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ABSTRACT

Li-ion batteries have dominated the global market for electronic devices, and are
considered to be the most promising power system for electric vehicles (EVs), and
hybrid electric vehicles (HEVs). However current Li-ion battery systems are still far
from reaching the demands of the high energy density on EVs and HEVs due to
limitations on the capacity of the electrodes. Moreover, they cannot match the high
charge/discharge current requirements of the next generation of batteries. This
doctoral work aims to address these problems by designing nanotechnology and
nanomaterials with high power performance. Herein, a series of nanostructured
materials with designed morphology: polyhedral nanoparticals, nanowires, 2-
dimention nanoplate and mesoporous structure have been developed. By using
theoretical calculations, X-ray diffraction, and Ex-situ SEM, TEM observation
techniques, the relationship between the electrode crystal structure and

electrochemical performance was established.

In addition, to overcome the controversial debates regarding the size of reserves and
higher cost of obtaining Li, the counterpart to Li-ion batteries, Na-ion batteries, have
been researched in this work due to the low cost, abundant supply and widespread
terrestrial reserves of sodium mineral salts. However, the analogue intercalation
compounds for Li-ion batteries are not appliable for Na-ion batteries due to the
higher ionization potential and larger ionic diameter of the Na ((1.02 A vs. Li (0.76
A)). Consequently, suitable electrode materials for Na-ion batteries were also
developed and optimised in this study. Appropriate active materials having
sufficiently large interstitial space within their crystallographic structure to host Na

ions and achieve a satisfactory electrochemical performance were created.
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Following are the corresponding brief introductions to each research task:

The crystal structure and electronic structure of Li,FeSiO4 and its delithiated
products, LiFeSiO4 and FeSiO4, were systematically investigated through the ab
initio calculation based on a monoclinic supercell with the P2, symmetry. The
expansion of the unit cell volume during the lithium extraction process, and the
two-step voltage profiles of Li,FeSiO4 corresponding to the Fe'** and Fe™™*
redox couples, respectively, have been studied. Furthermore, the diffusion
mechanism of Li ions in Li,FeSiO4 and its delithiated product LiFeSiO4 was
established base on the energy barriers calculation: the lithium will diffuse along

the [101] direction and Li ion layer in the ac plane.

Tuneable porous o-Fe,O; materials were prepared using a novel selective etching
method. It was found that the pore size and pore volume can be controlled by adjusting
the etching time during the synthesis process. When the porous hematite was applied for
lithium storage in lithium ion cells, it demonstrated a reversible lithium storage capacity

of 1269 mA h g™

Atomistic simulation and calculations on surface attachment energy predicted the
polyhedral structure of magnetite nanocrystals with multiple facets. Through a low
temperature hydrothermal method, polyhedral magnetite nanocrystals with multiple
facets were successfully synthesised and identified by the X-ray diffraction (XRD), field
emission scanning electron microscopy (FESEM), and high resolution transmission
electron microscopy (HRTEM). When applied as an anode material in lithium ion cells,
magnetite nanocrystals demonstrated outstanding electrochemical performance with a

high lithium storage capacity, satisfactory cyclability, and excellent high rate capacity.
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One-dimensional single crystal magnetite nanowires were synthesized by the low
temperature hydrothermal method. XRD and transmission electron microscopy (TEM)
confirmed the cubic structure of Fe;O4 nanowires with a space group of Fd3m.
Electrochemical measurement showed as-prepared Fe;Os nanowires exhibited an

excellent reversible lithium storage capacity and a satisfactory cycling performance.

Mesoporous nickel oxide nanowires were synthesized by a hydrothermal reaction with
subsequent annealing at 400 °C. When applied as the anode material in Li-ion batteries,
nickel oxide nanowires demonstrated an outstanding electrochemical performance with
a high lithium storage capacity, adequate cyclability, and outstanding rate capacity. In
addition, it also exhibited a high specific capacitance of 348 F g™ as electrodes in

supercapacitors.

Mesoporous NiO crystals with dominantly exposed {110} reactive facets was prepared
by thermal conversion of hexagonal Ni(OH), nanoplatelets. When applied as anode
materials in Li-ion batteries, mesoporous NiO crystals exhibited a high reversible
lithium storage capacity of 700 mA h g' at 1 C rate in 100 cycles and excellent
cyclability. In particular, the dominantly exposed {110} reactive facets and mesoporous
nanostructure of NiO crystals lead to ultrafast lithium storage, which mimics the high

power delivery of supercapacitors.

Two types of MnO, polymorphs, a-MnO,, f-MnO, nanorods, have been synthesized as
cathode materials for Na-ion batteries. Although both can achieve high initial sodium
ion storage capacities (278 mA h g”' and 298 mA h g, respectively), B-MnO, nanorods
exhibited a better rate capability and cyclability than that of o-MnO, nanorods

attributable to its more compact tunnel structure and the one-dimensional architecture of
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nanorods which could facilitate sodium ion diffusion in the charge and discharge

process.

Through an [In-situ synthesis approach, SnO,@Graphene nanocomposite was
synthesized. FESEM and TEM revealed the homogeneous distribution of octahedral
SnO; nanoparticles (60 nm in size) on a graphene matrix. When used as an anode for
Na-ion batteries the SnO,@Graphene nanocomposite exhibited a high reversible
sodium storage capacity of above 700 mA h g and an excellent cyclability. After 100
cycles, the capacity still maintained at 628 mA h g' at 20 mA g'due to the 3D

architecture of the SnO,@Graphene nanocomposite.
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