PRODUCTION AND CHARACTERIZATION OF KILN CAST COMPOSITE ALLOYS

BY

TIM LUCEY

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (SCIENCE)

University of Technology, Sydney

2013

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student

ACKNOWLEDGEMENTS

It is with immense gratitude that I acknowledge my supervisors for their support and friendship through the course of my PhD: Dr Richard Wuhrer for his friendship and technical assistance on a near daily basis throughout the course of my PhD, Prof. Mike Cortie who took me on when my previous supervisor left the country and who has helped me especially with the modelling sections of my thesis and the editing of it as a whole, and Dr Paul Huggett for his wealth of knowledge, supply of experimental materials and the opportunity to work on this excellent project. I look forward to future collaborations with you all as I move into the wide world of industrial research. I would also like to thank Dr Wing Yeung for his guidance at the beginning of my doctorate. I wish you all the best in your future ventures.

I would like to thank the School of Physics and Advanced Materials and specifically the Institute for Nanoscale Technology for supporting me through airfares, accommodation and registration to many conferences both within Australia and overseas. It has also been a pleasure getting to know the staff of the department and I have enjoyed many varied and stimulating conversations.

I am very grateful to Mark Reid of the University of Wollongong who assisted with the thermodynamic simulation and high temperature confocal laser scanning microscopy, and to the staff of the Microstructural Analysis Unit at UTS for their assistance when using the electron microscopes.

I would like to thank my good friend Vijay Bhatia. We have journeyed through our whole university life together and I have appreciated your friendship throughout. I hope our paths cross often as we travel from the realms of academia and into a bright and exciting future. To my friends in the Nanotech office both past and present: Marty Blaber, Burak Cankurtaran, Jonathan Edgar, Daniel Golestan, Jonathon Mak, Supitcha Supansomboon, Alex Porkovitch, Dylan Riessen, Nick Stokes and Valerio Taraschi to name but a few, I have enjoyed your friendship, knowledge and insight. I will miss playing office cricket and having chats about any topic under the sun. I wish you all the greatest success.

To my family and friends who have been right there beside me throughout my candidature I cannot put into words how grateful I am of your encouragement, I could not have done this without you. To my Mum, Dad and sister, a special thanks for your constant love and support throughout and for your genuine interest in how I was going even though some of my work must have been a bore.

And finally, to my beautiful fiancée Michaela. Thank you for being the most wonderful, understanding and loving person in the world. Your passionate enthusiasm to see me achieve my goals has seen me through many a dark day when I felt overwhelmed.

TABLE OF CONTENTS

CERTIFICATE OF AUTHORSHIP/ORIGINALITY	II	
ACKNOWLEDGEMENTS	III	
TABLE OF CONTENTS	V	
LIST OF FIGURES	VIII	
LIST OF TABLES	XVI	
LIST OF EQUATIONS		
PUBLICATIONS AND AWARDS ARISING FROM THIS WORK		
CHAPTER 1 - OUTLINE OF THESIS		
CHAPTER 2 - LITERATURE REVIEW		
2.1.1 - CAST IRON		
2.1.2 - Classification of Cast Irons		
2.1.2.1 - Grey Iron		
2.1.2.2 - White Iron		
2.1.2.3 – Ductile Iron		
2.1.2.4 – Malleable Irons	8	
2.1.3 – White Iron Microstructure	9	
2.1.3.1 - Hypoeutectic White Iron	10	
2.1.3.2 - EUTECTIC WHITE IRON	11	
2.1.3.3 – Hypereutectic White Iron	12	
2.1.4 - Effects of Alloying Elements in White Iron	13	
2.1.4.1 – CARBON	13	
2.1.4.2 - Chromium	14	
2.1.4.3 - SILICON	14	
2.1.4.4 - MANGANESE	15	
2.1.4.5 - Nickel	15	
2.1.4.6 - MOLYBDENUM	15	
2.1.5 – Wear Characteristics of White Irons	15	
2.1.5.1 - Wear		
2.1.5.2 – Wear of White Irons	22	
2.1.5.3 – Effect of Mechanical Properties	22	
2.1.6 – White Iron Liquidus	23	
2.2 Composites of steel and cast iron	25	
2.2.1 – HARDFACING	26	
2.2.2 – VACUUM BRAZING	27	
2.2.3 – CSIRO CAST BONDING PROCESS	29	
2.2.4 – VACUUM CASTING	30	

