
Packet-Loss Prediction Model Based on
Historical Symbolic Time-Series

Forecasting

by

Hooman Homayounfard

A dissertation submitted in partial fullment of the requirements for the degree of

Doctor of Philosophy

in the Faculty of Engineering and Information Technology

UNIVERSITY OF TECHNOLOGY, SYDNEY

October 2013

c© Copyright 2013

by

Hooman Homayounfard

c© All rights reserved. This work may not be reproduced in whole or in part, by photo-

copy or other means, without the permission of the author.

iii

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor

has it been submitted as part of requirements for a degree except as fully acknowledged

within the text.

I also certify that the thesis has been written by me. Any help that I have received in my

research work and the preparation of the thesis itself has been acknowledged. In

addition, I certify that all information sources and literature used are indicated in the

thesis.

Signature of Candidate

iv

Production Note:
Signature removed prior to publication.

Acknowledgements

During my PhD program, I have received support and encouragement from a great num-

ber of individuals. I express my deep gratitude to my principal supervisor, Dr Paul

Kennedy, for his excellent guidance in writing this thesis and the papers which preceded

chapters. Dr Paul’s professional advice and unyielding support led me to accomplishing

this task.

I would like to thank my co-supervisors Prof John Debenham, Prof Robin Braun and Prof

Simeon Simoff for advising me on the work of this thesis. I should also acknowledge Prof

Barry Jay, Prof Didar Zowghi, Prof Massimo Piccardi, Prof Longbing Cao, Prof Jie Lu,

Dr Ante Prodan, Dr Vinod Mirchandani, Dr Priyadarsi Nanda, Dr Masoud Talebian,

Andrew Litcheld, Jose Vergara, Nima Ramzani, Debi Taylor and Vahid Behbood. These

are a few of many people who had a positive impact on my achievements.

I am in debt to the whole UTS community for challenging my mind over the past years. I

do thank Mrs Eilagh Rurenga for polishing chapters in my thesis. I am beyond grateful

for the help from Craig Shuard and Phyllis Agius, the FEIT research ofcers.

Dear family and friends, thank you for your incredible support. I would have been lost

without you in this process. My special regard to my wife and mother, Narges and Mahin,

for their sincere love, patience and support. The thesis is dedicated to my dear Leila.

v

Publications

1. Hooman Homayounfard, Paul Kennedy, and Robbin Braun, NARGES: Prediction Model

for Informed Routing in a Communications Network, In J. Pei et al., editor, LNAI, volume

7818, pages 327-338. Springer Berlin Heidelberg, 2013.

2. Hooman Homayounfard and Paul Kennedy, HDAX: Historical Symbolic Modelling of

Delay Time Series in a Communications Network, In P. J. Kennedy, K. Ong, and P. Chris-

ten,editors, AusDM09, volume 101 of CRPIT, pages 129-138, Melbourne, Australia, 2009.

vi

Abstract

Rapid growth of Internet users and services has prompted researchers to contemplate

smart models of supporting applications with the required Quality of Service (QoS).

By prioritising Internet trafc and the core network more efciently, QoS and Trafc

Engineering (TE) functions can address performance issues related to emerging Internet

applications. Consequently, software agents are expected to become key tools for the

development of future software in distributed telecommunication environments. A major

problem with the current routing mechanisms is that they generate routing tables that do

not reect the real-time state of the network and ignore factors like local congestion.

The uncertainty in making routing decisions may be reduced by using information ex-

tracted from the knowledge base for packet transmissions. Many parameters have an

impact on routing decision-making such as link transmission rate, data throughput, num-

ber of hops between two communicating peer end nodes, and time of day. There are

also other certain performance parameters like delay, jitter and packet-loss, which are

decision factors for online QoS trafc routing.

The work of this thesis addresses the issue of dening a Data Mining (DM) model for

packet switching in the communications network. In particular, the focus is on decision-

making for smart routing management, which is based on the knowledge provided by

DM informed agents. The main idea behind this work and related research projects

is that time-series of network performance parameters, with periodical patterns, can be

vii

used as anomaly and failure detectors in the network. This project nds frequent patterns

on delay and jitter time-series, which are useful in real-time packet-loss predictions.

The thesis proposes two models for approximation of delay and jitter time-series, and

prediction of packet-loss time-series – namely the Historical Symbolic Delay Approx-

imation Model (HDAX) and the Data Mining Model for Smart Routing in Communi-

cations Networks (NARGES). The models are evaluated using two kinds of datasets.

The datasets for the experiments are generated using: (i) the Distributed Internet Trafc

Generator (D-ITG) and (ii) the OPNET Modeller (OPNET) datasets.

HDAX forecasting module approximates current delay and jitter values based on the pre-

vious values and trends of the corresponding delay and jitter time-series. The prediction

module, a Multilayer Perceptron (MLP), within the NARGES model uses the inputs ob-

tained from HDAX. That is, the HDAX forecasted delay and jitter values are used by

NARGES to estimate the future packet-loss value.

The contributions of this thesis are (i) a real time Data Mining (DM) model called HDAX;

(ii) a hybrid DM model called NARGES; (iii) model evaluation with D-ITG datasets; and

(iv) model evaluation with OPNET datasets.

In terms of the model results, NARGES and HDAX are evaluated with ofine heteroge-

neous QoS traces. The results are compared to Autoregressive Moving Average (ARMA)

model. HDAX model shows better speed and accuracy compared to ARMA and its fore-

casts are more correlated with target values than ARMA. NARGES demonstrates better

correlation with target values than ARMA and more accuracy of the results, but it is

slower than ARMA.

viii

Contents

Acknowledgements v

Abstract vii

1 Introduction 1

1.1 Motivation . 5

1.2 Objectives and Key Tasks . 6

1.3 Research Design and Methodology . 7

1.3.1 Data Network Scenarios . 7

1.3.2 Proposed Data Mining Model 8

1.4 Contributions of the Thesis . 10

1.5 Structure of the Thesis . 11

2 A Review of QoS Time-Series Prediction Models 13

2.1 Overview . 14

2.2 Routing in Communications Networks 16

ix

2.2.1 Problems in Decision-Making for Routing 19

2.2.2 Online QoS Routing . 21

2.2.3 QoS Routing Parameters . 22

2.2.3.1 Packet Delay . 23

2.2.3.2 IPDV . 23

2.2.3.3 Packet Loss . 24

2.3 Telecommunications Data Analysis . 24

2.3.1 Knowledge Discovery in Telecommunications 25

2.3.2 Data Network Scenarios . 29

2.4 Prediction Methods and Models for QoS Routing 30

2.4.1 Intelligent agents for real time data mining 30

2.4.2 QoS pattern analysis . 33

2.4.3 Other Related Work . 36

2.5 Time-Series Analysis and Forecasting 37

2.5.1 Quantitative Time-Series Analysis 39

2.5.1.1 Modeling and forecasting with ARMA 40

2.5.1.2 AR Model . 40

2.5.1.3 MA Model . 41

2.5.1.4 ARMA models . 41

2.5.1.5 Non-Stationary Models and ARIMA 42

x

2.5.2 Qualitative Time-Series Analysis 42

2.5.2.1 Frequent Pattern Mining 43

2.5.2.2 Perception Based Data Mining 45

2.5.2.3 Multilayer Perceptron 47

2.6 Conclusions . 47

3 Data Mining Model for Packet Loss Prediction 49

3.1 Overview . 50

3.2 Preliminary Descriptions . 54

3.2.1 QoS Time Series . 55

3.2.2 Pattern Denition . 56

3.2.3 Look-up Table . 58

3.3 Formal Model Description . 59

3.3.1 Forecasting Module: HDAX . 60

3.3.1.1 HDAX Training . 61

3.3.1.2 HDAX Simulation . 62

3.3.2 Predictive Module: Multi-layer Perceptron 63

3.4 Implementation Paradigm . 65

3.4.1 Forecasting Module: HDAX . 65

3.4.1.1 Training Phase . 67

3.4.1.2 Simulation Phase . 68

xi

3.4.2 Predictive Module: Multi-layer Perceptron 69

3.4.2.1 Network Design . 69

3.4.2.2 Training Algorithm 70

3.5 Conclusions . 72

4 Model Evaluation 73

4.1 Evaluation Benchmark and Measurements 74

4.1.1 ARMA Benchmark . 74

4.1.2 Error Measurement . 75

4.1.3 Speed Measurement . 76

4.1.4 Quality Measurement . 77

4.2 Datasets . 78

4.2.1 D-ITG Datasets . 79

4.2.1.1 D-ITG Data Characteristics 81

4.2.1.2 D-ITG Network Test-beds 82

4.2.1.3 D-ITG Software Architecture 84

4.2.1.4 Parameter Settings for D-ITG 85

4.2.2 OPNET Datasets . 87

4.2.2.1 OPNET Data Characteristics 88

4.2.2.2 OPNET Network Test-bed 89

4.2.2.3 Parameter Settings for OPNET Modeller 90

xii

4.3 Evaluation Methodology . 91

4.4 Experiments and Results . 92

4.4.1 Experiment 1: Approximating Delay Time-Series with HDAX . . 93

4.4.2 Experiment 2: Impact Analysis of End-to-End Path with Various

Network Congestion Level on Model Predictions 97

4.4.2.1 Model Results with D-ITG Datasets 97

4.4.2.2 Model Comparison 98

4.4.2.3 Discussion on the Quality of Results 101

4.4.2.4 HDAX . 101

4.4.2.5 NARGES . 104

4.4.3 Experiment 3: Impact Analysis of Network Queuing Policies on

Model Prediction . 106

4.4.3.1 Model Results with OPNET Datasets 106

4.4.3.2 Model Comparison 107

4.4.3.3 Discussion on the Quality of Results 109

4.4.3.4 HDAX . 109

4.4.3.5 NARGES . 111

4.5 Summary of Model Performance . 113

4.6 Conclusions . 116

5 Conclusions and Future Work 117

xiii

5.1 Conclusions . 118

5.2 Limitations . 121

5.3 Future Work . 121

A List of Acronyms 125

B ARMA Parameter Estimation 131

B.1 Preliminary Estimation . 131

B.2 Maximum Likelihood Estimation . 135

C Implementation of Loss Predictor - Source Code 137

C.1 NARGES Implementation . 137

C.2 HDAX Implementation . 150

C.3 HDAX Functions . 156

C.4 Error function . 160

C.5 Running Experiments . 162

C.6 ARMA Implementation . 168

Bibliography 187

xiv

List of Tables

2.1 Comparison between routing strategies 19

2.2 A qualitative comparison between WSP and SWP routing strategies (adapted

from Marzo et al. (2003)) . 22

3.1 Deterministic Mapping Function (DMF), the scale of time-series trends

used for mapping numerical traces to the categorical (linguistic) terms. . 61

3.2 Description of the elds used for the pattern lookup-table implementa-

tion. 67

4.1 Characteristics of the end-to-end paths for the data obtained from Dis-

tributed Internet Trafc Generator (D-ITG). 82

4.2 Comparison between OPNET, OMNET and NS2 87

4.3 Types of Queueing Policies for the data obtained from OPNET. 88

4.4 Accuracy of Historical Symbolic Delay Approximation Model (HDAX)

and Autoregressive Moving Average (ARMA) (benchmark) on rst phase

of simulation runs together with speed of algorithm. 96

4.5 Accuracy of HDAX and ARMA (benchmark) in the phase two of simu-

lation runs together with speed of algorithm. 96

xv

4.6 Normalised root mean square error (NRMSE) together with algorithms

speed and cross-correlation coefcients of HDAX and ARMA forecasts

for D-ITG delay and jitter time-series. 98

4.7 Normalised root mean square error together with speed of calculation

and cross-correlation coefcients of NARGES and ARMA predictions

for D-ITG packet-loss time-series. 99

4.8 Average rankings as calculated using Friedman test for the results of the

algorithms for accuracy, speed and cross-correlation (Cross–Correlation

Function (CCF)) over delay, jitter and packet-Loss time-series. The al-

gorithms with bold rank number have better ranking in each row. 100

4.9 Holm / Hochberg Table for α = 0.05 (bold algorithm names). 100

4.10 Normalised root mean square error (NRMSE) together with algorithms

speed and cross-correlation coefcients of HDAX and ARMA forecasts

for OPNET Modeller (OPNET) delay and jitter time-series. 107

4.11 Normalised root mean square error (NRMSE) together with algorithms

speed and cross-correlation coefcients of Data Mining Model for Smart

Routing in Communications Networks (NARGES) and ARMA forecasts

for OPNET packet-loss time-series. 107

4.12 Average Rankings of the algorithms; Note that in testing the algorithms

for accuracy, speed and cross-correlation (CCF) over Delay, Jitter and

Packet-Loss . 108

4.13 Holm / Hochberg Table for α = 0.05. Note that in testing the algorithms

for accuracy, speed and cross-correlation (CCF) over Delay, Jitter and

Packet-Loss models printed in bold are statistically signicantly better. . 108

xvi

List of Figures

2.1 Stages of the theoretical framework of the Knowledge Discovery in Databases

(KDD) process in a communications network (adapted from Rocha-Mier

et al. (2007)) . 27

2.2 Process model of a communications network TSDM (adapted from Rocha-

Mier et al. (2007)) . 31

2.3 Initial and pattern time-series for a network variable a) target time-series,

b) pattern time-series of slope values (adapted from Rocha-Mier et al.

(2007)) . 32

2.4 Outliers (discords) are particularly attractive as anomaly detectors (adapted

from Keogh et al. (2005)) . 33

2.5 PDL pattern structures from active QoS measurement (adapted from Miloucheva

et al. (2003)) . 35

2.6 Using Spatio-analyser for automation of the DM tasks (adapted from Miloucheva

et al. (2003)) . 36

3.1 Conceptual Framework for NARGES Data Mining Model 51

3.2 A schema of NARGES data mining model 54

3.3 D-ITG Graphical User Interface (GUI) 56

xvii

3.4 Basic Patterns . 57

3.5 Basic patterns assigned to triplet trends. 58

3.6 The training phase uses a time-series dataset values to recognise i−j−k

patterns and train the look–up table that maps each of these patterns to a

respective frequency. The table is then used for forecasting the k trend at

time t + 1 in the simulation phase. 62

3.7 Multi-layer Perceptron . 64

3.8 A sample string of symbolic values trend time-series {P, SI, P, I, SD, P}

. 66

3.9 Impact of the number of Hidden Layer’s Neuron on the Multilayer Perceptrons

(MLP) Accuracy and Performance . 71

4.1 Target dataset (target delay, jitter and packet-loss time-series) together

with the HDAX forecasted data (forecasted delay and jitter time-series)

are used in NARGES model to predict future packet-loss. 80

4.2 D-ITG framework . 82

4.3 The University of Naples Federico II (UNINA) experimental test-bed

used to generate D-ITG traces. (adapted from Botta et al. (2008)) 83

4.4 Trace Route between the two nodes used for D-ITG QoS data generation . 84

4.5 D-ITG GUI setup . 85

4.6 OPNET network design used for QoS data generation 89

4.7 Applications prole setting on OPNET Modeller 90

xviii

4.8 Target (solid line), HDAX predicted (star-dashed line) and ARMA pre-

dicted (dot-dashed line) delay values for simulation run 1. 94

4.9 Target (solid line), HDAX predicted (star-dashed line) and ARMA pre-

dicted (dot-dashed line) delay values for simulation run 2. 95

4.10 Target (solid line), HDAX predicted (star-dashed line) and ARMA pre-

dicted (dot-dashed line) delay values for simulation run 3. 95

4.11 Target (solid line), HDAX predicted (star-dashed line) and ARMA pre-

dicted (dot-dashed line) delay values for simulation run 3. 96

4.12 Boxplots of distributions of target delay time-series for dataset 13 to-

gether with those for outputs of HDAX and ARMA 102

4.13 Stemplots of cross-correlation of HDAX forecasts and target delay time-

series for dataset 13 together with those of ARMA 103

4.14 Boxplots of distribution for target jitter time-series within dataset 13 to-

gether with those for outputs of HDAX and ARMA 103

4.15 Stemplots of cross-correlation of HDAX forecasts and target jitter time-

series for dataset 13 together with those of ARMA 104

4.16 Boxplots of distributions for target packet-loss time-series within dataset

13 together with those for outputs of NARGES and ARMA 105

4.17 Stemplots of cross-correlation of NARGES predictions and target packet-

loss time-series for dataset 13 together with those of ARMA 105

4.18 Boxplots of distributions of target delay time-series for dataset 41 to-

gether with those for outputs of HDAX and ARMA 110

xix

4.19 Boxplots of distributions of target jitter time-series for dataset 41 together

with those for outputs of HDAX and ARMA 110

4.20 Stemplots of cross-correlation of HDAX forecasts and target delay time-

series for dataset 41 together with those of ARMA 111

4.21 Stemplots of cross-correlation of HDAX forecasts and target jitter time-

series for dataset 41 together with those of ARMA 112

4.22 Boxplots of distributions of target packet-loss time-series for dataset 41

together with those for outputs of NARGES and ARMA 112

4.23 Stemplots of cross-correlation of NARGES predictions and target packet-

loss time-series for dataset 41 together with those of ARMA 113

4.24 Error (NRMSE) of HDAX and NARGES vs ARMA together with speed

of algorithm and cross-correlation coefcients are shown in the column

(a) to (c), respectively. The rst and second rows are the HDAX results

and the last row shows the whole model (NARGES) results. In the twin

bar charts, the left gray bars shows HDAX (in the rst two rows) and

NARGES (in the last row) while the right bar lled with wide downward

diagonal pattern denotes ARMA outcomes. 115

xx

Chapter 1

Introduction

“The key to growth is the introduction of higher dimensions of consciousness into our

awareness,”

— Lao Tzu

Routing as the core task in all control systems, together with the admission, ow,

and congestion control systems, is determining the overall network performance

based on the quality and quantity of provided service. It refers to the distributed tasks of

creating and utilising routing tables - one for each node within the network - that switch

ingressing data packets to the optimum link in their path to the destination.

Routing tables are local databases that model and store the global network states within

each node. A routing table is a feature, common to all routing protocols and algorithms. It

encompasses all the required information for a node to make packet-switching decisions.

Routing tables - as the maps in packet delivery throughout the network - are dynamic

and get updated by network state-based events such as node failure, link failure and con-

gestion. However, the major issue with current routing mechanisms is that they generate

1

2 CHAPTER 1. INTRODUCTION

routing tables that might not show the real-time state of a network and ignore factors like

local congestion and packet-loss (Borges et al., 2011).

Moving data from one place to another, on the other hand, is a fundamental issue in many

areas of science (Foster, 1991; Caro, 2004; Dutta, 2006). From recent developments in

wireless networks to compiling weak signals from remote transmitters, various applica-

tions rely on a telecommunications network in today’s world. The demand and supply

of telecommunication services is a worldwide phenomenon with an exponential growth

(Foster, 1991).

Rapid increases in the number of Internet users and services have prompted researchers

within academia and industry to contemplate smart ways of supporting applications with

the required Quality of Service (QoS) (Rankin et al., 2005). By prioritising data packets

and the backbone network more dynamically, QoS and packet-switching functions can

resolve performance issues with contemporary Internet applications such as real-time

voice and video conferencing.

Technologies such as those based on software agents are expected to become key tools

for the development of future software (Debenham and Simoff, 2007). Debenham et al.

(2008) state that an effective routing mechanism and its management will be crucial to

satisfactorily support diverse services in communications networks. Consequently, this

type of technology may be used in distributed telecommunication environments such as

mobile computing, e-commerce and routing management.

Mobiles, Internet, Local Area Networks (LAN), satellite services, and now Voice over

IP (VoIP), just to mention a few signicant examples, already have been and are chang-

ing the way of communicating, receiving, discovering and storing information and con-

trolling external devices. Business associated with telecommunications is huge and the

3

industry is incredibly active in the production of more and more robust and exible com-

munication models and devices (Rankin et al., 2005). The development of novel tech-

niques and tools for agent-based autonomous routing management, such as in this thesis,

offers the widest possible set of services to customers.

The main aspects of the world of contemporary telecommunications are the various types

of devices, networks, and services. Modern telecommunications has a long list of net-

work technologies and/or protocols - such as Multi-Protocol Label Switching (MPLS),

Open Shortest Path First (OSPF), Border Gateway Protocol (BGP), Intermediate System

To Intermediate System (IS-IS) and Interior Router Protocol (IRP) - for trafc routing

throughout the network. Moreover, on top of these network and basic protocols, several

different services can be offered, like best effort trafc, packet datagram, virtual circuit,

guaranteed quality and fair-share. Routing policies and protocols must adapt to con-

icting goals and limits raised by heterogeneous network applications and user-dened

demands (Sandick and Crawley, 1997).

As discussed in Weiss (2000), building a network control and management system with

the exibility for decision-making in any context is challenging. Nevertheless, it is pos-

sible to devise open and modular architectures that can be used over a wide range of

situations. Given that communications networks often present with several interplaying

physical and software components and layers, it seems natural to think about the networks

(and about their systems for management and control) in terms of distributed systems of

multiple interacting agents (Weiss, 2000; Stone and Veloso, 2000).

Agent technology has received ever-increasing attention from telecommunications do-

main experts, academia, and practitioners in recent years (Caro, 2004). Agent modelling

explicitly accounts for the modularity of network elements. It bypasses the client-server

communication model once an agent carries its own description codes and can be used

as an independent part of a globally distributed and fault-tolerant system (Hayzelden and

4 CHAPTER 1. INTRODUCTION

Bigham, 1999; Kotz and Gray, 1999; Gray et al., 2000; Tintin and Lee, 1999; Küpper

and Park, 1998). Future networks will ideally be managed and controlled by societies of

informed agents that will make decisions on behalf of human experts (Shoham and Ten-

nenholtz, 1995; Moulin, 1998; Debenham et al., 2008). This thesis takes a step towards

building such an informed agent.

Timely and informed decision-making based on information in the routing tables has

been used to route data in a network (Miloucheva et al., 2003). The uncertainty may

be decreased in making routing decisions for packet transmissions by using information

extracted from a knowledge base of the routing history. Caro (2004) state that many

parameters have an impact on routing decision-making. They mention parameters such

as link transmission rate, data throughput, number of hops between two communicating

peer end nodes, and time of day. Miloucheva et al. (2003) also list certain performance

parameters like delay, jitter and packet-loss as their decision factors for online Quality of

Service (QoS) trafc routing.

Data Mining (DM) techniques are being used in industrial applications and replaced

the manual knowledge acquisition processes with automated knowledge discovery (KD)

(Weiss et al., 1998). As Tennenhouse et al. (1997) and Caro and Dorigo (1998) dis-

cuss, applying Data Mining to telecommunications will be more practical when networks

transform to really become active networks - in which a packet may carry its own built-

in execution code and description information. In this regard, all the network future

smart routers will be able to do (as normal status of operations) customised computa-

tions on the ingressing packets and update their routing table according to the obtained

knowledge (Fayyad, 1996; Schoonderwoerd et al., 1997; Caro and Dorigo, 1998). At the

moment, routers in a communications network act more like high speed packet-switching

boxes (Caro and Dorigo, 1998), but in the future those boxes will be ousted by network

1.1. MOTIVATION 5

processors. Consequently, the whole network will appear as a multiprocessor supercom-

puter where societies of intelligent agents will accomplish all the actions - including

routing management - in virtual organisations and over the future Grid (Foster, 1991;

Caro, 2004).

This thesis addresses the issue of dening a DM model for packet-loss prediction on

the Internet. In particular, it focuses on decision-making for informed Internet routing

management based on the knowledge provided by a data mining agent (Debenham et al.,

2008; Jennings et al., 2007). The attention is restricted to real-time routing decision-

making and the way data mining knowledge can be used for this purpose.

1.1 Motivation

Current routing strategies use routing tables for evaluation of the network routes. These

are relying on the information provided by heuristic models such as shortest-path, least-

cost, random-assignment, and round-robin (Lau and Woo, 2007). Depending on the static

or dynamic nature of the network strategy, the information used for routing is reected

within routing tables that are created when the network state is updated. The issue with

these strategies is that they create routing tables that might not reect the real-time status

of the network, and consequently, neglect factors like local congestion.

Adoption of contemporary routing strategies may result in a system that operates under

sub-optimal network conditions such as partial network congestion. Consequently, from

a network perspective, the unbalanced use of network links causes an increase in cycle

time and will probably create trafc bottlenecks. Based on the issues outlined above, it

is believed that the enhancement of routing management motivates a need for a smart

decision-making process.

6 CHAPTER 1. INTRODUCTION

Ash (1997) states that routes stored in a routing table are not dynamic. Dynamic routing

approaches are needed for enhancing resource network utilisation and reducing costs (Lau

and Woo, 2007). Observing that networks are becoming more dynamic, more heteroge-

neous, less reliable, and larger in scale,” Miloucheva et al. (2003) and Jennings et al.

(2007) afrm that there is a gap in the literature regarding pattern engineering and au-

tonomous routing management tools of the communications network. To overcome the

drawbacks of traditional network management methods based on centralised control of

a relatively small number of managed entities, a data mining model is proposed in this

thesis. The DM model will help to provide routing knowledge to a routing management

module in making informed decision for data transfer over the network. Consequently,

the overall benet that will be obtained by using this approach is curtailment of ooding

the network with data mining information.

1.2 Objectives and Key Tasks

This thesis aims to present a predictive model that can make informed decisions for rout-

ing in a communications network. It investigates the enhancement of routing manage-

ment by taking into account the data mining knowledge of past history of routing deci-

sions as well as QoS patterns derived from network QoS trace datasets. A smart edge

router can make informed decisions for inter-domain data transfer, using the output of

the proposed predictive DM model in this thesis.

The model will eventually cover multiple interconnected autonomous systems. This will

require consideration of several QoS performance parameters for an effective routing

management. The major tasks in the thesis are as:

• Literature review and proposal of alternative models for demonstrating the knowl-

edge, and justifying the reasons for the research,

1.3. RESEARCH DESIGN AND METHODOLOGY 7

• Model Design to nd a model for packet-loss prediction,

• Software Model Development for running experiments and performance evalua-

tion,

• Performance Evaluation - Simulation for evaluating the model results and validat-

ing model robustness.

1.3 Research Design and Methodology

The thesis denes a model for recognising the structures and patterns in the Time-Series

(TS) data sequences (QoS and/or trafc) within a communications network based on the

DM models. The model uses a pattern database for further prediction of network param-

eters and behaviours, which are important for routing decision-making. This research

encompasses studying informed decision-making for inter-domain routing in a commu-

nications network based on the knowledge obtained from the proposed predictive models.

There are certain evaluation parameters for QoS routing that dene network performance

such as throughput, packet delay, packet-loss, jitter, minimum hop-count and maximum

reservable bandwidth. Here, it is aimed to predict link packet-loss parameter based on

delay and jitter traces — in order to detect and avoid link overload in advance of occur-

ring.

1.3.1 Data Network Scenarios

This thesis creates datasets using D-ITG trafc generator and OPNET Modeler. The

network performance traces may be obtained either from real network data logs by means

of a software agent or can be generated using a network modeller. The sequences of

8 CHAPTER 1. INTRODUCTION

network QoS measurements represent time-series of data network statistics. As discussed

in Rocha-Mier et al. (2007), OPNET modeler simulates network trafc and provides

various kinds of services and applications for performance evaluation of the proposed

model.

Network QoS datasets will also be used for the experiments. The datasets are adopted

from several archives provided in the University of Naples Federico II (UNINA) website.

Each archive contains delay, jitter, or packet-loss samples in the text format. In each text

le, the rst column indicates a reference time (i.e. the time passed from the rst packet)

and the second (which is also equal to the third) is the sample value in that time interval.

1.3.2 Proposed Data Mining Model

The conceptual framework will be a set of integrated software agents that are responsible

for: (i) analysing time series of stochastic QoS data network, and (ii) predicting link pa-

rameters. The thesis denes a theoretical DM framework and implements a DM hybrid

model based on it. The model uses the pattern denition, pattern matching and forecast-

ing components both self-made and off-the-shelf implemented as a software agent with

the ability to encapsulate various decision-making techniques.

In the proposed model, the DM theoretical model with a Pattern Denition (PD) mod-

ule is augmented – based on the Pattern Denition Language (PDL) concept described

in Miloucheva et al. (2003) – to help in pattern matching and pattern classication mod-

ules. As stated in Miloucheva et al. (2003), the number of consecutive outliers in QoS

values denes the length of outlier value pattern. The method for calculation of outlier

values may be applied for detection and prevention of the unexpected values of QoS

performance parameters due to anomalies, such as node failure, link failure and link con-

gestion.

1.3. RESEARCH DESIGN AND METHODOLOGY 9

The Time-series Data Mining (TSDM) model includes the following components:

1. QoS TSDB (Database of QoS Measured Time Series) - This is a data network

database populated either by the OPNET Modeler generated data network, the Uni-

versity of Naples Federico II (UNINA) QoS archives.

2. HDAX module (Pattern Classication, Matching and Forecasting Module) - It is

responsible for pattern classication, pattern matching and forecasting QoS TS

values for the current period of the network lifecycle (window). Firstly, it analyses

the TS sequences of QoS performance traces for past periods to construct classes

of patterns. Next, it matches the measured TS subsequence(s) with the most fre-

quently observed patterns to approximate the current pattern of the slope and ap-

proximate the current TS value. Finally, it extracts the forecasted values out of the

most similar patterns to the goal pattern, and stores forecasted QoS time series into

the QoS Forecasted Time-Series Database (FTSDB).

3. PDB (Pattern Database) - This is a database of composite patterns and their fre-

quencies. PDB is used by HDAX to store patterns and their corresponding fre-

quencies.

4. QoS FTSDB (Quality of Service Forecasted Time Series Database) - This is the

database of network QoS TS forecasted by the HDAX module for current missing

values.

5. MLP ANN - This is a Multilayer Perceptrons Articial Neural Network used for

predicting a TS future value. The MLP is using the current forecasted time-series

values (of performance parameters) assigned to each link. In this case study, MLP

architecture is used with two QoS performance parameters as the inputs, namely

delay and jitter.

10 CHAPTER 1. INTRODUCTION

As suggested by Rocha-Mier et al. (2007), the MLP uses linear combination func-

tion and sigmoid activation function for the hidden and output layers. The output of

the MLP ANN will be the packet-loss assigned to the link. The measured (target)

QoS packet-loss TS as for training dataset of the MLP ANN.

Whilst the conceptual framework envisages a set of agents, one for each router, the thesis

evaluates only one agent.

1.4 Contributions of the Thesis

In contrast with datagram packet-forwarding, virtual circuit routing technologies use TE

techniques to nd backup paths and to redirect the ingress packets after a resource failure.

The main contribution of this thesis is to offer a data mining model for mapping delay

and jitter traces to the packet-loss assigned to a link in the network. The hybrid model

presented in this thesis will predict the number of the lost packets assigned to a link. The

knowledge provided by the data mining model is to be used within the network router as

a decision factor in redirecting the QoS packets toward a backup link (and/or path) over

the Internet Protocol (IP) network scenario designed based on a test plan.

Consider an IP network that uses Border Gateway Protocol (BGP) routing scenario in

which the packets come directly to the network from the attached peers of BGP routers,

or from networks which pass VoIP streams from the other peers. When a resource failure

occurs within the BGP routing scenario, a number of peers that are communicating di-

rectly or via other networks are dropped from accessing the network. This thesis presents

a hybrid model which aims at predicting packet-loss – to improve the resilience of the

network for a single link failure. The original contributions made in this thesis are

1. A real time Data Mining (DM) model called HDAX, for approximation of delay

1.5. STRUCTURE OF THE THESIS 11

and jitter time-series;

2. Design and Development of a hybrid DM model called NARGES, for prediction

of the future packet-loss based on the approximation of current delay and jitter

assigned to a link - obtained from the above DM model;

3. Evaluation of the proposed DM models with D-ITG data generated with varieties

of End-to-End Paths (e2eP) and congestion levels;

4. Evaluation of the proposed DM models with OPNET data generated with three

queuing policies, namely First In First Out (FIFO), Weighted Fair Queuing (WFQ),

and Priority Queueing (PQ) network queuing policies.

1.5 Structure of the Thesis

The thesis is structured as follows. In Chapter 2, a literature review has been done on the

key concepts needed for the accomplishment of this research. The chapter encompasses

a brief review of QoS routing, introduces DM models related to the work of this thesis,

and identies a research gap. In Chapter 3, the denition and formal descriptions of the

proposed models and algorithms are presented, specically for the HDAX and NARGES

models. In Chapter 4, the evaluation of the models and the results are presented. Three

performance factors, namely accuracy, speed and the cross-correlation, of the algorithms

are used for the evaluation of HDAX and NARGES models. Then, Friedman test is used

to compute the Holm’s p − value and to test similarity of the algorithms performance

on each of the above performance factors. The results of the models are compared to

Autoregressive Moving Average (ARMA) model. Chapter 5, concludes the thesis; plac-

ing research into the broader context and highlighting several potential areas of further

research.

12 CHAPTER 1. INTRODUCTION

Chapter 2

A Review of QoS Time-Series

Prediction Models

“To strive, to seek, to nd, and not to yield.”

— Alfred, Lord Tennyson

The literature review in this thesis consists of four sections. Section 2.1 is a general

overview. Section 2.2 is introductory and problem oriented, focusing on intro-

duction of routing concepts in communications networks. It provides a brief overview of

diverse routing strategies, algorithms, techniques and the issues associated with decision-

making in routing. Section 2.3 introduces knowledge discovery in telecommunications

and the data network scenarios. It studies certain datasets used in network data mining

and the theoretical framework employed for this purpose. Section 2.4 reviews prediction

methods and models for QoS Routing. Summations of the two recent and related works

that focus on using intelligent agents and QoS pattern analysis for real-time data mining

are also presented. Section2.5 reviews related qualitative and quantitative methods in

time-series analysis and forecasting. Section 2.6 concludes the chapter.

13

14 CHAPTER 2. A REVIEW OF QOS TIME-SERIES PREDICTION MODELS

2.1 Overview

Interactive network multimedia applications including video and audio streaming are in-

creasingly gaining popularity on the Internet. Although the Best Effort packet switch-

ing approach is still used in current network services, the introduction of Next Genera-

tion Networks and establishment of IP networks make IP technology the most dominant

protocol for packet-delivery in future networks. Diverse network resources throughout

end-to-end network paths pose a challenge for multimedia audio or video applications

in ensuring Service Level Agreement (SLA). Other applications that play a role in this

challenge include mobile Internet access, distance learning, e-commerce, entertainment

and so on (Zheng and Boyce, 2001).

Major on-line multimedia services on the Internet set User Datagram Protocol (UDP) as

the transmission protocol (Postel, 1980, 1981). Unlike TCP/IP, UDP does not yield any

retransmission delay for packet loss, congestion control or rate control. It is vital to de-

sign robust control mechanisms to compensate for the lack of guarantee and to improve

the quality of multimedia services, under certain limitations such as restricted bandwidth,

packet-loss (loss), packet-delay (delay) and delay variations (jitter) that happen in trans-

mission time (Roychoudhuri and Al-Shaer, 2005). This thesis regards certain metrics for

measurement of QoS in the network, namely delay, jitter and packet-loss.

