the yard. 

 
Considering the requirements, let the map be represented by a graph (N, L), where all 

nodes are contained in a set N and all feasible links upon which ASCs can travel are 

contained in the set L. Nodes are not uniformly spaced within the map, hence links are 

not equal. All links in L are bi-directional and each connects two neighbouring nodes. 

For each node in the map, there is a two-level stack where a container can be stored. 

That is, each node can be occupied by two containers vertically, which adds significant 

complexity to the problem as both setdown and pickup sequencing must be considered. 
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Using a graph to represent the seaport map allows for the accurate determination of 

position and trajectory information at any time.  

 

3.3 Job Definition  
 
In general, container transfers refer to three categories of jobs: quayside transfers, yard 

transfers and hinterland (landside) transfers. It is necessary that all job specifications be 

described using valid locations within the seaport environment map and that all job 

dependencies are defined completely and correctly. 

 

A list of container transfers jobs needs to be performed by a fleet of identical ASCs. For 

each job, the Yard Management System (YMS) provides both an initial node (i.e. pick-

up position) and a destination node (i.e. set-down position), and also specifies the 

container stack level and container alignment for both the pick-up location and set-

down location. In this thesis, the container transferring jobs are divided into five 

different categories based on their initial and destination nodes in the yard: 

 

• Buffer-to-Yard (B2Y): transport a container from a buffer node to a yard node for QC 

ship discharging; 

• Yard-to-Buffer (Y2B): transport a container from a yard node to a buffer node for QC 

ship uploading; 

• Truck-to-Yard (T2Y): transport a container from a truck area node to a yard node TK 

exporting; 

• Yard-to-Truck (Y2T): transport a container from a yard node to a truck area node for 

TK importing; 

• Yard-to-Yard (Y2Y): transport a container from a yard node to another yard node for 

yard management. 

 

3.3.1 Quayside Transfers 
 
In this study, QCs are fully-programmable and able to perform discharging (i.e. ship-to-

buffer) jobs ( DJ ) and uploading (i.e. buffer-to-ship) jobs ( UJ ) according to a 

predefined job sequence. Each QC jib is associated with four special positions. These 

include, two buffer positions (P1 and P2), one QC jib (i.e. the long part of the crane) 
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mid-point node (P3) and one ship node (P4) as illustrated in Figure 3-2. Quayside 

transfers are usually conducted by specific QCs for container discharging from the ship 

or container uploading onto the ship. DJ is a set of ship-to-buffer jobs which must be 

performed using a set of discharging QCs. A discharging QC is associated with a 

specific set of jobs ( D
qJ ) which must be performed by the QC ( q ) between the ship and 

allocated buffer positions. In addition, all discharging jobs ( D
qJ ) need to be performed 

sequentially and in a fixed order that is decided a priori by the particular shipping 

company and port management system. Usually, there is a predefined order for the 

containers to be placed onto the buffer area, so that the system can check if any boxes 

are out of sequence or if there is any delay incident. If the order cannot be followed due 

to some delay or other issue, the system will update the status, and the related 

containers can be placed in the buffer as long as the buffer node is available. 

 

 
 

Figure 3-2: Quay Side Operations. A trajectory for the QC jib can be calculated from the associated 
nodes and links between the ship and wharf. (TLR refers to twist lock release.) 

 
For any discharging job, a box identification number, initial position (P4), destination 

positions (P1 or P2) and associated discharging QC are required. The final destination 

node can be one of two buffer nodes (P1 or P2) determined by the planner. The buffer 
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positions are single stack level, and the alignment of boxes placed on the buffer nodes 

is determined by the direction of the berthed ship. In general, if a container door faces 

north (N) or east (E), then the container alignment is aligned. If, however, a container 

door faces south (S) or west (W), then the container alignment is opposite. 

 
Similarly, for any uploading job, a box identification number, initial positions (P1 or 

P2), destination position (P4) and associated uploading QC are required. The initial 

position can be one of two buffer positions (P1 or P2) determined by the planner. There 

is a single stack level for the buffer positions and the alignment of boxes placed in the 

buffer nodes is determined by the direction of the berthed ship. All uploading jobs ( UJ ) 

need to be performed sequentially and in a fixed order that is planned a priori by the 

particular shipping company and Patrick. When ASCs service QCs by transferring 

containers, ship-to-buffer jobs ( DJ ) become B2Y jobs, and buffer-to-ship jobs ( UJ ) 

become Y2B jobs. When the same QCs do the uploading job as well as the discharging 

job, it is called dual-cycling. However, due to the complexity of introducing dual-

cycling, the situation in the model will not be specifically addressed in this thesis. 

 

3.3.2 Yard Transfers 
 
A set of Y2Y jobs ( YJ ) must be performed using a set of identical ASCs (V ). Each 

Y2Y job ( j ) must be conducted by one and only one ASC ( v ). That is, when ASC ( v ) 

picks up a box as part of an assigned job ( j ) the box must be transported to the 

destination by the same ASC ( v ). For all Y2Y jobs the Yard Management System 

(YMS) provides both an initial and destination node. 

 
The initial and destination nodes are located within the yard. An initial yard node ( i N∈ ) 

together with current stack level ( { }0,1iS ∈ ) and alignment ( { }0,1
iSA ∈ ) are required. 

Similarly, the destination yard node ( k N∈ ) together with stack level ( { }0,1kS ∈ ) and 

alignment ( { }0,1
kSA ∈ ) are required. Typically, in the Patrick AutoStrad terminal, the 

YMS provides a destination set containing between 1:20 candidate destination nodes. 

However, this model formulation only considers a single destination node for Y2Y jobs. 

For example, the YMS could randomly select a single destination node a priori from 

the set of candidate nodes. A single destination node provided by the YMS would 

greatly reduce the computational complexity of the problem.  
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3.3.3 Land-side Transfers 
 
In this study, export jobs (i.e. T2Y) ( EJ ) and import (i.e. Y2T) ( IJ ) jobs can be 

performed entirely by ASCs, including set-down and pick-up actions within the TIA. 

Consider an ASC (v) servicing a waiting TK. The TK is required to reverse into the TK 

import area assigned to the TK gate (g) and come to a complete stop, effectively 

locating itself upon four nodes ( , , ,a b c d ) in the TK area, as illustrated in Figure 3-3.  

 

 
 
Figure 3-3: TK Area Operations showing associated nodes and links between the yard and TK area. TKs 
can import or export any combination of 20-ft and 40-ft containers (up to a total of 4TEU (Twenty-foot 
Equivalent Unit) in each direction) into the seaport, as shown by the different combinations. 
 
For all export jobs, the YMS provides both a destination and initial node. The initial 

node can be one of four special nodes in the TIA, such that { }, , ,i a b c d∈ . There is no 

directional or stack level information for these special nodes. All TKs in the TK gate 

area have their boxes facing to the rear of the TK and are a single level stack. The 

destination yard node together with stack level and direction alignment is required as 

well.  

 
For any import job, a box identification number, initial yard position, destination 

position (TK node) and associated TK gate are required. The destination node can be 

one of four special nodes in the TK import area, such that { }, , ,i a b c d∈ . There is no 

directional or stack level information for these special nodes. An initial yard node 

together with current stack level and alignment are required.  
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In addition, all import jobs and export jobs being serviced at the TK gate ( g ) must be 

arranged in a fixed order. For import jobs ( IJ ) the front containers are set-down 

(loaded) before the rear containers if the number of containers to be set-down onto a 

TK is greater than one. Similarly, for export jobs ( EJ ) the rear containers are picked 

(unloaded) before the front containers if the number of containers to be picked from a 

TK is greater than one. 

 

3.4 Model 1: Comprehensive Model 
 
This section presents a comprehensive mathematical model for container transfers by 

ASCs. The comprehensive model deals not only with the essential consideration of the 

collision avoidance of a fleet of large vehicles in a confined area, but also many other 

practical constraints, such as the presence of multiple levels of container stacking and 

sequencing, variable container orientations, and vehicular dynamics that require finite 

acceleration and deceleration times. The overall objective function and constraints will 

be presented as well. 

3.4.1 Description of Container Alignment and ASC Trajectory 
 

Considering that the orientation of a container is fixed in a single direction for both QC 

and TK related jobs, path planning must consider the orientation at the initial and 

destination nodes. To guarantee the orientation at the destination node, we model the 

alignment and changes in alignment during transportation (flip movements) as a 

container is transported from its initial node to the destination node.  

 

Figure 3-4 depicts the door alignment and situations of changing direction via flip 

movements. 
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Figure 3-4: Container orientations (a,b) and flip movements (c). 

  

 
whereσ  is the alignment of a container at node n . Due to the overall orientation and 

design of the Patrick AutoStrad terminal, if a container door faces North or East, then 

the container alignment is defined as aligned and 1σ = . However, if a container door 

faces South or West, then the container alignment is defined as the opposite, and 0σ = . 

This feature is determined by the current Patrick container terminal. 

 
Let 1 2{ , ,..., }v v v vzR p p p=  be the set of all position nodes of v  trajectory and vR N⊂ . z  is 

the total number of nodes which are planned for v . Let the timings for arrival and 

departure at each node in the trajectory of ASC ( v ) be given by the ordered sets 

{ }Arrive Arrive Arrive
v v1 vzT t ,...,t= and { }Depart Depart Depart

v v1 vzT t ,...,t=  respectively. Arrive
v1t is equal to 0t  which is the 

plan starting time. The following constraints must be met:  

 

 1, I
v vv V p p∀ ∈ =      (3.1) 

 

 ,1 : Depart Arrive
k kk k z t t∀ ≤ ≤ ≥      (3.2) 

 

Eq(3.1) ensures that the initial position of the ASC ( v ) is the first node in its planned 

trajectory. Eq(3.2) requires that the departure time is not earlier than the arrival time at 

a node for v . Furthermore, the node, arrival and departure time ordered sets can be 

combined into the following general representation: 

 

{ } { } { }1 1 1, , , ..., , , ..., , , ...,i Arrive Arrive Depart Depart

v vz v vz v vz

Arrive Depart
v v v vR T T p p t t t tδ = =    (3.3) 
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Eq(3.3) represents a planned trajectory of an ASC ( v ) and associated timings for arrival 

( )Arrive
kt  and departure ( )Depart

kt  at each node vk vp R∈  in the path, and1 k z≤ ≤ .  

 

In order to achieve efficient task allocation of ASCs at anytime, we must be able to 

accurately determine the relative timings for all jobs. Figure 3-5 illustrates the 

relationship between the ASC position (relative to nodes) and the associated timing 

information for a job. Basically, when an ASC arrives at the pickup node ju  or the 

setdown node jd , it requires a constant pickup time ( pickuptΔ ) or setdown time ( setdowntΔ ). 

S
jT and F

jT are the planned times for ASC to pick up the container at node ju and set 

down the container at node jd  respectively.  

 

S
jT F

jT

ju

jd

ju ju
jd jd

 
Figure 3-5: Typical event timings and timeline for an ASC performing a job. 

 
It is this predefined time-critical job constraint which might cause the sequential job 

allocation method to insert unnecessary and unwanted ASC waiting times. Thus, it is 

necessary to avoid unnecessary ASC waiting times when planning jobs for ASCs. 

 

3.4.2 Objective Function  
 
This section presents the objective function which is used to calculate the overall cost 

of a particular schedule. The notations used for the indices, sets, parameters and 

variables in the mathematical formulation are defined in the Nomenclature. The overall 

objective function can be defined as:  
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Minimise _ _ _ _
1 2 3 4 5( )TravelTime SC waiting QC waiting TK waiting HP finishing

s s s s s vs
v V s S

C C C C C Xλ λ λ λ λ
∈ ∈

+ + + +
 

         
 (3.4) 

 
where 1 2 3 4 5{ , , , , }λ λ λ λ λ are predefined parameters used to normalise the contributions from 

each function. These parameters provide a means to allocate the relative importance to 

each of the individual costs. Typically, 3λ and 4λ will have larger values since QC and 

TK waiting are of high importance and their contribution to the overall objective 

function must be amplified.  

 

The cost of travel time ( TravelTime
sC ) is used to reflect the utilisation of ASCs for a schedule 

and the cost is calculated based on Dijkstra’s algorithm, which is a graph search 

algorithm that solves the single-source shortest path problem for a graph with non-

negative edge path costs, producing a shortest path tree. This algorithm is often used in 

routing and as a subroutine in other graph algorithms. Basically the cost function sums 

up all the travel time of all the visited nodes by the ASC. 

 

 
1 1 1 1 2 1

...
v f f f f

TravelTime
s p u u d d u d u u dC w w w w w

−
= + + + + +      (3.5) 

 

where vp is the initial position of the ASC (v) which is assigned with the schedule s. 

f is the final job in the selected schedule s.  

 

Vehicle waiting time ( _SC waiting
sC ) is an important performance metric which represents 

the efficiency of vehicle usage. In general, less waiting time indicates a better ASC 

usage and less fragmentation of the schedule. The calculation is based on the difference 

between planned timings (starting and finishing) and the theoretical shortest travel time. 

 

1 1 1 1 2

2 2 1

_
1 1 1 2 1

2 2 1

( ) ( ) ( )

( ) ... ( ) ( )

v

f f f f

SC waiting S F S S F
s p u u d d u

F S S F F S
u d f f d u f f u d

C T w T T w T T w

T T w T T w T T w
−−

= − + − − + − − +

− − + + − − + − −
    (3.6) 

 

QC waiting time ( _QC waiting
sC ) is a critical cost at container terminals and the following 

equation minimises the total waiting time. The QC waiting time can be calculated based 

on the last job of the QC. It is assumed that all QCs have a constant turnaround time for 

each job. 
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_

, ,

( ) ( )
D U
q q

QC waiting DS D QC UF U QC
s js q q q js q q q

j J q Q j J q Q

C y T t m t y T t n t
∈ ∈ ∈ ∈

= × − − ×Δ + × − − ×Δ  (3.7) 

 

Similarly, TK waiting time ( _TK waiting
sC ) is an important consideration at container 

terminals and the following equation minimises the total waiting time. The TK waiting 

time can be calculated based on the last job in the TK gate. It is assumed that a constant 

turnaround time is applied for each job at the TK gate. 

 

_

, ,

( ) ( )
E I
g g

TK waiting ES E TK IF I TK
s js g g g js g g g

j J g G j J g G

C y T t e t y T t r t
∈ ∈ ∈ ∈

= × − − ×Δ + × − − ×Δ    (3.8) 

 

Occasionally there is a requirement for a particular job to be finished as early as 

possible. As such, it is regarded as a high priority job. The finishing time ( _HP finishing
sC ) of 

high priority jobs can be defined as: 

 _

H

HP finishing F
s j js

j J

C T y
∈

= ×      (3.9) 

 

3.4.3 Constraints  
 
This section describes the various constraints that need to be enforced as part of the 

analytical model.  

 

3.4.3.1 Job Scheduling Constraints 

 
For assigning jobs to ASCs within schedules, Eq(3.10) ensures that each job j is 

included in one and only one selected schedule s with the assigned ASC (v) while 

Eq(3.11) and Eq(3.12) ensure that each ASC (v) is assigned to only one selected 

schedule s. 

 
 

,

1,js vs
v V s S

y X j J
∈ ∈

= ∀ ∈      (3.10) 

 1,vs
s S

X v V
∈

= ∀ ∈      (3.11) 

 {0,1}, ,vsX v V s S∈ ∀ ∈ ∀ ∈      (3.12) 
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For each scheduled job, its planned start time must precede the corresponding job finish 

time as shown in Eq(3.13). 

 
 ,S F

j jT < T j J∀ ∈      (3.13) 

 
Pickup and setdown job sequencing is required for buffer-to-ship jobs, some truck-to-

yard jobs and some yard jobs that require multi-tiered stacking. Pickup sequencing 

requirements are expressed by Eq(3.14). Here, abα  is a predefined parameter that 

indicates if two jobs ( ,a b ) have a pickup sequencing requirement. Such that, 

{ } ( )0,1 : ,ab a b J∈ ∀ ∈ . Let 1
ab

= if job ( a ) must be picked up before job ( b ), 

otherwise 0ab = . Similarly, set-down sequencing operations are expressed in Eq(3.15). 

Here, abβ  indicates if two jobs ( ,a b ) have a setdown sequencing requirement. Such 

that, { } ( )0,1 : ,
ab

a b J∈ ∀ ∈ . Let 1
ab

=  if job ( a ) must be setdown before job ( b ), 

otherwise 0
ab

= . 