2.2.4 – Centrifugal Bi-metal Casting	31
2.3 The niche for this project	31
CHAPTER 3 - SELECTION OF MATERIALS	33
3.1.1 – COATINGS	
3.1.2 – Encapsulation	
3.1.3 – Inert Atmosphere	38
3.1.4 – Heat Resisting Steels	39
3.2 – Experimental	41
3.2.1 – Phase Diagram for White Cast Irons	41
3.2.2 - METALLOGRAPHY	42
3.2.3 - Mechanical Testing	42
3.2.4 – Thermal Analysis	
3.2.5 – Oxidation of Steel	43
3.2.6 – Three-Point Bend Testing	44
3.3 - RESULTS AND DISCUSSION	45
3.3.1 – Characteristics of the white cast iron	45
3.3.2 – Oxidation of the cast iron and substrate materials	56
3.3.1 – MECHANICAL PROPERTIES OF CANDIDATE SUBSTRATE MATERIALS	62
3.4 – Chapter Conclusion	63
CHAPTER 4 - CASTING WHITE IRON ONTO STAINLESS STEEL	65
4.1 - Introduction	
4.2 – Experimental	65
4.2.1 - Stainless Steel/White Iron Composite Creation	65
4.2.2 – Analysis Techniques	
4.3 - RESULTS AND DISCUSSION	
4.3.1 - MICROSTRUCTURAL INVESTIGATION OF THE COMPOSITE INTERFACE	69
4.3.2 – Nanoindentation of the Stainless Steel/White Iron Composites	83
4.4 – Chapter Conclusions	
CHAPTER 5 - CASTING OF WHITE IRON ONTO A MILD STEEL SUBSTRATE	86
5.1 - Introduction	
5.2 – Experimental	87
5.2.1 – Casting of White Iron/Steel Composites	87
5.2.2 – Sample Preparation	90
5.2.2.1 - MICROSTRUCTURAL ANALYSIS	90
5.2.2.1 - HIGH TEMPERATURE CONFOCAL LASER SCANNING MICROSCOPY	91
5.2.3 – Analysis Techniques	92
5.2.3.1 - SEM BASED TECHNIQUES	92
5.2.3.2 - Computational Analysis	92
5.2.3.3 - High Temperature Confocal Laser Scanning Microscopy	93
5.2.3.4 - Nanoindentation	94
5.2.3.5 – Three-Point Bend and Tensile Tests	96
5.3 – RESULTS AND DISCUSSION	96

5.3.1 – Characterization of Interface	96
5.3.2 – High Temperature Confocal Laser Scanning Microscopy	
5.3.3 – Mechanical Testing	123
5.4 – Chapter Conclusions	125
CHAPTER 6 - MASS TRANSFER AT THE INTERFACE	127
6.1 Introduction	127
6.1.1 History of Diffusion	127
6.1.2 Solid State Diffusion and Its Mechanisms	
6.1.3 Surface Heat Treatment Solutions to Fick's Second Law	137
6.1.4 Diffusion coefficients of various elements in iron	
6.1.5 Diffusion couple	
6.2 Experimental	
6.2.1 Experimental Determination	
6.2.1 Theoretical Determination	
6.3 Results and Discussion	144
6.4 Chapter Conclusions	159
CHAPTER 7 CONCLUDING REMARKS	161
APPENDIX 1	165
REFERENCES	175

