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ABSTRACT 

    In this thesis we aim to develop efficient, enhanced versions of locally one 

dimensional finite difference time domain (LOD-FDTD) using orthogonal and non-

orthogonal meshes with convolutional perfectly matched layered (CPML) absorbing 

boundary condition (ABC) for solving a range of electromagnetic (EM) and microwave 

problems. To solve many real world propagation problems related to electrically large 

structures and compute the EM response from resonant and curved structures both in 

two dimensional (2-D) and three dimensional (3-D) employing orthogonal and non-

orthogonal meshes, novel LOD-FDTD with CPML ABC are presented to render the 

problem manageable and treatable with available resources within a reasonable time 

frame and without placing an unrealistic burden on the computational resources.  

    In the first part of the thesis, a segmented (S)-LOD-FDTD method has been 

developed for EM propagation modelling in electrically large symmetric structures. 

After modifying 3-D symmetric structures to two dimensional (2-D) structures, the 

segmentation approach is applied. The developed S-LOD-FDTD method has been 

validated through propagation prediction inside large straight, branched and curved 

tunnels.  The predictions on path loss agree reasonably well with the results obtained 

using segmented alternating direction implicit finite difference time domain (S-ADI-

FDTD) method as well as with published measured data. The results indicate higher 

signal attenuation for the junction/transition regions as compared to regions away from 

such abrupt transitions. A performance comparison of the proposed method has also 

been described in terms of CPU time and memory. It was found that by dividing the 

domain into more segments, both execution time and memory usage can be reduced.  

    Subsequently, a non-orthogonal LOD-FDTD (LOD-NFDTD) method is presented for 

EM scattering from 2-D structures. Formulations of scattered field and CPML ABC in 

generalised non-orthogonal curvilinear grids for 2-D LOD-NFDTD are also presented. 

The non-orthogonal grids are used to fully mesh the computational domain, which leads 

to efficient computation. Moreover, the proposed technique requires fewer arithmetic 

operations than the nonorthogonal ADI-FDTD (ADI-NFDTD) method, leading to a 

reduction of CPU time. The numerical dispersion of the proposed method as a function 

of Courant-Friedrich-Lewy (CFL) number (CFLN) is also discussed. Computational 
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results for EM scattering from 2-D conducting, dielectric, and coated cylinders are 

presented. The proposed method is unconditionally stable and the numerical results 

agree reasonably well with the results in the literature, as well as with the ADI-NFDTD 

results. Compared to ADI-NFDTD, the proposed method is characterised by a lighter 

calculation burden and higher accuracy. 

    We also propose a dispersion controlled rotationally symmetric LOD-FDTD (D-RS-

LOD-FDTD) method for analysing rotationally symmetric (RS) microwave structures 

and antennas. First, the formulation for conventional RS-LOD-FDTD with CPML ABC 

is presented. Then D-RS-LOD-FDTD algorithm with CPML is derived and utilised to 

reduce the dispersion that may result from modelling RS microwave structures. As a 

preliminary calculation, the open tip monopole (OTM) antenna has been analysed. The 

dispersion control parameters contribute to the improvement in accuracy even with a 

large time step beyond the CFL limit. Computational results for the return loss and 

specific absorption rate from OTM and expanded tip wire (ETW) antennas embedded 

inside a tissue-like phantom media are presented. The use of the dispersion control 

parameters not only reduces the resultant dispersion effectively but also enables us to 

employ a large time step for efficient computations, so that the computation time can be 

reduced to about half of that required for its explicit counterpart (RS-FDTD). 

    We also present a two sub-step CPML ABC for the conventional (C)-LOD-FDTD 

method for both orthogonal and non-orthogonal curvilinear meshes for analysing 3-D 

microwave structures. Numerical results on three dimensional (3-D) microwave 

structures using the proposed methods are also presented. A fundamental scheme based 

LOD-FDTD (F-LOD-FDTD) for both orthogonal and non-orthogonal meshes are 

proposed to minimise the resultant computational load for solving 3-D microwave 

structures, in addition to freeing the right-hand side of the resultant update equations of 

matrix operations. Numerical stability of the F-LOD-FDTD for both orthogonal and 

non-orthogonal meshes is also presented to demonstrate the unconditional stability of 

the proposed methods. Numerical results are presented to illustrate the significance of 

the proposed approaches. A comparison with the C-LOD-FDTD-CPML in terms of 

CPU time and memory requirements reveals the merits of the proposed F-LOD-FDTD 

CPML method for both orthogonal and non-orthogonal curvilinear meshes in terms of 

lighter calculation burden and higher efficiency.  
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Chapter 1 
 

Introduction 
 

 

    This thesis investigates into efficient implicit locally one dimensional finite 

difference time domain (LOD-FDTD) method using orthogonal and nonorthogonal 

meshes for solving electromagnetic (EM) problems. This chapter presents a brief 

overview of implicit FDTD techniques, and more specifically presents a review of 

implicit LOD-FDTD technique found in the literature for the solution of EM problems. 

Then, the motivation is presented following the scope of the thesis. Finally, a list of 

publications resulting from this thesis is presented. 

 

 

1.1 Background Theory 
    Computational electromagnetics (CEM) seeks to solve Maxwell’s equations in both 

time and frequency domain to obtain numerical solution of real life problems. The 

recent development of faster and more powerful computers has allowed more advanced 

time domain CEM techniques. A classification of CEM techniques is summarised in 

Fig. 1.1. However, the standard explicit FDTD [1] method has been used extensively for 

solving varieties of electromagnetic problems due to its versatility and simplicity [2]–

[5], but the explicit FDTD has some limitations.  FDTD needs intensive memory and 

CPU time requirements for solving electromagnetic wave propagation due to following 

two modelling constraints: a) the spatial increment step which must be small enough in 

comparison with the smallest wavelength (usually 10–20 steps per wavelength) in order 

to make the numerical dispersion error negligible, and b) the time step must be small 

enough so that it satisfies the Courant-Friedrich-Lewy (CFL) stability condition. 

Moreover, for solving many real world problems, it is often necessary to employ 

enhanced versions of the FDTD which also increase the computational burden. To 

circumvent or relax the above constraints, various time domain techniques have been 

developed [6]–[7]. 
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Fig. 1.1 Categories within computational electromagnetics  

 

    Mainly, to overcome the CFL stability constraint, firstly the unconditionally stable 

alternating direction implicit finite-difference time-domain (ADI-FDTD) was proposed 

[8]–[12]. More recently, other unconditionally stable implicit methods such as the Split-

Step (SS) [13]–[15], Crank Nicolson (CN) [16]–[18] and the locally one-dimensional 

(LOD) FDTD methods [19]–[22] have been proposed. 

 

1.2 An Overview of Implicit FDTD Methods  
    Methods which are unconditionally stable and have no restrictions on the time step    

are called implicit methods. An implicit method finds a solution by solving an equation 

involving both the current state of the system and the later one. But an explicit method 

computes the state of a system at a later time from the current state of the system. For 

many problems such as electrically small and high Q-structures, use of explicit method 

needs impractically small time steps Δt to keep the error in the result within a bound. To 

analyse this type of problems use of implicit method can be advantageous as it can 

achieve a given accuracy with much less computational time employing larger time 
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steps. A briefly review of the formulations of implicit FDTD methods and the 

development associated with these methods, including explicit FDTD is provided next. 

 

 

1.2.1 Explicit FDTD Method  
    The starting point for the construction of the finite difference time domain (FDTD) 

algorithm is Maxwell’s curl equations. For a source free region of space that is linear, 

isotropic and non-dispersive, the differential form of Maxwell’s equations which 

includes magnetic and electrical conductivity are given as follows 

                                                      1E H E
t


 


   


                                         (1.1a) 

                                                    1 mH E H
t


 


    


                                     (1.1b) 

where E is the electric field strength vector in volts per meter, H is the magnetic field 

strength vector in amperes per meter and  , m are electrical and magnetic 

conductivity respectively. Equation (1.1) is consisted of two vector equations, and each 

vector equation can be composed into three scalar equations for three dimensional 

spaces. Therefore, these vector curl equations (1.1) can be expanded into six coupled 

scalar equations in a Cartesian coordinate system( , , )x y z as follows:                                

                                   1 yx z
x

HE H E
t d y d z




  
     

                              (1.2a) 

                                    1y x z
y

E H H E
t d z d x




        
                              (1.2b) 

                                    1 y xz
z

H HE E
t d x d y




 
     

                              (1.2c) 

                                  1 yx z
m x

EH E H
t d z d y




  
     

                             (1.2d) 

                                 1y xz
m y

H EE H
t d x d z




       
                              (1.2e) 

                                 1 yxz
m z

EEH H
t d y d x




 
     

                             (1.2f) 
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Therefore, the compact form of the time domain Maxwell’s equations from (1.2a)-(1.2f) 

in lossy media can be written as follows 

                                             [ ] [ ] [ ]A B L
t


  


U U                                                   (1.3) 
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where [ , , , , , ]T
x y z x y zE E E H H HU . 

where E is the electric field strength vector in volts per metre, H is the magnetic field 

strength vector in amperes per metre, and  , m are electrical and magnetic 

conductivities respectively. The explicit FDTD method based on (1.3) has been widely 

used in electromagnetic modelling due to its simple updating equations and easiness for 

numerical implementation since 1966 [1]. Since then, the explicit FDTD method has 

been assessed from various aspects in the microwave community in [2]–[5], and has 

also been used for modelling objects having curved features. Holland [23] first 

introduced the non-orthogonal FDTD (NFDTD) algorithm which was later refined by 

many researchers including Lee et al. [24], Hao et al. [25], Fusco [26], Kantartzis et al. 

[27] and Armenta et al. [28]. For analysing rotationally symmetric (RS) resonant 

structures, RS-FDTD method has also been used effectively in [29]–[33]. For 

simulating problems in open region domains, the computational domain of the FDTD 

method is terminated by the absorbing boundary condition (ABC) to suppress spurious 

reflections from the grid terminations [1]. Various ABCs have been developed for the 

explicit FDTD method [34]–[40]. More recently, explicit FDTD has been applied to the 

modelling of more complex media in [41]–[45]. 

    In the explicit FDTD method, however, the spatial increment steps ( , , )x y z    must 

be small enough relative to the wavelength (usually 10–20 steps per wavelength) and 

time steps t must satisfy the CFL condition as shown in (1.4). Otherwise, the FDTD 

method becomes unstable. 
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                  (1.4) 

       Due to the CFL stability constraint (1.4), the space and time increments of the 

FDTD method must be no larger than a small fraction of the smallest wavelength and 

temporal period of interest, typically, 10 to 20 samples per cycle depending on the type 

of application. When the size of the geometrical features is much smaller than 

1/10 th or 1/ 20 th of the smallest wavelength of interest, the use of explicit FDTD 

methods requires a super-excessive computational load. To alleviate this difficulty, 

unconditionally stable implicit FDTD techniques can be applied which permit accurate 

and numerical stable operation for values of t exceeding the CFL limit. The 

unconditionally stable ADI-FDTD, SS-FDTD, CN-FDTD and LOD-FDTD are 

discussed next. 

 

 

1.2.2 ADI-FDTD Method  
    While the upper limit of the time step for the explicit FDTD method is determined by 

the CFL constraint, the application of the implicit scheme can eliminate the CFL 

conditions. By applying the Crank-Nicolson (CN) algorithm  

                           ( 1/ 2) 1/ ( ) /n n nt t     u u u ,  ( 1/2 ) 1( ) / 2n n n  u u u                     (1.5) 

to (1.3) at ( 1/ 2)t n t   , we obtain  

                                     1
[ ] [ ] [ ] [ ]

2 2 2

[ ] [ ] [ ] [ ]
2 2 2

n n

t t tI A B L

t t tI A B L



      
 

      
 

u u                                (1.6) 

 Factoring (1.6) results in  

                             1
[ ] [ ] [ ] [ ] [ ] [ ]

2 4 2 4

[ ] [ ] [ ] [ ] [ ] [ ]
2 4 2 4

n n

t t t tI B L I A L

t t t tI B L I A L



          
  

          
  

u u                 (1.7) 

The elements ofu ,  A ,  B  and  L  are the same as mentioned in Section 1.2.1. 

According to the ADI scheme [8]-[11], half time step 1/ 2n  can be introduced in 

between the adjacent time steps n and 1n , and using this fact, (1.7) can be derived as:  
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Sub-step 1: 

                   1/2[ ] [ ] [ ] [ ] [ ] [ ]
2 4 2 4

n nt t t tI A L I B L             
   

u u                        (1.8a)  

Sub-step 2: 

                   1 1/2[ ] [ ] [ ] [ ] [ ] [ ]
2 4 2 4

n nt t t tI B L I A L              
   

u u                     (1.8b) 

By substituting u ,  A  and  B  in Section 1.2.1 into (1.8a)-(1.8b), the updating 

equations of ADI-FDTD are obtained. Thus, the CFL constraint can be overcome with 

ADI-FDTD [8]-[9]. The ADI-FDTD has also been assessed from various aspects by the 

research community [46]–[49]. To reduce the numerical dispersion error, the envelope 

ADI-FDTD has been developed [50]–[51]. For the ADI-FDTD, the anisotropy of the 

numerical dispersion with respect to the wave propagation angle increases with increase 

in the time step. To compensate the anisotropy, the artificial permittivity has been 

introduced [52]–[55]. As an alternative, higher order ADI-FDTD methods have also 

been employed to reduce the numerical dispersion error [56]–[62]. To reduce additional 

splitting error, an iteration procedure including perfectly matched layer (PML) ABC 

[66]–[68] have been developed for the ADI-FDTD. For modelling objects having 

curved features, the unconditionally stable alternating direction implicit (ADI) 

technique was introduced for nonorthogonal grids called ADI-NFDTD method [69]–

[72]. Kantartzis et al. [69] implemented the dispersionless ADI-NFDTD algorithm that 

optimizes the dispersion. However, their approach needs calculation of the higher order 

terms twice for each time step and, thus leading to additional computational burden.  

Zheng et al [70]–[71] proposed 2-D and 3-D ADI-NFDTD method where they 

employed non-orthogonal grids locally only to model the curved/complex regions of the 

scatterer but used conventional orthogonal grids for the other regions of the scatterers. 

Further, their use of conventional PML boundary condition to truncate the 

computational domain would not lead to improved accuracies. In addition, their method 

[70]–[71] requires calculation of  Jacobian coordinate transformation to convert the 

curvilinear coordinates into conventional FDTD lattice where CFL constraint must be 

satisfied, and as a result increases computational burden. For analysing the rotationally 

symmetric resonant structures, unconditionally stable ADI-FDTD method has also been 

developed in the cylindrical coordinate system [73]. But the cylindrical ADI-FDTD 
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presented in [73] requires a much larger memory because it solves the problems in a 

three dimensional domain. To overcome this difficulty, ADI-BOR-FDTD method was 

developed in [74]. To compute the radiation or scattering from the complex bodies of 

revolution, PML was presented for the ADI-BOR-FDTD [75]. The ADI-BOR-FDTD 

method has also been extended to model dispersive media [76]. However, the ADI-

BOR-FDTD formulation is only second order accurate in time. In addition, it requires 

more arithmetic operations and gives large dispersion error at larger time steps. More 

recently, ADI-FDTD has been extended by many authors [77]–[83] to fine-tune its 

performance. Due to the enormity of the available literature on the ADI-FDTD method, 

only selective papers have been reviewed here.  

     

 

1.2.3 SS-FDTD Method  
    A comparison between (1.6) and (1.8) reveals the addition of the splitting error term 

in (1.8), i.e. 2[ ][ ] / 4t A B which leads to second order accuracy in time. Although the 

time step size in the ADI-FDTD simulation is no longer bounded by the CFL criterion, 

the method exhibits a splitting error associated with the square of the time step size, 

which limits the accuracy of the ADI-FDTD method.  The ADI-FDTD method is 

computationally more expensive than the conventional FDTD method. The 

unconditionally-stable FDTD method based on the split-step scheme was consequently 

developed [13]–[15], which may consume less CPU time than the ADI-FDTD method. 

The split-step approach is based on the Strang splitting formulae [13]–[14] and involves 

three updating procedures. For this, (1.7) can be rewritten in three sub-steps as follows: 

Sub-step 1: 

               1/4[ ] [ ] [ ] [ ] [ ] [ ]
4 6 4 6

n nt t t tI A L I A L             
   

u u                              (1.9a) 

Sub-step 2: 

            3/4 1/4[ ] [ ] [ ] [ ] [ ] [ ]
2 4 2 4

n nt t t tI B L I B L              
   

u u                           (1.9b) 

Sub-step 3: 

               1 3/4[ ] [ ] [ ] [ ] [ ] [ ]
4 6 4 6

n nt t t tI A L I A L              
   

u u                          (1.9c) 
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By substituting u ,  A  and  B in (1.9a)-(1.9c), the updating equations for the split-step 

FDTD method can be obtained. The SS-FDTD in [13] consumes lesser CPU time 

compared to ADI-FDTD but its temporal accuracy is only first order. To improve the 

temporal accuracy, a modified SS-FDTD was introduced in [14]–[15]. Subsequently, 

other SS-FDTD methods were proposed in [84]–[86]. To reduce the dispersion error, an 

efficient six-stage split-step unconditionally-stable FDTD method was proposed in [87]. 

Furthermore, to improve the accuracy, unconditionally-stable FDTD methods with 

high-order accuracy and low dispersion error in 2-D domains were proposed in [88]–

[90]. Then the method in [88] was extended to 3-D domains, and high-order split-step 

unconditionally-stable FDTD known as SS4-FDTD was proposed in [91]. The stability 

and numerical error of the extended SS4-FDTD method including lumped inductors 

were systematically investigated in [92]. However, SS-FDTD method presents large 

numerical dispersion error when the time step is large and large number of arithmetic 

operations are involved which reduces the computational efficiency [90]–[92].  

 

 

1.2.4 CN-FDTD Method  
    The CN scheme applied to the 2-D FDTD technique was first introduced in [16]–

[17]. The CN scheme solves the discretised Maxwell’s equations by a full time-step size 

with one marching procedure and averages the right hand sides of the discretised 

Maxwell’s equations at n+1 and n time steps. So, the CN-FDTD scheme from (1.6) can 

be written as follows: 

                1[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
2 2 2 2 2 2

n nt t t t t tI A B L I A B L                 
   

u u   (1.10)                    

The CN scheme is a well-known implicit algorithm for solving partial differential 

equations with second-order accuracy in both time and space [93]–[94]. An 

unconditionally stable CN-FDTD method in 2-D and 3-D cases has been developed in 

[16]–[18], [95]–[96]. The Crank–Nicolson–Douglas–Gunn (CNDG) method as 2-D 

[16]–[17], and as 3-D [95]–[96] as well as the Crank–Nicolson approximate-

factorization-splitting (CNAFS) method in 3-D [97]–[98] have all got small anisotropy, 

but anisotropy can be zero for some combinations of the mesh density and time-step 
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size. The 3-D CN-FDTD method for frequency-dependent media (FD-CN-FDTD) has 

been presented by Rouf et al. in [99]. Recently, implicit isotropic dispersion finite 

difference time domain (ID-FDTD) algorithm has been proposed in [100], but the 

scheme is applicable only for the orthogonal rectangular grid. The CN-FDTD scheme is 

believed to have higher numerical accuracy than the ADI-FDTD method [17]–[18], but 

it also has a huge sparse irreducible matrix. Directly solving this matrix by Gaussian 

elimination or an iterative method is so CPU intensive that the CN scheme is hardly 

useful for practical problems. Since our main interest for the thesis is LOD-FDTD 

method, so the details on the development of LOD-FDTD methods will be reviewed 

next. 

 

 

1.2.5 LOD-FDTD Method  
    Similar to ADI-FDTD method, equation (1.7) can be solved in two sub-steps for 

LOD-FDTD method. But unlike the ADI-FDTD, in each half step of the LOD-FDTD, 

we move forward only in individual X, Y, or Z directions.  So, according to the LOD 

principle, equation (1.7) can be written as follows: 

Sub-step 1: 

                1/2[ ] [ ] [ ] [ ] [ ] [ ]
2 4 2 4

n nt t t tI A L I A L             
   

u u                           (1.11a)  

Sub-step 2: 

               1 1/2[ ] [ ] [ ] [ ] [ ] [ ]
2 4 2 4

n nt t t tI B L I B L              
   

u u                         (1.11b) 

By substituting u ,  A  and  B in the equations (1.11a)-(1.11b), the updating equations 

for the LOD-FDTD method can be obtained. It has been proved that LOD-FDTD 

reduces the number of arithmetic operations compared to ADI-FDTD [20]–[22]. From 

the equation (1.11), it can also be seen that LOD formulation yields an additional error 

term whose coefficient is 2 ([ ][ ] [ ][ ]) / 4t A B B A  . If [A] and [B] commute, the error 

term can be eliminated, leading to the second order accuracy in time for the LOD 

formulations, as in the case of its ADI counterparts. Strictly speaking, the present LOD 

formulations are first order accurate in time, due to the absence of commutivity of [A] 

and [B]. It was also justify that the numerical results obtained from LOD-FDTD are in 
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good agreement with those from ADI-FDTD. This is probably true because the value of 

([ ][ ] [ ][ ])A B B A is negligible small, and the subsequent additional error hardly affects 

the numerical results. However, the LOD-FDTD method applied local splitting of the 

operators and is claimed to be more efficient compared to ADI-FDTD and SS-FDTD 

methods. The LOD-FDTD requires lesser number of arithmetic operations and lower 

execution time than the ADI-FDTD and SS-FDTD methods [20]–[22]. Moreover, in 

each half step of the LOD-FDTD, it is necessary to deal with 1-D which also simplifies 

implementation and eases the computationally burden. Before providing the outline of 

this thesis, a brief selective literature review is presented below, showing developments 

associated with the LOD-FDTD method which is relevant to this thesis over the years.  

 

 

1.3 Literature Review of the LOD-FDTD Method 
    The locally one dimensional (LOD) scheme for the FDTD method was first proposed 

in [19], which is free from CFL constraints. It was shown in [19] that LOD-FDTD 

provides simple implementation of the algorithm and reduced execution time compared 

to ADI-FDTD method. The method was then extended to two dimensions by many 

authors [101]–[107]. Various ABCs for the 2-D LOD-FDTD to terminate the 

computational domain were proposed in [108]–[111].  Nasimento et al. [108] developed 

two split-field perfectly matched layer (PML) implementation for 2-D LOD-FDTD and 

proved that split field PML implementation in LOD-FDTD yields superior results 

compared to traditional split PML applied to ADI-FDTD for similar set of parameters. 

But Ahmed et al. [110] developed the convolutional perfectly matched layer (CPML) 

for the 2-D LOD-FDTD and showed that it provides less reflection error compared to 

other PML implementation [108]–[109].  The numerical dispersion error of the 2-D 

LOD-FDTD was investigated in [112]–[114]. The effects of spatial and temporal steps 

on the numerical dispersion were studied and it was found that larger time step results in 

higher numerical dispersion. To reduce the dispersion error of the 2-D LOD-FDTD 

method, higher order scheme was proposed [114].  

    Most of the above mentioned studies employed LOD-FDTD with 2-D formulation. 

The natural extension, therefore, was to use 2-D approximation to analyse RS 3-D 

structures using LOD-FDTD method. Thus a body of revolution (BOR) locally one 
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dimensional FDTD (LOD-BOR-FDTD) was proposed in [115]. The usefulness of the 

LOD-BOR-FDTD method was investigated through the analysis of circular cavity 

resonators with and without a dielectric disc, and compared them with the explicit 

BOR-FDTD and ADI-BOR-FDTD. However, no formulation of PML for the LOD-

BOR-FDTD was available. For the analysis of RS structures, it was shown that the 

LOD-BOR-FDTD efficiently provides numerical results comparable to its ADI 

counterpart [115]. The LOD-BOR-FDTD algorithm was also extended for analysing 

Debye dispersive media using bilinear Z transform [116]. Also, to reduce the number of 

matrix-operators and thus reducing the computational load, LOD-BOR-FDTD was 

formulated using the fundamental scheme [117]. However, the CPML was not available 

for the LOD-BOR-FDTD with or without fundamental scheme [115]–[117]. 

    For analysing three-dimensional structures using LOD-FDTD, a two sub-step [21], 

[118]–[120] and three sub-step procedures [22] were proposed. Both the two-step 

method and the three step method were extended analysing various microwave 

structures [118]–[123], [126].  The 3-D LOD-FDTD method was also used for the 

analysis of the semiconductor devices in [124]–[125]. To investigate the dispersion 

error of the 3-D LOD-FDTD method, an arbitrary order locally one dimensional 3-D 

LOD-FDTD method was proposed in [118]. The investigation suggested that the 

dispersion errors could be reduced using either higher order or employing a denser grid. 

To further reduce the dispersion error, various techniques of dispersion control for 

LOD-FDTD were proposed [127]–[129]. A parameter optimisation approach was also 

developed [128] to improve the numerical dispersion performance of the three sub-step 

3-D LOD-FDTD method. The two sub-step 3-D LOD-FDTD method presented in [21] 

requires special input and output processing procedures for computing the field 

components of interest which might decrease the computational efficiency of the 

method. Later two sub-step LOD-FDTD method was extended considering lossless and 

frequency dependent media [118]–[126]. The three sub-steps 3-D LOD-FDTD of [22] 

was also applied for the analysis of 3-D structures in [123]. Various ABCs viz. Mur’s, 

PML and CPML for use with LOD-FDTD to truncate the computational domain were 

also derived [130]–[133]. Among them the Mur’s and PML approaches [130]–[133] 

show absorption errors at low frequencies and for evanescent waves. On the other hand, 

the CPML can be completely independent of the host medium without requiring any 
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modifications in formulation when applied for analysing lossy, dispersive, anisotropic, 

nonlinear, and inhomogeneous media. The use of CPML can also provide significant 

saving in memory [2]. In addition, the CPML permits an easy implementation of the 

complex frequency shifted (CFS) stretching factor that allows the reflection of the low 

frequency evanescent waves to be significantly reduced [2]. Ahmed et al. extended 

CPML for the 3-D LOD-FDTD with three sub-step [131]. It is clear that the two sub-

steps LOD-FDTD can reduce the number of required arithmetic operations as compared 

to the three sub-step LOD-FDTD. However, no CPML is so far available for the two 

sub-step LOD-FDTD method [22], [118]–[122].   

    Use of conventional LOD-FDTD with existing ABCs [130]–[133] for modelling 

realistic 3-D microwave structures require solution of large numbers of matrix 

operations since the right hand sides of resultant update equations contain many field 

variables and matrix operators. To lessen some of the computational burden, Tan [134] 

proposed a novel scheme known as fundamental scheme suitable for all implicit FDTD 

methods to improve the computational efficiency. Later, the fundamental scheme was 

extended to LOD-FDTD [136], [139]–[140]. However, for 3-D fundamental scheme 

based LOD-FDTD, so far in the literature, only Mur’s [137], PML [126] and PEC and 

PMC boundary condition [138] have been reported. Also for analysing three-

dimensional curved geometries, non-orthogonal curvilinear mesh LOD-FDTD based on 

fundamental scheme is not available in the literature so far.  

 

1.4 Motivations 
    So far in the literature LOD-FDTD method has been developed in 2-D, body of 

revolution (BOR) and 3-D for analysing various microwave structures. But, 2-D and 3-

D LOD-FDTD method based on curvilinear coordinates, CPML for two sub-step 3-D 

LOD-FDTD, CPML for F-LOD-FDTD or LOD-FDTD using orthogonal and 

nonorthogonal meshes are not available in the literature. For solving many real world 

problems related to electrically large structures, 2-D, resonant (body of revolution) and 

3-D structures using orthogonal and nonorthogonal meshes, it is often necessary to 

employ enhanced versions of the LOD-FDTD in order to render the problem 

manageable and treatable with the available resource within a reasonable time frame. 

So, in this thesis, efficient enhanced versions of LOD-FDTD using orthogonal and non-
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orthogonal curvilinear meshes have been proposed and investigated for solving EM 

problems. A brief outline of this thesis is given below. 

 

1.5 Thesis Outline 
    This thesis structurally consists of five parts: 

 Development and implementation of  segmented LOD-FDTD (S-LOD-FDTD) 

technique (Chapter 2) 

 Development and implementation of nonorthogonal LOD-FDTD (LOD-

NFDTD) method with CPML ABC for predicting EM scattering from 2-D 

conducting, dielectric and mixed structures (Chapter 3) 

 Development and implementation of dispersion controlled rotationally 

symmetric LOD-FDTD (D-RS-LOD-FDTD) CPML for analysing resonant 

structures and antennas that have RS geometries (Chapter 4) 

  Development and implementation of C-LOD-FDTD CPML and F-LOD-FDTD 

CPML for analysing 3-D structures using orthogonal meshes (Chapter 5) 

 Development of 3-D C-LOD-NFDTD CPML as well as F-LOD-NFDTD CPML 

approaches for analysing 3-D curved structures using nonorthogonal curvilinear 

meshes (Chapter 6) 

 

1.5.1 Summary of Chapters 
    In some detail, we now outline the relevant material in each chapter. 

 

Chapter 1 

In this chapter, we present a review of the implicit FDTD methods and also a review of 

literature on the LOD-FDTD methods. The scope of the thesis is outlined and a list of 

publications arising from this research is provided. 

Chapter 2 

The second chapter is devoted to the theoretical investigation of the locally one 

dimensional FDTD (LOD-FDTD) method. Derivation of 2-D LOD-FDTD and the 

CPML ABC of the 2-D LOD-FDTD method are presented. A novel segmented LOD-
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FDTD approach is proposed. The results of S-LOD-FDTD technique being employed to 

model wave propagation in electrically large symmetric tunnels are presented. 

 

Chapter 3 

This chapter describes the mathematical formulation of the proposed 2-D LOD-NFDTD 

method for both TE and TM cases. A non-orthogonal curvilinear mesh generation 

technique is discussed. The CPML ABC formulation for LOD-NFDTD for both TE and 

TM cases to terminate the computational domain is described. The near-field to far-field 

transformation and scattered field formulation for the LOD-NFDTD method is 

discussed. Numerical stability and dispersion analysis of the proposed method are also 

presented. Numerical results for many 2-D cylindrical structures that include 

conducting, dielectric and coated conducting and mixed structures (overfilled dielectric 

cavity and bent perfect electric conducting (PEC) cavity) obtained using the proposed 

LOD-NFDTD method are provided and compared with the results obtained from other 

exact and numerical methods to validate our LOD-NFDTD method in 2-D.  

 

Chapter 4 

In this chapter, a conventional RS-LOD-FDTD along with CPML ABC is presented for 

both TE0n and TM0n cases. A dispersion control (D)-RS-LOD-FDTD technique for TE0n 

and TM0n cases is proposed. The results on numerical reflection are also presented for 

the D-RS-LOD-FDTD for TE0n and TM0n cases. Also the methods to calculate S-

parameters, specific absorption rate (SAR) using both RS-LOD-FDTD and D-RS-LOD-

FDTD are provided. Numerical analysis of various RS structures is demonstrated and 

compared with other methods.  

 

Chapter 5 

This chapter proposes a two sub-step conventional (C)-LOD-FDTD method along with 

an efficient two sub-step CPML ABC. The stability analysis of the C-LOD-FDTD is 

presented. Then a F-LOD-FDTD is described. The chapter also proposes CPML ABC 

of F-LOD-FDTD. Numerical stability analysis of the F-LOD-FDTD method has also 

been presented. Pure scattered field and near-field to far field formulation for both C-
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LOD-FDTD and F-LOD-FDTD are presented. Computational results on various 3-D 

microwave devices are provided along with detailed comparisons.   

 

Chapter 6 

To improve the computational efficiency of the LOD-FDTD method for analysing 

curved 3-D structures, this chapter presents both 3-D C-LOD-NFDTD and F-LOD-

NFDTD based on curvilinear meshes. The CPML ABC for both the proposed methods 

is also derived. Theoretical stability analysis of the C-LOD-NFDTD and F-LOD-

NFDTD has also been derived to prove the unconditional stability of both methods. 

Pure scattered field and near-field to far field formulation for both C-LOD-NFDTD and 

F-LOD-NFDTD are presented. Computational performance for both methods has also 

been discussed.  

 

Chapter 7 

This chapter highlights the major contributions that have arisen from Chapter 2 to 

Chapter 6. A brief scope for future work is also indicated. 

 

Appendix A 

In the appendix, we present derivation of ADI-FDTD and ADI-NFDTD along with 

CPML ABC. 
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Chapter 2 
 

 

2-D LOD-FDTD for EM Propagation Modelling in 

Electrically Large Symmetric Structures 
 

 

2.1 Introduction 
    The standard explicit finite difference time domain (FDTD) method has been used 

extensively for modelling radio wave propagation in indoor environments [141], [143]. 

When the standard explicit FDTD method is applied to model EM propagation in 

electrically large problems at microwave frequencies, its computational load in terms of 

memory and CPU execution time can become excessive. To ease the computational 

burden for solving large scale problems using FDTD, many techniques have been 

proposed [143]–[145]. Chevalier and Inan [144] proposed the segmented long path 

propagation (SLP) technique to reduce the computational load for long ionospheric 

propagation using FDTD and FDFD. Most recently, the segmented finite difference 

time domain (S-FDTD) method was introduced to reduce computational requirements 

and enhance the feasibility of solving electrically large problems on a standard personal 

computer [145]. However, the S-FDTD method, which is based on the explicit FDTD 

method inherits the limitations of the FDTD method because it needs to satisfy the CFL 

stability constraint; hence it would still require a large number of segments which might 

increase the computational burden when solving electrically large scale propagation 

problems. To overcome some of these limitations, the alternating direction implicit 

FDTD (ADI-FDTD) method was proposed [146]–[148]. It has also been found that the 

ADI-FDTD technique requires more execution time for higher CFLN [10]–[11], [148]. 