Telecommunications’ multimedia QoS is enormously affected by packet-loss within the

links (Cole and Rosenbluth, 2001; Markopoulou et al., 2002; Zhang et al., 2009). Packet-

loss happens when buffers overow on a router within the end-to-end path. While UDP

is not reliable in network congestion and packet-loss occurrence, the TCP/IP protocol

ensures retransmission of the lost packets. However, packet retransmission is not con-

ducive to the best real-time quality for the multimedia output. The retransmission adds

a delay and this might exceed the Mouth-to-Ear (M2E) on-line audio delay of 400ms

2.1. OVERVIEW 15

(Roychoudhuri and Al-Shaer, 2005; ITU-T, 1993, 2003).

Although Forwarded Error Correction recties packet-loss, it puts bandwidth and pro-

cessing overhead on the network. Therefore, high use of Forwarded Error Correction

(FEC) may cause excessive bandwidth consumption when there is a challenge to balance

bandwidth usage and efcient packet-loss recovery. This is counted as a motivation for

research on Internet delay, jitter and packet-loss (Roychoudhuri and Al-Shaer, 2005).

They also reports various Internet packet-loss factors such as packet-loss ratio, degrees

of burstiness and inter-loss gap, delay and jitter patterns. Roychoudhuri and Al-Shaer

(2005) states that despite the existence of comprehensive knowledge about these factors

together with their correlation, there are still gaps for dynamic FEC, and models, to be

able to predict and avoid packet-loss.

A substantial amount of investigation asserts the correlation between delay, jitter and

the packet-loss on the Internet (Brakmo et al., 1994; Moon, 2000; Jain and Dovrolis,

2002; Paxson, 1997; Roychoudhuri and Al-Shaer, 2005; Hermanns and Schuba, 1996).

Moon (2000) analyses the delay and loss measurements for TCP and UDP trafc using

the loss-conditioned average delay and observing oscillatory behaviour. Moon (2000)

reports that the utilisation level of the congested link uctuates severely and when the

link is congested, packets are dropped, and when the link is under-utilised, bandwidth

is wasted. Moon (2000) runs simulations of the Random-Early Detection (RED) queue

management to test if it breaks down the synchronisation, and if correlation is no longer

detectable by the measure of loss-conditioned average delay. It notes that the traces

can be used in a trace-driven IP voice simulator. According to Moon (2000), another

approach is to develop and validate an analytical model for the delay and loss, and use

the model in simulations. Paxson (1997), however, examines delay-loss correlation, but

he reports weak, but not negligible, correlation between jitter and loss. In contrast with

Paxson’s observations, this thesis will focus on predicting packet loss based upon the

16 CHAPTER 2. A REVIEW OF QOS TIME-SERIES PREDICTION MODELS

observed patterns of delay and jitter, rather than depending merely on the overall amount

of jitter as indicator of congestion.

The network delay assigned to a path encompasses the propagation delay across the trans-

mission lines for each individual link in the path together with the accumulated service

delay and queuing delay at the hops (routers) of the path. It may be calculated as the

Round Trip Time (RTT) and is roughly estimated as twice as the one-way propagation

delay (OWD). According to Roychoudhuri and Al-Shaer (2005), the disparity between

the above-mentioned M2E delay and One Way Delay (OWD) is dependent on the delay

inherent to the employed codecs. A codec is a device or computer program used for

encoding and/or decoding a digital signal (Naoum and Maswady, 2012). The IP Packet

Delay Variation (IPDV) or jitter, as another QoS factor, can degrade a multimedia appli-

cation’s quality including real-time voice/video stream. According to Gulliver and Gh-

inea (2007), low amounts of jitter and packet loss can also result in critical debasement

of the multimedia perceptual quality. In spite of the presence of receiver-based delay

buffer adjustment techniques and complex QoS management schemes, the impact of the

delay and jitter cannot be removed completely in broadcast environments (Gulliver and

Ghinea, 2007; Roccetti et al., 2001; Moon, 2000). The International Telecommunications

Union (ITU) also report investigations about correlations between QoS parameters (Roy-

choudhuri and Al-Shaer, 2005).

2.2 Routing in Communications Networks

Routing is the function in communications networks that manages transferring data be-

tween an end-to-end pair of nodes located in a network. Rapid improvement of storage

2.2. ROUTING IN COMMUNICATIONS NETWORKS 17

management control systems in the 1990s provided an opportunity to extend the net-

work routing rules beyond the conventional xed hierarchical routing to dynamic non-

hierarchical routing. The term dynamic refers to time-variant routing methods, which are

real-time state-dependent as opposed to static methods (Ash, 1997).

In static routing strategies and algorithms, the routing tables store the expected network

parameters like congestion, latency, and bandwidth. The static approach does not up-

date routing tables except, for example, when the topology has been changed (Stallings,

2007). The introduction of dynamic routing into several telecommunications networks

has resulted in signicant improvement in network connection reliability and availability

while decreasing costs.

As stated in Stallings (2007) and Caro (2004), current routing rules and protocols used in

IP networks are typically transparent to any QoS/SLA that different packets/trafc ow

may have. As a result, and although certain protocols have hooks, routing decisions are

presently made regardless of unavailability of the resources and/or lack of requirements.

That is, ows are often routed over paths that are unable to support the requirements,

while alternate network resources are available on alternate paths.

QoS routing tries to use routing algorithms capable of identifying reliable paths in order

to avoid deterioration in performance and to maximise the possible number of ows with

regard to their requirements. Moreover, this QoS enhancement should be “as synergetic

as possible with the routing protocols, so as to facilitate their introduction” (Caro, 2004).

Distributed systems can be characterised as a directed weighted graph (Sobrinho, 2002;

Caro and Dorigo, 1998; Schwartz and Stern, 1980). Each node in the set V represents a

processing and/or forwarding unit, and each edge in E can be mapped to a transition link

in the network. The main task of routing algorithms is making decisions to direct network

trafc ow from a sender node to the receiver while maximising network performance to

18 CHAPTER 2. A REVIEW OF QOS TIME-SERIES PREDICTION MODELS

meet QoS requirements. In the work of this thesis, the data ow is not statically assigned,

and it follows a stochastic prole that is challenging to model.

As mentioned in the literature, routing algorithms are responsible for interacting with

the congestion, admission control algorithms, links’ queuing policy, and user-generated

trafc (Caro and Dorigo, 1998; Steenstrup, 1995; Bertsekas and Gallager, 1992). In

this regard, the routing algorithm used in communications networks is responsible for

managing a set of elemental functionalities as follows: (i) aggregating, organising, and

publishing information about the trafc and network state; (ii) using the information to

generate feasible routes to maximise performance objectives; (iii) passing packets to the

selected routes.

In principle, adaptive routing strategies are more attractive, because they adapt the policy

of routing decisions based on various network states; namely time, failure, and conges-

tion (Stallings, 2007; Ash, 1997; Maxemchuk and El Zarki, 1990; Schwartz and Stern,

1980). The main disadvantage of these strategies is that they may cause loops in routes

taken. Moreover, they are dependent on state information of the network and generate ex-

tra congestion for this reason. Bertsekas and Gallager (1992) mention the inconsistency

of this category of routing protocols in the case of node or link failures or local topo-

logical changes. However, adaptive strategies are appealing to end users for their perfor-

mance and to network experts for their built-in congestion control mechanism (Stalling,

2007). These benets depend on the soundness of the design and the nature of the load

as Stallings reports. Table 2.1 summaries the major routing strategies based on Stallings

(2007).

2.2. ROUTING IN COMMUNICATIONS NETWORKS 19

Table 2.1: Comparison between routing strategies

Advantages Disadvantages
Routing
Strategy

Simplicity Reliability Robustness Congestion

risk

Oscillations

in route

Dependency

on state

information

Route
Selection

Fixed High High∗ High∗ Medium Low Low Based on the
expected
xed routing
table entries

Flooding High High High High High Low Flooding to
all nodes

Random High Medium High Medium∗∗ Medium Low Least-Cost
or based on
the
probability:
Pi = Ri∑

j Rj

Adaptive Low Medium High Medium
/ Low

Medium High Based on the
algorithms

* in stable and small networks
** in comparison small networks

2.2.1 Problems in Decision-Making for Routing

The principle problems of decision-making for routing reported in the literature are sum-

marised as follows:

• Routing systems and databases are distributed network-wide with strict real-time

constraints on them. Failure and state information as well as user generated trafc

patterns are also propagated over the network. Foster (1991) states that it seems

unlikely to get a thorough and online knowledge about the distributed state while

nodes require information from other domains to make routing decisions. Cur-

rently, the routing algorithm assigned to each router can only make real-time deci-

sions based on local domain information because information from other domains

might be transmitted through other nodes after a delay (Caro and Dorigo, 1998)

and the incompleteness of inter-domain information required by DM tools makes

real-time decision-making very hard. However, a data mining module can play

a critical role in predicting and managing the network decisions. In a real-time

20 CHAPTER 2. A REVIEW OF QOS TIME-SERIES PREDICTION MODELS

scenario, an informed agent (Debenham and Simoff, 2007) may tap the network

data to learn online, and eventually, “determine the best routing table values with

respect to the network performance criteria” (Caro and Dorigo, 1998).

• Decision-making in routing is stochastic and time-varying. The time-variant and

stochastic nature of the data generation process makes decision-making complex.

To analyse telecommunications data, network data should be transformed into a

time-series (Rocha-Mier et al., 2007). Thus, it is hard if not infeasible to depict an

image of the whole system as stated by Caro and Dorigo (1998).

• Decision-making in routing is multi-objective. That is, there are various conict-

ing parameters that inuence decisions in routing. In this regard, the most com-

mon performance parameters are throughput, packet loss and average delay. For

instance, Bertsekas and Gallager (1992, p. 367) state that:

“The effect of good routing is to increase throughput for the same value

of average delay per packet under offered load conditions and to de-

crease average delay per packet under low and moderate offered load

conditions.”

Other performance metrics measure the results of the routing algorithm’s simplic-

ity, exibility, etc. Moreover, in the special case of QoS network routing, the

number of decision factors accrues rapidly, making the situation much harder to be

efciently managed.

• Decision-making in routing is multi-constrained. Heterogeneous underlying net-

work technologies, provided network services, and requested user services are

three main sources of constraints (Caro and Dorigo, 1998). Users demand the

best quality, most reliability, and lowest costs across the heterogeneous networks.

Commercial factors and service providers, on the other hand, try to respond to

2.2. ROUTING IN COMMUNICATIONS NETWORKS 21

these requests while optimising their prot. Moreover, in a high-speed QoS net-

work, there are growing demands for fault-isolation and reliability. There should

be a guarantee that the user sessions get the necessary resources in the proper time

and under manageable fault events.

Caro and Dorigo (1998) assert that the problem of decision-making for routing in a com-

munications network belongs to the category of reinforcement learning. They dene

reinforcement learning as a sub-area of machine learning concerned with how an agent

converts situations into actions, so as to maximise a numerical ’reward’ signal. Caro and

Dorigo (1998) report the need for a precise metric to evaluate forwarding decisions. The

measure should be able to deal with incomplete state information that may also be hidden

from each agent. In this thesis a hybrid DM model is presented that uses the previous

patterns of delay and jitter time-series to approximate the trend and the value of these

time-series in the future.

2.2.2 Online QoS Routing

Routing algorithms investigate available routes (with enough bandwidth) to achieve ef-

cient resource utilisation. Moreover, in QoS routing the selected routes ought to have

enough resources to meet the requirements of QoS (Marzo et al., 2003). There are two

different objective functions used by the QoS routing strategies to maximise efciency

of the network. These are the shortest path and the least loaded path which are used

for minimising cost and load balancing, respectively. Since these routing strategies may

conict with one another, they are not simultaneously achievable by mere facilitation of

a single routing algorithm.

Guerin, Orda, and Williams (1997) propose the Widest-Shortest Path Routing Strategy

(WSP), which uses the Minimum Hop-Count Algorithm (MHA) to choose a path amid

22 CHAPTER 2. A REVIEW OF QOS TIME-SERIES PREDICTION MODELS

the feasible paths. Then, the path with the Maximum Reservable Bandwidth (MRB) is

selected, in case more than one path is available. In this regard, the MRB is dened as the

minimum of the reservable bandwidth of all links within a path (Katz et al., 2003). Wang

and Crowcroft (1991), on the other hand, introduce the Shortest-Widest Path Routing

Strategy (SWP). In contrast with the selection criteria of the WSP, SWP select paths

based on the MRB, and thereafter based on the MHA over the MRB results. All together,

WSP and SWP select a path to fulll a primary criterion, respectively, amid resource

utilisation and load balancing. Table 2.2 summarises a qualitative comparison between

two major categories of QoS online routing strategies based on Marzo et al. (2003).

Table 2.2: A qualitative comparison between WSP and SWP routing strategies (adapted
from Marzo et al. (2003))

Online Quality of Service Routing
Strategy Primary Criterion Information Selection Procedure Disadvantages

WSP Resource Utilisation MRB Using MHA algorithm and
then MRB over the MHA re-
sults

Selecting a path with larger num-
ber of hops – for WSP only).

No Established Limit

SWP Load Balancing Using MRB algorithm and then
MHA over the MRB results.

Selecting a path with a congestion
point.

No Request Rejection nor Path
Recovery treatment are consid-
ered.

2.2.3 QoS Routing Parameters

This thesis focuses on the IP network layer introduced in Rose and Cass (1987) and con-

siders of the time-series of QoS (performance) parameters needed for informed decision-

making in routing (Feng et al., 2011). Rocha-Mier et al. (2007) and Weiss et al. (1998)

dene certain criteria in their works including Ethernet trafc, DB load and CPU utili-

sation. However, there are certain performance measures and QoS parameters taken into

account in the literature that are more suitable for our work - dened in Green (2007) and

Katz et al. (2003) - including: Throughput, Packet Delay, Packet Loss, Jitter, Maximum

2.2. ROUTING IN COMMUNICATIONS NETWORKS 23

hops and MRB. In the following, the QoS parameters that mainly used in this thesis are

introduced.

2.2.3.1 Packet Delay

The (average) delay per packet (or latency) is the end-to-end traveling time for a packet

between the sender and receiver nodes. It is calculated by the sum of a series of network

delays as follows:

DTotal =
n

i=1

Di (2.1)

where DTotal is the total delay across the end-to-end path through n networks, and Di is

the delay of a packet through the ith network in the series.

2.2.3.2 IPDV

This parameter, also called jitter, is the deviation in the arrival time of the packets from

the expected time. The maximum jitter over a point-to-point link and a series of networks

is the sum of the IPDVs for each network in the series. The actual jitter for the point-

to-point link, however, may be less than this maximum number because of the positive

and/or negative direction of the variations. Cumulative jitter is expressed as follows:

JTotal =
n

i=1

ji (2.2)

where JTotal is the total delay across the end-to-end path through n networks, and ji is

the jitter of a packet through the ith network in the series.

24 CHAPTER 2. A REVIEW OF QOS TIME-SERIES PREDICTION MODELS

2.2.3.3 Packet Loss

Packet loss is the disposal of a data packet during transmission before it arrives at the

destination. Formally, the total percentage of packet loss in multiple networks is dened

as the product of all packet loss in each individual network:

LTotal = 1 −


Πn
i=1(1 − Li)


(2.3)

where LTotal is the total loss across the end-to-end path through n networks and Li is the

packet loss percentage for the ith network.

2.3 Telecommunications Data Analysis

As the world is becoming more data-driven, the uncertainty and complexity of decision-

making is rapidly increasing in manufacturing, business, medical and telecommunica-

tions industries (Han and Kamber, 2006). To cope with this growing dilemma in chaotic

environments, novel modelling and computing paradigms such as data mining are needed.

The salient characteristics of these new models (Kusiak, 2002) can be described as fol-

lows:

• Adaptability of decision-making models to their environment;

• Capability of manipulating qualitative and/or quantitative, varying data;

• Optimality of response time;

• Interpretability of the decisions and outcomes.

Han and Kamber (2006) lists several applications for the telecommunications industry

2.3. TELECOMMUNICATIONS DATA ANALYSIS 25

such as novel network design, mobility and microbilling, mobile services, and home-

land security (2006). Moreover, as afrmed by Sasisekharan et al. (1996), data mining

can be used in forecasting for large-scale communications networks. In programs such

as AT&T’s Teresa, for instance, the rules and knowledge in its database are used for

conducting remote tests and measures. Diagnostic software that attempts to resolve (or

predict) chronic and transient faults must rely on large amounts of historical information

and analytical mining results of behavioural and also discord patterns (Keogh et al., 2005;

Sasisekharan et al., 1996). In another approach, the AT&T’s Scout system examines data

corresponding to a brief period of time (minutes or hours) and detects patterns among

diagnostic data from the global network (Kusiak, 2002; Sasisekharan et al., 1996).

As mentioned before, in this section a general overview of data mining process in a

telecommunications network is presented. Later, the theoretical framework and various

data sets mentioned, which is used in network data mining. Finally, summations of the

two recent and related works that focus on using intelligent agents and QoS pattern anal-

ysis for real-time data mining are discussed.

2.3.1 Knowledge Discovery in Telecommunications

Data Mining (DM), or Knowledge Discovery in Databases (KDD), emerged as a modern

eld from diverse disciplines — including, but not limited to, statistics, articial intel-

ligence, machine learning, and databases. It identies valid and up-to-date knowledge

together with potentially functional and eventually interpretable patterns out of stored

raw data (Han and Kamber, 2006; Fayyad et al., 1996).

The goal of Data Mining is to build models useful for decision-making. In this regard,

Data Mining models must provide useful, interpretable knowledge because it is not likely

that companies decide based on difcult-to-understand black-box models (Fayyad et al.,

26 CHAPTER 2. A REVIEW OF QOS TIME-SERIES PREDICTION MODELS

1996). Objectives such as model accuracy and interpretability of the knowledge are con-

tradictory to some extent. That is, naive models are typically more interpretable, although

they are usually less accurate.

Modern DM techniques should provide highly precise results using high-dimensional

models. These techniques also require validation of models and interpretation of results

for successful decision-making. Regardless of how powerful is the DM technique used

in the modelling stage, the implemented model may not be valid if data are not correctly

collected and cleaned, or the modelling is not formulated well.

Data Mining, as a recognised topic within the process of Knowledge Discovery in Databases,

nds benecial patterns within the data using data analysis and knowledge discovery

techniques. As an example of inductive learning, DM depends on generalising from

previous patterns. In the telecommunications domain, DM model may predict a partial

network failure based on previous historical values (Weiss et al., 1998). The DM tasks

may be associated with real telecommunication problems. The applications can be con-

sidered as classication tasks (e.g., is a network element faulty or not).

The key motivation of data mining is that it replaces the time-consuming and manual

process of knowledge acquisition from a domain expert. In particular, DM technology

benets the telecommunications industry since:

• Telecommunications networks are usually too complicated to create thorough sim-

ulation models;

• Large amounts of data are commonly available;

• Data Mining can extract cutting-edge, hitherto unexploited knowledge where do-

main experts might not aware of hidden patterns in data.

Data Mining typically comprises stages including data cleaning and integration, feature

2.3. TELECOMMUNICATIONS DATA ANALYSIS 27

selection, transformation, pattern extraction, pattern recognition, and knowledge presen-

tation (Han and Kamber, 2006). The stage in the DM process for telecommunications

applications, which usually needs the most attention, is the transformation stage (Weiss

et al., 1998). This stage identies benecial patterns to represent the data.

The transformation stage is complicated by the fact that telecommunications networks

produce huge amount of time-labeled sequences of values – where both of the individ-

ual values and their behaviour over time of the network are signicant. Because many

DM models do not use the temporal time-series directly, the time-series are usually trans-

formed so that can be fed into the models. Another approach is to implement a DM model

to understand temporal relations (Rocha-Mier et al., 2007; Miloucheva et al., 2003; Weiss

et al., 1998). Figure 2.1 illustrates the typical stages in the KDD process in a communica-

tions network based on the perceptual framework presented in Rocha-Mier et al. (2007).

Figure 2.1: Stages of the theoretical framework of the KDD process in a communications
network (adapted from Rocha-Mier et al. (2007))

In developing a conceptual framework for the entire data mining process, this thesis

draws upon the work of Rocha-Mier et al. (2007); Miloucheva et al. (2003); Fayyad et al.

28 CHAPTER 2. A REVIEW OF QOS TIME-SERIES PREDICTION MODELS

(1996). As shown in Figure 2.1, the theoretical framework of real-time DM contains

seven steps. These steps are explained respectively in the following:

• Collection of telecommunications data from distributed network datasets;

• Data preparation and construction of time-series after transformation of raw data,

e.g., deleting repeating and duplicated data, interpolating missing data and apply-

ing time window transformations. Rocha-Mier et al. (2007) afrm that the telecom-

munications network data should be transformed;

• Elimination of redundant network parameters using correlation analysis over those

parameters (Pearson or Spearman techniques may be used in this step for correla-

tion analysis. Rocha-Mier et al. (2007) report the latter one);

• Detection of the most relevant variables to the target parameter(s) using importance

analysis;

• Implementation of a forecasting model to estimate parameters to be used by a pre-

diction model. The most appropriate forecasting method or a combination is se-

lected for the time-series;

• Implementation of the prediction model. Among various high-dimensional mod-

els such as Articial Neural Network (ANN), Decision Trees (DT) and Linear

Regression (LR), the most appropriate predictive model is determined based on

the network variable to be predicted. Rocha-Mier et al. (2007) suggests an MLP

for this purpose;

• Evaluation of the developed DM model based on the interpretation of the results.

The theoretical framework for data-driven decision-making in Figure 2.1 is founded on

the notion of what it means for an agent/expert to be data driven. It has been assumed that

2.3. TELECOMMUNICATIONS DATA ANALYSIS 29

the agents, regardless of where they are, have questions, issues, or problems for which

data must be collected and analysed in order to make informed decisions. No doubt,

many variables at the global and local levels may and will impact local decisions, but as

the rst step, this thesis examines local decisions, i.e. for two neighbour routers (peers).

This thesis employs DM methods for predicting performance parameters assigned to

QoS/SLA in relation to the previous temporal sequences logged for each of them. The

forecasted values can facilitate decision-making for routing management, when the in-

formed decision-making software agents are used in directing trafc throughout the net-

work. The DM framework presented in this subsection is used to design the NARGES

conceptual framework in Chapter 3.

2.3.2 Data Network Scenarios

Weiss, Eddy, Weiss, and Dube (1998) also list three data types for telecommunications

networks: call data, network data and customer data. However, the data type used for

routing management is network data and there are two salient types of network data

mentioned in the literature for fault prediction and isolation: alarm data and QoS data

traces. Rocha-Mier et al. (2007) describe measurement sequences of variables represent-

ing the time-series based on data network statistics as part of their project. They used

OPNET Modeler for generating articial statistics and values of network data variables.

Telecommunications network QoS data traces, on the other hand, are used in novel data

mining methods for automation of pattern recognition. These data mining methods use

similarity analysis of signicant most frequent patterns in network and forecasting the

QoS datasets (Miloucheva et al., 2003). This involves analysing the time-series of QoS

data traces and is required for boosting performance of QoS data mining in network

autonomous fault prediction and isolation.

30 CHAPTER 2. A REVIEW OF QOS TIME-SERIES PREDICTION MODELS

2.4 Prediction Methods and Models for QoS Routing

The telecommunications network environment is chaotic and can change dramatically in

a very brief time. Moreover, it is impossible to analyse telecommunications network only

by statistics (Rocha-Mier et al., 2007, p. 139). Data Mining techniques that depend on

static off-line training may not produce satisfactory results in forecasting network states.

Taking into account the eventual variations of the environment, the extracted knowledge

from the data mining models can become out of date if it is not updated periodically.

Rocha-Mier et al. (2007) state that the stochastic nature of the time-series of network

data and the need for real-time forecasting force the prediction model to approximate

the target time-series with piece–wise linear patterns. Several algorithms for piecewise

linear representation of time-series data mining (TSDM) have been released (Batyrshin

and Sheremetov, 2008; Keogh et al., 2005; Lin et al., 2003; Last et al., 2001). For in-

stance, the symbolic presentation method of the time-series called Symbolic Aggregate

Approximation (SAX) was reported in Lin et al. (2003) and Keogh et al. (2005). Among

the reviewed literature, there are two works especially related to our project, in which

the authors state the recognition of discord (outlier) patterns as the main idea of their

prediction models.

2.4.1 Intelligent agents for real time data mining

Rocha-Mier et al. (2007) present a multi-agent framework for time-series data mining

(TSDM) over a communications network. Their multi-agent predictive model is based

on using a multilayer perceptron articial neural network (MLP ANN) architecture and a

DM theoretical framework. Figure 2.2 summarises the TSDM process model presented

in Rocha-Mier et al. (2007). As they depict in this picture, a perceptual forecasting

model is working within their proposed predictive DM model. The forecasting model

2.4. PREDICTION METHODS AND MODELS FOR QOS ROUTING 31

is developed based on the Moving Approximation (MAP) transformation (Batyrshin and

Sheremetov, 2008).

Figure 2.2: Process model of a communications network TSDM (adapted from Rocha-Mier
et al. (2007))

The MAP method facilitates decision-making for intelligent agents and/or expert oper-

ators. As discussed by Batyrshin and Sheremetov (2005) and Rocha-Mier et al. (2007),

in MAP method the goal pattern of time-series values can be substituted by the percep-

tual pattern of slope values describing a class of time-series patterns with the shape of

the goal pattern. The method searches for the sequence of the most similar slope values

to the perceptual image of the goal pattern. Figure 2.3 shows an example of an initial

time-series and the pattern of slope values as presented in Rocha-Mier et al. (2007).

The MAP method recognises all the patterns in the time-series sequences of measured

values. Then, it analyses these patterns for each unit of time window - namely a day

or hours - to generate classes. Rocha-Mier et al. (2007) calculate the corresponding

probability of the class to be chosen. Their proposed distance function between the time-

series of patterns considers certain parameters mentioned in Section 2.2.3:

d(x, y) =


m

i=1

α(txi
− tyi

)2 + β(qxi
− qyi

)2 (2.4)

32 CHAPTER 2. A REVIEW OF QOS TIME-SERIES PREDICTION MODELS

Figure 2.3: Initial and pattern time-series for a network variable a) target time-series, b)
pattern time-series of slope values (adapted from Rocha-Mier et al. (2007))

where m is a number of patterns in a considered class of time-series of patterns x and

y, i is an index to current pattern, the t and q in this function are the time point and in-

tensity of patterns, respectively, α and β are normalising parameters. Rocha-Mier et al.

(2007) describe that the predicted values are derived from the most similar pattern fol-

lowing that of the goal. That is, the location value of the pattern found is extendable to

a predicted location value of the goal pattern. This helps in computation of the predicted

value of the goal pattern by means of the slope value, which is directly following the

found subsequence.

2.4. PREDICTION METHODS AND MODELS FOR QOS ROUTING 33

2.4.2 QoS pattern analysis

Pattern analysis is a specic data mining approach dependent on heuristics to investi-

gate, analyse, model, and predict compartments and dependencies of time-series by the

use of patterns (Miloucheva et al., 2003). Pattern based data mining tools were devel-

oped for various applications and elds. For instance, Keogh et al. (2005) comments

that the discords annotated by a cardiologist are widely used for anomaly detection in

Heart Beat patterns in an electrocardiogram (Electrocardiography (ECG)). As another

example, Van Wijk and Van Selow (1999) present a clustering based pattern analysis tool

for exploration and visualisation of large quantities of univariate time-series data. Query

Sketch is also an online prototype program for graph centric queries (Miloucheva et al.,

2003).

Time-series discords also have many uses in data mining, including quality enhancement

for clustering, data cleaning, summarisation, and anomaly detection algorithms (Keogh

et al., 2005). As shown in Figure 2.4, the basic idea behind this work is that the signicant

kinds of outliers in the time-series sequences can be used as effective anomaly and failure

detectors in symmetric systems with periodic patterns.

Figure 2.4: Outliers (discords) are particularly attractive as anomaly detectors (adapted
from Keogh et al. (2005))

As illustrated in Figure 2.4, discords are subsequences of a longer time-series and have

maximal contrast with all the rest of the time-series subsequences. They, thus, depict the

most unusual subsequences within time-series and may be used to predict future failures

and problems.

34 CHAPTER 2. A REVIEW OF QOS TIME-SERIES PREDICTION MODELS

The importance of pattern recognition as a data mining technique in predicting network

behaviour is addressed by (Estan et al., 2003). Moreover, Miloucheva et al. (2003) re-

port a gap in the development of automated pattern recognition and similarity analysis

tools for QoS data mining. The European IST-INTERMON project develop an inte-

grated architecture for visual data mining and inter-domain QoS monitoring, analysing

and modelling of network trafc. The framework developed for the European IST Inter-

Domain QoS Monitoring project (INTERMON) project integrates QoS analysis within a

large-scale inter-domain networking environment based on the interactions with monitor-

ing, topology discovery and trafc analysis tools. Miloucheva, Hofmann, and Gutirrez

(2003) dene a pattern denition language (PDL) for their research project, in which

they consider the specics of the pattern structures derived from time-series of mea-

sured performance parameters in the telecommunications network. They introduce basic

QoS pattern types including extreme value, plain, increase, and decrease and then dene

composite pattern types based on the basic patterns. The basic and composite patterns

later are used in a spatio-temporal QoS pattern analyser developed for the INTERMON

project’s framework. The PDL given in Miloucheva et al. (2003) encompasses the fol-

lowing syntax as

Composite Pattern Structure =

Shape Parameters, QoS Description, Basic Pattern Sequence

Shape Parameters = ‘shape’ (DistanceMeasure, DefinitionOptions)

QoS Description = ‘QoS’ (QoS Metric,Metric Unit,Monitoring Scale)

Basic Pattern Sequence = Basic Pattern Structure , Basic Pattern Structure

Basic Pattern Sequence = Basic Pattern Type ‘(’ Length, Range ‘)’

Basic pattern type = ‘Extreme’, ‘Plain’, ‘Incr’, ‘Decr’

2.4. PREDICTION METHODS AND MODELS FOR QOS ROUTING 35

In the above syntax, basic pattern structures encompass extreme, plain, increase and de-

crease pattern types. For all basic patterns within the composite pattern structure, shape

parameters are used to explain the structure options. A Distance Measure is a shape

parameter by which an interval is dened. The interval is used to elicit the particular ba-

sic pattern type. An outlier denition option measures the means of computing extreme

value patterns. Figure 2.5 shows pattern structures, which are acquired from active QoS

measurement discussed in Miloucheva et al. (2003).

Figure 2.5: PDL pattern structures from active QoS measurement (adapted from Miloucheva
et al. (2003))

The developed INTERMON technology is based on automated recognition, analysis,

storage and processing of QoS patterns regarding the network topology and the tempo-

ral context. The QoS patterns are derived from network topology and periodical time

windows, respectively. As discussed before, these units and patterns may be employed

by the agents and/or network engineers to help them make informed decisions based on

the experiences of route change, abnormal QoS values, and requested QoS. Figure 2.6

shows a data mining approach utilising the spatio-temporal QoS pattern analyser based

on Miloucheva et al. (2003) work.

36 CHAPTER 2. A REVIEW OF QOS TIME-SERIES PREDICTION MODELS

Figure 2.6: Using Spatio-analyser for automation of the DM tasks (adapted from Miloucheva
et al. (2003))

As explained later in Chapter 3, the concept of PDL is used to dene pattern denitions

for a subcomponent of the proposed model in this thesis.

2.4.3 Other Related Work

Internet packet–loss and delay variation show temporal dependency. If packet n is lost,

packet n+1 is likely to be lost. This trait leads the network to a bursty packet-loss in real–

time multimedia services such as VoIP (Jiang and Schulzrinne, 2000) that may degrade

QoS and the effectiveness of recovery mechanisms such as forward error correction.

Various research projects have studied the delay and packet loss, jitter, available band-

width and other performance traces in the network so as to predict network anomalies or

differentiate them from noise. The path–load measurement by Jain and Dovrolis (2002)

employs jitters to calculate the available bandwidth. However, as conrmed by Roy-

choudhuri and Al-Shaer (2005), there is not a detailed analysis of online prediction of the

packet loss from the jitter.

2.5. TIME-SERIES ANALYSIS AND FORECASTING 37

Some researchers report techniques using jitter and TCP window size for congestion

avoidance (Brakmo et al., 1994; Wang and Crowcroft, 1991; Jain, 1989). Others use

these results for classication of loss and noise in packet transmission (Biaz and Vaidya,

1998). Tobe et al. (2000) discriminates various degrees of congestion according to the

relative one way delay and static delay thresholds. They do not measure or predict delay

trends and packet loss based on the congestion level Roychoudhuri and Al-Shaer (2005).

Other research projects (Dovrolis et al., 2001; Paxson, 1997; Carter and Crovella, 1996)

have employed packet routing techniques to estimate the path capacity and available

bandwidth. Specically, Paxson (1997) study the relation between delay and jitter traces

and the packet loss. He assert the correlation between delay and packet loss, but report a

weak, though not negligible, dependency between jitter and packet-loss. In contrast with

Paxson’s ndings, Roychoudhuri and Al-Shaer (2005) predict packet-loss using patterns

in delay variation, time-series, rather than the overall amount of the jitter parameter. They

develop a model to forecast congestion based on packet-loss prediction by means of jitter

observations.

In this regard, this thesis addresses the issue of dening a symbolic delay forecasting

model, which is based on historical frequencies of observed patterns of the delay varia-

tion in adjacent uniform windows. In particular, this research proposes a DM model, as

part of a informed (Debenham et al., 2008) routing management model, to be used in a

smart network router for online routing management. Next section reviews models and

techniques of time-series analysis and forecasting relevant to the work of this thesis.

2.5 Time-Series Analysis and Forecasting

A time-series is a time-variant sequence of data measured on a variety of cases. Time

Series analysis and forecasting is an important problem in many elds (Fu, 2011).

38 CHAPTER 2. A REVIEW OF QOS TIME-SERIES PREDICTION MODELS

Forecasting future events is a crucial task and the predicted data may be used as the input

of planning and decision-making processes. Despite the wide range of the forecasting

methods, all of them fall into two approaches: quantitative or qualitative.

Most of the qualitative forecasting methods are intrinsically subjective and require expert

interpretation. These methods are typically used when there is a historical data based on

which the forecast is done. Quantitative methods, on the other hand, are based on using

historical data (even with missing data) and a mathematical forecasting model.

The forecasting model in quantitative methods formally extrapolates future data by means

of past and current patterns in historical data (Montgomery et al., 2008). General time-

series models apply statistical features of historical data to approximate the unknown

factors of the model. Accurate identication of the proper forecasting method is signif-

icant and, as Montgomery et al. (2008) state, it can help to improve prediction time and

accuracy.

In this thesis, a hybrid model is designed and developed that uses both of the qualitative

and quantitative techniques. This enables the proposed model to have fault-tolerance in

dealing with missing data while comparing favourably with a quantitative method such

as ARMA — by making faster decisions based on the historical value of the QoS traces

assigned to the links.