LIST OF FIGURES

Figure 2.1: Binary Fe-C thermodynamic phase diagram[2]4
Figure 2.2: Eutectic flake graphite in grey iron (Horizontal Width of Field, HWOF =
200μm)[4]6
Figure 2.3: Typical microstructure of as-cast ferritic ductile iron (HWOF = $600\mu m$)[4]8
Figure 2.4: Microstructure of annealed ferritic malleable iron with temper carbon
$(HWOF = 950\mu m)[4]$ 9
Figure 2.5: (a) Metastable Fe-Cr-C phase diagram. Eutectic equilibria indicated by single
arrow, double arrow indicates peritectic[8]. (b) Fe-Cr-C ternary system liquidus projection[2]
Figure 2.6: Hypoeutectic white iron microstructure. Carbides are white and matrix is
black (HWOF = 800µm)[4]11
Figure 2.7: Eutectic white iron microstructure. Carbides are white and matrix is black
$(HWOF = 800 \mu m)[4].$ 12
Figure 2.8: Hypereutectic white iron microstructure. Carbides are white and matrix is
black (HW0F = 800μm)[4]12
Figure 2.9: Effect of carbon on the hardness of low-carbon white iron[4]
Figure 2.10: Two and three body abrasion models[13]
Figure 2.11: Four modes of abrasion[13]
Figure 2.12: Fe-Cr-C ternary system liquidus projection[26]
Figure 2.13: Fe-Si-Cr-C liquidus projection for 0.5 wt% Si[28]25
Figure 2.16: Optical micrograph of interfacial region of hardfaced alloy[42]
Figure 2.17: Schematic diagram for the vacuum brazing process for steel and white cast
iron[43]28
Figure 2.18: Steel/White iron composite (etchant: 5% HCL acid ferric chloride). White
iron is located at the top of the micrograph with steel on the bottom with copper in the
centre. Note the presence of the dissolution deposited columnar grains adjacent to the
white iron/copper interface (HWOF = $470\mu m$)[43]29
Figure 3.1: Fe-Cr-C equilibrium phase diagrams with (a) 6% Cr, (b) 8% Cr, (c) 10% Cr,
(d) 12% Cr, (e) 14% Cr and (f) 16% Cr. Calculated using the ThermoCalc TCFE7
database

Figure 3.2: Schematic showing the formation of a layer of scale via atomic transport[49]
Figure 3.3: Oxidation of chromium steels at 1000°C[72]39
Figure 3.4: Influence of nickel on the scaling rates at 1000°C for ternary Fe-Ni-Cr alloys
with chromium contents between 11 and 31%[80]41
Figure 3.5: (a) Equilibrium phase diagram of Fe-12Cr-1.6Mn-1Ni-0.5Si-4.1C alloy. (b)
Scheil diagram showing the solidification path of this alloy45
Figure 3.6: (a) Typical eutectic microstructure of Fe-12Cr-4.1C-1.6Mn-1.0Ni-0.5Si. (b)
Overlay indicating the location of carbides (red) in the white iron. (HWOF = $348\mu m$) 46
Figure 3.8: XRD pattern of as cast white iron created under typical casting conditions. 47
Figure 3.9: XRD pattern of as cast white iron cooled slowly48
Figure 3.10: (a) Backscattered electron micrograph of as cast microstructure. Lightest
phase is ferrite, darker phase is cementite and darkest phase is M7C3. (HWOF = 180 μ
m) (b) In-lens detector micrograph with lightest phase indicating the location of
localized pearlite. (HWOF = 360 μ m) (c) High magnification micrograph of pearlite
grain. (HWOF = 7.6μ m)49
Figure 3.11: Backscattered electron image of microstructure after plunging into liquid
nitrogen. The surface of the metal matrix is rough, especially around the carbides due
to the transformation of austenite to martensite. (HWOF = 224µm)51
Figure 3.12: Electrical resistance of low melting point WCI alloy as a function of
decreasing temperature 52
Figure 3.13: Comparative hardness profile of as cast sample from nanoindentation 53
Figure 3.14: 3-point bend test flexural stress vs displacement curve
Figure 3.15: (a) Fracture surface of white iron after 3-point test. (HWOF = 600μm) (b)
shows the brittle fracture surface of this material. (HWOF = 60µm)55
Figure 3.16: Mass vs temperature curve of low melting point white iron generated using
thermogravimetric analysis (TGA)56
Figure 3.17: Weight gain due to oxidation at 1250°C of mild steel as a function of the
soak time57
Figure 3.18: Mild steel sample oxidised at 1250°C for 30 minutes58
Figure 3.19: Comparison of the oxidation rate of mild steel and mild steel coated in
colloidal graphite59