To overcome some of the limitations of ADI-FDTD, LOD-FDTD was proposed [19]–

[22] which requires lesser number of arithmetic operations and lower execution time 

[20]. Nevertheless, the direct application of the LOD-FDTD method for solving 

electrically large scale problems would still require increased computational resources 
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due to the solution of sets of simultaneous equations that may become too large to 

efficiently compute for problems with dense mesh. Therefore, methods to overcome the 

limitations of the LOD-FDTD method to solve for EM propagation in electrically large 

structures are required. 

    In this chapter, we first introduce the theory of conventional LOD-FDTD and then 

provide the derivations of the 2-D LOD-FDTD method. The CPML ABC for 2-D LOD-

FDTD is also discussed. We develop the segmented-LOD-FDTD (S-LOD-FDTD) 

method for solving the EM wave propagation inside electrically large symmetric tunnel 

environments. To make a comparison with the S-LOD-FDTD method, the S-ADI-

FDTD method is next discussed briefly. For performance validation of the proposed 

method, EM propagation inside various large symmetric tunnels is analyzed followed 

by a discussion of error analysis. Finally, a brief summary of this chapter is provided. 

 

 

 

2.2 Introduction to Locally One Dimensional Finite 

Difference Time Domain (LOD-FDTD) Method  
    To remove the CFL constraint, a novel unconditionally stable alternating direction 

implicit finite difference time domain (ADI-FDTD) method was developed [8]–[12]. 

The ADI-FDTD method is a popular implicit FDTD method that is second order 

accurate in both space and time. However, ADI-FDTD exhibits a splitting error [13– 

[14] that depends not only on the time step size but also on the magnitude of the spatial 

derivatives. Many alternative implicit FDTD techniques have since been reported in the 

literature [13]–[22]. Among them, LOD-FDTD is claimed to be more efficient because 

it requires fewer arithmetic operations [19]–[22].  Moreover, the LOD-FDTD 

formulation is a simple type of split-step approach and is first order accurate in time 

[19]. The LOD technique involves the solution of each partial differential equation 

using a two sub-step scheme in time [19].  For each half step of the LOD method, it is 

needed to move forward only in the X, Y, or Z direction.  
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This makes the scheme attractive computationally. Applying the LOD principle to the 

Maxwell equations (1.1) of Chapter 1, two sub-step LOD-FDTD equations can be 

written as follows: 

Sub-step 1: 

                1/2[ ] [ ] [ ] [ ] [ ] [ ]
2 4 2 4

n nt t t tI A L I A L             
   

u u                           (2.1a)  

Sub-step 2: 

               1 1/2[ ] [ ] [ ] [ ] [ ] [ ]
2 4 2 4

n nt t t tI B L I B L              
   

u u                         (2.1b) 

 

where u ,  A ,  B , and  L are the same as previously mentioned in Chapter 1. By 

substituting u , A ,  B  and [L] in (2.1a)-(2.1b),  and moving forward for each half 

time step separately in the X , Y  or Z  direction, we obtain the LOD-FDTD equations. 

The field component in 3-D computational space is summarised in Fig. 2.1. The LOD-

FDTD cyclic permutations form a complete time-step iteration which is shown in the 

Fig. 2.2. The derivations of the updating equations for LOD-FDTD are described in the 

next section. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.1 Space lattice for LOD-FDTD 
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Fig. 2.2 FDTD is a leapfrog scheme using explicit updates; whereas LOD-FDTD uses sequential implicit 

and explicit updates for E and H fields, respectively, each half time step  

 

 

2.2.1 Derivation of  LOD-FDTD Method 

    By substituting u ,  A  and  B  in (2.1a) and (2.1b), the updating equations for the 

LOD-FDTD method in two sub-steps can be derived as follows.  

Sub-step 1:  
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Sub-step 2:  
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            (2.3f)                    

where E , H  are  electric and magnetic field intensities and e , m are electric 

conductivity and equivalent magnetic loss, respectively. It can be observed from (2.2)-

(2.3) that the LOD-FDTD method involves the solution of each partial differential 

equation using a two sub-step scheme in time.  

Several things can be noted here for the LOD-FDTD method: 

 Two terms in the right-hand side of sub-step 1 are discretised on the new ‘ 1/ 2n ’ 

and ‘ n ’ old time steps and the two terms of the right-hand side of sub-step 2 are 

discretised on the new ‘ 1n ’ and ‘ 1/ 2n ’ old time steps. 

 On the time step ‘ 1/ 2n ’ of sub-step 1 and time step ‘ 1n ’ of sub-step 2, tri-

diagonal linear system can be obtained for xE , yE and zE field components. In sub-

step 1, by substituting (2.2f) into (2.2a), (2.2e) into (2.2c) and (2.2d) into (2.2b), 

simultaneous linear system can be written for xE , yE and zE  in tri-diagonal matrix 

form which is solved implicitly using the Thomas algorithm [149]. Using these 

electric field component values with (2.2d) to (2.2f), explicit magnetic field 

components xH , yH and zH are then obtained. Similarly, in the sub-step 2 on time 

step ‘ 1n ’, by placing (2.3e) into (2.3a), (2.3f) into (2.3b) and (2.3d) into (2.3c), 
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simultaneous linear equations are obtained for xE , yE and zE  in tri-diagonal matrix 

form which are solved implicitly using the Thomas algorithm [149]. Using these 

electric field xE , yE and zE component values with (2.3d) to (2.3f), explicit 

magnetic field components xH , yH and zH are then obtained.  

 

The flowchart of the LOD-FDTD method is shown in Fig. 2.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.3 Flowchart of the LOD-FDTD method 

* Update Ex Implicitly along y- direction for z 
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The updating equations for the LOD-FDTD in 3-D and 2-D can be derived using (2.2) 

and (2.3) which are used throughout the thesis. The updating equations for LOD-FDTD 

in 2-D are provided below. 

 

 

2.3 Derivation of 2-D LOD-FDTD Method  
2.3.1 TEz Case 
    Equations (2.2) to (2.3) can be further simplified for analysing 2-D EM problem 

using LOD-FDTD method. The updating equations for the 2-D LOD-FDTD method for 

the TEz case are formulated into two sub-steps which are shown below. 

Sub-step 1: 
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            (2.5b)                    

where  (4 ) / (4 )exe eye e eC C t t         , 2 / (4 )exhz eC t y t       

2 / (4 )eyhz eC t x t      (4 ) / (4 )hzh m mC t t         

2 / ( 4 )h zex mC t y t      , 2 / (4 )hzey mC t x t      ,  

In (2.4a) and (2.4b) of sub-step 1, xE and zH field components can be defined as 

synchronous variables. Equation (2.4a) cannot be directly solved. Placing (2.4b) into 

(2.4a) results in a tri-diagonal matrix equation (2.6) which can be solved efficiently.  
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       (2.6) 

where 1 exhz ehexC C   . Similarly, from sub-step 2, by placing (2.5b) into (2.5a), we 

obtain a simultaneous linear equation in tri-diagonal matrix form, as shown in (2.7).  

    
 

1 1 1
1 1, 1/ 2 1 , 1/ 2 1 1, 1/ 2

1/ 2 1/ 2 1/ 2
, 1/ 2 1/ 2 , 1/ 2 1/ 2 , 1/ 2

1/ 2 1/ 2
1 1, 1/ 2 , 1/ 2

| (1 2 ) | |

              | | |

                  | | |

n n n
y i j y i j y i j

n n n
eye y i j hzh eyhz z i j z i j

n n
y i j y i j y i

E E E

C E C C H H

E E E

  



  
    

  
    

 
  

   

   

   
 

1/ 2 1/ 2
, 1/ 2 1, 1/ 2

1/ 2 1/ 2
1/ 2 , 1/ 2 1/ 2 , 1/ 2

|

                    | |

n n
j y i j

n n
eyhz z i j z i j

E

C H H

 
  

 
   



 

            (2.7) 

where 1 eyhz hzeyC C   . The resultant equations (2.6) and (2.7) can be solved using 

numerical techniques and packages that are readily available (such as the Thomas 

algorithm [149]). In the following sub-section, we will describe the approaches used to 

solve the equations involving tri-diagonal matrix. 

 

 

 

2.3.2 Approach for Solving Equation Involving Tri-diagonal Matrix  
    The developed efficient approach can be applied for the solution of the simultaneous 

linear equation involving tri-diagonal matrix obtained for 2-D and 3-D cases throughout 

the thesis. We start with (2.2) and (2.3) which can be written in a simple matrix form as 

                         1/2
1 1

n n M X P X      For the first half time step                                (2. 8a) 

                         1 1/2
2 2

n n M X P X  For the second half time step                           (2. 8b) 

where 1M , 1P , 2M and 2P are the matrix coefficients of the update equations (2.2) and 

(2.3), and X is a vector composed of the field components at each spatial location in the 

grid, hence, quite a long vector. The coefficient matrices are both sparse, so (2.8a) and 

(2.8b) can be combined into a single time step equation as follows: 

                      
1/ 2 1

1 1 1 1 1
2 2 1 11 1 1/2

2 2

  
n n

n n n
n n

 
  

  

     
 

X M P X
X M P M P X X

X M P X
                   (2.9) 
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Where 1 1
2 2 1 1
   M P M P . Although the above approach is simple and easy to 

implement, its solution requires large computational resources. By using the above 

approach, equations (2.6) and (2.7) can be solved. By analysing the first sub-step in 

equation (2.4), it is found that after the electric field components are obtained from 

(2.6), magnetic field component can be updated using (2.4b). Thus the magnetic field 

component can be solved in a simple way without matrix multiplications or inversion. 

In a practical simulation, however, a more efficient approach is applied to solve the 

equation involving tri-diagonal matrix. To compute xE  from (2.6), a more efficient 

procedure can be used that can also be applied for the solution of the equation involving 

tri-diagonal matrix obtained for 3-D LOD-FDTD. This procedure is described below. 

Consider (2.6) which can be written in simplified form as 

                                                      1 1j j j j j j ja u b u c u d                                       (2.10) 

where ju  represents 1/2
1/2,|nx i jE 
  and ja , jb , jc , and jd  represents the corresponding 

known coefficient values in (2.6). Assume that j sweeps from 0 to N+1, and 0 0u  , 

and 1 0Nu    on the boundary. The application of (2.10) in the order of ascending 

j leads to a set of N simultaneous equations 

                                    

1 1 1 2 1

2 1 2 2 2 3 2

1 1

2 1 1 1 1

1

        ........
                

      ..........

                   

r r r r r r r

N N N N N N N

N N N N N

b u c u d
a u b u c u d

a u b u c u d

a u b u c u d
a u b u d

 

    



 
   



  



  
  

                       (2.11) 

The matrix expression (2.11) can be written as 

                                                Au = d                                                                        (2.12) 

where 
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1 1
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N

 
0                       0         a        b    N

 
 
 
 
 
 
 
 
 
 
 

 

1 2 N[     u             u ]  Tuu  

1 2 N[     d             d ]Tdd  

Two different approaches can be used to solve (2.12). 

A) Inverse matrix 

It can be observed that the size of A  is smaller than that of 1M , 2M  since it is in one 

dimension (i.e. j in this case). For a 100x100x 100 problem, the size of A  is 100x100 

which is 810/1 of the size of 1M or 2M . Therefore, less memory is required for the 

computation of the inverse of the matrix. Furthermore, -1A  may be used once only to 

calculate the field values at the left-most grid point 1u . Once 1u  is obtained, forward 

substitution can be applied in (2.10) to find the other components; more specifically, the 

second leftmost value at 1j  , at the ( 1/ 2)n  -th time step can be obtained directly 

from 

                                                    )(1
111

1
2 ubd

c
u                                                   (2.13) 

The remaining u can be computed by applying (2.10) 

                                         )(1
11   jjjjj

j
j uaubd

c
u                                            (2.14) 

with a sequence of ascending j that permits one to find 1ju  from ju  and 1ju  . In this 

way, we avoid the application of -1A  which is not necessarily very sparse for most of the 

computations. Thus, the computation efficiency is improved. 

B) Inverse matrix 

Alternatively, by using the Gaussian elimination method, ‘u ’ can be obtained without 

the involvement of -1A . Hence, the time-consuming calculation of -1A  can be totally 

avoided. 
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Our experiences show that, for a linear, lossless and isotropic medium, approach A) is 

more efficient because it is only calculated once, can be used in each time step advance 

and only the first row of -1A  is needed. Wherever, simultaneous linear systems with tri-

diagonal matrix are obtained in this thesis, approach A) has been used to solve the 

equation. The updating equations of 2-D LOD-FDTD for the TMz case are discussed 

below. 

 

 

2.3.3 TMz Case 
    The formulations of LOD-FDTD for the 2-D TMz wave are derived in the same way 

as in the case of the TEz wave. The updating equations for both sub-steps 1 and 2 are 

given next. 

Sub-step 1: 
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Sub-step 2: 
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where  (4 ) / (4 )eze e eC t t        , 2 / (4 )hyez mC t x t       

2 / (4 )ezhy eC t x t      (4 ) / (4 )hxh hyh m mC C t t          

2 / (4 )hyez mC t y t      , 2 / (4 )ezh xC t y t      ,  

Unlike (2.4a) and (2.42b), the equations of sub-step 1 and 2 of the TMz case cannot be 

used for direct numerical calculation. Placing (2.15a) in (2.15b) of sub-step 1 and 

(2.16a) into (2.16b) of sub-step 2 yields the simultaneous linear equations for 
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1/2
1/2, 1/2|nz i jE 
   and 1

1/2, 1/2|nz i jE 
   that result in the tri-diagonal matrix form which can be 

solved by using approach A) that has been described in Section 2.3.2.  

 

2.4 Absorbing Boundary Conditions  
    In numerical modelling, it is often necessary to simulate objects located within an 

open region which is assumed to extend to infinity, meanwhile, it is almost impossible 

to handle an open region problem directly due to the limitations of computer resources 

(i.e. the data storage capability of a computer is limited by the amount of memory). To 

alleviate this difficulty, an ABC is utilised to truncate the computational domains which 

suppresses the spurious reflections of the outgoing waves to an acceptable level. 

Numerous absorbing boundary conditions (ABCs) have been developed to truncate 

open structures for analysis with FDTD and ADI-FDTD methods [34]–[40], [66]–[67]. 

Among them, the CPML ABC is very popular because it is completely independent of 

the host medium and there is no need for modifications in formulation, when it is 

applied to lossy, dispersive, nonlinear, inhomogeneous and anisotropic media. The use 

of CPML provides a significant saving in memory [39]. In addition, the CPML permits 

the easy implementation of the complex frequency shifted (CFS) stretching factor that 

allows the reflection of low frequency evanescent waves to be significantly reduced 

[39].     

    Similar to ADI-FDTD, various ABCs such as Mur’s ABC [130], [132], [138] split 

field and unsplit PML [108]–[110] have been developed for the LOD-FDTD method. 

Although these ABC draw much attention, due to their superior effectiveness and 

robustness, they are not highly effective at absorbing evanescent waves and signals with 

long time signature etc. For 2-D and 3-D LOD-FDTD methods, CPML is developed in 

[110], [131]. Ahmed et al. [131] developed CPML for the 3-D LOD-FDTD using three 

sub-steps, but the updating equation using three sub-steps increases the arithmetic 

operations and takes more computational time. To improve the computational time for 

the 2-D and 3-D LOD-FDTD method, two-step procedure for the LOD-FDTD CPML 

using orthogonal and nonorthogonal meshes has been developed in this thesis. The 

formulations of CPML, which are discussed in generalised form, can be used for 2-D 

and 3-D LOD-FDTD method. 
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2.4.1 Formulation of CPML ABC for LOD-FDTD  
   The starting point of the CPML formulation for the LOD-FDTD is a PML medium 

assumed to terminate a finite space occupied by a host medium, as shown in Fig. 2.4 (2-

D case).    

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.4 Structure of a two dimensional TEz LOD-FDTD employing the CPML ABC 

 

Within this region, Maxwell’s equations can be expressed in the stretch coordinate 

space [39]-[40]. Without loss of generality, the PML equations for lossy medium are 

posed in the stretch coordinate space [39]-[40] as 
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                                      (2.17c) 

where exs , eys , and ezs are the stretched coordinates metrics, and the stretched coordinate 

metric is chosen to be  

                                                       
0

ei ei
ei

s
j


 

 


                                           (2.18) 

where ,  or i x y z . Similarly the magnetic field equation can be written as follows: 

Wave 
Source

Perfect Electric
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where mis are the stretched coordinate matrices. For the sake of generality, the stretched 

coordinate metric is chosen to be  

                                                  
0

mi
mi i

i

s
j




 
 


                                                (2.20) 

where i , i and i are positive real. The choice of the metric is referred to here as the 

complex frequency shifted (CFS) PML stretched coordinate metric [39]. For 0i  , this 

choice has the distinct advantage that it allows the PML to be highly absorptive of 

evanescent and low frequency waves [39]–[40]. Next (2.17) and (2.19) are transformed 

into the time domain. To this end, the terms on the right-hand side become 

convolutions. Next, following the LOD principle outlined in Section 2.2, (2.17) and 

(2.19) are mapped into the discrete space. To this end, (2.17a) is expressed as                              
1/ 2

1/ 2 1/ 2(4 ) 2 | |
(4 ) (4 )

n n
n n n ne z z
x x exy exy

e e yi

t H HtE E
t t dy dy

   
    


     

            
(2.21) 

where the auxiliary variables |nexy and 1/2|nexy  satisfy the recursive relations [2] 
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                                             (2.22e) 

Similarly, from (2.19a) the magnetic field component in the CPML region can be 

written as follows 
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(2.23)  

where the auxiliary variables |nhzy and 1/2|nhzy  satisfy the recursive relations similar 

to (2.22).  From (2.21) and (2.23), it can be observed that the auxiliary terms 1/2|nexy   

and 1/2|nhzy  contain the same time index ( 1/ 2)n  as that of the field on the left side. 

This additional variable at ( 1/ 2)n  does not affect numerical results significantly 

except that it contributes to additional complexities in the computation. Therefore, for 

the sake of simplification, both auxiliary variables will be considered at the same time 

index “ n ” and as a result (2.21) and (2.23) reduce to (2.24a) and (2.24b). The auxiliary 

variables are responsible for wave absorption in the absorbing boundary conditions. 

These features obtain improved efficiency and ease of programming for the LOD-

FDTD CPML. 
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     (2.24d) 

Similarly, other field components from (2.2)-(2.3) can be written as follows. 

Sub-step 1:                                 
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  (2.24c)                    
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Sub-step 2:  
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  (2.25f)                    

The updating equations for the CPML of the LOD-FDTD method in 3-D and 2-D can 

be derived from (2.24a)-(2.24f) and (2.25a)-(2.25f). The updating equations for the 

CPML ABC for the 3-D LOD-FDTD method with orthogonal and nonorthogonal 

meshes are described in Chapters 5 and 6, and the CPML updating equations for the 2-

D LOD-FDTD method are given below. 

 

2.5 Updating Equations for 2-D LOD-FDTD CPML ABC  
    The accuracy of the LOD-FDTD method can be degraded if proper boundary 

condition is not considered. By following the CPML theory described in Section 2.4, 

the updating equations for the 2-D LOD-FDTD CPML for both TEz and TMz are 

derived as follows. 

 

2.5.1 CPML ABC for TE Case 
    The CPML equations for the 2-D LOD-FDTD method for the TEz case are 

formulated into two sub-steps which are shown below. 

Sub-step 1: 

 
 

 

1/2 1/2 1/ 2
1/ 2 , 1/2 , 1/ 2 , 1/ 2 1/2 , 1/ 2

1/ 2 , 1/ 2 1/2 , 1/ 2 1/ 2 ,

| | | |

                              | | | |
ex xy

n n n n
x i j x i j z i j z i j

n n n n
z i j z i j e i j

bE aE H H
y

b H H C
y  

  
     

    

  


  


       (2.26a) 

 

 

1/ 2 1/ 2 1/ 2
1/ 2 , 1/ 2 1/ 2 , 1/ 2 1/ 2 , 1 1/ 2 ,

1/ 2 , 1 1/ 2 , 1/ 2 , 1/ 2

| | | |

                               | | | |
hz zy

n n n n
z i j z i j x i j x i j

n n n n
x i j x i j h i j

dH cH E E
y

d E E C
y  

  
      

    

  


  


    (2.26b)  



Chapter 2: 2-D LOD-FDTD for EM Propagation Modelling in Electrical Large 
Symmetric Structures 

 

34 

 

Sub-step 2: 
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                 (2.29 a, b) 

Here, subscripts e , and h indicate the coefficients for the electric and magnetic fields. 

hxy , hyx , ezx  and ezy are discrete variables that have non-zero values only in some 

CPML regions and are necessary for the implementation of the absorbing boundary. To 

avoid reflections between the computational domain and the CPML boundary as a result 

of discontinuities, the losses due to the CPML must be zero at the interface of the 

computational domain. Equations (2.26a) and (2.26b) of sub-step 1 cannot be used for 

direct numerical calculation, but simultaneous linear equations are obtained from 

(2.26a) and (2.26b) that result in the tri-diagonal matrix form. Similarly, the equations 

for the second sub-step (2.27a) and (2.27b) give the tri-diagonal matrix which can be 

solved using approach A) which has been described in Section 2.3.2. 

 

2.5.2 CPML ABC for TM Case 
    The formulations of LOD-FDTD CPML for 2-D TM wave are derived in the same 

way as in the case of the TE wave. The updating equations for both sub-steps 1 and 2 

are given next. 
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Sub-step1: 
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Sub-step 2: 
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                                     (2.34d) 

where  is the thickness of the PML absorber, 0r is the PML interface, m is the order of 

the polynomial. To minimise the reflection error, the following parameters for CPML 

are considered. 

                                         opt
1 11.21 (S/m)

150
m

x





 


                                            (2.35) 
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where, 
max opt0.7  (S/m)s  , 

max
15sk  and 4m  , 

yxh and
zxe  are discrete variables 

which may have non-zero values only in some CPML regions but are necessary to 

implement the absorbing boundary [2]. Like (2.26) and (2.27), the equations of sub-step 

1 and 2 of the TMz case cannot be used for direct numerical calculation. Placing (2.30a) 

in (2.30b) yields the simultaneous linear equations that result in the tri-diagonal matrix 

form. However, from the CPML updating equations of both the TE and TM case, it can 

be observed that each equation contains one auxiliary “ ” term, and also that there are 

two “ ” terms in each sub-step. For ADI-FDTD CPML four auxiliary terms in the first 

step and four in the second are needed for the updating equations, thus LOD-FDTD 

CPML requires smaller number of auxiliary equations than ADI-FDTD CPML, thus 

resulting in higher computational efficiency.  

 

 

2.6 Source Functions for LOD-FDTD 
    The LOD-FDTD algorithm given by (2.4)-(2.5) and (2.15)-(2.16) for 2-D LOD-

FDTD was derived for the source-free Maxwell’s curl equation. To extend this 

algorithm to include an electric and magnetic current source, special care is required, as 

discussed in this section. Similar to the wave source conditions of ADI-FDTD [63]-

[65], there are two possible ways to implement a point-wise wave source condition for 

the LOD-FDTD method. First, if the source condition is to be implemented as a 

magnetic field excitation, a standard explicit formulation for a hard source or current 

source is used. Second, if the source condition is to be implemented as an electric field 

excitation (such as a current source or a resistive voltage source), an implicit 

formulation is used. For clarification, the electric field excitation for the implicit 

formulation is described below. The electric field component of (2.4a) for the TEz case 

in sub-step 1 can be written with a soft source excitation as follows: 
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      (2.36) 

Similarly, the electric field component of (2.15a) for the TEz case in sub-step 2 can be 

written with a soft source excitation as follows: 
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(2.37) 

These equations are the standard LOD-FDTD equations in 2-D modified by the 

inclusion of an electric source term. The indexes 1( )n p and 2( )n p denote discrete 

time indexes to be determined carefully. The solution of the implicit equation (2.6) for 

the first sub-step leads to the following tri-diagonal equation system. 
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  1
1/ 2 , 1/ 2 1/ 2 , 1/ 2 1/ 2 ,               | | |n n n p

exh z z i j z i j exhz x i jC H H C J 
       

   (2.38) 

It is seen from (2.38) that the 1/2
1/2, 1|nx i jE 
  fields along a particular y-directed line are 

updated simultaneously and repeated for each i-coordinate and for 3-D LOD-FDTD 

case, each k and i- coordinate are used. A similar expression can be written for the 

electric field component of sub-step 2. Note that the presence of electric current sources 

in the model will affect the known column vector on the right-hand side of those tri-

diagonal matrix systems for x, y or z-directed lines that pass through the locations of the 

current sources. Therefore, the electric current source information must be embedded 

within the affected tri-diagonal matrix systems and cannot be implemented as a separate 

explicit update. Similar approaches of wave source conditions have also been 

considered for the ADI-FDTD method [63]-[65].  Similar to the ADI-FDTD [63], the 

excitation is applied in both procedures not just in first procedure. Furthermore, the 

above wave source approaches can also be applied for the 3-D LOD-FDTD. 

 

 

2.7 Segmented Technique for EM Propagation Modelling in 

Large Symmetric Structures 
    To model the EM propagation over electrically large structure (typically hundreds of 

λ), the entire computational domain is represented by a single static grid which can be 

computationally prohibitive (in terms of memory and/or CPU hours). For example, 
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modelling the problem space (IE×JE) of a dimension of 2.4×105 cells using 2-D FDTD 

takes two days in personal computer (PC) and requires a huge amount of memory to 

obtain result. The implicit ADI-FDTD and LOD-FDTD can be applied to reduce the 

computational time, but the direct application of the LOD-FDTD method for solving for 

an electrically large structure such as a tunnel still requires increased computational 

load. Therefore, to overcome the limitations of the LOD-FDTD method for EM 

propagation modelling in large sized tunnels, efficient methods are required. We will 

show that use of the segmented technique results in a large reduction in computation 

time and memory. Before applying the segmentation technique in electrically large 

symmetric structures, the actual 3-D structures are modified into a 2-D approach 

following the theory outlined in [2] to further increase computational efficiency. The 

conversion process of 3-D real structure to a 2-D structure is described below. 

    According to [2] and [150], if a structure is modelled to extend to infinity in the x or 

y or z-direction, and if the incident field is also uniform in the x or y or z-direction, then 

all partial derivatives of the field with respect to z must equal zero. As a result, the 3-D 

structures act as 2-D structure. Depending on the orientation of the electric and 

magnetic field lines relative to the surface of the structure, two modes TE and TM can 

be obtained. Note that the TE mode sets up E field lines in a plane perpendicular to the 

infinitely long axis (the z axis) of the structure, and the TM mode sets up E field lines 

only that are parallel the z-axis. Here, we take a straight rectangular tunnel (as shown in 

Fig. 2.5 (a)) as an example to illustrate the 2-D LOD-FDTD model construction.   

 

 

 

 

 

 

 

 

 

 

 
(a) 
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Fig. 2.5 A rectangular tunnel (a) three-dimensional view and (b) two-dimensional view 

 

The 3-D view of the tunnel is shown in Fig. 2.5 (a) and the corresponding 2-D view 

which is obtained following the above principle is shown in Fig. 2.5 (b). After obtaining 

the 2-D model, the segmentation approach has been applied to further improve the 

computational performance of solving the electrically large structure which is described 

in the following section. 

 

 

2.7.1 Segmented (S)-LOD-FDTD Technique 
    To apply the proposed S-LOD-FDTD method, we break up the computational space 

into segments and use LOD-FDTD as described in Section 2.3.1 and 2.3.3 and 

convolutional perfectly matched layer (CPML) ABC as described in Section 2.5 for 

each segment and solve them sequentially. Fig. 2.6 schematically represents the 2-D 

computational space for a general rectangular tunnel with a branch for solving using 

proposed S-LOD-FDTD method where electromagnetic fields from a transmitter to a 

receiver are calculated. In general, the computational domain is divided into a number 

of individual segments each with equal or variable segment lengths depending on the 

shape of the tunnel so that different types of tunnels such as branched or curved tunnels 

can be modelled. Whenever there are abrupt changes in tunnel geometries (see Fig. 2.6), 

the boundaries must be carefully treated to ensure accurate computation of the fields. 

The proposed S-LOD-FDTD algorithm is summarised as follows: 

1. Start the conventional LOD-FDTD iteration with CPML absorbing boundary 

condition in the first Segment when the signal source S0 is provided. 

(b) 
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2. When the fields of Segment 1 reach at each unit cell on interface 1, save the electric 

and magnetic fields from each unit cell recorded at interface 1 for use in the next 

segment.  

3. Referring to Fig. 2.6, the fields from ‘S1L’ on the left side of interface 1 are saved 

from Segment 1 and used as input fields in ‘S1R’, that is lying on the right side of the 

interface which then feeds Segment 2 and so on. 

4. Whenever an abrupt change or branching junction falls within a segment, its effect 

on the fields needs to be considered before propagating the signal into the next segment. 

5. Sequentially propagate the extracted fields at the interface into the next Segment. 

Repeating steps 2-5 to complete the simulations in Segments 2, 3, 4 …… n.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.6 Computational domain in S-LOD-FDTD for branched tunnel   

    

     For the implementation of the CPML ABC in each segment of S-LOD-FDTD 

technique, special care must be taken because data are exchanged spatially between 

segments where each contains part of the CPML boundary condition. The LOD-FDTD 

iteration comprises two sub-steps which each require the solution of a tri-diagonal 

matrix system of equations along either x or y directions respectively. For clarification, 

we present in (2.39) the Ex implicit update equations in the stretched coordinate CPML 
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Interface n 

Tunnel wall

Tunnel wall

Segment 1 Segment 2 Segment 3 Segment n

Interface n- 1

Segment n- 1

Tunnel wall

Tunnel  wall

Branch junction Interface 1 

SB1L 

SB1R

Branch Interface 2 

SB2L

SB2RTunnel wall

Tunnel wall

CPML

CPML 

θ

Ey

Hz

Ex



Chapter 2: 2-D LOD-FDTD for EM Propagation Modelling in Electrical Large 
Symmetric Structures 

 

41 

 

region. The update equations in non-PML regions are attained by simply neglecting the 

convolution terms of the right-hand side of (2.39).  
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C H H

C     
   

    

 

  

   (2.39) 

The coefficients of (2.39) are same as mentioned after (2.27). Consider the Segment 1 

with CPML ABC in Fig. 2.6 where all explicit and implicit equations of electric field 

are employed along x and y direction. When the right-hand side data along the y-

direction of the implicit update from Segment 1 are sent to Segment 2, right-hand side 

are first updated as for non-PML regions and the convolution terms are subsequently 

added in separate loops. Every cell (i+1/2, j+1/2) belonging to a PML area is associated 

with a convolution data buffer element. However, the
zyh , 

xye terms related to the (i, j-

1/2) cell appear in (2.39). Convolution data PML buffer elements associated with the 

neighbouring process are required for cell updates at the -y segment boundary, but the 

EM field elements necessary for calculating the convolution terms for -y boundary cells 

already exist in the local domain because the EM field boundary data between 

neighbouring segments is shared (Fig. 2.6). Therefore, the respective PML data at the 

boundary is calculated twice, once in each of the neighbouring segments. This avoids 

the increase in the communication overhead that would arise if the CPML buffer data 

was calculated only once and communicated to the neighbouring sub-process. 

    When there is a junction in the tunnel, two conditions are satisfied. The first 

condition is that the sums of all the currents entering a junction equal the sum of 

currents leaving the junction i.e the enforcement of Kirchoff’s current law. The second 

condition is that the tangential component of the electric field must be continuous across 

the structure surfaces at the junction [151]–[152].   

    By using the above segmentation technique, we can analyse various electrically large 

symmetric tunnel structures which are described in Section 2.8. 
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2.7.2 Segmented (S)-ADI-FDTD Technique 
    To make comparison with the proposed S-LOD-FDTD method, the S-ADI-FDTD has 

also been implemented to model the EM propagation inside electrically large symmetric 

structures. To apply the S-ADI-FDTD method, after breaking up the computational 

space into segments use ADI-FDTD and CPML ABC for each segment and solve them 

sequentially. The S-ADI-FDTD technique follows the same procedure as used for the S-

LOD-FDTD technique, which has been described in the previous section. For the S-

ADI-FDTD technique, conventional ADI-FDTD with CPML absorbing boundary 

condition is used to start the iteration when the signal source S0 is provided. The same 

process 2-5 of Section 2.7.1, which has been described in the S-LOD-FDTD technique, 

is then followed. The ADI-FDTD with CPML ABC used for each segment is provided 

in Appendix A.  

 

 

2.8 Numerical Analysis Using S-LOD-FDTD and S-ADI-

FDTD Methods 
2.8.1   Straight Tunnel 
    In this section, we first consider the Roux tunnel [153] which has a perfectly straight 

geometry as shown in Fig. 2.7 (a). The origin of the tunnel-coordinate system is 

arranged at the centre of the tunnel cross section. The transverse section is semicircular, 

as shown in Fig. 2.7 (b), and has a diameter of 8.3 m; the maximum height is 5.8 m at 

the centre of the tunnel with material properties  εr=2.5 and σ =0.05 S/m. Before 

applying the segmentation technique in the Roux tunnel [153], the actual 3-D structures 

have been modified into a 2-D approach following the theory outlined in section 2.7.1. 

The 2-D model of the straight Roux tunnel with the segmentation is shown in the Fig. 