In the following subsections, relevant to the work of this thesis, certain quantitative and

qualitative time-series analysis models are described.

2.5. TIME-SERIES ANALYSIS AND FORECASTING 39

2.5.1 Quantitative Time-Series Analysis

Autoregressive moving average (ARMA) models (Box et al., 2011) are often referred as

Box-Jenkins models in time-series analysis literature (Brockwell and Davis, 2006; Chat-

eld, 2004) because the iterative Box-Jenkins method is typically employed to approxi-

mate the time-series data. The ARMA model is a tool for understanding and forecasting

time-series sequences. The model includes two Autoregressive Model (AR) and Moving

Average Model (MA) parts. It is usually then referred as the ARMA(p,q) model where p

and q are the orders of the autoregressive and moving average parts, respectively.

Analysis of the conventional time-series future movements is highly based on the his-

torical values of it. There are certain implicit factors that lying on the time-series, but

appearing in other data sources, showed to have signicant impacts on the time-series be-

havior. A typical example of such time-series is the link utilisation level. The uctuation

of a specic link utilisation level is the consequence of certain performance parameters

such as delay, jitter and packet-loss, where the values of the latter parameters in each

time window directly affect the utilisation level.

There are various ranges of methods used in the literature about stationary and non-

stationary models for statistical time-series analysis and forecasting. These are includ-

ing Autoregressive Model (AR), Moving Average Model (MA), Autoregressive Moving

Average (ARMA), Autoregressive Fractionally Integrated Moving Average (FARIMA),

Autoregressive Conditional Heteroskedasticity Model (ARCH) and Hidden Markov Model

(HMM) models. The nonlinear model ARIMA/GARCH dened in Zhou et al. (2006)

forecasts the network traces. The standard model tting procedures do not require any

assumption for the underlying structure of the system and can be used for systems with-

out background information (Antari and Zeroual, 2009). There is, however, less certainty

concerning the use of certain loss models, and misunderstanding assigned to the common

40 CHAPTER 2. A REVIEW OF QOS TIME-SERIES PREDICTION MODELS

models used; such as Gilbert model. In the following subsections, ARMA model is in-

troduced to be used in Chapter 4 as a benchmark for evaluating the proposed models.

2.5.1.1 Modeling and forecasting with ARMA

In this section, the ARMA model is briey described. The ARMA will be used later

for model evaluation in chapter 4. For more information about the other models refer

to the cited literatures and Appendix B. The ARMA model is based on the denition

of a stochastic process in a probability space. A probability space is a measure space

Ω on which an absolutely additive measure P is dened such that P (Ω) = 1 (Hsu and

Robbins, 1947).

A stochastic process is formally dened in Chateld (2004) and Box et al. (2011) as

the collection of random variables, ordered in time, which are discrete or continuous —

discrete in this thesis. Stochastic process is a statistical phenomenon evolving in time

based on probabilistic rules.

Stationarity is dened as a class of stochastic process. It is the characteristic of a time-

series based on the statistical properties of the times series. According to Chateld (2001)

a time-series xt is stationary if the time-series mean, E(xt), is a nite constant. That is

characterised as the constant probabilistic distribution of the time-series (Montgomery

et al., 2008).

The QoS time-series used in this thesis are discrete stationary processes. The AR, MA

and ARMA processes are described in the following subsections.

2.5.1.2 AR Model

The process Xt is called an Autoregressive of order p (AR(p)) if:

2.5. TIME-SERIES ANALYSIS AND FORECASTING 41

Xt =

p

k=1

φkXt−k + Zt (2.5)

where φks are constants, 0 ≤ k ≤ p, and Zt is purely random process. The mean and

variance values for ARp process is Mean(Xt)=0 and V ar(Xt) = σ2
z

∑p
k=1 φ2

k.

2.5.1.3 MA Model

The process Xt is called a Moving Average of order q (MA(q)) if:

Xt =

q

l=1

θlZt−l (2.6)

where θls are constants, 0 ≤ l ≤ q, and Zt is purely random process. The mean and

variance values for MAq process is Mean(Xt)=0 and V ar(Xt) = σ2
z

∑q
l=0 θ2

l .

2.5.1.4 ARMA models

The process Xt is called Autoregressive Moving Average of order (p, q) (ARMA(p,q))

if:

Xt =

p

k=1

φkXt−k + Zt +

q

l=1

θlZt−l (2.7)

where φks and θls are constants, 0 ≤ l ≤ q and 0 ≤ k ≤ p, and Zt is purely random

process.

ARMA process can model a time-series with fewer parameters than pure MA and AR

processes. This is a primary apotheosis of what is called the Principle of Parsimony.

According to Chateld (2004), many stochastic processes may be expressed by formal

42 CHAPTER 2. A REVIEW OF QOS TIME-SERIES PREDICTION MODELS

algebraic modeling of the random variable based on its past values with imperceptible

error process. For further information about the ARMA process the reader can refer

to various literature including Box et al. (2011), Montgomery et al. (2008), Chateld

(2004), Brockwell and Davis (2006) and Chateld (2001).

Selecting the proper ARMA(p,q) model is signicant in representing an observed sta-

tionary time-series with a number of factors. These include the choice of p and q (order

selection), estimation of the mean, the coefcients φk, k = 1, . . . , p, θl, l = 1, . . . , q, and

the white noise variance σ2. Final selection of the model also depends on a variety of

goodness of t tests. In Section 4.1.1 of the thesis, ARMA algorithm is described as the

benchmark used for models evaluations.

2.5.1.5 Non-Stationary Models and ARIMA

Let d represents a non-negative integer. If Zt in the Equation (2.7) is a causal ARMA(p,q)

process, then Xt is an ARIMA(p,d,q) process.

Autoregressive Integrated Moving Average (ARIMA) model, as a generalisation of ARMA

which includes a wide range of non-stationary time-series, is developed based on the

denition of ARIMA processes. That is, after differencing the sequence nitely many

times, ARIMA processes reduce to ARMA processes (Brockwell and Davis, 2006). In

this regard, for a non-stationary time-series, ARIMA model may be used as an alterna-

tive benchmark instead of ARMA. This thesis, however, uses ARMA while deals with

stationary time-series.

2.5.2 Qualitative Time-Series Analysis

As mentioned before, the qualitative methods are intrinsically subjective. There is a wide

range of qualitative methods. In this regard, the most relevant methods to the work of the

2.5. TIME-SERIES ANALYSIS AND FORECASTING 43

thesis is reviewed in this subsection. In the following, frequent pattern mining, perception

based data mining and multilayer perceptrons are described.

2.5.2.1 Frequent Pattern Mining

Mining similar subsequences or substructures that appear frequently in an item-set with

not less than a user-specied threshold is called frequent pattern mining. The concept

of frequent pattern mining was rst proposed by Agrawal et al. (1993) for mining in

transaction databases.

A subsequence that occurs frequently in a history database, is called a frequent sequen-

tial pattern. Subgraphs, subtrees, or sublattices form a basic or composite substructure.

Frequent pattern retrieval plays a signicant role in mining associations, correlations and

relationships in a database. It can benet indexing, classication, clustering and other

data mining tasks. Thus, frequent pattern mining become a robust data mining task and

a research area in many elds. Three basic frequent pattern mining methodologies Apri-

ori, Frequent Pattern (FP)-growth and Eclat, and their extensions, are reported in the

literature (Han et al., 2007).

Let I = i1, i2, ..., in be a set of all items (values). A k − itemset (pattern), which has

k items from I , is frequent if a pattern occurs in a database D a frequency no lower

than θ|D| times. In this regard, θ is a user-specied minimum support threshold (called

min sup in (Han et al., 2007)), and |D| is the total number of transactions in D.

In telecommunication, the time-ordered QoS traces are spatiotemporal time-series. Spa-

tiotemporal data mining nds spatiotemporal knowledge and patterns within the QoS

time-series.

Frequent pattern mining has been widely used in last two decades. Xiong et al. (2004)

44 CHAPTER 2. A REVIEW OF QOS TIME-SERIES PREDICTION MODELS

and Zhang et al. (2004) use frequent pattern mining method for mining co-location pat-

terns. Koperski and Han (1995) explains how progressive renement method substan-

tially optimises the algorithm time cost by performing rough computation while it renes

the results at a better resolutions. Cao et al. (2005) extends the optimization ideas of

mining sequential patterns, which are location and time related ; i.e. spatiotemporal pat-

terns. Besides, Li et al. (2006) mine outliers in moving object datasets, by movement

of the fragment patterns through spatial time-series data to nd motifs of discords by a

motif-based classication (Han et al., 2007).

Similarly, frequent pattern mining has a signicant role in telecommunications data min-

ing. Han et al. (2007) denotes that multimedia time-series can be treated as spatiotempo-

ral data and frequently patterns occurring in multimedia and streaming time-series can be

discovered. Han et al. (2007) lists various datasets that can be analysed by this method.

These include huge volumes of telecommunications data streams generated within real-

time communications network and Internet trafc. Unlike traditional datasets, stream

data ows continuously and chaotically (Han et al., 2007). A smart router is incapable

of storing the whole data stream or to scan through it multiple times due to tremendous

volume of the data. Han et al. (2007) denotes that it is vital to develop single-scan and

on-line mining methods for data mining over data streams.

With the aim of mining frequent values and subsequences on data streams, Manku and

Motwani (2002) introduce sticky sampling and lossy counting methods for approximat-

ing frequency counts over data streams. Karp et al. (2003) also propose a counting tech-

nique for nding frequent items in stream data (2003). Yu et al. (2004) propose a frequent

pattern mining algorithm with a false-negative oriented approach and compare it with the

false-positive mining approach, which also called as lossy counting. They assert that their

approach can mine the frequent elements, although it is limited to the capacity of the vir-

tual memory. Their approach can become intractable where the number of false-positive

2.5. TIME-SERIES ANALYSIS AND FORECASTING 45

frequent itemsets increases exponentially.

Chi et al. (2004) proposes a mining algorithm that nds closed frequent itemsets within

a sliding window. They designed a closed enumeration tree structure for probing items

within the sliding window and maintaining a chosen subset of transactions. Metwally,

Agrawal, and El Abbadi (2005) introduce a computing method for mining frequent and

top-k items in streams of data with a careful memory consumption. Jin and Agrawal

(2005) proposes a one pass algorithm for frequent mining of itemset with a specied

limit on the precision that does not need any out-of-core summary structure. Lin et al.

(2005) proposes an algorithm for frequent itemsets mining from streams of data using a

time-sensitive sliding window.

The method of frequent pattern mining is considered in the denition of the proposed

model in Section 3.3. In this regard, the items and k − itemset are considered as the

values and patterns within a QoS time-series, respectively.

2.5.2.2 Perception Based Data Mining

Another method, which is considered for model denition in this thesis, is Perception-

based Data Mining (Batyrshin and Sheremetov, 2008). Although the mapping function

dened in Chapter 3 is deterministic, the idea of the fuzzy rule-based linguistic descrip-

tions may be used in mapping time-series numerical values into categorical terms in

Section 3.3.

Perception based function is dened by a set of rules Ri: “If X is Ti then Y is Si,”

in which Ti are categorical terms describing certain fuzzy intervals on the set of real

numbers of X and Si are the categorical descriptions of the shapes of a function Y (X) on

the intervals (Batyrshin and Sheremetov, 2008). The rule is used in many fuzzy models

such as Mamdani (1974). In most trivial case, the rule consequence part may include a

46 CHAPTER 2. A REVIEW OF QOS TIME-SERIES PREDICTION MODELS

fuzzy value of function Y , e.g.

Ri : If DELAY is HIGH then SLOPE is SHARPLY INCREASING. (2.8)

The above rule states that the SLOPE variable is varying with the speed categorically

evaluated in the consequence part while the independent numerical variable referring to

DELAY is changing within the fuzzy interval SHARPLY INCREASING. In other word,

the Equation (2.8) regards the categorical expression of dependency between variables

DELAY and SLOPE, such that SLOPE is a SHARPLY INCREASING function of DE-

LAY on the fuzzy interval HIGH.

The categorical terms in the consequence part of a rule like (2.8) is regarded as directions

of function trend. The explicitness of the rule depends on the granulation of these direc-

tions (Batyrshin and Sheremetov, 2005). Batyrshin and Sheremetov propose techniques

of restructuring fuzzy functions based on the set of such rules. The initial fuzzy value

is propagated rule by rule in the trends dened in consequence parts of the rules and

eventually build a fuzzy function (fuzzy relation).

Models using fuzzy perceptions are used for realisation of the Computing with Words

(CW) methodology presented in (Zadeh, 2001, 1999). According to Zadeh (2001), CW

methodology is considered as a problem of calculation of a Terminal Data Set (TDS) from

an Initial Dataset (IDS) in several steps. These steps are: (i) explicit interpretation of IDS

as fuzzy rule-sets; (ii) propagation of constraint to transform antecedent constraints into

consequent constraints, and (iii) translation of consequent constraints to linguistic form

of TDS.

This thesis builds deterministic rules using the initial rule-based methods of formalisation

of rules like (2.8) to dene the DMF presented in Chapter 3.

2.6. CONCLUSIONS 47

2.5.2.3 Multilayer Perceptron

The term neural network describes a network (circuit) of biological or articial neurons.

The modern adoption of the term usually denotes ANN as a composition of virtual in-

terconnected neurons (nodes). The nodes represent software agents simulating the prop-

erties of biological neurons. The ANN architecture is specied by the number of nodes,

their arrangement and connectivity (Lopez et al., 2008). In this regard, the ANN can be

seen as a labeled directed graph where the graph’s nodes and edges are the respective

ANN’s nodes and inter-conductivities among the nodes, and the free parameter remarked

by the labeled edge (Dongare et al., 2012). Most common forms of neural networks, in-

cluding biological one, have a layered structure. Typically, a set of sensorial input nodes,

one or more hidden layers of neurons and a set of output neurons form the input, hidden

and output layers of the ANN, respectively.

In this thesis, a multilayer perceptron (MLP) with a feed-forward network architecture

is used. In the proposed hybrid DM model the MLP is used to control the packet-loss

predictions and to improve the precisions of the results.

2.6 Conclusions

The chapter reviewed qualitative and quantitative models for time-series analysis. Study-

ing QoS time-series analysis demanded reviewing of a wide range of topics about rout-

ing in communications networks, telecommunications QoS data, prediction methods and

models for QoS routing. This chapter also highlighted the time-series analysis and fore-

casting. There are many models and methods for time-series analysis and QoS routing.

Stochastic characteristic of inter-domain routing time-series and the lack of concurrent

data at the time of predictions are a few issues that inuence the ability of mining

48 CHAPTER 2. A REVIEW OF QOS TIME-SERIES PREDICTION MODELS

telecommunication data. Another concern is that telecommunications data is often not in

a form or at a level-suitable for Data Mining. The large volume of telecommunication

data sets and the need to operate in real-time are other common issues.

An important issue in telecommunications data mining is the restrictions on sharing data,

information and knowledge. Companies may not utilise data from other resources out of

their corporation. Consequently, knowledge discovery over telecommunication network

database and data-stream are limited when the extracted knowledge may not be exploited

at least at the time of predictions.

Using a hybrid model is vital to compensate the lack of concurrent data. Besides, utilising

historical patterns of data is vital to approximate the trends and values of concurrent data

and to be able to predict the future values. In this regard, the aim of this research is to

design and develop a hybrid data mining model that is simple to use within a smart edge

router and can predict packet-loss independent from the QoS data from other network

autonomous systems owned by other companies.

Chapter 3 introduces NARGES data mining framework and model, which uses current

trend and value of the forecasted delay and jitter, to predict future number of the packet-

loss assigned to a peer network node/link within other autonomous systems.

Chapter 3

Data Mining Model for Packet Loss

Prediction

“All models are false but some models are useful,”

— George E. Box

The majority of packet-loss in the Internet occurs due to congestion in links. Real-

time multimedia applications over the Internet such as VoIP, video/audio con-

ferencing and streaming are sensitive to packet-loss, and packet retransmission is not

an acceptable solution with these sorts of application. Predicting packet-loss with some

certainty from network dynamics of past transmissions is crucial knowledge to inform

smart routers to make better decisions. Network applications need to identify congestion

in the path of packets to take suitable rate control actions. Regarding the studied liter-

ature on the area of telecommunications data mining, a data mining model is designed

and developed for classication of links that have a high probability of packet-loss. The

model, implemented with MATLAB, is intended to contribute to making informed deci-

sions within smart edge routers where the quality of transmissions should be controlled

49

50 CHAPTER 3. DATA MINING MODEL FOR PACKET LOSS PREDICTION

and is primarily determined by the level of packet-loss.

In this thesis and in the special case of packet-loss prediction, the application of human-

like perceptions in making smart decisions is considered and employed. The developed

data mining model memorises the frequency of various patterns for three adjacent time-

series values within a sliding windows of time – three delay or jitter time-series values.

The provided foreknowledge of different pattern frequencies, i.e. the learned perceptions

of the current trend and value of the time-series are used in simulations to approximate

the next trends and values – instead of running a costly statistical algorithm each time.

The rest of this chapter is organised as follows. Section 3.1 overviews the model. Sec-

tion 3.2 gives a brief description on preliminary concepts in this chapter. Formal descrip-

tion of the models are introduced in Section 3.3. An implementation paradigm of the

models is described in Section 3.4. The chapter concludes in Section 3.5.

3.1 Overview

The fundamental idea of the model is to predict the amount of packet-loss assigned to a

link by approximating the trends and values of the delay according to previously observed

patterns. The framework and models presented here can be utilised within simulations by

using intelligent software agents for data mining in the edge routers. The agent predicts

the number of packets lost in a link, according to the forecasted delay and jitter. This

can potentially reduce the intermittent broadcasts of the link availability to its peers and

the trafc made by the nodes for sending extra packets through the network to report

congestions within their autonomous system can be attenuated in this way.

A hybrid data mining model is deployed to rstly approximate the real–time data values

and then to use them as the input in the second part of the model, a multilayer perceptron.

3.1. OVERVIEW 51

The second part of the model predicts the packet-loss based on the approximated delay

and jitter values and is used to enhance the precision of the model prediction in the

simulation. Figure 3.1 represents the conceptual framework of the data mining model for

smart routing in a communication networks (NARGES).

Figure 3.1: Conceptual Framework for NARGES Data Mining Model

As shown in Figure 3.1, the proposed framework for real–time data mining encompasses

the following steps to predict the amount of packet-loss:

• Step 1 - Data Collection and Preparation

This step gathers delay, jitter and packet-loss time-series, assigned to a telecom-

munication network link, from the available data sources (e.g. network data logs

or management information bases from network segment routers). As mentioned,

the data collection is accomplished by using:

52 CHAPTER 3. DATA MINING MODEL FOR PACKET LOSS PREDICTION

1. D-ITG network trafc generator:

D-ITG is an academic free software agent employed to generate network traf-

c. There are three main threads to be run on two physical server and client

nodes in a network, namely the trafc generator (ITGSend) on the server side

and the trafc receiver (ITGRecv) and ITGLog used for the data collection

on client side.

2. OPNET Modeler:

The data collection on OPNET Modeler occurs totally in a simulation envi-

ronment, i.e. no physical nodes are used. The QoS data can be exported after

running simulation.

• Step 2 - Data Transformation

The collected data is transformed (e.g. deletion of repeated or duplicated data, nor-

malisation of time scales or averaged) to be ready for use within the DM process.

In this regard, a moving average transformation is run on the group of time-series

values, within a time window, to reduce the volume of the data.

The transformation also helps reduce the overhead of the model prediction pro-

cedure on smart router while the real-time frequently generated logs need to be

processed each time to use network resources. There is obviously a trade-off be-

tween the precision of the overall algorithm output and the number of time-series

values used each time for this transformation.

The transformation window in this step is different from the sliding window used

for time-series approximation,” in step 3. The latter concept will be discussed in

Sections 3.3.1.1.

• Step 3 - Pattern Recognition and Data Forecasting

This step introduces the forecasting module of the hybrid DM model named HDAX.

Five basic patterns are dened for forecasting trend changes of a time-series. These

3.1. OVERVIEW 53

patterns are used for the denition of composite patterns and for populating the

frequency entries assigned to each of the composite patterns within a look-up ta-

ble. The frequencies are used for estimating the probability of each occurrence of

the composite patterns. The look-up table is later used for pattern forecasting and

time-series approximation. In step 4, the outputs of HDAX forecasting module, i.e.

the approximations of current delay and jitter at time t, are used in the predictive

module in NARGES model.

• Step 4 - Knowledge Prediction, Interpretation and Evaluation

In this step, the approximated delay and jitter values at time t from step 3 are used

to predict the number of packets lost at time t + 1. A multilayer perceptron is used

to do this.

Moreover, the MLP outcome must be interpreted and used to evaluate the model

and to get the highest precision needed in a real-time scenario. This is because the

occupance of the composite patterns within the delay and jitter time-series may be

affected during different periods of a day or week — by the diverse network condi-

tions such as physical failure, number of end-users, changes in network bandwidth,

and the like. To overcome this, a controller may be added to the designed model

as part of the MLP in the predictive module of NARGES to detect the prediction

errors and send a reactive signal to reset the look-up table.

Figure 3.2 shows the design of NARGES DM model and the ow of the data. The HDAX

forecasting module approximates the delay and jitter at time t based on the previous

values of the time-series and their change trends at times t − 3 to t − 1. The prediction

in NARGES model is based on the current approximations of the values of delay and

jitter variables at time t; which are not known at the time of the prediction. As shown in

Figure 3.2, the MLP and HDAX outputs are audited by an error controller to enhance the

precision of the packet-loss prediction.

54 CHAPTER 3. DATA MINING MODEL FOR PACKET LOSS PREDICTION

Figure 3.2: A schema of NARGES data mining model

The HDAX forecasting module supplies the forecasted input values of frequencies for

each possible time period. It uses a symbolic approximation to get the less accurate but

faster results for the MLP module. These are estimates of the current delay and jitter and

the MLP has been previously trained to use them for packet-loss prediction. After the

prediction of network packet-loss, the results may be interpreted and used to improve the

performance of a future smart router decision-making.

3.2 Preliminary Descriptions

This section aims to deliver descriptions on certain concepts used in the rest of the Chap-

ter. These are QoS time-series and Pattern Denition and Look-up Table.

3.2. PRELIMINARY DESCRIPTIONS 55

3.2.1 QoS Time Series

Determination of the type and quality of input data is signicant for all data mining tasks.

Insufcient data quality will prevent the algorithms from delivering correct output. The

amount of data is another factor that should be taken into account. These are dened as

Data Type The type of data dealt with in the experiments are delay, jitter and packet-loss

values generated by a trafc generator or a network simulator. The measurement

unit of delay and jitter is seconds, while for packet-loss the value represents the

number of lost packets in that time interval.

Data Volume The amount of the data handled in the experiments varies from small sets

of logs provided by the UNINA to large logs generated by a network simulator, i.e.

OPNET. More specically, the logs volume ranges from minutes and fractions of

an hour to days and fractions of a week in terms of the volume of the QoS data-sets.

The datasets are generated by D-ITG trafc generator or OPNET Modeler. As shown

in Figure 3.3, D-ITG allows multiple streams to be generated with parameters to change

characteristics of the ows, e.g. Diffserv/TOS markings, bandwidth per ow, constant

vs. random packet sizing, source/destination port and duration of the trafc generated.

The basic setup is a sender/receiver conguration where the sender is setup on a sender

node to source the data streams and the receiver is installed on a client node to receive

the data. There is also a logging module that can be used to store the delay, jitter and

packet-loss values.

OPNET Modeler, on the other hand, allows users to analyse simulated networks and to

compare the impact of various technology designs on end-to-end behavior. The network

simulator provides a wide range of protocols and technologies for the design and the eval-

uation of communication networks, devices, protocols, and applications. The modeller

56 CHAPTER 3. DATA MINING MODEL FOR PACKET LOSS PREDICTION

Figure 3.3: D-ITG GUI

includes a development environment to enable modeling of all network layers and types,

and all technologies including VoIP.

3.2.2 Pattern Denition

As mentioned previously, two types of patterns are dened in this thesis: basic patterns

and composite patterns. Basic patterns are directly dened from the change of time-

series values, i.e. the trends time-series. The composite patterns are made up of triplet

sequences of the basic pattern.

A DMF used for assigning the changes of time-series values (trends) to a specic basic

pattern from a nite set of predened basic patterns. Figure 3.4 shows a schema of the

basic patterns dened in this thesis. The DMF function chooses one of the basic pattern

in Figure 3.4 and assigns the basic pattern to the observed slope of the line between two

3.2. PRELIMINARY DESCRIPTIONS 57

Figure 3.4: Basic Patterns

consecutive time-series values, yt−1 and yt, called the Yt trend. Composite patterns are

adjacent i − j − k triplet-trends dened based upon the basic patterns, i.e. each i, j and

k are basic patterns.

The denition of the pattern in this thesis is based on the PDL denition discussed earlier

in Section 2.4.2. Six basic patterns are dened, namely sharply increase, increase, plain,

decrease, sharply decrease and outlier, for describing the trend of change in value of

a time-series. The patterns are dened based on the various amounts of change in the

values for two consecutive time-series values, i.e. Yt = yt − yt−1, which is assigned to

a basic pattern each time.

As shown in Figure 3.5 , according to the angles of the three consecutive trends at times

t − 2, t − 1 and t categorical basic pattern are mapped to each of the numerical values

of these trends, i.e. Yt−2, Yt−1 and Yt. Part (a) of Figure 3.5, depicts the categorical

58 CHAPTER 3. DATA MINING MODEL FOR PACKET LOSS PREDICTION

Figure 3.5: Basic patterns assigned to triplet trends.

boundaries of basic patterns together with the angle internals assigned to each of them.

ε is a model parameter set empirically to a small angle. Part (b) of Figure 3.5, gives

a sample of composite pattern made up from three consecutive basic patterns, namely

increase, sharply increase and decrease.

3.2.3 Look-up Table

As mentioned in previous subsection, the basic patterns are described in terms of linguis-

tic variables by DMF. The function is dened as a conditional function resulting from

human perception and is given by the deterministic rule sets of Ri: “if X is Ti then Y is

Si” where Ti and Si can be either a value within an interval on the domain of real num-

bers or a trend categorical value assigned to the time-series changes, Yt. For example,

3.3. FORMAL MODEL DESCRIPTION 59

regarding the network expert’s empirical knowledge about a network time-series of Y

trends at times t − 2, t − 1 and t, a DMF rule can be as

R : “IF Yt−2 is St−2 AND Yt−1 is St−1 then Yt is St”, (3.1)

where Yks, t − 2 ≤ k ≤ t, are the trends of the time-series values in the time window

k within intervals dened based on the window-size length in seconds. Sk are DMF

categorical values assigned to the time-series of trend. These DMF categorical values are

dened as Plain, Increase, Sharply Increase, Decrease, Sharply Decrease and Outliers.

The next section presents a formal description of the proposed model.

Based on the denition of the basic patterns, a composite pattern is denoted within a

window with three adjacent basic patterns, namely previous, current and next patterns.

There are 216 composite patterns regarding the possible repeatable combinations of six

basic patterns in each of the three consecutive patterns in the window.

3.3 Formal Model Description

The NARGES model, as presented in Figure 3.2, is a hybrid model that predicts the

packet-loss at time t + 1 based on the approximated values of delay and jitter at time t.

The delay and jitter forecasts at time t, are approximations of the current values of the

time-series forecasted by HDAX model according to the historical trends and values of

the corresponding time-series in the previous two periods, i.e. t − 1 and t − 2 . The

following sections describe the two modules: HDAX and a multilayer perceptron, as the

two constitutive parts of NARGES model.

60 CHAPTER 3. DATA MINING MODEL FOR PACKET LOSS PREDICTION

3.3.1 Forecasting Module: HDAX

This section describes a novel approach to forecasting time-series values from previously

observed patterns of delay and jitter. The HDAX algorithm is dened based on the model

denition suggested by Tresp and Hofmann (1998).

Let yt be the value of the discrete time-series at time t

yt = f(yt−1, yt−2, . . . , yt−N) + t (3.2)

where f is either known or approximated sufciently well by a function approximator

and t is the zero-mean noise with probability density P(), which represents dynamics

that are not modelled.

The underlying HDAX model of the time-series is made with order N = 3 as

yt = f(yt−1, yt−2, yt−3) + t (3.3)

Possible trends of the QoS time-series of delay and jitter values, at time intervals t − 1

and t − 2 are represented with categorical terms from the

Alphabet = SI, I, P, D, SD, OUT  (3.4)

where these symbols are dened in Table 3.1. The basic trends in Table 3.1 are dened

with linguistic variables based on the denition of the deterministic mapping function.

Within the DMF mapping function, each of the categorical terms maps an interval on the

domain of real numbers to a linguistic representative.

In Table 3.1, the yt denotes the time-series value at time t and Yt to denote the difference

of the two consecutive values at time t − 1 and t. For simplicity, the linear scale in the

3.3. FORMAL MODEL DESCRIPTION 61

Table 3.1: Deterministic Mapping Function (DMF), the scale of time-series trends used for
mapping numerical traces to the categorical (linguistic) terms.

Case Trend Description Yt = yt − yt−1 Slope Angle
0 P Plain Yt= 0 φP = 0◦

1 I Increase 0 < Yt ≤ max
2

0◦ < φI ≤ 45◦

2 SI Sharply Increase max
2

< Yt ≤ max −  45◦ < φSI ≤ (90 − ε)◦

3 D Decrease −max
2

≤ Yt < 0 −45◦ ≤ φD < 0◦

4 SD Sharply Decrease -max +  ≤ Yt < −max
2

−(90 − ε)◦ ≤ φSD ≤ −45◦

5 OUT Outlier |Yt| > max −  |φOUT | > (90 − ε)◦

experiment also has six linguistic grades. These are dened in Eq. (3.4) and represent

categorical terms assigned to the case numbers of zero to ve, respectively. The Slope

Angle is the angle between the slope line and the time axis as shown in Figure 3.5.

The composite previous-current-next patterns are dened with a combination of three

consecutive trends, at times t − 2, t − 1 and t. As as shown in Figure 3.6, these patterns

are shown as i − j − k patterns.

The proposed HDAX model approach consists of two phases: training and simulation.

The max in Table 3.1 is the maximum value of a time-series, shown later with the dashed

line in Figure 3.6.

3.3.1.1 HDAX Training

Figure 3.6 shows a sliding window that moves over the training data and makes patterns

consisting of three consecutive trends, i, j and k, at times t − 2, t − 1 and t (previous,

current and next) together with their frequency in the look–up table. The look–up table is

then used in the simulation phase to approximate the next trend, at time t, and the associ-

ated delay/jitter value from the current and previously observed trend patterns, where i,

j and k are the respective indices for previous, current and next trends (0 ≤ i, j, k ≤ 5)

and F (i, j, k) is their respective frequency. From the look–up table, the probability of

62 CHAPTER 3. DATA MINING MODEL FOR PACKET LOSS PREDICTION

Figure 3.6: The training phase uses a time-series dataset values to recognise i−j−k patterns
and train the look–up table that maps each of these patterns to a respective frequency. The
table is then used for forecasting the k trend at time t + 1 in the simulation phase.

i − j − k patterns is estimated as

P̄ (i, j, k) =
F (i, j, k)

Nk

, Nk =
5

k=0

F (i, j, k). (3.5)

where i, j and k are the indices for the respective patterns at times t− 1, t− 2 and t, and

Nk is the number of total observations for all i − j − k patterns.

3.3.1.2 HDAX Simulation

Based on the most frequently observed patterns in the last two consecutive trends at

time t − 1 and t − 2, the HDAX algorithm uses the estimated conditional probability

to approximate the trend at time t. The Yt is a trend value at time t in the time-series

of trends, dened based on the last two trends seen at times t − 1 and t − 2. Formally

3.3. FORMAL MODEL DESCRIPTION 63

speaking, we estimate the Pk(i, j) as follows

P̄k(i, j) = P (Yt = k|Yt−1 = i, Yt−2 = j) + P() (3.6)

where i and j are the indices of the observed trends at times t− 1 and t− 2, respectively.

The trend at time t, with the index k, may take six possible values from the alphabets in

Eq. (3.4). Based on this, the look-up table is used to forecast the next trend and value of

the time-series based on the trend with highest frequency in this table:

i = t − 1, j = t − 2 : Ŷt = arg max
k

(P̄k(i, j)) (3.7)

With the trend k estimated, the yt can be approximated based on time step-size between

yt−1 and yt and the slope of the line at yt−1 using the Euler method.

3.3.2 Predictive Module: Multi-layer Perceptron

The predictive module calculates the average packet-loss. As described above, the out-

puts of HDAX are approximations of the values of the network traces at time t. They are

used within a multilayer perceptron (MLP) to get better precision for real-time packet-

loss prediction at time t + 1.

The MLP output is computed as described in the following. The net value at jth hidden

layer(s) neuron can be obtained by

nethj
=

ni

i=1

(whji
xi + bhj

), j = 1, 2, ..., nh (3.8)

where xi is the input at ith node of input layer, whji
is the connection weight of ith neuron

with jth input, bhj
is the weight of the bias at jth neuron of hidden layer, n is the number

64 CHAPTER 3. DATA MINING MODEL FOR PACKET LOSS PREDICTION

of inputs (n=2 in the experiments), and nh is the number of neurons in the hidden layer.

The output of the jth neuron in hidden layer is

hj = φ(nethj
) = 1/1 + e−nethj (3.9)

The net value of the kth neuron then computed as

netyk
=

nh

j=1

(wokj
hj + bok

), k = 1, 2, ..., no (3.10)

where wokj
is the output at jth node of hidden layer with kth output layer neuron, bok

is

the weight of the bias at kth neuron of output layer, nh is the number neurons in hidden

layer, and no is the number of neurons in output layer. That is, one in the experiments, as

Figure 3.7: Multi-layer Perceptron

shown also in Figure 3.7.

3.4. IMPLEMENTATION PARADIGM 65

3.4 Implementation Paradigm

This section describes the implementation of the proposed models. To obtain the opti-

mum outcome, while using the proposed models with other datasets, certain parameters,

such as windows size, might need regulations based on the characteristics of the new

datasets.

3.4.1 Forecasting Module: HDAX

As discussed in previous sections, HDAX forecasts the delay/jitter values from observed

patterns of these time-series, in two phases: training and simulation. The training phase

utilises time-series values to recognise patterns and make the look–up pattern matrix

(PDB) mapping the trend patterns to their observed frequency. A PDB is a runtime object

made during an implementation phase from the concept of DMF described in Sections 3.2

and 3.3.

In this phase, a conceptual sliding window moves over the training data and counts com-

posite patterns; made of three consecutive previous, current and next trends. PDB is then

used in the simulation phase to predict the next trend and associated delay value from the

current and previously observed trend patterns.

As well as the denition of the basic and composite patterns in Section 3.2.2, another

notion in HDAX algorithm is a level function, which shows the level of delay observed

at time t. This value is used to contrast two kinds of pattern frequency, in different

contexts, as shown in Figure 3.8.