Figure 3.20: Samples coated in Espon HF after 30 mins (left) and 1 hour (right) heat-
treatment60
Figure 3.21: Weight gain due to oxidation at 1250°C of 253MA and type 310 stainless
steels as a function of the soak time. (Note the vertical scale has been expanded when
compared with the preceding figure.)61
Figure 3.22: Steel samples in alumina crucibles after heat treatment. (a) shows the
result of a 253MA sample after a 30 minute soak time. It can be seen that a lot of oxide
can be seen in the bottom of the crucible while this occurred to a much lesser extent
with the type 310 stainless steel sample (b)62
Figure 3.23: Flexural stress versus displacement curves for various steels
Figure 4.1: Cross-sectional schematic diagram of stainless steel tubing with white cast
iron before and after casting. Also shown is a schematic of atomic diffusion between the
liquid white iron and the stainless steel66
Figure 4.2: The typical furnace heating cycle used to create these composites 67
Figure 4.3: (a) Shows extensive oxidation of the white iron balls and (b) shows the poor
bonding with the stainless steel substrate. (c) Sample 2 shows even greater oxidation of
the white iron and (d) very poor bonding with the steel substrate69
Figure 4.4: Image showing the stainless steel tube with white cast iron bonded to the
inner wall of the tube70
Figure 4.5: Optical micrograph of interfacial region of the sample shown in Figure 4.5.
LHS steel tube, RHS white cast iron. Black spots in white cast iron region of sample were
caused by carbide pullout during grinding and polishing. 2.5x magnification, horizontal
width of field. (HWOF = 3.5mm)70
Figure 4.6: (a) shows the interfacial region of a white iron/mild steel composite created
using the vacuum cast technique [37]. Micrograph (b) shows the interfacial region of a
white iron/steel composite created using hardfacing [42]71
Figure 4.7: Elemental maps taken over interface between type 310 tube and white cast
iron interior. The four distinct zones in the microstructure are labelled A, B, C and D.
The original position of the inner surface of the type 310 tube corresponds closely to the
right hand edge of the images, illustrating that considerable dissolution of the tube
occurred. (HW0F=5.56mm)73
Figure 4.9: Elemental maps of the interface approximately 1.8 mm from the outer edge
of the pipe. The stainless steel is top right and the white cast iron bottom left in these