2.7 (c). The straight tunnel with 500 m length has been divided into 20 segments and 

each segment length is 25 m; then the segmentation technique has been applied to 

predict the path loss in the tunnel. The predicted path loss in this tunnel (for a length of 

500 m) at 2.4 GHz computed using the proposed S-LOD-FDTD for CFLN=2 and 10 is 

shown in Fig. 2.8 (a) and (b) along with the measured data extracted from the 

publication by E. Masson et al. [153]. 
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Fig. 2.7 (a) Roux tunnel [153] (b) Profile of the Roux tunnel (c) 2-D segmented problem space of the 

Roux tunnel [153] for S-LOD-FDTD simulation 
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Fig. 2.8 Comparison of pathloss with measured data of E. Masson et al. [153] (a) CFLN=2, (b) CFLN=10  
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Fig. 2.9 Comparison with measured data of E. Masson et al. [153] (a) CFLN=2, and (b) CFLN=10 
 

Fig. 2.9 (a)-(b) shows the computed path loss using S-ADI-FDTD compared with the 

measured results obtained from [153]. It is observed from Figs. 2.8 and 2.9 that the 

predicted path loss agrees reasonably well with the results obtained by other methods 

even for higher CFLN, as well as with the measured result. Fig. 2.10 shows a 

comparison of the averaged path loss obtained for the Roux tunnel  in which the 

measured results extracted from the published graphs in [153] were averaged over 50 m 

length and compared with the averaged simulated data for CFLN=10. The measured 

path loss of the Roux tunnel published in [153] has been cited by many authors and has 

been taken as the reference result to compare our simulated results.  

 

 

 

 

 

 

 

 

 
Fig. 2.10 Comparison of averaged (over 50 m) path loss for Roux Tunnel for CFLN=10 
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However, our main aim here is to reduce the computational time for propagation 

modelling in a large symmetric structure. For the large tunnel structure [153], the 

execution time required by the S-ADI-FDTD method was 4.32 hrs with a memory over 

1090 MB, whereas the S-LOD-FDTD took 3.5 hrs with a memory of 1010 MB. 

Comparison in terms of execution time and memory shows that S-LOD-FDTD is more 

effective because it requires less time and memory. The cell size chosen for the Roux 

tunnel is λ/10. 

 

 

2.8.2   Branched Tunnel 
    We now consider a branched tunnel [154] to predict the path loss using our proposed 

method as shown in Fig. 2.11 (a). The origin of the branched tunnel-coordinate system 

is arranged at the centre of the tunnel cross section. The branched tunnel has 3 m height 

and 4.2 m width at the centre of the tunnel with material properties εr=10 and σ =0.01 

S/m. The transmitter is positioned in the main section at a distance of 10 m away from 

the tunnel junction. The junction is formed by joining the branch and main sections of 

the tunnel at an angle of 150. The receiver is assumed to move away from the 

transmitter into the branch section assuming TM incidence.    For the junction of the 

tunnel (Fig. 2.11), two conditions are satisfied. 
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Fig. 2.11 (a) Branch tunnel [154] (b) 2-D segmented problem space of the branched tunnel [154] for S-

LOD-FDTD simulation 
  

The first condition is that the sums of all the currents entering the junction equal the 

sum of currents leaving the junction i.e. the enforcement of Kirchoff’s current law. The 

second condition is that the tangential component of the electric field must be 

continuous across the structure surfaces at the junction. 
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Fig. 2.12 (a)-(c) Comparison with the measured data of Zhang et al. for CFLN=2, 10 and 12 respectively 
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tunnel. The predicted path loss in this tunnel (for a length of 100 m) at 900 MHz 

computed using the proposed S-LOD-FDTD for CFLN=2, 10 and 12 are shown in Fig. 

2.12(a) and (b) along with the measured data extracted from the publication by Zhang et 

al. [154], as well as the results obtained using the S-ADI-FDTD method. The execution 

time and memory required for S-LOD-FDTD is 2.86 hrs and 900 MB respectively 

whereas execution time 3.45 hrs and memory 1010 MB required for S-ADI-FDTD for a 

CFLN=10. 

 

2.8.3 Curved Tunnel 
    Finally, we present results for a curved tunnel with a straight entrance using the 

proposed method and compare them with the published measured data given in [155]. 

The width and height of the tunnel cross section are 8 m and 6 m respectively and the 

transmitter and receiver are centred in the tunnels, with their height above ground being 

3 and 1.5 m, respectively. The electrical characteristics of the tunnel wall are σ=0.01 

s/m and εr=5. Uniform segmentation was considered for the straight segment of the 

curved tunnel, but for the curved segment, the slope at each segment interface has to be 

determined by multiplying with the fields calculated for the previous segment before 

they are propagated into the next segment. The axial length of the curved tunnel is 400 

m and the length of the curved section is 200 m; a segment length of 25 m was 

considered. To apply the segmentation technique for this tunnel, we first convert the 3-

D model to a 2-D model following the theory outlined in Section 2.7.1. The 2-D model 

of the tunnel with segmentation is shown in the 2.13 (b).  
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Fig. 2.13 (a) Geometry of curved tunnel [155] (b) Segmented problem space of the curved tunnel 

 

The predicted path loss in this tunnel (for a length of 400 m) at 1 GHz computed using 

the proposed S-LOD-FDTD for CFLN=2, 10 and 12 is shown in Fig. 2.14 (a)-(c) along 

with the measured data extracted from [155] and the results obtained using the S-ADI-

FDTD method. It can be observed from Fig. 2.14 (a)-(c) that the predicted path loss 

agrees reasonably well with the results obtained by other methods, even for higher 

CFLN, as well as with the measured result. 
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Fig. 2.14 (a)-(c) Comparison with measured received power along the propagation axis of curved tunnel 

for CFLN=2, 10 and 15 

 

2.8.4  Error Analysis of the Proposed Method 
    Fig. 2.15 shows the relative errors of the S-LOD-FDTD method with respect to 

CFLN. The relative error is calculated using the following formula: 

                                             100%ref simulated

ref

A A
A


                                                    (2.40) 

where Aref is the reference value obtained from the measured result and Asimulated is the 

calculated value using the proposed S-LOD-FDTD and S-ADI-FDTD methods. From 

Fig. 2.15, it can be observed that the relative errors increase with the increasing CFLN, 

but that the maximum error is only around 4%.  
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Fig. 2.15 Relative error with respect to CFLN 

 

The results confirm the ability of the proposed S-LOD-FDTD method to accurately 

predict the propagation parameters of two dimensionally approximated large tunnels. 
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directions had little effect in the simulation. It was also observed that the S-LOD-FDTD 

approach produced high accuracy results at close range regardless of the segment size 

chosen, but showed more variability at longer range, particularly for smaller segment 

sizes. Table 2.1 summarises the computational performance in terms of execution time 

and memory of the proposed S-LOD-FDTD method for the Roux tunnel for different 
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terms of CPU execution time and memory performance. The relationship between the 

total CPU execution time and segment size can be defined as: 

                                                    Total_CPU_Time  . .n dt N                                   (2.41) 

 where n  is the number of time steps (iterations) for each segment to reach its steady 

state, dt  is the CPU time required for each single time step (iteration) in the segment, 

and N  is the number of segments into which the problem space is divided [145].  

 

Table 2.1 

Required Computational Time and Memory for Roux Tunnel (CFLN=10) 

Segment 

Numbers 

S-LOD-FDTD S-ADI-FDTD 

CPU Times 

(hrs) 

Memory 

(MB) 

CPU Times 

(hrs) 

Memory 

(MB) 

250m × 2 26.646 3500 27.646 3550 

125m × 4 20.590 2500 21.590 2800 

50m × 10 6.745 1650 8.745 1850 

25m × 20 3.5 1010 4.32 1090 

10m × 50 1.860 0.950 1.960 10 

 

The tabulated results indicate that by dividing the domain into more segments, both 

execution time and memory usage can be reduced. However, the segment size cannot be 

reduced to be arbitrarily small in order to obtain further improvements. In the case of 

Roux tunnel, it was observed that when the size of the segment fell below 5 m, the 

results became unstable. Because the total number of time steps (6×ratio time scheme) 

iterated in each segment is not sufficient for the solution to reach its steady state for 

chosen segment length. Stable results can be obtained by increasing the total number of 

time steps from 6×ratio time scheme to 10×ratio time schemes. For an electrically large 

Roux tunnel, considering the stability of the solution, the S-LOD-FDTD obtained 

maximum time and memory savings for 20 equal sized segments where the length of 

each segment was 25 metres. The maximum time and memory saving for the branched 

and curved tunnel was obtained for 5 and 8 equal sized segments of 20 m and 25 m 

respectively.   
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2.9 Discussion 
    In this chapter, we initially introduced the theory of the LOD-FDTD method. The 

updating equations for the 2-D LOD-FDTD method was provided and the derivation of 

CPML ABC for the 2-D LOD-FDTD method was discussed. Wave source conditions 

for the LOD-FDTD simulations were discussed and the developed new segmented-

LOD-FDTD (S-LOD-FDTD) method for EM propagation modelling in electrically 

large scale problems was presented. The S-ADI-FDTD method, which has been used 

for comparison with the S-LOD-FDTD method, was also discussed. After modifying 

the 3-D symmetric structures to 2-D structures, the segmentation approach was applied. 

The developed S-LOD-FDTD method was validated through propagation prediction 

inside large straight, branched and curved tunnels.  The predictions on path loss agree 

reasonably well with the results obtained using S-ADI-FDTD, as well as with published 

measured data. The results indicate higher signal attenuation for the junction/transition 

regions compared to regions away from such abrupt transitions.  

    From the error analysis of the proposed S-LOD-FDTD method, it is confirmed that 

the proposed S-LOD-FDTD method is computationally more efficient compared to S-

ADI-FDTD and provides reasonably accurate results for propagation predictions inside 

large tunnels. A performance comparison of the proposed method was also described in 

terms of CPU time and memory, and it was found that by dividing the domain into more 

segments, both execution time and memory usage can be reduced. The results reveal 

that the proposed segmentation approach can help to reduce computational resources 

and hence can be extended for EM modelling of any large scale propagation problems. 
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Chapter 3 
 

 

Nonorthogonal LOD-FDTD Method for EM Scattering 

from Two Dimensional (2-D) Structures 

 

 

3.1 Introduction 
    With the the advent of powerful and inexpensive computers, the explicit FDTD 

algorithm has been used to solve numerous EM scattering problems in such diverse 

areas as optics, biomedicine, oceanography, and radar remote sensing, and in many 

other problems in electromagnetic compatibility (EMC) [2]. This can be confirmed by 

various noteworthy contributions, especially in Cartesian coordinates [3]–[4]. However, 

for modelling objects having curved features using orthogonal grids in Cartesian 

coordinates, very fine meshes are required, which results in smaller time steps, leading 

to a huge increase in memory and CPU time.  To overcome these difficulties, Holland 

[23] first introduced the non-orthogonal FDTD (NFDTD) algorithm which was later 

refined by many researchers [24]–[28]. Conventional explicit NFDTD schemes suffer 

from the CFL constraint and as a result, finer grid sizes and smaller time steps are 

necessary to retain the stability of the method, which causes the processing time to 

increase drastically. To eliminate the dependence on the CFL stability constraint, an 

implicit method such as the unconditionally stable alternating direction implicit (ADI) 

technique was introduced to the non-orthogonal co-ordinates [69]–[72]. Kantartzis et al. 

[69] implemented the dispersionless ADI-NFDTD algorithm that optimises the 

dispersion. However, their approach requires the calculation of the higher order terms 

twice for each time step, thus leading to additional computational burden.  Zheng et al. 

[70]–[71] proposed 2-D and 3-D ADI-NFDTD methods in which they employed non-

orthogonal grids locally only to model the curved/complex regions of the scatterer but 

used conventional orthogonal grids for the other regions of the scatterers. They used 

only the conventional PML ABC to truncate the computational domain, and in addition, 
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their method [70]–[71] requires calculation of the Jacobian coordinate transformation to 

convert the curvilinear coordinates into a conventional FDTD lattice where the CFL 

constraint must be satisfied. As a result, the method by Zhang et al. [70]–[71] requires 

increased computational resources. It has also been found that the ADI-FDTD technique 

requires more execution time for higher CFLN [19], [108]. To overcome some of these 

limitations, a novel implicit method known as locally 1-D FDTD (LOD-FDTD) was 

proposed [19]–[22], [108], [110] which requires fewer arithmetic operations and less 

execution time than the ADI-FDTD method. Although curvilinear non-orthogonal grid 

methods were developed for the standard explicit FDTD and implicit ADI-FDTD 

methods, thus far, only orthogonal grids have been used for the LOD-FDTD method. In 

this chapter, our aim is to extend the 2-D LOD-FDTD for generalised non-orthogonal 

grids to solve EM scattering from 2-D conducting, dielectric and mixed structures. 

    This chapter is organised as follows: Section 3.2 describes the mathematical 

formulation of the proposed 2-D LOD-NFDTD method for both TE and TM cases. The 

mesh generation technique is discussed in Section 3.3. In Section 3.4, the CPML ABC 

for LOD-NFDTD for both TE and TM cases is described. The near field to far field 

transformation and scattered field formulations for the LOD-NFDTD method are 

presented in Section 3.5 and 3.6 respectively. The numerical stability and dispersion 

analysis of the proposed method are also discussed in Sections 3.7 and 3.8. Numerical 

results for many 2-D cylindrical structures that include conducting, dielectric and coated 

conducting and mixed structures obtained using the proposed LOD-NFDTD method are 

provided and compared with the results obtained from other exact and numerical 

methods to validate our technique in Section 3.9. Finally, discussion is provided in 

Section 3.10 

 

 

 

3.2 Mathematical Formulation of 2-D LOD-NFDTD Method  
    In this section, 2-D LOD-NFDTD formulation is developed for electromagnetic 

scattering for generalised non-orthogonal meshes following [23]-[28]. For rectangular 

structures, the nonorthogonal curvilinear meshes are equivalent to the rectangular 

orthogonal meshes. But for representing the curved or oblique boundary of EM 
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structures, fewer meshes are required when nonorthogonal meshes are employed. For 

example, orthogonal rectangular and nonorthogonal curvilinear meshes of circular 

dielectric cylinder are shown in Fig. 3.1 (b) and (c). Fig. 3.1 (c) clearly shows that fewer 

meshes are required when nonorthogonal meshes are employed. 

 

 

 

 

 

 

 

 
Fig. 3.1 (a) Circular dielectric cylinder, (b) Orthogonal rectangular meshes of the circular cylinder, (c) 

Nonorthogonal curvilinear meshes of the circular cylinder. 

 

 

Hence our interest in this chapter is to propose nonorthogonal LOD-NFDTD method for 

analysing curved microwave 2-D structures. The 2-D LOD-NFDTD is described here 

and 3-D LOD-NFDTD is discussed in Chapter 6. Before discussing the derivation of the 

2-D LOD-NFDTD method, the curvilinear coordinate systems are discussed briefly 

below. 

  

 

3.2.1 Curvilinear Coordinate Systems 

    An oblique coordinate system  1 2 3, , u u u may be characterised by its unitary vectors 

‘ ia ’ (as shown in Fig. 3.2), where the differential length vector is described as: 

                                              
3 3

1 1

i i
ii

i i

drdr du a du
u 

 
                                               (3.1) 

Equivalently, it may be characterised by its reciprocal unitary vectors, 

                                                  /i
j ka a a g                                                          (3.2) 

where g is the determinant of the metric with element 

 

(a) (b) (c) 
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Fig. 3.2 Nonorthogonal curvilinear coordinate system ( )1 2 3u ,u ,u ; (a) unitary vectors ( )1 2 3a ,a ,a  (b) 

reciprocal unitary vectors ( )1 2 3a ,a ,a  

                               

                                      
3

1
. .

k k

ij i ji j
k

x xg a a
u u

 
 

                                                          (3.3) 

and ix are Cartesian coordinates. The ia  point along coordinate lines and ia  are normal 

to surface of constant iu . For orthogonal coordinates ia and ia are sometimes 

normalized to unit vectors. 

                                                  
.
i

i
i i

ai
a a

 , 
.

i

i i i

ai
a a

                                               (3.4) 

The ia and ia have the properties: .i
j ija a  , .i j ija a g , .i j ija a g  

where ijg is the inverse of ijg . In general, a vector may be represented by its covariant 

and contra-variant components as follows: 

                                                   i
iE e a  and .i iE e a                                             (3.5) 

The associated components having the usual dimensions are defined by 

                                                            E .i i
i iE i E i                                                  (3.6) 

where 1 1
11E g e , 11

1 1E g e  

The covariant and contra-variant components are related by 

                                                     j
i ije g e , i ij

je g e                                                 (3.7) 

Thus the physically real iE and jE are related by  

u2

u1

u3

a1
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                                                j
i ijE G E , i ij

jE G E                                                  (3.8) 

and 

                                                i ij
jE G E , i j

ijE G E                                                 (3.9) 

where ij ijii

jj

gG g
g

 , jj
ij ij

ii

g
G g

g
 . Based on the above discussion, Maxwell’s curl 

equations can be derived using the covariant and contra-variant projections. The 

derivation of 2-D LOD-NFDTD method is described next. 

 

 

3.2.2 Derivation of the 2-D LOD-NFDTD Method 
    Consider Maxwell’s equations in an isotropic lossy medium: 

                                             e
E E H
t

 
   


                                         (3.10a)                    

                                      m
H H E
t

 
    


                                         (3.10b)                    

where E , H  are  electric and magnetic field intensities and e , m are electric 

conductivity and equivalent magnetic loss, respectively. The above equations will be 

cast in a generalised curvilinear co-ordinates (non-orthogonal) system with 

variables 1 2 3( , , )u u u . To deal with the electric and magnetic field quantities on such 

grids, two different local co-ordinate systems (covariant and contra-variant) are used. 

Equation (3.10) can be applied for non-orthogonal co-ordinates as shown in [2]. 

Denoting the covariant electric and magnetic field components which represent the flow 

of field along the grid as mE , mH ( m = 1, 2, 3) , and the contra-variant electric and 

magnetic field components which represent the flow going through facets of the grid as 
mE , mH  ( m = 1, 2, 3), the NFDTD differential equations in a lossy medium from (3.10) 

can be derived in the generalised curvilinear coordinate system as follows: 

                                        
1

1 3 2
2 3

1 H HE E
t du dug

 
        

                   (3.11a) 

                                       
2

2 31
3 1

1 HHE E
t d u d ug

 
       

                   (3.11b) 
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3

3 2 1
1 2

1 H HE E
t d u dug

 
        

                     (3.11c) 

                                     
1

1 3 2
2 3

1
m

E EH H
t d u d ug

 
         

              (3.11d) 

                                 
2

2 31
3 1

1
m

EEH H
t d u d ug

 
        

                (3.11e) 

                                 
3

3 2 1
1 2

1
m

E EH H
t d u d ug

 
         

                (3.11f) 

where g  is the metric tensor calculated using (3.3). The updating equations (3.11a)-

(3.11f) of explicit NFDTD can be applied to any arbitrary structure with curved 

boundary or oblique surface for accurate modelling, without employing the staircase 

approximation required for Yee’s algorithm. The explicit NFDTD method has been 

successfully applied to analyse optical dielectric waveguide, dielectric-loaded resonant 

cavity, microstrip discontinuities etc. [2]. However, conventional explicit NFDTD 

schemes suffer from the CFL constraint and as a result, finer grid sizes and smaller time 

steps are required to retain stability, causing the processing time to increase drastically. 

To eliminate the dependence on the CFL stability constraint and reduce the 

computational burden, the implicit LOD-FDTD will be used here to model the arbitrary 

curved structures. By applying the LOD principle to (3.11a)-(3.11f), the updating 

equations for the LOD-NFDTD method can be obtained. In this chapter, the 2-D 

nonorthogonal LOD-FDTD (LOD-NFDTD) is described, and the 3-D LOD-NFDTD is 

discussed in Chapter 6. The formulation of the 2-D LOD-NFDTD method for both the 

TE and TM cases is described below.  

 

 

3.2.2.1 Formulation of LOD-NFDTD Method for TE Case 
    The placement of the TE field components of the NFDTD method is shown in Fig. 

3.3 (a). Similarly, following the LOD principle, the placement of the TE field 

components of the LOD-NFDTD method within one cell is shown in Fig. 3.3 (b). By 

applying the LOD principle to (3.11a)-(3.11f), the electric and magnetic fields for sub-

steps 1 and 2 of the LOD-NFDTD method for the 2-D TE case are given below. 
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Fig. 3.3 Contravariant field components in generalised curvilinear coordinates (TE case); (a) NFDTD (b) 

LOD-NFDTD 
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Sub-step 2: 
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d dE E E E

du du

 
   

   
     



   
  (3.13b) 

where  (4 ) / (4 )e ea t t        , 2 / (4 )eb t g t     , 

(4 ) / (4 )m mc t t        , 2 / (4 )d t g t      

    From (3.12) and (3.13), it can be observed that compared to the ADI-NFDTD [70] 

method, the formulation of the LOD-NFDTD method is simple as it requires moving 

forward only in one dimension in each half step. The covariant mE , mH  and 

contravariant mE , mH  ( m = 1, 2, 3), together with g , are all defined in [23] and this can 

also be calculated using (3.3). The relationship between covariant fields mH , and contra-

3
1/2, 1/2|i jH  
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variant fields mH  ( m =1, 2, 3) are given by 1 2 3
1 2 3m m m mH g H g H g H    and 

1 2 3
1 2 3

m m m mH g H g H g H    , where mlg  and mlg   ( ,m l = 1, 2, 3), are tensors defined 

in (3.3). A similar relation holds for mE and mE . Here mH and mE  ( m = 1, 2, 3), are 

true fields components. For 2-D TEz case, 3
3H H , 1 1/2|nE  , 1/2

3 |nH   in (3.12a) and 

3 1/2|nH  , 1/2
1 |nE  in (3.12b) are defined as synchronous variables. Since (3.12b) cannot 

be calculated directly, simultaneous linear equations have to be formed from (3.12a) and 

(3.12b) by eliminating the synchronous variables 1/2 1/2
3 1/2, 1/2 3 1/2, 1/2| , |n n

i j i jH H 
    . 

Since 3
3H H  for the 2-D TEz case, we can obtain the expression of the 1/2

3 1/2, 1/2|ni jH 
   , 

from (3.12b).  Equation (3.12b) is placed in (3.12a), then, according to [23], the desired 

covariant field components are averaged by known contra-variant fields to give a 

second order accurate approximation, as given below. 

             
 

 

1 1/ 2 1 1/ 2 1 1/ 2
11 1/ 2 , 1 1 1 1/ 2 , 11 1/ 2 , 1

1 3 3
1/ 2 , 1/ 2 , 1/ 2 1/ 2 , 1/ 22
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| (1 2 ) | |

          | | |

             | | | |

      

n n n
i j i j i j

n n n
i j i j i j

n n n n
i j i j i j i j

E E E
bcaE H H

du
E E E E

  



  
    

    

     

   

  

   

 3 3
1/ 2 , 1/ 2 1/ 2 , 1/ 22           | |n n

i j i j
b H H

du     

   (3.14) 

 where 2 2
11 11( / )g bd u u    . Equation (3.12b) can be calculated directly. Similarly, 

from (3.13a) and (3.13b), by eliminating 1
3 1/2, 1/2|ni jH 

    and then omitting the higher order 

approximation, we have   

        
 

2 1 2 1 2 1
22 1, 1/ 2 22 , 1/ 2 22 1, 1 / 2
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1/ 2 2 1/ 2
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1/ 2 , 1/ 2 1/ 2 , 1/ 21

|

                    | |

n n
i j

n n
i j i j

E

b H H
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        (3.15) 

where 1 1
22 22( / )bd u u g    . Equations (3.14) and (3.15) are the simultaneous linear 

system with tri-diagonal matrix; which can be solved using the approach A) as 

described in Section 2.3.2 of Chapter 2. The formulation of the 2-D LOD-NFDTD 

method for TM case is described next. 
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3.2.2.2 Formulation of LOD-NFDTD Method for TM Case 
    Similar to the TE case, the field components for the TM case are placed in the 

computational cell as shown in Fig. 3.4. The calculation of the electric and magnetic 

fields for the 2-D TM case for both sub-steps 1 and 2 are derived in the same way as 

that of the TE case, given by the following: 

Sub-step 1: 

 
    

2 1 / 2 2
, 1 / 2 , 1/ 2

1 / 2 1 / 2
3 1 / 2 , 1 / 2 3 1 / 2 , 1 / 2 3 1 / 2 , 1 / 2 3 1 / 2 , 1/ 21
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i j i j

n n n n
i j i j i j i j

H c H
d E E E E

d u


 

 
       



   
 (3.16a) 
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  (3.16b) 

Sub-step 2: 
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 (3.17b) 

where a , b , c , d are same as those mentioned previously. Similar to the TE case, the 

covariant and contra-variant together with g , are taken to be the same as those given in 

[23] and this can be calculated using (3.3).  For 2-D TMz case, 3
3E E , 3E , 2H in 

equation (3.16a) and 2H and 3E in equation (3.16b) are defined as synchronous 

variables. 

 

 

 

 

 

 
Fig. 3.4 Contra-variant field components in generalised curvilinear coordinates (TM case) for the LOD-

NFDTD 
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Since equation (3.16a) is not directly solvable, by placing (3.16b) in (3.16a), and as per 

[23], the desired covariant field components are averaged by known contra-variant 

fields to give a second order accurate approximation, leading to the following equation. 

 
    

2 1/ 2 2 1/ 2 2 1/ 2
22 1, 1/ 2 22 , 1/ 2 2 2 1, 1/ 2
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du
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  3
2 , 1/ 2 1/ 2 , 1/ 2|n n

j i jE  

         (3.18) 

where 1 1
22 22 /g bd du du  . Equation (3.16b) can be calculated directly. Since the 

simultaneous linear equation (3.18) can be written in tri-diagonal matrix form, it can be 

solved efficiently using the approach A) as described in Section 2.3.3 in Chapter 2. 

Similarly, from (3.17a) and (3.17b), by eliminating 1
3 1/2, 1/2|ni jH 

   then omitting the higher 

order approximation, we have 
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n
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ad E E
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     (3.19) 

where 2 2
11 11 /g bd du du  . Compared to 2-D ADI-NFDTD [70], the formulation of 2-D 

LOD-NFDTD is less complex, which will help to reduce computational time. The 

LOD-FDTD formulation that is based on the curvilinear system can be easily applied to 

any complex arbitrary structures. The nonorthogonal meshing which has been used with 

LOD-NFDTD method for analysing 2-D structures is discussed next. 

 

 

3.3 Nonorthogonal Meshing Technique 
    A good mesh generation technique is essential because it makes the method more 

general, efficient and more accurate which leads to reduced numerical errors and 

increased computational efficiency. Different types of grid generation techniques are 

available in the literature [24]–[27]. We employ the grid topologies that are defined and 
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classified in [26]–[28]. In this thesis, structured nonorthogonal gridding technique has 

been used for LOD-NFDTD following [26]–[28]. A coordinate transformation is used 

to map an arbitrary nonorthogonal structured grid onto a rectangular grid with 

uniformly spaced cells so that any numerical method can be applied. The proposed 

approach is flexible enough to handle any type of curved material boundary. To 

implement the proposed mapping, two different coordinate systems, denoted here by 
ix and ju for all , 1, 2,3i j   are used. The first set ix is simply the Cartesian coordinate 

system 1 2 3(i.e., ,  ,  and )x x x y x z   .  

                                                        for all , 1,2,3i i jx x u i j                                (3.20) 

The second set ju  is a completely arbitrary set of curvilinear coordinates. An invertible 

coordinate transformation is created so that the ju coordinate surfaces, which are drawn 

by keeping each of the three ju coordinates constant, follow all of the material 

boundaries of the given problem in ix coordinates one at a time. In this way, a uniform 

discretisation of Maxwell’s equations in the ju coordinate system will be automatically 

mapped onto a conformal discretisation in the ix coordinate system. Here, the 

coordinate transformation for the case of a circular dielectric cylinder is described. 

Consider an arbitrary point  ,xc yc in the computational domain which is mapped to 

the point  2 2,x y in the physical domain. To map the computational domain to a circle 

of radius ‘ 1r ’ the following mapping equations are required. 

 

           

2
2

1

( ) | |( ) ( ) , | | | |

( ) | |     ,   | | | |  

D d xcC d R d yc xc
dy

D d yc yc xc
d

           





                                     (3.21) 

where 2 2( ) ( ) ( ) ( )C d D d R d D d   ,  max | |, | |d xc yc , 

1( ) / 2D d r d , 1( )R d r d  
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2
2

1

( ) | |( ) ( ) ,| | | |
 

( ) | |    ,   | | | |  

D d ycC d R d xc yc
dx

D d xc xc yc
d

           





                                          (3.22) 

Equations (3.21) and (3.22) are derived based on the coordinate transformation in [28], 

[165], and finally mapping equations are given by 

                                                       2 1sign( )*x xc x                                                 (3.23) 

                                                      2 1sign( )*y yc y                                                 (3.24) 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.5 Nonorthogonal meshes of the circular dielectric cylinder 

 

 

    The nonorthogonal grids for a circular dielectric cylinder generated by following the 

above equations are given in Fig. 3.5. From the figure, it can be observed that the 

boundaries of the dielectric cylinder are indeed traced by the coordinate lines so the 

boundary conditions of the dielectric can easily be applied in the computational 

coordinates. The above technique has been applied to generate nonorthogonal meshes of 

other 2-D structures which have been analysed in this chapter. This has also been 

extended for generating 3-D nonorthogonal meshes as will be shown in Chapter 6.  The 

development of convolutional PML for the 2-D LOD-NFDTD is discussed next. 
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3.4 CPML ABC for 2-D LOD-NFDTD 
    To date, only the PML ABC has been considered in the literature [69]–[72] whenever 

non-orthogonal grids with implicit FDTD methods are employed. However, PML is not 

highly effective in absorbing evanescent waves and cannot be placed closer to the 

objects in the problem space. The advantages of the CPML ABC are provided in 

Section 2.4 of Chapter 2. Here, to overcome the limitations of PML, we derive the 

CPML absorbing boundary condition for the 2-D LOD-NFDTD method. The CPML is 

highly effective in absorbing evanescent waves with a long time signature and can be 

placed closer to the objects within the problem space to gain time and memory savings. 

The CPML method maps Maxwell’s equation into a complex stretched coordinate space 

by making use of the complex frequency shifted (CFS) tensor. 

                            
0

pei
ei ei

ei

S
j




 
 


, 

0

pmi
mi mi

mi

S
j




 
 


, ,i x y z                         (3.25) 

      where eiS , miS are the stretched coordinate metrics, and pei and pmi are the electric 

and magnetic conductivities of the terminating media. By following the theory of 

CPML as described in Chapter 2, the CPML formulation for the 2-D LOD-NFDTD 

method for both the TE and TM cases are derived as follows. 

 

 

 

3.4.1 Derivation of CPML ABC of LOD-NFDTD for TE Case 
    For the explanation of the method for LOD-NFDTD CPML, here, we provide the 

updating equations for sub-steps 1 and 2 from (3.12) and (3.13) as follows:  

Sub-step 1: 
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3 32

3 1/ 2 3 1/ 2 1/ 2
1/ 2 , 1/ 2 1/ 2 , 1/ 2 1 1/ 2 , 1 1 1/ 2 ,2

1 1/ 2 , 1 1 1/ 2 , 1/ 2 , 1/ 22

| | | |

                              | | |
h

n n n n
i j i j i j i j

n n n
i j i j h i j

dH cH E E
du

d E E C
du  

  
      

    

  

  
         (3.26b) 

 



Chapter 3: Nonorthogonal LOD-FDTD Method for EM Scattering from 2-D Structures 

 

68 

 

Sub-step 2: 

 

 
2 21
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where  2 / ( ) (4 )eb t k j g t    
1

2/ ( ) (4 )
e

eC t k j g t du       

2 / ( ) (4 )md t k j g t     , 
3

1/ ( ) (4 )
h
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12 12
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1/2, 1/2 1/2, 1/2 1 1/2, 1 1 1/2,| | | |n n n n

h i j r h i j r i j i jb a E E  
                                    (3.28b)    

Unlike (3.12a) and (3.12b), (3.26a) and (3.26b) as well as (3.27a) and (3.27b) cannot be 

used for direct numerical calculation. Placing (3.26b) in (3.26a) and (3.27b) in (3.27a) 

yields the simultaneous linear equations (3.29) and (3.30) that result in the tri-diagonal 

matrix. 
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where 1 1
22 22( / )bd u u g    . Equations (3.29) and (3.30) are the simultaneous 

linear system with tri-diagonal matrix, which can be solved using approach A) as 

described in Section 2.3.2 of Chapter 2. However, 
32h and

12e  are discrete variables 

which may have non-zero values only in some CPML regions but are necessary to 

implement the absorbing boundary [2]. 

 

3.4.2 Derivation of CPML ABC of LOD-NFDTD for TM Case 
    The formulations of LOD-NFDTD CPML for the 2-D TM case are derived in the 

same way as in the case of the TE wave. The updating equations for both sub-steps 1 

and 2 are given next. 