 
 1, ( , ) S S

ab a ba b J T < T= ∀ ∈ →      (3.14) 

 1, ( ) F F
ab a ba,b J T < Tβ = ∀ ∈ →      (3.15) 

 

Eq(3.16) ensures that job starting times would not be less than the travel time from the 

initial position of assigned ASC (v) to the pick-up position of job j. Here, 

, ,v V j J s S∀ ∈ ∀ ∈ ∀ ∈ . 

 
 01,

v j

S
js vs j p uy X T w t= ≥ +      (3.16) 

 
For each scheduled job, its planned start time must precede the corresponding job finish 

time as shown in Eq(3.17). 

 
 ,

j j

F S
j j u dT T w j J− ≥ ∀ ∈      (3.17) 

 
Eq(3.18) ensures that the time difference between starting and finishing a job is not less 

than travel time from the job pick-up to set-down position. Here, 

, ( , ) ,S S
a bT T a b J s S< ∀ ∈ ∀ ∈ . 

 

 1, 
a b

S F
as bs b a d uy y T T w= − ≥      (3.18) 
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Each ASC cannot conduct other jobs when performing an assigned job, so Eq(3.19) 

ensures that an ASC can only transfer one container at the same time. Here, 

( , ) ,a b J s S∀ ∈ ∀ ∈ . 

 
1, F S F S

as bs a b b ay y T < T T < T= ∨      (3.19) 

 

Eq(3.20)-Eq(3.23) ensure that any two jobs associated with the same QC or TK should 

take into account the related turnaround time of QC or TK and any QC or TK job 

should not start or finish earlier than the related starting time of QC or TK. 

 

 ( ), , , ,S S QC S D QC D
a b a q qT T t T t t a b J q Q− ≥ Δ ≥ + Δ ∀ ∈ ∀ ∈      (3.20) 

 ( ), , , ,F F QC F U QC U
a b a q qT T t T t t a b J q Q− ≥ Δ ≥ + Δ ∀ ∈ ∀ ∈       (3.21) 

 ( ), , , ,S S TK S E TK E
a b a g gT T t T t t a b J g G− ≥ Δ ≥ + Δ ∀ ∈ ∀ ∈      (3.22) 

 ( ), , , ,F F TK F I TK I
a b a g gT T t T t t a b J g G− ≥ Δ ≥ + Δ ∀ ∈ ∀ ∈       (3.23) 

 

Eq(3.24) is applicable to ASCs and ensures that the assigned job’s pickup node ( ju ) 

and setdown node ( jd ) are specified in the planned trajectory. In addition, that the 

position ( )vP t  of ASC ( v ) corresponds to the pickup node at ( S
jT ) and the destination 

node at ( F
jT ) for job ( j ). If a box associated with job ( j ) has been picked up by an 

ASC then ju is the ASC’s initial position.  

 

( ) ( )( ), , : 1 S F
js vs v j j v j jv V j J s S y X = P T u P T d∀ ∈ ∀ ∈ ∀ ∈ → = ∧ =    (3.24) 

 
 

3.4.3.2 Container Alignment Constraints  

 
Container alignment (or orientation) is important to ensure that the door of the 

container is correctly aligned during transport, loading and storage. As such, the door 

alignment (σ ) at the destination node must be as same as the required door alignment. 

Eq(3.25) ensures that the required setdown door direction is consistent with the final 

setdown door direction of the trajectory planning. 
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 , F R

j jj J σ σ∀ ∈ =      (3.25) 

 
To guarantee container alignment at the destination node, changes in alignment during 

transportation are modelled using a concept called flip movements as a container is 

transported from its initial node to destination node. Eq(3.26) and Eq(3.27) ensure that 

container alignment changes are valid within trajectories: 

 

1

, , , 1:  
{( , , ), ( , , )} ,

( , ), ( , ),

1, ( ) 2 0
vx vy

S F
js vs j j

Arrive Depart Arrive Depart
vx vx vx vy vy vy v

S Arrive Depart F Arrive Depart
j vx vx j vy vy

i y

p p
i x

j J v V s S y X =
p t t p t t

T t t T t t

x y f MOD

σ σ

δ

= −

=

∀ ∈ ∀ ∈ ∀ ∈ = →

∃ ⊂

∈ ∈

≤ − =

     (3.26) 

 

1

, , , 1:  
{( , , ), ( , , )} ,

( , ), ( , ),

1, ( ) 2 1
vx vy

S F
js vs j j

Arrive Depart Arrive Depart
vx vx vx vy vy vy v

S Arrive Depart F Arrive Depart
j vx vx j vy vy

i y

p p
i x

j J v V s S y X =
p t t p t t

T t t T t t

x y f MOD

σ σ

δ

= −

=

∀ ∈ ∀ ∈ ∀ ∈ ≠ →

∃ ⊂

∈ ∈

≤ − =

     (3.27) 

 
where, S

jσ  is a parameter which is the initial alignment associated with the destination 

of job ( j ). vδ  is the planned trajectory of ASC ( v ) and associated timings for arrival 

Arrive
kt  and departure Depart

kt  at each node ( vkp ) in the trajectory. ijf is the flip flag 

associated with each physical link. The flip flag is used to track the alignment of a 

container during traversal of the link. The flip flag of each link is encoded into the map. 

Specifically, Eq(3.26) ensures that, when the container’s door alignments at initial 

position and destination are the same, the total number of flip movements in the 

planned path should be even. Likewise for Eq(3.27), when the container’s door 

alignments at initial position and destination are different, then the total number of flip 

movements in the planned path should be odd. 

 

3.4.3.3 Vehicle Motion Constraints 

 

Eq(3.28) ensures that collision avoidance is guaranteed during the path planning of all 

ASCs in the fleet: 

 

 ( )
1

0 : ( ( ))
V

j= ;i j

lock
i jt t P t N P t

≠

∀ ≥ ∉      (3.28) 
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where, ( )iP t  is the position of ASC ( i V∈ ) at time (t), and ( ( ))lock
jN P t  represents sets of 

locked nodes and links at time (t) by ASC ( j V∈ ) based on its position ( )jP t  so as to 

prevent any ASC collisions. 

 

Eq(3.29) and Eq(3.30) ensure that ASCs perform feasible actions, such as pickup and 

setdown on a node.  

 

( ) ( )
, , , 1 -S S

v j v j

Depart Arrive
js vs pickup acc decP T P T

j J v V s S y X = t t t t t∀ ∈ ∀ ∈ ∀ ∈ → ≥ Δ + Δ + Δ   (3.29) 

 

( ) ( )
, , , 1 -F F

v j v j

Depart Arrive
js vs setdown acc decP T P T

j J v V s S y X = t t t t t∀ ∈ ∀ ∈ ∀ ∈ → ≥ Δ + Δ + Δ   (3.30) 

 
where, pickuptΔ  and setdowntΔ  are the time required for an ASC (v ) to pick up and set down 

a container respectively. Also, acctΔ and dectΔ  are the time associated with acceleration 

and deceleration respectively. Specifically, Eq(3.29) and Eq(3.30) requires that, if an 

ASC is allocated a job, then the ASC have to spend the necessary amount of time 

picking up or setting down a container at a position within the planned trajectory. 

Eq(3.31) handles the situation when an ASC needs to perform a reversing or 3-point 

turning manoeuvre. 

 

 
-

v ( m 2 ) vm vm v( m 1 ) v( m 1 ) v( m 2 )

vm v( m 1 ) v( m 2 )

Arrive Depart

p p dec acc

v m( m 1 )( m 2 )

p p p p

v V , ( p p p : 1

t t w w t t

, , ) δ ψ

Δ Δ
+ + + +

+ + + +∀ ∈ ∀ =

→ ≥ +

⊂

+ +
     (3.31) 

 

where 
vm v( m 1 )p pw

+
is the predefined minimum travel time between node mp and node 1.mp

+
 

Likewise, 
v( m 1 ) v( m 2 )p pw

+ +
is for node 1mp + and node

2mp
+

. This constraint ensures that the 

necessary time for acceleration and deceleration is taken into account when the ASC is 

performing a reversing or 3-point turning manoeuvre.  

 
As an example, Figure 3-6 illustrates an ASC path from the pickup node to the setdown 

node.  
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Figure 3-6: A planned path from pickup node to setdown node consiting of 56 nodes. A 3-point turn 
occurs at the 16th node (nodes are not uniformly spaced in the map). 

 
Now, Figure 3-7 shows the motion profile applied to the example path in Figure 3-6. 

Here, we can see that during the first 7 nodes the velocity increases from 0ms-1 to the 

maximum velocity (8.3ms-1). Then, deceleration occurs as the ASC approaches the 

pickup node and performs a three-point turn at node 16, where the velocity is 0ms-1. 

The ASC then accelerates to maximum velocity and travels to the setdown node where 

it begins deceleration at node 49 and stops at node 56 to perform the box setdown 

action. 

 

 
 

Figure 3-7: Example of a motion profile, which is applied to a planning path for an ASC (nodes are not 
uniformly spaced in the map). 

 
There are two situations where the velocity of the ASC changes during the turning 

motion, which are associated with the definition of abcψ in constraint Eq(3.31). Figure 3-

8 shows the two situations: 3-point turn motion ( 0 90o oθ≤ < ) and regular turn motion 

( 90 180o oθ≤ ≤ ). In the first case, a straddle must reduce its velocity between node n1 to 
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node n2. At n2 the velocity must be zero. The straddle then accelerates from node n2 

onwards. In the second case, the straddle can traverse the turn without making any 

changes to its maximum velocity, because the turning angle ( ) is greater than 90o. 

 

 
 

Figure 3-8: Classification of a 3-point turn (case 1) and regular turning motion (case 2) for motion 
planning. 

 
 
Finally, Eq(3.32) ensures that the ASC’s total travel time is met when travelling 

between the nodes in a trajectory.  

 
( )

vm v( m 1 )

Arrive Depart

v( m 1 ) v( m 1 ) vmvm v p pv V , p p : t t w, δ
++ +

∀ ∈ ∀ ⊂ − ≥     (3.32) 

 

This constraint guarantees that all essential travel costs are taken into account by the 

path planner when computing feasible paths. 

 

3.5 Model 2: Job Scheduling Model 
 
As presented above, the comprehensive model covers many actual aspects and 

integrates the path planning with collision avoidance and the job scheduling. However, 

compared to the path planning, the job scheduling is of more concern in some situations, 

due to the following reasons: 

 

(1) Computational efficiency. When solving a large problem in the comprehensive 

model, the computation cost may be prohibitively increased, and it is also 

challenging to obtain an optimal solution in the limited time period afforded during 

the port operation.  

(2) Operational interest. Production managers of the automated container terminal are 

usually more concerned with the job scheduling part, as resource utilisation and port 

costs are more dependent on the job scheduling. 
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As explained before, Eq(3.24)-Eq(3.32) are related to many practical challenges, 

including the presence of multiple levels of container stacking and sequencing, variable 

container orientations, and vehicular dynamics that require finite acceleration and 

deceleration times. By taking them out of the comprehensive model formulation, the 

job scheduling model for container transfers by ASCs can be thereby be presented as 

follows: 

 

Minimise 
_ _ _ _

1 2 3 4 5( )TravelTime SC waiting QC waiting TK waiting HP finishing
s s s s s vs

v V s S

C C C C C Xλ λ λ λ λ
∈ ∈

+ + + +   (3.4) 

 

subject to: 

 

1,js vs
v V s S

y X j J
∈ ∈

= ∀ ∈       (3.10) 

1,vs
s S

X v V
∈

= ∀ ∈       (3.11) 

{0,1}, ,vsX v V s S∈ ∀ ∈ ∀ ∈       (3.12) 

,S F
j jT < T j J∀ ∈       (3.13) 

1, ( , ) S S
ab a ba b J T < T= ∀ ∈ →      (3.14) 

1, ( ) F F
ab a ba,b J T < Tβ = ∀ ∈ →      (3.15) 

01, , ,
v j

S
js vs j p uy X v V j J s S T w t= ∀ ∈ ∀ ∈ ∀ ∈ → ≥ +      (3.16) 

,
j j

F S
j j u dT T w j J− ≥ ∀ ∈       (3.17) 

 1, , ( , ) ,
a b

S S S F
as bs a b b a d uy y T T a b J s S T T w= < ∀ ∈ ∀ ∈ → − ≥      (3.18) 

1, ( , ) , F S F S
as bs a b b ay y a b J s S T < T T < T= ∀ ∈ ∀ ∈ → ∨      (3.19) 

( ), , , ,S S QC S D QC D
a b a q qT T t T t t a b J q Q− ≥ Δ ≥ + Δ ∀ ∈ ∀ ∈      (3.20) 

( ), , , ,F F QC F U QC U
a b a q qT T t T t t a b J q Q− ≥ Δ ≥ + Δ ∀ ∈ ∀ ∈       (3.21) 

( ), , , ,S S TK S E TK E
a b a g gT T t T t t a b J g G− ≥ Δ ≥ + Δ ∀ ∈ ∀ ∈      (3.22) 

( ), , , ,F F TK F I TK I
a b a g gT T t T t t a b J g G− ≥ Δ ≥ + Δ ∀ ∈ ∀ ∈       (3.23) 

 
The objective function is the same as the comprehensive model’s objective, and all the 

constraints are from the job scheduling constraints in Section 3.4.3.1. 
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3.6 Matlab Seaport Simulation 
 
The comprehensive model has been coded in Matlab with all variables and all 

constraints, while the collision-free path planner described in Lau et al (Lau et al., 

2008), which is based on the Halpern’s Algorithm (Halpern, 1977) was coded 

exclusively in C++ and interfaced with the Matlab model. The model was simulated 

using fleet sizes of (4, 8, 12, 16, 20) ASCs, a job-horizon of (2, 3, 4, 5) jobs and a total 

of 100 jobs. The main purpose of the Matlab simulation is to validate the mathematical 

model in case it misses any constraints or requirements. Regarding the proposed 

algorithms, they have been implemented in the Matlab simulator. However, the Matlab 

simulator is much simpler than the real system, so all the experiments are based on the 

real system rather than the simulator. 

 

3.6.1 Matlab Seaport Simulator  

 

To validate the efficacy of the formulated model and verify the feasibility of solutions, 

a simple algorithm was developed to plan and schedule jobs sequentially using a greedy 

heuristic based on nearest-vehicle-first strategy (Figure 3-9). However, this approach 

does not guarantee optimal job allocation, since the current path planner computes 

paths sequentially using the existing time-windows for each planned path. 
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Figure 3-9: Flow diagramming for sequential job allocation and job injection approach based on a greedy 

nearest-vehicle-first heuristic. 
 
 

3.6.2 Replanning in the Seaport Simulator  
 
Replanning events are examined following the computation of the initial schedule, as 

shown in Figure 3-9. Replanning requires the state-tracking of all jobs, seaport 

resources and containers before initiating the path planning algorithm to provide 

planning for unfinished and replanned jobs as shown in Figure 3-10. 

 

In this study, a single replanning event occurs at ( 1000t =  time steps) and no replanning 

( t = ∞ ). This allows for verification of replanned schedules and validation of the 

replanning algorithm. Although our testing was restricted to a single replanning event, 

the replanning algorithm can be initiated at anytime in the seaport simulator, which 

more realistically models the dynamic nature of the seaport environment. Furthermore, 
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frequent replanning of schedules with short job horizons supports the notion of 

transforming an intractable scheduling problem which may be based on a day-long job 

horizon into a problem that is significantly more tractable. 

 

Finally, a limitation of the replanning algorithm is the requirement that all seaport 

resources (ASCs and QCs) should only stop on nodes. If a resource stops on a link, then 

an additional control heuristic must move the resource onto a node in the real seaport 

environment. 

 

 
 
Figure 3-10: Flow diagramming which illustrates the replanning processes within the seaport simulator. 
 

3.6.3 Model Validation within the Seaport Simulator  
 
In order to validate the analytical model which was encoded in the Matlab seaport 

simulator, we employed a hierarchical assertion structure throughout the code for 

checking all the model constraints. This hierarchical approach ensures that any 
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constraint violations are flagged at the functional, subsystem and system level of the 

entire software system.  

 

At the lowest level, each individual function contains a number of assertion checking 

routines for any associated model constraints that are encoded by that particular 

function. For example, the function for planning a single path (PlanSinglePath), before 

applying motion profiling must not violate the following constraints Eq(3.24) and 

Eq(3.28)-Eq(3.32). At the next level, additional constraint checking is performed on the 

combined or integrated set of functions. For example, the function (ProcessY2Tstate) 

takes the result of a planned single path to handle higher level job sequencing for yard-

to-truck jobs. As such, the constraints Eq(3.10)-Eq(3.15), and Eq(3.22) must not be 

violated at this level. 