(HWOF = $900\mu m$)
Figure 4.10: Pseudocolor XRM at the interface of stainless steel (top right corner) and
white cast iron (bottom left corner). Nickel is shown as blue, Iron as red and Chromium
as green. 300X magnification. (HWOF = $900\mu m$)
Figure 4.11: Within this iron-nickel scatter diagram, four phases can be identified. We
can observe linking between clusters indicating the boundaries between phases within
a material78
Figure 4.16: Comparitive hardness profile of sample across the interface from
nanoindentation. The first 1.5 mm of the profile is of the carbide free, outer edge of the
type 310 stainless steel tube
Figure 4.17: Nano-indentation profile showing the reduced modulus of the sample
across the interface using a Hysitron Triboindentor 900 nano-indentation system 84
Figure 5.1: (a) White iron ingot in mild steel cup. This cup was placed inside a larger
steel cup to avoid spillage of molten iron in furnace in case of failure of the mild steel
cup. (b) shows the high temperature furnace used in this study
Figure 5.2: Cross sectional schematic of white iron/mild steel composites with graphical
representation of atomic diffusion between layers89
Figure 5.3: Typical heating curve of sample undergoing a 10 minute soak time90
Figure 5.4: Schematic of cylindrical test samples, created for confocal laser microscopy.
91
Figure 5.5: (a) Schematic diagram of the infrared furnace of the laser-scanning confocal
microscope and (b) the sample holder93
Figure 5.6: Hysitron Triboindentor 900 nano-indentation system
Figure 5.7: Loading and unloading calibration curve
Figure 5.8: Typical single indent load versus displacement curve
Figure 5.9: BSE images of: (a) Sample held for 5 minutes at 1250°C and (b) Sample held
for 10 minutes at 1250°C. The arrows identify the interfacial layer. Steel substrate is to
the left of the interfacial layer and the white iron is to the right. (HWOF = 337 μ m) 97
Figure 5.10: (a) Micrograph of interfacial region showing decreasing amount of pearlite
(right to left) across the steel substrate (HWOF=2.04 mm) and (b) micrograph showing
structure of pearlite in the steel substrate close to the interface. HWOF=153.3µm 98
Toologiamining to

Figure 5.11: BSE images of interface in composites soaked at 1250°C for (a) 5 minutes,
(b) 10 minutes, (c) 15 minutes, (d) 20 minutes and (e) 25 minutes with the width of
interfacial region highlighted by arrows. (BSE imaging) (HWOF = 337 μ m)99
Figure 5.12: (a) EBSD map of interfacial region showing multiple austenite grains along
the interface. The region where this map was taken is highlighted by the black box on
the backscattered electron image (BSE) (b) Above this region is WCI, and below is steel.
(HWOF = 1.5mm) (c) IPF colouring scheme of EBSD map100
Figure 5.13: Pole figures of the austenitic interfacial region. There is no particular
crystallographic texture and the maxima shown are generated by sampling issues since
the section contained only about 25 austenite grains101
Figure 5.14: Elemental maps of the interfacial region. (a) Carbon, (b) chromium and (c)
iron. HW0F=260μm102
Figure 5.15: Micrograph highlighting the four zones at the join of this composite103
Figure 5.16: (a) Equilibrium phase diagram of Fe-12Cr-1.6Mn-1Ni-0.5Si-4.1C alloy. (b)
Scheil diagram showing the solidification path of this alloy104
Figure 5.17: Pseudo-colour X-ray map of interfacial region. Iron is represented by red,
chromium blue and carbon green. Sample had been soaked at 1250°C for 25 minutes
(HWOF = 260μm)
Figure 5.18: Scatter diagrams showing the concentration dimensions of various phases
within the interfacial region of these composites. Sample had been soaked at 1250°C for
25 minutes
Figure 5.19: Selection of nodes within scatter diagram and overlay of selected region on
BSE image. Sample had been soaked at 1250°C for 25 minutes108
Figure 5.20: (a) Pseudo coloured X-ray map of interfacial region with area examined
using EBSD highlighted. (HWOF = $260\mu m$) (b) Shows EBSD map of interfacial region
directly adjacent to the white iron wear layer. (HWOF = $66\mu m$) Colouring is based on
the inverse pole figure colour sheme shown in (c)109
Figure 5.21: (a) EBSD map of carbides (center) residing along the grain boundary of
austenite grains on the left and right hand sides of the image. (HWOF = $23.6\mu m$) (b)
Kikuchi pattern of Fe3C (Space Group 62) found along the grain boundaries110
Figure 5.22: Settling of NbC in kiln cast steel white iron composites. (HWOF = 2.85mm)
111