Sub-step 1: 
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i j i j e i j

bE aE H H
du

b H H C
du  

  
      

    

  

  
              (3.31b) 

Sub-step 2: 

     
 

 
1 1 2

1 1 1 1 / 2 1 / 2 1 / 2
1 / 2 , 1 / 2 , 3 1 / 2 , 1 / 2 3 1 / 2 , 1 / 22

1 1 1 / 2
3 1 / 2 , 1 / 2 3 1 / 2 , 1 / 2 1 / 2 ,2

| | | |

              | | |
h

n n n n
i j i j i j i j

n n n
i j i j h i j

dH cH E E
d u

d E E C
d u  

   
     

  
    

  

  
        (3.32a) 

     

 

 
3 32

3 1 3 1/2 1/2 1/2
1/2, 1/2 1/2, 1/2 1 1/2, 1 1 1/2,2

1 1 1/2
1 1/2, 1 1 1/2, 1/2, 1/22

| | | |

                     | | |
e

n n n n
i j i j i j i j

n n n
i j i j e i j

bE aE H H
du

b H H C
du  

   
      

  
    

  

  
          (3.32b) 

where      
31 31

1/2
1/2, 1/2, 2 1/2, 1/2 2 1/2, 1/2| | | |n n n n

e i j r e i j r i j i jb a H H  
                                   (3.33a) 

                 
21 21

1/2
1/2, 1/2 1/2, 1/2 3 1/2, 1 3 1/2,| | | |n n n n

h i j r h i j r i j i jb a E E  
                                   (3.33b)                   

                                                   0( / ) ( / )s s s t
sc e                                                       (3.34a) 

                                    1 ,   ( , ,  or )
( )

s
s s

s s s s

d c s x y z
   

   


                       (3.34b) 
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                                             max 0| |
( )

m
s

s m

s s
s







                                                 (3.34c) 

                                                 0
max

| |( ) 1 ( 1)
m

s m

s ss 



                                     (3.34d) 

where  is the thickness of the PML absorber, 0s is the PML interface, m is the order of 

the polynomial. To avoid reflections between the computational domain and the CPML 

boundary due to the discontinuity, the losses due to the CPML must be made zero at the 

interfaces of the computational domain. The number of auxiliary equations is small 

which results in a higher computational efficiency for the non-orthogonal LOD-FDTD 

CPML. The reflection error of the LOD-NFDTD CPML increases with higher CFLN. 

Now, we perform the reflection test on the proposed CPML ABC, where the reflections 

are calculated from PML layers used by the scattered field obtained using plane wave 

scattering from a perfect electric conducting cylinder of radius 0.795λ. The 8 cell 

CPML region is extended 0.5 λ away from the surface of the scatterer. The cell size 

chosen for this problem is λ/10. To minimise the reflection error, the following 

parameters opt ( 1) / (150 ) 11.21 (S/m)m x     , 4m  , 
max opt0.7  (S/m)s   and  

max
15sk   are considered for the CPML region. The discrete variables 

21h and
31e  may 

have non-zero values only in some CPML regions but are necessary for implementing 

the absorbing boundary [2]. The observed scattered field is considered two cells away 

from the cylinder in y-direction. The reflection error is calculated using the following 

equations: 

                                          
3 3

3
error =  20 log 10

m ax
ref

ref

H H

H

 
 
 
 

                                (3.35) 

 

 

 

 

 

 

 

 
Fig. 3.6 Reflection error of the LOD-NFDTD CPML method 
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Fig. 3.6 shows the reflection error for different CFLN. It can be observed from the 

figure that error increases with the increase in CFLN due to dispersion. 

 

 

3.5 Near-Field to Far-Field Transformation for 2-D LOD-

NFDTD Method 
    The near-field to far-field (NF-FF) transformation algorithm is used to calculate the 

radar cross-section (RCS) of the scatterer due to an incident plane wave. In this case, an 

imaginary surface is first selected to enclose the electromagnetic object. The currents J   

and M on the surface are determined by E  and H fields computed from the LOD-

NFDTD method inside the computational domain. These currents are transformed into 

the frequency domain while being captured. After completing for all the time steps, the 

far field terms L  , L , N  and N  are calculated. These far field terms are calculated 

in the same way as given in [2]. Bistatic RCS can then be calculated using the following 

equation.  

                                         
2 2

0
08 in c

kR C S L N
P  


                                              (3.36) 

The incP can be calculated as: 

                                              2

0

1 ( )
2in c incP E 


                                                       (3.37) 

where ( )incE  is the discrete Fourier transform (DFT) of the incident electric field 

waveform, at the frequency for which RCS calculation is required. 

 

 

3.6 Pure Scattered Field Formulation for 2-D LOD-NFDTD 

Method 
    In this section, we present the pure scattered field formulation of the 2-D LOD-

NFDTD method. A schematic of the problem space where a plane wave interacts with 

the scatterer is shown in Fig. 3.7. To simulate a plane wave excitation in 2D LOD-

NFDTD, the problem space is divided into two regions, the total field region and the 

scattered field region. The vectorial sum of incident and scattered fields present within a 
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given space provide the total fields. The total fields satisfy Maxwell’s equation, which 

for a region free of current sources can be written as: 

                              *1total
total total

H E H
t





    


                                              (3.38a) 

                                1total
total total

E H E
t





   


                                            (3.38b) 

     The scattered field formulation for the LOD-NFDTD method for both TE and TM 

waves is given below. 

 

 

 

 

 

 

 

 

 

 
Fig. 3.7 Total field/scattered field region for 2-D problem space in LOD-NFDTD 

 

 

 

3.6.1 2-D TE Case 
    By applying the LOD principle (3.38a)-(3.38b), the scattered field formulation of 2-D 

LOD-NFDTD for the TE wave can be written using two sub-step procedures as follows: 

Sub-step 1: 

     
 

 

1 1/2 1
1/2, 1/ 2,

1/2 1/ 2
,3 1/2, 1/ 2 ,3 1/ 2, 1/ 22

,3 1/2, 1/2 ,3 1/ 2, 1/22

| |

                      | |

                              | |

            

n n
scat i j scat i j

n n
scat i j scat i j

n n
scat i j scat i j

E aE
b H H

du
b H H

du


 

 
   

   



 

 

1 1/2 1
1 1/2, 1 1/ 2,                                     | |n n

e eic inc i j e eip inc i jC E C E
  

       (3.39a) 
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3 1/ 2 3
1/2 , 1/ 2 1/ 2 , 1/2

1/ 2 1/ 2
,1 1/ 2 , 1 ,1 1/ 2,2

,1 1/ 2 , 1 ,1 1/ 2,2

| |

                     | |

                               ( | | )

              

n n
scat i j scat i j

n n
scat i j scat i j

n n
scat i j scat i j

H cH

d E E
du

d E E
du


   

 
  

  



 

 

3 1/ 2 3
3 1/ 2 , 1/ 2 3 1/2 , 1/ 2                            | |n n

h hic inc i j h hip inc i jC H C H
    

 (3.39b)          

Sub-step 2: 

        
 

 

2 1 2 1/ 2
, 1/ 2 , 1/ 2

1/ 2 1/ 2
,3 1/ 2 , 1/ 2 ,3 1/ 2 , 1/ 21

1 1
,3 1/ 2, 1/ 2 ,3 1/ 2 , 1/ 21

| |

                   | |

                           | |

            

n n
scat i j scat i j

n n
scat i j scat i j

n n
scat i j scat i j

E aE

b H H
du

b H H
du

 
 

 
   

 
   



 

 

2 1 2 1/ 2
2 , 1/ 2 2 , 1/ 2                              | |n n

e eic inc i j e eip inc i jC E C E 
  

             (3.40a)  

  

3 1 3 1/2
1/ 2, 1/ 2 1/2, 1/2

1/2 1/ 2 1 1
,2 , 1/ 2 ,2 1, 1/ 2 ,2 , 1/2 ,2 1, 1/ 21

3 1 3
3 1/2 , 1/2 3

| |

 | | | |

                        | |

n n
scat i j scat i j

n n n n
scat i j scat i j scat i j scat i j

n
h hic inc i j h hip inc i

H cH
d E E E E

du
C H C H

 
   

   
     


 



   

  1/ 2
1/ 2, 1/ 2

n
j


 

           (3.40b) 

where a ,b , c , d are the same as mentioned before, and  

0
1

(4( / ) )
(4 )

e
e eic

e

g t
C

t
  

 
  


 

,  0
1

(4( / ) )
(4 )

e
e eip

g t
C

t
  

 
  

 
 

 

0
3

(4( / ) )
(4 )

m
h hic

m

g t
C

t
  

 
  


 

0
3

(4( / ) )
(4 )

m
h hip

m

g t
C

t
  

 
  

 
 

 

For the 2-D TEz case, 3
3H H , 1E and 3H in equation (3.39a) are defined as 

synchronous variables since equation (3.39b) is not directly solved. 

      

 

1 1/2 1 1/2 1 1/2
11 1/2, 1 11 1/2, 11 1/2, 1

1 3 3
1/2, 1/ 2, 1/2 1/2, 1/ 22

1 1 1
11 1/2, 1 1/2, 1/2,

| (1 2 ) | |

| | |

         | | |

n n n
scat i j scat i j scat i j

n n n
scat i j scat i j scat i j

n n
scat i j scat i j scat i

E E E
bcaE H H
du

E E E

  



  
    

    

   

   

  

   
 

 

1
1/2, 1

3 3 1 1/2 1
1/2, 1/2 1/2, 1/2 1 1/2, 1 1/ 2,2

3 1/2 3
3 1/ 2, 1/2 3 1/2, 1/22

|

| | | |

                            | |

    

n n
j scat i j

n n n n
scat i j scat i j e eic inc i j e eip inc i j

n n
h hic inc i j h hip inc i j

E

b H H C E C E
du

b C H C H
du

 


     


   



   

 

 3 1/2 3
3 1/2, 1/ 2 3 1/ 2, 1/22                             | |n n

h hic inc i j h hip inc i j
b C H C H

du

    

          (3.41) 
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Placing  (3.39b) in (3.39a), and following [23], the desired covariant field components 

are averaged by the known contra-variant fields to give a second order accurate 

approximation, leading to the simultaneous linear equation (3.41) with tri-diagonal 

matrix where 2 2
11 1 1( / )bd u u g    . Similarly, from (3.40a) and (3.40b) of sub-

step 2, eliminating 1
,3 1/2, 1/2|nscat i jH 

  , the simultaneous linear system with tri-diagonal matrix 

is obtained as follows: 

 

2 1 2 1 2 1
22 1, 1/ 2 22 , 1/ 2 22 1, 1/ 2

2 1/ 2 1/ 2 1/ 2
, 1/ 2 ,3 1/ 2 , 1/ 2 ,3 1/ 2 , 1/ 21

2 1/ 2 2 1/ 2 2
22 1, 1/ 2 , 1/ 2

| (1 2 ) | |

| | |

| |

n n n
scat i j scat i j scat i j

n n n
scat i j scat i j scat i j

n n
scat i j scat i j scat

E E E

bcaE H H
du

E E E

  



  
    

  
    

 
  

   

  

   
 

1/ 2 2 1/ 2
, 1/ 2 1, 1/ 2

1/ 2 1/ 2 2 1
,3 1/ 2 , 1/ 2 ,3 1/ 2 , 1/ 2 2 , 1/ 21

2 1/ 2 3 1 3
2 , 1/ 2 3 1/ 2 , 1/ 2 31

| |

      | | |

            | | |

n n
i j scat i j

n n n
scat i j scat i j e eic inc i j

n n
e eip inc i j h hic inc i j h hip inc i

E

b H H C E
du

bC E C H C H
du

 
  

  
    

 
  



  

   

 

1/ 2
1/ 2 , 1/ 2

3 1 3 1/ 2
3 1/ 2, 1/ 2 3 1/ 2 , 1/ 21                         | |

n
j

n n
h hic inc i j h hip inc i j

b C H C H
du


 

 
    

(3.42) 

 

 

3.6.2 2-D TM Case 
    The scattered field formulations for the 2-D TM wave are derived in the same way 

for the TE wave. The updating equations for sub-steps 1 and 2 are given next. 

Sub-step 1: 
2 1/ 2 2

, 1 / 2 , 1 / 2

1 / 2 1 / 2
,3 1 / 2 , 1 / 2 ,3 1 / 2 , 1 / 21

,3 1 / 2 , 1 / 2 ,3 1 / 2 , 1 / 2

| |

         { ( | | )

                           ( | | )}

                          

n n
sca t i j s ca t i j

n n
sc a t i j s c a t i j

n n
sc a t i j s c a t i j

H c H
d E E

d u
E E


 

 
   

   



 

 
2 1/ 2 2

2 , 1 / 2 2 , 1 / 2               | |n n
h h ic in c i j h h ip in c i jC H C H

  

 (3.43a)  

    

3 1/ 2 3
1/ 2 , 1/ 2 1/ 2, 1/ 2

1/ 2 1/ 2
,2 1, 1/ 2 ,2 , 1/ 21

,2 1, 1/ 2 ,2 , 1/ 2

| |

            {( | | )

                            ( | | )}

                          

n n
scat i j scat i j

n n
scat i j scat i j

n n
scat i j scat i j

E aE

b H H
du

H H


   

 
  

  



 

 
3 1/ 2 3

3 1/ 2 , 1/ 2 3 1/ 2, 1/ 2             | |n n
e eic inc i j e eip inc i jC E C E

    

    (3.43b) 

 



Chapter 3: Nonorthogonal LOD-FDTD Method for EM Scattering from 2-D Structures 

 

75 

 

Sub-step 2: 

         

 

 

1 1 1 1/ 2
1/ 2 , 1/ 2 ,

1/ 2 1/ 2
,3 1/ 2 , 1/ 2 ,3 1/ 2 , 1/ 22

1 1/ 2
,3 1/ 2 , 1/ 2 ,3 1/ 2 , 1/ 22

| |

                 | |

                          | |

             

n n
scat i j scat i j

n n
scat i j sca t i j

n n
scat i j scat i j

H cH
d E E

du
d E E

du

 
 

 
   

 
   



 

 

1 1/ 2 1
1/ 2 , 1/ 2 ,                   | |n n

hxhic inc i j hxhip inc i jC H C H
  

   (3.44a) 

        

 

 

3 1 3 1/2
1/2, 1/2 1/2, 1/2

1/2 1/2
,1 1/2, 1 ,1 1/2,2

1 1
,1 1/2, 1 ,1 1/2,2

| |

           | |

                  | |

                             

n n
scat i j scat i j

n n
scat i j scat i j

n n
scat i j scat i j

ez

E aE
b H H

du
b H H

du
C

 
   

 
  

 
  



 

 

 3 1 3 1/2
1/2, 1/2 1/2, 1/2| |n n

eic inc i j ezeip inc i jE C E 
   

             (3.44b) 

Since equation (3.43a) of sub-step 1 is not directly solved, by placing (3.43b) in (3.43a), 

and as per [23], the desired covariant field components are averaged by the known 

contra-variant fields to give a second order accurate approximation, leading to the 

following equation. 
2 1/ 2 2 1/ 2 2 1 / 2

2 2 1 , 1 / 2 2 2 , 1 / 2 2 2 1 , 1 / 2

2
, 1 / 2 , 3 1 / 2 , 1 / 2 ,3 1 / 2 , 1 / 21

2 2 2
2 2 1 , 1 / 2 , 1 / 2 , 1 / 2

| (1 2 ) | |

| ( | | )

| | |

n n n
sc a t i j sc a t i j s c a t i j

n n n
sc a t i j s ca t i j s ca t i j

n n n
sc a t i j s c a t i j s c a t i j s

H H H

a dc H E E
d u

H H H H

  



  
    

    

   

   

  

    

 

2
1 , 1 / 2

,3 1 / 2 , 1 / 2 ,3 1 / 2 , 1 / 21

2 1 / 2 2
2 , 1 / 2 2 , 1 / 2

3 1 / 2 3
3 1 / 2 , 1 / 2 3 1 / 2 , 1 / 21

3 1 /
3 1 / 2 , 1 / 21

|

( | | )  

| |

| |

|

n
c a t i j

n n
sc a t i j s c a t i j

n n
h h ic in c i j h h ip in c i j

n n
e e ic in c i j e eip in c i j

n
e e ic in c i j

d E E
d u

C H C H
d C E C E

d u
d C E

d u

 

   


 


   


 

 

 

 

  2 3
3 1/ 2 , 1 / 2|n

e e ip in c i jC E  

(3.45) 

A similar simultaneous linear equation with tri-diagonal matrix is obtained from sub-

step 2. The simultaneous linear equation with tri-diagonal matrix can be solved using 

approach A) as described in Section 2.3.2 in Chapter 2. For a given incident wave, the 

above equations can be used to calculate the scattered field. The total field can be 

obtained by adding the scattered field to the incident field. Equations (3.39)-(3.45) are 
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suitable for any incident wave involving magnetic as well as non-magnetic materials. 

Note that incident fields are applied only in the internal region. In the CPML region 

only scattered fields exist, which are absorbed by CPML. In the next section, stability 

analysis of the 2-D LOD-NFDTD method will be described. 

 

 

3.7 Stability Analysis of the 2-D LOD-NFDTD Method 
    To check the stability of the proposed approach, (3.12), (3.13) and other field 

components are expressed in matrix form following Von Neumann [166] method. 

Updating the fields from the nth to the (n+1/2) th time step, we have  

                                             1/2
1| . |n n X M X                                                           (3.46a) 

Similarly, when the fields are updated from the 1/ 2n  to 1n  th time step, we have  

                                            1 1/2
2| . |n n X M X                                                         (3.46b) 

where the composite vector X has three field components. For the TE case, the 

following result can be obtained: 

                                               1 2 3| |  |  |
Tn n n nE E H   X                                          (3.47) 

where T  denotes a transpose and both 1M and 2M  are 3×3 matrices that will be 

addressed next. It is assumed that the spatial frequencies can be expressed by 1k  and 2k  

along the directions of 1u  and 2u  respectively. The numerical stability of this method is 

studied using the approach by Von Neumann [166]. In the spatial spectral domain, a 2-

D TE field component can be written as 

                                        1 2
0 1 2( , , ) | exp[ ( )]n

qn i j J k i u k j u    X X                       (3.48) 

where 1J   and q=1 and 2 for the first and second procedures, respectively. 

Substituting (3.48) into (3.12a) and (3.12b), we have 

                      
2

1 1 2

1
2

1 1 1

-1                              0               (2 / )( +1)
0                                 -1                          0

 - (2 / )( +1)    0                             -1  

J b u S

J b u S

 


 

 
 
 
  

1
0
2
0
3
0

0

E

E

H

 
 

 
 
 

                 (3.49) 

where sin( / 2)q
q qS k u  for 1, 2q  . To achieve a non-trivial solution, the determinant 

of the matrix in (3.49) has to be zero, leading to 

                                                      2
1 12 0P Q                                                   (3.50) 



Chapter 3: Nonorthogonal LOD-FDTD Method for EM Scattering from 2-D Structures 

 

77 

 

where 
2 2 2 2 2

21 (4( ) / ) sin ( / 2)P t g u u k u       

2 2 2 2 2
21 (4( ) / ) sin ( / 2)Q t g u u k u       

The solution of (3.50) is given by  

                                                  1 (1 1) /J PQ P                                                (3.51) 

Similarly from the sub-step 2, we obtain  

                                                 2 (1 1) /J PQ Q                                                 (3.52) 

From (3.51) and (3.52), we can write  

                                                      1 2| | . | | 1                                                             (3.53) 

This proves that the proposed 2-D LOD-NFDTD algorithm is inherently stable. 

Numerically, we also demonstrate the stability and accuracy of the proposed LOD-

NFDTD algorithm. Consider a 2-D PEC cylinder excited by a sine modulated cosine 

pulse. The radius of the cylinder is 0.15 m. The cell size chosen for this problem 

is /10 . The time step size for the cylinder is calculated by the 

relation C FLt CFLN t   . For the 2D LOD-NFDTD method, the CFL condition is 

given below.  

                               
2

1 2
0

1, 1

min  || / ( ) ||i j
ij lm

i j

C t J u u g u u
 

                                  (3.54) 

    where J is the Jacobian [157] and ( , )l m are grid locations. The symbol ijg can be 

calculated using (3.3). The observation point is recorded at ten cells away from the outer 

surface of the conductor.  
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Fig. 3.8 (a) Time domain Hz recorded at the observation point (10 cells away from the outer surface of 

PEC conductor) for CFLN=2 (b) Recorded Hz at the observation point for CFLN=8 

 

Fig. 3.8 (a) shows the time domain waveforms of the magnetic field recorded at the 

observation point for CFLN=2. More simulations were carried out for higher CFLN 

values to study the stability and the accuracy of the LOD-NFDTD algorithm. Fig. 3.8 

(b) shows the time domain waveforms of the magnetic field recorded at the observation 

point for CFLN=8 with 12000 time steps. From Figs. 3.8 (a) and (b), it can be observed 

that the LOD-NFDTD is stable. 

 

 

3.8 Dispersion Analysis of the 2-D LOD-NFDTD Method 
    The numerical dispersion effects exist regardless of the coordinate system and are a 

consequence of replacing the differential equations with difference equations. Equation 

(3.12a)-(3.12b) and (3.13a)-(3.13b) are expressed in matrix form to quantify the 

numerical dispersion for the proposed method. To simplify the problem, a lossless 

medium is considered. Updating the fields from the n to 1/ 2n th time step, we have 

                                           1/2
1| . |n n X M X                                                               (3.55) 

Similarly, when the fields are updated from the 1/ 2n to 1n  th time step, we have  

                                            1 1/2
2| . |n n X M X                                                           (3.56) 

In the 2-D LOD-NFDTD method, the relationship between the field components at n  

and 1n  time steps can be obtained by (3.55) and (3.56), leading to 

                                       1
1 2| . . | . |n n n  X M M X M X                                              (3.57) 
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To obtain the analytical expression for the dispersion, the matrix form is expressed as 

                                                | 0nM.X                                                                (3.58) 

where M is a 3×3 matrix to be derived as follows. Initially, a trial solution of the fields 

is assumed which is a monochromatic wave with angular frequency   

                         1 2
0 1 2( , , ) | exp[ ( )]nn i j J n t k i u k j u     X X                              (3.59) 

where n  is the time index and i , j  are space indexes. Insertion of (3.59) into (3.12a)-

(3.12b), and (3.13a)-(3.13b), then after simplifying the resultant equations, the 

following equations are obtained. 

                       
2

1 3 2 2
2

| .sin( ) | .sin( ).( 1)
2 2

J t
n n k ut tE H e

u g





 

  


                     (3.60a) 

                       
1

2 31 2
1

| .sin( ) .sin( ).{1 }. |
2 2

J t
n nk ut tE e H

u g




 
 


                       (3.60b) 

                 

2
3 1 ( /2) )11 2

2

1
2 /222 1

1

.| sin( ) | sin( )( . 1)
2 2

. | .sin( )( 1)
2

n n J t

n J t

t g k utH E e
u g

tg k uE e
u g










 



 
  



 
 



                           (3.60c) 

Finally, the matrix M can be obtained as follows 

                            

-j t2
2

j t2
2

11 22

Wsin( )            0               (1 e  )
2
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       By equating the determinant of the matrix M  to zero, the dispersion relationship 

can be obtained as: 

                    2 1 2 1 2
22 11 22 11

1 1sin ( ) ( ) cos( )( )
2 2

t tW W W W 
   

 
 

                                (3.62) 

     Equation (3.62) is also applicable to the TM case. The simplest case for the TE wave 

with Cartesian mesh is considered with 1 xk k , 
2 yk k , 1u x   and 2u y   . 
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Equation (3.62) will be converted into the theoretical dispersion relation as t  , 1u , 
2u  tend to zero:  

                                    22 2 2/x yk k c k                                                            (3.63) 

     The dispersion error of the LOD-NFDTD increases with the increase in CFLN. The 

numerical dispersion characteristics of the proposed LOD-NFDTD method are derived 

analytically as above. Now, we will discuss the numerical analysis of the dispersion 

error of the proposed method. From Fig. 3.9, it can be observed that dispersion errors 

increase with the increasing CFLN. Dispersion characteristics also change significantly 

due to the non-orthogonality of the grid chosen. The CFL limit and the effect of grid 

size on dispersion error are studied here in detail following [128]. The LOD-NFDTD 

method allows larger time steps than the standard explicit FDTD method. The effect of 

the CFL number (CFLN) and grid size on dispersion error will be described below. 

a) Effect of different CFLN  on numerical dispersion 

 Fig. 3.9 shows the normalised phase velocity with respect to incident wave angle φ for 

different CFL numbers. From Fig. 3.9 it can be observed that the numerical dispersion 

of the LOD-NFDTD method increases with increasing CFLN. 

 

 

 
 

 

 

 

 

 

 

 

 
Fig. 3.9 Phase velocity versus wave angle  

   

 

It can be seen from Fig. 3.10 that when CFLN tends towards zero, the numerical 

dispersion improves and approaches the analytical dispersion result.  
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b) Effect of  number of cells per wavelength on numerical dispersion 

Fig. 3.11 shows the normalised phase velocity with respect to wave angle φ for different 

number of cells per wavelength. From Fig. 3.11, it can be seen that the dispersion error 

of the LOD-NFDTD method at higher CFLN can be reduced by increasing the number 

of cells per wavelength. In brief, a larger CFLN can be used by increasing the number 

of cell per wavelength to minimise dispersion error. Although a greater number of cells 

per wavelength increases the computational burden for the standard explicit FDTD 

compared to the LOD-NFDTD method, the computational cost in the proposed method 

can be compensated for using the larger CFLN. This approach has also been used with 

the 3-D LOD-FDTD method to minimise the dispersion error. 

 

 

 

 

 

 

 

 

 
Fig. 3.10 Normalised phase velocity vs. wave angle for different CFLN 

 

 

 

 

 

 

 

 

 
 

Fig. 3.11 Normalised phase velocity vs. wave angle for different number of cell per wavelength 
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3.9 ADI-NFDTD Method 
    To make comparison with the proposed LOD-NFDTD method, the ADI-NFDTD [70] 

has also been implemented for the same non-orthogonal meshes to calculate RCS for 

the 2-D cylindrical structures considered here. The CPML absorbing boundary 

conditions for ADI-NFDTD have also been derived and used to truncate the 

computational domain. The main aim is to draw a comparison between the LOD-

NFDTD and ADI-NFDTD methods. The equation for the ADI-NFDTD CPML will be 

provided in Appendix A. 

 

 

3.10 Computational Results on Scattering from 2-D Electro-

magnetic Structures 
3.10.1     EM Scattering from Circular Conducting, Dielectric and 

Elliptic Dielectric Cylinders 
    In this section, computational results obtained using the proposed method are 

described for EM scattering problems in both the frequency domain and the time 

domain. First, we consider plane wave scattering from a PEC cylinder as shown in Fig. 

3.12 (a). The non-orthogonal grid for the conducting circular cylinder is shown in Fig. 

3.12 (b). The nonorthogonal meshes for this conducting cylinder are generated 

following the formulation as described in Section 3.3. The 8 layer CPML region is 

extended 0.5  away from the surface of the scatterer. The cell size chosen for this 

problem is /10 and the same cell size is used. 
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Fig. 3.12 (a) Plane wave incidence on a conducting cylinder (b) Non-orthogonal mesh for the 2-D 

conducting circular cylinder 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.13 (a) Bistatic scattering for CFLN=5, 8 (b) Comparison of bistatic scattering for CFLN=8 among 

different techniques for the circular conducting cylinder (radius 1.6λ) for TEz case 
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Fig. 3.13 (a) shows the results of bistatic radar cross section for a circular conducting 

cylinder of radius 1.6λ for the TEz wave for different CFLN=5, 8 and Fig. 3.13 (b) 

shows the comparison of the RCS for the same cylinder obtained using LOD-NFDTD, 

ADI-NFDTD and Mie series. Now, we present transient scattering from the circular 

conducting cylinder illuminated by a Gaussian plane wave using the LOD-NFDTD 

method. The results are compared with the data obtained from the literature as well as 

the results obtained using the ADI-NFDTD method. The incident field is a Gaussian 

plane wave of the form as: 

                                
2

0 0
4 4 ˆ( , ) exp .inc t ct ct

TT 

          
E r E r k                        (3.64) 

where c is the velocity of propagation in the external medium, k̂ is a unit vector in the 

direction of propagation of the incident wave, T  is the pulse width of the Gaussian 

pulse, and at 0t t the Gaussian pulse reaches its maximum value. The results shown 

here were obtained with 0 1.0E  , 2.0 LMT  and 0 3.0 LMct  . Note that 1 light metre 

(LM) is the unit of time taken by the electromagnetic wave to travel 1.0 m distance in 

space. Fig. 3.14 (a)-(b) shows the transient response obtained using LOD-NFDTD for 

CFLN=2 and 10 compared with ADI-NFDTD when the perfect conducting cylinder of 

radius 1.6λ for TEz wave is illuminated by a Gaussian pulse. From Figs. 3.13-3.14, it 

can be seen that the results on scattered fields and the transient scattering at higher 

CFLN agree well with the results obtained from ADI-NFDTD and Mie series for TEz 

waves. It can also be observed that the agreement between the LOD-NFDTD and ADI-

NFDTD methods is fairly good both at early time and late time response.  
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Fig. 3.14 (a)-(b) Transient scattering at spatial location (0.05m, 0.15 m)  for different CFLN for TE case 

 

Similarly, the proposed method is also used for computing the scattering from the 

circular conducting cylinder for the TMz case in both the time and frequency domains. 

 

 

 

 

 

 

 

 
 

Fig. 3.15 Bistatic scattering for the PEC cylinder (radius of 0.795λ) for CFLN=8 for TMz case 
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Fig. 3.16 (a)-(b) Transient scattering at spatial location (0.05m, 0.15 m) for the circular conducting 

cylinder (radius of 0.795λ) for TM case for different CFLN for TMz case 

 

Fig. 3.15 shows the bistatic radar cross section (RCS) for the TMz wave obtained using 

the LOD-NFDTD method for CFLN= 8 and compared with the results obtained by 

ADI-NFDTD as well as Mie series. Fig. 3.16 (a)-(b) shows the magnitude of the 

normalised transient current on a circular conducting cylinder of radius 0.795λ. From 

Figs. 3.15-3.16, it can be seen that the results on scattered fields and transient current at 

higher CFLN agree well with the results obtained from ADI-NFDTD and Mie series 

[156] for TMz case. Now we analyse the bistatic scattering from a circular dielectric 

cylinder. The non-orthogonal mesh for the dielectric cylinder is shown Fig. 3.17 (a). 

The parameters of the cylinder are 0.3a  , 2 .0r  , 300  M H zf  . The 

computed bistatic RCS for the dielectric cylinder for CFLN= 8 for both the TE and TM 

cases are shown in Fig. 3.17 (b). Figs. 3.18 (a)-(b) and 3.19 (a)-(b) show the transient 

response at spatial location (0.01m, 0.1 m) for CFLN=10 and 12 respectively for the TE 

and TM cases for Gaussian pulse incidence. 
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Fig. 3.17 (a) Non-orthogonal mesh and (b) bistatic scattering from circular dielectric cylinder (radius 

0.3λ)  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.18 (a)-(b) Transient scattering at spatial location (0.1 m, 0.1 m) for different CFLN for TE case 
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Fig. 3.19 (a)-(b) Transient scattering at spatial location (0.01m, 0.1 m) for different CFLN for TM case 

  

    The results are compared with the results obtained using the ADI-NFDTD method. 

From Fig. 3.17 (b), it can be seen that the results obtained by LOD-NFDTD with higher 

CFLN agrees reasonably well with the results available in the literature [158] as well as 

with the results obtained by the ADI-NFDTD method. As far as the transient response 

of the dielectric cylinder is concerned, it can also be observed that the agreement 

between LOD-NFDTD and ADI-NFDTD methods is fairly good both at early and late 

times. To further validate the proposed LOD-NFDTD method for EM scattering 

problems, we consider a dielectric elliptic cylinder with larger curvature. The non-

orthogonal mesh for the dielectric elliptic cylinder is shown in Fig. 3.20 (a). The major 

and minor axes considered for the cylinders are 0 .2a   , 0 .15b  , respectively 

and other parameters are 2r   and 1r  , where  is the wavelength of the incident 

wave. The computed bistatic RCS is shown in Fig. 3.20 (b).  
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Fig. 3.20 (a) Non-orthogonal mesh (b) Bistatic scattering from the dielectric elliptic cylinder for TM 

incidence 

 

As can be observed from the Fig. 3.20 (b), the results obtained by the LOD-NFDTD 

method with higher CFLN agrees reasonably well with the published result [159]. 

 

 

3.10.2     EM Scattering from Dielectric Coated Conducting and Two 

Layered Elliptic Cylinders 
    To validate the proposed method for a coated cylinder, a dielectric coated circular 

conducting cylinder is considered. Our numerical results on scattering from the 

dielectric coated circular conducting cylinder will be compared with the existing results 

in the literature obtained by using analytical approximations [160]. The parameters of 

the dielectric coated conducting cylinders are 50  m ma  , 100  m mb  , and 

9.8r  . Fig. 3.21 (a) shows the non-orthogonal grids which are used to discretise the 

geometry. 
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Fig. 3.21 (a) Non-orthogonal mesh, (b) Bistatic scattering from circular dielectric coated conducting 

cylinder for CFLN=5, 8 for both TM and TE cases 

 

The bistatic scattering of the coated cylinder for TE and TM waves is shown in Fig. 

3.21 (b).  
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Fig. 3.22 (a)-(b) Transient scattering at spatial location (10 mm, 110 mm) at different CFLN for TE case 

The results of the proposed LOD-NFDTD method agrees reasonably well with the 

available analytical results provided in [160] as well as with the results obtained by the 

ADI-NFDTD method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.23 (a)-(b) Transient scattering at spatial location (10 mm, 110 mm) at different CFLN for TM case 
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      Figs. 3.22 (a)-(b) and 3.23 (a)-(b) show the transient scattering from the coated 

cylinder and the results are compared with the result obtained by the ADI-NFDTD 

method for both the TM and TE cases respectively. To further validate the proposed 

LOD-NFDTD method for EM scattering problems, we consider a two layered dielectric 

elliptic cylinder with larger radius of curvature. The parameters of the cylinder are 

chosen to be same as those given in [161].  The first and second layers of the dielectric 

elliptic cylinder are characterised by 1 2 .0r  , 2 1 .4r   respectively. The non-

orthogonal mesh for the two layered dielectric elliptic cylinder is shown in Fig. 3.24 (a). 

