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Abstract

Rapid growth of Internet users and services has prompted researchers to contemplate
smart models of supporting applications with the required Quality of Service (QoS).
By prioritising Internet traffic and the core network more efficiently, QoS and Traffic
Engineering (TE) functions can address performance issues related to emerging Internet
applications. Consequently, software agents are expected to become key tools for the
development of future software in distributed telecommunication environments. A major
problem with the current routing mechanisms is that they generate routing tables that do

not reflect the real-time state of the network and ignore factors like local congestion.

The uncertainty in making routing decisions may be reduced by using information ex-
tracted from the knowledge base for packet transmissions. Many parameters have an
impact on routing decision-making such as link transmission rate, data throughput, num-
ber of hops between two communicating peer end nodes, and time of day. There are
also other certain performance parameters like delay, jitter and packet-loss, which are

decision factors for online QoS traffic routing.

The work of this thesis addresses the issue of defining a Data Mining (DM) model for
packet switching in the communications network. In particular, the focus is on decision-
making for smart routing management, which is based on the knowledge provided by
DM informed agents. The main idea behind this work and related research projects

is that time-series of network performance parameters, with periodical patterns, can be

vii



used as anomaly and failure detectors in the network. This project finds frequent patterns

on delay and jitter time-series, which are useful in real-time packet-loss predictions.

The thesis proposes two models for approximation of delay and jitter time-series, and
prediction of packet-loss time-series — namely the Historical Symbolic Delay Approx-
imation Model (HDAX) and the Data Mining Model for Smart Routing in Communi-
cations Networks (NARGES). The models are evaluated using two kinds of datasets.
The datasets for the experiments are generated using: (i) the Distributed Internet Traffic

Generator (D-ITG) and (ii) the OPNET Modeller (OPNET) datasets.

HDAX forecasting module approximates current delay and jitter values based on the pre-
vious values and trends of the corresponding delay and jitter time-series. The prediction
module, a Multilayer Perceptron (MLP), within the NARGES model uses the inputs ob-
tained from HDAX. That is, the HDAX forecasted delay and jitter values are used by

NARGES to estimate the future packet-loss value.

The contributions of this thesis are (i) a real time Data Mining (DM) model called HDAX;
(i1) a hybrid DM model called NARGES:; (iii) model evaluation with D-ITG datasets; and

(iv) model evaluation with OPNET datasets.

In terms of the model results, NARGES and HDAX are evaluated with offline heteroge-
neous QoS traces. The results are compared to Autoregressive Moving Average (ARMA)
model. HDAX model shows better speed and accuracy compared to ARMA and its fore-
casts are more correlated with target values than ARMA. NARGES demonstrates better
correlation with target values than ARMA and more accuracy of the results, but it is

slower than ARMA.
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