Figure 5.23: Pseudo-coloured X-ray map of interfacial region with NbC added. Nb is
coloured green in this micrograph with Fe red and Cr blue. NbC particulates can be seen
within the interfacial zone (arrowed). (HWOF = 1.5mm)112
Figure 5.24: Nano-indentation profiles across the interfacial region of composites cast
showing comparative hardness for (a) 10 minutes, (b) 15 minutes, (c) 20 minutes and
(d) 25 minutes
Figure 5.25: Interfacial growth respective to soak time114
Figure 5.26: (a-f) Shows the original interface of the interference-fitted sample
indicated by the dotted white line. The sample is heated and the white iron is
transformed into its liquid state. No heat treatment has been applied to this sample. (g)
White iron has become completely liquid. (HWOF = 910 μ m) (h) At a higher
magnification it can be seen that the liquid white iron has partially wetted the surface of
the steel and has obscured the original surface of the steel but the location of the
interface is identified by the white dotted line. (i-l) The interface can be seen growing
into the liquid white iron with the arrows indicating the direction of interfacial growth.
(HWOF = 485μ m)
Figure 5.27: (a) Iron-carbon metastable phase diagram [92] and calculated phase
diagram of low melting point white iron. (b) Fe-12Cr-C phase diagram. Liquidus is
shown to increase as carbon content decreases from eutectic composition of 4.1% [27].
117
Figure 5.29: (a) Secondary electron image of the surface of a sample after heating in the
confocal microscope. HWOF=2mm (b) High magnification image of carbides that have
solidified at the surface of the white iron. (HWOF = $200\mu m$)119
Figure 5.30: (a) Carbon map of interfacial region. Greyscale is based on carbon
concentration with carbon levels above 8wt.% shown as white and below 0.2wt.%
black. (HW0F = 260 μ m) (b) Average carbon contents as a function of position. Dotted
lines indicate the transition from interfacial layer to the steel substrate. Note, vertical
scale is logarithmic121
Figure 5.31: (a) High temperature laser scanning micrograph of interfacial region after
solidification of the liquid white iron. The carbides that have solidified at the surface of
the melt have grown over the surface of the interfacial region on the left hand side of the
micrograph. (b)After the temperature has dropped below 700°C, carbides begin to

precipitate in this layer as the austenite layer becomes unable to retain the carbon
(HWOF = 130μm)122
Figure 5.32: High magnification image of the surface of the confocal specimen. Smal
Fe ₃ C carbides have precipitated. (HWOF = $20.2\mu m$)123
Figure 5.33: Load and Flexural stress vs displacement curve for 4 mm diameter, roo
shaped composite specimens with varying soak times124
Figure 5.34: Fracture surface of specimen after three point loading. Fracture surface is
located in the white iron region of the test specimen
Figure 6.1: Direct interstitial mechanism of diffusion130
Figure 6.2: Interstitialcy mechanism of diffusion131
Figure 6.3: Direct exchange and ring diffusion132
Figure 6.4: Monovacancy mechanism of diffusion133
Figure 6.5: Type A diffusion regime in a polycrystal135
Figure 6.6: Type B diffusion regime in a polycrystal136
Figure 6.7: Average concentration with respect to penetration distance136
Figure 6.8: Diffusion profiles of grain boundary self-diffusion in Ag[115]137
Figure 6.9: Type C diffusion regime in a polycrystal137
Figure 6.11: Concentration profiles of Al in the L phase calculated for (a) $T = 973 \text{ K,} 142 \text{ M}$
(b) T = 1023 K and (c) T = 1073K[127]142
Figure 6.10: BSE image of the interfacial region. Green line indicates the region from
which the line profile was taken. (HWOF = 260μm)144
Figure 6.11: Concentration line profiles for both chromium and iron. Chromium
concentration is shown with the blue line while iron is shown with the red. The stee
substrate is shown to the left of zero and the interfacial zone and white iron is shown to
the right145
Figure 6.12: Concentration line profiles of nickel and manganese across the interfacia
region of the sample. The steel substrate is shown to the left of zero and the interfacia
zone and white iron is shown to the right146
Figure 6.13: Carbon diffusion profile of the interfacial region. The steel substrate is
shown to the left of zero and the interfacial zone and white iron is shown to the right
Note the vertical concentration scale is logarithmic147