The computed bistatic RCS is shown in Fig. 3.24 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.24 (a) Non-orthogonal mesh, (b) Bistatic scattering from the two layered elliptic dielectric cylinder 

for CFLN=8 for TM wave. 

   

   Fig. 3.25 (a)-(b) shows the transient scattering from the two layered dielectric elliptic 

cylinder and the results are compared with the result obtained by the ADI-NFDTD 

method. From Fig. 3.24 (b), it can be seen that the result obtained by the LOD-NFDTD 

method agrees reasonably well with the analytical result. From Fig. 3.25 (a)-(b), it can 

be observed that the time domain solutions of the layered elliptic cylinder are stable in 

early time.   
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Fig. 3.25 (a)-(b) Transient scattering at point ‘T’ on the two layer dielectric elliptic cylinder at different 

CFLN for TM case for CFLN=4, 10 

 

 

3.10.3 EM Scattering from Overfilled Dielectric Cavity Structures 
    To validate our proposed method for solving EM scattering for more complex mixed 

structures, a 2-D overfilled dielectric cavity embedded in the ground plane is 

considered. This type of structure is highly applicable for the design of cavity backed 

conformal antennas for civil and military use, and the characterisation of radar cross 

section (RCS) of vehicles with grooves [162]. The mixed-dielectric-conducting 

structure in the form of a 2-D overfilled dielectric cavity is embedded in a grounded 

bowl-like PEC structure [162] which is shown in Fig. 3.26. The bowl-like PEC circular 

cylindrical cavity structure is filled with a circular dielectric cylinder of radius 0.5 m 

having permittivity ε1=4-i.  
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Fig. 3.26 Non-orthogonal mesh of the overfilled dielectric cavity 

 

A dielectric semi-circular cylinder of radius 1m and permittivity ε2=1.2 encloses the 

cavity as shown in Fig 3.26 [162]. The non-orthogonal mesh employed is shown in Fig. 

3.26. 
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Fig. 3.27 (a)-(c) RCS of the overfilled dielectric cavity for TE incidence wave for different CFLN 

       

     Fig. 3.27 (a)-(c) shows the bistatic radar cross section (RCS) for TEz incidence 

obtained using the LOD-NFDTD method for different CFLN and compared with the 

results obtained by the ADI-NFDTD as well as the results published in [162].  
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Fig. 3.28 (a)-(d) RCS of the overfilled dielectric cavity for TM incidence for different CFLN 

 

 

Fig. 3.28 (a)-(d) shows the results on a bistatic radar cross section (RCS) of overfilled 

cavity for TMz wave. From Figs. 3.27-3.28, it can be seen that the results obtained from 

the proposed method agree reasonably well with the results obtained from the ADI-

NFDTD method as well as the available analytical results provided in [163]. Using the 

analytical solution provided in [162], [163] for the TE and TM cases as reference, the 

maximum errors of the LOD-NFDTD and ADI-NFDTD methods for different CFLN 

are calculated as shown in Table 3.1 and Table 3.2. From the comparison of maximum 

errors, it can be concluded that the proposed LOD-NFDTD method provides less error 

compared to conventional ADI-NFDTD method.  
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Table 3.1 

Comparison of the maximum errors in RCS calculation of overfilled dielectric cavity 

using LOD-NFDTD and ADI-NFDTD for TEz incidence 

CFLN  % Maximum error of 

LOD-NFDTD Method 

% Maximum error of ADI-

NFDTD Method 

2 0.015 0.027 

4 0.018 0.032 

6 0.108 0.119 

8 0.345 0.425 

10 0.401 0.512 

 

 

Table 3.2 

Comparison of the maximum errors in RCS calculation of overfilled dielectric cavity 

using LOD-NFDTD and ADI-NFDTD for TMz incidence 

CFLN  % Maximum error of 

LOD-NFDTD Method 

% Maximum error of ADI-

NFDTD Method 

2 0.002 0.008 

4 0.017 0.025 

6 0.104 0.151 

8 0.345 0.515 

10 0.423 0.672 
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Fig. 3.29 (a)-(d) Transient scattering from the structure shown in Fig. 3.26 at spatial location (-0.4 m, 

0.1m) obtained using LOD-NFDTD method at different CFLN for TE incidence 
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The transient scattering from the overfilled cavity as obtained by the proposed LOD-

NFDTD method is compared with the results obtained using the ADI-NFDTD methods 

as shown in Fig. 3.29 (a)-(d). 

 

 

3.10.4     EM Scattering from Overfilled Cavity for Different Dielectric 

Filling  
      We include EM scattering for an overfilled cavity having different dielectric filling 

using the LOD-NFDTD method. Referring to Fig. 3.26, in this example we assume 

ε1=4-i and ε2=2. Fig. 3.30 (a)-(b) shows the results of RCS for this case. Here, we 

consider only TE incidence but vary CFLN. The results indicate the suitability of the 

proposed method for analysing the scattering from complex mixed structures.   

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.30 (a)-(b) RCS of the overfilled cavity for different dielectric filling for TEz case 

(a) 

(b) 

100 120 140 160 180
-30

-20

-10

0

10

Observation angle (degree)

R
CS

 (d
Bm

)

 

 
LOD-NFDTD CFLN=10

ADI-NFDTD CFLN=10

100 120 140 160 180

-30

-20

-10

0

10

Observation angle (degree)

RC
S 

(d
Bm

)

 

 

LOD-NFDTD CFLN=4

ADI-NFDTD CFLN=4



Chapter 3: Nonorthogonal LOD-FDTD Method for EM Scattering from 2-D Structures 

 

100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.31 (a)-(b) Transient scattering at spatial location (-0.4 m, 0.1m) from the overfilled cavity with 

different dielectric filling obtained using LOD-NFDTD method. TE illumination considered 

     

    We have computed the results using the LOD-NFDTD method on transient scattering 

from the overfilled cavity (refer to Fig. 3.26) when it is filled with different dielectric 

media ε1=4-i and ε2=2. The results for different CFLN are shown in Fig. 3.31 (a)-(b). 

 

 

3.10.5 EM Scattering from 2-D Bent PEC Cavity Structures 
    The next complex problem that we investigate is EM scattering using the LOD-

NFDTD method at 10 GHz from the bent PEC cavity structure shown in Fig. 3.32 (a). 

The non-orthogonal mesh of the structure is shown in Fig. 3.32 (b). The bistatic radar 
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cross section of the bent cavity for both TE and TM incidence are shown in Figs. 3.33 

(a)-(b) and 3.34 (a)-(b) respectively. From these figures, it can be observed that the 

results obtained using the LOD-NFDTD method are in good agreement with the results 

obtained using the ADI-NFDTD method and also with the available published results 

that are obtained by the MoM/EFIE approaches [164]. Using the analytical solution 

provided in [164] for the TM case as a reference, the maximum errors of the LOD-

NFDTD and ADI-NFDTD method for different CFLN are calculated and tabulated in 

Table 3.3. 

 

 

 

 

 

   

 

 

 

 

 

 

 

 
Fig. 3.32 Geometry of the bent cavity (unit in cm) (b) Non-orthogonal meshes of the bent cavity structure 
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Fig. 3.33 (a)-(b) RCS obtained using LOD-NFDTD method at different CFLN for perpendicular 

polarisation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3.34 (a)-(b) RCS obtained using LOD-NFDTD method at different CFLN for parallel polarisation 
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From the comparison of maximum errors, it is seen that the proposed LOD-NFDTD 

method offers lesser error compared to ADI-NFDTD method. 

 

 

Table 3.3 

Comparison of maximum errors for calculating of RCS of bent cavity using LOD-

NFDTD and ADI-NFDTD for TMz wave 

CFLN  % Maximum error of 

LOD-NFDTD Method 

% Maximum error of 

ADI-NFDTD Method 

2 0.003 0.007 

4 0.011 0.023 

6 0.114 0.155 

8 0.364 0.612 

12 0.762 0.982 

 

 

Figs. 3.35 (a)-(b) and 3.36 (a)-(b) show the transient scattering at point ‘P’ and the 

results are compared with the results obtained by the ADI-NFDTD method. From Fig. 

3.35 (a)-(b), it can be seen that the solution is stable in the early time, but small ripples 

can be observed in the late time at location ‘P’ where there is transition from the straight 

region of the cavity to the bent region. For the larger time steps, however, these ripples 

disappear fully as can be observed from the Fig. 3.35 (b) and 3.36 (b). 

 

 

 

 

 

 

 

 

 

 
(a) 

0 5 10 15
-300

-200

-100

0

100

200

Time (LM)

H
3 (m

A
/m

)

 

 
LOD-NFDTD CFLN=4

ADI-NFDTD CFLN=4



Chapter 3: Nonorthogonal LOD-FDTD Method for EM Scattering from 2-D Structures 

 

104 

 

 

 

 

 

 

 

 
 

 

Fig. 3.35 (a)-(b) Transient scattering at point ‘P’ on the bent cavity obtained using LOD-NFDTD method 

at different CFLN for TE incidence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.36 (a)-(b) Transient scattering at point ‘P’ on the bent cavity obtained using LOD-NFDTD method 

at different CFLN for TM incidence 
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3.11 Discussion 
    This chapter deals with the investigation of a new implicit nonorthogonal mesh LOD-

FDTD (LOD-NFDTD) for solving 2-D EM scattering problems. This technique 

overcomes some of the limitations of the standard explicit FDTD and ADI-NFDTD 

methods. A theoretical study of the LOD-NFDTD has been performed for both TE and 

TM cases. It is found that nonorthogonal meshes are more advantageous for modelling 

objects with curved features and can reduce computational burden than using 

orthogonal meshes. CPML absorbing boundary conditions for the LOD-NFDTD 

method have also been developed to improve the efficiency. A new pure scattered field 

formulation of the 2-D LOD-NFDTD has also been presented and the stability and 

dispersion of the method have been analysed.  

    The new LOD-NFDTD has been applied to EM scattering from circular conducting, 

dielectric, coated conducting and layered elliptic cylinders as well as overfilled 

dielectric cavity and bent PEC cavity structures. From the analysis, it is observed that 

the proposed method is unconditionally stable and the numerical results correspond 

closely to the results available in the literature as well as with the ADI-NFDTD results.  

Compared with ADI-NFDTD, the proposed method is characterised by a lighter 

calculation burden and higher accuracy.  
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Chapter 4 
 

 

Rotationally Symmetric LOD-FDTD with Dispersion 

Control Parameters 
 

 

4.1 Introduction 
    The purpose of this chapter is to present a simplified LOD-FDTD algorithm to 

analyse various rotationally symmetric (RS) three-dimensional (3-D) structures with 

improved dispersion control. 3-D microwave structures with RS are commonly 

encountered in many electromagnetic and wireless applications in the form of antennas, 

cylindrical cavity, and microwave filters [29]–[30], [178]. However, among the most 

popular numerical techniques for analysing the RS resonant structures, the mode 

matching method, integral equation technique, and the finite element method are well 

known [2], [29]–[30]. The RS standard explicit finite-difference time domain (RS-

FDTD) method has also been used effectively for treating electromagnetic problems in 

the time domain, involving structures with circular symmetry [29]–[33]. However, 

explicit RS-FDTD suffers from the CFL stability constraint and as a result, finer grid 

sizes and smaller time steps are required to retain stability which causes a significant 

increase in computational time. To eliminate the dependence on the CFL stability 

constraint, an unconditionally stable ADI-FDTD method has been developed in the 

cylindrical coordinate system [73], but the cylindrical ADI-FDTD presented in [73] 

requires a much larger memory because it solves problems in a three dimensional 

domain. To overcome this difficulty, the BOR/(RS)-ADI-FDTD method was developed 

in [74]. To compute the radiation or scattering from the complex body of revolution, 

PML was presented for the RS-ADI-FDTD [75] method. The RS-ADI-FDTD method 

was then extended to dispersive media in [76]. However, the RS-ADI-FDTD may 

require more arithmetic operations and shows large dispersion error at larger time steps.  
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    To overcome some of these difficulties in analysing rotationally symmetric 

structures, RS locally one dimensional FDTD (RS-LOD-FDTD) was developed in 

[115]. The usefulness of the RS-LOD-FDTD method was investigated through the 

analysis of circular cavity resonators with and without a dielectric disc, along with the 

explicit RS-FDTD and RS-ADI-FDTD. However, only the analysis of the circular 

cavity resonator is given in [115], and no ABCs were mentioned with the RS-LOD-

FDTD method. The RS-LOD-FDTD algorithm was also extended for Debye dispersive 

media in [116]. The RS-LOD-FDTD based on fundamental scheme was also introduced 

in [117]. 

    However, RS-LOD-FDTD exhibits dispersion error at larger time steps similar to RS-

ADI-FDTD for analysing resonant structures [115]. To improve the dispersion error and 

reduce execution time, dispersion control parameters with RS-LOD-FDTD have been 

introduced in this chapter, which we call D-RS-LOD-FDTD. To date, only conventional 

ABCs such as MURs and PML ABC have been proposed with the RS-LOD-FDTD 

method in the literature [115]–[117] for modelling bodies with RS. It has been 

established that employing conventional ABCs such as PML etc. do not lead to 

improved solution accuracies; hence, there is a need to develop an efficient technique 

with a CPML ABC for analysing RS structures using D-RS-LOD-FDTD method. 

    In this chapter, we first present conventional RS-LOD-FDTD and CPML ABC for 

RS-LOD-FDTD in Sections 4.2, and 4.3 respectively for both the TE0n and TM0n 

polarization. Next, the theory of D-RS-LOD-FDTD for both TE0n and TM0n cases is 

discussed in Section 4.4. The formulation of the CPML ABC for the D-RS-LOD-FDTD 

for TE0n and TM0n cases is presented in Sub-sections 4.5.1 and 4.5.2. Methods to obtain 

S-parameters and specific absorption rate (SAR) using the D-RS-LOD-FDTD methods 

are provided in Sections 4.6 and 4.7. Computational results on various RS structures are 

demonstrated in Section 4.8. Performance analysis of the D-RS-LOD-FDTD CPML is 

discussed in Section 4.9. Finally, a brief discussion is provided in Section 4.10.   
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4.2 Conventional Rotationally Symmetric LOD-FDTD for 

TE0n and TM0n Mode Analysis  
4.2.1 Maxwell’s Curl Equations in Cylindrical Coordinates 
    The problems considered in this chapter are symmetric about an axis. RS structures 

allow the analytical extraction of the known azimuthal behaviour of the fields around 

the axis of symmetry and the projection of the original three-dimensional (3-D) problem 

to a numerically solvable two-dimensional (2-D) plane. However, under this condition, 

original three-dimensional (3-D) problems can be represented in two and a half 

dimensional (2.5-D) forms. In a 2.5-D problem, there are six components of 

electromagnetic field distributed in the  ,r z space. The starting point for the derivation 

of the RS-LOD-FDTD method is Maxwell’s equations in cylindrical coordinates, which 

include magnetic and electrical conductivity for a source free region of space that is 

linear, isotropic and non-dispersive is given by: 

                                                 
E E H
t

 
   


                                             (4.1a) 

                                             m
H H E
t

 


  


                                               (4.1b) 

The fields in circularly symmetric structures can be expanded in a Fourier series of sine 

and cosine form as: 

                                            
0

( cos sin )u v
m

E E m E m 




                                     (4.2a) 

                                         
0

( cos sin )u v
m

H H m H m 




                                     (4.2b) 

Substituting (4.2) into (4.1), we obtain the following equations: 

                         
^

, , , ,v u u v u v u v
m H H E E
r t
  

      


                                     (4.3a) 

                    
^

, , , ,v u u v u v m u v
m E E H H
r t
  

       


                                    (4.3b) 

Expanding these vector curl equations (4.3) into six coupled scalar equations in the 

cylindrical coordinate system  , ,r z gives: 

                                      1r z
z r

HE H E
t z

 
 

 
  

  
                                           (4.4a) 
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E H H E
t z r


 
  

  
  

                                              (4.4b) 
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                                                (4.4e) 

                                1 1 ( )z r
m z
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                                   (4.4f) 

The rotationally symmetric TE0n and TM0n equations can be derived from the equations 

(4.4a)-(4.4f). In the RS-LOD-FDTD method, it is assumed that the angular variation of 

the electromagnetic fields has either sin ( )m or cos( )m  which may be factored out of 

Maxwell’s equations. As a result, the fields at any arbitrary 0  plane may be related 

to the corresponding field value in the reference   plane, viz. 0  . This enables us to 

reduce the original 3-D problem to an equivalent 2-D problem, with reference to say the 

0   plane.  We begin analysing using the 3-D cylindrical coordinate system as shown 

in Fig. 4.1 (a), and project it onto the r-z plane to obtain a 2-D lattice as shown in Fig. 

4.1 (b). Note that in the 2-D cell ( zE , rH ) and ( rE , zH ) share the same positions. 

According to the LOD-FDTD principle [20]-[22] described in chapter 2, the field 

components for the RS-LOD-FDTD method can thus be written as follows. For 

simplicity, we will examine the case for 0m  , so that the RS-LOD-FDTD equations 

are derived as: 

First step: 

                                             1/ 2n n
r rE E                                                                 (4.5a) 

                  
1/ 2 1/ 2 1/ 21

/ 2 2

n n n n n n
r r

E E E E H H
t z z

   
 

      
      

                          (4.5b) 
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/ 2 2
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Fig. 4.1 (a) A dielectric loaded cavity defined in 3-D cylindrical co-ordinates and (b) its projection onto 

the r-z plane for the analysis of rotationally symmetric TE0n and TM0n modes. 
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        (4.6f) 

For 0m  , we must pay attention to handling the singular point at 0r  . Instead of 

(4.5c), we adopt the following equation in accordance with LOD implementation: 

                                              1/ 2 1/24n n n
z z

tE E H
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The derivation for the TE0n and TM0n modes of the RS-LOD-FDTD method are given 

next. 

 

 

4.2.2     Formulation of RS LOD-FDTD Algorithm for TE0n Mode 

Analysis 
    Fig. 4.1 (b) shows the projection of a 3-D rotationally symmetric object onto the r-z 

plane. Assume that the fields may be expressed as a linear combination of TE0n modes. 

The resulting fields will have no variation with angular variable   and hence may be 

expressed as: 

      ( , , )rH r z t ,                                 ( , , )zH r z t ,                          ( , , )E r z t                  (4.8)  

Note that in (4.8), the fields in three dimensions are represented by only two spatial 

dimensions. For the TE mode the equation of the RS-LOD-FDTD method can be 

derived as follows: 

Sub-step 1: 
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The equations of sub-step 1 cannot be solved directly, so substituting (4.9b) into (4.9a) 

yields the simultaneous linear equations (4.11) for 1/2|nE
  that result in the tri-diagonal 

matrix which can be solved implicitly, and (4.9b) can then be explicitly solved 

for 1/2|nrH   .   
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      (4.11) 

Similarly, in sub-step 2 we substitute (4.10c) into (4.10a) and implicitly solve the 

resultant tri-diagonal system for 1|nE
 , and then explicitly solve (4.10c) for 1|nzH  . The 

derivations for the TM0n mode of RS-LOD-FDTD are discussed next. 

 

 

4.2.3     Formulation of RS LOD-FDTD Algorithm for TM0n Mode 

Analysis 
    The equations for RS-LOD-FDTD for the TM case are derived in the same way as 

that of the TE case. The electric and magnetic field components for sub-steps 1 and 2 

are shown next. 

Sub-step 1: 
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Here, also for 0m  , we must pay attention to handling the singular point at 0r  . 

Instead of (4.12b), we adopt the following equation in accordance with LOD 

implementation. 
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The other magnetic field component can be obtained as follows: 
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Sub-step 2: 
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 Similar to the TE case, placing (4.12d) into (4.12b) yields the simultaneous linear 

equations that result in the tri-diagonal matrix in sub-step 1. Similarly, substituting 

(4.13c) into (4.13a) results in tri-diagonal matrix equations in sub-step 2. The CPML 

absorbing boundary conditions with RS-LOD-FDTD are formulated below. 

 

 

4.3 CPML ABC for RS-LOD-FDTD Method 
    It is known that CPML ABC is highly effective in absorbing evanescent waves with 

long time signature and can be placed closer to objects within the problem space to gain 

time and memory savings. Chapters 2 and 3 discussed in detail the development of 

CPML ABCs for both the Cartesian and Curvilinear space lattices. This section 

describes the CPML ABCs to terminate the rotational symmetric (RS)-LOD-FDTD grid 
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in axial and radial directions. The theory discussed in this section will later be used to 

analyse RS structures.  

 

 

4.3.1 Formulation of CPML ABC for TE0n RS-LOD-FDTD 
    Similar to the CPML ABC for Cartesian space lattice, and following the same 

procedure described in Chapters 2, we can derive the CPML equations for TE0n RS-

LOD-FDTD as follows.  

Sub-step 1: 
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            (4.14b) 

 Sub-step 2: 
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         (4.15b) 

where 1
e z e hr

ez

C zC  
  , 1

e r e hz
er

C rC  
  .  

                    1/2
1/2, 1/2, 1/2, 1/2 1/2, 1/2| | | |n n n n

e z i j r e z i j r r i j r i jb a H H   
                             (4.16a) 

                    1/2
1/2, 1/2 1/2, 1/2 1/2, 1 1/2,| | | |n n n n

hrz i j r hrz i j r i j i jb a E E   
                             (4.16b) 

    Similar equations can be derived for 1/2
, 1/2|ne r i j 
 , and 1/2

1/2, 1/2|nhzr i j 
  . Note that the 

discrete coefficients rb and ra are nonzero in the PML regions. These coefficients are 
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computed using similar equations to those presented in Section 2.4 of Chapter 2. With 

the given form of updating equation coefficients, the electric and magnetic field 

components of (4.14) and (4.15) are updated using the first three terms on the right side 

in the entire domain. Then 1/2,|ne z i j  , 1/2, 1/2|nhrz i j   , 1/2
, 1/2|ne r i j 
  and  1/2

1/2, 1/2|nhzr i j 
   are 

calculated using their previous time step values and the new values for the fields. The 

same procedure also applies even for updating the other electric and magnetic field 

components by using their respective updating equations and CPML parameters.  It 

should be noted that equations (4.14) and (4.15) have similar form as those given in 

Section 2.4 of Chapter 2 and Section 3.4 of Chapter 3, but the subscript notations have 

been modified to indicate the electric and magnetic parameters separately. This notation 

facilitates the establishment of a connection between the parameters in the formulations 

and their counterparts in program implementation. Fig. 4.2 shows the structure of the 2-

D TE0n rotationally symmetric LOD-FDTD grid with CPML ABCs, which can be used 

even for TM0n cases. 

    The theoretical reflection coefficient, conductivity profile and its implementation 

have been described in Section 2.4 of Chapter 2 and are not repeated here. To validate 

the equations derived for the TE0n rotationally symmetric CPML, we consider a free 

space domain as shown in Fig. 4.3. The CPML parameters for RS-LOD-FDTD are 

considered to be same as those mentioned in Chapters 3 and 4.  

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 4.2 A rotational symmetric LOD-FDTD grid for TE0n mode enclosed by CPML ABC.  
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Fig. 4.3 Simulation model for free space 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.4 Reflection error for RS-LOD-FDTD TE0n case in free space model 
 

The overall computational domain is defined by 40 40 cells with 1 mmr z    . An 

axial symmetric boundary condition is applied to the left boundary; the other boundaries 

are terminated by 10 CPML layers. The source located at grid point (0, 20) is a 

differentiated Gaussian pulse given by  

                                           2
0 0

2( ) 2 expr

t t t t
H t

 

  
   

 
 

                            (4.17) 

The observation point is placed close to the CPML boundary at grid point (30, 30).  The 

reflection error is calculated as follows. 
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where ( )refH t is the reference result calculated in a grid large enough that any reflection 

from the boundaries is isolated. Fig. 4.4 shows the calculated reflection error for 

CFLN=2, 8. From the figure, it is clearly seen that a lower reflection error can be 

obtained for lower CFLN. It is also seen that more evanescent energy is absorbed by the 

proposed CPML.  

 

 

4.3.2 Formulation of CPML ABC for TM0n RS-LOD-FDTD 
    The derivation of CPML for the TM0n RS-LOD-FDTD is similar to that of the TE0n 

case presented in Section 4.3.1. Similar to the TE0n case, the CPML updating equation 

for the TM0n RS-LOD-FDTD method can be written for the sub-steps 1 and 2 as 

follows: 

Sub-step 1: 
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              (4.19b) 

 Sub-step 2: 
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             (4.20a) 
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           (4.20b) 

where 1
ezr ezh

er

C rC 
  , 1

h r h ez
er

C rC  
  , 1

erz erh
ez

C zC 
  , 1

h z h er
ez
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                    1/2
, 1/2 , 1/2 1/2, 1/2 1/2, 1/2| | | |n n n n

ezr i j r ezr i j r i j i jb a H H   
                        (4.21a) 

                    1/2
1/2, 1/2 1/2, 1/2 1, 1/2 , 1/2| | | |n n n n

h r i j r h r i j r z i j z i jb a E E   
                       (4.21b) 

Similar equations can be derived for 1/2
1/2,|nerz i j 
 and 1/2

1/2, 1/2|nh z i j 
  . Note that the discrete 

coefficients rb  and ra  are nonzero in the PML regions. These coefficients are computed 

using the equations similar to those presented in Section 4 of Chapter 2. The procedure 

is also similar to that of TE0n case and the form of updating equation coefficients are 

also similar,  where the electric and magnetic field components of (4.19) and (4.20) are 

updated using the first three terms on the right side in the entire domain. Then 

1/2,|ne z i j  , 1/2, 1/2|nhrz i j   , 1/2
, 1/2|ne r i j 
  and  1/2

1/2, 1/2|nhzr i j 
   are calculated using their previous 

time step values and the new values of fields. To validate the CPML formulation for the 

TM0n RS-LOD-FDTD, we consider the same grid size, discretisation and excitation as 

those used in Section 4.3.1.  Similar to the TE0n case, the reflection error for the TM0n 

case is calculated by the following equation. 

 

 

 

 

 

 

 

 

 

 
Fig.4.5 Reflection error for RS-LOD-FDTD TM0n with CPML incorporated 
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                               (4.22) 

where ( )refE t  is the reference result calculated in a grid large enough that any reflection 

from the boundaries is isolated. Fig. 4.5 shows the reflection error for the TM0n of 

CPML RS-LOD-FDTD for various CFLN.  
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4.4 Dispersion Control RS LOD-FDT(D-RS-LODFDTD) for 

TE0n and TM0n Mode Analysis 
    Although the conventional RS-LOD-FDTD method has been applied to analyse 

different types of resonant structures, but the numerical efficiency of the conventional 

RS-LOD-FDTD method is still limited by the numerical dispersion error [112]–[114]. 

The numerical phase velocity increases when the time step size becomes much larger 

than the CFL limit, and thus prohibits its applicability to electrically small objects with 

fine features. To reduce the numerical dispersion error, several methods viz. use of 

higher-order spatial difference equation [113], the introduction of artificial anisotropy 

[127] and use of parameter optimisation methods [128]–[129] etc. have been reported in 

the literature for unconditionally stable FDTD methods. 

    In this chapter, we employ dispersion control approach [112] to improve the 

numerical dispersion performance of the RS-LOD-FDTD. Only two additional 

coefficient parameters are added to the RS-LOD-FDTD equations and hence resultant 

additional computational burden is negligible. The unconditional stability of the method 

is investigated using numerical examples. The numerical dispersion relations are 

theoretically derived first and then analysed. The Maxwell’s equation in an isotropic 

and lossless medium with dispersion control parameter can be written as follows: 

                                                     [ ] [ ]A B
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U U                                                  (4.23) 
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and 
T

, , , , ,z zE E E H H H      U  

where ‘T’ denotes the matrix transpose. In the above equations, two new dispersion 

control parameters  and  are introduced to improve the numerical dispersion. The 

dispersion control parameters are determined by  

                              
r
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k Δrsin 2

r
c t





   

 

   ,      
z

tan kc t 2
k Δzsin 2

z
c t





   

 

                       (4.24)      

where k k cosr  , k k sinz    0  or 90  and k is the free space wavenumber. 

From (4.24), it can be observed that the dispersion control parameters mainly depend on 

the cell size and the time steps. So, by selecting the proper value of the cell size and 

time step, we obtain the dispersion control parameters which are used to improve the 

dispersion. For the special case of 1   , the proposed method reduces to the 

original RS-LOD-FDTD method. Based on the original RS-LOD-FDTD method which 

has been described in Section 4.2, (4.23) can be written as follows. 

Sub-step 1: 
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Sub-step 2: 
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                   (4.26f) 

The updating equations for the TE0n and TM0n modes of the D-RS-LOD-FDTD method 

are given next. 

 

4.4.1     Formulation of D-RS-LOD-FDTD Algorithm for TE0n Mode 

Analysis 
    In this section, the derivation of dispersion control TE0n RS-LOD-FDTD is presented. 

Following the formulation of the conventional RS-LOD-FDTD method for the TE0n 

mode presented in Section 4.2.1, the updating equation for the TE0n mode of the D-RS-

LOD-FDTD method can be derived as follows. 
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 (4.28c)                   

where two dispersion control parameters  and  are incorporated to reduce the 

numerical dispersion. For 1   , in the above equations (4.27)-(4.28) reduce to those 

of the conventional TE0n RS-LOD-FDTD method. Since the equations of sub-step 1 

(4.27b)-(4.27c) cannot be solved directly, substituting (4.27b) into (4.27a) yields the 

simultaneous linear equations for 1/2|nE
  that result in the tri-diagonal matrix. This can 

be solved implicitly and (4.27b) can then be explicitly solved for 1/2|nrH  .  Similarly, in 

sub-step 2 we substitute (4.28c) into (4.28a) and implicitly solve the resultant tri-

diagonal system for 1|nE
 , and then explicitly solve (4.28c) for 1|nzH  .  The formulation 

of the D- RS-LOD-FDTD for the TM0n is described next. 

 

 

4.4.2     Formulation of D-RS-LOD-FDTD Algorithm for TM0n Mode 

Analysis 
    The derivation of the dispersion control RS-LOD-FDTD TM0n is similar to that of the 

TE0n case presented in Section 4.4.1. Similar to the TE0n case, the updating equation for 

the TM0n D-RS-LOD-FDTD method can be derived for the sub-steps 1 and 2 as 

follows: 
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Sub-step1: 

                                           1/ 2
, 1/ 2 , 1/ 2| |n n

r i j r i jE E
                                                     (4.29a) 

      

 

1/ 2
, 1/ 2 , 1/2

1/2 1/ 2
1/ 2 1/ 2, 1/ 2 1/2 1/ 2, 1/ 2

1/2 1/2, 1/ 2 1/ 2 1/2, 1/ 2

| |

                   | |
2

                              | |
2

n n
z i j z i j

n n
i i j i i j

i

n n
i i j i i j

i

E E

t r H r H
r r

t r H r H
r r

 

 








 

 
     

     




 




 


               (4.29b) 

For 0m  , we must pay attention to handling the singular point at 0r  . Instead of 

(4.29b), we adopt the following equation in accordance with LOD implementation. 
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The other magnetic field component can be written as follows: 
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Sub-step 2: 
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         (4.30c) 

Similar to the TE0n case, the equations of sub-step 1 (4.29b)-(4.29d) cannot be solved 

directly. Placing (4.29d) into (4.29b) yields the simultaneous linear equations for 
1/2|nzE   that result in the tri-diagonal matrix in the sub-step 1 and equation (4.29d) can 

be solved explicitly. Similarly, by substituting (4.30c) into (4.30a) the simultaneous 

linear equations for 1|nzE   that result in the tri-diagonal matrix in sub-step 2 and (4.30c) 

can be solved explicitly.   
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4.5 Development of CPML ABC for D-RS-LOD-FDTD 

Method 
4.5.1 Formulation of CPML ABC for TE0n D-RS-LOD-FDTD 
    Similar to the CPML ABC for the conventional RS-LOD-FDTD method, and 

following the procedure described in Chapters 2 and 3, we can derive the CPML 

equations for TE0n D-RS-LOD-FDTD as follows.  

Sub-step 1: 
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 Sub-step 2: 
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                    1/2
1/2, 1/2 1/2, 1/2 1/2, 1 1/2,| | | |n n n n

hrz i j r hrz i j r i j i jb a E E   
                       (4.33b) 

Similar equation can be derived for 1/2
, 1/2|ne r i j 
 and 1/2

1/2, 1/2|nhzr i j 
  . Note that the discrete 

coefficient rb and ra are nonzero in the PML regions. These coefficients are computed 

using the procedures presented in Section 2.4 of Chapter 2. 
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4.5.2 Formulation of CPML ABC for TM0n D-RS-LOD-FDTD 
    The derivation of CPML for the TM0n D-RS-LOD-FDTD is similar to that of the 

TE0n case presented in Section 4.5.1. Similar to the TE0n case, the CPML updating 

equation for the TM0n D-RS-LOD-FDTD method can be written for sub-steps 1 and 2 

as follows: 

Sub-step 1: 
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                       1/2
1/2, 1/2 1/2, 1/2 1, 1/2 , 1/2| | | |n n n n

h r i j r h r i j r z i j z i jb a E E   
                          (4.36b) 

Similar equations can be derived for 1/2
1/2,|nerz i j 
  and 1/2

1/2, 1/2|nh z i j 
  . Note that the discrete 

coefficients rb and ra are nonzero in the PML regions. These coefficients are computed 

using the method similar to that presented in Section 2.4 of Chapter 2. To further 
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validate the performance of the CPML, for the same configuration, the global ( 2L norm) 

error for rE has been calculated as 

                                              
2maxmax

2

1 1
( , ) ( , )

ji
ref

r r
i j

L E i j E i j
 

                                    (4.37) 

where ref
rE is the field of the reference solution. Fig. 4.6 shows the 2L norm error 

calculated using 10 layers CPML with the parameters given above. 