Figure 3.8 shows that we may have two (or more) contexts of having plain trend (labeled

as P) in slope sequences. For instance, we may have two cases: a) when the value of

yt is near the minimum and b) when the value of yt is near the maximum. Therefore,

66 CHAPTER 3. DATA MINING MODEL FOR PACKET LOSS PREDICTION

Figure 3.8: A sample string of symbolic values trend time-series {P, SI, P, I, SD, P}

we also need to store the delay level value (i.e. whether it is close to the minimum or

maximum value) so as to have a ner classication between these two different cases.

Consequently, a time-series level function F (Yt) is dened as

F (Yt) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ Yt < max/4

1 if max/4 ≤ Yt < 2 × max/4

2 if 2 × max/4 ≤ Yt < 3 × max/4

3 if 3 × max/4 ≤ Yt ≤ max

4 if max ≤ Yt

(3.11)

The max parameter used in Figure 3.8 and Eq. (3.11) is dened by the network experts

or, as is done in this work, it can be set to the max value for each dataset. In Table 3.2,

each of the eld types take a case number from Table 3.1 while the level function, fyt,

take value from Eq. (3.11).

The pattern lookup-table (PDB) is implemented using a matrix with a row for each pattern

and six columns as listed in Table 3.2. The PDB relates composite trends, listed in

Table 3.1, to historical frequencies of these patterns within their corresponding matrix

3.4. IMPLEMENTATION PARADIGM 67

Table 3.2: Description of the elds used for the pattern lookup-table implementation.

FieldName FieldType Description

Index Integer Index of the table
Prev Categorical A case number assigned to the previous trend from

Table 3.1

Current Categorical A case number assigned to the current trend from Ta-
ble 3.1

Next Categorical A case number assigned to the next trend from Ta-
ble 3.1

fyt Categorical A case number assigned to the level function from
Eq. (3.11)

Frequency Long Integer Observed frequency of a triplet i − j − k pattern

entries. The next two subsections describe implementation of the training and simulation

phases.

3.4.1.1 Training Phase

In this phase, a sliding-window moves along the training data to save the frequencies of

three adjacent trends (previous, current and next trend) and increment the frequency value

for each associated pattern within the PDB entries. Note that the sliding window here is

a conceptual object for implementation. It is different from transformation window used

for transformation of data mentioned in step 2 of the DM framework earlier. The sliding

window length of n = 3 was chosen empirically as a balance between performance of

the algorithm and generalisation of the composite trends.

For simplicity, the PDB is implemented as a MATLAB matrix, but alternatively it may

be created as a physical table in a database. The PDB matrix contained 1080 rows and

six columns, as there are alphabet containing six symbols (P, I, SI, D, SD, OUT) and ve

level function case in Eq. (3.11).

68 CHAPTER 3. DATA MINING MODEL FOR PACKET LOSS PREDICTION

3.4.1.2 Simulation Phase

Once the PDB is populated by training it over a sufciently long sequence of time-series

values, it can be used to predict time-series trends and values for simulation time-series

values.

In simulation phase, the previous three time-series average values are observed, to com-

pute two adjacent previous and current patterns and then to forecast the next average

time-series trend and value. The trends for the previous and current windows are calcu-

lated in the same way as described in the previous section.

The two consecutive (previous and current) basic patterns (Yt−2 and Yt−1) are looked up

in the PDB using a hashing function and the associated next pattern with the highest

frequency is chosen as the expected next trend (i.e. Yt).

The next time-series value yt is estimated from Yt (i.e. the next trend from the PDB) and

the previous time-series value yt−1 using the F (Yt) function dened as

F (Yt) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yt−1 if Yt = 0

yt−1 + max/4 − σ if Yt = 1

yt−1 + 3 × max/4 − σ if Yt = 2

yt−1 − max/4 + σ if Yt = 3

yt−1 − 3 × max/4 + σ if Yt = 4

yt−1 ± max ± σ if Yt = 5

(3.12)

where yt−1 is the previous time-series value, max is a threshold for detecting the outliers

and σ is the standard deviation of the yt values in the simulation set. In the last condition

of Eq. (3.12), for outlier values, the max and σ values are added if yt−1 > max, otherwise

they are subtracted.

3.4. IMPLEMENTATION PARADIGM 69

3.4.2 Predictive Module: Multi-layer Perceptron

In this section, the implementation of the predictive module of NARGES model is de-

scribed. It is an MLP feed-forward network with back-propagation learning rule. The

MLP has two input layer nodes fed by the forecasted delay and jitter, one hidden layer

with ten neurons and predict one output, the number of packet-loss.

The multilayer perceptron network convergence time and its prediction accuracy, in terms

of Normalised Root Mean Square Error (NRMSE), were tested to set the optimum pa-

rameters’ value. These include number of hidden layer neurons, transformation windows

size, packet size, learning rate and momentum. The rest of this section describes the

network design and the MLP training algorithm.

3.4.2.1 Network Design

The MLP is a feed-forward with back-propagation learning rule. It has two input layer

source nodes, namely forecasted delay (x1) and forecasted jitter (x2), Ten hidden layer

neurons, and an output layer, the predicted packet-loss at time t + 1. The following lines

explain how the number of hidden layers and the number of hidden layer neurons are

decided.

The model based on suggestions including those of Shiblee et al. (2009). According to

the Kolmogorov theorem “a single hidden layer is sufcient to approximate any contin-

uous function.” Kurkova (1992) provides a proof for the Kolmogorov (1957) theorem.

As a result, a three-layer MLP with one hidden layer is employed for the experiments.

The parameters of MLP is designed and simulated using the MATLAB neural network

toolbox.

70 CHAPTER 3. DATA MINING MODEL FOR PACKET LOSS PREDICTION

The number of hidden neurons determined empirically by training the network with al-

ternative values for each of the MLP network parameters. The difference between the

observed values of packet-loss and the MLP output were calculated for making compar-

isons and decisions. The tests were done 10-50 times for each parameter value assigned

to a single parameter while the other parameters were xed to the default values.

For example, the MLP network was tested with various number of neurons in the hidden

layer to reach the minimal average normalised root mean square error (NRMSE) within

a reasonable training time.

The tests are repeated 15 times and a step-down recursive reject Holm-Sidak test is used

for each group of the outputs assigned to a specic number of hidden layer neurons to

decide the best number of neurons in the hidden layer. Using the MATLAB Holme-Sidak

test an accept/reject criterion on a sorted set of null hypotheses is applied, starting from

the lower p − value and going up to the acceptance of null hypothesis.

Based on these experiments, the MLPs with ten hidden layer neurons showed the least

NRMSE while the MLP with three neurons had the least training time. The Figure 3.9

shows a comparison between the accuracies and performances of MLPs with one to ten

neurons in the hidden layers.

3.4.2.2 Training Algorithm

To train the designed MLP and get the best generalisation, the training algorithm ts

the weight and bias values using Levenberg-Marquardt optimisation. The Levenberg-

Marquardt optimisation process is based upon Bayesian regularization that minimises

a synthesis of squared errors and weights, and then provides the correct combination of

them to produce an optimally generalised predicting MLP. It modies the linear synthesis

to gain the best generalisation for the resulting network. For more details about Bayesian

3.4. IMPLEMENTATION PARADIGM 71

Figure 3.9: Impact of the number of Hidden Layer’s Neuron on the MLP Accuracy and
Performance

72 CHAPTER 3. DATA MINING MODEL FOR PACKET LOSS PREDICTION

interpolation and generalisation the reader can refer to MacKay (1992) and Foresee and

Hagan (1997).

3.5 Conclusions

The goal of this thesis is to design, implement and evaluate a data mining model for the

real-time prediction of packet-loss variable based on the historical observations together

with the forecasted delay and jitter. The model consist of two modules: one for approxi-

mating delay and jitter values at time t, HDAX, and the other, a multilayer perceptron, for

predicting future packet-loss, at time t+1, based on these approximations. The predicted

knowledge may be used later within a smart router — as the knowledge discovery task

becomes intractable in the absence of real–time data to accomplish online data mining.

The chapter presented design and implementation of the proposed models. The HDAX

and MLP models were formally described and an implementation paradigm of the models

were presented in Sections 3.3 and 3.4. The HDAX model is designed and implemented

for approximation of delay and jitter time-series. It is part of the NARGES Hybrid Data

Mining model that uses HDAX outputs for prediction of the packet-loss. In this regard,

this chapter fullls the contribution 1 introduced in Chapter 1. Next, in Chapter 4, the

HDAX and NARGES models outcomes will be compared to ARMA benchmark.

Chapter 4

Model Evaluation

“One of the great mistakes is to judge policies and programs by their intentions rather

than their results.”

— Milton Friedman

This chapter describes experiments for evaluating the accuracy and performance of

the implemented prediction model. There is a comparison between HDAX and

NARGES models and ARMA as a benchmark. QoS traces used in the experiments, were

generated by D-ITG trafc generator or OPNET Modeler to test the impact of different

end-to-end path and queuing policies on the proposed models, respectively.

The rest of this chapter is organised as follows. Section 4.1 overviews the benchmark

and the evaluation methods. Section 4.2 describes the datasets and the tools generating

them. Section 4.3 introduces the evaluation methodology. Next, in Section 4.4, experi-

ment results are delivered. This section is divided to three subsections to study: the initial

results of HDAX model, the results based on the shorter datasets end-to-end paths gener-

ated by D-ITG software, and the longer datasets based on the queuing policies generated

73

74 CHAPTER 4. MODEL EVALUATION

by running simulations on OPNET. Section 4.5 summarises the results for HDAX and

NARGES. Section 4.6 concludes the chapter.

4.1 Evaluation Benchmark and Measurements

In this section, the benchmark and the evaluation methods are discussed. The Box,

Jenkins, and Reinsel’s ARMA algorithm is described rst, which is the benchmark used

throughout this thesis. Next, in subsections the evaluation measurements are introduced,

namely the error, speed and quality measurements.

4.1.1 ARMA Benchmark

Autoregressive Moving Average, as an alternative numerical forecasting algorithm to the

thesis proposed models, is implemented based upon the denition in Box et al. (2011).

An abbreviation of ARMA(p, q) is used in the literature for the mixed autoregressive

moving average model with p autoregressive and q moving average terms. As shown in

Chateld (2001), given a time-series of data yt where t is an integer index (indicating time

intervals in the experiments) and the yt are discrete real numbers, then an ARMA(p, q)

model is written as


1 −

p

i=1

φi


yt =


1 +

q

i=1

θi


t (4.1)

where p and q are the orders and the φi and θi are the coefcients of the autoregressive

and the moving average parts, respectively. The t are residuals in prediction, dened by

the following recurrent expression where ŷt and yt are respective forecasted and target

time-series values at time t.

4.1. EVALUATION BENCHMARK AND MEASUREMENTS 75

t = |ŷt − yt| (4.2)

The version of ARMA used here has four parameters as its input and generates one step

ahead of the entered ARMA time-series. The four input parameters are the time-series

value yt, the ARMA coefcients φ and θ, and a control argument yesmean that takes the

value 1 or 0 depending on whether the mean is subtracted from the input time-series or

not.

Since the ARMA model is autoregressive, it has to be computed by the impulse response,

that is, the coefcients of the equivalent moving average representation. The p and q

orders of the ARMA sequence, yt, may either be estimated by minimising the criterion

as suggested in Hannan and Rissanen (1982) or be set empirically.

For the experiments run in this thesis, the p and q orders of the ARMA time-series are

set empirically by choosing the parameters that minimise the algorithm’s error and run-

time. A better t for the parameters φ and θ is estimated by minimising the logarithm of

Residual Sum of Squares (RSS) between the actual and predicted values over a window

w

log

w

t=1

t
2 (4.3)

where t is the forecasting error at time t. Based on this, the optimum values of ARMA

coefcients were set.

4.1.2 Error Measurement

To compare the HDAX and NARGES outputs with the target time-series values, a dis-

tance function is dened to measure their similarity. For two time-series y = y1, . . . , yn

76 CHAPTER 4. MODEL EVALUATION

and ŷ = ŷ1, . . . , ŷn with the same length of n, the Euclidean distance between y and ŷ is

D(y, ŷ) =


n

t=1

(yt − ŷt)2 (4.4)

In the experiments, the distance function is calculated to estimate the accuracy of the

algorithms. The model results are compared to that of ARMA to test the performance

and to identify the optimal parameter settings in the model. The NRMSE measure is used

to compare the errors within the time-series imputed to the model outputs. It is calculated

based upon the root mean square error (RMSE) formula and the standard deviation of

target time-series. The RMSE is dened as

RMSE =

∑n
t=1(yt − ŷt)2

n
(4.5)

where yt and ŷt are the target time-series, of delay, jitter or packet-loss, together with a

time-series of the imputed values, respectively.

According to Wu and Mencer (2009), the statistical range of target time-series values

may be used instead of standard deviation in calculation of NRMSE. Thus, the NRMSE

is computed as

NRMSE =
RMSE

max(yt) − min(yt)
(4.6)

4.1.3 Speed Measurement

The timing function in MATLAB measures actual time elapsed (wall-clock time) and is,

therefore, more sensitive to properties specic to the platform. The results were reported

here for execution times in seconds and all determined using CPU-time.

4.1. EVALUATION BENCHMARK AND MEASUREMENTS 77

4.1.4 Quality Measurement

Normalised cross-correlation coefcients are used to measure the quality of the HDAX

and NARGES outputs compared with those made by ARMA. The cross-correlation se-

quence and algorithm is also described in Wilcox (2012) and Orfanidis (1985) as

Rxy(l) = E[xt+l ∗ yt] = E[xt ∗ yt−l] (4.7)

where xt and yt, −∞ < t < ∞, are two time-series and E denotes the expected value

operator. A MATLAB cross-correlation function approximates the above sequence, be-

cause in practice only a nite segment of one realisation of the innite-length of a random

process is available. The lagged correlation between the two time-series with no normal-

isation is calculated as

R̂xy(l) =

⎧
⎪⎪⎨
⎪⎪⎩

∑n−l−1
t=0 xt+l ∗ yt l ≥ 0

R̂yx(−l) l < 0

(4.8)

The output vector CCF has elements given by CCF (l) = R̂xy(l−n), l = 1, . . . , 2n− 1

where n is the number of values in time-series.

In general, the correlation function requires normalisation to produce an accurate esti-

mate. As stated in Chateld (2004), the cross-correlation for two random process of xt

and yt formula is calculated by the following lagged correlation formula

ρxy(τ) =
γxy(τ)

σxσy

(4.9)

where τ is the sets of lags [−N + 1, N − 1], σx and σy are the variances and γxy(τ) is the

78 CHAPTER 4. MODEL EVALUATION

covariance of two random process xt and yt.

The covariance is calculated as

E

(xt − μx)(yt+τ − μy)


(4.10)

The maximum cross-correlation coefcient is then computed as

ρmax = arg max
τ


ρxy(τ)


(4.11)

4.2 Datasets

Each of the datasets consists of three QoS time-series: delay, jitter and packet-loss. For

the evaluation of experimental results, three sets of data are considered: the target data

generated by D-ITG or OPNET, the output of HDAX (or NARGES) and the output of

ARMA. In the experiments, each dataset is divided into two training and test datasets

with a portion of 25% and 75% of the measured data, respectively. The three QoS traces

were fed into the NARGES model in the way described in Chapter 3.

In each experiment, the target data of delay and jitter time-series are fed into HDAX to

forecast the delay and jitter at time t while it is proposed that the traces comes with a unit

of time delay. Next, these forecasted delay and jitter time-series are fed into a Multilayer

Perceptron as part of the NARGES model to predict the value of the packet-loss at time

t+1. This is stored as a time-series of predicted packet-loss values, and is then used in the

analysis of the accuracy of NARGES. Figure 4.1 shows how a target dataset, including

delay, jitter and packet-loss time-series, together with the time-series of forecasted delay

and jitter are used as the inputs of HDAX and MLP modules within NARGES DM model

4.2. DATASETS 79

to predict the packet-loss.

The datasets were categorised: (i) according to the seven End-to-End Path (e2eP) and

(ii) according to the three queuing policies used. Thus, as it can be seen in Tables 4.1

and 4.3, there are ten categories of datasets.

Forty-six datasets were used for computing results. Each dataset includes time-stamped

traces, time-series, of delay, jitter and loss values. There are 36 datasets from D-ITG with

an average 3000 values in each of delay, jitter and packet-loss time-series. There are also

10 datasets generated by OPNET, 9 with 48000 values and one with 1,000,000 values.

In the following, the datasets will be described based on the tools used to generate them,

namely D-ITG trafc generator and the OPNET Modeler.

4.2.1 D-ITG Datasets

The data generated by D-ITG is gathered in two ways: rstly, archives from the Univer-

sity of Naples Federico II (UNINA) are used and secondly archives generated and probed

over University of Technology, Sydney (UTS) network test-bed.

As mentioned before, these archives have different kinds of network trafc in tcpdump

format. The archives are in compressed rar format containing les, in which they include

traces of QoS parameters measured over seven end-to-end path types. The considered

QoS parameters are packet-loss, delay, and jitter.

The traces were generated by sending probe packets using two packet rates (128 pps

and 11000 pps) and a packet size of 1024 bytes. Depending on the name of the le, it

contains delay, jitter, or packet-loss samples in text format. In each le, the rst column

indicates a reference time, i.e. the time passed from the rst packet, and the second and

third columns include the sample value in that time window. Samples were obtained by

80 CHAPTER 4. MODEL EVALUATION

Figure 4.1: Target dataset (target delay, jitter and packet-loss time-series) together with the
HDAX forecasted data (forecasted delay and jitter time-series) are used in NARGES model
to predict future packet-loss.

4.2. DATASETS 81

using an active measurement approach, sending probe packets by using D-ITG with a

packet rate of 100 pps.

The measurement unit of the delay and jitter is milliseconds and for packet-loss the value

represents the average number of lost packets in that time window. More description and

details about the D-ITG traces characteristics, network test-bed, software architecture and

the experimental regulations will be covered in the following subsections of the thesis.

4.2.1.1 D-ITG Data Characteristics

The D-ITG trafc generator (Botta et al., 2012) maintains various protocols including

TCP, UDP, ICMP, SCTP, DNS, Telnet, VoIP (G.711, G.723, G.729, Voice Activity

Detection and Compressed RTP). It provides stochastic processes where both packet size

(PS) and inter departure time IDT have Constant, Uniform, Exponential, Pareto, Cauchy,

Normal, Poisson or Gamma distribution.

The D-ITG archives, used in this thesis, have uniform distribution for the size of the

packets and for the inter packet time and UDP, TCP and SCTP protocols are used over

heterogeneous networks (Botta et al., 2008). D-ITG also provides setting of random gen-

eration seeds which permit repeating of experiments. Measurement of OWD and RTT,

packet-loss, jitter and throughput is performed on receiver-side. However, the software is

also capable of storing datasets about sent and received trafc on both sender and receiver

sides.

The trafc generator provides Type Of Service (TOS), Time to Live (TTL) and packet

size settings. The duration and start delay of experiments can be set based upon the

initial time of the experiment. Moreover, a separate signaling channel shown by a red-

dashed-double-dots lines in Figure 4.2, demonstrates the communication between sender

and receiver as well as the log writer threads. D-ITG platform exhibits a distributed

82 CHAPTER 4. MODEL EVALUATION

multi-component architecture. Figure 4.2 shows a graphical overview of the relationship

among the main components of D-ITG platform.

Figure 4.2: D-ITG framework

The End-to-End Path (e2eP) denition was considered for the datasets obtained from

D-ITG. The denition is based on the one stated in Botta et al. (2007). More detailed

information about the denition and the characteristics of end-to-end paths is in Table 4.1.

Table 4.1: Characteristics of the end-to-end paths for the data obtained from D-ITG.

Dataset Access Transport Operating End Users Number of
Category Networks Protocol Systems Device Datasets

1 ADSL-Ethernet UDP Linux-Linux PC-WS 2
2 GPRS-Ethernet UDP Windows-Linux Laptop-WS 6
3 UMTS-Ethernet UDP Windows-Linux Laptop-WS 6
4 Ethernet-ADSL UDP Linux-Linux WS-PC 6
5 Ethernet-GPRS UDP Linux-Windows WS-Laptop 7
6 Ethernet-UMTS UDP Windows-Windows WS-Laptop 2
7 Ethernet-WLAN UDP Linux-Windows WS-Laptop 7

In summary, there are 36 datasets time-series for D-ITG generated over two test-beds of

UNINA and UTS. Each of the datasets is categorised into one of seven dataset categories

shown in Table 4.1.

4.2.1.2 D-ITG Network Test-beds

As stated before, testbeds from UNINA and UTS were used for generating datasets.

4.2. DATASETS 83

The UNINA heterogeneous network test-bed is described in Botta et al. (2008). The

QoS traces on UNINA website were employed to provide data for running the thesis

experiments. Botta, Pescapé, and Ventre generated the QoS traces using D-ITG over a

real test-bed depicted in Figure 4.3.

Figure 4.3: The University of Naples Federico II (UNINA) experimental test-bed used to
generate D-ITG traces. (adapted from Botta et al. (2008))

The UTS network test-bed was formed between two nodes within the Faculty of Engi-

neering and Information Technology (FEIT) LAN. These are: (i) a laptop with proces-

sor rating of 1.70 GHz, running MS Windows with Intel PRO/Wireless 2200BG (IEEE

802.11b/g) network connection and (ii) a node on the FEIT High Performance Computing

(HPC) Linux Cluster, running Red Hat Enterprise Linux 6 (64bit) with processor rating

between 3.06-3.46GHz and a gigabit inter-node connection. A 100Mbs LAN used to

access UTS cluster via the intermediate switches/routeres between two nodes used for

D-ITG QoS data generation as shown in Figure 4.4.

84 CHAPTER 4. MODEL EVALUATION

Figure 4.4: Trace Route between the two nodes used for D-ITG QoS data generation

4.2.1.3 D-ITG Software Architecture

The communication between sender and receiver in the D-ITG software is controlled by

a separate signalling channel using a protocol called Trafc Specication Protocol (TSP).

The three components of D-ITG architecture shown in Figure 4.2 are

ITGSend is the sender component of the D-ITG platform. It can operate in three dif-

ferent modes: (i) Single-ow mode, (ii) Multiple-ow mode, (iii) Daemon mode.

ITGSend stores information either locally or remotely using the ITGLog.

ITGRecv is the receiver component of the D-ITG platform. It works as a concurrent

daemon, listening for TSP connections and generates a thread responsible for the

management of the communication with the sender. Each single ow is received

by a separate thread. Like ITGSend, ITGRecv can store information either locally

or remotely by using the log server ITGLog.

ITGLog can be either a log server, running on a different host than ITGSend and IT-

GRecv, or a thread running on the same sender/receiver sides. It is capable of

4.2. DATASETS 85

receiving and storing log information from multiple senders and receivers.

The logging activities is handled using a signaling protocol. This protocol allows

each sender/receiver to register on, and to leave, the log server. The log information

can be sent using either a reliable channel (TCP) or an unreliable channel (UDP).

4.2.1.4 Parameter Settings for D-ITG

The voice application was set for application layer data with G.711 and G.729 codec us-

ing UDP packet header compression. The duration used for generating datasets was 30

seconds. The datasets were generated in two sets of experiments for VoIP UDP trans-

mission with quiet or peak network activity. Trafc logs were generated using Best

Effort (BE) or Expedited Forward (EF) header options.

Figure 4.5: D-ITG GUI setup

86 CHAPTER 4. MODEL EVALUATION

There were archived datasets available from the UNINA’s MagNets network backbone

and those obtained on UTS network:

UNINA The archives are related to several end-to-end paths (datasets categories 1-7) as

shown in Table 4.1. These datasets contain samples of measured QoS parameters

over four end-to-end paths. Samples were obtained using non-overlapping win-

dows of 30-50ms length. The generated archives are kept in tar.gz format, each of

which contains sample datasets of QoS parameters - packet-loss, delay and jitter.

The datasets are generated by adopting an active measurement approach and send-

ing probe packets of 64, 512 and 1024 bytes with a packet rate of 100 packets per

second. For each generation experiment for production of OWD, RTT, packet-loss

and jitter traces it is possible to initialise the random variables seed.

A non-stationary stochastic QoS time-series of TCP, UDP and SCTP probe packets

were used. The packets were sent at regular time intervals (every one second)

to characterise the end-to-end packet delay behaviour of the Internet. The time-

series are ON/OFF background trafc sources, calculated using non-overlapping

windows of 10ms length, for wired, wireless and ADSL network.

UTS The archive is related to the seventh dataset category as shown in Table 4.1. Simple

unicast constant trafc with constant packet rate (PR) and payload size (PS) was

generated using D-ITG considering QoS parameters, namely packet-loss, delay

and jitter.

The trafc generator was set to be capable of lling a dedicated 100 Mbps Ether-

net between the UTS Clusters and a laptop, which were using Redhat Linux and

Windows operating systems, respectively.

4.2. DATASETS 87

4.2.2 OPNET Datasets

OPNET Modeler provides a discrete event simulation engine test-bed to generate datasets

using FIFO, PQ and WFQ queuing policies. The aim of generating these datasets is to

study the effect of the packet transmission policies and network congestion states on

the performance of the implemented data mining models. Selection of the service dis-

cipline in the routers can affect VoIP applications and link congestion. Consequently,

the model performance is evaluated using datasets generated under FIFO, PQ and WFQ

packet forwarding policies. Table 4.2 compares OPNET, OMNET and NS2 network

simulators (Antoniou et al., 2002).

Table 4.2: Comparison between OPNET, OMNET and NS2

Criteria NS-2 OPNET OMNET++

Programming

Model

Object-oriented; event-
driven simulator; written
in C++; Front-end: OTcl
interpreter.

Object-oriented; full access
to source code; written in
standard C (Proto-C).

Discrete event simulator

Operating System

Supported

UNIX & Windows UNIX & Windows Linux & Windows

Model Hierarchy

Levels

Not supported Hierarchically Structured -
Three distinct levels: net-
work level; node level; and
process level

OMNeT++ models may
consist of hierarchically
nested modules.

Simulation Modes Discrete simulation mode Simulation Modes: Dis-
crete, Analytic, and Hybrid

Simulation Modes: Dis-
crete, Analytic, and Hybrid

Documentation Poor Excellent Good

Validating,

Debugging and

Tracing

Large user community;
open source code;
Supports: memory, Tcl,
C++, and mixed Tcl/C++
debugging and off-line
animation.

Large user community;
open source code for
protocol models; Supports:
command-line debugging
and off-line animation.

Small user community for
validating models; Sup-
ports: Debugging and Trac-
ing.

Running Large

Networks

Limitations in memory and
CPU time

Limitation in virtual mem-
ory capacity

Limitation in virtual mem-
ory capacity

Parallel Execution Supported Supported Supported

Although there are other open source network modellers and simulators such as NS2 or

OMNET++ for academia, the OPNET Modeler was used to generate the network traces

due to more accuracy in simulating the queuing behavior (Schilling, 2005; Potemans

88 CHAPTER 4. MODEL EVALUATION

et al., 2003; Varga, 2001). OPNET Modeler also facilitates the network analysis and

modeling process with a wide range of devices, protocols and applications that improve

the evaluation results.

Except for one of the simulations, simulation times were 30 minutes and 48000 values

were generated for each of the delay, jitter and packet-loss time-series within the target

dataset les. The exception was one of the FIFO simulations, which was run for 12 hours

and generated 1,000,000 values for each of QoS time-series. Each of the time-series was

exported from spreadsheet data into a text le. The text le data has two columns: a

time-stamp and a value. The metric for delay and jitter time-series was seconds while for

the packet-loss it was the number of packets dropped. The number of packets sent in one

second was 24 packets.

4.2.2.1 OPNET Data Characteristics

A personal laptop with processor rating of 1.70 GHz was used on the UTS LAN, running

MS Windows with Intel PRO/Wireless 2200BG (IEEE 802.11b/g) network connection

and an individual version OPNET Modeler under academic research license.

Three more datasets categories as shown in Table 4.3 were considered for OPNET gen-

erated datasets based upon the queuing policies.

Table 4.3: Types of Queueing Policies for the data obtained from OPNET.

Dataset Queueing Description QoS Number of
Category Policy Enabled Datasets

8 WFQ Weighted Fair Queuing Yes 3
9 FIFO First in First out No 4
10 PQ Priority Queuing Yes 3

In summary, there are 10 datasets generated in OPNET simulations and each of the

4.2. DATASETS 89

datasets is categorised into one of three dataset categories shown in Table 4.3. As men-

tioned in the start of this section, the dataset categories described in Table 4.3 are exten-

sions to those in Table 4.1.

4.2.2.2 OPNET Network Test-bed

The inter-network design suggested by Aboelela (2011) was implemented. As shown

in Figure 4.6, there were ve ethernet workstations used along with an ethernet server

and two ethernet4 slip gtwy edge routers in the east and the west. There were 10Base T

links connecting the workstations and the servers to one of the routers and a bidirectional

PPP DS1 link between the east and west routers.

Figure 4.6: OPNET network design used for QoS data generation

In these simulations, each router controls the queueing strategy of packet transmissions

which can impact both the transmission rate and the packet delay.

90 CHAPTER 4. MODEL EVALUATION

4.2.2.3 Parameter Settings for OPNET Modeller

The experiments were designed to evaluate the model predictions in various link trafc

states, namely quiet, congested or bursty. The east and west routers used BGP protocols.

Three types of applications, namely File Transfer Protocol (FTP), Video and VoIP appli-

cations were simultaneously used to mimic the real–world network conditions for all the

simulations. Next, the delay, jitter and packet-loss time-series for VoIP applications were

collected and used for the experiments in Section 4.4.3.

Figure 4.7: Applications prole setting on OPNET Modeller

There were two types of setting in the experiments: general and specic settings. The

general settings were mostly based on the default suggested by OPNET or Aboelela

(2011).

Specically, three categories of datasets were generated on OPNET Modeler by simulat-

ing FIFO, PQ and WFQ queuing packet transmission disciplines. As shown in Figure 4.7,

by setting the VoIP, Video and FTP application proles within OPNET Modeler, various

4.3. EVALUATION METHODOLOGY 91

network loads are simulated. VoIP streams with the G.711 Encoder Scheme was used in

all of the simulations. Constant inter-request time and simultaneous operation mode with

inter-repetition time of 300 seconds and one repeatability at the start of each experiment

were set for all applications.

4.3 Evaluation Methodology

Non-parametric statistical analysis used to interpret the results of the data mining model

prediction and its respective forecasting module, namely NARGES and HDAX.

Three factors were used to evaluate the outputs made by the proposed models and algo-

rithms in this thesis. The accuracy and correlation of the outputs of HDAX and NARGES

models were compared to ARMA together with the speed of the algorithms. Besides, the

proposed models were ranked in comparison to ARMA for each of these parameters and

tested for the hypothesis of similarity. Friedman tests were conducted to test the hypoth-

esis of similarity of the models and ARMA. p−value for the Holm’s test was considered

to reject or accept these hypotheses.

Results were plotted using boxplot and parameters such as median, Interquartile Range

(IQR), maximum and minimum values are considered in the analysis of boxplots. The

boxplots are depicted for target values together with the outputs of HDAX or NARGES

models and ARMA. For each of the experiments three sets of data are considered: (i) the

target datasets generated by D-ITG or OPNET, (ii) the output of HDAX or NARGES,

and (iii) the output of ARMA. Each of these outputs are labeled under corresponding

boxplots in the rest of this chapter.

Pearson cross-correlation coefcient is used for similarity measurement between the tar-

get delay, jitter or loss traces and the model outputs. Two synchronised series of target

92 CHAPTER 4. MODEL EVALUATION

and forecasted values with nite length of N are used to calculate the maximum of Cross–

Correlation Function between each pair of these traces. The Cross–Correlation Function

was calculated by keeping the target time-series unlagged and the forecasted time-series

is delayed by lag l.

To standardise the results from CCF function lags of l ≤ 50 of are considered. The

function normalises sequences to compute lagged correlation with maximum correlations

of 1 at zero lag. The maximum similarity of normalised cross-correlations is reported for

correlation analysis between the two time-series. MATLAB stemplots show the CCF

results over a xed number of 101 lags, which are reduced to improve the visibility of

the plot.

As mentioned earlier, the maximum cross correlation coefcient, CCF max is considered

in the stemplots as a factor of the similarity of an algorithm output time-series to the

target time-series of delay, jitter and packet-loss. The higher CCF max of a model is, the

more similar the model outputs were to the target time-series.

4.4 Experiments and Results

In this section, experimental results are presented based upon the way each dataset was

generated: First, in Section 4.4.1, the results of HDAX is compared versus ARMA using

D-ITG datasets; delay time-series from these datasets are used only. Next, the results

of HDAX and NARGES are compared to those of ARMA using D-ITG datasets and

the datasets generated by OPNET simulation in Sections 4.4.2 and 4.4.3, respectively.

The results were published in Homayounfard and Kennedy (2009) and Homayounfard

et al. (2013). The bold-printed numbers or algorithm names distinguish statistically

signicant results.

4.4. EXPERIMENTS AND RESULTS 93

4.4.1 Experiment 1: Approximating Delay Time-Series with HDAX

In these series of experiments, only HDAX results were compared to ARMA to evaluate

the model accuracy and speed. The experiment was repeated to optimise the parameter

settings. Setting the parameters were done based on the optimum results and speed ob-

tained. In terms of data, for the experiments with HDAX and ARMA, the UNINA D-ITG

datasets were used. Specically, non-zero mean delay time-series of one wired network

trafc archive with the packet size of 64 bytes were used from seventh dataset category

in Table 4.1.

As described in previous section 4.2 and shown in Figure 4.1, datasets were divided for

experimental training and simulations phases, respectively. In this regard, 25% of the

delay time-series is used for training and populating HDAX trends lookup table and 75%

of it used for simulation. The training data is used for the training phase to build and

populate the PDB table of patterns as described in Chapter 3.

Referring to the step 2 of NARGES conceptual framework shown in Figure 3.1, the target

dataset has to be transformed before using them as the inputs for HDAX and ARMA

experiments. A transformation window of equal length 10 values were used. The average

values of the delay values within each transformation window are used as the inputs of

HDAX and ARMA. The transformation window length of 10 was decided based upon

the D-ITG archived data characteristic only for the experiment with D-ITG datasets.

The window length for other real–world network scenarios may be decided based on the

respective characteristics of the network trafc, such as the number of the packets sent in

a second. For a real–time simulation a trade–off between the algorithm overhead and the

performance factors to dene the optimum transformation window length.

There were 4 simulation runs for each of datasets. Based on these runs, the overall

NRMSE was calculated using Eq. (4.6). The target and forecasted delay values for each

94 CHAPTER 4. MODEL EVALUATION

of the four HDAX and ARMA simulation runs are shown in Figures 4.8 to 4.11. These

Figure 4.8: Target (solid line), HDAX predicted (star-dashed line) and ARMA predicted
(dot-dashed line) delay values for simulation run 1.

results show that the predicted delay values are close to the expected values in most

cases. Figures 4.8 to 4.10 show that HDAX sometimes predicts a higher delay than

expected when there are sharp increases. Similarly, Figures 4.9 and 4.10 show lower

than expected delay values when there are sharp decreases in delay value.

For the experiments in the next two subsections, the phase shift difference between

HDAX forecasts and target values, shown in 4.11, have been reduced by rening the

implementation of the algorithm.