Figure 6.14: WDS stage profile of the interfacial region of a white iron/steel composite.
The steel substrate is shown to the left of zero and the interfacial zone and white iron is
shown to the right. Measurements were taken every 20 μ m148
Figure 6.15: Secondary electron in-lens electron micrograph of the interfacial region of
a white iron/steel composite. The sample has been etched using a nital etch, removing
the ferrite and revealing the cementite, which is light grey in colour. (HWOF = 2.1mm)
149
Figure 6.16: Theoretical diffusion profile of Cr, Mn, Ni and C based on Grube's solution
to Fick's second law after a soak time of 10 minutes at 1250°C150
Figure 6.17: Theoretical diffusion profile of Cr, Mn, Ni and C based on Grube's solution
to Fick's second law, seen after 10 minutes at 1250°C151
Figure 6.18: Comparison of the extent of diffusion between Grube's theoretical solution
and X-ray EDS profile of the chromium content from the interface between the
austenitic interfacial layer and the steel substrate152
Figure 6.19: DICTRA thermodynamic diffusion simulation of interfacial growth in these
mild steel/white iron composites during isothermal treatment at 1250°C153

LIST OF TABLES

Table 2.1: Composition requirements of abrasion-resistant white irons (wt.%),
according to usage in north america[5]7
Table 2.2: Ductile iron composition (wt.%)[4, 6]8
Table 2.3: Malleable iron composition[4, 7]9
Table 2.4: Classification for wear modes[12]
Table 2.5: Classification of wear process by wear mechanism[13]18
Table 2.6: Summary of factors which affect wear[19]19
Table 2.7: Summary of invariant reactions
Table 3.1: Test samples heated to 1250°C for soak times varying from ten minutes to
two hours43
Table 3.2. Composition of austenite, ferrite and M_7C_3 carbides in microstructure
produced by 25 minute soak at 1250°C. All compositions are quoted in mass percent. 50
Table 4.1: Casting parameters for type 310 stainless steel/white iron composites 67
Table 5.1. Nominal composition of white cast iron used in trials
Table 5.2. Composition of austenite, ferrite and M_7C_3 carbides in microstructure
produced by 25 minute soak at 1250°C . All compositions are quoted in mass percent.
Table 6.1: Diffusion coefficients of different elements in iron
Table 6.2: Ratio of diffusing elements in austenite in comparison to carbon[120]140
Table 6.3: Composition of white iron before and after casting154

LIST OF EQUATIONS

$%$ Carbides = $12.33 \times C\% + 0.55 \times Cr\% - 15.2$ Equation 2.1	12
$Metal + O_2 \rightarrow Metal \ Oxide \qquad Equation \ 3.1$	36
$ \rho_{\text{mole}} = \frac{\Delta x_{\text{scale}}}{\Delta t} = K_{\text{S/O}} \frac{\Delta m_{\text{O}}/\Delta t}{A} $ Equation 3.2	
$\sigma_f = \frac{PL}{\pi R^3}$ Equation 3.3	44
$\epsilon_f = \frac{6Dd}{L^2}$ Equation 3.4	44
$M_s(^{\circ}C) = 539 - 423C - 30.4Mn - 17.7Ni - 12.1Cr - 7.5Mo$ Equation 3.6	50
$\sigma_{\rm f} = \frac{PL}{\pi R^3}$ Equation 3.7	53
$\frac{1}{E_R} = (1 - v_i^2)/E_i + (1 - v_s^2)/E_s$ Equation 4.1	84
$H = \frac{P_{max}}{A_r} \qquad Equation 5.1 \dots$	95
$E_{\rm r} = \frac{1}{\beta} \frac{\sqrt{\pi}}{2} \frac{S}{\sqrt{A_{\rm p}(h_{\rm c})}} $ Equation 5.2	95
$S = \frac{dP}{dh}$ Equation 5.3	95
$J = -D \frac{\partial \emptyset}{\partial x} \qquad \text{Equation 6.1} \dots$	128
$\frac{\partial \emptyset}{\partial t} = D \frac{\partial^2 \emptyset}{\partial x^2}$ Equation 6.2	128
$D = A. e^{\left(\frac{-Q}{RT}\right)} \qquad \text{Equation 6.3.}$	128
$\sqrt{Dt} \ge d/0.8$ Equation 6.4	
$D_{eff} = gD_{gb} + (1-g)D$ Equation 6.5	
$g = \frac{q \sigma}{d}$ Equation 6.6	135
$C_x = C_0 - (C_s - C_0) \times \left(\text{Erf}\left(\frac{x}{(Dt)^{0.5}}\right) \right)$ Equation 6.7	138
$Dt = \left[\frac{x}{\left(invErf\left(\frac{C_x}{C_0 - (C_s - C_0)}\right)\right)}\right]^2$ Equation 6.8	157
$\int_0^T C_0 - \left(C_s - C_0\right) \times \left(\text{Erf}\left(\frac{x}{(Dt)^{0.5}}\right) \right) dx \qquad \text{Equation 6.9}$	158
Mass of Carbon = Mass of Substrate $\times \left(\frac{\text{Area Under Curve}}{(T \times 100)}\right)$ Equation 6.10	158