 

 

 

 

 

 

 

 

 

Fig. 4.6 2L norm error as a function of time step for a 40×40 cell TM0n D-RS-LOD-FDTD simulation 

having a 10 layer CPML 

 

 

 

4.6 S-Parameter Extraction Technique for RS-LOD-FDTD 
    S-parameters are based on the concept of power wave. The incident and reflected 

power waves ia and ib associated with port i are defined as 
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where, iV  and iI are the voltage and the current flowing into the thi port of a junction 

and iZ is the impedance looking out from the thi port. In general iZ is complex; however, 

in most of microwave applications it is considered to be equal to 50Ω. The S-parameters 

matrix can then be expressed as 
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By definition, the subscripts mn indicate output port number m , and input port 

number n , of the scattering parameter mnS . If only port n is excited while all other ports 

are terminated by matched loads, the output power wave at port ,m mb , and the input 

power wave at port ,n na , can be used to calculate mnS using 

                                                                m
mn

n

bS
a

                                                     (4.40) 

This technique can be applied for D-RS-LOD-FDTD or any LOD-FDTD method to 

obtain the S-parameters for a microwave multiport device. 

 

 

4.7 Specific Absorption Rate (SAR) Calculation for RS-

LOD-FDTD 
    The specific absorption rate (SAR) is a measure of energy absorption rate for 

biological media exposed to electromagnetic radiation. It can be computed using RS-

LOD-FDTD coupled with the discrete Fourier transform (DFT) using the following 

equation: 

                                                  2 2SAR r zE E


                                               (4.41) 

where E is the Fourier transform of the recorded electric field components and  is the 

conductivity, and  is the density of the tissue or phantom of surrounding material. The 

SAR has an overall unit of W/kg. 

 

 

4.8 Numerical Analysis of RS Microwave Structures Using 

RS-LOD-FDTD and D-RS-LOD-FDTD 
    To show the validity of the proposed RS-LOD-FDTD and D-RS-LOD-FDTD 

approaches, the resonant frequencies of a circular cavity with a dielectric disc (εr 
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=35.74) placed at the centre of the cavity is first analysed. The cross section of the 

structure is shown in Fig. 4.7 (a). The size of the spatial meshes employed for the D-RS-

LOD-FDTD and RS-LOD-FDTD are 0.17272r  mm and 0.1524z   mm. Fig. 4.7 

(b) shows the strength E versus frequency, in which CFLN=2, 5 and 8 are used for RS-

LOD-FDTD method. Table 4.1 shows a comparison of the results computed using RS-

LOD-FDTD and the results obtained with RS-FDTD. It can be observed from the Table 

4.1 and Fig. 4.7 (b) that the result calculated using RS-LOD-FDTD agrees reasonably 

well with the results obtained using RS-FDTD method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 (a) Cross section of the cylindrical cavity with a dielectric disk filling (εr =35.74 and dimension 

in cm), (b) Resonant frequency estimation for dielectric loaded cavity for TE01 at CFLN=2, 5 and 8 
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Table 4.1 Comparison of TE01 resonant frequencies of dielectric loaded cavity εr=35.74 

Mode Resonant frequency by 

RS-LOD-FDTD 

Resonant frequency 

by RS-FDTD 

% Error 

TE01 CFLN=2 CFLN=8 3.439 CFLN=2 CFLN=8 

3.436 3.451 0.087 0. 349 

 

 

 

 

 

 

 

 

 

Fig. 4.8 Resonant frequency estimation for dielectric loaded cavity for TE01 at CFLN=2, 5 and 8 with D-

RS-LOD-FDTD 

 

Table 4.2 Comparison of TE01 resonant frequencies of dielectric loaded cavity εr=35.74 

Mode Resonant frequency by 

D-RS-LOD-FDTD 

Resonant 

frequency by RS-

FDTD 

% Error 

TE01 CFLN=2 CFLN=8 3.439 CFLN=2 CFLN=8 

3.44 3.448 0.029 0.262 

 

However, it can also be observed from Fig. 4.7 (b) that the results obtained by RS-

LOD-FDTD deviates with an increase in CFLN. The % error calculation from Table 4.1 

also shows that the computed resonant frequency of the DR using RS-LOD-FDTD 

varies for larger CFLN. However, to improve the results, the strength E is computed 
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using dispersion control (D)-RS-LOD-FDTD as shown in Fig. 4.8 in which the control 

parameters are α=1.045 and γ=1.0346 for CFLN=5 and α=1.084 and γ=1.0915 for 

CFLN=8 are considered. For CFLN=5, the response improves well compared with the 

result obtained by RS-FDTD. Even though CFLN=8 is used, the response shows a good 

correspondence to the RS-FDTD result. Table 4.2 shows the % error calculations with 

D-RS-LOD-FDTD which also provides the improvement compared to the calculated 

error with RS-LOD-FDTD as shown in Table 4.1. 

    Next, the accuracy of the dispersion control (D)-RS-LOD-FDTD method is 

investigated through the analysis of the open tip monopole (OTM) antenna as shown in 

Fig. 4.9. The result is compared with that obtained by conventional RS-LOD-FDTD as 

well as with the measured results available in the literature. The configuration of the 

monopole antenna inside the 3-D computational domain in cylindrical coordinates is 

shown in Fig. 4.9 (a). Fig. 4.9 (b) shows the projection of the 3-D rotationally 

symmetric object onto the r-z plane. The dimensions of the open tip monopole antenna 

are given in [167]. The cross sectional view of the OTM antenna for the simulation 

model is shown in Fig. 4.10. The open tip monopole antenna is immersed in 0.9% saline 

solution which has a dielectric constant of εr=75 and conductivity of σ=2.81 S/m at 2.45 

GHz.  

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4.9 (a) A monopole antenna inside the 3-D computational domain in cylindrical coordinates, (b) its 

projection onto r-z plane for the analysis 

 

(a) (b) 
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Fig. 4.10 D-RS-LOD-FDTD simulation model of the OTM antenna in normal saline 

 

 

Table 4.3 OTM antenna parameter dimensions (in mm) 

r1 r2 L1 

0.511 2.159 13 

 

 

The parameters used to model the OTM antenna using D-RS-LOD-FDTD and CPML 

are given in Table 4.3. The S-parameters for the antenna are extracted from time-

domain data using the modal extraction technique [167]. Fig. 4.11 (a)-(b) shows the 

computed S-parameters using RS-LOD-FDTD-CPML for different CFLN and RS-

FDTD for open tip antenna as a function of frequency. For RS-FDTD, the time step 

chosen is the upper limit determined by the CFL condition. CFLN represents the CFL 

number defined by Δt/ΔtCFL. Next, the SAR is also computed using RS-LOD-FDTD 

coupled with the discrete Fourier transform (DFT) using (4.41). The normalised SAR 

computed at a distance of 1.5 mmr  from the antenna is plotted for OTM antenna in 

Fig. 4.12. The result compares quite well with the result obtained using RS-FDTD 

method. It can be seen from Fig. 4.11 (a) that good agreement is obtained over a wide 

frequency range between the calculated and published measured values, thus validating 

the theoretical model. The 13 mm OTM is well matched (S11 < -20 dB) around 2.45 

GHz. 
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Fig. 4.11 (a) Calculated and measured reflection coefficients of the open tip monopole antenna (b) 

calculated reflection coefficients of the open tip monopole antenna at different CFLN 

 

 

 

 

 

 

 

 

 
Fig. 4.12 Computed SAR of OTM antenna using RS-LOD-FDTD for CFLN=2, 6, 10  
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From Fig. 4.11 (b), it is seen that S-parameter obtained by conventional RS-LOD-

FDTD gradually shifts toward larger frequency with an increase in CFLN. Similarly, 

the computed SAR of the OTM antenna as shown in Fig. 4.12 by conventional RS-

LOD-FDTD gradually shifts with an increase in CFLN. The accuracy degradation is 

created by the numerical dispersion error caused by the large CFLN; therefore, the 

conventional RS-LOD-FDTD can suffer from dispersion error when modelling antennas 

such as open tip monopole.  

    Now we will demonstrate the advantages of the proposed D-RS-LOD-FDTD. The 

calculated return loss and SAR from the OTM antenna using D-RS-LOD-FDTD CPML 

are plotted in Figs. 4.13 and 4.14 in which the control parameters used are α=1.0256 

and γ=1.0256 for CFLN=6 and α=1.064 and γ=1.0725 for CFLN=10. For CFLN=6, the 

response agrees well with the result obtained by conventional RS-FDTD.  

 

 

 

 

 

 

 

 
 

Fig. 4.13 Reflection coefficients of the open tip monopole antenna using D-RS-LOD-FDTD 

 

 

 

 

 

 

 

 
Fig. 4.14 Computed SAR of the open tip monopole antenna by D-RS-LOD-FDTD 
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Table 4.4 Comparison of computational time for computing return loss  

CFLN CPU Time (Sec) 

D-RS-LOD-FDTD RS-LOD-FDTD 

2 100 110 

4 70 85 

 

    Even though CFLN=10 is used, the response shows a close agreement with explicit 

RS-FDTD result. The computation time of the D-RS-LOD-FDTD method is shown in 

Table 4.4 compared with the computation time of RS-LOD-FDTD. As is shown, the 

computational time for D-RS-LOD-FDTD for CFLN=4 is reduced to 20% of the time of 

the conventional RS-LOD-FDTD. To further validate the proposed method, we analyse 

an expanded tip wire (ETW) antenna by the RS-LOD-FDTD and D-RS-LOD-FDTD 

methods. The configuration, structure and the parameters of the expanded tip wire 

antenna are shown in Fig. 4.15 (a), (b) and in Table 4.5. The antenna is constructed by 

modifying the shield of the coaxial cable and connecting an appropriate metallic tip to 

the inner conductor so that the antenna becomes an integral part of the cable. A coaxial 

choke is also placed near the antenna/cable junction. More description regarding this 

antenna is provided in [168]. The antenna is immersed in a myocardial (heart) tissue 

equivalent phantom. The myocardial tissue equivalent phantom has a measured 

permittivity εr=57 and the loss tangent is δ=0.244 at 2.45 GHz.  
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Fig. 4.15 (a) Structure of the ETW antenna (b) D-RS-LOD-FDTD simulation model of the ETW antenna 

in the tissue equivalent phantom 

 

Table 4.5 ETW antenna parameter dimensions (in mm) 

r1 r2 r3 T1 T2 L1 TL=Lt C1 Coffset 

0.255 0.816 1.071 0.816 0.255 8 1 15 7.5 
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Fig. 4.16 (a) Simulated and measured ETW antenna reflection coefficient (b) Computed return loss from 

ETW antenna at higher CFLN 

 

   The computed return loss compared with the measured return loss when the ETW 

antenna is immersed in a tissue equivalent phantom is shown in Fig. 4.16 (a)-(b).It can 

be observed from Fig. 4.16 (a) that the computed return loss by both RS-FDTD and RS-

LOD-FDTD agrees well with the measured value [168], and at the resonant frequency 

of 2.45 GHz, both show lowest possible return loss. The computed S-parameters from 

the ETW antenna at larger CFLN are plotted in Fig. 4.16 (b). Similar to the OTM 

antenna in Fig. 4.16 (b), the response shifts toward larger frequency as CFLN is 

increased.  The specific absorption rate (SAR) from the ETW antenna has also been 

calculated by the proposed method. Fig. 4.17 (a) shows the computed SAR from RS-

LOD-FDTD compared with the measured value [168].  
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Fig. 4.17 (a) Normalised SAR at 1.5 mm away from the surface of the ETW antenna (b) Computed 

normalised SAR from the ETW antenna at larger CFLN 

     

    It can be observed from Fig. 4.17 (a) that the SAR values along the surface of the 

catheter are very low, indicating that when the antenna is attached to catheter then the 

heating on the catheter surface will be minimum. Fig. 4.17 (b) shows the calculated 

SAR from the ETW antenna at higher CFLN.  The computed SAR of the ETW antenna 

by conventional RS-LOD-FDTD gradually shifts with an increase in CFLN indicating 

the dispersion effect. Since the return loss and SAR obtained by conventional RS-LOD-

FDTD gradually shifts toward a larger frequency with an increase in CFLN, we need 

method to reduce the dispersion. Now we model the antenna using D-RS-LOD-FDTD 

and the results obtained on return loss and SAR are depicted in Figs. 4.18 and 4.19.  

 

 

 

 

 

 

 

 

 

 
Fig. 4.18 Computed return loss from ETW antenna at higher CFLN by D-RS-LOD-FDTD 
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Fig. 4.19 Computed SAR from ETW antenna at higher CFLN by D-RS-LOD-FDTD 

 

The control parameters used are α=1.0256 and γ=1.0256 for CFLN=6 and α=1.064 and 

γ=1.0725 for CFLN=10. From Figs. 4.18 and 4.19, it can be observed that the response 

of the ETW antenna agrees well with the result obtained by explicit RS-FDTD for 

CFLN=6. Even for CFLN=10, the response shows a close agreement with RS-FDTD 

result. The computation time required for D-RS-LOD-FDTD and RS-LOD-FDTD 

methods are shown in Table 4.6. As is shown, the computational time required for the 

conventional RS-LOD-FDTD at CFLN=2 for calculating return loss is almost the same 

as D-RS-LOD-FDTD, but when higher CFLN=6 and 10 are used the computational 

times required for D-RS-LOD-FDTD are reduced to 15% and 30.33%  respectively 

compared that required for conventional RS-LOD-FDTD. 

 

Table 4.6 

Comparison of computational time for calculating returns loss by different methods 

with larger CFLN 

CFLN  CPU Time (Sec) 

D-RS-LOD-FDTD RS-LOD-FDTD 

2 145 150 

4 134 143 

6 105 121 

10 75 100 
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4.9 Discussion 
    In this chapter, the conventional RS-LOD-FDTD for both TE and TM cases were 

first presented. Subsequently, the CPML ABC for the RS-LOD-FDTD was developed. 

Next, to reduce the dispersion and to improve the computational efficiency of the 

conventional RS-LOD-FDTD method, dispersion control (D)-RS-LOD-FDTD was 

developed. CPML ABC for D-RS-LOD-FDTD was also presented. Various rotationally 

symmetric structures such as resonators, open tip monopole antenna as well as ETW 

antennas were analyzed by the proposed method to demonstrate the validation. From the 

calculated S-parameters and SAR values, it can be observed that the results obtained by 

D-RS-LOD-FDTD CPML agree well with the results obtained by RS-FDTD as well as 

with the measured results in the literature. 

    The computational performances of the proposed D-RS-LOD-FDTD method in terms 

of relative error and execution time have also been presented. The result demonstrates 

that the D-RS-LOD-FDTD method has lower error compared to conventional RS-LOD-

FDTD. Also the method requires lower execution.  
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Chapter 5 
 

Efficient LOD-FDTD Approaches for 3-D Bodies Using 

Orthogonal Meshes  
 

 

5.1 Introduction 
    In the chapters 2, 3 and 4 of this thesis, we developed efficient LOD-FDTD methods 

for analysing 2-D structures using orthogonal and nonorthogonal meshes as well as 

rotationally symmetric (RS) structures using orthogonal meshes. In this chapter, we 

present efficient methods for 3-D LOD-FDTD approaches using orthogonal meshes for 

analysing 3-D microwave and antenna structures. First, we propose a modified two sub-

step LOD-FDTD which we will note as a conventional (C)-LOD-FDTD method along 

with two sub-step CPML ABC, and we also present its stability analysis. We then 

develop an efficient fundamental scheme based LOD-FDTD (F-LOD-FDTD) method 

with CPML using orthogonal meshes and also present its stability analysis. As 

previously described, various implicit time domain techniques have been developed 

[8]–[22] to overcome the CFL constraints of the explicit FDTD method. The most 

popular among them is unconditionally stable locally one-dimensional (LOD)-FDTD 

method [19], [21]–[22] as it requires fewer arithmetic operations and has a shorter 

execution time [19] and [21] compared to other implicit FDTD methods. Moreover, in 

each half step of the LOD-FDTD, it is necessary to deal with only one dimension which 

also simplifies implementation and eases the computational burden. In the literature, 

two sub-step [21], [118]–[119] and three sub-step procedures [22], [127]–[128], [131] 

with 3-D LOD-FDTD are available for analysing 3-D structures. However, the two sub-

step 3-D LOD-FDTD presented by E. L. Tan in [21] requires special input and output 

processing procedures for computing the field components of interest, which decrease 

the computational efficiency of the LOD-FDTD method. Later, two sub-step LOD-

FDTD was extended in [118]–[119], [122] to consider lossless and frequency dependent 

media. Three sub-step 3-D LOD-FDTD by Ahmed et al. was developed in [22], and has 
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been applied for the analysis of 3-D structures in [127]–[128]. Various ABCs for use 

with LOD-FDTD to truncate the computational domain are available in the literature 

[110], [120], [130]–[131], [133]. Ahmed et al. [131] developed CPML ABC for the 3-D 

LOD-FDTD with three sub-step procedures. However, the two sub-step LOD-FDTD 

requires fewer arithmetic operations compared to the three sub-step LOD-FDTD, but 

the CPML ABC was not developed for the two sub-step LOD-FDTD method [21], 

[118]–[119]. Moreover, to the best of our knowledge, there are few papers that 

investigated the 3-D LOD-FDTD method for the analysis of microwave structures 

[118]–[122]. In this chapter, we develop the 3-D C-LOD-FDTD method by modifying 

Tan’s two sub-step method [21] and also develop a new two sub-step CPML ABC. This 

method will henceforth be denoted as the C-LOD-FDTD CPML method. The proposed 

method successfully reduces the execution time and memory requirement. Numerical 

results on 3-D microwave structures will be presented to validate the proposed method. 

We will demonstrate that the C-LOD-FDTD method has a lower computational burden 

than the explicit FDTD method. 

    Even in the implementation of 3-D C-LOD-FDTD, it is necessary to deal with an 

increased number of complexities due to the presence of a tri-diagonal matrix. 

Substantial arithmetic operations and field variables are involved on the right-hand side 

of the update equations, leading to increase in computational time and memory usage. 

Moreover, the implementation of ABCs such as Mur’s ABC [130], PML [120] or 

CPML [110], [131] into the LOD-FDTD algorithm make the update equations even 

more complicated, again  leading to considerable increase in the number of field 

variables, arithmetic and memory indexing operations, and resulting in the further 

degradation of overall computational efficiency. For modelling 3-D microwave 

structures, in particular, the computational burden could increase drastically. To 

overcome this problem for implicit FDTD methods, Tan [134] proposed a fundamental 

scheme to improve computational efficiency. However, for the 3-D fundamental scheme 

based LOD-FDTD (F-LOD-FDTD), only Mur’s [138] and PML [126] ABC have so far 

been reported in the literature. Hence, in this chapter, we will also present a 

fundamental scheme LOD-FDTD CPML (F-LOD-FDTD CPML) for analysing 3-D 

structures. 
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    This chapter is organised as follows: in Section 5.2, C-LOD-FDTD with CPML 

ABCs is discussed. Stability analysis of the C-LOD-FDTD method will be discussed in 

Section 5.3. F-LOD-FDTD will be described in Section 5.4 and CPML ABC of F-LOD-

FDTD will be presented in Section 5.4.2. Numerical stability analysis of the F-LOD-

FDTD method will be discussed in Section 5.5. Near-field to far-field transformation 

for both methods is also presented in Section 5.6. Pure scattered field formulations 

applicable for both C-LOD-FDTD and F-LOD-FDTD are discussed in Section 5.7. 

Computational results obtained for the 3-D microwave and antenna structures using C-

LOD-FDTD and F-LOD-FDTD methods are presented in Section 5.8. Finally, a brief 

discussion will be provided in Section 5.9. 

     

5.2 Introduction of Conventional 3-D LOD-FDTD (C-LOD-

FDTD) Method 
    There are two approaches available for formulating the updating equations for the 3-

D LOD-FDTD method [21]–[22]. Tan et al. [21] proposed a two sub-step approach, 

whereas Ahmed et al. [22] proposes a three sub-step approach. Ahmed et al. [22] also 

proposed a CPML ABC for three sub-step LOD-FDTD whereas the CPML for Tan’s 

[21] two sub-step LOD-FDTD is not available in open literature. Clearly, the two sub-

step approach saves computational resources when compared to the three sub-step 

approach. In this section, we will derive a modified two sub-step C-LOD-FDTD and 

also derive CPML ABC in generalised form. Before providing the derivation of the C-

LOD-FDTD method, we briefly present below Tan’s [21] two sub-step 3-D LOD-

FDTD method. According to Tan’s two sub-step 3-D LOD-FDTD [21], the implicit 

updating 3/4|nxE   for the first procedure can be written as follows:  

First procedure from (1/ 4) to (3 / 4)n n  : 

    

2 2 2
3/ 4 3/ 4 3 / 4

1/ 2 , 1, 1/ 2 , , 1/ 2 , 1,2 2 2

2 2
1/ 4 1/ 4 1/ 4

1/ 2 , , 1/ 2 , 1, 1/ 2 , 1,2 2

| 1 | |
4 2 4

              1 | | |
2 4

         

n n n
x i j k x i j k x i j k

n n n
x i j k x i j k x i j k

t t tE E E
y y y

t tE E E
y y

  

 

  
    

  
    

   
       

  
      

 1/ 4 1/ 4
1/ 2 , 1/ 2 , 1/ 2 , 1/ 2 ,                              | |n n

z i j k z i j k
t H H
y

 
   


 



           (5.1a) 

and the explicit updating 3/4|nzH  for the first procedure can be written as follows: 
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3/ 4 1/ 4
1/ 2 , 1/ 2 , 1/ 2 , 1/ 2 ,

1/ 2 1/ 2 3/ 4 3/ 4
1/ 2 , 1, 1/ 2 , , 1/ 2 , 1, 1/ 2 , ,

| |
2

             | | | |

n n
z i j k z i j k

n n n n
x i j k x i j k x i j k x i j k

tH H
y

E E E E


 
   

   
     


 



  
      (5.1b) 

Similarly, for the second procedure from (3 / 4) to 1(1/ 4)n n  , the implicit updating 
1(1/4)|nxE  can be written as follows: 

   

2 2 2
1(1/ 4 ) 1(1/ 4 ) 1(1/ 4 )

1/ 2 , , 1 1/ 2 , , 1/ 2 , , 12 2 2

2 2
3/ 4 3/ 4 3/ 4

1/ 2 , , 1/ 2 , , 1 1/ 2 , , 12 2

| 1 | |
4 2 4

              1 | | |
2 4

n n n
x i j k x i j k x i j k

n n n
x i j k x i j k x i j k

t t tE E E
z z z

t tE E E
z z

  

 

  
    

  
    

   
       

  
      

 3/ 4 3/ 4
1/ 2 , , 1/ 2 1/ 2 , , 1/ 2                                       | |n n

y i j k y i j k
t H H
z

 
   


 



             (5.2a) 

and the explicit updating 3/4|nyH  for the second procedure can be written as follows: 

      
 

1(1/ 4 ) 3 / 4
1/ 2 , , 1/ 2 1/ 2 , , 1/ 2

3 / 4 3 / 4 1(1/ 4 ) 1(1/ 4 )
1/ 2 , , 1 1/ 2 , , 1/ 2 , , 1 1/ 2 , ,

| |
2

         | | | |

n n
y i j k y i j k

n n n n
x i j k x i j k x i j k x i j k

tH H
z

E E E E


 
   

   
     


 



  
       (5.2b) 

From equations (5.1) and (5.2), it can be observed that the electric and magnetic fields 

are updated at quarter (or three-quarter) time steps; therefore it is necessary to relate the 

fields to an integer time step. This results in extra processing for the input and output 

field data as follows (the coefficient 1/16=1/42 corresponds to the quarter-step 

updating). Input processing at 0n  , the implicit 1/4|xE  can be written as follows: 

  

2 2 2
1/ 4 1/ 4 1/ 4

1/ 2 , , 1 1/ 2 , , 1/ 2 , , 12 2 2

2 2
0 0 0

1/ 2 , , 1/ 2 , , 1 1/ 2 , , 12 2

| 1 | |
16 8 16

              1 | | |
8 16

                        

x i j k x i j k x i j k

x i j k x i j k x i j k

t t tE E E
z z z

t tE E E
z z

  

 

    

    

   
       

  
      

 0 0
1/ 2 , , 1/ 2 1/ 2 , , 1/ 2               | |

2 y i j k y i j k
t H H
z    


 



            (5.3a) 

and input processing for the explicit updating 1/4|yH can be written as  

      
 

1/ 4 0
1/ 2 , , 1/ 2 1/ 2 , , 1/ 2

0 0 1/ 4 1/ 4
1/ 2 , , 1 1/ 2 , , 1/ 2 , , 1 1/ 2 , ,

| |
4

         | | | |

y i j k y i j k

x i j k x i j k x i j k x i j k

tH H
z

E E E E

   

     


 



  
       (5.3b) 

Output processing at n+1 for the implicit 1|nxE  can be written as 
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2 2 2
1 1 1

1/ 2 , , 1 1/ 2 , , 1/ 2 , , 12 2 2

2 2
1(1/ 4 ) 1(1/ 4 ) 1(1/ 4 )

1/ 2 , , 1/ 2 , , 1 1/ 2 , , 12 2

| 1 | |
16 8 16

              1 | | |
8 16

   

n n n
x i j k x i j k x i j k

n n n
x i j k x i j k x i j k

t t tE E E
z z z

t tE E E
z z

  

 

  
    

  
    

   
       

  
      

 1(1/ 4 ) 1(1/ 4 )
1/ 2 , , 1/ 2 1/ 2 , , 1/ 2                                    | |

2
n n

y i j k y i j k
t H H
z

 
   


 



            (5.4a) 

and the explicit updating 1|nyH  for the output processing can be written as follows 

     
 

1 1(1/ 4 )
1/ 2 , , 1/ 2 1/ 2 , , 1/ 2

1(1/ 4 ) 1(1/ 4 ) 1 1
1/ 2 , , 1 1/ 2 , , 1/ 2 , , 1 1/ 2 , ,

| |
4

         | | | |

n n
y i j k y i j k

n n n n
x i j k x i j k x i j k x i j k

tH H
z

E E E E


 
   

   
     


 



  
        (5.4b) 

However, from the above equation, it can be observed that Tan’s two sub-step 3-D 

LOD-FDTD in [21] requires special input and output processing procedures for 

computing the field components of interest; as a result, they decrease the computational 

efficiency of the LOD-FDTD method. Two sub-step LOD-FDTD was modified in 

[118]-[119] considering lossless and frequency dependent media. In this chapter, we 

develop two sub-step 3-D LOD-FDTD (which we will call C-LOD-FDTD) in 

generalised form that can be used in both lossy and lossless media. Applying the LOD 

principle to the Maxwell equations (1.1) (available in Chapter 1), the C-LOD-FDTD in 

generalised form can be written as follows: 

Sub-step 1: 

                1/2[ ] [ ] [ ] [ ] [ ] [ ]
2 4 2 4

n nt t t tI A L I A L             
   

u u                           (5.5a)  

Sub-step 2: 

               1 1/2[ ] [ ] [ ] [ ] [ ] [ ]
2 4 2 4

n nt t t tI B L I B L              
   

u u                         (5.5b) 

where u ,  A ,  B , and  L are the same as mentioned earlier in Chapter 1. By 

substituting the value ofu , A ,  B  and  L in (5.5a)-(5.5b), and moving forward for 

each half time step separately either in the X ,Y  or Z  direction, we obtain the C-LOD-

FDTD equations. It can be seen from (5.5) that the formulation is easy compared to 

Tan’s procedure. We can easily apply the wave source in (5.5) without requiring extra 

processing time, which results in an efficient approach. The wave source conditions for 

the LOD-FDTD method have been described in Section 2.6 of Chapter 2. Equation (5.5) 
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also agrees with the two sub-steps LOD-FDTD provided in [118]-[119]. This approach 

can also be converted to Tan’s method [21] by invoking 1/ 4n n  . 

 

 

5.2.1 Updating Equation of  3-D C-LOD-FDTD Method 

    By placing the value ofu ,  A  and  B  in (5.5a) and (5.5b), we obtain equations 

(2.2a)-(2.2f) and (2.3a)-(2.3b) in Section 2.2.1 in Chapter 2 for the two sub-steps. The 

updating equations with indices for the 3-D C-LOD-FDTD method from (2.2)-(2.3) 

(from Chapter 2) in generalised form can be written into two sub-steps as follows:  

Sub-step 1: 

  
 
 

1/2 1/2 1/2
1/2, , 1/2, , 1/2, 1/2, 1/2, 1/2,

1/2, 1/2, 1/2, 1/2,

| | | |

                                          | |

n n n n
x i j k exe x i j k exhz z i j k z i j k

n n
exhz z i j k z i j k

E C E C H H

C H H

  
     

   

    

  
    (5.6a)      

 
 
 

1/2 1/2 1/2
, 1/2, , 1/2, , 1/2, 1/2 , 1/2, 1/2

, 1/2, 1/2 , 1/2, 1/2

| | | |

                                           | |

n n n n
y i j k eye y i j k eyhx x i j k x i j k

n n
eyhx x i j k x i j k

E C E C H H

C H H

  
     

   

    

  
    (5.6b)     

 
 
 

1/2 1/2 1/2
, , 1/2 , , 1/2 1/2, , 1/2 1/2, , 1/2

1/2, , 1/2 1/2, , 1/2

| | | |

                                          | |

n n n n
z i j k eze z i j k ezhy y i j k y i j k

n n
ezhy y i j k y i j k

E C E C H H

C H H

  
     

   

    

  
    (5.6c)   

   

1/ 2
, 1/ 2 , 1/ 2 , 1/ 2 , 1/ 2

1/ 2 1/ 2
, 1/ 2 , 1 , 1/ 2 , , 1/ 2 , 1 , 1/ 2 ,

| |

| | | |

n n
x i j k hxh x i j k hxey

n n n n
y i j k y i j k hxey y i j k y i j k

H C H C

E E C E E


   

 
     

   

   
       (5.6d) 

   

1/ 2
1/ 2 , , 1/ 2 1/ 2 , , 1/ 2

1/ 2 1/ 2
1, , 1/ 2 , , 1/ 2 1, , 1/ 2 , , 1/ 2

| |

| | | |

n n
y i j k hyh y i j k hyez

n n n n
z i j k z i j k hyez z i j k z i j k

H C H C

E E C E E


   

 
     

   

   
        (5.6e) 

     

1/ 2
1/ 2 , 1/ 2 , 1/ 2 , 1/ 2 ,

1/ 2 1/ 2
1/ 2 , 1, 1/ 2 , , 1/ 2 , 1, 1/ 2 , ,

| |

| | | |

n n
z i j k hzh z i j k hzex

n n n n
x i j k x i j k hzex x i j k x i j k

H C H C

E E C E E


   

 
     

   

   
      (5.6f) 

Sub-step 2:  

 
 

1 1/2 1 1
1/2, , 1/2, , 1/2, , 1/2 1/2, , 1/2

1/2 1/2
1/2, , 1/2 1/2, , 1/2

| | | |

| |

n n n n
x i j k exe x i j k exhy y i j k y i j k

n n
exhy y i j k y i j k

E C E C H H

C H H

   
     

 
   

    

  
  (5.7a) 
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1 1/2 1 1
, 1/2, , 1/2, 1/2, 1/2, 1/2, 1/2,

1/2 1/2
1/2, 1/2, 1/2, 1/2,

| | | |

| |

n n n n
y i j k eye y i j k eyhz z i j k z i j k

n n
eyhz z i j k z i j k

E C E C H H

C H H

   
     

 
   

    

  
      (5.7b) 

 
 

1 1/2 1 1
, , 1/2 , , 1/2 , 1/2, 1/2 , 1/2, 1/2

1/2 1/2
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n n n n
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n n
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E C E C H H
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   (5.7c) 

       

1 1/ 2
, 1/ 2 , 1/ 2 , 1/ 2 , 1/ 2

1 1 1/ 2 1/ 2
, 1, 1/ 2 , , 1/ 2 , 1, 1/ 2 , , 1/ 2

| |
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n n n n
z i j k z i j k hxez z i j k z i j k

H C H C

E E C E E

 
   

   
     

   

   
     (5.7d)      

      

1 1/ 2
1/ 2 , , 1/ 2 , 1/ 2 , 1/ 2

1 1 1/ 2 1/ 2
1/ 2 , , 1 1/ 2 , , 1/ 2 , , 1 1/ 2 , ,
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H C H C
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    (5.7e)    

    

1 1/ 2
1/ 2 , 1/ 2 , 1/ 2 , 1/ 2 ,

1 1 1/ 2 1/ 2
1, 1/ 2 , , 1/ 2 , 1, 1/ 2 , , 1/ 2 ,

| |

| | | |
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n n n n
y i j k y i j k hzey y i j k y i j k

H C H C

E E C E E

 
   

   
     

   

   
      (5.7f)    

where (4 ) / (4 )exe eye eze e eC C C t t          , 2 / (4 )exhz eC t y t      , 

2 / (4 )eyhx eC t z t       2 / (4 )ezhy eC t x t       

(4 ) / (4 )hxh hyh hzh m mC C C t t          , 2 / (4 )hxey mC t z t        

2 / (4 )hyez mC t x t       2 / (4 )hzex mC t y t       

From (5.6)-(5.7), it can be observed that the equations of sub-steps 1 and 2 are not 

directly solvable, so by placing (5.6f) into (5.6a), (5.6d) into (5.6b) and (5.6e) into 

(5.6c), a simultaneous linear system with tri-diagonal matrix can be obtained for xE , 

yE and zE field components in sub-step 1 as follow: 

 

1/ 2 1/ 2 1/ 2
1 1/ 2 , 1, 1 1/ 2 , , 1 1/ 2 , 1,
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    (5.8a) 
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  (5.8c) 

where 1 exhz hzexC C   , 1 exhz hzexC C   , 1 1 11     . Similarly for sub-step 2, we 

obtain simultaneous linear system with tri-diagonal matrix for xE , yE  and zE field 

components, by placing (5.7f) into (5.7a), (5.7d) into (5.7b) and (5.7e) into (5.7c). The 

simultaneous linear equation with tri-diagonal matrix can be solved by following 

approach A) as described in Section 2.3.3 in Chapter 2. The derivations of CPML ABC 

for the C-LOD-FDTD method are described briefly in the next section. 