As shown in Table 4.5, As can be seen in Table 4.5, the HDAX approximates faster

than ARMA. Moreover, HDAX showed an NRMSE error of 11.27% while for ARMA

the NRMSE error was 17.82%. Thus, HDAX showed better speed and accuracy within

initial experiments in comparison to ARMA.

In the two following subsections 4.4.2 and 4.4.3, the HDAX and ARMA algorithms

4.4. EXPERIMENTS AND RESULTS 95

Figure 4.9: Target (solid line), HDAX predicted (star-dashed line) and ARMA predicted
(dot-dashed line) delay values for simulation run 2.

Figure 4.10: Target (solid line), HDAX predicted (star-dashed line) and ARMA predicted
(dot-dashed line) delay values for simulation run 3.

96 CHAPTER 4. MODEL EVALUATION

Figure 4.11: Target (solid line), HDAX predicted (star-dashed line) and ARMA predicted
(dot-dashed line) delay values for simulation run 3.

Table 4.4: Accuracy of HDAX and ARMA (benchmark) on rst phase of simulation runs
together with speed of algorithm.

Simulation HDAX Speed ARMA Speed
Run NRMSE (sec) NRMSE (sec)

1 0.245 0.003 0.297 0.013
2 0.161 0.002 0.842 0.012
3 0.183 0.002 0.650 0.012
4 0.269 0.002 0.518 0.012

ran with all the archives generated by D-ITG and those data obtained though OPNET

Modeler simulations.

Table 4.5: Accuracy of HDAX and ARMA (benchmark) in the phase two of simulation runs
together with speed of algorithm.

Model Model NRMSE Speed
Name Error (%) (sec)
HDAX 11.27 0.002
ARMA 17.82 0.012

4.4. EXPERIMENTS AND RESULTS 97

4.4.2 Experiment 2: Impact Analysis of End-to-End Path with Var-

ious Network Congestion Level on Model Predictions

In these series of experiments, the datasets are generated on the D-ITG network test-

beds with various background loads – from a quiet network activity with a zero mean

packet-loss to a busy network with bursty packet-loss.

As shown in Table 4.1, there are seven paths used to generate the QoS traces from the

UNINA archives. The D-ITG network topologies were described in Section 4.2.2.2. The

paths were categorised based upon either the sender and receiver protocols or network

topologies, namely ADSL, GPRS, UMTS, WLAN and Ethernet.

4.4.2.1 Model Results with D-ITG Datasets

The accuracies of NARGES model and its HDAX subcomponent were examined by com-

paring the error function NRMSE. Thirty six simulations were conducted in these exper-

iments with the target datasets, which have been generated by D-ITG over the UNINA

and UTS network testbeds.

In Tables 4.6 and 4.7, the respective results of forecast error, algorithms speed and maxi-

mum cross-correlation coefcient (CCF) between the output of the algorithms and the

target data – including delay, jitter and packet-loss time-series – are presented. The

NRMSE show the error percentage for the algorithms, the speed is measured in sec-

onds and the CCF max column report the maximum cross-correlation coefcients. The

numbers printed in bold specify algorithms which are more accurate, faster or have more

correlated output.

Table 4.6 reports the results of HDAX, and ARMA over delay and jitter time-series from

the D-ITG datasets. As mentioned above, the bolted values in Table 4.6 mean that the

corresponding model, HDAX or ARMA, had a better average result in the experiments

98 CHAPTER 4. MODEL EVALUATION

for the reported Dataset Category and the performance parameter in each row of the table.

The number of experiments for each Dataset Category is equal to the Number of Datasets

in Table 4.1.

Table 4.6: Normalised root mean square error (NRMSE) together with algorithms speed
and cross-correlation coefcients of HDAX and ARMA forecasts for D-ITG delay and jitter
time-series.

Forecasted Delay Forecasted Jitter
Model Dataset NRMSE Speed CCF NRMSE Speed CCF
Name Category (%) (sec) max (%) (sec) max

HDAX 1 3.99 0.010 0.997 3.96 0.011 0.945
ARMA 1 6.89 0.009 0.938 3.07 0.009 0.902
HDAX 2 14.50 0.003 0.872 4.22 0.004 0.763
ARMA 2 12.94 0.006 0.833 3.18 0.006 0.721
HDAX 3 8.42 0.003 0.935 5.82 0.004 0.913
ARMA 3 7.54 0.009 0.854 3.99 0.007 0.786
HDAX 4 4.75 0.010 0.993 4.67 0.010 0.984
ARMA 4 7.03 0.013 0.929 4.12 0.009 0.781
HDAX 5 10.05 0.003 0.779 8.26 0.004 0.592
ARMA 5 6.19 0.008 0.768 3.40 0.006 0.771
HDAX 6 5.72 0.003 0.981 5.70 0.004 0.869
ARMA 6 5.05 0.005 0.796 4.61 0.007 0.800
HDAX 7 3.14 0.008 0.997 5.04 0.009 0.717
ARMA 7 7.54 0.008 0.945 2.44 0.011 0.772

The predicted average packet-loss for NARGES was also compared to ARMA. As Ta-

ble 4.7 demonstrates, in most cases the NARGES model predicts more precisely than

ARMA but is slower. This is because NARGES has more modules and processes more

data than ARMA to predict the nal packet-loss values. Again, the bold numbers show

the algorithms with better performance in terms of NRMSE, speed or maximum CCF.

4.4.2.2 Model Comparison

In this section, a comparison between the accuracy, performance (speed) and the correla-

tion of the output of the models with the target data is performed via nonparametric Fried-

man tests. The tests were conducted with the results from the runs of HDAX, ARMA

4.4. EXPERIMENTS AND RESULTS 99

Table 4.7: Normalised root mean square error together with speed of calculation and cross-
correlation coefcients of NARGES and ARMA predictions for D-ITG packet-loss time-
series.

Model Dataset NRMSE Model Speed CCF
Name Category (%) (sec) max

NARGES 1 0.61 1.364 0.999
ARMA 1 2.37 0.009 0.999

NARGES 2 0.00 0.263 1.000
ARMA 2 0.00 0.004 1.000

NARGES 3 3.34 2.534 0.998
ARMA 3 1.72 0.006 0.999

NARGES 4 0.36 0.307 0.999
ARMA 4 1.34 0.007 0.999

NARGES 5 0.85 1.999 0.999
ARMA 5 5.34 0.006 0.689

NARGES 6 0.00 1.611 0.995
ARMA 6 0.00 0.005 1.000

NARGES 7 0.00 0.203 1.000
ARMA 7 0.00 0.008 1.000

and NARGES models over three sets of delay, jitter and loss data of D-ITG datasets.

Friedman test used as a non-parametric equivalent to the parametric repeated measures

Analysis Of Variance (ANOVA) test. It computes the ranking of the measured outputs

for an algorithm with other algorithms, assigning the best of them the ranking 1 and the

worst the ranking k. According to the null hypothesis, it is supposed that the results of

the algorithms are equivalent and the rankings are also similar.

Friedman tests were run and the statistic to store the p− value used in Holm’s procedure

to reject or accept the null hypothesis of the similarity of the algorithms. Friedman tests

also calculate the average ranking of the algorithms used in each tests. Table 4.8 shows

the algorithm average ranking for each series. Table 4.8 shows that the HDAX ranking is

better than ARMA for the accuracy of the results and the speed of the algorithms whereas

ARMA ranking is better than HDAX for cross-correlation between the forecasted and

target time-series.

100 CHAPTER 4. MODEL EVALUATION

Table 4.8: Average rankings as calculated using Friedman test for the results of the algo-
rithms for accuracy, speed and cross-correlation (CCF) over delay, jitter and packet-Loss
time-series. The algorithms with bold rank number have better ranking in each row.

Time − series Test ARMA HDAX

Accuracy 1.250 1.750
Delay Speed 1.333 1.667

CCF 1.944 1.056
Accuracy 1.417 1.583

Jitter Speed 1.389 1.611
CCF 1.583 1.417

Time − series Test ARMA NARGES

Accuracy 1.458 1.542
Packet − Loss Speed 2.000 1.000

CCF 1.500 1.500

In the following tables, two algorithms are signicantly different if their corresponding

average ranks differ by at least the critical difference, which are the p − values ≤ 0.05.

In Table 4.9, the algorithm name shown in each row is taken as the better when the null

hypothesis is rejected. Table 4.9 shows testing the algorithms for accuracy, speed and

maximum CCF, for delay, jitter and packet-loss time-series. Algorithm names printed in

bold have statistically signicantly better results.

Table 4.9: Holm / Hochberg Table for α = 0.05 (bold algorithm names).

Data Test Algorithm z = (R0 − Ri)/SE p − value

Delay Accuracy HDAX 3.000 0.0027
Delay Speed HDAX 1.999 0.0455
Delay CCF ARMA 5.333 9.64 × 10−8

Jitter Accuracy HDAX 1.000 0.317
Jitter Speed HDAX 1.333 0.182
Jitter CCF ARMA 0.999 0.317

Packet − loss Accuracy NARGES 0.499 0.617
Packet − loss Speed ARMA 6.000 1.97 × 10−9

Packet − loss CCF NARGES 2.67 × 10−15 0.999

According to the p− values, HDAX forecasts signicantly better and faster than ARMA

for delay traces while ARMA has more correlated outputs in comparison to the tar-

get delay data in the 36 runs. Two algorithms, HDAX and ARMA, perform the same

in forecasting jitter values because Holm’s procedure accepts all null hypotheses. In

4.4. EXPERIMENTS AND RESULTS 101

terms of accuracy and quality of the predictions over D-ITG datasets, although Table 4.8

shows higher ranking grade for NARGES model, it predicts the packet-loss as accurate

as ARMA does with equivalent CCF results. In terms of the speed of the models, the

p − value of the ARMA speed is less than the signicance level (α = 0.05). this sug-

gests that ARMA is faster. NARGES model showed slower than ARMA in 36 runs with

D-ITG datasets while the number of inputs NARGES are greater than ARMA.

4.4.2.3 Discussion on the Quality of Results

This section presents a discussion about the distributions of the delay, jitter and packet-

loss time-series together with the models corresponding outputs over one of datasets, as a

representative of the model results. As stated in Section 4.3, Box and whisker plots (box-

plots) are used to compared the target time-series values distribution with the distribution

of the results generated by HDAX, NARGES and ARMA.

Figures 4.12, 4.14 and 4.16 show the distribution of the target values and the outputs of

HDAX, NARGES and ARMA models. Figures 4.13, 4.15, 4.17 show the stemplots for

the respective results generated by HDAX, NARGES model and ARMA models.

4.4.2.4 HDAX

The boxplot in Figure 4.12 shows that target data was spread between 30 and 50 sec-

onds, with IQR of 20 seconds, minimum of 0 second, maximum of 58 and median of

40 seconds. HDAX forecasts have more similar distribution to target delay time-series

compared to ARMA. HDAX also shows less outliers compared to ARMA which has a

narrower distribution with an IQR about 5 seconds, a minimum and maximum between

20 and 40 seconds and extra outliers.

As shown in Figure 4.13, in the CCF stemplot for ARMA and HDAX forecasted delay

102 CHAPTER 4. MODEL EVALUATION

Figure 4.12: Boxplots of distributions of target delay time-series for dataset 13 together with
those for outputs of HDAX and ARMA

time-series, the HDAX forecasted time-series

had a slightly higher maximum cross-correlation coefcient. It means that HDAX fore-

casts had a better correlation with the target delay time-series than those of ARMA.

For jitter values, as shown in Figure 4.14,

the target data has a median of 5 ms, minimum 0 and maximum 7 ms with a 2 ms IQR

while HDAX shows a slightly wider IQR of 4 ms. Although ARMA has a slightly closer

median to the target values, HDAX is more accurate in approximating the outliers. As

shown in Figure 4.15, HDAX forecasts had a maximum cross-correlation coefcient of

0.953 and was more correlated to target jitter time-series while ARMA had a CCF max

of 0.794.

In this regard, the HDAX shows better correlation and closer distribution to the target

data.

In summary, ARMA forecasts are slightly more accurate, but less correlated to target jitter

time-series. Although ARMA results show a closer median to the median of target values

distribution, HDAX forecasts are more correlated to target delay time-series. Moreover,

4.4. EXPERIMENTS AND RESULTS 103

Figure 4.13: Stemplots of cross-correlation of HDAX forecasts and target delay time-series
for dataset 13 together with those of ARMA

Figure 4.14: Boxplots of distribution for target jitter time-series within dataset 13 together
with those for outputs of HDAX and ARMA

104 CHAPTER 4. MODEL EVALUATION

Figure 4.15: Stemplots of cross-correlation of HDAX forecasts and target jitter time-series
for dataset 13 together with those of ARMA

HDAX has a better approximation of the outliers for both delay and jitter time-series,

which are valuable in detecting the anomalies and congestion in the partial network.

4.4.2.5 NARGES

As shown in Figure 4.16, all the target values as well as NARGES and ARMA model

predictions show a zero mean distribution.

The boxplots for the Target, NARGES and ARMA distributions in Figure 4.16and the

stemplots in Figure 4.17 represents boxplots with a minimum zero packet-loss and a zero

median lines. Compared to ARMA, NARGES has a better prediction of outliers while

ARMA is less accurate in detecting outliers.

4.4. EXPERIMENTS AND RESULTS 105

Figure 4.16: Boxplots of distributions for target packet-loss time-series within dataset 13
together with those for outputs of NARGES and ARMA

Figure 4.17: Stemplots of cross-correlation of NARGES predictions and target packet-loss
time-series for dataset 13 together with those of ARMA

106 CHAPTER 4. MODEL EVALUATION

4.4.3 Experiment 3: Impact Analysis of Network Queuing Policies

on Model Prediction

For these experiments, the data is generated using OPNET on a network both with and

without QoS enabled, and with various background loads. The OPNET application pa-

rameters were set to generate a Low Load FTP ow, Low Resolution video and constant

calls with 100 second durations. In the experiments, the queuing policy used for packet

switching between the routers was FIFO, PQ or WFQ. There were a minimum VoIP

packet-loss from zero to 300 in various experiments. The generic network topology in

these experiments was the one described in Section 4.2.2.2.

4.4.3.1 Model Results with OPNET Datasets

Similar to experiment 1, the accuracies of the NARGES model and its HDAX subcom-

ponent were compared to ARMA using the error function NRMSE. Ten simulation runs

were to obtain the results. Maximum CCFs between the outputs of HDAX, NARGES or

ARMA, and the target time-series are presented in Tables 4.10 and 4.11.

The queueing policies eight to ten, in Table 4.10 are described in Table 4.3. The num-

bers printed in bold distinguish algorithms which are more accurate, faster or have more

correlated output.

The predicted average packet-loss for NARGES was also compared to that of ARMA.

As Table 4.11 shows, the NARGES model predicts more precisely than ARMA but is

slower to do so. This is because NARGES has more modules and processes more data

than ARMA to predict the nal packet-loss values.

4.4. EXPERIMENTS AND RESULTS 107

Table 4.10: Normalised root mean square error (NRMSE) together with algorithms speed
and cross-correlation coefcients of HDAX and ARMA forecasts for OPNET delay and jitter
time-series.

Forecasted Delay Forecasted Jitter
Model Dataset NRMSE Speed CCF NRMSE Speed CCF
Name Category (%) (sec) max (%) (sec) max

HDAX 8 3.27 0.031 0.975 3.61 0.030 0.981
ARMA 8 1.95 0.018 0.990 3.39 0.023 0.900
HDAX 9 2.50 0.205 0.980 3.73 0.208 0.990
ARMA 9 2.47 0.101 0.988 3.10 0.106 0.907
HDAX 10 3.49 0.030 0.968 3.57 0.031 0.995
ARMA 10 2.60 0.021 0.998 2.68 0.023 0.858

Table 4.11: Normalised root mean square error (NRMSE) together with algorithms speed
and cross-correlation coefcients of NARGES and ARMA forecasts for OPNET packet-loss
time-series.

Model Dataset NRMSE ModelSpeed CCF
Name Category (%) (sec) max

NARGES 8 0.01 2.091 0.999
ARMA 8 3.31 0.013 0.999

NARGES 9 0.04 2.974 0.999
ARMA 9 3.47 0.057 0.999

NARGES 10 1.23 7.124 0.999
ARMA 10 5.63 0.012 0.998

4.4.3.2 Model Comparison

As in the previous experiments over D-ITG datasets, the accuracy, speed and the cor-

relation of the model outputs are compared with the corresponding target data and the

similarity, null hypothesis, is tested by Friedman tests. Table 4.12 presents the algorithm

average ranking for each of the models. The bold printed rank numbers distinguish the

algorithms with better rank.

As already mentioned, Friedman’s test computes the ranking of the measured outputs for

an algorithm with other k algorithms, assigning the best of them the rank 1 and the worst

the rank k. Table 4.13 suggests that the null hypothesis is rejected when the p − value

for the corresponding component is less than the signicance level (α = 0.05).

108 CHAPTER 4. MODEL EVALUATION

Table 4.12: Average Rankings of the algorithms; Note that in testing the algorithms for
accuracy, speed and cross-correlation (CCF) over Delay, Jitter and Packet-Loss

Time − series Test ARMA HDAX

Accuracy 0.999 1.999
Delay Speed 1.999 0.999

CCF 1.099 1.899
Accuracy 1.499 1.500

Jitter Speed 1.999 0.999
CCF 1.999 0.999

Predictions ARMA NARGES

Accuracy 0.999 1.999
Packet − loss Speed 1.999 0.999

CCF 1.999 0.999

Table 4.13: Holm / Hochberg Table for α = 0.05. Note that in testing the algorithms
for accuracy, speed and cross-correlation (CCF) over Delay, Jitter and Packet-Loss models
printed in bold are statistically signicantly better.

Data Test Algorithm z = (R0 − Ri)/SE p

Delay Accuracy HDAX 3.163 0.002
Delay Speed ARMA 3.162 0.002
Delay CCF HDAX 2.530 0.011
Jitter Accuracy HDAX 1.40 × 10−15 0.9999
Jitter Speed HDAX 3.1623 0.002
Jitter CCF ARMA 3.162 0.002

Packet − Loss Accuracy NARGES 3.162 0.002
Packet − Loss Speed ARMA 3.162 0.002
Packet − Loss CCF NARGES 3.162 0.002

As shown in Table 4.12 the Holm’s procedure shows that HDAX ranking is better than

ARMA for the accuracy of the results while for the speed of the algorithms ARMA has

higher rank and is better than HDAX. For cross-correlation between the forecasted and

target time-series, HDAX has a higher rank for delay, but not for the jitter, values.

Moreover, according to the p−values, HDAX results are signicantly more accurate and

correlated than ARMA for delay traces while ARMA is faster. For jitter values, HDAX

is faster. For jitter values, the HDAX results are as accurate as ARMA while HDAX

forecasts are less correlated compared to ARMA.

4.4. EXPERIMENTS AND RESULTS 109

For the NARGES model, the output accuracy and quality of the predictions for packet-

loss are statistically signicantly better than ARMA, as shown in Table 4.13. However,

as was the case with the D-ITG, NARGES model is slower than ARMA.

4.4.3.3 Discussion on the Quality of Results

As a representative, this section describes the distributions of the delay, jitter and packet-

loss for dataset 41, generated by OPNET. In this experiment, 1,000,000 values were

generated under a FIFO queuing discipline. Figures 4.18 and 4.19 show the boxplots of

the distributions of the target delay and jitter time-series together with those generated by

HDAX and ARMA.

Figure 4.22 shows boxplots of packet-loss time-series for the Target data and, NARGES

and ARMA predictions. Figures 4.20, 4.21, 4.23 show the stemplots for the forecasted

or predicted values generated by HDAX, NARGES or ARMA models.

4.4.3.4 HDAX

As shown in Figure 4.18, the target delay values for dataset 41 are spread between 800

and 950 ms with IQR of 40 ms, minimum of 650 ms, maximum of 950 ms and median

of 870 ms. Considering the HDAX and ARMA boxplots, it can be seen that HDAX

forecasts seems to be more correlated to the target delay values. HDAX also shows less

outliers compared to ARMA which has a narrow distribution, spread all over the interval

between 830 and 930 ms, with an IQR of 30 ms, a minimum of 650 and maximum of

1070 ms with extra outliers over the maximum.

Figure 4.19 shows that for jitter values, HDAX and the target data have a median of 5

ms. While HDAX output seems to have a similar distribution to the target, ARMA shows

wider spread of values and a bigger IQR compared to the target distribution. HDAX

110 CHAPTER 4. MODEL EVALUATION

Figure 4.18: Boxplots of distributions of target delay time-series for dataset 41 together with
those for outputs of HDAX and ARMA

shows a closer distribution to the target and more accuracy in estimation of the outliers.

In Figure 4.19 ARMA shows extra outliers under the minimum.

Figure 4.19: Boxplots of distributions of target jitter time-series for dataset 41 together with
those for outputs of HDAX and ARMA

Compared to the target values of delay, the cross-correlation coefcients of the forecasted

values are shown in Figure 4.20 – the green dash-dot and red dash-cross lines of ARMA

and HDAX.

4.4. EXPERIMENTS AND RESULTS 111

Figure 4.20: Stemplots of cross-correlation of HDAX forecasts and target delay time-series
for dataset 41 together with those of ARMA

As shown in Figure 4.21, ARMA cross-correlation coefcients, depicted as the dash-

cross red line, are showing less similarity to the target jitter data compared to HDAX. In

this regard, the dash-dor green line of HDAX shows a higher correlation with the target

data with a maximum cross-correlation of 0.999.

In summary, the forecasts of HDAX are more similar to the target values for both delay

and jitter time-series in dataset 41. HDAX shows the same accuracy in forecasting com-

pared to ARMA, although it is more accurate in forecasting outliers for both delay and

jitter time-series.

4.4.3.5 NARGES

Figure 4.22 shows boxplots for target values and predictions of NARGES and ARMA

models for dataset 41. These are similarly distributed all over the interval between 50

112 CHAPTER 4. MODEL EVALUATION

Figure 4.21: Stemplots of cross-correlation of HDAX forecasts and target jitter time-series
for dataset 41 together with those of ARMA

Figure 4.22: Boxplots of distributions of target packet-loss time-series for dataset 41 together
with those for outputs of NARGES and ARMA

4.5. SUMMARY OF MODEL PERFORMANCE 113

and 135 with median of 90 and an IQR of 20 packet-loss.

The stemplots in Figure 4.23 represents the cross-correlation coefcient plots for the pre-

Figure 4.23: Stemplots of cross-correlation of NARGES predictions and target packet-loss
time-series for dataset 41 together with those of ARMA

dicted values of NARGES and ARMA, compared to the target packet-loss time-series. It

can be seen in Figure 4.23 that NARGES and ARMA predictions have the same maxi-

mum CCF.

4.5 Summary of Model Performance

Figure 4.24 summarises the results of HDAX for delay and jitter traces (rst and second

rows) as well as the NARGES results over packet-loss traces (third row) in a top down

order.

The average accuracy of the forecasted delay and jitter time-series of HDAX and ARMA

114 CHAPTER 4. MODEL EVALUATION

as well as the NARGES accuracy for the predicted packet-loss are shown in column (a)

in Figure 4.24. Column (b) shows a comparison between the speed of the models with

ARMA. Column (c) in Figure 4.24 shows the respective correlation coefcient between

the output of the models and the target data.In terms of similarity measurement between

the target time-series and the output by HDAX, NARGES and ARMA, the maximum

similarity of normalised cross-correlations was used for correlation analysis between the

time-series.

Regarding the dataset categories description in Tables 4.1 and 4.3 for D-ITG and OPNET

datasets, each of twin bar charts are labeled with a number assigned to its corresponding

Dataset Category. The numbers 1-7 refer to the results over D-ITG datasets and numbers

8-10 represents the results over OPNET datasets.

The predicted average packet-loss for NARGES was compared to ARMA. As the Fig-

ure 4.24 shows, the NARGES model generally predicts more precisely than ARMA with

the OPNET datasets (labeled 8-10) but is slower. This is because NARGES has more

modules and processes more data than ARMA to predict the nal packet-loss values. The

training time of the MLP module accounts for the longer time taken to run the model.

Currently network routers must send information between routers to inform about the

peer status. The results in this thesis demonstrate, in a simulated setting at least, that a

data mining agent can predict the peer status to reduce or perhaps eliminate the unneces-

sary network data transmission overhead and the time required for sending and receiving

data network packets.

4.5. SUMMARY OF MODEL PERFORMANCE 115

Fi
gu

re
4.

24
:

E
rr

or
(N

R
M

SE
)

of
H

D
A

X
an

d
N

A
R

G
E

S
vs

A
R

M
A

to
ge

th
er

w
ith

sp
ee

d
of

al
go

ri
th

m
an

d
cr

os
s-

co
rr

el
at

io
n

co
ef

c
ie

nt
s

ar
e

sh
ow

n
in

th
e

co
lu

m
n

(a
)

to
(c

),
re

sp
ec

tiv
el

y.
T

he
r

st
an

d
se

co
nd

ro
w

s
ar

e
th

e
H

D
A

X
re

su
lts

an
d

th
e

la
st

ro
w

sh
ow

s
th

e
w

ho
le

m
od

el
(N

A
R

G
E

S)
re

su
lts

.
In

th
e

tw
in

ba
r

ch
ar

ts
,t

he
le

ft
gr

ay
ba

rs
sh

ow
s

H
D

A
X

(i
n

th
e

r
st

tw
o

ro
w

s)
an

d
N

A
R

G
E

S
(i

n
th

e
la

st
ro

w
)w

hi
le

th
e

ri
gh

tb
ar

l
le

d
w

ith
w

id
e

do
w

nw
ar

d
di

ag
on

al
pa

tte
rn

de
no

te
s

A
R

M
A

ou
tc

om
es

.

116 CHAPTER 4. MODEL EVALUATION

4.6 Conclusions

The chapter presented the results evaluating the proposed models. The NARGES model

and its subcomponent HDAX were validated with heterogeneous QoS traces. The results

show that the quality and the accuracy of the proposed models are signicantly better

than ARMA. However, NARGES was slower than ARMA because it has to process

more inputs. As can be seen from the competing speed of HDAX module, it is the

training time of the MLP module that degrades the speed of the model. In Table 4.9,

the signicant difference between the p − value of the Holm’s procedure for the D–ITG

and the longer OPNET datasets suggests that the model can work faster in a real–time

network experiment, as the training time of MLP module is negligible in an innite real-

time run.

There are small but not yet ignorable errors caused by HDAX outputs. This is only a

case for the experiments using D-ITG datasets and the inputs that had zero mean, i.e.

stationary zero-mean time-series. HDAX showed a small “Standard Deviation” greater

than zero, which led to a wider distribution in the results. However, HDAX can forecast

outliers even in such a situation, and moreover, the above error can be eliminated by

optimising the implementation. This is resolved for longer experiments, i.e. the experi-

ments with OPNET generated data, and also for the experiments in which the algorithms

dealing with stochastic and non-stationary data.

The evaluation of the proposed models in this chapter fullls the contributions 3 and 4

in Chapter 1. Next, in Chapter 5, conclusions of the thesis and suggested future research

directions will be discussed.

Chapter 5

Conclusions and Future Work

“We cannot solve our problems with the same thinking we used when we created them,”

— Albert Einstein

There is a reported dependency between packet-loss and the delay and jitter time-

series assigned to a telecommunication link (Markopoulou et al., 2006; Jiang and

Schulzrinne, 2000). Multimedia applications such as Voice over IP are sensitive to loss

and packet recovery is not a merely efcient solution with the increasing number of In-

ternet users. Thus, predicting packet-loss from network dynamics of past transmissions

is crucial to inform the next generation of routers in making smart decisions. Regard-

ing this, the current research aimed at modeling packet-loss traces based on other QoS

parameters, namely delay and jitter time-series.

In this thesis, a hybrid data mining model, NARGES, is proposed. It is designed and im-

plemented for predicting packet-loss based on the forecasted delays and jitters. NARGES

consists of two parts: a historical symbolic time-series approximation module, called

HDAX to approximate delay and jitter values, and a Multilayer Perceptron (MLP) to

117

118 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

predict future packet-loss.

The outcomes are validated with real-time and simulated heterogeneous quality of ser-

vice traces, namely delay, jitter and packet-loss time-series from UNINA and OPNET

simulations. The results showed improved precision and correlation of the imputed val-

ues of the proposed models compared to autoregressive moving average, ARMA, model.

Thus, the proposed models may benet decision-making for routing management in a

communications network.

This nal chapter summarises the specic contributions of the thesis and discusses open

research directions about this work.

5.1 Conclusions

This thesis makes four contributions to the state of the art in telecommunications time-

series data mining. This includes:

1. In Section 3.3, the thesis proposed “a real time Data Mining (DM) model called

HDAX.”

An historical symbolic time-series approximation model, HDAX, was introduced.

The HDAX approximates delay and jitter in real–time streams based on the ob-

served delay and jitter trends and values in two previous consecutive values in

corresponding trend sequences.

The model uses most frequent patterns in forecasting current trends and values of

delay and jitter time-series. That is, based on the observed frequency of trend pat-

terns in a time-series, the model takes the most frequent trend patterns to approxi-

mate the maximum likelihood of the next trend, and to calculate the next value, of

the time-series.

5.1. CONCLUSIONS 119

2. In Section 3.3, the thesis also proposed “a hybrid DM model called NARGES,”

an informed decision-making model for routing management in a communications

network.

The model uses forecasted delay and jitter traces obtained from HDAX module

to predict packets lost within a network node (usually an edge router). The mo-

tivation is to use this predicted value to indicate the current degree and severity

of congestion and likelihood of packet-loss, and to use it as a vital component in

sender–based error and rate control mechanisms for multimedia.

3. In Section 4.4.2, the “evaluation of the proposed DM models with D-ITG” data has

been described.

In this regard, the proposed models in this thesis were validated with the Dis-

tributed Internet Trafc Generator (D-ITG) data described in Section 4.2.1. As

discussed before, three sets of time-series are considered for each experiment: the

original data generated by D-ITG, the output of HDAX (or NARGES) and the

output of ARMA.

4. In Section 4.4.3, the “evaluation of the proposed DM models with OPNET data”

has been described.

In this regard, the proposed models were validated with the OPNET Modeler data

described in Section 4.2.2. As discussed before, three sets of time-series are con-

sidered for each experiment: the original data generated by OPNET, the output of

HDAX (or NARGES) and the output of ARMA.

The datasets were categorised in two ways: (i) according to the end-to-end path for

the datasets generated by D-ITG; and (ii) according to the queuing policy used for the

datasets generated by OPNET.

120 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Forty-six datasets were used for computing results. Each dataset includes time-stamped

traces of delay, jitter and loss values. There were thirty-six datasets generated by D-

ITG with an average 3000 values in each of delay, jitter and packet-loss time-series.

There were also ten datasets generated by OPNET, nine with 48000 values and one with

1,000,000 values. The data generated by D-ITG are gathered in two ways: (i) the archives

obtained from UNINA; (ii) the data probed over UTS network test-bed.

The datasets generated by D-ITG trafc generator were described in Section 4.2.1 and

used in running experiments in Section 4.4.1 and Section 4.4.2. A selection of seven

categories of datasets, based on the End-to-End Path (e2eP) categories explained in Sec-

tion 4.2.1.1, were used. The performance of the data mining prediction model was eval-

uated using these datasets and the model validation with the heterogeneous QoS traces

showed the quality of the models and the signicant improvement in precision of the

proposed model compared to ARMA model.

OPNET datasets, on the other hand, were used to study the effect of different packet

transmission policies, longer experiments and network congestion states on the perfor-

mance of the implemented data mining model. A series of queuing disciplines in the

routers (FIFO, WFQ and PQ) that can affect VoIP applications and link congestion was

designed and simulated on OPNET Modeler to generate the OPNET datasets. These

datasets were used in running experiments in Section 4.4.3.

The performance of the data mining prediction model was evaluated using these datasets

and the model validation with ofine heterogeneous QoS traces demonstrated the quality

and improvement of the proposed model compared to ARMA model.

The results in the thesis illustrate that the proposed DM model, NARGES, may predict

the peer status, namely the packet-loss numbers assigned to a peer link, for all End-to-End

Path (e2eP) and all queuing scenarios considered in the experiments within Section 4.4.

5.2. LIMITATIONS 121

In this regard, the DM predicted knowledge by NARGES model was statistically shown

to have signicant correlation and precision compared to the measured values on a link.

Consequently, the NARGES DM model can reduce unnecessary network data transmis-

sion overhead and may eliminate the time required for sending and receiving data net-

work packets.

5.2 Limitations

The primary limitations in this research were in the evaluation step. Evaluations were

limited to using off-line simulated data obtained from the OPNET simulations and D-ITG

trafc generator. Although there is a built-in co-simulation module within OPNET sim-

ulator, the poor synchronisation between MATLAB and OPNET made a co-simulation

too slow and almost impractical for an online evaluation. Moreover, the BGP protocol

should be updated to accept new metrics for routing decision-making, which were out

of scope of this study. As mentioned before, telecommunications data mining is also

restricted to sharing data, information and knowledge. That is, utilising data from other

resources from another autonomous system is limited.

5.3 Future Work

The model outcomes in this thesis inspired several ideas for novel ways to enhance time-

series data mining and forecasting. A few of the ideas and challenges which are useful

for future study in the area of Data Mining (DM) and Telecommunications are

1. Making a theoretical analysis of the time complexity of the proposed models.

122 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

2. Rening HDAX model and algorithm to improve the proposed model and its im-

plementation for forecasting with missing values.

Tresp and Hofmann (1998) introduce formal way of modeling a nonlinear time-

series with missing values. Assuming that in the Eq. (3.2) yt−2 is missing, the

typical agenda is to approximate ŷt−2 of the missing value and then substitute it in

HDAX. Eq. (3.2) will then be changed to

ŷt = f(yt−1, ˆyt−2, . . . , yt−N) + t (5.1)

3. Rening HDAX metrics for using statistical techniques such as estimation the-

ory (Mateo et al., 2013).

This can improve the accuracy and efciency of the algorithm. The metrics such

as maximum delay threshold and window size should be determined dynamically

to reect the prevailing online status of the network. This will enable us to deploy

HDAX more reliably.

4. Using other prediction models such as Hidden Markov Model, Bayesian Network

and Linear Regression in the proposed conceptual framework for NARGES DM

model presented in Section 3.1 and comparing the results to those made by using

the Multilayer Perceptrons.

The MLP predictive module in NARGES model was chosen based on the higher

reputed prediction ability of an MLP. However, for a curious researcher there is

a potential gap to compare the performance parameters of NARGES using other

predictive models instead of the MLP.

Moreover, data stream mining methods may be applicable to the stream of data in

this domain.

5. Implementing an interactive co-simulation environment between MATLAB and

5.3. FUTURE WORK 123

OPNET to obtain real-time simulation results. The NARGES model, implemented

on OPNET BGP routers on different autonomous systems, provides knowledge for

packet switching between routers.

For realtime co-simulations, MATLAB Executable external interface function (MEX-

les) may be used to exchange measured and forecasted time-series to and from

the OPNET routines on simulated BGP routers. Explanation about OPNET co-

simulation with an external program may be nd at in Fujita (2003).