PUBLICATIONS AND AWARDS ARISING FROM THIS WORK

Refereed Papers

- [1] <u>T. Lucey</u>, R. Wuhrer, K. Moran, M. Reid, P. Huggett and M. Cortie. "Interfacial reactions in white iron/steel composites." Journal of Materials Processing Technology 212(11): 2349-2357. 2012
- [2] <u>T. Lucey</u>, R. Wuhrer, P. Huggett, K. Moran, W.Y. Yeung and M. Cortie. "Solidification Phenomena during Casting of Stainless Steel/Cast Iron Composites." <u>Supplemental Proceedings:</u> Materials Properties, Characterisation and Modelling, John Wiley & Sons, Inc.: 267-274. 2012

Conference Papers

- [3] <u>T. Lucey</u>, R. Wuhrer, K. Moran, P. Huggett and M. Cortie. "Microstructural Analysis of the Interfacial Development of White Iron/Steel Composites." Microscopy and Microanalysis 18 (Supplement S2): 1670-1671. 2012
- [4] <u>T. Lucey</u>, R. Wuhrer, P. Huggett, K. Moran, W.Y. Yeung and M. Cortie. "Solidification Phenomena during Casting of Stainless Steel/Cast Iron Composites", in Defects and Properties of Cast Metals, M. Jolly, B. Thomas and C. Reilly (eds.), Proceedings of the 141st TMS Annual Meeting & Exhibition, March 11-15, 2012, Orlando, Florida, USA.
- [5] <u>T. Lucey</u>, P. Huggett, R. Wuhrer and W.Y. Yeung. "Effect of Soak Time on the Microstructural Evolution at the Interface of Kiln Cast White Iron/Steel Composites." The 7th Pacific Rim International Conference on Advanced Materials and Processing (PRICM 7), Cairns, Australia. 2010

- [6] <u>T. Lucey</u>, P. Huggett, R. Wuhrer, K. Moran and W.Y. Yeung. "X-Ray Mapping and Analysis of the Interfacial Region of Kiln Cast Composites." Microscopy and Microanalysis 16(Supplement S2): 1674-1675. 2010
- [7] <u>T. Lucey</u>, P. Huggett, R. Wuhrer and W.Y. Yeung. "Production and Characterisation of Vacuum Cast Composite Alloys." Materials Australia & Austceram 2009, Gold Coast, Australia. 2009

Awards

- [1] Castaing Award Best Student Paper, Microscopy Society of America, 2012
- [2] 2nd Prize, Presentation, Materials Australia Jules Byrnes Student Presentation Night, 2009
- [3] 2nd Prize, Poster, Materials Australia Jules Byrnes Student Presentation Night, 2009
- [4] 1st Prize, Poster, UTS Student Research Showcase Poster Competition, 2009