 

 

 

5.2.2     CPML ABC for the  3D C-LOD-FDTD 
    The starting point of the CPML formulation for C-LOD-FDTD is a PML medium 

assumed to terminate a finite space occupied by a host medium, as shown in Fig. 5.1. 

The CPML for 3D LOD-FDTD that was originally derived by Ahmed et al. [131] uses a 

three sub-step approach.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.1 3-D structure for LOD-FDTD grid employing the CPML ABC 
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To make it more efficient, we have reformulated 3-D LOD-FDTD-CPML using only 

two sub-steps following the method given in [21] which will be labeled as conventional 

(C)-LOD-FDTD-CPML. The merits of CPML ABC have been described in Chapter 2 

and 3 so will not be repeated here. Based on the generalised LOD splitting formulae, the 

two sub-steps of 3-D C-LOD-FDTD with CPML can be derived as follows: 

Sub-step 1: 

1/ 2[ ] [ ] X
2 4 2 4 2

n n nt t t t tI L I L                
   

A U A U  (5.9a)               

                                              1/ 2C Dn n n    U                                          (5.9b) 

Sub-step 2: 

1 1/ 2 1/ 2[ ] [ ] X
2 4 2 4 2

n n nt t t t tI L I L                  
   

B U B U  

 (5.10a)           

                                              1/ 2 1/ 2C Dn n n    U                                   (5.10b) 
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By substituting the value ofu ,  A ,  B , X , C  and D  in the (5.9a)-(5.9b) and (5.10a)-

(5.10b), the updating equations of the C-LOD-FDTD CPML can be written as follow: 

Sub-step 1: 

  
 

 

1/2 1/2 1/2
1/2, , 1/2, , 1/2, 1/2, 1/2, 1/2,

1/2, 1/2, 1/2, 1/2, 1/2, ,

| | | |

             | | 2 |

n n n n
x i j k exe x i j k exhz z i j k z i j k

n n n
exhz z i j k z i j k exz Exz i j k

E C E C H H

C H H C 

  
     

    

    

   
    (5.11a)      

 
 

1/2 1/2 1/2
, 1/2, , 1/2, , 1/2, 1/2 , 1/2, 1/2

, 1/2, 1/2 , 1/2, 1/2 , 1/2,

| | | |

               | | 2 |

n n n n
y i j k eye y i j k eyhx x i j k x i j k

n n n
eyhx x i j k x i j k eyx Eyx i j k

E C E C H H

C H H C 

  
     

    

    

   
   (5.11b) 

 
 

1/2 1/2 1/2
, , 1/2 , , 1/2 1/2, , 1/2 1/2, , 1/2
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     (5.11c)      
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Sub-step 2: 

 
 

1 1/2 1 1
1/2, , 1/2, , 1/2, , 1/2 1/2, , 1/2

1/2 1/2 1/2
1/2, , 1/2 1/2, , 1/2 1/2, ,

| | | |

         | | 2 |

n n n n
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n n n
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      (5.12b) 
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where, 1/exhz ey exhzC C  , 1 /eyhx ez eyhxC C   1/ezhy ex ezhyC C   

1 /hxey hy hxeyC C     1/hyez hz hyezC C   1/hzex hx hzexC C  , and exz exhzC y C     
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where                                           0( / ) ( / )s s s t
sc e                                                     (5.13b) 
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                                        0
max

| |( ) 1 ( 1)
m

s m

s ss 



                                             (5.13e) 

where  is the thickness of the PML absorber, 0s  is the PML interface, m is the order of 

the polynomial. The other CPML terms can be written in a similar way. From (5.11)-

(5.12), it is seen that the equations of sub-steps 1 and 2 are not directly solvable, so by 

placing (5.11f) into (5.11a), (5.11d) into (5.11b) and (5.11e) into (5.11c), a tri-diagonal 

linear system can be obtained for the xE , yE and zE field components in sub-step 1 

which are similar to equations (5.8a)-(5.8c). Similarly for sub-step 2, we obtain the tri-

diagonal linear system for xE , yE  and zE field components, by placing (5.12f) into 

(5.12a), (5.12d) into (5.12b) and (5.12e) into (5.12c).  It can be observed that each of 

(5.11)-(5.12) contains only one auxiliary variable . These auxiliary variables are used 

in the CPML region only and are zero in the remaining regions. Compared to FDTD 

CPML and ADI-FDTD CPML, where 12 auxiliary variables are needed for FDTD-

CPML, and 24 are needed for ADI-FDTD CPML, C-LOD-FDTD-CPML needs only 

one auxiliary variable in each equation, i.e. 12. Although the number of auxiliary 

variables for LOD-FDTD-CPML is the same as FDTD CPML, it is half of ADI-FDTD 

CPML. Only one auxiliary variable is enough for C-LOD-FDTD-CPML in each 

equation; the reasons are described below, following the procedure provided in [131].  

 

5.2.2.1 Required Auxiliary Variables in C-LOD-FDTD CPML 
    For elucidation, (5.11b) is considered with two auxiliary variables, similar to FDTD 

CPML and ADI-FDTD CPML which can be written as 

                
1/ 2

1/ 2 1/ 2| || | | |
2

n n
n n n nx x

y y Eyz Eyz
H HtE E

dz dz
 




   

     
 

                  (5.14) 

In this equation, the auxiliary term 1/2|nEyz  contains the same time index ( 1/ 2)n  as 

that of the field on the left side. This additional variable at ( 1/ 2)n  does not affect 

numerical results significantly except to contribute to additional complexities in the 

computation. Therefore, for the sake of simplification, both auxiliary variables will be 

considered at the same time index “ n ” and as a result (5.14) reduces to (5.11b). The 

auxiliary variable is responsible for wave absorption in the ABCs. 
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5.2.2.2 Validation 
    To validate the CPML implementation for the 3-D C-LOD-FDTD, we consider a free 

space domain as shown in Fig. 5.2 with 46×46×46 cells including 8 layers of CPML in 

each direction. The observation point, where the z directed electric field is recorded, is 

located at 8 cells away from the source. Gaussian pulse is used as a source.  

 

 

 

 

 

 

 

 

 
 

Fig. 5.2 Free space domain employing the CPML ABC 

 

To minimise the reflection error, the following parameters for CPML are considered.                   

opt
1 11.21 (S/m)

150
m

x





 


, 
max opt0.7  (S/m)s  , 

max
15sk  and 4m  .  Fig. 5.3 

shows the reflection error for C-LOD-FDTD CPML for CFLN=2, 6 and 10. Fig. 5.4 

shows the reflection error for the 8 cell CPML layers of the C-LOD-FDTD method for 

CFLN=2 and 6. 

 

 

 

 

 

 

 

Fig. 5.3 Reflection error for different CFLN 
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Fig. 5.4 Reflection error for 8 CPML layer at CFLN=2 and 6 
 

Note that CFLN is defined as the ratio between the time step in the LOD-FDTD and the 

maximum CFL limit in the standard FDTD. It can be observed from Fig. 5.3 and 5.4 

that the proposed C-LOD-FDTD CPML has less reflection error. It can also be observed 

that the proposed approach provides less reflection error at lower CFLN. The CPML 

ABC has been used to analyse 3-D microwave structures in Section 5.8. . 

 

5.3 Stability Analysis of the C-LOD-FDTD Method 
5.3.1     Theoretical Stability Analysis  
    The Von Neumann method [166] has been used as a standard approach for the 

stability analysis of an unconditionally stable FDTD method where eigenvalues of the 

amplification matrix on the spectral domain are evaluated. If all the eigenvalues of the 

amplification matrix are no larger than unity in magnitude, the method is considered to 

be stable. In this section, we demonstrate the unconditional stability of the C-LOD-

FDTD method using the Von Neumann method [166]. The equations (5.6)-(5.7) are first 

expressed in matrix form. Since the stability analysis of the C-LOD-FDTD requires 

detailed mathematical procedure, only the key results of the analysis are summarised 

below. The field components in the spatial spectral domain are assumed to be in the 

following form. 

                                               ( )( , , ) x y zj k i x k j y k k zn n
r rE i j k E e                                     (5.15a) 

                                               ( )( , , ) x y zj k i x k j y k k zn n
r rH i j k H e                                    (5.15b) 
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where , ,r x y z while xk , yk and zk are wave numbers along the x , y , z  directions 

respectively. By substituting (5.15a) and (5.15b) into (5.6) and (5.7) and considering the 

lossless case, the following equations can be obtained for sub-steps 1 and 2. 

Sub-step 1: 

                                                    1/2
1 1  where  is 6 6 matrixn nU U                     (5.16) 

1

2
       0             0             0          0       

2 0                   0              0             0   
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Sub-step 2:  

                                               1 1/2
2   n nU U                                                          (5.17) 
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By combining equations (5.16) and (5.17), we obtain the following equation, 

                                                1
1 2   n n nU U U                                           (5.18)  
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where 1 2     

4 2 2
                   0                 0                       

4 2 20                                       0                 

y z x y z y y x
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  (5.19) 

Six eigenvalues are obtained from (5.19). Here, only the numerical computed 

eigenvalues are provided for the verification of the unconditional stability of the C-

LOD-FDTD method. We compute the eigenvalues for the case of 0.2xk  , 0.2yk   

and 0.2zk  , and 1x y z mm      , and the computed eigenvalues are tabulated in 

Table 5.1. From Table 5.1, we observe that the magnitudes of the eigenvalues are never 

larger than unity. Hence, it can be considered that the C-LOD-FDTD method is 

unconditionally stable. 

 

Table 5.1 

Computed eigenvalues of C-LOD-FDTD 

Eigen values CFLN=2 CFLN=4 CFLN=6 

1  1.00000 1.00000 1.00000 

2  0.99999 0.99989 0.99999 

3  0.99997 0.99987 0.99997 

4  0.99998 0.99986 0.99998 

5  0.99997 0.99987 0.99997 

6  0.99998 0.99985 0.99998 
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5.3.2 Numerical Stability Analysis  
To check the stability of the proposed method numerically, the problem of the 

electromagnetic scattering by an elongated thin PEC plate is considered [2].  The C-

LOD-FDTD CPML model is discretised spatially with uniform cubic cells 

spanning 1 mmx y z      . The C-LOD-FDTD lattice is terminated with a 10-cell 

CPML absorber. Excitation is provided by a z - directed electric dipole located 1 mm 

above one of the corners of the plate (as shown in Fig. 5.5). The time signature of the 

excitation is the differentiated Gaussian pulse with a half-width 53 pswt  and a time 

delay 0 4 wt t . 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.5 Geometry of a vertical electric current dipole placed 1 mm above the corner of a 25×100 mm thin 

PEC plate.  
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Fig. 5.6 Computed yE field in the plane of the plate at its opposite corner, in a direction normal to the 

plate edge at a distance of (a) 1 mm (b) 2 mm from the edge  

 

 

The computed electric field in the plane of the plate at its opposite corner, in a direction 

normal to the plate edge at a distance of 1 mm (A), 2 mm (B) from the edge is shown in 

Fig. 5.6 (a)-(b) respectively for CFLN=5. The results demonstrate the numerical 

stability of the proposed C-LOD-FDTD CPML for a 3-D electromagnetic problem. The 

more efficient F-LOD-FDTD is described next. 

 

 

5.4 3-D LOD-FDTD based on the Fundamental Scheme (F-

LOD-FDTD) Method 
    Due to the presence of the tri-diagonal matrix in the update equations of C-LOD-

FDTD CPML that was discussed in Section 5.2, a substantial number of arithmetic 

operations and field variables are involved in the right hand side of the update equations 

which reduce the computational efficiency of the method. To improve the 

computational efficiency, we derive LOD-FDTD using the fundamental scheme which 

we will call F-LOD-FDTD. The F-LOD-FDTD frees the matrix operators from right-

hand side of update equations in matrix form so that they become simpler and more 

concise for efficient implementation [134]. This also leads to a substantial reduction in 

the number of arithmetic operations required for computations. The underlying principle 

of the new algorithm as well as its significance will be discussed next. 
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5.4.1 Formulation of the F-LOD-FDTD  
    In this section, we present the generalised formulation of the efficient F-LOD-FDTD 

method. Starting with the C-LOD-FDTD scheme, its generalised matrix operator 

equations are reformulated in the simplest and most efficient forms. The new approach 

features convenient matrix-operator-free right-hand sides with the least number of 

terms, which leads to simplified computation. For simplicity and clarity, we have 

provided the derivation for lossless media. However, from (5.5a)-(5.5b), it can be 

observed that the C-LOD-FDTD involves matrix operators A  and B  on the right hand 

side which reduces the computational efficiency of the method. To maximise the 

efficiency, the C-LOD-FDTD can be cast into the fundamental form with matrix 

operator free right hand sides. Based on the principle of fundamental implicit schemes 

[134], the efficient LOD-FDTD using fundamental scheme can be modified into its 

simplest form with matrix operator free right hand sides as follows: 

Sub-step 1: 

                                                    1/21
2 4

n ntI    
 

A V U                                      (5.20a) 

                                                      1/2 1/2n n n  U V U                                             (5.20b) 

Sub-step 2: 

                                                  1 1/21
2 4

n ntI     
 

B V U                                       (5.21a) 

                                                        1 1 1/2n n n   U V U                                           (5.21b) 

where      
T

x y z x y ze e e h h h   V and A , B , U  are same as mentioned in Chapter 

1. From (5.20)-(5.21), it can be observed that the right-hand sides are in convenient 

matrix operator free form. By placing the value of A , B , U  and  V  in (5.20) to (5.21), 

we can obtain the updating equation for the F-LOD-FDTD method.  The updating 

equations of sub-step1 from (5.20) can be written as follows: 

Sub-step 1: auxiliary implicit updating for electric and magnetic fields as: 

                                    1 / 2 1/ 21| | 2 |
2

n n n
x y z x

te h E


 
                              (5.22a) 

                                   1/ 2 1/ 21| | 2 |
2

n n n
y z x y

te h E


 
                              (5.22b) 
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                                   1 / 2 1/ 21| | 2 |
2

n n n
z x y z

te h E


 
                               (5.22c) 

                                  1 / 2 1/ 21| | 2 |
2

n n n
x z y x

th e H


 
                              (5.22d) 

                                 1 / 2 1/ 21| | 2 |
2

n n n
y x z y

th e H


 
                              (5.22e) 

                                 1 / 2 1/ 21| | 2 |
2

n n n
z y x z

th e H


 
                               (5.22f) 

and the explicit updating for the electric and magnetic fields  

                                           1/ 2 1/ 2
1 1 1| | |n n nE e E  

                                      (5.23) 

                                          1/ 2 1/ 2
1 1 1| | |n n nH h H  

                                     (5.24) 

where 1 is ,  or x y z . Since (5.22a)-(5.22f) are not directly solvable, we obtain the 

following tri-diagonal linear equations by placing (5.22f) into (5.22a), (5.22d) into 

(5.22b) and (5.22e) into (5.22c) as: 

                  1/ 2 2 1/ 2| | 2 | 2 |n n n n
x y x x y ze bd e E b H                               (5.25a) 

                 1/ 2 2 1/ 2| | 2 | 2 |n n n n
y z y y z xe bd e E b H                                (5.25b) 

                 1/ 2 2 1/ 2| | 2 | 2 |n n n n
z x z z x ye bd e E b H                                 (5.25c) 

where 
2

tb



 , 
2

td



 . Similar to sub-step 1, we can derive the update equations from 

(5.21) as follows: 

Sub-step 2: auxiliary implicit updating for 1|ne   

                  1 2 1 1/ 2 1/ 2| | 2 | 2 |n n n n
x z x x z ye bd e E b H                            (5.26a) 

                 1 2 1 1/ 2 1/ 2| | 2 | 2 |n n n n
y x y y x ze bd e E b H                            (5.26b) 

                 1 2 1 1/ 2 1/ 2| | 2 | 2 |n n n n
z y z z y xe bd e E b H                             (5.26c) 

and explicit updating for electric and magnetic field as 

                                        1 1 1/ 2
1 1 1| | |n n nE e E  

                                        (5.27) 

                                        1 1 1/ 2
1 1 1| | |n n nH h H  

                                      (5.28) 

where 1 is the same as mentioned after (5.24).  For the solution of (5.22a)-(5.22f), 
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following the method in [134], the following steps are required. First (5.22f), (5.22d) 

and (5.22e) are substituted into (5.22a), (5.22b) and (5.22c) respectively and the 

resultant tri-diagonal equations are implicitly solved for the auxiliary 

variables 1/2n
xe  , 1/2n

ye  and 1/2n
ze  . Equations (5.23) with these solutions yield 1/2n

xE  , 1/2n
yE  , 

and 1/2n
zE  . Furthermore 1/2n

xH  , 1/2n
yH  , and 1/2n

zH  are explicitly obtained from (5.24) 

combined with (5.22d)-(5.22f), in which 1/2n
xh  , 1/2n

yh  , and 1/2n
zh  are not required. Hence, 

when following Tan’s formulation [134], we have to retain these variables 

for 1/2n
xe  , 1/2n

ye  and 1/2n
ze  , and six field components.  In our proposed approach, the 

above procedure is improved by substituting (5.22f) into (5.22a) and 1/2n
xe  is implicitly 

obtained. Then explicitly 1/2n
xE  from (5.23) and 1/2n

zH  from (5.24) with (5.22f) are 

obtained. Now the array 1/2n
xe  can be reused to calculate 1/2n

ye   for the next implicit 

calculation with (5.22b) and (5.22d). A similar modification approach has been used in 

[136]. They claim more efficient computation can be achieved compared to Tan’s 

approach [136]. Using this modified approach, we have derived the CPML ABC for the 

F-LOD-FDTD method which will be described next.  

 

5.4.2 CPML ABC for 3D F-LOD-FDTD 
    So far in the literature, only Mur’s ABC [138] and PML [126] have been developed 

for 3-D LOD-FDTD using the fundamental scheme, but these are not capable of 

absorbing low frequency and evanescent waves as well as preserving the unconditional 

stability of the method. In this section, we derive the CPML absorbing boundary 

condition for 3-D F-LOD-FDTD to obtain highly effective ABC that can absorb low 

frequency and evanescent waves. The theory presented in this section will later be used 

to analyse 3-D microwave structures. Based on the principle of fundamental implicit 

schemes [134] and the CPML principle described in Section 2.4 in Chapter 2, the 

efficient LOD-FDTD using fundamental scheme with CPML can be formulated as 

follows:  

Sub-step 1: 

                                          1/2 1/2

2
n n n nt   

  U V U X                                        (5.29a) 
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                                            1/ 2C Dn n n    U                                           (5.29b) 

                                              1/21
2 4

n ntI    
 

A V U                                             (5.29c) 

Sub-step2: 

                                           1 1 1/2 1/2

2
n n n nt    

  U V U X                                  (5.30a) 

                                               1/ 2 1/ 2C Dn n n    U                                  (5.30b) 

                                               1 1/21
2 4

n ntI     
 

B V U                                          (5.30c) 

where      
T

x y z x y zV e e e h h h     and A , B ,C , D  and X are the same as defined 

in Section 5.2. It can be seen from (5.29)-(5.30) that the proposed F-LOD-FDTD CPML 

algorithm has its right hand sides free of matrix operators A  and B , so this scheme 

results in a reduction of the number of update coefficients and field variables after all 

reduced arithmetic operations. The updating equations for the electric and magnetic 

field components of CPML ABC for the sub-steps 1 and 2 can be written as. Sub-step 1: 

auxiliary implicit updating for electric and magnetic fields as: 

                                   1 / 2 1/ 21 1 1| | |
2 4

j

n n n
x y z x

y

te h E
 

 
                     (5.31a) 

                                  1/ 2 1 / 21 1 1| | |
2 4

k

n n n
y z x y

z

te h E
 

 
                      (5.31b) 

                                 1 / 2 1/ 21 1 1| | |
2 4

i

n n n
z x y z

x

te h E
 

 
                        (5.31c) 

                                
1/ 2

1 / 2 1/ 21 1 1| | |
2 4

k

n n n
x z y x

z

th e H
 



 
                  (5.31d) 

                                
1/2

1 / 2 1/ 21 1 1| | |
2 4

i

n n n
y x z y

x

th e H
 



 
                  (5.31e) 

                                
1/ 2

1 / 2 1/ 21 1 1| | |
2 4

j

n n n
z y x z

y

th e H
 



 
                  (5.31f) 

and explicit updating for the electric and magnetic fields 

                                  
1 2

1 / 2 1/ 2
1 1 1| | | 2n n n n

p EE e E a
                            (5.32) 
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1 2

1/ 2 1/ 2
1 1 1| | | 2n n n n

p HH h H b
                           (5.33) 

where p is 1, 2, and 3, 1 is ,  or x y z  and 2 is ,  or y z x . Since (5.31a)-(5.31f) are not 

directly solvable. By placing (5.31f) into (5.31a), (5.31d) into (5.31b) and (5.31e) into 

(5.31c), we obtain the following tri-diagonal linear systems: 

     
1/2

1 / 2 2 1/ 21 1 1 1| | | |
2 2

j j j

n n n n
x y x x y z

y y y

bde e E b H
  



              (5.34a) 

     
1/ 2

1 / 2 2 1/ 21 1 1 1| | | |
2 2

k k k

n n n n
y z y y z x

z z z

b de e E b H
  



               (5.34b) 

      
1/2

1 / 2 2 1/ 21 1 1 1| | | |
2 2

i i i

n n n n
z x z z x y

x x x

bde e E b H
  



                (5.34c) 

Similarly, for the second procedure we can derive the updating equations from (5.30) as 

follows: 

Sub-step 2: auxiliary implicit updating for 1|ne   

1/2 1 1/ 2

1 2 1 1/ 2 1/ 21 1 1 1| | | |
2 2

k k k

n n n n
x z x x z y

z z z

bde e E b H
  

  

         (5.35a)          

1 1/2 1/2

1 2 1 1/ 2 1/ 21 1 1 1| | | |
2 2

i i i

n n n n
y x y y x z

x x x

b de e E b H
  

  

          (5.35b)  

1/2 1 1/2

1 2 1 1/ 2 1/ 21 1 1 1| | | |
2 2

j j j

n n n n
z y z z y x

y y y

bde e E b H
  

  

        (5.35c)         

and the explicit updating equations, 

                                  
1 2

1 1 1/ 2 1/ 2
1 1 1| | | 2n n n n

p EE e E a
                              (5.36) 

                               
1 2

1 1 1/ 2 1/ 2
1 1 1| | | 2n n n n

p HH h H b
                               (5.37) 

where p is 1, 2, and 3. The updating equations with indices can be written as follows. 

Sub-step 1: auxiliary implicit updating for electric fields: 

        

 

1/ 2 1/ 2
1 1/ 2 , , 1 / 2 , 1, 1 1/ 2 , , 1/ 2 , ,

1 / 2
1 1/ 2 , , 1/ 2 , 1, 1 1/ 2 , , 1/ 2 , ,

1 1/ 2 , , 1/ 2 , 1 / 2 , 1/ 2 , 1/ 2 ,

| | | |

  | | | |

                  | | |

n n
i j k x i j k i j k x i j k

n n
i j k x i j k a i j k x i j k

n n
b i j k z i j k z i j k

e e

e C E

C H H

 



 
    


    

    



 

 

      (5.38a) 



Chapter 5. Efficient LOD-FDTD Approaches for 3-D Bodies Using Orthogonal Meshes  

163 

 

        

 

1/ 2 1/ 2
2 , 1/ 2 , , 1/ 2 , 1 2 , 1 / 2 , , 1 / 2 ,

1 / 2
2 , 1 / 2 , , 1/ 2 , 1 2 , 1 / 2 , , 1 / 2 ,

2 , 1 / 2 , , 1/ 2 , 1 / 2 , 1 / 2 , 1/ 2

| | | |

        | | | |

                | | |

n n
i j k y i j k i j k y i j k

n n
i j k y i j k a i j k y i j k

n n
b i j k x i j k x i j k

e e

e C E

C H H

 



 
    


    

    



 

 

        (5.38b) 

   

 

1/ 2 1/ 2
3 , , 1/ 2 1, , 1 3 , , 1 / 2 , , 1/ 2

1/ 2
3 , , 1/ 2 1, , 1 / 2 3 , , 1/ 2 , , 1 / 2

3 , , 1 / 2 1/ 2 , , 1 / 2 1/ 2 , , 1 / 2

| | | |

           | | | |

                    | | |

n n
i j k z i j k i j k z i j k

n n
i j k z i j k a i j k z i j k

n n
b i j k y i j k y i j k

e e

e C E

C H H

 



 
    


    

    



 

 

        (5.38c) 

where 
1/2

1 1/2, , 2

1 1 1|
2

j j

i j k
y y

bd
y


 



  


, 
1/2

1 1/2, , 2

1 1 1|
2

j j

i j k
y y

bd
y


 



  


 

1 1/2, , 1 1/2, , 1 1/2, ,| 1 | |i j k i j k i j k       , The electric field components from (5.32) can be 

written as follows:  

                  
1/ 2 , ,

1 / 2 1 / 2
1/ 2 , , 1 / 2 , , 1 / 2 , , 1| | | 2

i j k

n n n n
x i j k x i j k x i j k E xyE e E a 



 
                   (5.39a) 

                  
, 1/2 ,

1/ 2 1 / 2
, 1 / 2 , , 1 / 2 , , 1/ 2 , 2| | | 2

i j k

n n n n
y i j k y i j k y i j k E yzE e E a 



 
                  (5.39b) 

                  
, , 1/ 2

1/ 2 1 / 2
, , 1 / 2 , , 1 / 2 , , 1 / 2 3| | | 2

i j k

n n n n
z i j k z i j k z i j k E zxE e E a 



 
                    (5.39c) 

The magnetic field components from (5.33) can be written as follows:       

                            
, 1/2, 1/2

1/2 1/2
, 1/2, 1/2 , 1/2, 1/2 , 1/2, 1/2 1| | | 2

i j k

n n n n
x i j k x i j k x i j k HxyH h H b

 

 
                   (5.40a) 

                           
1/2, , 1/2

1/2 1/2
1/2, , 1/2 1/2, , 1/2 1/2, , 1/2 2| | | 2

i j k

n n n n
y i j k y i j k y i j k HyzH h H b

 

 
                   (5.40b) 

                              
1/2, 1/2,

1/2 1/2
1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 3| | | 2

i j k

n n n n
z i j k z i j k z i j k HzxH h H b

 

 
                 (5.40c)  

Similarly, updating equations for the second sub-step can be derived as follows. From 

(5.35a)-(5.35c), we can write the following equations:  

Sub-step 2: auxiliary implicit updating for electric fields: 

    

1 1
1 1/ 2 , , 1 / 2 , 1, 1 1/ 2 , , 1/ 2 , ,

1 1 / 2
1 1/ 2 , , 1/ 2 , 1, 1 1/ 2 , , 1/ 2 , ,

1/ 2 1/
1 1/ 2 , , 1/ 2 , 1 / 2 , 1/ 2 , 1/ 2 ,

| | | |

        | | | |

                  | | |

n n
i j k x i j k i j k x i j k

n n
i j k x i j k a i j k x i j k

n n
b i j k z i j k z i j k

e e

e C E

C H H

 



 
    

 
    

 
    



 

  2

         (5.41a) 

     

 

1 1
2 , 1/ 2 , , 1 / 2 , 1 2 , 1 / 2 , , 1 / 2 ,

1 1/ 2
2 , 1/ 2 , , 1 / 2 , 1 2 , 1 / 2 , , 1 / 2 ,

1/ 2 1/ 2
2 , 1 / 2 , , 1 / 2 , 1/ 2 , 1/ 2 , 1/ 2

| | | |

       | | | |

              | | |

n n
i j k y i j k i j k y i j k

n n
i j k y i j k a i j k y i j k

n n
b i j k x i j k x i j k

e e

e C E

C H H

 



 
    

 
    

 
    



 

 

            (5.41b) 
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1 1
3 , , 1/ 2 1, , 1 3 , , 1 / 2 , , 1/ 2

1 1/ 2
3 , , 1/ 2 1, , 1 / 2 3 , , 1/ 2 , , 1 / 2

1/ 2
3 , , 1 / 2 1/ 2 , , 1 / 2 1/ 2 , , 1

| | | |

           | | | |

                       | | |

n n
i j k z i j k i j k z i j k

n n
i j k z i j k a i j k z i j k

n
b i j k y i j k y i j k

e e

e C E

C H H

 



 
    

 
    


    



 

  1/ 2
/ 2

n 

    (5.41c) 

The electric field components for sub-step 2 from (5.36) can be written as follows:  

                   
1/ 2 , ,

1 1 1/ 2 1/ 2
1/ 2 , , 1 / 2 , , 1 / 2 , , 1| | | 2

i j k

n n n n
x i j k x i j k x i j k E xyE e E a 



   
                  (5.42a) 

                    
, 1/2 ,

1 1 1/ 2 1/ 2
, 1 / 2 , , 1 / 2 , , 1/ 2 , 2| | | 2

i j k

n n n n
y i j k y i j k y i j k E yzE e E a 



   
                (5.42b) 

                    
, , 1/ 2

1 1 1/ 2 1/ 2
, , 1 / 2 , , 1 / 2 , , 1 / 2 3| | | 2

i j k

n n n n
z i j k z i j k z i j k E zxE e E a 



   
                  (5.42c) 

 and the magnetic field components from (5.37) can be written as follows: 

                        
, 1/2, 1/2

1 1 1/2 1/2
, 1/2, 1/2 , 1/2, 1/2 , 1/2, 1/2 1| | | 2

i j k

n n n n
x i j k x i j k x i j k HxyH h H b

 

   
                       (5.43a) 

                       
1/2, , 1/2

1 1 1/2 1/2
1/2, , 1/2 1/2, , 1/2 1/2, , 1/2 2| | | 2

i j k

n n n n
y i j k y i j k y i j k HyzH h H b

 

   
                       (5.43b) 

                        
1/2, 1/2,

1 1 1/2 1/2
1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 3| | | 2

i j k

n n n n
z i j k z i j k z i j k HzxH h H b

 

   
                       (5.43c) 

where  

                       
1/2, , 1/2, ,

1/2 1/2
1 2 1 2 3 1/2, 1/2, 3 1/2, 1/2,| |

2
j

i j k j i j k

yn n n n
e y e i j k i j k

d
c H H

y      
 

 
     


                 (5.44) 

                                                0( / ) ( / )  ,   3 is z,  or s s s t
sc e x y                               (5.45a) 

                                / ( ( )) 1 ,   ( , ,  or )s s s s s s sd c s x y z                           (5.45b) 

                                                   max 0( ) | | /m m
s ss s s                                       (5.45c) 

                                                 max 0( ) 1 ( 1) | | /m m
s s s s                               (5.45d) 

where  is the thickness of the PML absorber, 0s is the PML interface, m is the order of 

the polynomial. The proposed F-LOD-FDTD-CPML requires only two sub-steps and 

obtains matrix operator-free right-hand sides. Compared to both the C-LOD-FDTD-

CPML and the original LOD-FDTD-CPML [131], the auxiliary variable ‘ψ’ is only 

required in the proposed approach to explicitly update the electric and magnetic field 

components given in (5.39) and (5.40) but not during the implicit updating process for 

auxiliary electric fields (5.38a)-(5.38c) for sub-step 1. A similar process occurs for sub-

step 2. From the updating equations of sub-steps 1 and 2, it can also be observed that 

one variable   is enough for the proposed approach; for the reason described in Section 

5.2.  
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5.4.2.1 Validation 
    To validate the CPML implementation for the 3-D F-LOD-FDTD, we consider a free 

space domain with 46×46×46 cells including 10 layers of CPML in each direction. The 

observation point, where the z directed electric field is recorded, is located at 10 cells 

away from the source. Gaussian pulse is used as a source.  

 

 

     

 

 

 

 

 

 

 
Fig. 5.7 Reflection error with respect to time for CFLN=2, 7 and 12 

    

 

 

 

 

 

 

 

 

 
 

Fig. 5.8 Reflection error with respect to time for CFLN=8 

     

 

To minimise the reflection error, the following parameters are considered: 

 opt 1 /150m x    , 
max opt0.7  (S/m)s  , 

max
15sk  and  4m   for CPML. Fig. 5.7 
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shows the reflection error for F-LOD-FDTD CPML for CFLN=2, 6 and 10. Fig. 5.8 

shows the reflection error for CPML when used with both F-LOD-FDTD and C-LOD-

FDTD methods for CFLN=8. It can be observed from Fig. 5.8 that the proposed 

approach has a lower reflection error than the C-LOD-FDTD with CPML.  

    To demonstrate the efficiency and accuracy benefits, a comparison of the number of 

required arithmetic operations between C-LOD-FDTD-CPML and the proposed F-

LOD-FDTD-CPML over one complete time step are obtained and shown in Table 5.2.  