 

Finally, a suite of assertions perform the final level of constraint checking of the 

combined subsystems of the seaport simulator as illustrated in Figure 3-11. 

 

 
 
Figure 3-11: Model Validation Method – Hierarchical assertion checking within the Matlab Seaport 
Simulator ensures model constraints are not violated. 
 

3.7 Summary 
 

This chapter formulated two mathematical models of the automated container. The 

comprehensive model covers the path planning and the job scheduling, and many 

practical constraints, while the job scheduling model focuses on the optimisation of the 

job scheduling for container transfers. The comprehensive model is more complex, and 
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aims to integrate the path planning and job scheduling. In order to check and validate 

all constraints, a Matlab simulator was developed with a simple sequential solution. 

The job scheduling model is derived from the comprehensive model, and it aims to 

achieve a good solution for job scheduling that is purely based on operational 

considerations. The following chapters will introduce the related solution techniques for 

the comprehensive model and the job scheduling model respectively.  
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4. Job Grouping Approach for Planning 
Container Transfers 

Having taken into account many practical constraints in the automated container 

terminal, Chapter 3 formulated the comprehensive model of container transfers by 

ASCs. The model covers path planning with collision avoidance, job scheduling, the 

presence of multiple levels of container stacking and sequencing, variable container 

orientations, and vehicular dynamics. The solution of the overall planning problem 

includes the allocation of jobs and a detailed trajectory of each ASC, which includes the 

position and status (such as picking up a container, setting down a container, travelling 

with a container, or empty travelling) of each ASC at each time step. With all the 

defined constraints, it becomes challenging to figure out an efficient or even feasible 

plan. 

 

This chapter proposes a practical job grouping approach which aims to solve the 

integrated problem for better performance than the widely used sequential planning 

approach. It reduces ASC waiting time by grouping jobs using a guiding function. The 

performance of the current sequential job planning method and the proposed job 

grouping approach are evaluated and compared statistically using a pooled t-test for 30 

randomly generated yard configurations.  

 

4.1 Motivation 
 

Generally, job grouping is viewed as an optimisation mechanism to enhance efficiency 

of machinery utilisation as mentioned in (Crama and Oerlemans, 1994, Logendran et al., 

2005). In (Crama and Oerlemans, 1994), the job grouping problem was to partition the 

jobs into a minimum number of feasible groups. Since the number of variables is 

potentially huge, the authors used a column generation approach. The study in 

Longendran et al (Logendran et al., 2005) investigated the group scheduling problem 

which is comprised of two levels of scheduling, and aimed to minimise the makespan in 

a flexible flow shop. Another study examined the use of a typical job grouping strategy 

for the allocation of jobs in a grid computing application (Muthuvelu et al., 2005). The 
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job grouping approach resulted in improved performance in terms of low processing 

time and costs when applied to a large number of jobs where each user job holds small 

processing requirements.  

 

This thesis is in favour of job grouping to adequately handle time-critical requirements 

for the scheduling of container transfers in the yard environment as these serve to 

reduce the ASC waiting time and enhance the productivity of the ASC fleet. It would 

appear that, to date, the job grouping concept has not been studied in the scheduling of 

container transfers at an automated seaport terminal.  

 

In this chapter, collision avoidance trajectory planning is used together with the job 

grouping approach to solve the container transfer problem. The collision-free path 

planner is a prioritised multi-vehicle path planning algorithm (Lau et al., 2008). This 

path planning algorithm is extended from Halpern’s algorithm (Halpern, 1977) to 

propagate feasible time and cost windows for each vehicle to arrive at and depart from 

each position (subject to the time-dependent position’s availability). Such time 

windows are propagated iteratively from the known starting time of the vehicle at the 

starting position until a feasible arrival window is found at the destination. The key 

feature of this algorithm is that the paths generated will consider the motion of all other 

active ASCs and, as a result, will go around or give way (via waiting at a position or 

shunting aside and subsequently resuming) to ASCs with already planned paths. 

Importantly, this path planning approach is more realistic than simplified VRPs where 

path lengths only need to be calculated once, regardless of the changing occupancy of 

the various positions in the environment. 

 

4.2 Job Grouping Approach 
 
The key advantage of the job grouping strategy is that a plan can be more efficient, and 

it also can lead to cost savings (e.g. waiting time) for planning, since job groups may 

accomplish more to meet the objectives effectively. The basic principle of job grouping 

is to encourage ASCs to conduct some yard consolidation jobs instead of just waiting 

before or after performing a QC or TK related job. For each QC and TK related job, 

there are predefined pickup or setdown times which allow the path planner to avoid 
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introducing delays to QC and TK operations. In general, ASCs are encouraged to arrive 

at the pickup node or setdown node before the predefined time. However, unnecessary 

waiting is caused when ASCs arrive at the pickup/setdown nodes earlier than the 

predefined action time. As a result, the total schedule duration is stretched to some 

extent and can have negative impacts on the overall productivity. Nevertheless, it is 

possible to cluster jobs into groups that may have smaller total durations and also 

produce less ASC waiting time through the effective grouping of some Y2Y jobs to QC 

and TK related jobs. This strategy is achieved using a job grouping algorithm with an 

associated guiding function. 

 

D Uj J J∈ ∪

Ya J∈ Yb J∈

Ya J∈

Ya J∈ Yb J∈ Yc J∈

 
Figure 4-1: An example of job grouping. 

 
As the example shown in Figure 4-1, an ASC ( v ) is trying to group Y2Y jobs ( YJ ) 

before starting to perform the pickup of job ( j ), which can be a QC discharging or 

uploading job and has a predefined pickup time. The job setup time refers to the time 

required for an ASC to travel from its current node to the pickup node while the job 

processing time is the time required for an ASC to travel from the pickup node to the 

setdown node. In this example, there are three possible job groupings (1, 2, 3), which 

all meet the predefined pickup time of the job ( j ). Yet, it is necessary to have some 

criteria to tell which job group is the best. 

 

Due to the different time/distance length of jobs, a simple grouping strategy is to select 

the group which can accumulate the greatest number of jobs. However, this approach 

can cause short-distance jobs to be grouped in preference to long-distance jobs. This 

may not effectively benefit the schedule, since long jobs would be held-over until the 

end of the schedule. That is, the finishing time may be delayed by scheduling long-
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distance jobs at the end of the schedule. Furthermore, this may reduce the robustness of 

a schedule, since scheduling with bias towards short-distance jobs over long-distance 

jobs can make the schedule more vulnerable to uncertainties such as ASC breakdowns 

and new jobs arrivals. Therefore, we propose a guiding function which treats short-

distance jobs and long-distance jobs equally and aims to effectively improve the 

schedule robustness. 

4.2.1 Guiding Function of Job Grouping  
 
Primarily, the guiding function aims to encourage early starting and finishing times for 

both short-jobs and long-jobs. The length of a job (short or long) refers to the 

processing duration required between pickup and setdown of a container. In general, a 

greedy-rule based strategy may complete all the jobs with short durations (short jobs) in 

preference to long jobs (jobs with long durations). However, such a biased strategy 

does not provide robust schedules, since the accumulation of jobs towards the end of a 

schedule can actually delay all future job allocations particularly if the long job is also 

delayed, as discussed before.  

 
The guiding function for a group of jobs is given by: 
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Where, G Y

vJ J⊂ is a potential cluster of jobs grouped by ( v ). jε is the minimum 

theoretical processing time based on Dijkstra’s algorithm (from pickup to setdown) for 

the job ( j ). j
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encourages early starting and finishing of j , where 0t  is the starting time of the plan. 

For a job ( j ), equating the integral from S
jT to F

jT  gives: 
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The following figures show the behaviour of the guiding function for different job 

starting times and job finishing times when F S
j jT T− = constant and S

jT = constant, 

respectively. 
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Assume F S
j jT T− = constant=10 sec and jε = 8 sec, then the guiding function is 

calculated with different starting times. As shown in the graph of Figure 4-2, as the job 

starting time S
jT  increases the nominal value of the grouping value decreases. Therefore, 

the guiding function ( G
jf ) encourages the job to be started early.  
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Figure 4-2: Plot of Eq(4.2) for job starting times (sec). 

 
 

 

0

0.5

1

1.5

2

2.5

3

13 23 33 43 53 63 73 83 93 103

Finishing Time of Job J_k

G
ro

up
in

g
 V

a
lu

e 
   

   
 

 
Figure 4-3: Plot of Eq(4.2) for job finishing times (sec). 

 
 
Assume S

jT =constant = 5 sec and jε = 8 sec, then the guiding function is calculated 

with different finishing times. From the plot in Figure 4-3, as the job finishing time F
jT  

increases the nominal value of the grouping value decreases. Therefore, the guiding 

function G
jf  allows for the job to be finished early. Furthermore, the guiding function 
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can be altered to suit different yard configurations and job features. In this thesis, the 

form that the guiding function takes is based on a typical port configuration. 

 

Regarding the intuition of the guiding functions, , it basically, as presented earlier, 

wants to promote the early starting and finishing times, so as to maximise the 

productivity, because the accumulation of jobs towards the end of a schedule could 

actually delay all future job allocations particularly if the long job is also delayed. The 

key consideration is that a proper guiding function should be based on the defined 

objective function. 

 

4.2.2 Grouping Algorithm 
 

 
Figure 4-4: Flowchart of job grouping method 

 
The proposed grouping method is to group yard jobs with corresponding QC or TK 

jobs according to the guiding function, so as to reduce the ASC waiting time. As shown 

in Figure 4-4, the job grouping algorithm starts by categorising jobs into two categories: 

[B2Y,Y2B,T2Y,Y2T] jobs and Y2Y jobs. The first section of the job list is then sorted 

according to the predefined pickup/setdown time. Next, if any QC and TK jobs exist, 

then select the first job and search for ASCs which are able to perform the job while 

satisfying the predefined pickup/setdown time of the selected job. All suitable ASCs are 
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added to a selection pool. If the selection pool is empty, then calculate the minimum 

delay based on the job’s nearest ASC and put the nearest ASC to the selection pool. 

Next, for each ASC in the selection pool, search for Y2Y jobs that can be finished by the 

ASC while satisfying the predefined setdown/pickup time of the selected job. Then, 

calculate the guiding function using Eq(4.1) for each ASC in the pool and select the 

ASC with the highest guiding function value. This ASC is then assigned to the grouped 

job(s). Finally, remove all assigned jobs from the job list, plan and register the path(s) 

for the ASC and the allocated jobs. The algorithm continues to iterate through these 

steps until the job list is empty. If there are only Y2Y jobs remaining after 

corresponding QC and TK jobs have been allocated, then allocate those jobs based on 

the nearest vehicle rule. 

 
The pseudo code of the job grouping algorithm is: 

 
Job Grouping Algorithm for Scheduling Container Transfers: 
 
Input: Job list (J) and the initial position ( I

vp ) of each ASC. 

 
Result: A plan for all jobs and all ASCs. 
 
1: Initialise the job list by getting all job pickup nodes, setdown 
nodes and predefined pickup/setdown times if any; initialise all 
ASCs’ starting positions; 
2: Reformulate the job list by categorising jobs into (B2Y, Y2B, T2Y, 
Y2T), and (Y2Y). Sort the new job list according to the predefined 
pickup/setdown time if any; 
3:  for k=1:M    // M is the total number of QC and TK jobs 
4:  for i=1:|V| // |V| is the total number of ASCs 

Calculate readyTime( ,v j ) by calling path planner (Lau et 

al., 2008); 
5:  if readyTime( ,v j ) < predefined time of job ( j ) 

Find the number of Y2Y jobs that can be grouped by 
calling the path planer; 
Calculate the guiding function value of grouped jobs; 
Put the ASC into selection pool; 

end 
end 

6:  if the selection pool is empty 
add the minimum delay to the predefined time of job ( j ); 

update all other job time intervals; 
repeat steps 4 and 5; 

7:      else 
select the ASC which has the highest guiding function value 
and allocate the grouped job and job ( j ) to the ASC; 

Plan the associated paths and register them; 
Update the ASC’s available time for the next iteration; 
Remove the assigned job from the job list; 

end 
end 

8: while Y2Y is not empty 
allocate the jobs to ASCs based on nearest vehicle rule; 

end 
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The job grouping algorithm implementation has been coupled with our path planner 

(Lau et al., 2008), which aims to find the shortest paths for multiple vehicles with 

collision avoidance. One advantage of this grouping approach is that delay times can be 

effectively reduced for important jobs such as QC and TK related jobs, provided there 

are enough ASCs available. Moreover, the total ASC waiting time is reduced by 

grouping Y2Y jobs with the guiding function, and consequently the robustness and 

productivity of a schedule can effectively be improved. 

 
 

4.3 Sequential Job Planning Approach 
 

Sequential job allocation is often considered as a typical solution in a manufacturing 

system that deals with many different components, particularly for the job scheduling 

problem with priority constraints. In order to prevent QC waiting and TK waiting, 

sequential job allocation with action on the nearest vehicle is a practical method to 

handle the scheduling problem. 

 

This approach aims to ensure QC related jobs and TK related jobs have the higher 

priority of scheduling than Y2Y jobs. Initially all jobs are sorted according to their 

predefined pickup/setdown times. At each iteration of the algorithm, the first job in the 

list is allocated to its nearest vehicle so as to reduce delay for QCs or TKs, and also 

minimise ASC travel time. The allocated job is removed from the job list and the 

algorithm iterates until the job list is empty as illustrated in Figure 4-5. 
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Figure 4-5: Flowchart of sequential job allocation method 

 
The sequential job allocation algorithm, which was implemented as part of this study is 

also closely coupled with our path planner (Lau et al., 2008). The path for each vehicle 

is registered sequentially after allocating each job.  

 

4.4 Experimental Results 
 
This section presents a performance comparison between the job grouping approach 

and the sequential job allocation method. Both the two approaches have been 

implemented in Matlab 2009b, while our path planner with collision avoidance (Lau et 

al., 2008) is implemented in C++. All experiments were performed on a High 

Performance Computing Linux Cluster, configured using 2x3.33Ghz Quad Core Xeon 

with 24GB of DDR3-1333 ECC Memory. 

 

In order to properly compare the performances of the two approaches, we employ a 

statistical hypothesis testing using the two-sampled pooled t-test (Walpole et al., 2006). 

The experiments with the two approaches in this thesis were conducted using 30 

independent trials, which represent the different configurations of initial vehicle 

positions and jobs. These trails were generated uniformly at random. Statistical 

differences are indicated according to the two-sample pooled t-test (Refer to Appendix) 
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with a level of significance at p=0.05 (95% confidence) and (n1 + n2 – 2) degrees of 

freedom. If the absolute t-value is greater, then the performance between two methods 

is more significantly different. 

 
Table 4-1: Parametric Configuration 

Parameter Value 

Number of Total Jobs (J) 80 
Number of Vehicles (ASCs)  20 
Number of High Priority Jobs (JH) 2 
( 1, 2, 3, 4, 5) (1, 1, 20, 5, 1) 
Plan Starting Time (t0) t0 = 0  
QCs Discharging Time ( D

qt ) D

qt  = t0 + 300000ms  

QCs Uploading Time ( U

q
t ) U

q
t  = t0 + 420000ms   

QC Turnaround Time ( tQC) tQC = 120000ms 
Import TKs Starting Time ( I

g
t ) I

g
t  = t0 + 600000ms  

Export TKs Starting Time ( E

gt ) E

gt  = t0 +720000ms  

TK Turnaround Time ( tTK) tTK = 120000ms 

 

Table 4-1 shows the parameter values used in the experiments. The parameter values 

have been based on those typically found in seaport terminal operations. Eighty mixed 

jobs have been experimented on. These include B2Y, Y2B, T2Y, Y2T and Y2Y jobs, and 

there are twenty available ASCs. 

 
 
 
Table 4-2: Number of Jobs for Three Different Scenarios 

 QC Associated TK Associated  

 B2Y Y2B T2Y Y2T Y2Y 

High QC Load 25 25 5 5 20 

Medium QC Load 15 15 5 5 40 

Low QC Load 5 5 5 5 60 

 
In order to compare the job grouping approach with the sequential planning method, a 

set of performance metrics are derived from objective function Eq(3.4): ASC travel 

time( TravelTime
sC ), ASC waiting time( _SC waiting

sC ), QC waiting time( _QC waiting
sC ), TK waiting 

time( _TK waiting
sC ) and HP finishing time ( _HP finishing

sC ) . Experimental results are based on 

three different performance metrics used to evaluate the effectiveness of the proposed 

algorithms. The performance metrics are considered using three different QC scenarios, 

including low-, medium- and high-QC loading as described in Table 4-2.  