The motivation for this task is to check the impact of the NARGES model on a

router decision for packet switching to its peer in a real-time scenario and to study

the network utilisation of other links with and without the presence of the DM

model.

The challenges assigned with this task are: (i) synchronisation between MATLAB

and OPNET, and (ii) manipulation of an inter-network protocol such as BGP is

necessary to be able to utilise the NARGES model knowledge in router decision

making and updating the routing table.

The results in this thesis suggest that Data Mining has a potential to precisely predict a

link packet-loss based upon the approximation of current packet delay and jitter. The

knowledge provided by DM module, which is ideally installed on a future smart router,

can assist in detection of partial network failure, e.g. a link or peer failure, and is bene-

cial to routing management decision-making. Future challenges in non-numerical mod-

eling of stochastic time-series remain open for researchers to model online time-series

with unknown parameters and missing values.

124 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Appendix A

List of Acronyms

ACF Autocorrelation Function

ADSL Asymmetric bit rate Digital Subscriber Line

ANN Articial Neural Network

ANOVA Analysis Of Variance

AR Autoregressive Model

ARCH Autoregressive Conditional Heteroskedasticity Model

ARIMA Autoregressive Integrated Moving Average

ARMA Autoregressive Moving Average

BE Best Effort

BG IEEE 802.11b/g

BN Bayesian Network

BGP Border Gateway Protocol

125

126 APPENDIX A. LIST OF ACRONYMS

CCF Cross–Correlation Function

CPU Central Processing Unit

CW Computing with Words

DB Database

D-ITG Distributed Internet Trafc Generator

DM Data Mining

DMF Deterministic Mapping Function

DNS Domain Name System

DS1 DS1 is a standard in telecommunications to transmit voice and data

DT Decision Trees

e2eP End-to-End Path

ECG Electrocardiography

EF Expedited Forward

FARIMA Autoregressive Fractionally Integrated Moving Average

FEC Forwarded Error Correction

FEIT Faculty of Engineering and Information Technology

FIFO First In First Out

FP Frequent Pattern

FTP File Transfer Protocol

127

FTSDB Forecasted Time-Series Database

GARCH Generalised Autoregressive Conditional Heteroskedasticity Model

GPRS General Packet Radio Service

GUI Graphical User Interface

HDAX Historical Symbolic Delay Approximation Model

HMM Hidden Markov Model

HPC High Performance Computing

ICMP Internet Control Message Protocol

IDS Initial Dataset

IDT Inter Departure Time

INTERMON European IST Inter-Domain QoS Monitoring project

IP Internet Protocol

IPDV IP Packet Delay Variation

IQR Interquartile Range

IRP Interior Router Protocol

IS-IS Intermediate System To Intermediate System

ITU International Telecommunications Union

KDD Knowledge Discovery in Databases

LAN Local Area Networks

128 APPENDIX A. LIST OF ACRONYMS

LR Linear Regression

M2E Mouth-to-Ear

MA Moving Average Model

MagNets A next-generation wireless access network deployed in the city of Berlin.

MAP Moving Approximation

MATLAB The language of technical computing

MEX MATLAB Executable external interface function

MHA Minimum Hop-Count Algorithm

MLE Maximum Likelihood Estimator

MLP Multilayer Perceptrons

MPLS Multi-Protocol Label Switching

MRB Maximum Reservable Bandwidth

MS Microsoft

NARGES Data Mining Model for Smart Routing in Communications Networks

NRMSE Normalised Root Mean Square Error

NS2 NS2

OMNET OMNET++

OO Object-oriented

OPNET OPNET Modeller

129

OSPF Open Shortest Path First

OWD One Way Delay

PC Personal Computer

PD Pattern Denition

PDB Pattern Database

PDL Pattern Denition Language

PPP Point-to-Point Protocol

PQ Priority Queueing

PS Payload Size

QoS Quality of Service

RSS Residual Sum of Squares

RTP Routing Update Protocol

RTT Round Trip Time

SAX Symbolic Aggregate Approximation

SCTP Stream Control Transmission Protocol

SD Standard Deviation

SLA Service Level Agreement

SWP Shortest-Widest Path Routing Strategy

TCP Transmission Control Protocol

130 APPENDIX A. LIST OF ACRONYMS

TDS Terminal Data Set

TE Trafc Engineering

Telnet Telnet Protocol

TOS Type Of Service

TS Time-Series

TSDB Database of QoS Measured Time Series

TSDM Time-series Data Mining

TSP Trafc Specication Protocol

TTL Time to Live

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications Systems

UNINA University of Naples Federico II

UTS University of Technology, Sydney

VoIP Voice over IP

WFQ Weighted Fair Queuing

WLAN Wireless LAN

WS Workstation

WSP Widest-Shortest Path Routing Strategy

Appendix B

ARMA Parameter Estimation

The appendix reviews four techniques for ARMA model parameter estimation, namely

YuleWalker Estimation, Burg’s Algorithm, Hannan-Rissanen Algorithm and Max-

imum Likelihood Estimation.

B.1 Preliminary Estimation

There are four techniques considered in Brockwell and Davis (2006) for preliminary

estimation of the θ and φ coefcients of casual ARMA(p,q) process 2.7 and σ2 of the

process Xt = x1, x2, . . . , xn.

The Yule-Walker and Burg methods are based on tting the pure AR models. The Yule-

Walker method may be applied to models with q > 0. In this regard, Hannan-Rissanen

algorithms give preliminary approximates of the ARMA parameters when q > 0.

• YuleWalker Estimation

According to (Brockwell and Davis, 2006, pp. 139-146), in a pure AR model,

where the θ coefcient is correspondingly 1, the process Xt may be written in the

131

132 APPENDIX B. ARMA PARAMETER ESTIMATION

form

Xt =
∞

j=0

ψjZt−j

The Yule-Walker equations will be as

Γpφ = γp

and

σ2 = γ(0) − φ

γp

where Γp is the covariance matrix determined from σ2 and φ coefcient, accord-

ingly.

• Burg’s Algorithm

The Yule-Walker coefcients denes the most precise coefcients of linear predic-

tor of Xp+1 using X1,. . . , Xp. This assumes that the ACF of Xt matches the sample

ACF at lags1 1, . . . , p.

Given the Yule-Walker coefcients φ̂p1, . . . , φ̂pp at lags 1,. . . ,p, Burgs algorithm

approximates the partial autocorrelation function φ11,φ22,. . . by minimizing sums

of square error assigned to each of the coefcients φii (Brockwell and Davis, 2006).

Let x1, . . . , xn be the probes of a stationary zero-mean time-series Xt. Let also

dene the respective Burgs algorithm backward and forward errors as: (i) vi(t),

t = i + 1, . . . , n, 0 ≤ i < n, as the difference of xn+1−t and xn+1−t best linear

1An ACF value obtained at time t + k (k > 0) is called to lag behind another value obtained at time t
and the extent (length) of the lag is k. In this regard, a value obtained k time units before may be regarded
as having a negative lag.

B.1. PRELIMINARY ESTIMATION 133

estimate, in terms of the subsequent i probes and (ii) ui(t), t = i + 1, . . . , n, as

the difference of xn+1+i−t and the best linear estimate of xn+1+i−t in terms of the

preceding i probes. In this regard, the following recursive equations are satised

by the backward and forward prediction errors vi(t) and ui(t):

vi(t) = vi−1(t) − φiiui−1(t − 1) (B.2)

and

u0(t) = v0(t) = xn+1−t

ui(t) = ui−1(t − 1) − φiivi−1(t) (B.3)

On this basis and with respect to φpp, Burgs estimation for φ
(B)
pp of φpp (1 ≤ p ≤

n − 1) can be computed by minimizing the Eq. (B.4)

σ2
p :=

1

2(n − p)

n

t=p+1

[u2
p(t) + v2

p(t)] (B.4)

• Hannan-Rissanen Algorithm

The dening equations for a causal AR(p) model have the form of a linear regres-

sion model with coefcient vector φ = (φ1, . . . , φp)’.

This suggests the use of simple least squares regression for obtaining preliminary

parameter estimates when q = 0. Application of this technique when q > 0 is

complicated by the fact that in the general ARMA(p,q) equations Xt is regressed

not only on Xt−1, . . . , Xt−p, but also on the unobserved quantities Zt−1, . . . , Zt−q.

Nevertheless, it is still possible to apply least squares regression to the estimation

of φ and θ by rst replacing the unobserved quantities Zt−1, . . . , Zt−q in 2.7 by

134 APPENDIX B. ARMA PARAMETER ESTIMATION

estimated values Zt−1, . . . ,Zt−q . The above φ and θ parameters are then set by

regressing Xt onto Xt−1, . . . , Xt−p,Zt−1, . . . ,Zt−q.

These are two steps in the procedure of Hannan-Rissanen estimation

Step 1. An AR(m) model (m > max(p,q)) is tted using the Yule-Walker estimates

of Section 2.5.1.4. If (ˆφm1, . . . , ˆφmm) is the vector of coefcients estimate, then

the estimate of the residuals are formulated as

Ẑt = Xt − ˆφm1Xt−1 − . . . − ˆφmmXt−m, t = m + 1, . . . , n.

Step 2. Once the estimate of the residuals Zt, t = m + 1, . . . , n, have been calculated

as in Step 1, the parameter vector, β = (φ,θ) is approximated using least squares

linear regression of Xt onto (Xt−1, . . . , Xt−p,Zt−1, . . . , Zt−q), t = m + 1 + q, . . . ,

n, i.e., by minimizing the sum of squares

S(β) = Σn
t=m+1+q(Xt − φ1Xt−1 − . . . − φpXt−p − θ1

ˆZt−1 − . . . − θ1
ˆZt−1)

2

with respect to β.

The following equation calculates the Hannan-Rissanen approximation

β̂ = (Z Z)−1Z Xn,

where Xn = (Xm+1+q, ..., Xn) and Z is the (n−m−q)×(p+q) matrix (Brockwell

and Davis, 2006).

B.2. MAXIMUM LIKELIHOOD ESTIMATION 135

B.2 Maximum Likelihood Estimation

Maximum likelihood estimation is based upon the mathematical expression of a proba-

bility function of the sample data. It is an analytical maximisation procedure that applies

to any kind of missing data. The expression includes the unknown parameters the model.

In this regard, the parameter values that maximise the sample probability are called Max-

imum Likelihood Estimator (MLE).

Regarding Xt to be a zero-mean Gaussian time-series with ACF γ(i, j) = E(XiXj), let

Xn = (X1, . . . , Xn) and X̂n = (X̂1, . . . , X̂n), where X̂1 = 0 and X̂j = E(Xj|X1, . . . ,

Xj−1) = Pj−1Xj , j ≥ 2. Let also Γn denotes the covariance matrix Γn = E(XnX

n), and

is non-singular. The probability of Xn is as

L(Γn) = (2π)−n/2(detΓn)−1/2exp(−1

2
X 

nΓ−1
n Xn) (B.5)

As shown in (Brockwell and Davis, 2006) and (Chateld, 2004), the direct computation

of det Γn and Γ−1
n may be expressed by means of the one-step prediction errors Xj − X̂j

and their variances vj−1, j = 1, . . ., n.

136 APPENDIX B. ARMA PARAMETER ESTIMATION

Appendix C

Implementation of Loss Predictor -

Source Code

The appendix illustrates an implementation of Loss Predictor - Source Code - used

in Chapter 4

C.1 NARGES Implementation

1 %%%

2 % Copyright and terms of use (DO NOT REMOVE):

3 % The code is made freely available for non-commercial

4 % uses only, provided that the copyright

5 % header in each file not be removed, and suitable

6 % citation(s) (see below) be made for papers

7 % published based on the code.

8 %

9 % Copyright (c) 2009-2012, Hooman Homayounfard,

10 % hoomanhm@it.uts.edu.au

11 %%%

12

13 function [out,NARGESNet]= NARGES(Ddata,Jdata,Pdata,winsize,sd,sj,sp,pici)

14

137

138 APPENDIX C. IMPLEMENTATION OF LOSS PREDICTOR - SOURCE CODE

15

16 %% Loading data if nargin.%%

17 %% ALTRENATIVELY, ONE OF THESE DATASET MAY HAVE BEEN USED FOR AN INDIVIDUAL EXPERIMENT

WHEN NEEDED %%

18 if nargin == 0

19 %Ddata=load(’/delay_adsl-to-wired-recv-const-1-udp-64.log.dat’);

20 %Jdata=load(’/jitter_adsl-to-wired-recv-const-1-udp-64.log.dat’);

21 %Pdata=load(’/packetloss_adsl-to-wired-recv-const-1-udp-64.log.dat’);

22 %pici=1;

23 %Ddata=load(’/delay_adsl-to-wired-recv-const-1-udp-512.log.dat’);

24 %Jdata=load(’/jitter_adsl-to-wired-recv-const-1-udp-512.log.dat’);

25 %Pdata=load(’/packetloss_adsl-to-wired-recv-const-1-udp-512.log.dat’);

26 %pici=2;

27 %Ddata=load(’/delay_gprs-to-wired-winlin-tcp-512.log.dat’);

28 %Jdata=load(’/jitter_gprs-to-wired-winlin-tcp-512.log.dat’);

29 %Pdata=load(’/packetloss_gprs-to-wired-winlin-tcp-512.log.dat’);

30 %pici=3;

31 %Ddata=load(’/delay_gprs-to-wired-winlin-tcp-1024.log.dat’);

32 %Jdata=load(’/jitter_gprs-to-wired-winlin-tcp-1024.log.dat’);

33 %Pdata=load(’/packetloss_gprs-to-wired-winlin-tcp-1024.log.dat’);

34 %pici=4;

35 %Ddata=load(’/delay_gprs-to-wired-winlin-udp-512.log.dat’);

36 %Jdata=load(’/jitter_gprs-to-wired-winlin-udp-512.log.dat’);

37 %Pdata=load(’/packetloss_gprs-to-wired-winlin-udp-512.log.dat’);

38 %pici=5;

39 %Ddata=load(’/delay_gprs-to-wired-winlin-udp-1024.log.dat’);

40 %Jdata=load(’/jitter_gprs-to-wired-winlin-udp-1024.log.dat’);

41 %Pdata=load(’/packetloss_gprs-to-wired-winlin-udp-1024.log.dat’);

42 %pici=6;

43 %Ddata=load(’/delay_gprs-to-wired-winwin-tcp-512.log.dat’);

44 %Jdata=load(’/jitter_gprs-to-wired-winwin-tcp-512.log.dat’);

45 %Pdata=load(’/packetloss_gprs-to-wired-winwin-tcp-512.log.dat’);

46 %pici=7;

47 %Ddata=load(’/delay_gprs-to-wired-winwin-tcp-1024.log.dat’);

48 %Jdata=load(’/jitter_gprs-to-wired-winwin-tcp-1024.log.dat’);

49 %Pdata=load(’/packetloss_gprs-to-wired-winwin-tcp-1024.log.dat’);

50 %pici=8;

51 %Ddata=load(’/delay_gprs-to-wired-winwin-tcp-512.log.dat’);

52 %Jdata=load(’/jitter_gprs-to-wired-winwin-tcp-512.log.dat’);

53 %Pdata=load(’/packetloss_gprs-to-wired-winwin-tcp-512.log.dat’);

54 %pici=9;

C.1. NARGES IMPLEMENTATION 139

55 %Ddata=load(’/delay_gprs-to-wired-winwin-tcp-1024.log.dat’);

56 %Jdata=load(’/jitter_gprs-to-wired-winwin-tcp-1024.log.dat’);

57 %Pdata=load(’/packetloss_gprs-to-wired-winwin-tcp-1024.log.dat’);

58 %pici=10;

59 %Ddata=load(’/delay_umts-to-wired-tcp-64.log.dat’);

60 %Jdata=load(’/jitter_umts-to-wired-tcp-64.log.dat’);

61 %Pdata=load(’/packetloss_umts-to-wired-tcp-64.log.dat’);

62 %pici=11;

63 %Ddata=load(’/delay_umts-to-wired-tcp-512.log.dat’);

64 %Jdata=load(’/jitter_umts-to-wired-tcp-512.log.dat’);

65 %Pdata=load(’/packetloss_umts-to-wired-tcp-512.log.dat’);

66 %pici=12;

67 %Ddata=load(’/delay_umts-to-wired-tcp-1024.log.dat’);

68 %Jdata=load(’/jitter_umts-to-wired-tcp-1024.log.dat’);

69 %Pdata=load(’/packetloss_umts-to-wired-tcp-1024.log.dat’);

70 %pici=13;

71 %Ddata=load(’/delay_umts-to-wired-udp-64.log.dat’);

72 %Jdata=load(’/jitter_umts-to-wired-udp-64.log.dat’);

73 %Pdata=load(’/packetloss_umts-to-wired-udp-64.log.dat’);

74 %pici=14;

75 %Ddata=load(’/delay_umts-to-wired-udp-512.log.dat’);

76 %Jdata=load(’/jitter_umts-to-wired-udp-512.log.dat’);

77 %Pdata=load(’/packetloss_umts-to-wired-udp-512.log.dat’);

78 %pici=15;

79 %Ddata=load(’/delay_umts-to-wired-udp-1024.log.dat’);

80 %Jdata=load(’/jitter_umts-to-wired-udp-1024.log.dat’);

81 %Pdata=load(’/packetloss_umts-to-wired-udp-1024.log.dat’);

82 %pici=16;

83 %Ddata=load(’/delay_wired-to-adsl-recv_const-1-tcp-64.log.dat’);

84 %Jdata=load(’/jitter_wired-to-adsl-recv_const-1-tcp-64.log.dat’);

85 %Pdata=load(’/packetloss_wired-to-adsl-recv_const-1-tcp-64.log.dat’);

86 %pici=17;

87 %Ddata=load(’/delay_wired-to-adsl-recv_const-1-tcp-256.log.dat’);

88 %Jdata=load(’/jitter_wired-to-adsl-recv_const-1-tcp-256.log.dat’);

89 %Pdata=load(’/packetloss_wired-to-adsl-recv_const-1-tcp-256.log.dat’);

90 %pici=18;

91 %Ddata=load(’/delay_wired-to-adsl-recv_const-1-tcp-1024.log.dat’);

92 %Jdata=load(’/jitter_wired-to-adsl-recv_const-1-tcp-1024.log.dat’);

93 %Pdata=load(’/packetloss_wired-to-adsl-recv_const-1-tcp-1024.log.dat’);

94 %pici=19;

95 %Ddata=load(’/delay_wired-to-adsl-recv_const-1-udp-64.log.dat’);

140 APPENDIX C. IMPLEMENTATION OF LOSS PREDICTOR - SOURCE CODE

96 %Jdata=load(’/jitter_wired-to-adsl-recv_const-1-udp-64.log.dat’);

97 %Pdata=load(’/packetloss_wired-to-adsl-recv_const-1-udp-64.log.dat’);

98 %pici=20;

99 %Ddata=load(’/delay_wired-to-adsl-recv_const-1-udp-512.log.dat’);

100 %Jdata=load(’/jitter_wired-to-adsl-recv_const-1-udp-512.log.dat’);

101 %Pdata=load(’/packetloss_wired-to-adsl-recv_const-1-udp-512.log.dat’);

102 %pici=21;

103 %Ddata=load(’/delay_wired-to-adsl-recv_const-1-udp-1024.log.dat’);

104 %Jdata=load(’/jitter_wired-to-adsl-recv_const-1-udp-1024.log.dat’);

105 %Pdata=load(’/packetloss_wired-to-adsl-recv_const-1-udp-1024.log.dat’);

106 %pici=22;

107 %Ddata=load(’/delay_wired-to-gprs-linwin-tcp-64.log.dat’);

108 %Jdata=load(’/jitter_wired-to-gprs-linwin-tcp-64.log.dat’);

109 %Pdata=load(’/packetloss_wired-to-gprs-linwin-tcp-64.log.dat’);

110 %pici=23;

111 %Ddata=load(’/delay_wired-to-gprs-linwin-tcp-512.log.dat’);

112 %Jdata=load(’/jitter_wired-to-gprs-linwin-tcp-512.log.dat’);

113 %Pdata=load(’/packetloss_wired-to-gprs-linwin-tcp-512.log.dat’);

114 %pici=24;

115 %Ddata=load(’/delay_wired-to-gprs-linwin-tcp-1024.log.dat’);

116 %Jdata=load(’/jitter_wired-to-gprs-linwin-tcp-1024.log.dat’);

117 %Pdata=load(’/packetloss_wired-to-gprs-linwin-tcp-1024.log.dat’);

118 %pici=25;

119 %Ddata=load(’/delay_wired-to-gprs-linwin-udp-64.log.dat’);

120 %Jdata=load(’/jitter_wired-to-gprs-linwin-udp-64.log.dat’);

121 %Pdata=load(’/packetloss_wired-to-gprs-linwin-udp-64.log.dat’);

122 %pici=26;

123 %Ddata=load(’/delay_wired-to-gprs-linwin-udp-512.log.dat’);

124 %Jdata=load(’/jitter_wired-to-gprs-linwin-udp-512.log.dat’);

125 %Pdata=load(’/packetloss_wired-to-gprs-linwin-udp-512.log.dat’);

126 %pici=27;

127 %Ddata=load(’/delay_wired-to-gprs-linwin-udp-1024.log.dat’);

128 %Jdata=load(’/jitter_wired-to-gprs-linwin-udp-1024.log.dat’);

129 %Pdata=load(’/packetloss_wired-to-gprs-linwin-udp-1024.log.dat’);

130 %pici=28;

131 %Ddata=load(’/delay_wired-to-gprs-winwin-tcp-64.log.dat’);

132 %Jdata=load(’/jitter_wired-to-gprs-winwin-tcp-64.log.dat’);

133 %Pdata=load(’/packetloss_wired-to-gprs-winwin-tcp-64.log.dat’);

134 %pici=29;

135 %Ddata=load(’/delay_wired-to-gprs-winwin-tcp-1024.log.dat’);

136 %Jdata=load(’/jitter_wired-to-gprs-winwin-tcp-1024.log.dat’);

C.1. NARGES IMPLEMENTATION 141

137 %Pdata=load(’/packetloss_wired-to-gprs-winwin-tcp-1024.log.dat’);

138 %pici=30;

139 %Ddata=load(’/delay_wired-to-gprs-winwin-udp-64.log.dat’);

140 %Jdata=load(’/jitter_wired-to-gprs-winwin-udp-64.log.dat’);

141 %Pdata=load(’/packetloss_wired-to-gprs-winwin-udp-64.log.dat’);

142 %pici=31;

143 %Ddata=load(’/delay_wired-to-gprs-winwin-udp-512.log.dat’);

144 %Jdata=load(’/jitter_wired-to-gprs-winwin-udp-512.log.dat’);

145 %Pdata=load(’/packetloss_wired-to-gprs-winwin-udp-512.log.dat’);

146 %pici=32;

147 %Ddata=load(’/delay_wired-to-gprs-winwin-udp-1024.log.dat’);

148 %Jdata=load(’/jitter_wired-to-gprs-winwin-udp-1024.log.dat’);

149 %Pdata=load(’/packetloss_wired-to-gprs-winwin-udp-1024.log.dat’);

150 %pici=33;

151 %Ddata=load(’/delay_wired-to-umts-tcp-64.log.dat’);

152 %Jdata=load(’/jitter_wired-to-umts-tcp-64.log.dat’);

153 %Pdata=load(’/packetloss_wired-to-umts-tcp-64.log.dat’);

154 %pici=34;

155 %Ddata=load(’/jitter_wired-to-umts-tcp-512.log.dat’);

156 %Jdata=load(’/delay_wired-to-umts-tcp-512.log.dat’);

157 %Pdata=load(’/packetloss_wired-to-umts-tcp-512.log.dat’);

158 %pici=35;

159 %Ddata=load(’/delay_wired-to-umts-tcp-1024.log.dat’);

160 %Jdata=load(’/jitter_wired-to-umts-tcp-1024.log.dat’);

161 %Pdata=load(’/packetloss_wired-to-umts-tcp-1024.log.dat’);

162 %pici=36;

163 %Ddata=load(’/delay_wired-to-wireless-sctp-64.log.dat’);

164 %Jdata=load(’/jitter_wired-to-wireless-sctp-64.log.dat’);

165 %Pdata=load(’/packetloss_wired-to-wireless-sctp-64.log.dat’);

166 %pici=37;

167 %Ddata=load(’/delay_wired-to-wireless-sctp-512.log.dat’);

168 %Jdata=load(’/jitter_wired-to-wireless-sctp-512.log.dat’);

169 %Pdata=load(’/packetloss_wired-to-wireless-sctp-512.log.dat’);

170 %pici=38;

171 %Ddata=load(’/delay_wired-to-wireless-sctp-1024.log.dat’);

172 %Jdata=load(’/jitter_wired-to-wireless-sctp-1024.log.dat’);

173 %Pdata=load(’/packetloss_wired-to-wireless-sctp-1024.log.dat’);

174 %pici=39;

175 %Ddata=load(’/delay_wired-to-wireless-tcp-64.log.dat’);

176 %Jdata=load(’/jitter_wired-to-wireless-tcp-64.log.dat’);

177 %Pdata=load(’/packetloss_wired-to-wireless-tcp-64.log.dat’);

142 APPENDIX C. IMPLEMENTATION OF LOSS PREDICTOR - SOURCE CODE

178 %pici=40;

179 %Ddata=load(’/delay_wired-to-wireless-tcp-512.log.dat’);

180 %Jdata=load(’/jitter_wired-to-wireless-tcp-512.log.dat’);

181 %Pdata=load(’/packetloss_wired-to-wireless-tcp-512.log.dat’);

182 %pici=41;

183 %Ddata=load(’/delay_wired-to-wireless-tcp-1024.log.dat’);

184 %Jdata=load(’/jitter_wired-to-wireless-tcp-1024.log.dat’);

185 %Pdata=load(’/packetloss_wired-to-wireless-tcp-1024.log.dat’);

186 %pici=42;

187 %Ddata=load(’/delay_wired-to-wireless-udp-64.log.dat’);

188 %Jdata=load(’/jitter_wired-to-wireless-udp-64.log.dat’);

189 %Pdata=load(’/packetloss_wired-to-wireless-udp-64.log.dat’);

190 %pici=43;

191 %Ddata=load(’/delay_wired-to-wireless-udp-512.log.dat’);

192 %Jdata=load(’/jitter_wired-to-wireless-udp-512.log.dat’);

193 %Pdata=load(’/packetloss_wired-to-wireless-udp-512.log.dat’);

194 %pici=44;

195 %Ddata=load(’/delay_wired-to-wireless-udp-1024.log.dat’);

196 %Jdata=load(’/jitter_wired-to-wireless-udp-1024.log.dat’);

197 %Pdata=load(’/packetloss_wired-to-wireless-udp-1024.log.dat’);

198 %pici=45;

199 %Ddata=load(’/NARGES-DiffSrv-DES-1_Voice.Delay.dat’);

200 %Jdata=load(’/NARGES-DiffSrv-DES-1_Voice.Jitter.dat’);

201 %Pdata=load(’/NARGES-DiffSrv-DES-1_IP.loss.dat’);

202 %pici=46;

203 %Ddata=load(’/NARGES-Diffsrv_Video-DES-1_Voice.Delay.dat’);

204 %Jdata=load(’/NARGES-Diffsrv_Video-DES-1_Voice.Jitter.dat’);

205 %Pdata=load(’/NARGES-Diffsrv_Video-DES-1_IP.loss.dat’);

206 %pici=47;

207 %Ddata=load(’/NARGES-DiffSrv_VoIP-DES-1_Voice.Delay.dat’);

208 %Jdata=load(’/NARGES-DiffSrv_VoIP-DES-1_Voice.Jitter.dat’);

209 %Pdata=load(’/NARGES-DiffSrv_VoIP-DES-1_IP.loss.dat’);

210 %pici=48;

211 %Ddata=load(’/NARGES-FIFO-DES-1_Voice.Delay.dat’);

212 %Jdata=load(’/NARGES-FIFO-DES-1_Voice.Jitter.dat’);

213 %Pdata=load(’/NARGES-FIFO-DES-1_IP.loss.dat’);

214 %pici=49;

215 %Ddata=load(’/NARGES-FIFO_Long-DES-1_Voice.Delay.dat’);

216 %Jdata=load(’/NARGES-FIFO_Long-DES-1_Voice.Jitter.dat’);

217 %Pdata=load(’/NARGES-FIFO_Long-DES-1_IP.loss.dat’);

218 %pici=50;

C.1. NARGES IMPLEMENTATION 143

219 %Ddata=load(’/NARGES-FIFO_VIdeo-DES-1_Voice.Delay.dat’);

220 %Jdata=load(’/NARGES-FIFO_VIdeo-DES-1_Voice.Jitter.dat’);

221 %Pdata=load(’/NARGES-FIFO_VIdeo-DES-1_IP.loss.dat’);

222 %pici=51;

223 %Ddata=load(’/NARGES-FIFO_VoIP-DES-1_Voice.Delay.dat’);

224 %Jdata=load(’/NARGES-FIFO_VoIP-DES-1_Voice.Jitter.dat’);

225 %Pdata=load(’/NARGES-FIFO_VoIP-DES-1_IP.loss.dat’);

226 %pici=52;

227 %Ddata=load(’/NARGES-PQ-DES-1_Voice.Delay.dat’);

228 %Jdata=load(’/NARGES-PQ-DES-1_Voice.Jitter.dat’);

229 %Pdata=load(’/NARGES-PQ-DES-1_IP.loss.dat’);

230 %pici=53;

231 %Ddata=load(’/NARGES-PQ_Video-DES-1_Voice.Delay.dat’);

232 %Jdata=load(’/NARGES-PQ_Video-DES-1_Voice.Jitter.dat’);

233 %Pdata=load(’/NARGES-PQ_Video-DES-1_IP.loss.dat’);

234 %pici=54;

235 %Ddata=load(’/NARGES-PQ_VoIP-DES-1_Voice.Delay.dat’);

236 %Jdata=load(’/NARGES-PQ_VoIP-DES-1_Voice.Jitter.dat’);

237 %Pdata=load(’/NARGES-PQ_VoIP-DES-1_IP.loss.dat’);

238 %pici=55;

239

240 %% Loading, Initilisation & Transformation

241

242 sd=’/NARGES-PQ_VoIP-DES-1_Voice.Delay.dat’;

243 sj=’/NARGES-PQ_VoIP-DES-1_Voice.Jitter.dat’;

244 sp=’/NARGES-PQ_VoIP-DES-1_IP.loss.dat’;

245 Ddata=Ddata(:,2);Jdata=Jdata(:,2);Pdata=Pdata(:,2);

246

247 winsize=10;

248 rwin=sqrt(winsize);

249

250 %% Loading, Initilisation & Transformation

251

252

253 end % endif nargin

254 clc

255 %% Realtime Experiment Initializations

256

257 win=winsize;

258 rwin=sqrt(win);

259 dsetn = pici;

144 APPENDIX C. IMPLEMENTATION OF LOSS PREDICTOR - SOURCE CODE

260 epochs=200; % for early stopping

261 lr=0.0001; % Learning Rate Parameter

262 mc=0.5; % Momentum Parameter

263 lr_inc= 1.05; % MATLAB default

264 lr_dec= 0.7; % MATLAB default

265 goal=0;

266 min_grad=1e-13;

267 mu=0.005;

268 mu_inc=10;

269 mu_dec=0.3;

270 mu_max=1e5;

271 hn=10;

272 time=inf;

273 showCommandLine=1;

274 max_fail= 30;

275

276 show=1;

277

278 %end initializations

279

280 %% Transforming data and applying time windows of length "win" steps

281

282 %% Transforming Delay Tim-Series

283

284 TDdata = win_transform(Ddata,win);

285 TDsize = length(TDdata);

286 %MAXD = max(TDdata);

287

288 %% Transforming Jitter Tim-Series

289 TJdata = abs(win_transform(Jdata,win));

290 %TJsize = length(TJdata);

291 %MAXJ = max(TJdata);

292

293 %% Transforming Packet Loss Tim-Series

294 TPdata = win_transform(Pdata,win);

295 %maxAP=max(TPdata);

296 TPdataEnd = floor(2*length(TPdata)./3);

297 tlen_dfms2 = floor(length(TPdata)./3);

298 % end of packet loss transformation

299

300 TrainPdata=TPdata(tlen_dfms2+1:TPdataEnd);

C.1. NARGES IMPLEMENTATION 145

301

302 close all;

303

304 %% Calling HDAX and calculating forcasted data of Delay and Jitter

305

306 FDdata = DFMS2(TDdata,sd,pici,dsetn,win);

307 pause;close;

308 FJdata = DFMS2(TJdata,sj,pici+276,dsetn,win);

309 pause;close;

310

311 %% Making MLP

312 Trainsize = floor(TDsize./3);

313 %Trainsize = floor(TDsize);

314 TestPdata=TPdata(TPdataEnd:length(TPdata));

315

316 TrainSet = [FDdata(1:Trainsize),FJdata(1:Trainsize),TrainPdata];

317 TestSet = [FDdata(Trainsize+1:length(FDdata)), ...

318 FJdata(Trainsize+1:length(FJdata)),TestPdata];

319 TrainOut = TrainPdata;

320

321 TrainSet = TrainSet’;

322 TestSet = TestSet’;

323 TrainOut = TrainOut’;

324

325 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

326

327 NARGES = [TDdata,TJdata,TPdata];

328 data=NARGES’;

329 Ranges = minmax(data);

330 Arch = [hn 1];

331 ActFunc = {’tansig’,’tansig’};

332

333 NARGESNet = newff(Ranges,TPdata’ ,Arch, ActFunc, ’trainbr’);

334 save NARGESNet;

335

336 NARGESNet.trainParam.epochs = epochs;

337 NARGESNet.trainParam.lr=lr;

338 NARGESNet.trainParam.mc=mc;

339 NARGESNet.trainParam.trainParam.goallr_inc=lr_inc;

340 NARGESNet.trainParam.goal=goal;

341 NARGESNet.trainParam.lr_dec=lr_dec;

146 APPENDIX C. IMPLEMENTATION OF LOSS PREDICTOR - SOURCE CODE

342 NARGESNet.trainParam.lr_inc=lr_inc;

343 NARGESNet.trainParam.showCommandLine=showCommandLine;

344 NARGESNet.trainParam.mu=mu;

345 NARGESNet.trainParam.time=time;

346 NARGESNet.trainParam.mu_inc=mu_inc;

347 NARGESNet.trainParam.mu_dec=mu_dec;

348 NARGESNet.trainParam.mu_max=mu_max;

349 NARGESNet.trainParam.max_fail=max_fail;

350 NARGESNet.trainParam.min_grad=min_grad;

351 NARGESNet.trainParam.show=show;

352

353 tic

354 NARGESNet = train(NARGESNet, TrainSet,TrainOut);

355 Ellapsed = toc;

356 % end Making MLP

357

358 %% Start Simulation

359

360 out=sim(NARGESNet,TestSet);

361

362 out=out’;

363

364 %% NRMSE and CCF for the Packet-Loss prediction

365 Error = Error1(out,TestPdata(:),’nrmse’);

366 NRMSE = Error.NRMSE/rwin;

367 [r,lags]=xcorr(TestPdata(:),out,50,’coeff’);

368 xc = max(r);

369

370

371 %% Calling ARMA Model

372 phi=[1, - 0.05];

373 theta= 0.005; %filter(1, phi, imp)’;

374 tic

375 predseriesP=predarma2(TestPdata,phi,theta,1);

376 EllapsedP=toc;

377

378 %% NRMSE and CCF for ARMA (compared to NARGES)

379 ErrorP = Error1(predseriesP(1:end-1),TestPdata(:),’nrmse’);

380 NRMSEP = ErrorP.NRMSE/rwin;

381 [rP,lags]=xcorr(TestPdata(:),predseriesP(1:end-1),50,’coeff’);

382 xcP = max(rP);

C.1. NARGES IMPLEMENTATION 147

383 %%end of Calling ARMA Model

384

385 %% start plotting %%

386

387 %%

388 %% Plotting NARGES, ARMA & Original traces

389 %%

390 hold on

391 grid on

392 plot(TestPdata,’g.-’,’MarkerSize’,18);

393 plot(out,’b+-’,’MarkerSize’,18);

394 plot(predseriesP,’rx-’,’MarkerSize’,18);

395 hold off

396 xlabel({’Step (s)’},’FontSize’,18);

397 ylabel({’Average Packet-loss’},’FontSize’,18);

398 title({[’NARGES vs ARMA Prediction of Average ...