 
The experimental results for the performance metrics and loading scenarios are shown 

in Figure 4-6 to Figure 4-8. A lower processing time indicates better performance. 
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Figure 4-6: Performance comparison for the high QC load scenario. 

 

 
Figure 4-7: Performance comparison for the medium QC load scenario. 
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Figure 4-8: Performance comparison for the low QC load scenario. 

 

 

Table 4-3 summarises the average performance and standard deviation of the job 

grouping (Grp) approach and the sequential job allocation (Seq) approach. A significant 

improvement in the performance of the grouping algorithm with respect to the 

sequential job allocation algorithm is indicated by the t-value. 

 

Table 4-3: Comparison of the Job Grouping Algorithm VS Sequential Job Allocation Algorithm 

 High QC load Medium QC load Low QC load 
  MEAN STDEV t-value MEAN STDEV t-value MEAN STDEV t-value 

ASC Waiting 
Seq 5.04E+07 2.78E+05 

-22.19 
2.91E+07 2.34E+05 

-49.56 
1.58E+07 1.40E+05 

-69.25 Grp 4.86E+07 3.37E+05 2.55E+07  3.20E+05 9.99E+06 4.40E+05 

Total ASC Travel Seq 8.19E+06 3.27E+05 
4.01  

7.56E+06 3.02E+05 
5.83 

7.23E+06 2.88E+05 
8.02 

Grp 8.54E+06 3.38E+05 8.05E+06  3.40E+05 7.95E+06 3.95E+05 

 
According to the critical value (t = -2.00), the results show the job grouping algorithm 

outperforms the sequential job allocation algorithm for ASC waiting time in the three 

different scenarios. When QC load is at the high-level (50 QC associated jobs amongst 

80 jobs), the t-values of ASC waiting time are -22.19. When QC load is at the medium 

level (30 QC associated jobs amongst 80 jobs), the t-values of ASC waiting time are -

49.56. This is because it is possible to group 20 more Y2Y jobs than can be grouped at 

the high-level QC load. For a low QC load, the t-values for ASC waiting time are 

significantly different at -69.25, since there are 60 Y2Y jobs, which can be grouped. 
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Particularly for the medium- and low-level of QC load scenarios, the job grouping 

approach performs significantly better than the sequential job allocation approach. This 

is because ASCs are encouraged to perform some yard area jobs before taking a QC or 

TK related job, instead of waiting for access to the QC area or TIA. However, the 

sequential job allocation algorithm has a significantly less total ASC travel time than 

the job grouping algorithm for the three different loading scenarios, regarding the t-

values (4.01, 5.83, and 8.02). This is because ASCs have to travel more routes when 

trying to group Y2Y jobs together with the time-critical jobs. Therefore, the extra travel 

time of the job grouping approach is the trade-off when minimising ASC waiting time 

which is more important to the seaport operation. Table 4-4 summarises the overall 

performance of the job grouping algorithm relative to the sequential job allocation 

algorithm. 

 
Table 4-4: Performance of the Job Grouping Algorithm Relative to the Sequential Job Allocation 
Algorithm 

 High QC load Medium QC load Low QC load 

ASC Waiting Time 4% 12% 37% 

Total ASC Travel Time -4% -6% -10% 

 
Last but not least, it is very difficult to obtain the optimal solution for the large problem 

due to the large number of combinations in the solution space and associated 

computational costs in finding the optimum. However, in this thesis an exhaustive 

search was performed to find the optimal solution for a much smaller data set. This 

allowed for the optimal solution to be compared with those solutions found by the job 

grouping approach. In this experiment, a small test scenario was set up: 2 ASCs, 2 B2Y 

jobs and 3 Y2Y jobs, and this was executed for 1000 random configurations of initial 

vehicle positions and jobs. The experimental results show that the exhaustive search 

found the optimal solution for all configurations, while the job grouping approach 

managed to find optimal solutions 84% of the time. 

 
Overall, the effectiveness of the job grouping approach is shown by numerical 

experiments on different sets of generated data. Although there is no benchmark 

available yet for the problem, the performances of the job grouping are statistically 

significantly better than performances of the sequential planning method at the port and 

close to optimum solutions for small data sets. The downside of the sequential job 

allocation approach is that some ASCs have an unnecessary waiting time, since they 

may arrive early at the work point and wait for a long time until other higher priority 
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QC and TK jobs are transferred to the yard area. Furthermore, it limits ASC utilisation 

so as to avoid introducing QC and TK delay. 

 

4.5 Summary 
 
This chapter proposed a simple job grouping approach as an enhancement of the 

sequential planning method for solving the comprehensive model. The proposed 

approach combines the planning with a guiding function, which encourages early 

starting and finishing for the sake of efficiency. The experimental results showed that 

the proposed approach can significantly reduce the ASC waiting time for container 

transfers in the Patrick AutoStrad container terminal, compared to the original 

sequential planning method.  

 

However, the job grouping approach is based on the sequential local search algorithm, 

and it would be difficult to get the optimal or even close-optimal solution. In order to 

provide a good global solution for the job scheduling problem a modified GA will be 

proposed in this thesis for the job scheduling model. 
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5. Modified Genetic Algorithm for 
Scheduling Optimisation 

 
Compared to the comprehensive model, the job scheduling model does not consider the 

collision avoidance of a fleet of ASCs, and does not take into account many other 

practical constraints, like variable container orientations and vehicular dynamics that 

require finite acceleration and deceleration times. However, the job scheduling model is 

mainly for the global optimisation of ASC job scheduling.  

 

Solving the job scheduling problem using a global optimisation approach is expected to 

provide higher productivity in automated container terminals. GA is a method which is 

very easy to understand and is easily transferrable to existing simulations and models. 

Therefore, this chapter proposes a GA-based optimisation approach for solving the job 

scheduling problem of container transfers at the Patrick AutoStrad container. 

Additionally, a practical contribution of this chapter is that the modified GA-based 

approach has been fully implemented on a trial basis in the live scheduling system at 

the Patrick container terminal and it effectively improves the performance of the 

seaport container terminal. 

 

5.1 The Modified GA Approach 
 

In general, GAs are global optimisation techniques (Bo et al., 2006, Cus and Balic, 

2003, Smith and Smith, 2002, Goldberg, 1989, Holland, 1992) that avoid many of the 

shortcomings that exist in classical local search techniques on difficult search spaces. 

GAs use operators such as reproduction, crossover and mutation as a means of 

preserving beneficial information with the overall goal of finding a better solution to 

the problem. In addition, the GAs work through using codification of the parameter 

space rather than the parameters themselves. The objective function can be easily 

defined as a measure of fitness for solution performance, which allows the GA to retain 

useful solutions and inhibit those which are less useful. Based on these features, a GA-

based optimisation method is proposed here to solve the modelled problem. The two-

part chromosome representation (Carter and Ragsdale, 2006) is adopted and a 
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chromosome validation and repair method is introduced. Further, a strategy is outlined 

to effectively handle the sequence and timing constraints during the fitness calculation. 

 

It is nonetheless not practical to use a GA to solve the comprehensive model. Firstly, if 

we use a GA to search all possible collision-free paths and schedules for each ASC, it 

would take too long to get a feasible solution for even a small problem. Secondly, it is 

not easy or even realistic to integrate a path planning algorithm into a GA to solve the 

comprehensive problem. Lastly, if we solve the path planning problem (by other path 

planning algorithms) and the job scheduling problem (by a GA) separately, then there 

might not be a good reason to claim that a GA should be used to solve the 

comprehensive problem. 

 

5.1.1 Two-part Chromosome Representation 
 

The key to finding a good solution using a GA lies in developing a good chromosome 

representation of candidate solutions to the problem. A good GA chromosome should 

reduce or eliminate redundant chromosomes from the population. Redundancy in the 

chromosome representation refers to a solution being able to be represented in more 

than one way and appearing in the population multiple times. These multiple 

representations increase the search space and slow the search. So far, the two-part 

chromosome technique (Carter and Ragsdale, 2006) has been viewed as the best 

representation with minimum redundancy for MTSP. The MTSP maps very well to our 

scheduling problem as each ASC can be regarded as a salesman and each job (including 

pick-up and set-down operations) can be viewed as a city. However, the major 

difference is that we take into account complex constraints (e.g. job sequence and 

timings) and practical performance metrics. 

 

The two-part chromosome technique, as the name implies, divides the chromosome into 

two parts. The first part of length n J=  represents a permutation of n jobs and the 

second part of length m V=  gives the number of jobs assigned to each ASC. The total 

length of the chromosome is n+m in this representation. The m values present in the 

second part of the chromosome must sum to n in order to represent a valid solution. In 

the example of Figure 5-1, the shaded area shows the second part of the chromosome. 

Here the first ASC (ASC1) will process jobs 6, 9, 1 and 7 in that order, the second ASC 
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(ASC2) will process jobs 8 and 4 in that order and the third ASC (ASC3) will conduct 

jobs 5, 2 and 3 in that order. 

 

 
Figure 5-1: Example of two-part chromosome representation for a 9-job schedule with 3 ASCs 

 
Using the two-part chromosome for solution representation, there are !n  possible 

permutations for the first part of the chromosome. The second part of the chromosome 

represents a positive vector of integers 1 2( , ,..., )mx x x  satisfying 1 2 ... mx x x n+ + + =  

where 0, 1,2,...,ix i m≥ = . There are ( )1n m
n

+ −  distinct positive integer-valued m vectors 

that satisfy this requirement. Hence, the solution space for the two-part chromosome is 

of size ( )1! n mn n
+ − . Moreover, compared to MTSP with the two-part chromosome 

representation, the ASCs in this problem have different initial depots and they do not 

have to travel back to their starting depots after finishing all jobs. For the problem 

which was modelled in Section 5.1, each candidate schedule s for an ASC can be 

regarded as a two-part chromosome in the GA population. In Figure 5-1, for example, a 

candidate schedule s for ASC1 is represented by four jobs 6 9 1 7( , , , )sJ J J J J=  and the 

related decision variable 1 1sX = . 

 

5.1.2 Chromosome Validation and Repair Operation  
 

Due to time related constraints (Eq(3.14) and Eq(3.15)) in scheduling, some containers 

must be picked up or set down following a fixed order by a single ASC, particularly for 

QC/TK associated jobs. However, within a randomly created two-part chromosome or a 

newly generated chromosome via crossover/mutation it is possible to have a few jobs 

which are not consistent with the predefined order of picking up and setting down. 
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Hence, based on each ASC, it is necessary to check whether the generated chromosome 

is feasible in terms of satisfying all timing constraints. If any part of the generated 

chromosome is inconsistent with any fixed order for container pickup or setdown, then 

we apply a chromosome repair operation so as to ensure the chromosome can represent 

a feasible schedule. 

 

The above algorithm is designed to check the order of conducting jobs based on each 

ASC, and also repair any inconsistent part according to a predefined order. In the 

second part of the chromosome, for each ASC, the algorithm finds the assigned jobs in 

the first part chromosome based on the predefined conducting order if any, and then 

checks if the assigned jobs are consistent with the predefined sequence. If not, it then 

performs a repair operation by adjusting the jobs’ positions in the first part of the 

chromosome. After all iterations, a valid chromosome is generated and this can 

represent a feasible schedule for container transfers. 

 

The pseudo code of the chromosome validation and repair operation algorithm is: 

 
Chromosome validation and repair operation : 
 
Input: Any unchecked chromosome. 
 
Output: A chromosome representing a feasible schedule. 
 
for i = 1:NumASCs // NumASCs: total number of ASCs 

for k = 1:chromo(SecondPartHead + i) // SecondPartHead: head index of second part chromosome 
if the kth job is associated with a predefined order 

Store the index and its position in the chromosome; 
end 

end 
if any two indexes are inconsistent with the predefined order 

Sort all indexes according to the predefined order; 
for k = 1:chromo(SecondPartHead + i) 

Adjust the job’s position in the chromosome; 
end 

else 
Keep the part in the original chromosome; 

end 
end 

 

 
As to the frequency of calling the repair algorithm, it really depends on the actual 

problem’s complexity and the initial generated random population. If there are more 

ASCs and jobs, then the repair frequency might be increased as well. 

5.1.3 Fitness Calculation Strategy 
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Our fitness function is based on the objective function Eq(3.4), however, the fitness 

calculation cannot be directly applied on a chromosome. This is because some 

performance metrics are not independent and cannot be calculated simply based on the 

chromosome, particularly for the QC or TK associated jobs. During fitness evaluation, 

the total ASC waiting time is dependent on QC and TK operations. QC uploading time 

or discharging time is directly related to the total QC waiting time, while the TK 

exporting or importing time is associated with the total TK waiting time. Both QC 

waiting and TK waiting are also dependent on ASCs’ pickup time and setdown time. 

That is, all types of timings are correlated closely. 

 

To evaluate the overall fitness of a schedule we initially calculate the total ASC travel 

time by summing up all job setup times and job processing times, which all are based 

on Dijkstra’s algorithm (Dijkstra, 1959). The job setup time refers to the duration of 

empty travelling time for an ASC moving to a particular job pick-up position while the 

processing time refers to the duration of time for an ASC transporting a container from 

a job pick-up position to the set-down position.  

 

Following the above, the total ASC waiting time, the total QC waiting time and the 

total TK waiting time are calculated together. The two-part chromosome is then 

transformed into a set of groups based on each ASC and each job assigned to an ASC is 

accordingly mapped into different slots. A pair of raw (estimated) pick-up times and 

raw set-down times is created initially for each job by assuming there is no ASC 

waiting time. By assuming there is no QC waiting time a set of raw QC uploading times 

and QC discharging times are created for each QC based on the QC starting time 

( D
qt and U

qt ) and turnaround time ( QCtΔ ). Likewise, TK raw timings are created in the 

same way based on the TK starting time ( E
gt and I

gt ) and turnaround time ( TKtΔ ). For each 

slot we find all QC/TK related jobs with raw timings and update the dependent jobs 

(via abα or abβ ). If its dependent job has been updated then we check the job raw timings 

and identify the ASC waiting, QC waiting or TK waiting times and then update all 

related timings. If its dependent job has not been updated yet then we ignore the job 

until its dependent job has been updated. However, since each QC has two buffer nodes, 

the evaluation on QC waiting time and related ASC waiting time should take into 

account the two buffer nodes. That is, for each uploading QC job ( , 2U
qj J j∈ ≥ ) its QC 
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waiting time should be calculated based not only on the current raw QC timings but 

also the set-down time of the second previous job ( ( 2) U
qj J− ∈ ). Likewise, for each 

discharging QC job ( , 2D
qj J j∈ ≥ ) the QC waiting time should be calculated based not 

only on the current raw QC timings but also on the pick-up time of the second previous 

job ( ( 2) D
qj J− ∈ ). After all iterations for the slots have been performed, the ASC waiting 

time, QC waiting time and TK waiting time can be calculated and all related timings 

updated. An example is provided in Figure 5-2 to further illustrate the process. 

 

 
Figure 5-2: An example of calculating ASC and QC waiting times and updating related timings 

 

In Figure 5-2, 8J and 9J  are TK exporting jobs, 4J , 5J and 6J  are QC uploading jobs and 

the other jobs are Y2Y jobs. As each QC has two buffer nodes, 6J is dependent 

on 4J and 4J  must be set-down before setting down 6J  at the same buffer. Here, 5J  can 

be set-down at another buffer as long as it satisfies the timing of uploading QC for 5J . 

8J is required to be picked up before picking up 9J . The raw timings of TK and QC are 

calculated using the starting times of QC and TK and the turnaround time. 

 

In the first slot ( 1S ), 5J and 8J need to be checked for related raw timings and 6J  should 

be checked after checking 4J . The raw QC uploading time for 5J is 22 and the raw set-

down time of 5J is 15, therefore ASC3 needs to wait for 7 time units. Accordingly, all 

pick-up and set-down timings of 2J and 3J should be updated by adding the 7 time units. 

By checking the timings of 8J  ASC2 needs to wait for 2 time units as the raw pick-up 

time is 8 and raw TK exporting time is 10. Owing to this, all pick-up and set-down 

timings of ASC2 should be updated by adding 2 time units. 
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In the second slot ( 2S ), 4J and 9J  need to be checked for related timings. The latest 

updated set-down time of 4J is 21 and the raw QC uploading time is 12 for 4J , so the 

QC needs to wait for 9 time units. The QC discharging time for 6J  should be updated to 

31 from 22. As 6J is at the previous slot and dependent on 4J and 6J should be checked 

before 9J in this slot. The latest updated QC uploading time of 4J is 21 and the raw set-

down time of 6J is 15 and then ASC1 needs to wait for 6 time units. Accordingly, the 

pick-up and set-down timings of 9J , 1J and 7J should be updated by adding the 6 time 

units. Regarding 9J , the raw TK exporting time is 20 and the pick-up time for ASC1 is 

updated to 22 and TK needs to wait for 2 time units. For the third and fourth slots it is 

not necessary to check and update the timings because there is no QC/TK related job. 

Overall, the total ASC waiting time is 15, the total TK waiting time is 2 and the total 

QC waiting time is 9. 

 

Fitness calculation: 
 
Input: A valid two-part chromosome. 
 
Output: Fitness value (f) for all performance metrics. 
 
Variable and parameters initialisations for the chromosome and set f =0;  
Generate the raw timings for all QCs and TKs based on their turnaround times; 
 
for i = 1:numASCs  

for k = 1:chromo(SecondPartHead + i) // for each assigned job of the ASC 

Calculate and store the ideal pickup time ( kJ
startt ) and setdown time ( kJ

finisht ) for the assigned job ( kJ ); 

f = f + 1λ * the travel time for the job setup and job processing; 

end 
end 
 
maxNumSlots = max(values of the second part chromosome); 
 
for i = 1: maxNumSlots 

Get QC and TK related jobs which have not been checked yet in slot (i). 
for  k=1:numUnchecked // search unchecked job, check if the job’s dependent job has been updated;  

if the job’s dependent job has been updated 
Compare the raw timings of pickup/setdown with the related QC and TK timings; 
Calculate the waiting time and update all raw timings and all QC and TK timings related jobs; 
if the waiting time is caused by ASC 

f = f + 2λ * ASCWaiting; 

elseif QC needs to wait  

f = f + 3λ *  QCWaiting; 

elseif TK needs to wait  

f = f + 4λ *  TKWaiting; 

end 
end 

end 
end 
 
for i=1:numHighPriorityJobs 

f = f + 5λ * iJ
finisht ; 

end 
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The performance of high priority job finishing times can be evaluated based on all 

previously updated timings. The total value of high priority job finishing times is the 

summation of set-down times ( F
jT , Hj J∈ ) for all high priority jobs. The following 

pseudo code shows the chromosomal fitness calculation of a valid two-part 

chromosome using the objective function. 

 

5.1.4 Selection and Crossover 
 
We utilise the rank-based roulette-wheel (Goldberg, 1989) selection in our GA. With 

this approach, each chromosome is assigned a portion of an imaginary roulette wheel, 

based on a chromosome’s rank. Chromosomes which have a higher fitness value are 

allocated a larger segment of the roulette wheel. Selection of a parent requires random 

generation of a number between 0 and 1. The chromosome occupying the section of the 

roulette wheel covered by the randomly generated percentage is chosen as a parent. The 

second parent is selected in the same manner.  

 

A modified crossover operator is required to handle the two-part chromosome. For the 

first part of the two-part chromosome, our modified crossover operator is consistent 

with the ordered crossover (Carter and Ragsdale, 2006), which is commonly used for 

planning with sequence constraints. The parent chromosomes are selected using the 

rank-based roulette-wheel scheme described above. Given two parent chromosomes, 

two random crossover points are selected, partitioning them into a left, middle and right 

portion. The ordered two-point crossover behaves in the following way: child A inherits 

its middle section from parent A, and its left and right sections are determined, as 

shown in Figure 5-3. 

 

 
Figure 5-3: Ordered crossover (ORX) method for first part chromosome 

 

 
Figure 5-4: Single point asexual crossover for second part chromosome 
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For the second part of the two-part chromosome, we adopt a single point asexual 

crossover operator, as shown in Figure 5-4. This method simply cuts the second part of 

the chromosome into two sections and reverses the order in which the two pieces are 

arranged. This type of crossover ensures that the second part of the chromosome 

remains feasible (with the sum of the values in the chromosome equalling n). After the 

crossover operations for both the first and second parts of the two-part chromosome it 

is necessary to perform a chromosome validation and repair for all generated children. 

 

5.1.5 Mutation 
 
The mutation operator used in our GA is based on the swap mutation (Goldberg, 1989), 

which consists of randomly swapping two genes in the first part of the two-part 

chromosome. This swap mutation operator performs a very vital task because it 

provides the means by which jobs are exchanged to seek improvement. Crossover has 

the ability to drastically impact the groupings of jobs, but has little impact on the 

ordering of the jobs within each group. Mutation is needed to explore alternative 

solutions, as a low probability of mutation can maintain diversity of the solutions in the 

population. In addition, after each mutation operation, it is also necessary to perform a 

chromosome validation and repair for all newly generated chromosomes.  

 

5.1.6 Replacement 
 
We use the replacement policy of Steady-State GA (DeJong, 1975). Parents are 

selected to produce offspring and then a decision is made as to which individuals in the 

population to select for deletion to make room for the new offspring. Steady-State GA 

is an overlapping system, since parents and offspring compete for survival. A 

percentage of the replacement determines how much of the population of each 

generation is replaced by the newly generated children.  

 

5.2 Experimental Results 
 
This section presents performance comparisons between the GA-based approach and 

the sequential job scheduling method via simulation experiments and live testings in the 

Patrick AutoStrad scheduling system. The sequential job scheduling method is derived 
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from the sequential job planning approach introduced in Chapter 4, but it doesn’t deal 

with path planning in this chapter. In our simulation experiments both the GA approach 

and sequential job scheduling algorithms have been implemented in C++. Live testings 

in the Patrick AutoStrad terminal were accomplished by integrating the GA-based 

algorithm with the scheduling system. 

 

5.2.1 Simulation Testings 
 
Firstly, we conducted the comparison on the performance of the GA-based method and 

the sequential job scheduling approach for scheduling a small amount of jobs (24 jobs).  

 
There is a trade-off between the computation time and solution quality. As the port 

planning process is iterative, each planning round may have the similar problem as the 

previous round. Therefore, it is unnecessary to get the GA run too long at each round, 

and also the solution found by the GA would still be useful for the next round. In other 

words, the solution is still being improved as long as the planning process is on-going. 

So, using the GA does not mean that the computation time will be a big challenge. 

 
Table 5-1: Parametric configuration for scheduling 24 mixed jobs 

Parameter Value 

Number of Total Jobs (J) 24 
Number of Vehicles (V)  8 
Number of High Priority Jobs (JH) 2 
( 1, 2, 3, 4, 5) (1, 1, 20, 5, 1) 
Plan Starting Time (t0) t0 = 0ms  
QCs Discharging Time ( D

qt ) D

qt  = t0 + 10000ms 

QCs Uploading Time ( U

q
t ) U

q
t  = t0 + 10000ms 

QC Turnaround Time ( tQC) tQC = 80000ms 
Import TKs Starting Time ( I

g
t ) I

g
t  = t0 + 200000ms 

Export TKs Starting Time ( E

gt ) E

gt  = t0 + 200000ms 

TK Turnaround Time ( tTK) tTK = 100000ms 
GA population size 100 
Number of generations in GA 500 (Approx. less than 1 minute) 
Crossover probability rate in GA 0.85  
Mutation probability rate in GA 0.01 

Crossover method in GA 
Order crossover + Asexual 

crossover 
Selection method in GA Roulette-wheel selection 
Mutation method Swap 
Replacement in GA Steady-state GA 
Replacement percentage 50% 

 

Table 5-1 shows the parameter values for the experiment on the simple scheduling 

scenario which includes QC and TK related jobs and Y2Y jobs. We have attempted to 
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base the parameter values on those typically found in seaport terminal operations. The 

24 mixed jobs consist of B2Y (6 jobs are associated with one discharging QC), Y2B (6 

jobs are associated with one uploading QC), T2Y (2 jobs are associated with one 

exporting TK), Y2T (2 jobs are associated with one importing TK) and Y2Y (8 jobs), 

and there are 8 available ASCs. 

 
Experimental results include different performance metrics used to evaluate the 

effectiveness of the proposed algorithms. These metrics include total ASC travel cost, 

total ASC waiting cost, total TK waiting cost, total QC waiting cost and total high 

priority job finishing cost, all of which have been defined in Section 3.4.2 of Chapter 3. 

Since the GA is a stochastic search algorithm, it is necessary to perform at least 30 

independent runs to obtain the average values (GA_Average) and the best result 

(GA_Best) found by the GA. Please note that GA_Average and GA_Best are based on 

the overall cost function, rather than individual cost functions, such as total ASC travel 

cost, total ASC waiting cost, total TK waiting cost, total QC waiting cost and or high 

priority job finishing cost. 

 

As shown in Figure 5-5, the GA-based approach outperforms the sequential job 

scheduling algorithm (SQT) for the total cost of scheduling the 24 jobs for both 

GA_Average and GA_Best. The solution found by GA improved the overall 

performance in this experiment by 42.50% (GA_Average) and 45.10% (GA_Best). The 

GA achieves a better result than SQT for ASC total waiting cost, TK total waiting cost, 

while SQT has only slightly better values for ASC total travel cost and high priority job 

(HPJ) finishing cost. For the QC total waiting cost, the performance of SQT and GA are 

similar because the weight of scheduling QC related jobs is large ( 3=20) and both 

algorithms try to reduce QC total waiting cost as much as possible. The GA sacrifices a 

little ASC total travel cost and HPJ finishing cost so as to gain much more reduction in 

ASC total waiting cost and TK total waiting cost.  
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Figure 5-5: Comparison on scheduling for 24 mixed jobs with 8 ASCs 
 
The performances of the GA-based method and the sequential job scheduling approach 

were also compared for scheduling a large number of jobs (80 jobs). Table 5-2 shows 

the parameter values for the experiments on the large number of jobs. The parameter 

values are based on those typically found in seaport terminal operations. We 

experiment on 80 mixed jobs which include B2Y (15 jobs are associated with one 

discharging QC), Y2B (15 jobs are associated with one uploading QC), T2Y (5 jobs are 

associated with one exporting TK), Y2T (5 jobs are associated with one importing TK) 

and Y2Y (40 jobs), and there are 20 available ASCs. 

 
Table 5-2: Parametric configurations for scheduling 80 mixed jobs 

Parameter Value 

Number of Total Jobs (J) 80 
Number of Vehicles (V)  20 
Number of High Priority Jobs (JH) 8 
( 1, 2, 3, 4, 5) (1, 1, 20, 5, 1) 
Plan Starting Time (t0) t0 = 0ms  
QCs Discharging Time ( D

q
t ) D

q
t  = t0 + 10000ms 

QCs Uploading Time ( U

qt ) U

qt  = t0 + 10000ms 

QC Turnaround Time ( tQC) tQC = 80000ms 
Import TKs Starting Time ( I

gt ) I

gt  = t0 + 200000ms 

Export TKs Starting Time ( E

g
t ) E

g
t  = t0 + 200000ms 

TK Turnaround Time ( tTK) tTK = 100000ms 
GA population size 200 
Number of generations in GA 1000 (Approx. 2 minutes) 
Crossover probability rate in GA 0.85  
Mutation probability rate in GA 0.01 

Crossover method in GA 
Order crossover + Asexual 

crossover 
Selection method in GA Roulette-wheel selection 
Mutation method Swap 
Replacement in GA Steady-state GA 
Replacement percentage 50% 
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As shown in Figure 5-6, the GA-based approach outperforms the sequential job 

scheduling algorithm (SQT) for the total cost of scheduling the 80 mixed jobs with both 

GA_Average and GA_Best. The solution found by GA reduced the overall cost in this 

experiment by 26.10% (GA_Average) and 34.20% (GA_Best). The GA achieves a 

better result than SQT for ASC total waiting cost, TK total waiting cost, while SQT has 

only slightly better values for ASC total travel cost, QC total waiting cost and HPJ 

finishing cost.  

 

Based on the above experimental results, we employ a statistical hypothesis testing 

using the two-sampled pooled t-test (Walpole et al., 2006) to show the statistical 

significance between GA and SQT. This result indicates the performance difference 

between the two algorithms. If the absolute t-value is greater, then the performance 

between two methods is more significantly different. 
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Figure 5-6: Comparison on scheduling for 80 mixed jobs with 20 ASCs 
 
 

Table 5-3: Comparison of GA vs Sequential Job Scheduling Algorithm for Total Cost 
  MEAN STDEV t-value 

24 mixed jobs 
SQT 7.90E+06 0.00E+00 

-166.18  
GA 4.50E+06 1.11E+05 

80 mixed jobs 
SQT 3.11E+07 0.00E+00 

-296.89 
GA 2.30E+07 1.50E+05 

 
Table 5-3 summarises the average performance and standard deviation of the GA and 

SQT algorithms for the total cost. A significant improvement in performance of the GA 

with respect to the SQT algorithm is indicated by the t-value. According to the critical 
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value (t = -2.00), the results show the performance of the GA is from a statistical 

perspective, significantly better than the performance of the SQT algorithm for both 24 

mixed jobs and 80 mixed jobs. 

 
 

5.2.2 Live Testing Results at Patrick AutoStrad Terminal 
 

Our GA-based approach has been implemented on a trial basis in the scheduling system 

of the Patrick AutoStrad Terminal in Brisbane, Australia. To show the effectiveness of 

the GA-based approach, we obtained a set of random live testing results from the 

Patrick AutoStrad Terminal and compared them to the actual scheduling optimiser (OP) 

of Patrick.  

 
Table 5-4: GA settings 

Parameter Value 

GA population size 100 
Number of generations  50 (Approx. 2 minutes) 
Crossover probability rate  0.85  
Mutation probability rate  0.01 

Crossover method  
Order crossover + Asexual 

crossover 
Selection method  Roulette-wheel selection 
Mutation method Swap 
Replacement in GA Steady-state GA 
Replacement percentage 50% 

 
Table 5-4 shows the general settings for the GA throughout the testing. All the 

problems listed in Table 5-5 represent a random snapshot based on typical operations at 

the Patrick AutoStrad terminal. The planning performance of the OP and GA-based 

approach are calculated by an evaluation function in Patrick’s system. Both OP and GA 

are integrated with a local optimising process which conducts the local optimisation for 

each schedule based on a local hill climbing mechanism. Moreover, a number of 

additional practical requirements are taken into account in the actual operating system 

including ASC contention and the MIN/MAX number of ASCs. ASC contention is used 

to penalise the job scheduling when some of the ASCs are likely to travel on paths 

which are close together and might cause some traffic delay. The MIN/MAX number of 

ASCs needs to be ensured in particular sets of jobs. Fundamentally, the MIN number is 

to ensure that for the duration of the planning horizon, the throughput of container 

movements respects a certain level of expected throughput that roughly equates to the 

number of ASCs set as the MIN for any order of work. At the same time, the MAX 
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number applies a large cost to any period of time on the planning horizon in which 

more than MAX ASCs are simultaneously working on the same order of work. The 

precise details are not presented in this thesis due to commercial considerations. 

Nevertheless, the GA-based approach outperforms the OP method with positive 

improvements through the 12 testings as shown in Table 5-5.  

 
For the 12 different port scenarios, the GA outperformed OP, except Case 8. Variations 

in the improvement are because each case has different conditions, such as the number 

of ASCs, number of jobs, pick-up and set-down locations of jobs and the ASC initial 

position. In case 8, as the problem is relatively simple (i.e. there are only 3 jobs and 16 

available ASCs), the performance scores of GA and OP are the same, while the most 

significant difference is made by GA at case 4, where the performance score is 

improved by 8292. Overall, the effectiveness of the GA-based approach is shown by 

numerical experiments and live testing results on different sets of data. 

 

 
Table 5-5: Various testing results from Patrick AutoStrad scheduling system 

Snapshot problems Score of OP Score of GA Raw Improvement by GA 

Case 1 (ASCs=16, Jobs=21) 471781 471704 77 

Case 2 (ASCs=20, Jobs=32) 104447 104109 338 

Case 3 (ASCs=14, Jobs=32) 280304 277861 2443 

Case 4 (ASCs=18, Jobs=14) 105647 97355 8292 

Case 5 (ASCs=14, Jobs =21) 361782 360192 1590 

Case 6 (ASCs=18, Jobs=9) 58896 58853 43 

Case 7 (ASCs=18, Jobs=10) 69908 69282 626 

Case 8 (ASCs=16, Jobs=3) 55675 55675 0 

Case 9 (ASCs=19, Jobs=17) 53057 53040 17 

Case 10 (ASCs=13, Jobs=20) 81647 81564 83 

Case 11 (ASCs=11, Jobs=60) 119716 119664 52 

Case 12 (ASCs=14, Jobs=47) 70870 70747 123 

 

 

5.3 Summary 
 

This chapter has presented a modified mathematical model derived from the problem of 

container transfers at the Patrick AutoStrad container terminal located in Brisbane, 

Australia. This model incorporates QC related operations, ASC scheduling and TK 
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related operations. Additionally, a practical contribution of this thesis is the GA-based 

approach which was presented to solve the job scheduling problem and was compared 

to a sequential job scheduling method for different scheduling scenarios. The proposed 

approach has been fully implemented on a trial basis in the live scheduling system at 

the Patrick container terminal and it effectively improves the performance of the 

seaport container terminal. 