399 Packetloss: NARGES Error = ’ num2str(NRMSE) ’; ARMA Error = ’ ...

400 num2str(NRMSEP)];[’Data Set: ’ num2str(dsetn) ...

401 ’ NARGES Correlation Coefficient= ’ num2str(xc) ...

402 ’ ARMA Correlation Coefficient= ’ num2str(xcP)]},’FontSize’,18);

403 plotMeas = {’Original’, ’NARGES’, ’ARMA’};

404 legend(plotMeas, ’Location’, ’Northeast’,’FontSize’,18);

405 legend(’boxoff’);

406

407 %% make the figure bigger so it’s easier to see

408

409 set(gcf,’Units’,’normalized’,’Position’,[0.02 0.0467 0.95 0.85]);

410 set(gcf,’name’,’NARGES Packetloss Prediction Model: copyright 2012, UTS’);

411 set(gcf,’PaperPositionMode’,’auto’);

412 set(gca, ’FontSize’,18);

413

414 %% print the figure out

415

416 print(’-depsc’,’-tiff’,’-r300’,...

417 strcat(’dataplot’,’_loss_’,num2str(dsetn)));

418

419 pause;close;

420 grid off

421 %% end print the figure out

422

423 %%%

148 APPENDIX C. IMPLEMENTATION OF LOSS PREDICTOR - SOURCE CODE

424 %% end of Plotting NARGES, ARMA & Original traces

425 %%%

426

427 %%

428 %% Plotting NARGES, ARMA & Original Boxplots

429 %%

430

431 hold on

432 notBoxPlot([TestPdata,out,predseriesP(1:end-1)]);

433 title({[’Data Set: ’ num2str(dsetn) ...

434 ’Boxplot of Packet-Loss Data for Target data ...

435 together with NARGES and ARMA Predictions’]},’FontSize’,18);

436

437 % Add title and axis labels

438 xlabel(’Distributions’,’FontSize’,18);

439 ylabel([’Average Packet-Loss’],’FontSize’,18);

440

441 % Change the labels for the tick marks on the x-axis

442

443 plotSpecies = {’Original’, ’HDAX’, ’ARMA’};

444 set(gcf,’Units’,’normalised’,’Position’,[0.02 0.0467 0.95 0.85]);

445 set(gcf,’name’,’NARGES Packetloss Prediction Model: copyright 2012, UTS’);

446 set(gca, ’XTick’, 1:3, ’XTickLabel’, plotSpecies,’FontSize’,18);

447

448 % Create labels for the legend

449 plotMeas = {’SD’, ’95% Confidence Interval’, ’Mean’, ’Data Points’};

450 legend(plotMeas, ’Location’, ’Northeast’,’FontSize’,18);

451 legend(’boxoff’);

452 set(gcf,’PaperPositionMode’,’auto’);

453 set(gca, ’FontSize’,18);

454

455 %% print the figure out

456 print(’-depsc’,’-tiff’,’-r300’,...

457 strcat(’notBoxPlot’,’_loss_’,num2str(dsetn)));

458 %% end print the figure out

459

460 pause;close;

461 %%%

462 %% end of Plotting NARGES, ARMA & Original Boxplots

463 %%%

464

C.1. NARGES IMPLEMENTATION 149

465 %%%

466 %% Plotting NARGES, ARMA & Original CCF Stemplots

467 %%%

468

469

470 hold on

471 stem(lags,r,’g.-’,’MarkerSize’,18);

472 stem(lags,rP,’rx-’,’MarkerSize’,18);

473 title({[’Data Set: ’ num2str(dsetn)] ;

474 [’Cross-Correlation Stemplot of predcition for ...

475 Packet-Loss Data’]; [’ NARGES Correlation Coefficient= ...

476 ’ num2str(xc) ’ ARMA Correlation Coefficient= ’ num2str(xcP)]},’FontSize’,18);

477

478 xlabel(’Lags’,’FontSize’,18);

479 ylabel(’Cross-Correlation Coefficient ’,’FontSize’,18);

480

481 % Change the labels for the tick marks on the x-axis

482

483 %plotSpecies = {’Original’, ’HDAX’, ’ARMA’};

484 set(gcf,’Units’,’normalised’,’Position’,[0.02 0.0467 0.95 0.85]);

485 set(gcf,’name’,’NARGES Packetloss Prediction Model: copyright 2012, UTS’);

486 set(gca, ’FontSize’,18);

487

488 % Create labels for the legend

489 plotMeas = {’ARMA’, ’NARGES’};

490 legend(plotMeas, ’Location’, ’Northeastoutside’,’FontSize’,18);

491 legend(’boxoff’);

492 set(gcf,’PaperPositionMode’,’auto’);

493

494 print(’-depsc’,’-tiff’,’-r300’,...

495 strcat(’xcorrstem’,’_loss_’,num2str(dsetn)));

496 hold off

497 pause;close;

498 %%

499 %% end of Plotting NARGES, ARMA & Original CCF Stemplots

500 %%

501

502 %%% end Plotting %%%

503

504 %% filing output %%

505 Sout1 = num2str(Ellapsed);

150 APPENDIX C. IMPLEMENTATION OF LOSS PREDICTOR - SOURCE CODE

506 Sout2 = num2str(NRMSE);

507 Sout3 = num2str(EllapsedP);

508 Sout4 = num2str(NRMSEP);

509 fid = fopen(’NARGESARMA.out’, ’a’);

510 fprintf(fid, ’%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n’,...

511 num2str(dsetn),Sout1,Sout2, Sout3, Sout4,xc,xcP, sp);

512 fclose(fid);%pause(10);

513 %% end filing output %%

514 end

515 %% NARGES END %%

C.2 HDAX Implementation

1 %%%

2 % Copyright and terms of use (DO NOT REMOVE):

3 % The code is made freely available for non-commercial

4 % uses only, provided that the copyright

5 % header in each file not be removed, and suitable

6 % citation(s) (see below) be made for papers

7 % published based on the code.

8 %

9 % Copyright (c) 2009-2012, Hooman Homayounfard,

10 % hoomanhm@it.uts.edu.au

11 %%%

12

13 %% HDAX Main Function

14

15 function forecastedY= DFMS2(data,ss,pici,dsetn,win)

16 if nargin == 0

17 win=10;

18 data = win_transform(data,win);

19 rwin=sqrt(win);

20 end

21

22 %initialization

23 rwin=sqrt(win);

24 tlen = floor(length(data)./4); % %25 of data for training

25 datat = data(1:tlen);

26 datas = data(tlen:slen);

27 stds = std(datat);

C.2. HDAX IMPLEMENTATION 151

28 maxY=max(data);

29

30 % for writing on plots

31 outdatatype = ’delay’;

32 outdataunit = ’ms’;

33

34 if (pici-dsetn > 0)

35 outdatatype = ’jitter’;

36 outdataunit = ’sec’;

37 end

38 % for writing on plots

39

40 % end of initialization

41

42 % Start of training Phase

43 freq_table = DFM(datat,maxY);

44 % End of training Phase

45

46 %% Start of estimation with HDAX

47 tic

48

49 lens=length(datas);

50 shifted=datas;

51 shifted(1:lens-1,1)=datas(2:lens,1);

52 shifted=shifted(1:lens-1,1);% Shifted array of the input values

53 Y=shifted-datas(1:lens-1); % Calculating the difference between

54 % two adjacent values in the time-series

55 lenY=lens-1;

56 scasenumber=zeros(lenY,1);

57 fcasenumber=zeros(lenY,1);

58

59 % finding the trend cases

60

61 for i=1:lenY

62 scasenumber(i,1)=findcase(Y(i,1)/maxY);

63 end

64

65 % defining the Y values level ’fyt’ function

66

67 FYt=zeros(lens,1);

68 for i=1:lens

152 APPENDIX C. IMPLEMENTATION OF LOSS PREDICTOR - SOURCE CODE

69 FYt(i,1)=findFYt(datas(i,1),maxY,4);

70 end

71

72

73 % Estimating the next delay value. For estimation

74 % we have used 1/10 of the mean value of each case group

75

76 forecastedY=zeros(lens,1);

77 %forecastedY(2)=datas(2);

78

79 for i=3:lenY

80 fcasenumber(i+1,1)= forecase(freq_table,FYt(i,1), ...

81 scasenumber(i-1,1),scasenumber(i,1));

82 temp = Y(i,1)/maxY;

83

84 if (fcasenumber(i+1,1) == 0)

85 forecastedY(i+1)= datas(i);

86 end

87 if (fcasenumber(i+1,1) == 1)

88 forecastedY(i+1)= datas(i)+(maxY/8)-stds;

89 end

90 if (fcasenumber(i+1,1) == 2)

91 forecastedY(i+1)= datas(i)+(3*maxY/8)-3*stds;

92 end

93 if (fcasenumber(i+1,1) == 3)

94 forecastedY(i+1)= datas(i)-(maxY/8)+stds;

95 end

96 if (fcasenumber(i+1,1) == 4)

97 forecastedY(i+1)= datas(i)-(3*maxY/8)+3*stds;

98 end

99 if (fcasenumber(i+1,1) == 5)

100 if (temp<-1)

101 forecastedY(i+1)= datas(i)-maxY+stds;

102 end

103 if (temp>1)

104 forecastedY(i+1)= datas(i)+maxY-stds;

105 end

106 end

107 % End of estimation with HDAX

108 end

109 Ellapsed1 = toc;

C.2. HDAX IMPLEMENTATION 153

110

111 % adjustments of the two arrays of target data and estimated data

112

113 forecastedY(i-2)=forecastedY(i+1);

114 forecastedY = reshape(forecastedY,lenY+1,1);

115

116 %% NRMSE and CCF for the forecasted delay or jitter time-series

117 ErrorH = Error1(forecastedY(:),datas(:),’nrmse’);

118 NRMSEH = ErrorH.NRMSE/rwin;

119 [rH,lags]=xcorr(datas(:),forecastedY(:),50,’coeff’);

120 xcH = max(rH);

121

122

123 %% Calling ARMA for HDAX Predictor

124 phi=[1, - 0.9]; %imp=[1;zeros(9,1)];

125 theta= 0.02; %filter(1, phi, imp)’;

126 tic

127 predseries=predarma2(datas,phi,theta,1);

128

129 %% NRMSE and CCF for ARMA (compared to HDAX) is calculated in here

130

131 ErrorA = Error1(predseries(1:end-1),datas(:),’nrmse’);

132 NRMSEA = ErrorA.NRMSE/rwin;

133 [rA,lags]=xcorr(datas(:),predseries(1:end-1),50,’coeff’);

134 xcA = max(rA);

135 Ellapsed2=toc;

136

137 %% end Calling ARMA for HDAX Predictor

138

139 %% start plotting %%

140

141 %%

142 %% Plotting HDAX, ARMA & Original traces

143 %%

144

145 hold on

146 grid on

147 plot(datas,’g.-’,’MarkerSize’,18);

148 plot(forecastedY,’b+-’,’MarkerSize’,18);

149 plot(predseries(1:end-1),’rx-’,’MarkerSize’,18)

150 xlabel({’Step (s)’},’FontSize’,18);

154 APPENDIX C. IMPLEMENTATION OF LOSS PREDICTOR - SOURCE CODE

151 ylabel({[’Average ’ outdatatype ’ (’ outdataunit ’)’]},’FontSize’,18);

152 title({[’Dataplot of ’ outdatatype ’ ...

153 target dataset ’ num2str(dsetn) ’, ...

154 together with HDAX and ARMA forecasts’];...

155 [’HDAX vs ARMA - HDAX Fitness NRMSE= ’ ...

156 num2str(NRMSEH) ’ & ARMA Fitness NRMSE= ’ ...

157 num2str(NRMSEA)];[’HDAX Correlation Coefficient= ’ ...

158 num2str(xcH) ’ ARMA Correlation Coefficient= ’ num2str(xcA)]},’FontSize’,18);

159 plotMeas = {’Original’, ’HDAX’,’ARMA’};

160 legend(plotMeas, ’Location’, ’Northeast’, ’FontSize’,16);

161 legend(’boxoff’);

162

163 % make the figure bigger so it’s easier to see

164 set(gcf,’Units’,’normalized’,’Position’,[0.02 0.0467 0.95 0.85]);

165 set(gcf,’name’,’HDAX Approximation: copyright 2012, UTS’);

166 set(gcf,’PaperPositionMode’,’auto’);

167 set(gca, ’FontSize’,18);

168 %% Print the figure out

169 print(’-depsc’,’-tiff’,’-r300’,...

170 strcat(’dataplot_’,outdatatype,’_’,num2str(dsetn)));

171 %print(’-depsc’,’-tiff’,’-r300’,num2str(pici));

172 pause;close;

173 grid off

174 %% end of printing the figure

175

176 %%

177 %% Plotting HDAX, ARMA & Original Boxplots

178 %%

179

180 hold on

181 notBoxPlot([datas,forecastedY,predseries(1:end-1)]);...

182 title({[’Data Set: ’ num2str(dsetn) ’ Boxplot of ...

183 ’ outdatatype ’ data for Target data together ...

184 with HDAX and ARMA Forecasts’]},’FontSize’,18);

185 % Add title and axis labels

186 xlabel(’Distributions’,’FontSize’,18);

187 ylabel([’Average ’ outdatatype ’ (’ outdataunit ’)’],’FontSize’,18);

188

189 % Change the labels for the tick marks on the x-axis

190

191 plotSpecies = {’Original’, ’HDAX’, ’ARMA’};

C.2. HDAX IMPLEMENTATION 155

192 set(gcf,’Units’,’normalized’,’Position’,[0.02 0.0467 0.95 0.85]);

193 set(gcf,’name’,’HDAX Approximation: copyright 2012, UTS’);

194 set(gca, ’XTick’, 1:3, ’XTickLabel’, plotSpecies,’FontSize’,18);

195

196 % Create labels for the legend

197 plotMeas = {’SD’, ’95% Confidence Interval’, ’Mean Line’, ’Data’};

198 legend(plotMeas, ’Location’, ’Northeast’, ’FontSize’,16);

199 legend(’boxoff’);

200 set(gcf,’PaperPositionMode’,’auto’);

201 set(gca, ’FontSize’,18);

202

203 %% print the boxplots out

204 print(’-depsc’,’-tiff’,’-r300’,...

205 strcat(’notBoxPlot_’,outdatatype,’_’,num2str(dsetn)));

206 %% end of Printing

207 pause;close;

208 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

209 %% end Plotting HDAX, ARMA & Original Boxplots

210 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

211

212 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

213 %% Plotting HDAX, ARMA & Original CCF Stemplots

214 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

215

216 hold on

217 stem(lags,rA,’rx-’,’MarkerSize’,18); ...

218 title({[’Data Set: ’ num2str(dsetn) ’ Cross-Correlation ...

219 Stemplot of Forecasts for ’ outdatatype ’ Data’] ; ...

220 [’ HDAX Correlation Coefficient= ’ num2str(xcH) ...

221 ’ ARMA Correlation Coefficient= ’ num2str(xcA)]},’FontSize’,18);

222 stem(lags,rH,’g.-’,’MarkerSize’,18);

223

224 xlabel(’Lags’,’FontSize’,18);

225 ylabel(’Cross-Correlation Coefficient’,’FontSize’,18);

226

227 % Change the labels for the tick marks on the x-axis

228

229 %plotSpecies = {’Original’, ’HDAX’, ’ARMA’};

230 set(gcf,’Units’,’normalised’,’Position’,[0.02 0.0467 0.95 0.85]);

231 set(gcf,’name’,’Cross-Correlation of HDAX vs ARMA : copyright 2012, UTS’);

232 %set(gca, ’XTick’, 1:3, ’XTickLabel’, plotSpecies);

156 APPENDIX C. IMPLEMENTATION OF LOSS PREDICTOR - SOURCE CODE

233

234 % Create labels for the legend

235 plotMeas = {’ARMA’, ’HDAX’};

236 legend(plotMeas, ’Location’, ’Northeastoutside’, ’FontSize’,16);

237 legend(’boxoff’);

238 set(gcf,’PaperPositionMode’,’auto’);

239 set(gca, ’FontSize’,18);

240 hold off

241 print(’-depsc’,’-tiff’,’-r300’,...

242 strcat(’xcorrstem_’,outdatatype,’_’,num2str(dsetn)));

243 pause;close;

244

245 %%

246 %% end of Plotting HDAX, ARMA & Original CCF Stemplots

247 %%

248

249 %% end Plotting %%

250

251 % filing output for HDAX & ARMA

252 Sout1 = num2str(Ellapsed1);

253 Sout2 = num2str(NRMSEH);

254 Sout3 = num2str(Ellapsed2);

255 Sout4 = num2str(NRMSEA);

256 fid = fopen(’NARGESARMA.out’, ’a’);

257 fprintf(fid, ’%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n’, ...

258 num2str(dsetn),Sout1,Sout2, Sout3, Sout4,xcH, xcA, ss);

259 fclose(fid);%pause(10);

260 % end filing output for HDAX & ARMA

261 end

262 %% HDAX END %%

C.3 HDAX Functions

1 %%%

2 % Copyright and terms of use (DO NOT REMOVE):

3 % The code is made freely available for non-commercial

4 % uses only, provided that the copyright

5 % header in each file not be removed, and suitable

6 % citation(s) (see below) be made for papers

7 % published based on the code.

C.3. HDAX FUNCTIONS 157

8 %

9 % Copyright (c) 2009-2012, Hooman Homayounfard,

10 % hoomanhm@it.uts.edu.au

11 %%%

12

13 %% Training of Look-up Table

14

15 function [outArray] = DFM(data,maxY)

16

17 if nargin == 0

18 clear all

19 data = win_transform(temp);

20 maxY=max(data);

21 end

22

23 tic

24

25 % Initialization

26 alphabet_size=6;

27 len=length(data);

28 shifted=data;

29 shifted(1:len-1,1)=data(2:len,1);

30 shifted=shifted(1:len-1,1);

31 Y=shifted-data(1:len-1);

32 lenY=len-1;

33 casenumber=zeros(lenY,1);

34

35 for i=1:lenY

36 casenumber(i,1)=findcase(Y(i,1)/maxY);

37 end

38

39 FYt=zeros(len,1);

40

41 for i=1:len

42 FYt(i,1)=findFYt(data(i,1),maxY,4);

43 end

44

45 outArray=zeros(alphabet_sizeˆ3*5,1);

46

47 for i=3:len-1

48 index=FYt(i,1)*alphabet_sizeˆ3+casenumber(i-2,1)* ...

158 APPENDIX C. IMPLEMENTATION OF LOSS PREDICTOR - SOURCE CODE

49 alphabet_sizeˆ2+casenumber(i-1,1)*alphabet_size+casenumber(i,1)+1;

50 outArray(index,1)=outArray(index,1)+1;

51 end

52 toc

53 end

54

55 %*************%

56

57 %% Finding Case Number of Time-Series Trend

58

59 function [casenumber]=findcase(y_max)

60 if (y_max==0)

61 casenumber=0;

62 return

63 end

64 if (y_max>0 && y_max<=0.5)

65 casenumber=1;

66 return

67 end

68 if (y_max>0.5 && y_max<=1)

69 casenumber=2;

70 return

71 end

72 if (y_max>-0.5 && y_max<0)

73 casenumber=3;

74 return

75 end

76 if (y_max>=-1 && y_max<-0.5)

77 casenumber=4;

78 return

79 end

80 if (y_max<-1 || y_max>1)

81 casenumber=5;

82 return

83 end

84

85 end

86 function [FYt]=findFYt(y,max,interval)

87 FYt=floor(y/(max/interval));

88 if (FYt>4)

89 FYt=4;

C.3. HDAX FUNCTIONS 159

90 end

91 end

92

93 %*************%

94

95 %% Applying Moving Average Transformation on target Time-Series

96

97 function [ave]= win_transform(data,winsize)

98 %% if nurgin

99 if nargin == 0

100 data = load (’/delay_adsl-to-wired-recv-const-1-udp-512.log.dat’);

101 data=data(:,3);

102 winsize=10;

103 end

104

105 max = size(data);

106 index=floor(max./winsize);

107 ave(1:index+1)=0;

108 sumdata = 0;

109

110 j=winsize;

111 t=1;

112

113 for i=1:max,

114 if j > 0

115 sumdata = data(i) + sumdata;

116 j = j-1;

117 elseif j == 0

118 ave(t)=sumdata/winsize;

119 t=t+1;

120 sumdata=0;

121 j=10;

122 end

123 end

124 ave=ave’;

125 end

126

127 %*************%

128

129 %% Finding most frequent trend

130

160 APPENDIX C. IMPLEMENTATION OF LOSS PREDICTOR - SOURCE CODE

131 function [fcasenumber] = forecase(freq_table,FYt,scasenumber1,scasenumber2)

132 max=0;

133 alphabet_size=6;

134 for i=0:5

135 index=FYt*alphabet_sizeˆ3+scasenumber1*...

136 alphabet_sizeˆ2+scasenumber2*alphabet_size+i+1;

137 if (freq_table(index)> max)

138 max = freq_table(index);

139 fcasenumber = i;

140 end

141

142 end

143 if (max == 0)

144 fcasenumber = scasenumber2; %floor(rand*100/20);

145 % if all the possible cases have 0 frequency we ...

146 % make a random case number between 0 to 4

147 % assigning the current case to the next one ...

148 % in the absence of frequency for all possible cases

149 end

150 return

151 end

152

153 %*************%

C.4 Error function

1

2 %%%

3 % Copyright and terms of use (DO NOT REMOVE):

4 % The code is made freely available for non-commercial

5 % uses only, provided that the copyright

6 % header in each file not be removed, and suitable

7 % citation(s) (see below) be made for papers

8 % published based on the code.

9 %

10 % Copyright (c) 2009-2012, Hooman Homayounfard,

11 % hoomanhm@it.uts.edu.au

12 %%%

13

14 function Error=Error1(P,T,Comment)

C.4. ERROR FUNCTION 161

15

16 if isempty(Comment)

17 Comment=’missing data: Target and Predicted’;

18 end

19

20 S=size(P);

21 if S(1)<S(2)

22 P=P’;

23 end

24

25 S=size(T);

26 if S(1)<S(2)

27 T=T’;

28 end

29

30 n=size(P,1);

31 % Measures of error

32 SSE=sum((P-T).ˆ2);

33 RMSE=sqrt(SSE/size(P,1));

34 StdT=std(T,1);

35 StdP=std(P,1);

36 MaxT=max(T);

37 MaxP=max(P);

38 MAX=max(MaxP,MaxT);

39 MinT=min(T);

40 MinP=min(P);

41 MIN=min(MinP,MinT);

42 NRMSE=100*RMSE/(MAX - MIN); %sqrt(SSE/sum((T-mean(T)).ˆ2));

43 NSC=1-SSE/sum((T-mean(T)).ˆ2);

44 Cor=sum((P-mean(P)).*(T-mean(T)))/...

45 (sqrt(sum((P-mean(P)).ˆ2))*sqrt(sum((T-mean(T)).ˆ2)));

46

47 MAE=sum(abs(P-T))/size(P,1);

48 MARE=sum(abs((T-P)./T))/n;

49

50 MuT=mean(T);

51 MuP=mean(P);

52

53 %Calculating PERS

54 P2=T(1:end-1,:);

55 T2=T(2:end,:);

162 APPENDIX C. IMPLEMENTATION OF LOSS PREDICTOR - SOURCE CODE

56 SSEN=sum((P2-T2).ˆ2);

57 PERS=1-(SSE/SSEN);

58 RMSEN=sqrt(SSEN/(n-1));

59 NRMSEN=100*RMSEN/std(T2,1);

60

61 %Passing the output structure

62 Error.RMSE=RMSE;

63 Error.NSC=NSC;

64 Error.Cor=Cor;

65 Error.NRMSE=NRMSE;

66 Error.MAE=MAE;

67 Error.StdT=StdT;

68 Error.StdP=StdP;

69 Error.MuT=MuT;

70 Error.MuP=MuP;

71 Error.PERS=PERS;

72 Error.SSE=SSE;

73 Error.SSEN=SSEN; %Sum Squared Error Naive

74 Error.RMSEN=RMSEN; %RMSE Naive

75 Error.NRMSEN=NRMSEN; %NRMSE Naive

76 Error.MARE=MARE;

77 Error.Er=T-P;

78 Io=find(Error.Er<=0);

79 Iu=find(Error.Er>0);

80

81 S1=size(Io,1);

82 S2=size(Iu,1);

83

84 Error.Po=S1/size(Error.Er,1);

85 Error.Pu=S2/size(Error.Er,1);

C.5 Running Experiments

1 %%%

2 % Copyright and terms of use (DO NOT REMOVE):

3 % The code is made freely available for non-commercial

4 % uses only, provided that the copyright

5 % header in each file not be removed, and suitable

6 % citation(s) (see below) be made for papers

7 % published based on the code.

C.5. RUNNING EXPERIMENTS 163

8 %

9 % Copyright (c) 2009-2012, Hooman Homayounfard,

10 % hoomanhm@it.uts.edu.au

11 %%%

12

13 function NARGES_F

14

15 s = {’/delay_adsl-to-wired-recv-const-1-udp-64.log.dat’;

16 ’/jitter_adsl-to-wired-recv-const-1-udp-64.log.dat’;

17 ’/packetloss_adsl-to-wired-recv-const-1-udp-64.log.dat’;

18

19 ’/delay_adsl-to-wired-recv-const-1-udp-512.log.dat’;

20 ’/jitter_adsl-to-wired-recv-const-1-udp-512.log.dat’;

21 ’/packetloss_adsl-to-wired-recv-const-1-udp-512.log.dat’;

22

23 ’/delay_gprs-to-wired-winlin-tcp-1024.log.dat’;

24 ’/jitter_gprs-to-wired-winlin-tcp-1024.log.dat’;

25 ’/packetloss_gprs-to-wired-winlin-tcp-1024.log.dat’;

26

27 ’/delay_gprs-to-wired-winlin-udp-512.log.dat’;

28 ’/jitter_gprs-to-wired-winlin-udp-512.log.dat’;

29 ’/packetloss_gprs-to-wired-winlin-udp-512.log.dat’;

30

31 ’/delay_gprs-to-wired-winlin-udp-1024.log.dat’;

32 ’/jitter_gprs-to-wired-winlin-udp-1024.log.dat’;

33 ’/packetloss_gprs-to-wired-winlin-udp-1024.log.dat’;

34

35 ’/delay_gprs-to-wired-winwin-tcp-512.log.dat’;

36 ’/jitter_gprs-to-wired-winwin-tcp-512.log.dat’;

37 ’/packetloss_gprs-to-wired-winwin-tcp-512.log.dat’;

38

39 ’/delay_gprs-to-wired-winwin-tcp-1024.log.dat’;

40 ’/jitter_gprs-to-wired-winwin-tcp-1024.log.dat’;

41 ’/packetloss_gprs-to-wired-winwin-tcp-1024.log.dat’;

42

43 ’/delay_gprs-to-wired-winwin-tcp-512.log.dat’;

44 ’/jitter_gprs-to-wired-winwin-tcp-512.log.dat’;

45 ’/packetloss_gprs-to-wired-winwin-tcp-512.log.dat’;

46

47 ’/delay_gprs-to-wired-winwin-tcp-1024.log.dat’;

48 ’/jitter_gprs-to-wired-winwin-tcp-1024.log.dat’;

164 APPENDIX C. IMPLEMENTATION OF LOSS PREDICTOR - SOURCE CODE

49 ’/packetloss_gprs-to-wired-winwin-tcp-1024.log.dat’;

50

51 ’/delay_umts-to-wired-tcp-64.log.dat’;

52 ’/jitter_umts-to-wired-tcp-64.log.dat’;

53 ’/packetloss_umts-to-wired-tcp-64.log.dat’;

54

55 ’/delay_umts-to-wired-tcp-512.log.dat’;

56 ’/jitter_umts-to-wired-tcp-512.log.dat’;

57 ’/packetloss_umts-to-wired-tcp-512.log.dat’;

58

59 ’/delay_umts-to-wired-tcp-1024.log.dat’;

60 ’/jitter_umts-to-wired-tcp-1024.log.dat’;

61 ’/packetloss_umts-to-wired-tcp-1024.log.dat’;

62

63 ’/delay_umts-to-wired-udp-64.log.dat’;

64 ’/jitter_umts-to-wired-udp-64.log.dat’;

65 ’/packetloss_umts-to-wired-udp-64.log.dat’;

66

67 ’/delay_umts-to-wired-udp-512.log.dat’;

68 ’/jitter_umts-to-wired-udp-512.log.dat’;

69 ’/packetloss_umts-to-wired-udp-512.log.dat’;

70

71

72 ’/delay_wired-to-adsl-recv_const-1-tcp-64.log.dat’;

73 ’/jitter_wired-to-adsl-recv_const-1-tcp-64.log.dat’;

74 ’/packetloss_wired-to-adsl-recv_const-1-tcp-64.log.dat’;

75

76 ’/delay_wired-to-adsl-recv_const-1-tcp-256.log.dat’;

77 ’/jitter_wired-to-adsl-recv_const-1-tcp-256.log.dat’;

78 ’/packetloss_wired-to-adsl-recv_const-1-tcp-256.log.dat’;

79

80 ’/delay_wired-to-adsl-recv_const-1-tcp-1024.log.dat’;

81 ’/jitter_wired-to-adsl-recv_const-1-tcp-1024.log.dat’;

82 ’/packetloss_wired-to-adsl-recv_const-1-tcp-1024.log.dat’;

83

84 ’/delay_wired-to-adsl-recv_const-1-udp-64.log.dat’;

85 ’/jitter_wired-to-adsl-recv_const-1-udp-64.log.dat’;

86 ’/packetloss_wired-to-adsl-recv_const-1-udp-64.log.dat’;

87

88 ’/delay_wired-to-adsl-recv_const-1-udp-512.log.dat’;

89 ’/jitter_wired-to-adsl-recv_const-1-udp-512.log.dat’;

C.5. RUNNING EXPERIMENTS 165

90 ’/packetloss_wired-to-adsl-recv_const-1-udp-512.log.dat’;

91

92 ’/delay_wired-to-adsl-recv_const-1-udp-1024.log.dat’;

93 ’/jitter_wired-to-adsl-recv_const-1-udp-1024.log.dat’;

94 ’/packetloss_wired-to-adsl-recv_const-1-udp-1024.log.dat’;

95

96 ’/delay_wired-to-gprs-linwin-tcp-64.log.dat’;

97 ’/jitter_wired-to-gprs-linwin-tcp-64.log.dat’;

98 ’/packetloss_wired-to-gprs-linwin-tcp-64.log.dat’;

99

100 ’/delay_wired-to-gprs-linwin-tcp-512.log.dat’;

101 ’/jitter_wired-to-gprs-linwin-tcp-512.log.dat’;

102 ’/packetloss_wired-to-gprs-linwin-tcp-512.log.dat’;

103

104 ’/delay_wired-to-gprs-linwin-tcp-1024.log.dat’;

105 ’/jitter_wired-to-gprs-linwin-tcp-1024.log.dat’;

106 ’/packetloss_wired-to-gprs-linwin-tcp-1024.log.dat’;

107

108 ’/delay_wired-to-gprs-linwin-udp-64.log.dat’;

109 ’/jitter_wired-to-gprs-linwin-udp-64.log.dat’;

110 ’/packetloss_wired-to-gprs-linwin-udp-64.log.dat’;

111

112 ’/delay_wired-to-gprs-linwin-udp-512.log.dat’;

113 ’/jitter_wired-to-gprs-linwin-udp-512.log.dat’;

114 ’/packetloss_wired-to-gprs-linwin-udp-512.log.dat’;

115

116 ’/delay_wired-to-gprs-linwin-udp-1024.log.dat’;

117 ’/jitter_wired-to-gprs-linwin-udp-1024.log.dat’;

118 ’/packetloss_wired-to-gprs-linwin-udp-1024.log.dat’;

119

120

121 ’/delay_wired-to-gprs-winwin-udp-64.log.dat’;

122 ’/jitter_wired-to-gprs-winwin-udp-64.log.dat’;

123 ’/packetloss_wired-to-gprs-winwin-udp-64.log.dat’;

124

125

126 ’/delay_wired-to-umts-tcp-64.log.dat’;

127 ’/jitter_wired-to-umts-tcp-64.log.dat’;

128 ’/packetloss_wired-to-umts-tcp-64.log.dat’;

129

130 ’/jitter_wired-to-umts-tcp-512.log.dat’;

166 APPENDIX C. IMPLEMENTATION OF LOSS PREDICTOR - SOURCE CODE

131 ’/delay_wired-to-umts-tcp-512.log.dat’;

132 ’/packetloss_wired-to-umts-tcp-512.log.dat’;

133

134

135 ’/delay_wired-to-wireless-sctp-64.log.dat’;

136 ’/jitter_wired-to-wireless-sctp-64.log.dat’;

137 ’/packetloss_wired-to-wireless-sctp-64.log.dat’;

138

139 ’/delay_wired-to-wireless-sctp-512.log.dat’;

140 ’/jitter_wired-to-wireless-sctp-512.log.dat’;

141 ’/packetloss_wired-to-wireless-sctp-512.log.dat’;

142

143 ’/delay_wired-to-wireless-sctp-1024.log.dat’;

144 ’/jitter_wired-to-wireless-sctp-1024.log.dat’;

145 ’/packetloss_wired-to-wireless-sctp-1024.log.dat’;

146

147 ’/delay_wired-to-wireless-tcp-64.log.dat’;

148 ’/jitter_wired-to-wireless-tcp-64.log.dat’;

149 ’/packetloss_wired-to-wireless-tcp-64.log.dat’;

150

151 ’/delay_wired-to-wireless-tcp-512.log.dat’;

152 ’/jitter_wired-to-wireless-tcp-512.log.dat’;

153 ’/packetloss_wired-to-wireless-tcp-512.log.dat’;

154

155

156 ’/delay_wired-to-wireless-udp-64.log.dat’;

157 ’/jitter_wired-to-wireless-udp-64.log.dat’;

158 ’/packetloss_wired-to-wireless-udp-64.log.dat’;

159

160 ’/delay_wired-to-wireless-udp-512.log.dat’;

161 ’/jitter_wired-to-wireless-udp-512.log.dat’;

162 ’/packetloss_wired-to-wireless-udp-512.log.dat’;

163

164

165 ’/NARGES-DiffSrv-DES-1_Voice.Delay.dat’;

166 ’/NARGES-DiffSrv-DES-1_Voice.Jitter.dat’;

167 ’/NARGES-DiffSrv-DES-1_IP.loss.dat’;

168

169 ’/NARGES-Diffsrv_Video-DES-1_Voice.Delay.dat’;

170 ’/NARGES-Diffsrv_Video-DES-1_Voice.Jitter.dat’;

171 ’/NARGES-Diffsrv_Video-DES-1_IP.loss.dat’;

C.5. RUNNING EXPERIMENTS 167

172

173 ’/NARGES-DiffSrv_VoIP-DES-1_Voice.Delay.dat’;

174 ’/NARGES-DiffSrv_VoIP-DES-1_Voice.Jitter.dat’;

175 ’/NARGES-DiffSrv_VoIP-DES-1_IP.loss.dat’;

176

177 ’/NARGES-FIFO-DES-1_Voice.Delay.dat’;

178 ’/NARGES-FIFO-DES-1_Voice.Jitter.dat’;

179 ’/NARGES-FIFO-DES-1_IP.loss.dat’;

180

181 ’/NARGES-FIFO_Long-DES-1_Voice.Delay.dat’;

182 ’/NARGES-FIFO_Long-DES-1_Voice.Jitter.dat’;

183 ’/NARGES-FIFO_Long-DES-1_IP.loss.dat’;

184

185 ’/NARGES-FIFO_VIdeo-DES-1_Voice.Delay.dat’;

186 ’/NARGES-FIFO_VIdeo-DES-1_Voice.Jitter.dat’;

187 ’/NARGES-FIFO_VIdeo-DES-1_IP.loss.dat’;

188

189 ’/NARGES-FIFO_VoIP-DES-1_Voice.Delay.dat’;

190 ’/NARGES-FIFO_VoIP-DES-1_Voice.Jitter.dat’;

191 ’/NARGES-FIFO_VoIP-DES-1_IP.loss.dat’;

192

193 ’/NARGES-PQ-DES-1_Voice.Delay.dat’;

194 ’/NARGES-PQ-DES-1_Voice.Jitter.dat’;

195 ’/NARGES-PQ-DES-1_IP.loss.dat’;

196

197 ’/NARGES-PQ_Video-DES-1_Voice.Delay.dat’;

198 ’/NARGES-PQ_Video-DES-1_Voice.Jitter.dat’;

199 ’/NARGES-PQ_Video-DES-1_IP.loss.dat’;

200

201 ’/NARGES-PQ_VoIP-DES-1_Voice.Delay.dat’;

202 ’/NARGES-PQ_VoIP-DES-1_Voice.Jitter.dat’;

203 ’/NARGES-PQ_VoIP-DES-1_IP.loss.dat’};

204

205

206 % experiment with data from D-ITG

207

208

209 count=1;

210

211 for i = 1:36

212

168 APPENDIX C. IMPLEMENTATION OF LOSS PREDICTOR - SOURCE CODE

213 Ddata = load (s{count});

214 Ddata=Ddata(:,3);

215 Jdata = load (s{count+1});

216 Jdata=Jdata(:,3);

217 Pdata = load (s{count+2});

218 Pdata=Pdata(:,3);

219

220 winsize=10;

221

222 NARGES130(Ddata,Jdata,Pdata,winsize,s{count},s{count+1},s{count+2},i);

223 count = count+3;

224

225 end

226

227 %more experiment with data from OPNET 2012

228 count = 109;

229

230 for i = 37:46

231

232 Ddata = load (s{count});

233 Ddata=Ddata(:,2);

234 Jdata = load (s{count+1});

235 Jdata=Jdata(:,2);

236 Pdata = load (s{count+2});

237 Pdata=Pdata(:,2);

238 winsize=24;

239 NARGES130(Ddata,Jdata,Pdata,winsize,s{count},s{count+1},s{count+2},i);

240 count = count+3;

241 end

242

243 end

C.6 ARMA Implementation

The following ARMA implementation adapted from Brockwell and Davis (2006).

1 function [predseries]=predarma2(time-series,phi,theta,yesmean)

2 % PREDARMA One step prediction of an ARMA time-series

3 %

C.6. ARMA IMPLEMENTATION 169

4 % PREDARMA(A,P,Q,YM) where A,P,Q are vectors generates

5 % the one step ahead prediction of the ARMA time-series A. The

6 % vectors P and Q are the coefficients of the ARMA time-series.

7 % If YM==1, the mean is substracted from the time-series

8 % before prediction, but if YM==0 it is not. The default

9 % if YM is not supplied is YM=1

10 %

11 % Usage: [wssq,predseries,errors,av,r]=predarma(timeseries,phi,theta,yesmean)

12 % wssq is the weighted sum of squares of errors, predseries is

13 % the predicted series, from the supplied time-series, errors

14 % is the differences (timeseries-predseries), av is the average

15 % value of timeseries, and r is a vector of relative variances

16 % of the first few errors (since r->1, there is no point in r

17 % being as long as timeseries).

18 %

19 % See also ACF, XCOV, DURBLEV, PACF, ARMAESTIMATE, XMAESTIMATE,

20 % PREDAR.

21

22 % Author :P Shelton :10:02:95

23 % R. G. Addie: March 1995, August 1996.

24 % References

25 % P.J. Brockwell and R.A. Davies,

26 % Time Series: Theory and Methods, Spriger-Verlag, 2006,

27 %

28 % Last Changes made by: Hooman Homayounfard, UTS, Sydney, 2009

29 tic

30 fprintf(’.’);

31 tslen=length(timeseries);

32 if (nargin<=3) yesmean=1; end;

33 if (yesmean)

34 av=mean(timeseries); % removing the mean

35 timeseries=timeseries-av;

36 end;

37 predseries=zeros(tslen,1);

38 errors=zeros(tslen,1);

39 p=length(phi); % the order of the AR part of the ARMA model

40 q=length(theta); % the order of the MA part

41 % note that the first coeff=1 is implied

42 m=max(p,q);

43

44 gamma=acvf(phi,theta,1,5*m); % get the acvf of the time-series model

170 APPENDIX C. IMPLEMENTATION OF LOSS PREDICTOR - SOURCE CODE

45 maacvf = acvf([],theta,1,2*m); % the autocov of a MA series with coeffs theta

46 % the autocovariance matrix kappa

47 Nthetas = 4*m;

48 Nkappas = Nthetas+1;

49 kappa=zeros(Nkappas);

50 for i=1:Nkappas, % the upper limit depends on the length of the time-series

51 % Nkappas should be enough

52 for j=1:Nkappas,

53 if (i<=m)&(j<=m),

54 kappa(i,j)=gamma(1+abs(i-j));

55 else

56 if (min(i,j)<=m)&(m<max(i,j))&(max(i,j)<=(2*m)),

57 partgamma=zeros(1,p);

58 partgamma(1:abs(i-j))=gamma(abs(i-j):-1:1);

59 partgamma(abs(i-j)+1:p)=gamma(2:p-abs(i-j)+1);

60 kappa(i,j)=gamma(1+abs(i-j));

61 if (p>=1)

62 kappa(i,j)=kappa(i,j)-phi*partgamma(1:p)’;

63 end;

64 else

65 if (min(i,j)>m & abs(i-j)+1<=length(maacvf)),

66 kappa(i,j)=maacvf(abs(i-j)+1);

67 else

68 kappa(i,j)=0;

69 end

70 end

71 end

72 end

73 end

74 % the rest of this function finds the one step prediction

75 % of the ARMA(p,q) model recursively.

76 [thetapre,v]=inn(kappa);

77 errors(1)=timeseries(1);

78 ssq=errors(1)ˆ2;

79 %

80 % for the first 4*m predictions we use a slow method

81 % which is capable of handling the initial transient

82 % See Brockwell and Davis 2nd Ed., page 176.

83 for n=1:m

84 predseries(n+1) = thetapre(n,1:n)*errors(n:-1:1);

85 errors(n+1) = timeseries(n+1)-predseries(n+1);

C.6. ARMA IMPLEMENTATION 171

86 end;

87 for n=m+1:min(Nthetas-1,tslen)

88 if (q>0)

89 predseries(n+1) = thetapre(n,1:q)*errors(n:-1:n-q+1);

90 end;

91 if (p>0)

92 predseries(n+1) = predseries(n+1) + phi*timeseries(n:-1:n-p+1);

93 end;

94 if (n<tslen)

95 errors(n+1) = timeseries(n+1)-predseries(n+1);

96 end;

97 end;

98

99 if (tslen>Nthetas)

100 e = errors(Nthetas:-1:Nthetas+1-q);

101 x = timeseries(Nthetas:-1:Nthetas+1-p);

102

103 if (0) % this version replaced by something better

104 if (p>0 & q>0)

105 % fprintf(’p = %d, q = %d\n’, p, q);

106 for k=Nthetas+1:tslen

107 predseries(k) = theta*e + phi*x;

108 errors(k) = timeseries(k)-predseries(k);

109 x = [timeseries(k);x(1:p-1)];

110 e=[errors(k);e(1:q-1)];

111 end;

112 elseif (p>0)

113 % this should be especially fast because matlab handles the loop

114 preds = conv(phi,timeseries’)’;

115 predseries(m+2:tslen) = preds(m+1:tslen-1);

116 errors = timeseries-predseries;

117 elseif (q>0)

118 for k=Nthetas:tslen

119 predseries(k) = theta*e;

120 errors(k) = timeseries(k)-predseries(k);

121 e=[errors(k);e(1:q-1)];

122 end;

123 else

124 predseries = zeros(size(timeseries));

125 errors = timeseries-predseries;

126 end;

172 APPENDIX C. IMPLEMENTATION OF LOSS PREDICTOR - SOURCE CODE

127

128 else % simpler version

129 if (q>0)

130 % fprintf(’p = %d, q = %d\n’, p, q);

131 for n=Nthetas+1:tslen

132 predseries(n+1) = theta*errors(n:-1:n-q+1);

133 if (p>0)

134 predseries(n+1)=predseries(n+1)+phi*timeseries(n:-1:n-p+1);

135 end;

136 if (n<tslen)

137 errors(n+1) = timeseries(n+1)-predseries(n+1);

138 end;

139 end;

140 elseif (p>0)

141 % this should be especially fast because matlab handles the loop

142 preds = conv(phi,timeseries’)’;

143 predseries(m+2:tslen) = preds(m+1:tslen-1);

144 errors = timeseries-predseries;

145 else

146 predseries = zeros(size(timeseries));

147 errors = timeseries-predseries;

148 end;

149 end;

150

151 wssq = errors(Nthetas+1:tslen)’*errors(Nthetas+1:tslen) ...

152 + sum((errors(1:Nthetas).*errors(1:Nthetas))./v(1:Nthetas));

153

154

155 if (yesmean)

156 predseries = predseries+av;

157 end;

158 Ellapsed=toc;

159 end;

Bibliography

E. Aboelela. Network simulation experiments manual. Morgan Kaufmann, 2011.

R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of items

in large databases. SIGMOD Rec., 22(2):207–216, June 1993.

J. Antari and A. Zeroual. Modelling video packet transmission in IP networks using

Hammerstein series and higher order cumulants. AEU-International Journal of Elec-

tronics and Communications, 63(5):406–411, 2009.

J. Antoniou, C. Chrysostomou, and N. Jacovides. Specication of Simulation Environ-

ment. Technical Report D4.1, SEACORN, 2002.

R. G. Ash. Dynamic Routing in Telecommunications Networks. McGraw-Hill Profes-

sional, 1997.

I. Batyrshin and L. Sheremetov. Perception based time series data mining with map

transform. In MICAI 2005: Advances in Articial Intelligence, volume 3789 of LNCS,

pages 514–523. Springer Berlin / Heidelberg, 2005.

I. Z. Batyrshin and L. B. Sheremetov. Perception–based approach to time series data

mining. Applied Soft Computing Journal, 8(3):1211–1221, 2008.

D. P. Bertsekas and R. G. Gallager. Data networks. Prentice Hall, Englewood Cliffs, N.J,

1992.

173

174 BIBLIOGRAPHY

S. Biaz and N. H. Vaidya. Distinguishing congestion losses from wireless transmission

losses: A negative result. In 7th Int. Conf. Computer Communications and Networks,

pages 722–731, Lafayette, LA, 1998.

V. Borges, M. Curado, and E. Monteiro. The impact of interference-aware routing metrics

on video streaming in wireless mesh networks. Ad Hoc Networks, 9(4):652–661, 2011.

A. Botta, A. Dainotti, and A. Pescapé. Multi-protocol and multi-platform trafc gener-

ation and measurement. In Infocom ’07 DEMO Session, volume 45, pages 526–532,

Anchorage, Alaska, USA, 2007.

A. Botta, A. Pescapé, and G. Ventre. Quality of service statistics over heterogeneous

networks: Analysis and applications. European Journal of Operational Research, 191

(3):1075–1088, 2008.

A. Botta, A. Dainotti, and A. Pescapé. A tool for the generation of realistic network

workload for emerging networking scenarios. Computer Networks, 56(15):3531 –

3547, 2012.

G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and

Control. Wiley series in probability and statistics. John Wiley, Hoboken, N.J., 4th

edition, 2011.

L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: new techniques for

congestion detection and avoidance. SIGCOMM Comput. Commun. Rev., 24:24–35,

October 1994.

P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods. Springer-Verlag,

New York, 2006.

H. Cao, N. Mamoulis, and D.W. Cheung. Mining frequent spatio-temporal sequential

patterns. In Fifth IEEE International Conference on Data Mining, page 8289, 2005.

BIBLIOGRAPHY 175

G. D. Caro. Ant Colony Optimization and its Application to Adaptive Routing in Telecom-

munication Networks. PhD thesis, Université libre de Bruxelles, 2004.

G. D. Caro and M. Dorigo. Ant colonies for adaptive routing in packet-switched commu-

nications networks. In A.E. Eiben et al, editor, Parallel Problem Solving from Nature

PPSN V, LNCS, volume 1498, pages 673–682. Springer Berlin / Heidelberg, Berlin,

1998.

R. L. Carter and M. E. Crovella. Measuring bottleneck link speed in packet-switched net-

works, volume 27-28. Elsevier Science Publishers B. V., Amsterdam, The Netherlands,

1996.

C. Chateld. Time-series forecasting. Chapman and Hall, 2001.

C. Chateld. The Analysis of Time Series: An Introduction. Chapman and Hall/CRC,

2004.

Y. Chi, H. Wang, P.S. Yu, and R.R. Muntz. Moment: Maintaining closed frequent item-

sets over a stream sliding window. In Fourth IEEE International Conference on Data

Mining, ICDM’04., pages 59–66. IEEE, 2004.

R. G. Cole and J. H. Rosenbluth. Voice over IP performance monitoring. SIGCOMM

Comput. Commun. Rev., 31(2):9–24, 2001.

J. Debenham and S. Simoff. Informed agents: Integrating data mining and agency.

In C. Boukis, L. Pnevmatikakis, and L. Polymenakos, editors, International Feder-

ation for Information Processing–IFIP, volume 247, pages 165–173. Springer–Verlag,

Boston, 2007.

J. Debenham, S. Simoff, J. Leaney, and V. Mirchandani. Smart communications network

management through a synthesis of distributed intelligence and information. Articial

Intelligence in Theory and Practice II, pages 415–419, 2008.

176 BIBLIOGRAPHY

A. D. Dongare, R. R. Kharde, and A. D. Kachare. Introduction to articial neural net-

work. International Journal of Engineering and Innovative Technology (IJEIT), 2,

2012.

C. Dovrolis, P. Ramanathan, and D. Moore. What do packet dispersion techniques mea-

sure? In IEEE INFOCOM’01, volume 2, pages 905–914, 2001.

H. Dutta. Empowering Scientic Discovery by Distributed Data Mining on the Grid

Infrastructure. In A. Hanemann, B. Kratz, M. Mukhi, and T. Dumitras, editors, ICSOC

2006, volume RC24118, pages 25–30. IBM Press, 2006.

C. Estan, S. Savage, and G. Varghese. Automatically inferring patterns of resource

consumption in network trafc. In Proceedings of the 2003 conference on Applica-

tions, technologies, architectures, and protocols for computer communications, SIG-

COMM’03, pages 137–148, Karlsruhe, Germany, 2003.

U. Fayyad, D. Haussler, and P. Stolorz. Mining scientic data. Communications of the

ACM, 39(11):51–57, 1996.

U. M. Fayyad. Advances in knowledge discovery and data mining. AAAI: MIT Press,

Menlo Park, Calif., 1996.

D. Feng, Z. Shuai, W. Heng, S. Huang, and T. Jun. Cooperative agent-based QoS frame-

work for heterogeneous networks. In Proceedings of Computer Engineering and Man-

agement Sciences (ICM) 2011, International Conference on Information Technology,

volume 2, pages 214–217. IEEE, 2011.

F. D. Foresee and M. T. Hagan. Gauss-Newton approximation to Bayesian regulariza-

tion. In Proceedings of the 1997 International Joint Conference on Neural Networks,

volume 3, pages 1930–1936. Houston, Texas, USA, 1997.

BIBLIOGRAPHY 177

I. Foster. Efcient computation control in concurrent logic languages. New generation

computing, 10(1):1–21, 1991.

T.C. Fu. A review on time series data mining. Engineering Applications of Articial

Intelligence, 24(1):164–181, 2011.

K. Fujita. Extending OPNET modeler with client proles for selecting data sources in

WAN. Nebula Project: nal report, pages 1–19, 2003.

R. S. Gray, D. Kotz, G. Cybenko, and D. Rus. Mobile agents: Motivations and state-

of-the-art systems. In Bradshaw, editor, Handbook of Agent Technology. AAAI/MIT

Press, 2000.

L. Green. Automated, Ubiquitous delivery of Generalised Services in an Open Market.

PhD thesis, University of Technology, Sydney, 2007.

R. A. Guerin, A. Orda, and D. Williams. QoS routing mechanisms and OSPF extensions.

In Global Telecommunications Conference, 1997. GLOBECOM ’97., IEEE, volume 3,

pages 1903–1908 vol.3, 1997.

S. R. Gulliver and G. Ghinea. The perceptual and attentive impact of delay and jitter in

multimedia delivery. IEEE Transactions on Broadcasting, 53(2):449–458, 2007.

J. Han and M. Kamber. Data mining : concepts and techniques. Morgan Kaufmann, San

Francisco, CA, 2nd edition, 2006.

J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: current status and future

directions. Data Mining and Knowledge Discovery, 15(1):55–86, 2007.

E.J. Hannan and J. Rissanen. Recursive estimation of mixed autoregressive-moving av-

erage order. Biometrika, 69(1):81–94, 1982.

178 BIBLIOGRAPHY

A. L. G. Hayzelden and J. Bigham. Agent technology in communications systems: an

overview. Knowl. Eng. Rev., 14(4):341–375, 1999.

O. Hermanns and M. Schuba. Performance investigations of the IP multicast architecture.

Computer Networks and ISDN Systems, 28(4):429–439, 1996.

H. Homayounfard and P. J. Kennedy. HDAX: Historical symbolic modelling of delay

time series in a communications network. In P. J. Kennedy, K. Ong, and P. Chris-

ten, editors, AusDM’09, volume 101 of CRPIT, pages 129–138, Melbourne, Australia,

2009.

H. Homayounfard, P. J. Kennedy, and R. Braun. NARGES: Prediction model for in-

formed routing in a communications network. In J. Pei et al., editor, LNAI, volume

7818, pages 327–338. Springer Berlin Heidelberg, 2013.

P. L. Hsu and H. Robbins. Complete convergence and the law of large numbers. Pro-

ceedings of the National Academy of Sciences of the United States of America, 33(2):

25–31, 1947.

IST-INTERMON. Advanced architecture for INTER-domain quality of service MON-

itoring, modelling and visualisation, Last Modied 6 April 2012. URL http:

//www.ist-intermon.org/. European IST research projects — for more in-

formation visit: www.cordis.lu/ist/.

ITU-T. One-way transmission time. ITU-T Recommendation, G.114, 1993.

ITU-T. One-way transmission time. ITU-T Recommendation, G.114, 2003. URL http:

//www.itu.int/en/ITU-T/.

M. Jain and C. Dovrolis. End–to–end available bandwidth: Measurement methodology,

dynamics, and relation with TCP throughput. ACM SIGCOMM Computer Communi-

cation Review, 32(4):295–308, 2002.

BIBLIOGRAPHY 179

R. Jain. A delay–based approach for congestion avoidance in interconnected heteroge-

neous computer networks. SIGCOMM Comput. Commun. Rev., 19(5):56–71, 1989.

B. Jennings, S. van der Meer, S. Balasubramaniam, D. Botvich, M. O. Foghlu, W. Don-

nelly, and J. Strassner. Towards autonomic management of communications networks.

Communications Magazine, IEEE, 45(10):112–121, 2007.

W. Jiang and H. Schulzrinne. Modeling of packet loss and delay and their effect on

real-time multimedia service quality. In NOSSDAV’2000, June 2000.

R. Jin and G. Agrawal. An algorithm for in-core frequent itemset mining on streaming

data. In Fifth IEEE International Conference on Data Mining, ICDM 2005, New

Orleans, USA, 2005. IEEE.

R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simple algorithm for nding frequent

elements in streams and bags. ACM Transactions on Database Systems (TODS), 28

(1):51–55, 2003.

D. Katz, K. Kompella, and D. Yeung. Trafc Engineering TE Extensions to OSPF Ver-

sion 2. RFC, 3630, 2003.

E. Keogh, J. Lin, and A. Fu. Hot SAX: Efciently nding the most unusual time series

subsequence. In Fifth IEEE International Conference on Data Mining (ICDM’05),

pages 1–8, Houston, 2005.

A. N. Kolmogorov. On the representations of continuous functions of many variables by

superpositions of continuous functions of one variable and addition. Dokl. Akad. Nauk

USSR, 114(5):953–956, 1957.

K. Koperski and J. Han. Discovery of spatial association rules in geographic information

databases. In Advances in spatial databases, pages 47–66. Springer, 1995.

180 BIBLIOGRAPHY

D. Kotz and R. S. Gray. Mobile agents and the future of the internet. SIGOPS Oper. Syst.

Rev., 33(3):7–13, 1999.

A. Küpper and A. S. Park. Stationary vs. mobile user agents in future mobile telecommu-

nication networks. In K. Rothermel and F. Hohl, editors, Mobile Agents, LNCS 1477,

pages 112–123. Springer Berlin / Heidelberg, Stuttgart, 1998.

V. Kurkova. Kolmogorov’s theorem and multilayer neural networks. Neural Networks, 5

(3):501 – 506, 1992.

A. Kusiak. A data mining approach for generation of control signatures. Journal of

manufacturing science and engineering, 124(4):923–926, 2002.

M. Last, Y. Klein, and A. Kandel. Knowledge discovery in time series databases. IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 31(1):160 –169,

Feb 2001.

H. Y. K. Lau and S. O. Woo. An agent–based dynamic routing strategy for automated ma-

terial handling systems. International Journal of Computer Integrated Manufacturing,

21(3):269–288, 2007.

C.H. Lin, D.Y. Chiu, Y.H. Wu, and A. L. P. Chen. Mining frequent itemsets from data

streams with a time-sensitive sliding window. In SIAM international conference on

data mining, SDM05, volume 119, pages 68–79, Newport Beach, 2005.

J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time series,

with implications for streaming algorithms. In DMKD ’03: Proceedings of the 8th

ACM SIGMOD workshop on Research issues in data mining and knowledge discovery,

pages 2 – 11. ACM, San Diego, California, 2003.

R. Lopez, E. Balsa-Canto, and E. Oate. Neural networks for variational problems in

BIBLIOGRAPHY 181

engineering. International Journal for Numerical Methods in Engineering, 75(11):

1341–1360, 2008.

D. J. C. MacKay. A practical Bayesian framework for backpropagation networks. Neural

computation, 4(3):415–447, 1992.

E. H. Mamdani. Application of fuzzy algorithms for control of simple dynamic plant.

Electrical Engineers, Proceedings of the Institution of, 121(12):1585–1588, 1974.

G. S. Manku and R. Motwani. Approximate frequency counts over data streams. In

Proceedings of the 28th international conference on Very Large Data Bases, VLDB

’02, pages 346–357, 2002.

A. Markopoulou, F. Tobagi, and M. Karam. Loss and delay measurements of internet

backbones. Computer Communications, 29(10):1590–1604, 2006.

A.P. Markopoulou, F.A. Tobagi, and M.J. Karam. Assessment of VoIP quality over in-

ternet backbones. In INFOCOM 2002. Twenty-First Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings. IEEE, volume 1, pages

150–159, 2002.

J. L. Marzo, E. Calle, C. Scoglio, and T. Anjah. QoS online routing and MPLS multilevel

protection: a survey. Communications Magazine, IEEE, 41(10):126–132, 2003.

F. Mateo, J. J. Carrasco, A. Sellami, M. Milln-Giraldo, M. Domnguez, and E. Soria-

Olivas. Machine learning methods to forecast temperature in buildings. Expert Systems

with Applications, 40(4):1061 – 1068, 2013.

N. F. Maxemchuk and M. El Zarki. Routing and ow control in high-speed wide-area

networks. Proceedings of the IEEE, 78(1):204–221, 1990.

A. Metwally, D. Agrawal, and A. El Abbadi. Efcient computation of frequent and top-k

elements in data streams. Database Theory-ICDT 2005, pages 398–412, 2005.

182 BIBLIOGRAPHY

I. Miloucheva, U. Hofmann, and P. Gutirrez. Spatio-temporal QoS pattern analysis in

large scale internet environment. In Giorgio Ventre and Roberto Canonico, editors,

Interactive Multimedia on Next Generation Networks, volume 2899 of LNCS, pages

282–293. Springer Berlin / Heidelberg, 2003.

D.C. Montgomery, C.L. Jennings, and M. Kulahci. Introduction to time series analysis

and forecasting. John Wiley, 2008.

S. B. Moon. Measurement and analysis of end–to–end delay and loss in the Internet.

PhD thesis, University of Massachusetts, Amherst, 2000.

B. Moulin. The social dimension of interactions in multiagent systems. In W. Wobcke,

M. Pagnucco, and C. Zhang, editors, Agents and Multi-Agent Systems Formalisms,

Methodologies, and Applications, LNCS, volume 1441 of Proceedings of the Work-

shops on Commonsense Reasoning, Intelligent Agents, and Distributed Articial Intel-

ligence, pages 109 –123. Springer-Verlag, London, 1998.

R. S. Naoum and M. Maswady. Performance evaluation for VOIP over IP and MPLS.

Performance Evaluation, 2(3):110–114, 2012.

S.J. Orfanidis. Optimum signal processing: An introduction. Macmillan New York, 1985.

V. Paxson. Measurements and analysis of end–to–end Internet dynamics. PhD thesis,

University of California at Berkeley, Berkeley, CA, April 1997.

J. Postel. User datagram protocol. Technical report, IETF, 1980.

J. Postel. Transmission control protocol. Technical report, IETF, 1981.

J. Potemans, B.V. Broeck, G. Ye, J. Theunis, P. Leys, E.V. Lil, and A.V. Capelle. Imple-

mentation of an advanced trafc model in OPNET Modeler. Department of Electrical

Engineering – ESAT-TELEMIC Division, Belgium, 2003.

BIBLIOGRAPHY 183

J. Rankin, G. Christie, and Irina Kondratova. Mobile multimodal solutions for project

closeout. In Proceedings of the 6th Construction Specialty Conference, Canadian

Society for Civil Engineering, Toronto, Ontario, Canada, 2005.

M. Roccetti, V. Ghini, G. Pau, P. Salomoni, and M. E. Bongli. Design and experimental

evaluation of an adaptive playout delay control mechanism for packetized audio for

use over the internet. Multimedia Tools and Applications, 14(1):23–53, 2001.

L. E. Rocha-Mier, L. Sheremetov, and I. Batyrshin. Intelligent agents for real time data

mining in telecommunications networks. In Proceedings of the 2nd international con-

ference on Autonomous intelligent systems: agents and data mining, AIS-ADM’07,

pages 138–152, Berlin, Heidelberg, 2007. Springer-Verlag.

M. Rose and D. Cass. ISO Transport Service on top of the TCP Version: 3, volume 1006

of RFC. RFC Editor, 1987.

L. Roychoudhuri and E. S. Al-Shaer. Real-time packet loss prediction based on end-to-

end delay variation. IEEE Transactions on Network and Service Management, 2(1):

29–38, 2005.

H. Sandick and E. Crawley. QoS routing (qosr) working group report. Technical report,

Internet Draft, Internet Engineering Task Force (IEFT), 1997.

R. Sasisekharan, V. Seshadri, and S. M. Weiss. Data mining and forecasting in large-

scale telecommunication networks. IEEE Expert: Intelligent Systems and Their Appli-

cations, 11(1):37–43, 1996.

B. Schilling. Qualitative comparison of network simulation tools. Institute of Parallel

and Distributed Systems (IPVS), University of Stuttgart, 2005.

R. Schoonderwoerd, O. E. Holland, J. L. Bruten, and L. J. M. Rothkrantz. Ant-based

load balancing in telecommunications networks. Adaptive Behavior, 5(2):169, 1997.

184 BIBLIOGRAPHY

M. Schwartz and T. Stern. Routing techniques used in computer communication net-

works. IEEE Transactions on Communications, 28(4):539–552, 1980.

M. Shiblee, P. Kalra, and B. Chandra. Time Series Prediction with Multilayer Perceptron

(MLP): A New Generalised Error Based Approach. Advances in Neuro-Information

Processing, pages 37–44, 2009.

Y. Shoham and M. Tennenholtz. On social laws for articial agent societies: off-line

design. Articial Intelligence, 73(1-2):231–252, 1995.

J. L. Sobrinho. Algebra and algorithms for QoS path computation and hop-by-hop rout-

ing in the internet. IEEE Transactions on Networking, 10(4):541–550, 2002.

W. Stallings. Data and computer communications. Pearson Prentice-Hall, Pearson Edu-

cation Inc., NJ, USA, 8th edition, 2007.

M. Steenstrup. Routing in communications networks. Prentice Hall, Englewood Cliffs,

N.J., 1995.

P. Stone and M. Veloso. Multiagent systems: A survey from a machine learning perspec-

tive. Autonomous Robots, 8(3):345–383, 2000.

D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minden.

A survey of active network research. Communications Magazine, IEEE, 35(1):80–86,

1997.

R.A. Tintin and D.I. Lee. Intelligent and mobile agents over legacy, present and future

telecommunication networks. In A. Karmouch and R. Impey, editors, MATA’99: First

International Workshop on Mobile Agent for Telecommunication Applications, pages

109–126. World Scientic Publishing, Ottawa, 1999.

BIBLIOGRAPHY 185

Y. Tobe, Y. Tamura, A. Molano, S. Ghosh, and H. Tokuda. Achieving moderate fairness

for UDP ows by path–status classication. In 25th Annual IEEE Conference on Local

Computer Networks, pages 252–261, 2000.

V. Tresp and R. Hofmann. Nonlinear time-series prediction with missing and noisy data.

Neural computation, 10(3):731–747, 1998.

J. J. Van Wijk and E. R. Van Selow. Cluster and calendar based visualization of time

series data. In Proceedings of IEEE Symposium on Information Visualization (Info Vis

’99), pages 4–9, Washington, DC, USA, 1999.

A. Varga. The OMNeT++ discrete event simulation system. In Proceedings of the Eu-

ropean Simulation Multiconference (ESM2001), volume 9, pages 6–9, Prague, Czech

Republic, June 2001.

Z. Wang and J. Crowcroft. A new congestion control scheme: slow start and search

(Tri-S). SIGCOMM Comput. Commun. Rev., 21(1):32–43, 1991.

G. Weiss. Multiagent systems: a modern approach to distributed articial intelligence.

MIT press, 2000.

G. Weiss, J. Eddy, S. Weiss, and R. Dube. Intelligent telecommunication technologies.

In L. C. Jain, R.P. Johnson, Y. Takefuji, and L.A. Zadeh, editors, Knowledge–Based

Intelligent Techniques in Industry, pages 249–275. CRC Press, Boca Raton, 1998.

R. Wilcox. Introduction to Robust Estimation and Hypothesis Testing. Academic Press,

Elsevier, Oxford, UK, 3rd edition, 2012.

Q. Wu and O. Mencer. Evaluating sampling based hotspot detection. In Mladen

Berekovic, Christian Muller-Schloer, Christian Hochberger, and Stephan Wong, ed-

itors, Architecture of Computing Systems - ARCS 2009, volume 5455 of Lecture Notes

in Computer Science, pages 28–39. Springer Berlin Heidelberg, 2009.

186 BIBLIOGRAPHY

H. Xiong, S. Shekhar, Y. Huang, V. Kumar, X. Ma, and J.S. Yoo. A framework for discov-

ering co-location patterns in data sets with extended spatial objects. In Proceedings of

the Fourth SIAM International Conference on Data Mining, volume 89. Florida, USA,

2004.

J.X. Yu, Z. Chong, H. Lu, and A. Zhou. False positive or false negative: mining frequent

itemsets from high speed transactional data streams. In Proceedings of the ThirtiethIin-

ternational Conference on Very Large Databases, volume 30, pages 204–215. VLDB

Endowment, 2004.

L. A. Zadeh. From computing with numbers to computing with words from manipulation

of measurements to manipulation of perceptions. Annals of the New York Academy of

Sciences, 929(1):221–252, 2001.

LA Zadeh. From computing with numbers to computing with words: From manipulation

of measurements to manipulation of perceptions. IEEE transactions on circuits and

systems. 1, Fundamental theory and applications, 46(1):105–119, 1999.

X. Zhang, N. Mamoulis, D.W. Cheung, and Y. Shou. Fast mining of spatial collocations.

In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 384–393. ACM, 2004.

X. Zhang, Y. Pang, and Z. Guo. Rate-distortion based path selection for video streaming

over wireless ad-hoc networks. In 2009 IEEE International Conference on Multimedia

and Expo, ICME 2009, pages 754–757. IEEE, 2009.

H. Zheng and J. Boyce. An improved UDP protocol for video transmission over internet-

to-wireless networks. IEEE Transactions on Multimedia, 3(3):356–365, 2001.

B. Zhou, D. He, and Z. Sun. Trafc modeling and prediction using ARIMA/GARCH

BIBLIOGRAPHY 187

model. In A. Nejat Ince and E. Topuz, editors, Modeling and Simulation Tools for

Emerging Telecommunication Networks, pages 101–121. Springer US, 2006.