 

Having applied the two-part chromosome encoding technique with the GA, the thesis 

will now turn to examine the enhancement of the crossover approach. Accordingly, the 

next chapter will analyse some limitations of the existing crossover approach with the 

two-part chromosome encoding, and propose a new crossover approach for further 

improvement. 
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6.  A New GA Crossover Approach for 
Further Improvement  

Since the two-part chromosome GA was proposed (Carter and Ragsdale, 2006) for 

solving the MTSP with the minimum search space, this thesis adopted the encoding 

technique and modified the GA for solving the job scheduling problem in Chapter 5. 

Two limitations were found for the existing crossover strategy. Firstly, it severely 

limited the diversity in the second part of the chromosome, which in turn greatly 

restricted the search ability of the GA. Secondly, the existing crossover approach had a 

tendency to break useful building blocks in the first part of the chromosome, which of 

necessity reduced the GA's effectiveness and solution quality. In this chapter, we 

propose a new crossover approach named Two-part Chromosome Crossover (TCX) to 

overcome these limitations and improve the chances of solving the job scheduling 

problem.  

 

6.1 Overview and Analysis of the Existing Strategy 
 

6.1.1 The Two-part Chromosome Encoding Technique 
 
As introduced in Section 5.2 of Chapter 5, the two-part chromosome technique divides 

the chromosome into two parts. The first part of length n  represents a permutation of n 

jobs and the second part of length m  gives the number of jobs assigned to each ASC. 

Therefore, the total length of the chromosome is n+m in this representation. The m 

values in the second part of the chromosome must sum to n in order to represent a valid 

solution.  

 

In addition, another two different chromosome representations are commonly used in 

GAs: one-chromosome representation (Tang et al., 2000) and two-chromosome 

representation (Park, 2001, Malmborg, 1996). However, both of these chromosome 

representations have more redundant solutions in the search space compared to the two-

part chromosome representation (Carter and Ragsdale, 2006), as the one-chromosome 

representation’s size of solution space is ( 1)!n m+ −  (Carter and Ragsdale, 2006), and the 
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two-chromosome representation’s size of solution space is ! nn m  (Carter and Ragsdale, 

2006). 

 

6.1.2 Existing Crossover Method for Two-part Chromosomes 
 
In an important study (Carter and Ragsdale, 2006), Carter and Ragsdale employed a 

combined crossover technique (ORX+A) for two-part chromosomes. The first part of 

the chromosome uses the classic ordered crossover (ORX) operator (Goldberg, 1989), 

while the second part of the chromosome uses an asexual crossover operator 

(Chatterjee et al., 1996). That is, when performing crossover, two-part chromosomes 

are separated and two independent crossover methods are used for that purpose. 

 

 
Figure 6-1: Example of using the ORX+A crossover method (Carter and Ragsdale, 2006) for two-part 

chromosomes 
 

Specifically, Figure 6-1 is an example illustrating the overall process of the crossover 

operation for two-part chromosomes that were proposed in the study by Carter and 

Ragsdale (Carter and Ragsdale, 2006). This example shows that two parent 

chromosomes generate a child based on the mother’s genes. For the first part 

chromosome, the ordered crossover behaves in the following way: the child inherits its 

middle section from its mother, and its left and right sections are determined according 

to its father’s genes. The shadowed genes (J6, J2, J8) in the child’s first part 

chromosome are directly copied from its mother, and the other genes are filled 

according to the sequence of left genes in its father’s chromosome. For the second part 

chromosome, a single point asexual crossover operator is utilised as shown in Figure 6-

1. This method simply cuts the second part of the mother’s chromosome into two 
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sections ((5, 2) and (2)) and reverses the order in which the two pieces were arranged. 

This type of crossover ensures that the second part of the chromosome remains feasible 

(with the sum of the values in the chromosome equalling n). Likewise, when 

performing crossover based on the father’s genes, another child can be generated as 

well. Normally, each pair of parents can generate two children, i.e. a sister and a 

brother. 

 
 

6.1.3 Limitations of the Existing Method 
 
The crossover method (Carter and Ragsdale, 2006) has two limitations, which can 

reduce the search performance. First, in order to ensure that the second part of the 

chromosome is valid (i.e. a positive vector of integers 1 2( , ,..., )mx x x  satisfying 

1 2 ... mx x x n+ + + =  where 0, 1, 2,...,ix i m> = ), an asexual crossover has been adopted. The 

asexual crossover operator only changes the order of genes in the second part of the 

chromosome. This approach may limit the diversity of the whole population, because 

some other feasible numerical combinations would not appear in the second part of the 

chromosome, during the initialisation of the population. For example, in Figure 6-1, the 

second part of the mother and father’s chromosomes are <5, 2, 2> and <3, 4, 2> 

respectively and their children would never have a chance to reach other feasible genes 

in the second part of their chromosomes, such as <1, 1, 7>, <1, 2, 6> and <1, 3, 5>, 

which are all still valid and feasible chromosomes. Additionally, for the MTSP problem 

(n=9, m=3), there are 7 fundamental gene combinations: <1, 1, 7>, <1, 2, 6> , <1, 3, 5>, 

<1, 4, 4>, <2, 2, 5>, <2, 3, 4> and <3, 3, 3>. Therefore, the GA population must contain 

the 7 fundamental gene combinations in the second part of the chromosome, so that the 

asexual crossover may have the chance to reach all possible solutions in the second part 

of the chromosome.  

 
When the size of the problem gets bigger, the number of fundamental combinations 

increases dramatically and it is impossible to have all possible combinations in the 

limited population. To calculate the number of fundamental combinations in the second 

part of the chromosome, we define a function ( , , )f n m k , where n is the number of jobs, 

m is the number of ASCs; k is the minimum number of jobs each ASC must visit. In 

our case, we only consider ( , ,1)f n m , where k=1 and each ASC must conduct at least one 
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job. However, the general form ( , , )f n m k is necessary for a recursion process to make 

the calculation relatively convenient. The recursive function can be defined as:  

  

( , , ) ( , 1, )

n

m

i k

f n m k f n i m i
=

= − −     (6.1) 

 

Where n

m
 is the floor value of (n/m). When m = 1, ( ,1, ) 1f n k = . That is, if there is only 

one ASC, then the number of fundamental combinations is only one (i.e. <n>), 

regardless of the values of n and k.  

 
Proof of Eq(6.1): Suppose the number of jobs conducted by each of the m ASC is 

represented by 1 2( , ,..., )mx x x . To compute the number of fundamental combinations we 

just need to consider the non-decreasing combinations, that is x1 <= x2 <= … <= xm. 

Since the total number of jobs is n and the total number of ASCs is m it is clear that the 

upper limit of x1 is
n

m
, otherwise there must be some xi < x1 which is not valid. Now 

since we are computing ( , , )f n m k and each ASC needs to do at least k jobs, the minimal 

value of x1 is k. Thus all the possible values for x1 are from k to n

m
and why in Eq(6.1) 

the sum of i is from k to n

m
. Now suppose x1 is fixed as i (any integer from k to n

m
), 

then the problem is for m-1 ASCs to conduct (n – i) jobs. Since we are only considering 

non-decreasing combinations, the minimal number of jobs that each ASC needs to do is 

x1 = i, giving ( ), 1,f n i m i− − in Eq(6.1). 

 
For example, given n = 5, m = 2 and k=1 then the total number of fundamental 

combinations can be calculated using Eq(6.1): 

2

1

(5,2,1) (5 ,2 1, ) (5 1, 2 1,1) (5 2, 2 1,2) (4,1,1) (3,1,2) 1 1 2
i

f f i i f f f f
=

= − − = − − + − − = + = + =  

 

In fact, there are only two fundamental combinations <1, 4> and <2, 3> for the case n = 

5 and m = 2. Based on Eq(6.1), we provide an analysis of the number of fundamental 

combinations in the second part of the chromosome for the job scheduling problem by 

increasing the problem size. Table 6-1 shows the exponential nature of the possible 

number of fundamental combinations for 12 job scheduling problems. Note that the cell 
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with “-” means that the number of combinations is greater than (7E+07). In addition, 

Table 6-2 shows the limited number of fundamental combinations (as a percentage) 

when using the existing crossover method, compared to the actual numbers of all 

fundamental combinations. Assume that the initial population size is 100, and all 

second part chromosomes contain different fundamental combinations. Then the 

percentages are calculated using the population size (100) divided by the number of 

calculated fundamental combinations in Table 6-1.  

 
Table 6-1: The number of fundamental combinations in the second part of the chromosome for each job 
scheduling problem (number of jobs_number of ASCs) showing the exponentially increasing number of 
combinations with increasing m 

51_3 51_5 51_10 100_3 100_5 100_10 100_20 150_3 150_5 150_10 150_20 150_30 

2.17E+02 2.82E+03 1.95E+04 8.33E+02 3.82E+04 2.98E+06 1.05E+07 1.88E+03 1.88E+05 - - - 
 
Table 6-2: Limited search space of the existing method for the second part of the chromosome 

51_3 51_5 51_10 100_3 100_5 100_10 100_20 150_3 150_5 150_10 150_20 150_30 

46.08% 3.55% 0.51% 12.00% 0.26% 0.00% 0.00% 5.33% 0.05% 0.00% 0.00% 0.00% 
 
Another important characteristic of the GAs is that children are expected to 

stochastically inherit a subset of the parents’ genes during each crossover process. For 

the job scheduling problem, each ASC has an independent tour, which represents the 

sequence of conducting jobs by the ASC itself and does not have any direct relationship 

with other ASC in the scheduling. However, when using the existing crossover method, 

the likelihood of children inheriting parents’ sub-tours is relatively limited. This is 

mainly because the existing crossover method treats the first part of the chromosome as 

a whole and ignores the important mapping of gene segments to independent ASCs in 

the second part of the chromosome. In other words, the existing method would 

potentially break important building blocks or highly fit gene segments (tours) of the 

parent chromosomes. This situation may worsen when the number of ASCs (m) and the 

number of jobs (n) increase. 

 

Overall, the search performance of GAs with the two-part chromosome representation 

can be seriously degraded as a result of the above two shortcomings of the crossover 

method. 

 

6.2 A New Crossover Approach 
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In this section, we propose a new crossover approach (TCX) for the two-part 

chromosome crossover to improve the GA search performance for solving the job 

scheduling problem.  

 

TCX treats each ASC separately when performing crossover in the first part of the 

chromosome. This ensures that highly fit building blocks that may be present in the 

subtours of parental chromosomes are maintained during the reproduction process and 

inherited by the offspring chromosomes. In addition, TCX greatly enhances the 

diversity in the second part of the chromosome by increasing the number of feasible 

combinations, while always satisfying the constraint: 1 2( , ,..., )mx x x  1 2 ... mx x x n+ + + =  

where 0, 1, 2,...,ix i m> = . Instead of using the existing asexual crossover, TCX reproduces 

genes in the second part of the chromosome according to the results of the crossover 

operation that was performed in the first part of the chromosome. Therefore, new types 

of fundamental combinations may be generated and the diversity in the second part of 

the chromosome is increased dramatically. 

 

An example is used below to illustrate the process of using TCX to generate a child 

chromosome of (9 jobs and 3 ASCs). Five basic steps are involved. Firstly, a pair of 

parent two-part chromosomes (Mother and Father) are initialised, and the Mother 

chromosome is used as the base for generating a Child in this example. Secondly, we 

randomly select a gene segment (i.e. sub-tour) from the first part of the Mother’s 

chromosome. In this case, the selected gene segments are <J7, J5> for ASC 1, <J8, J4> 

for ASC 2 and <J1> for ASC 3. Hence, the numbers of randomly selected genes are (2, 

2, 1) as shown in the dashed area of Step 2. Next, the order of the remaining genes is 

sorted according to the positions in the first part of the Father’s chromosome. In this 

example, the remaining genes in the first part of the Mother’s chromosome are <J9, J6, 

J2, J3>, and the order of these genes is shuffled to <J2, J3, J9, J6> according to the first 

part of the Father’s chromosome. Next, based on the number of unselected genes, we 

compute a uniform random number, between 1 and the current value of unselected 

genes, to determine how many new genes will be added for each ASC in the Child 

chromosome. Here, the unselected genes are <J2, J3, J9, J6> and if, for example, we 

iteratively generate the integer sequence (2, 1, 1) of uniform random numbers between 

1 and the number of currently unselected genes, then in the Child chromosome, ASC 1 
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gets genes <J2, J3>, ASC 2 gets <J9>, and ASC 3 gets <J6>. Moreover, during this step 

it is possible to generate a sequence containing one or more zeros, for example (4, 0, 0) 

or (3, 1, 0). This does not create infeasibility in the second part of the chromosome. 

Therefore, for the first part of the Child’s chromosome, ASC 1 would have <J7, J5, J2, 

J3>, ASC 2 would have <J8, J4, J9>, and ASC 3 would have <J1, J6>. Lastly, we 

construct the two-part chromosome for the Child by updating the information in the 

second part of its chromosome. In this example, <4, 3, 2> is generated by summing the 

each position of the intermediary second part vectors of <2,2,1> + <2,1,1> = <4,3,2> , 

which remains feasible and bounded. 

 
Step 1: Initialise a pair of chromosomes as parents 

 
Step 2: Randomly select a gene segment for each ASC 

 
Step 3: Shuffle gene positions according to the first part of the Father’s chromosome 
 

 
Step 4: Add genes for each ASC 
 

 
 
Step 5: Construct the Child’s two-part chromosome. 

 
 

In the second part of the Child’s chromosome, the TCX operator will generate a new 

combination, which is probably different from the original fundamental combination in 
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the second part of the Mother’s chromosome. As shown in the above example, the 

second part of the Child’s chromosome is <4, 3, 2>, while the Mother’s is <5, 2, 2>. 

However, if using the existing crossover approach, the second part of the Child’s 

chromosome would have been the same as the Mother’s chromosome <5, 2, 2>. 

Subsequently, taking the Father’s chromosome as the base, another Child chromosome 

can be produced by going through the five steps described above. A pair of Child 

chromosomes is generated after each TCX crossover operation. The following pseudo 

code shows the proposed TCX crossover method. 

 
Two-part chromosome crossover operation: 
 
Input: A pair of two-part parent chromosomes. 
 
Output: A pair of two-part child chromosomes. 
 
//Process of generating a Child (Sister) 
 
Select a parent’s chromosome as the Mother base for the Child; 
for m = 1:numASC //numASC: the total number of ASCs{ 

Randomly generate an integer number between 1 and AssignedJobs[m] and store in Segment[m]; // 
assignedJobs[m]: the number of assigned jobs of ASC m 
if AssignedJobs [m] > Segment[m] 

Randomly generate an integer number between 1 and (AssignedJobs [m] - Segment[m]) and set it as the 
possible starting position for the gene segment; 
for k = 1:Segment[m] 

Copy each gene from the gene segment for a Child; 
Copy each gene into savedGenesPool; 

end 
else 

Copy the entire part of ASC m for Child; 
Copy the entire part of ASC into savedGenesPool; 

end 
totalSavedGenes = totalSavedGenes + Segment[m]; 

end 
totalUnsavedGenes = numJobs – totalSavedGenes; 
for m = 1: numASC 

if m != numASC 
Randomly generate an integer number between 1 and totalUnsavedGenes for ASC m to add genes; 

else 
The ASC will add all unsaved genes; 

end 
According to the order of the unsaved genes in the first part of the Father’s chromosome, add the randomly 
generated number of genes to the Child; 

end 
Based on the construction of the first part of the Sister’s chromosome, calculate the number of assigned jobs in the 
second part of the chromosome. 
 
//Process of generating a Child (Brother) 
 
Select another parent’s chromosome as the base for the Child; 
Repeat the process of generating the Sister; 
 

 
It can be seen that, TCX has two advantages when two-part chromosomes are used to 

solve the job scheduling problem. Firstly, the offspring have a better chance of 

inheriting highly-fit subtours from the parental chromosomes, because the mapping 

between each ASC and the corresponding job subtour are considered separately in TCX. 

The second advantage is the dramatic increase in diversity of the second part of the 
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chromosome because children have the opportunity to reach any feasible combinations 

within the entire search space defined in the second part.  

 

When applying the new crossover TCX for solving our job scheduling problem, the 

crossover operator of the GA presented in Chapter 5 is replaced with the new crossover 

TCX. Figure 6-2 shows an integrated diagram describing the overall solution approach. 

 

 
Figure 6-2: The modified GA flowchart for solving the job scheduling problem 

 

Specifically, the two-part chromosome encoding, chromosome validation and repair 

operation, and fitness evaluation are presented in Section 5.2 of Chapter 5. The 

experimental performance of TCX for solving the job scheduling problem will be 

presented in following section. 

 

6.3 Experiments for Job Scheduling Optimisation 
 

A comparison was conducted on the performance of the existing ORX+A crossover 

(used for the modified GA in Chapter 5) and the proposed TCX crossover operator for 

scheduling a small amount of jobs (24 jobs). All parameter values for the experiment on 
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the simple scheduling scenario are from Table 5-1 in Chapter 5. The 24 mixed jobs 

consist of B2Y (6 jobs are associated with one discharging QC), Y2B (6 jobs are 

associated with one uploading QC), T2Y (2 jobs are associated with one exporting TK), 

Y2T (2 jobs are associated with one importing TK) and Y2Y (8 jobs), and there are 8 

available ASCs.  

 

 
Figure 6-3: Comparison on scheduling for 24 mixed jobs with 8 ASCs 

 

As shown in Figure 6-3, TCX approach outperforms the existing ORX+A for the total 

cost of scheduling the 24 jobs for both Average and Best. Please note that Average and 

Best are based on the overall cost function, rather than individual cost functions, such 

as total ASC travel cost, total ASC waiting cost, total TK waiting cost, total QC waiting 

cost and or high priority job finishing cost. The solution found by TCX improved the 

overall performance in this experiment by 16.31% (Average) and 17.97% (Best). TCX 

achieves a better result than ORX+A for ASC total travel cost, ASC total waiting cost, 

TK total waiting cost, high priority job (HPJ) finishing cost. For the QC total waiting 

cost, the performance of TCX and ORX+A are similar because the weight of 

scheduling QC related jobs is large ( 3=20) and both algorithms try to reduce QC total 

waiting cost as much as possible.  
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Figure 6-4: Comparison on scheduling for 80 mixed jobs with 20 ASCs 

 

We also compared the performances of TCX and the existing ORX+A approach for 

scheduling a large number of jobs (80 jobs). Table 5-2 in Chapter 5 shows the 

parameter values for the experiments on the large number of jobs. The parameter values 

are based on those typically found in seaport terminal operations. Eighty mixed jobs are 

experimented on which include B2Y (15 jobs are associated with one discharging QC), 

Y2B (15 jobs are associated with one uploading QC), T2Y (5 jobs are associated with 

one exporting TK), Y2T (5 jobs are associated with one importing TK) and Y2Y (40 

jobs), and there are 20 available ASCs. 

 

As shown in Figure 6-4, TCX approach outperforms the existing ORX+A method for 

the total cost of scheduling the 80 mixed jobs with both Average and Best. The solution 

found by GA reduced the overall cost in this experiment by 29.02% (Average) and 

25.07% (Best). TCX achieves a better result than ORX+A for ASC total waiting cost, 

TK total waiting cost, QC total waiting cost and HPJ finishing cost, while they have 

quite similar ASC total travel cost. 

 

A t-test was performed to show the statistical significance between ORX and TCX. 

This result indicates the performance difference between the two crossovers. If the 

absolute t-value is greater, then the performance between two methods is significantly 

different. 
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Table 6-3: Comparison of ORX GA vs TCX GA for Total Cost 
  MEAN STDEV t-value 

24 mixed jobs ORX 4.54E+06 1.11E+05 
-27.40  

TCX 3.80E+06 9.85E+04 

80 mixed jobs 
ORX 2.30E+07 1.00E+06 

-32.65 
TCX 1.63E+07 4.97E+05 

 

Table 6-3 summarises the average performance and standard deviation of TCX and 

ORX+A for the total cost. A significant improvement in performance of TCX with 

respect to ORX+A is indicated by the t-value. According to the critical value (t = -2.00), 

the results show the performance of TCX is in a statistical sense significantly better 

than the performance of ORX+A for both 24 mixed jobs and 80 mixed jobs. 

 

6.4 Computational Testing Methodology for the MTSP 
 
As discussed in Section 2.2.4 of Chapter 2, there are many differences between the 

MSTP and our job scheduling problem. However, they may share the encoding 

technique and crossover method when applying GAs, particularly with the two-part 

chromosome technique, as mentioned in Section 5.2.1. Moreover, the MTSP is a well-

known problem, and maps very well to our scheduling problem. Hence, the proposed 

TCX can also be directly applied to solve the MTSP using the two-part chromosome 

technique. 

 

To evaluate the benefits of the proposed TCX crossover operator for solving the MTSP, 

computational experiments were conducted to compare the performance of four 

crossover methods on a set of problems created for the MTSP. The proposed TCX is 

compared to ORX+A, CYX+A and PMX+A, and these are combined with an asexual 

crossover for the two-part chromosome representation. The same strategy is presented 

in Section 5.2 for GA selection, crossover, mutation and replacement. The test 

problems were selected from a standard collection of TSPs from the Library of 

Travelling Salesman Problems (Reinelt, 2001) that were transformed into MTSPs by 

using more than one salesperson (m) to complete the tour. The test problems are 

Euclidean, two-dimensional symmetric problems with 51, 100, and 150 cities. 

Throughout this chapter, these test problems are referred to as MTSP-51, MTSP-100, 

and MTSP-150, respectively. These MTSP problems appear to be well-suited to the 

purpose of this chapter, which is to examine the limitations of the existing crossover 
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operators for two-part chromosomes and to compute the effectiveness of the proposed 

TCX operator. They permit direct comparison with the previous approaches and even 

though they are viewed as a simplified representation of practical problems, they 

remain representative as benchmarking problems.  

 

Two different fitness (or objective) functions were considered. The first fitness function 

measured the total travel distance travelled by all of the salesmen. For the problems, 

each of the m salesmen were required to visit at least one city (other than the home city). 

This objective represents a situation in which there is a group of salesmen and there are 

no constraints associated with the maximum number of cities visited by any one 

salesman. The second fitness function measured the longest route among the m 

salesmen. Typically, this objective function is used to equalise the workload among the 

available salesmen when scheduling tasks. 

 

In the simulation experiments, all GA programs were implemented in C++ with GAlib 

2.4.7 (GAlib, 2007). Table 6-4 summarises the experimental conditions of 12 different 

problem size (n) and salesman (m) combinations along with the run times for each type 

of problem. The stopping criterion is the number of generations. All salesmen start and 

end their individual tours in the same city. Table 6-5 shows the parameter values for 

‘all’ the experiments performed in this chapter. 

 
Table 6-4: Computational test conditions 
Number of cities (n) Number of salesmen (m) GA generations 
51 3, 5 and 10 50000 
100 3, 5, 10 and 20 100000 
150 3, 5, 10, 20 and 30 200000 
128 10, 15 and 30 200000 
 
Table 6-5: Parametric configuration for GA 
Parameter Value 

GA population size 100 
Crossover probability rate in GA 0.85  
Mutation probability rate in GA 0.01 
Selection method in GA Roulette-wheel selection 
Mutation method Swap 
Replacement in GA Steady-state GA 
Replacement percentage 20% 
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6.5 Computational Results for the MTSP 
 
This section presents performance comparisons between the proposed TCX approach 

and the other three crossover methods for two-part chromosomes. To correctly show 

the performance differences among the various crossover operators, two sets of 

experiments are conducted for two objective functions. For each objective function, the 

GA is first run without seeding (i.e. without any local optimisation) for the benchmark 

problems and all initial populations are randomly created. Subsequently, the same 

benchmark experiments are conducted using the GA with seeding. In this case, each of 

the starting populations is seeded with a candidate solution produced by a simple 

greedy heuristic to give the GA a good starting point in the search space.  

 

Since GAs belong to the class of stochastic search algorithms, statistical hypothesis 

testing is employed using the two-sampled pooled t-test (Walpole et al., 2006). The 

experiments for the four crossover approaches in this chapter are conducted using 30 

independent trials (each pair of n1 = n2 = 30). This occurs for both seeded and unseeded 

GA experiments. That is, the TCX is compared to each of the other three crossover 

methods. In this chapter, the null hypothesis can be stated such that: ‘TCX does provide 

higher solution quality when applied to 30 trials’. Statistical differences are indicated 

according to the two-sample pooled t-test (Appendix) with a level of significance at p = 

0.05 (95% confidence). The statistical hypothesis tests in this chapter use two-tailed 

critical regions to indicate whether there is a significant improvement by TCX (t � -

2.00) or a significant degradation by TCX (t � 2.00). Statistical tests resulting in a t-

value of (-2.00 < t < 2.00) do not provide enough statistical evidence to refute or 

confirm the null hypothesis, which indicates similar performance between the two 

algorithms. Moreover, it is assumed that the experimental results follow a standard 

normal distribution under the null hypothesis and the experimental data has been 

sampled independently from the two populations being compared. Furthermore, a 

variation of the t-test known as the Welch's t-test is employed. This is used when the 

two population variances are assumed to be different and must be estimated separately. 

In addition, experimental results and the MTSP problems used in this chapter including 

the cost matrices can be downloaded from 

http://ims.uts.edu.au/MTSP/MTSP_dataset_solutions.zip.  
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6.5.1 Experiments for Minimising Total Travel Distance 
 

The first objective function is to minimise the total travel distance of all the salesmen. 

This objective reflects the goal of minimising the distance required to visit all n cities. 

The only constraint used with this objective is that each salesman must visit at least one 

city (other than their home city). Without this constraint, the GA could reduce the 

number of salesmen in the problem, hence possibly reducing the MTSP to a TSP. For 

this objective, as the number of salesmen increases the total travel distance of the 

combined trips also tends to increase, because each salesman must start and return to 

the home city.  

 

6.5.1.1 GA without Seeding for Minimising Total Travel Distance 

 

Table 6-6 summarises the mean value and standard deviation of the 30 trails of each 

approach for testing problems with the objective of minimising the total travel distance. 

The significant improvements in the performance of TCX with respect to each other 

method are indicated by the t-values. According to the critical value (t = -2.00), all 

calculated t-values as shown in Table 6-7 are less than -2.00 for the 12 problems. In 

other words, the solutions found by TCX are statistically better than the solutions found 

by the other three crossover methods (ORX+A, CYX+A and PMX+A) for all cases 

(MTSP-51, MTSP-100 and MTPS-150). 

 

Table 6-6: Experimental results for minimising total travel distance. 
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Table 6-7: t-test results of TCX versus (ORX, CYX and PMX) crossover approaches for minimising total 
travel distance. 

 
      

6.5.1.2 GA with Seeding for Minimising Total Travel Distance 

 

As mentioned previously, we also test the performance of TCX with the GA seeding 

enabled. We employ the same seeding technique as those of Carter and Ragsdale 

(Carter and Ragsdale, 2006) for minimising total travel distance and generate the 

greedy solutions by examining the present location of all the salesmen and calculating 

the closest unassigned city to each salesman. The unassigned city is then assigned to the 

closest salesman and the process is continued until all the cities are assigned to a 

salesman. 

 

Table 6-8: Comparison of the mean results between two approaches using GA with seeding enabled for 
minimising total travel distance. 

 
 

In Table 6-8, we compare the average results in the literature (Carter and Ragsdale, 

2006) with the mean results found by our TCX approach, using the simple GA seeding 

technique. For the 12 testing problems, TCX shows positive improvements compared to 

the results obtained in Carter and Ragsdale (Carter and Ragsdale, 2006). The greatest 
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improvement is achieved at MTSP-150 (m=30) with a 21.62% improvement in final 

solution quality. Therefore, by combining GA seeding and the proposed TCX operator 

a better solution quality can be achieved when compared to the approach in Carter and 

Ragsdale (Carter and Ragsdale, 2006) for the objective of minimum total travel 

distance.  

 

However, seeding is not without risk, and may cause the GA to become stuck at a local 

minimum in some cases. For example, the average result 670 for the problem (MTSP-

51: m=10) with seeding is worse than the mean result 636 without seeding in Table 6-8. 

Clearly, seeding may provide a good start point and reduce the search cost, but it might 

also reduce solution quality when GA is attracted by a local minimum.  

 

6.5.2 Experiments for Minimising Longest Tour 
 

Besides the objective of minimising the total travel distance, another common objective 

in real world MTSP applications is minimising the longest individual tour, which is 

also called makespan (Yuan et al., 2011). Minimising the longest tour has the goal of 

balancing the cities (or workload) among the salesmen and minimising the distance the 

salesmen travel. With the objective of minimising the longest tour, the fitness values 

decrease as the number of salesmen increase. 

 

6.5.2.1 GA without Seeding for Minimising Longest Tour 

 
Table 6-9: Experimental results for minimising longest tour. 
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Table 6-9 summarises the mean value and standard deviation of the 30 trials for of each 

approach for the benchmarking problems for minimising the total travel distance. The 

significant improvements in performance of TCX with respect to each of the other 

crossover methods are indicated by the t-values in Table 6-10. TCX statistically 

outperforms the other three crossover methods (ORX+A, CYX+A and PMX+A) for the 

majority of the benchmarking problems (t < -2.00).  

 
Table 6-10: t-test results of TCX versus (ORX, CYX and PMX) crossover approaches for minimising 
longest tour. 

 
 
 

6.5.2.2 GA with Seeding for Minimising Longest Tour 
 
The performance of TCX with the GA seeding enabled was also tested. The same 

seeding technique as Carter and Ragsdale (Carter and Ragsdale, 2006) was employed 

for minimising longest tour and generating the greedy solutions by iterating through all 

the salesmen in a round-robin fashion and assigning the closest unassigned city to each 

salesman in turn. This continued until all the cities were assigned to a salesman. 

 
Table 6-11: Comparison of crossovers with GA seeding for minimising longest tour. 
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With the simple GA seeding technique, the average results in the literature (Carter and 

Ragsdale, 2006) are compared to the results found by our TCX approach. For the 12 

problems, TCX has various positive improvements compared to the results obtained in 

Carter and Ragsdale’s study (Carter and Ragsdale, 2006). The greatest improvement is 

achieved at MTSP-150 (m=20) with 43.52% Therefore, by combining the GA seeding 

and the proposed TCX operator, better solution quality can be achieved when compared 

to the approach in Carter and Ragsdale (Carter and Ragsdale, 2006) for the objective of 

minimum longest tour. Overall, the benchmarking experiments that were conducted for 

the two objective functions clearly suggest an increase in solution quality for the TCX 

technique, which is further increased through the introduction of initial seeding of the 

GA population. Taken together, the results presented in this chapter suggest that the 

proposed TCX operator enables the GA to find better solutions for solving the MTSP 

with the two-part chromosome representation. 

 

6.5.3 The Robustness of the TCX 
 

Since the solution quality and performance of the GA is somewhat dependent on the 

initial parameter settings it is useful to repeat the ‘minimise the total travel distance’ 

and ‘minimise the longest tour’ benchmarking experiments with a range of GA 

parameters, the results of which show the sensitivity of the GA and TCX operator to 

initial parameter configurations.  

 

The number of salesman is fixed to m=10 for the three test problems (A) MTSP-51, (B) 

MTSP-100 and (C) MTSP-150, while varying several GA parameters which typically 

impact the solution quality and performance of the algorithm, namely GA population (P 

= 50, 200, 1000), crossover probability (Pc = 0.7, 1.0), mutation probability (Pm = 

0.02, 0.001). The default GA parameter settings are P = 100, Pc = 0.85 and Pm = 0.01. 

 
Table 6-12: TCX Robustness to varying GA parameters for minimising total travel distance 
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Table 6-12 shows the results of minimising total travel distance, and the variation in 

GA population size shows an expected behaviour of the GA. In general, a smaller 

population size (P=50) results in lower solution quality and faster execution time while 

an increase of population size (P=200, 1000) results in higher or improved solution 

qualities and slower execution times for each of the three test problems. The variation 

of crossover probability also resulted in expected behaviour for the GA for all the three 

test problems. A lower crossover probability (Pc=0.7) reduces the exploration 

capability of the GA and results in a lower solution quality, while a high crossover 

probability (Pc=1.0) can destroy good candidate solutions with too much exploration 

and not enough exploitation of the GA. The variation of mutation probability is more 

subtle with the results not being in a statistical sense significantly different from the 

default GA settings for all the three test problems. The results suggest that a higher 

mutation probability (Pm=0.02), which increases the amount of disruption to each gene 

in the chromosome, provides a slightly lower solution quality. However, a lower 

mutation probability (Pm=0.001) produces a higher solution quality since the level of 

gene disruption is reduced by a factor of 10 on both parts of the chromosome. 

 

Table 6-13 shows the results of minimising longest tour, and the variation in GA 

population size shows an expected behaviour of the GA. In general, a smaller 

population size (P=50) results in lower solution quality and faster execution time while 

an increase (P=200, 1000) results in higher or improved solution qualities and slower 

execution times for the more difficult test problems B and C. However, the solution 

quality for problem A does not vary greatly because the GA is able to find a near-

optimal solution for each of the different population sizes. In general, a lower crossover 

probability (Pc=0.7) reduces the exploration capability of the GA, but results in 

improved solution quality by maintaining good solutions in the population, while a high 

crossover probability (Pc=1.0) can destroy good candidate solutions with too much 

exploration and not enough exploitation of the GA. In general, the results suggest that a 

slightly higher mutation probability (Pm=0.02, default Pm=0.01), produces a higher 

solution quality. However, a lower mutation probability (Pm=0.001) produces a lower 

solution quality since the level of gene disruption is reduced by a factor of 10 on both 

parts of the chromosome. 
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Table 6-13: TCX Robustness to varying GA parameters for minimising longest tour 

 
  

 

Depending on the type of problem being solved, whether the total travel distance or the 

longest tour is minimised, the level of exploration versus exploitation is controlled by 

key GA parameters which produce different solution qualities through their variation. 

The GA is able to robustly find near-optimal solutions that are typical of the GA 

parameter variations presented in this section. 

 

6.5.4 Optimality 
 

The TCX operator and GA presented in this chapter are derived from the class of meta-

heuristic algorithms used to find near-optimal solutions to the symmetric MTSP 

problem. However, it is interesting to compare the proposed approach to optimal 

solutions for a subset of small-sized MTSP problems, which include (MTSP-11a):11 

cities derived from distances51, (MTSP-11b): all 11 cities from sp11_dist, (MTSP-12a): 

12 cities derived from distances51, (MTSP-12b): all 12 cities from uk12_dist and 

(MTSP-16): contains 16 cities derived from ‘distances51’. Each of these small-sized 

MTSP data sets is described using a symmetric distance (cost) matrix. More 

specifically, the distances51 data set was obtained from Professor Arthur E. Carter 

(Carter and Ragsdale, 2006), while the other data sets of sp11_dist and uk12_dist were 

obtained from http://people.sc.fsu.edu/~jburkardt/datasets/cities/cities.html. In addition, 

GA parameters are default values that are specified in Table 6-5, the number of 

generations is 50,000 and 30 independent trials were used for the TCX/GA experiments 

conducted.  

 

Computation of the optimal values for each problem was performed using the brute-

force of an exhaustive search, which had CPU times of several orders of magnitude 

greater than the proposed TCX/GA algorithm. Furthermore, it must be acknowledged 

that other exact solution methods such as those presented in an early study (Gavish and 



 123

Srikanth, 1986) using a branch-and-bound algorithm, seemed to provide exact solutions 

to several medium-sized MTSP problems that are described using either 

symmetric/asymmetric and Euclidean/non-Euclidean datasets.  

 

The results presented in Table 6-14 and Table 6-15, indicate that the GA with the 

proposed TCX operator is able to find optimal and near-optimal solutions to a set of 

different MTSP problems. 

 
Table 6-14: Optimality Gap for small-sized symmetric MTSP problems for minimising total travel 
distance 

Problem (m=3) Optimal TCX_MEAN TCX_STDEV TCX_BEST 

MTSP-11a 198 198 0 198 

MTSP-11b 135 135 1 135 

MTSP-12a 199 199 0 199 

MTSP-12b 2295 2295 0 2295 

MTSP-16 242 247 8 242 

 
Table 6-15: Optimality Gap for small-sized symmetric MTSP problems for minimising longest tour 

Problem (m=3) Optimal TCX_MEAN TCX_STDEV TCX_BEST 

MTSP-11a 77 77 0 77 

MTSP-11b 73 73 0 73 

MTSP-12a 983 987 4 983 

MTSP-12b 77 77 0 77 

MTSP-16 94 101 7 94 

 
 

6.5.5 Examination of TCX Operator with an Additional Dataset   
 
Since the proposed TCX operator and GA presented in this chapter utilise the two-part 

chromosome structure presented in the Carter and Ragsdale study (Carter and Ragsdale, 

2006), we focused our benchmarking effort of the different crossover operators onto the 

Carter data sets (MTSP-51, MTSP-100 and MTSP-150). This allowed for a direct 

statistical comparison between Carter’s results and those presented in this chapter. 

However, it was interesting to repeat the experiments of the four crossover operators 

using a completely different symmetric MTSP distance (cost) matrix. As such, we used 

the sgb128 data set, which was obtained from the following link: 

http://people.sc.fsu.edu/~jburkardt/datasets/cities/cities.html and considers 128 cities in 

the continental US and lower Canada. The distance matrix considers the actual road 

distances between the particular cities. 
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Table 6-16: Comparison of crossover methods for the sgb128 MTSP test problem for minimising the 
total travel distance 

  m = 10  m = 15  m = 30  

Problem Crossover Mean Stdev Best t-test Mean Stdev Best t-test Mean Stdev Best t-test 

MTSP-128 TCX 42335 1697 39478 - 44294 1911 40843 - 54696 2189 50809 - 

ORX+A 43958 1214 40922 -4.33 45674 2133 40524 -2.64 56357 1973 51439 -3.09 

CYX+A 44133 1471 40269 -4.38 45282 1542 42366 -2.20 56376 1911 52967 -3.17 

PMX+A 44386 1825 41671 -4.51 46159 1926 42024 -3.76 56369 1623 53416 -3.36 

 
Table 6-17: Comparison of crossover methods for the sgb128 MTSP test problem for minimising longest 
tour 

  m = 10 m = 15 m = 30 

Problem Crossover Mean Stdev Best t-test Mean Stdev Best t-test Mean Stdev Best t-test 

MTSP-
128 

TCX 6716 428 5912 - 5979 404 5295 - 4814 435 4003 - 

ORX+A 8569 887 6421 -
10.31 

8166 947 6051 -
11.36 

6211 475 5356 -
11.88 

CYX+A 8464 906 6566 -9.55 8007 739 6324 -
13.19 

6261 680 4776 -9.82 

PMX+A 8299 848 6880 -9.13 8016 1065 6480 -9.79 6354 632 5540 -
11.00 

 
The results in Table 6-16 for minimising the total travel distance suggest that the GA 

with TCX operator achieve statistically better solutions quality for all benchmarking 

tests when compared with the three alternative crossover techniques (ORX+A, CYX+A 

and PMX+A). Furthermore, in the benchmarking experiments minimising the longest 

tour, the GA and TCX operator achieve significantly better solution qualities for all 

experiments compared to the alternative methods as illustrated in Table 6-17. These 

results suggest that the proposed TCX operator robustly achieves good results in 

different benchmarking experiments. 

 

6.6 Summary 
 

It was found that the existing crossover operator for two-part chromosome encoding 

may limit the GAs’ search ability. This chapter proposed a new crossover operator 

(TCX) for solving the job scheduling problem with further improvements. The 

proposed TCX can effectively enhance the search ability of the GA by generating more 

potentially useful solutions. The performance of ORX+A for the modified GA from 

Chapter 5 was compared to the proposed TCX. Experimental results show that the TCX 

operator enables the GA to produce higher solution quality than ORX+A when solving 

the job scheduling problem.  
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Furthermore, the proposed TCX can also be directly applied to solve the MTSP. The 

proposed TCX operator was evaluated and compared with three existing crossover 

operators for solving the MTSP, namely ORX+A, CYX+A and PMX+A. The 

benchmarking was performed using two different MTSP objective functions, namely 

the objective of minimising total travel distance and the objective of minimising the 

makespan. The experimental results show that the TCX operator enables the GA to 

produce higher solution quality than the existing crossover operators for solving the 

MTSP.  
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7. Conclusions and Future Research 

This thesis has studied a challenging practical problem of optimising container transfers 

for a fleet of ASCs at the Patrick AutoStrad container terminal. The objectives of this 

thesis were to formulate an integrated mathematical model and develop efficient 

algorithms to coordinate a fleet of ASCs in a confined container terminal so as to 

improve the performance and productivity. This chapter summarises the principle 

contributions and provides suggestions for future research. 

 

7.1 Summary 
 

7.1.1 Two Optimisation Models of Container Transfers by ASCs 
 

Firstly, an analytical optimisation model of container transfers using a fleet of ASCs, 

which integrates the quay-side, yard and land-side operational sub-problems, has been 

presented. This model incorporated many of the difficult practical constraints 

encountered at the terminal, which included the vehicle collision avoidance for path 

planning, multiple level container stacking and sequencing, variable container 

orientations and vehicular dynamics that require finite acceleration and deceleration 

times. Secondly, derived from the comprehensive model, a job scheduling model has 

been formulated to focus on the optimisation of job scheduling. 

 

7.1.2 A Job Grouping Approach for the Comprehensive Model 
 

A job grouping approach to scheduling ASCs for container transfers has been proposed. 

The job grouping approach can effectively improve the efficiency of the schedule for 

yard jobs, while reducing the QCs’ and ASCs’ waiting time by grouping jobs with a 

guiding function. The job grouping algorithm implementation has been coupled with 

the path planner, which aims to find the shortest paths for multiple vehicles with 

collision avoidance. One advantage of this grouping approach is that delay can be 

effectively reduced for important jobs such as QC and TK related jobs, provided there 

are enough ASCs available. Moreover, the total ASC waiting time is reduced by 
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grouping Y2Y jobs with the proposed guiding function, and consequently the overall 

efficiency of a schedule can be enhanced effectively. Overall, the effectiveness of the 

job grouping approach was demonstrated by numerical experiments on different sets of 

data, and it outperforms the sequential planning method. Although there is no 

benchmark testing problem available, the performance of the job grouping approach is 

significantly better in a statistical sense than the performance of the sequential planning 

method. 

 

7.1.3 A Modified Genetic Algorithm for Optimising Job Scheduling 
 

A modified GA-based approach was presented to solve the job scheduling problem and 

was compared to a sequential job scheduling method for different scheduling scenarios. 

The proposed approach has been fully implemented on a trial basis in the live 

scheduling system at the Patrick container terminal and it effectively improves the 

performance of the seaport container terminal. Overall, the effectiveness of the GA-

based approach has been shown by numerical experiments and live testing results on 

different sets of data, and the modified GA outperforms the sequential planning 

approach. 

 

7.1.4 A Novel Crossover Method 
 

A new crossover operator for solving the job scheduling problem and the MTSP using 

GAs was developed. A two-part chromosome encoding technique was employed. This 

has previously been shown to minimise the size of the search space through the 

reduction of redundant candidate solutions. It was found that the existing crossover 

operator for two-part chromosome encoding does limit the GAs’ search ability. The 

proposed TCX has proved to be effective as it enhances the search ability of the GA by 

generating more possible solutions. Experiments for job scheduling using TCX and 

ORX+A were conducted and the results showed that TCX can statistically demonstrate 

improvement. Furthermore, we also evaluated and compared the proposed TCX 

operator with three existing crossover operators, namely ORX+A, CYX+A and 

PMX+A. The benchmarking was performed using two different MTSP objective 

functions: minimising total travel distance and minimising the makespan. The 
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experimental results showed that the TCX operator can enable the GA to produce 

higher solution quality than the three existing crossover operators.  

 

7.2 Future Work 
 

This research focuses on developing generic algorithms for coordination of robot teams. 

The algorithms developed can be applied in other applications of robot teams such as in 

manufacturing factory, warehouse material handling, and mining. There are a number 

of topics which still require further work. These topics are beyond the scope of this 

current thesis, but it is hoped that these topics will inspire future work in this interesting 

area of planning container transfers at automated container terminals. Future research 

directions may include the following:  

 

For the job grouping approach, the guiding function may be fine-tuned for extra 

improvement, and it would also be worthwhile to investigate the possibility of using a 

dynamical guiding function, so as to automatically fit into different situations.  

 

Regarding the modified GA, using some local search or greedy algorithm to modify the 

sequence in each ASC will quickly further improve the performance of the algorithm. 

Accordingly, how to properly integrate a good local search strategy into the GA would 

be a good topic. Moreover, it would be useful to develop a parallel computing 

architecture to boost the convergence speed and solution quality of the GA. This would 

greatly reduce the computation time and increase the solution quality for the same 

criterion currently employed. It would also improve the productivity of the 

transhipment process. In addition, the new crossover approach has not been 

implemented and tested in the actual scheduling system at the Patrick AutoStrad 

terminal. It would therefore be good to verify its effectiveness when applying it to the 

purposes of solving the actual scheduling problem for container transfers. 

 

In reality, the scheduling of quay-side, land-side and yard jobs needs to be closely 

coupled with the notion of frequent replanning. In general, if an ASC has not arrived at 

the pickup node of job then it may be reassigned to a different job after the application 

of replanning. The notion of replanning can be Markovian. In this sense, it is only the 
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current state of the entire seaport environment which governs future path planning, task 

allocation and scheduling of resources. Therefore, it will be important in the future to 

investigate the incorporation of replanning into the model and simulation environment . 

 

On the other hand, as uncertainty is a critical concern in port operation, it is worthwhile 

to investigate and further improve the performance of the job grouping strategy and GA 

by considering a replanning scheme for both short term and long term planning. It 

would be interesting to investigate the feasibility of a simultaneous approach 

(combination of path planning and job scheduling) with POMDP (Partially Observable 

Markov Decision Process) under uncertainty circumstances which are usually 

considered more realistic. Also, with increasing automation of yard resources, the 

performance evaluation and analysis of long-term (e.g. multiple days, weeks or months) 

planning would be helpful to ensure a high degree of coordination and efficiency for all 

material handling equipment in the transhipment process including QCs, TKs and 

ASCs. 
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Appendix: Methodology of t-test 
 
In order to interpret the experimental data within a systematic mathematical framework, 

it is necessary to adopt a formal decision making procedure. A hypothesis is merely an 

assertion that may be true or false. But to determine which of these two states is 

actually the case, the experimental data can be analysed using statistical methods. 

Therefore, it is imperative that the hypothesis testing is established within a statistical 

framework that affirms our conclusions. In this appendix we state the hypothesis testing 

technique described by Walpole et al. (Walpole et al., 2006). In general, this hypothesis 

testing technique is as follows: 

 

State the null hypothesis H0. This is the hypothesis that is statistically tested. The null 

hypotheses can be stated such that, ‘the proposed method does provide lower values of 

objective function(s).’ 

 

State the alternative hypothesis. The alternative hypotheses can be stated such that, ‘the 

proposed method does not provide lower values of objective function(s).’ 

 

Define the level of significance ( ). The level of significance is defined as the 

probability of committing a Type I error. A Type I error occurs when the null 

hypothesis (H0) is rejected when it is true. In this thesis, we employ a level of 

significance =0.05 (95% confidence).  

 

The experimental setting of our hypotheses requires testing of two independent 

populations. As such, we define the test statistic and critical region for testing two 

known means ( 1 2,x x ) and associated standard deviations (s1, s2) with n1 and n2 samples 

and independent observations. We can employ the Two-Sample Pooled t-Test with 

(n1+n2–2) degrees of freedom: 

 

 1 2

1 2
1 / 1 /

−
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+
p

x x
t

s n n
  

 

where, 



 131

 

 
( ) ( )2 2

1 1 2 2

1 2

1 1

2
p

s n s n
s

n n

− + −
=

+ −
  

 

Since, n1=n2=n=30 for all experiments in this thesis: 

 

 
( )

1 2

2 2

1 2

x x
t

s s

n

−
=

+
  

 

and require that t > (t /2, (n1+n2-2) = 2.00) or t < (t /2, (n1+n2-2) = -2.00) since we have 

selected =0.05 for (n1 + n2 – 2) degrees of freedom. All statistical hypothesis tests in 

this thesis use two-tailed critical regions to indicate whether there is a significant 

improvement (t  -2.00) or a significant degradation (t  2.00). Statistical tests resulting 

in a t-value of (-2.0 < t < 2.00) do not provide enough statistical evidence to refute or 

confirm the null hypothesis. This result indicates similar performance between the two 

algorithms. 
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