 

 

Table 5.2 Comparison of the number of arithmetic operations per grid between C-LOD-

FDTD-CPML and F-LOD-FDTD-CPML  

Arithmetic Operations C-LOD-

FDTD- CPML  

F-LOD-FDTD- 

CPML  

Implicit, RHS M/D 54 18 

A/S 72 12 

Explicit, RHS M/D 36 24 

A/S 30 30 

Total, RHS M/D 90 42 

A/S 102 42 

M/D+ A/S 192 84 

Tridiag. Matrices  M/D 18 18 

A/S 12 12 

Overall M/D 108 60 

A/S 114 54 

M/D+ A/S 222 114 

Efficiency gain RHS 1 2.29 

overall 1 1.95 

 

 

 

From Table 5.2 it can be observed that the total flops count for the right hand side of the 

resultant equations for the proposed F-LOD-FDTD CPML is 84 which are considerably 
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less than 192 for the C-LOD-FDTD CPML, thus offering an efficiency gain of 2.29.  

Table 5.2 also includes a comparison of the arithmetic operations needed for inverting 

tri-diagonal matrices because there is a cost involved in solving them. The results show 

that the F-LOD-FDTD CPML still offers superior performance and achieves an overall 

efficiency gain of 1.95. In addition, we have introduced some operations for the F-

LOD-FDTD for which implicit and explicit equations are alternatively calculated. It is 

thus necessary to retain only 7 field arrays rather than the 12 field arrays required by the 

C-LOD-FDTD and 9 field arrays required by the original formulation by Tan [134]. 

Thus the F-LOD-FDTD method can provide efficient operation. The stability analysis 

of the F-LOD-FDTD method is discussed next. 

 

 

 

5.5 Stability Analysis for 3-D F-LOD-FDTD Method 
5.5.1 Theoretical Stability Analysis  
    The Von Neumann method [166] has been used as a standard approach for the 

stability analysis. As stated earlier, if the magnitudes of the eigenvalues of the 

amplification matrix in the spectral domain are not larger than unity in magnitudes, the 

method will be considered to be unconditionally stable. Hence, we use the same method 

to demonstrate the unconditional stability of the F-LOD-FDTD. To check the stability 

of the proposed scheme, (5.20)-(5.24) and (5.26)-(5.28) are expressed in matrix form. 

Since the stability analysis of the F-LOD-FDTD requires detailed mathematical 

procedure, only the key results of the analysis are summarised below. The field 

components in the spatial spectral domain are assumed in the following form 

                                          ( )( , , ) x y zj k i x k j y k k zn n
r rE i j k E e                                       (5.46a) 

                                           ( )( , , ) x y zj k i x k j y k k zn n
r rH i j k H e                                     (5.46b) 

 

where , ,r x y z . xk , yk and zk are wave numbers along the x  , y  , z  directions 

respectively. By substituting (5.46a) and (5.46b) into (5.22)-(5.24) and (5.26)-(5.28), 

the following equation can be obtained: 
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Sub-step 1: 

                                                           1/2
1   n nU U                                                  (5.47) 

1where  is 12 12 matrix   

  

1

1 0  0  0  0  0  0        0            0          0          0    

1 0  0  0  0  0  0   0                 0              0        0

10   0  0  0  0  0   0         0                 

y

y y

z

z z

x

iW
Q Q

iW
Q Q

Q





 

 0            0

10   0  0  0  0  0  0              0                 0         0  

10  0  0  0  0  0   0          0               0                0   

0  0  0  0  0  0      0

x

x

z

z z

x

x x

y

y

iW
Q

iW
Q Q

iW
Q Q

iW
Q








1           0          0          0         

0  0  0  0  0  0        0           0          0          0       

 0  0  0  0  0  0   0              0               0             0

y

y y

y y

z z

z z

Q
Q iW
Q Q

Q iW
Q Q








   

0   0  0  0  0  0   0       0                 0                 0 

0   0  0  0  0  0  0            0                  0           0   

0  0  0  0  0  0   0        0          0  

x x

x x

z z

z z

Q iW
Q Q

iW Q
Q Q









              0         

0  0  0  0  0  0    0          0           0            0         

x x

x x

y y

y y

iW Q
Q Q

iW Q
Q Q





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  

   

Sub-step 2:  

                                               1 1/2
2   n nU U                                                          (5.48) 
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2

1 0  0  0  0  0  0        0            0          0            0
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By combining (5.47) and (5.48), we obtain the following equations, 

                                                      1
1 2   n n nU U U                                            (5.49) 

where 1 2     
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(5.50) 

By solving (5.50), twelve eigenvalues can be obtained, and the six eigenvalues of the 

 can be written as follows  

                       1 2 1 1x iy    , 3 5 1 1x iy    , 4 6 2 2x iy                             (5.51) 

where 

 

2 2 2 2
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From the equation (5.50), it can be observed that twelve eigenvalues can be obtained for 

the F-LOD-FDTD method but six eigenvalues of them are zero. So, rest of the six 

eigenvalues have been calculated. For the first six eigenvalues, only the first six terms 

of each eigenvalue have been considered; they can be written in compact form in (5.51). 

From (5.51), we can easily obtain the magnitude of the eigenvalues unity, i.e 

1 2 3 4 5 6 1           . However, we have also computed the eigenvalues to 

check the unconditional stability. For instance, we compute the eigenvalues for the case 

of 0.2xk  , 0.2yk   and 0.2zk  and 1 mmx y z      . The computed eigenvalues 

of the F-LOD-FDTD are tabulated in Table 5.3, from which we can observe that the 

magnitudes of the eigenvalues are never larger than unity. Hence, the F-LOD-FDTD 

method can be considered to be unconditionally stable. 

 

Table 5.3 

Computed eigenvalues of F-LOD-FDTD 

Eigen values CFLN=2 CFLN=4 CFLN=6 

1  1.00000 1.000000 1.000000 

2  1.0000 1.0000 1.00000 

3  0.996344 0.995244 0.994214 

4  0.00574 0.00554 0.00443 

5  0.000613 0.0005513 0.0004213 

6  0.000488 0.005488 0.003588 

7 - 12  0.00000 0.00000 0.00000 
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5.5.2 Numerical Stability Analysis 
To check the stability of the proposed F-LOD-FDTD method numerically, the problem 

of the electromagnetic scattering by an elongated thin PEC plate (as shown in Fig. 5.5) 

is considered [2].  The F-LOD-FDTD CPML model is discretised spatially with uniform 

cubic cells spanning Δx=Δy=Δz=1 mm. The F-LOD-FDTD lattice is terminated with a 

10 cell CPML absorber. Excitation is provided by a z-directed electric dipole located 1 

mm above one of the corners of the plate (as shown in Fig. 5.5). The time signature of 

the excitation is the differentiated Gaussian pulse with a half-width tw=53 ps and a time 

delay t0=4tw. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.9 Computed yE field in the plane of the plate at its opposite corner, in a direction to the plate edge 

at a distance of (a) 1 mm (b) 2 mm from the edge for CFLN=5 
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Fig. 5.10 Computed yE field in the plane of the plate at its opposite corner, in a direction to the plate edge 

at a distance of  3mm from the edge for (a) CFLN=10 (b) CFLN=12 

 

The computed electric field in the plane of the plate at its opposite corner, in a direction 

normal to the plate edge at a distance of 1 mm (A), 2 mm (B) from the edge is shown in 

Fig. 5.9 (a)-(b) respectively for CFLN=5. The results demonstrate the numerical 

stability of the proposed F-LOD-FDTD CPML for a 3-D electromagnetic problem. 

From Fig. 5.10, it is also seen that F-LOD-FDTD CPML is stable for higher CFLN. 

 

 

5.6 Near-Field to Far-Field Transformation for both the 3-D 

C-LOD-FDTD and F-LOD-FDTD Methods 
    The near-field to far-field transformation technique for the C-LOD-FDTD and F-

LOD-FDTD methods is described in this section. Since the NF-FF transformation 
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procedure for the proposed approaches are the same as the NF-FF transformation 

procedure of the FDTD method, we briefly discuss the transformation technique for the 

C-LOD-FDTD and F-LOD-FDTD here. In many applications, such as the antennas and 

radar cross section (RCS) scatterer, it is necessary to find the radiation or scattered 

fields in the region that are far away from an antenna or scatterer.  Therefore, the direct 

simulation of C-LOD-FDTD or F-LOD-FDTD for the far field requires a mesh 

extending many wavelengths from the object which leads to a huge increase in 

computational time, which is not practical in applications. Instead, the far zone 

electromagnetic fields are computed from the near field LOD-FDTD data through a 

near-field to far-field transformation technique. For the near-field to far-field 

transformation technique, an imaginary surface is first selected to enclose the 

electromagnetic object.  Following the notation of [2], the radiation vectors N  and L  

are defined as 

                                               ˆexp .  sS
N J jkr r ds


                                              (5.52a) 

                                              ˆexp .  sS
L M jkr r ds


                                              (5.52b) 

where 1j   , k the wavenumber, r̂  the unit vector to the far zone field point, r the 

vector to the source point of integration and S  the closed surface surrounding the 

scatterer. The electric and magnetic field components in the far field are expressed as: 

                                              04

jkrjkeE L N
r  





                                             (5.53a) 

                                              04

jkrjkeE L N
r  





                                             (5.53b) 

                                              
04

jkr LjkeH N
r


  

  
   

 
                                          (5.53c) 

                                            
04

jkr LjkeH N
r


  

  
   

 
                                            (5.53d) 

where N , N , L  and L can be expressed in terms of the following integrals: 

            cos( )cos( ) cos( ) cos( )sin( ) sin( ) jkr
x y zS

N J J J e dS
                     (5.54a) 

                             cos( )sin cos jkr
x yS

N J J e dS
                                           (5.54b) 
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        cos( )cos( )cos( ) cos( )sin( ) sin( ) jkr
x y zS

L M M M e dS
                      (5.54c) 

                            cos( )sin cos jkr
x yS

L M M e dS
                                          (5.54d) 

Here, the currents J and M on the surface are determined by E  and H fields which are 

computed using either C-LOD-FDTD or F-LOD-FDTD method inside the 

computational domain. These currents are transformed into the frequency domain while 

being captured. After completing for all the time steps, the far field terms L  , L , 

N  and N  are calculated. These far field terms are calculated in the same way as 

given in [2] so will not be repeated here. Bistatic RCS can then be calculated using the 

following equation.  

                                         
2

2
0

0

| |
8 inc

kRCS L N
P  


                                          (5.55a)                    

                                           
2

2
0

0

| |
8 inc

kRCS L N
P  


                                         (5.55b)                   

The incP can be calculated as: 

                                             2

0

1 | ( ) |
2inc incP E 


                                                   (5.56) 

where ( )incE  is the discrete Fourier transform (DFT) of the incident electric field 

waveform at the frequency for which RCS calculation is required. The near-field to far-

field transformation techniques have been used for both C-LOD-FDTD and F-LOD-

FDTD. 

 

 

5.7 Pure Scattered Field Formulation for Both the 3-D C-

LOD-FDTD and F-LOD-FDTD Methods 
    In this section, pure scattered field formulation for both 3-D C-LOD-FDTD and F-

LOD-FDTD will be presented. For plane wave excitation in LOD-FDTD, the problem 

space is divided into two regions: the total field region and the scattered field region. 

The vectorial sum of incident and scattered fields present within a given space provides 

the total fields. The scattered field formulation for the 3-D C-LOD-FDTD in two sub-

steps is given in the next sub-section. 
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5.7.1 Scattered Field Formulation for 3-D C-LOD-FDTD 
Following the theory of scattered field formulation as described in Chapter 3 and the C-

LOD-FDTD formulations as described in Section 5.2, the scattered field formulation for 

the C-LOD-FDTD method for the two-steps is given below. 

Sub-step 1: The electric field updating equations of sub-step 1 are as follows: 
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 1/2
, 1/2, , , 1/2, ,| |n n

eic inc x i j k exeip inc x i j kE C E
   

               (5.57a) 
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 1/2
, , 1/2, , , 1/2,| |n n

ic inc y i j k eyeip inc y i j kE C E
   

                 (5.57b) 
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 1/2
, , , 1/2 , , , 1/2| |n n

zeic inc z i j k ezeip inc z i j kE C E
   

             (5.57c) 

The magnetic field updating equations of sub-step 1 are as follows: 

         
 
 

1/ 2
, , 1/ 2 , 1/ 2 , , 1/ 2 , 1/ 2

1/ 2 1/ 2
, , 1/ 2 , 1 , , 1/ 2 ,
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  1/ 2
, , 1/ 2 , 1/ 2|nhxhip inc x i j kC H

  

       (5.57d) 

            
 
 

1/ 2
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1/ 2 1/ 2
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  1/ 2
, 1/ 2 , , 1/ 2|nhyhip inc y i j kC H   

   (5.57e) 
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   , 1/ 2 , 1/ 2 ,|nhzhip inc z i j kC H  

     (5.57f) 

In a similar way, the updating equations for sub-step 2 can be derived as given below. 

Sub-step 2: 

The electric field updating equations of sub-step 2 are as follows: 

           
 
 

1 1/2
, 1/2, , , 1/2, ,

1 1
, 1/2, , 1/2 , 1/2, , 1/2

1/2 1/2
, 1/2, , 1/2 , 1/2, , 1/2

| |

     | |

       | |

               

n n
scat x i j k exe scat x i j k

n n
exhy scat y i j k scat y i j k

n n
exhy scat y i j k scat y i j k

exeic

E C E

C H H

C H H

C E

 
 

 
   

 
   

 

  

  

  1 1/2
, 1/2, , , 1/2, ,| |n n

inc x i j k exeip inc x i j kC E 
  

                    (5.58a) 
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  1 1/2
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                      (5.58c) 

 

The magnetic field updating equations of sub-step 2 are as follows: 
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        (5.58d) 
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  1 1/ 2
2 , , 1/ 2 , 1/ 2 ,|n n

k hzhip inc z i j kC H 
  

        (5.58f) 

where exeC , exhxC  , exhyC , exhzC , and hxhC , hxexC , hxeyC , hxezC as well as other coefficients are 

the same as mentioned in Section 5.2, and  

0(4( ) ) / (4 )exeic e eC t t          , 0(4( ) ) / (4 )exeip e eC t t            

0(4( ) ) / (4 )hxeic m mC t t          , 0(4( ) ) / (4 )hxhip m mC t t            

However, equations (5.57) and (5.58) of sub-step 1 and 2 cannot be solved directly; tri-

diagonal linear system can be formed from sub-steps 1and 2 by following the procedure 

which has been described in Section 5.2. Equations (5.57) and (5.58) have been used for 

the calculation of RCS from 3-D microwave structures in Section 5.8. 

 

 

5.7.2 Scattered Field Formulation for 3-D F-LOD-FDTD 
    Similar to the scatter field formulation of the C-LOD-FDTD method, the scattered 

field formulation for the F-LOD-FDTD method can be derived. Following the scattered 

field formulation as described in Chapter 3 and the F-LOD-FDTD formulations as 

described in Section 5.4, the scattered field formulation for the F-LOD-FDTD method 

for the two-steps can be derived. For brevity, only sub-step 1 is given below. 

Sub-step 1:  

Auxiliary implicit updating for electric and magnetic fields are as follows: 
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b e e

 



  

 
              (5.59a)        
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             (5.59f)        

and the explicit updating for the electric and magnetic fields are as follows: 

                    1/ 2 1/ 2
, 1 , 1 , 1| | |n n n

sca t scat scatE e E  
                                          (5.60) 

                  1/ 2 1/ 2
, 1 , 1 , 1| | |n n n

scat scat scatH h H  
                                          (5.61) 

In a similar way, the update scattered field equations for the sub-step 2 can be derived 

for the F-LOD-FDTD method. Therefore, for a given incident wave, the above 

equations can be used to calculate the scattered field. The total field can be obtained by 

adding the scattered field to the incident field. Note that incident fields are applied only 

in the internal region, and in the CPML region only scattered fields exist, which are 

absorbed by CPML. In the next section, the applications of fundamental scheme LOD-

FDTD are discussed. 

 

 

5.8 Computational Results on 3-D Microwave Structures 

Using C-LOD-FDTD and F-LOD-FDTD Methods 
5.8.1 EM Scattering from Spheres 
    To validate the proposed F-LOD-FDTD CPML method for EM scattering problems, 

we first consider plane wave scattering from a perfectly electric conducting sphere of 

radius 8.3ka  . The problem space is divided using uniform orthogonal meshes with 
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cell size Δx=Δy=Δz=0.75 cm. An eight-layer CPML is used for the PEC sphere which 

surrounds the entire computational domain with parameters σs,max= 0.7σopt, σopt=11.21 

(S/m), m=4 , κmax=1, and αmax=0.2.  Fig 5.11 (a)-(b) shows the bistatic radar cross 

section of the PEC sphere obtained using the F-LOD-FDTD CPML for CFLN=2, 10 

and compared with the results obtained by C-LOD-FDTD CPML as well as Mie series.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
Fig. 5.11 RCS( ,0) for a perfectly conducting sphere 8.3ka  compared with the results obtained using 

C-LOD-FDTD as well as Mie series solution for (a) CFLN=2 (b) CFLN=10 

 

From Fig. 5.11 (a)-(b), it can be observed that the results on a scattered field at higher 

CFLN agree well with the results obtained from C-LOD-FDTD and with Mie series.   

As far as the computer resources are concerned, C-LOD-FDTD CPML requires around 

28 MB memory and 6.5 mins of execution time, whereas F-LOD-FDTD CPML needs 

around 19.5 MB memory and 4.5 minutes of execution time.  
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Fig. 5.12 Transient scattering of PEC sphere of radius 0.5 m illuminated by a Gaussian plane wave 
 

    Our simulations were carried out  on a six core Linux workstation with 3.4 GHz 

clock and 32 GB RAM using Matlab. The computational performance in terms of 

memory requirement and execution time show that F-LOD-FDTD CPML is 

computationally efficient compared to C-LOD-FDTD CPML. Fig. 5.12 shows the 

transient scattering from a PEC sphere of radius 0.5 m compared with the results 

obtained by C-LOD-FDTD as well as with published results obtained using TDIE [169]. 

It can be seen that the result obtained by F-LOD-FDTD method agrees reasonably well 

with the analytical result. From the Fig. 5.12, it can also be observed that the time 

domain solutions of the PEC sphere are stable in early time.   

    Now, we analyse the bistatic scattering from a lossless dielectric 

sphere ( 3, 20)rka   . Our numerical results will be compared with the results in the 

literature [170]. The problem space is divided using uniform orthogonal rectangular 

meshes with cell size Δx=Δy=Δz=0.75 cm. An eight-layer CPML is used for the 

dielectric sphere which surrounds the entire computational domain with parameter, 

σs,max= 0.7σopt, σopt=11.21 (S/m), m=4 , κmax=1, and αmax=0.2. The computed bistatic 

RCS for the dielectric sphere obtained by F-LOD-FDTD is shown in Fig. 5.13 (a)-(b). 

From Fig. 5.13 (a)-(b), it is observed that the result obtained by the F-LOD-FDTD 

CPML with higher CFLN agrees reasonably well with the published results from [170]. 

The computational resources used for the simulation of the dielectric sphere are the 

same as those used for the PEC sphere. The transient scattering from a lossless 

dielectric sphere with radius 0.5 m and the relative permittivity εr=2 has been computed 

next using F-LOD-FDTD. 
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Fig. 5.13 Bistatic RCS for a dielectric sphere ( 3, 20)rka   compared with Mie series solution for (a) 

CFLN=5 and (b) CFLN=10. 

 

 

   
 

 

 

 

 

 

 
 

Fig. 5.14 Transient scattering from dielectric sphere of radius 0.5 m illuminated by a Gaussian plane wave 
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Fig. 5.14 shows the transient scattering compared with the results obtained by C-LOD-

FDTD as well as with the published results obtained using TD-EFIE [171]. It can be 

observed that the result obtained by F-LOD-FDTD agrees reasonably well with the 

analytical result as well as with the result obtained using C-LOD-FDTD. From the 

transient response, it can be observed that the time domain solutions of the lossless 

dielectric sphere are stable in early time. 

 

 

5.8.2 Modelling of Cylindrical Dielectric Resonator   
   To further validate the F-LOD-FDTD CPML and C-LOD-FDTD CPML, a cylindrical 

dielectric resonator is considered. Our numerical results on the resonant frequencies of 

the cylindrical dielectric resonator will be compared with the results obtained from 

published results in the literature [172]. The parameter used for the cylindrical dielectric 

resonator (as shown in Fig. 5.15) are εr=38, a=5.25 mm, h=4.6 mm. An eight-layer 

CPML is used for the cylindrical dielectric resonator which surrounds the entire 

computational domain with parameters σs,max= 0.7σopt, σopt=11.21 (S/m), m=4 , κmax=1, 

and αmax=0.2. The resonant frequencies for the TE and HE modes of the resonator are 

computed using both the F-LOD-FDTD CPML and C-LOD-FDTD CPML and are 

tabulated in Table 5.4. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.15 The problem space for dielectric resonator with CPML boundary, εr=38, a=5.25 mm, h=4.6 

mm 
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Table 5.4 

Comparison of resonant frequencies for the cylindrical dielectric resonator [172]   

Mode F-LOD-FDTD C-LOD-FDTD Glisson et al. [172] 

TE01 4.831 4.811 4.82 

HE12 6.639 6.621 6.63 

 

The results on resonant frequencies reveal that those obtained using F-LOD-FDTD 

CPML have closer agreement with the published data [172]. 

 

 

5.8.3 Arbitrary Shaped Thin Wire Antenna Modelling 
    To further validate the proposed approach, various dipole antennas have been 

analysed by F-LOD-FDTD CPML and C-LOD-FDTD CPML. First, a thin wire dipole 

antenna in free space has been analysed. A dipole antenna (as shown in Fig. 5.16) 

composed of two thin wires having a radius of 0.05mm and length of 9.75 mm is 

considered. The computational domain is discretised with orthogonal meshes with cell 

sizes 0.001 mmx  0.001 mmy  and 0.025 mmz  . For this, a CPML with a 

thickness of 8 cells and a 10 cell air gap on all sides is considered with parameters 

σs,max= 0.7σopt, σopt=11.21 (S/m), m=4 , κmax=1, and αmax=0.2. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.16 A thin wire dipole antenna 
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Fig. 5.17 Transient current in the center of the thin wire dipole antenna 

 

 

Note that the larger value α=0.2 in the CPML region is considered to allow evanescent 

waves to be absorbed by the PML without reflection. Fig. 5.17 shows the induced 

transient current at the centre of the dipole antenna. The scattering parameters in the 

frequency domain as well as the radiation pattern are obtained using the proposed 

methods. Fig. 5.18 (a)-(b) shows the calculated S11 of the thin wire dipole antenna 

obtained using F-LOD-FDTD CPML and conventional LOD-FDTD CPML for 

CFLN=2 and 10. Far field radiation patterns in the xz and xy plane cut obtained by the 

F-LOD-FDTD and C-LOD-FDTD methods are shown in Fig. 5.19 and Fig. 5.20 at the 

frequency of 7 GHz. From Figs. 5.19-5.20, it can be observed that the calculated |S11| 

and the radiation pattern by the proposed F-LOD-FDTD CPML agree reasonably well 

with the results obtained by C-LOD-FDTD. 
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Next we present the computed transient current induced at the centre of a 1 m long thin 

wire dipole antenna having a radius of 5 cm operating at 300 MHz and compare this 

with the published results obtained using the time domain (TD) method of moment 

(MOM) [173] as shown in Fig. 5.21. For this, a CPML with a thickness of 8 cells and 

with a 10 cell air gap on all sides is considered with parameters σs,max= 0.7σopt, 

σopt=11.21 (S/m), m=4 , κmax=1, and αmax=0.2.  

 

 

 

 

 

 

 

 
 

Fig. 5.21 Calculated currents at the centre of the 1 m long dipole antenna 

 

 

    In terms of the computer resources for the calculation of the S-parameter of the dipole 

antenna, the C-LOD-FDTD CPML requires around 60.5 MB memory and 215.31 

seconds of execution time, whereas F-LOD-FDTD CPML needs around 53 MB 

memory and 150.66 seconds of execution time. It can be observed that the F-LOD-

FDTD CPML method requires less execution time as a result of the reduced number of 

arithmetic operations required for F-LOD-FDTD. Our simulations were carried out on a 

six core Linux workstation with 3.4 GHz clock and 32 GB RAM using Matlab.  

    To further demonstrate the accuracy and efficiency of the F-LOD-FDTD and C-

LOD-FDTD approaches, they are applied to the analysis of thin wire bent and square 

loop antennas. First, the bent thin wire antenna (shown in Fig. 5.22) is analysed. A bent 

wire with 900 bent angles with equal sides of length 9.75 mm and radius 0.05 mm are 

considered. The computational domain is discretised with orthogonal meshes with cell 

sizes Δx=0.001 mm, Δy=0.001 mm, and Δz=0.025 mm. A CPML with a thickness of 8 

cells and with a 10 cell air gap on all sides is considered with parameters σs,max= 0.7σopt, 

σopt=11.21 (S/m), m=4 , κmax=1, and αmax=0.2. 
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Fig. 5.22 Bent thin wire antenna 

 

 

 

 

 

 

 

 

 

 
Fig. 5.23 Induced current at the centre of the bent wire antenna 

 

 

 

 

 

 

 

 

 

 
Fig. 5.24 Calculated |S11| of the bent wire antenna using F-LOD-FDTD and C-LOD-FDTD  
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Fig. 5.25 Calculated phase of the bent wire antenna using F-LOD-FDTD CPML  

 

    Note that larger value α=0.2 in the CPML region is considered to allow evanescent 

waves to penetrate into the PML without reflection. Fig. 5.23 shows the transient 

current induced at the centre of the bent wire antenna obtained by F-LOD-FDTD 

CPML. Fig. 5.24 shows the calculated S11 of the bent wire antenna by F-LOD-FDTD 

CPML compared with the result obtained by C-LOD-FDTD CPML for CFLN=5. Fig. 

5.25 presents the computed phase of the bent thin wire antenna using F-LOD-FDTD 

compared with the result obtained by C-LOD-FDTD for CFLN=2. From Figs. 5.24 and 

5.25, it can be observed that the result obtained by F-LOD-FDTD CPML agrees 

reasonably well with the results obtained by conventional LOD-FDTD CPML. In 

respect of computer resources, the conventional LOD-FDTD CPML requires around 90 

MB memory and 30 mins execution time whereas F-LOD-FDTD CPML needs a 

memory of 60 MB and execution time of 20 mins. 

    Next, we use F-LOD-FDTD CPML and C-LOD-FDTD CPML approaches to model 

one wavelength thin wire square loop antenna as shown in Fig. 5.26. Fig. 5.27 shows 

the induced transient current from the square loop wire antenna obtained by F-LOD-

FDTD CPML. Figs. 5.28-5.29 show the calculated S11 and phase of the square loop 

antenna obtained using F-LOD-FDTD at CFLN=14 and 12. From Figs. 5.28 and 5.29, it 

can be observed that the computed results using the F-LOD-FDTD CPML and C-LOD-

FDTD approaches provide a stable solution even at higher CFLN. We used the same 

computer resources as were used for the dipole antenna. The C-LOD-FDTD CPML 

requires 22 mins and 100 MB memory for the simulation whereas F-LOD-FDTD needs 

18 mins and 89 MB memory. 
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Fig. 5.26 Geometry of square loop wire antenna 

 

 

 

 

 

 

 

 
 

Fig. 5.27 Induced current from the square loop wire antenna 

 

 

 

 

 

 

 

 

 
 

Fig. 5.28 Computed |S11| of the square loop wire antenna using F-LOD-FDTD CPML and C-LOD-FDTD 

at CFLN=14 
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Fig. 5.29 Computed  phase of the square loop wire antenna using F-LOD-FDTD CPML and C-LOD-

FDTD CPML at CFLN=12 

 

 

5.8.4 Rectangular Microstrip Patch Antenna Analysis 
    To further validate the proposed approach, the rectangular microstrip antenna is 

analysed. The parameters of the rectangular microstrip antenna (as shown in Fig. 5.30) 

are taken from [174]. The orthogonal meshes with the cell size Δx= 0.389 mm, Δy=0.40 

mm, and Δz=0.265 mm have been used; thus the rectangular antenna is 32 Δx × 40 Δy.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 5.30 Rectangular microstrip antenna 
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Fig. 5.31 (a)-(b) Return loss of the rectangular antenna at CFLN=2 and 10 

 

 

The length of the microstrip line from the source plane to the edge of the antenna is 50 

Δy, and the reference plane for port 1 is 10 Δy from the edge of the patch. The 

microstrip line width is modelled as 6 Δx. The Gaussian half width is T=15 ps, and the 

time delay t0 is set at 3 T. The scattering coefficient results obtained by the F-LOD-

FDTD CPML shown in Fig. 5.31(a)-(b) for CFLN=2, 10, show good agreement with 

the result obtained by C-LOD-FDTD CPML. The antenna resonates at 7.5 GHz which 

agrees with the published results in [174]. Additional resonances are also in good 

agreement, except for the highest resonance near 18 GHz, which is somewhat shifted. 
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5.8.5 Modelling of Microstrip Low Pass Filter   
    To further validate F-LOD-FDTD CPML, the microstrip low-pass filter [174] (shown 

in Fig. 5.32) is analysed and the results obtained by the F-LOD-FDTD method are 

compared with the results obtained by the C-LOD-FDTD method. The cell size Δx, Δy, 

and Δz for the low pass filter are carefully chosen to fit the dimensions of the circuit. 

The spatial cell sizes used are Δx=0.4064 mm, Δy=0.4233 mm, and Δz=0.265 mm, 

chosen to fit the dimension of the filter. The length of the rectangular patch becomes 

equal to 50Δx ×6 Δy. The scattering coefficient S11 obtained by the F-LOD-FDTD is 

shown in Fig. 5.33 (a) for CFLN =6 and compared with the results obtained using the F-

LOD-FDTD method. The scattering coefficient S21 results, shown in Fig. 5.33 (b), again 

show good agreement in the location of the nulls of frequency response. The phase of 

the s-parameters is shown in Fig. 5.34. The desired low-pass filter performance has 

sharp S21 with roll-off beginning at approximately 5 GHz. There is again some shift 

near the high end of the frequency range. However, from the figure, it can be observed 

that the results obtained by the C-LOD-FDTD method agree reasonably well with the 

results obtained by the C-LOD-FDTD method.  As far as computer resources are 

concerned, the C-LOD-FDTD CPML requires around 549 MB memory and 136 sec 

execution time, whereas F-LOD-FDTD CPML needs around 417 MB and 110.66 sec. 

From the comparison, it is observed that the CPML with F-LOD-FDTD requires less 

execution time than conventional LOD-FDTD. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.32 Microstrip low pass filter  
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Fig. 5.33 Return losses of microstrip low pass filter (a) S11 and (b) S21 for CFLN=6 
 

 

 

 

 

 

 

 

 

 
Fig. 5.34 Phase of S11for the microstrip low pass filter 
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5.8.6 Microstrip Transmission Line Model of VLSI Interconnect 
    Finally, we have analysed wave propagation on a lossy microstrip VLSI interconnect 

[175] as shown in Fig. 5.35 using the proposed F-LOD-FDTD CPML and C-LOD-

FDTD CPML. It must be noted that the explicit-FDTD method requires excessive 

computational time to model such a small structure due to CFL constraint. The 5 mm 

long micro-strip transmission line having a width of 10 m is printed on a lossy SiO2 

(εr=4.0, σ=0.5×10-3 S/m) substrate which is 1 m  thick and is excited by a Gaussian 

pulse [175]. To analyse this structure using our proposed approach, we 

choose 20 mx   , 5 my   and 1 mz   . Figs. 5.36 and 5.37 show the electric 

fields at a distance of 1.5 and 2 mm from the load end of the microstrip interconnect 

computed using the proposed scheme and compared with the results published in [175].  

 

 

 

 

 

 

 

 

 
 

Fig. 5.35 Lossy microstrip transmission line model of VLSI interconnect [175] 

 

 

 

 

 

 

 
 

Fig. 5.36 Normalised zE  field observed at 1.5 mm from the load end of the transmission line. 
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Fig. 5.37 Normalised zE  field observed at 2 mm from the load end of the transmission line 

     

    The F-LOD-FDTD CPML requires 4536 sec of CPU time and 184.9 MB of memory 

on a 3.4 GHz Linux workstation with 32 GB RAM using Matlab, whereas C-LOD-

FDTD requires 6804 sec of CPU time and 215.3 MB memory. This proves that F-LOD-

FDTD CPML is computationally more efficient than C-LOD-FDTD. For all cases, F-

LOD-FDTD CPML and C-LOD-FDTD CPML obtained numerically stable results. 

 

 

5.9 Discussion 
    In this chapter, a modified two sub-step conventional 3-D LOD-FDTD was first 

developed. A two sub-step CPML was derived for C-LOD-FDTD which obtains less 

reflection error. The stability analysis of C-LOD-FDTD was provided to demonstrate 

the unconditional stability of the developed C-LOD-FDTD method. The performance of 

the proposed C-LOD-FDTD CPML was investigated and compared with standard 

explicit FDTD as well as the F-LOD-FDTD. The C-LOD-FDTD CPML was also 

validated using numerical results obtained from realistic 3-D microwave devices and 

antenna. 

    To reduce the number of arithmetic operations due to the matrix operator, F-LOD-

FDTD has been developed with the inclusion of procedures to improve computational 

efficiency. CPML ABC for the F-LOD-FDTD method has also been presented. A 

comparison of F-LOD-FDTD with conventional LOD-FDTD has been tabulated which 

shows the improvement of the F-LOD-FDTD method. To the best of our knowledge, 

the stability analysis of the F-LOD-FDTD method is derived for the first time in this 
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thesis to demonstrate the stability of F-LOD-FDTD. Finally, both F-LOD-FDTD and C-

LOD-FDTD have been validated using numerical results on various microwave devices 

and antenna. The performance comparison in terms of execution time and memory used 

by C-LOD-FDTD and F-LOD-FDTD for analysing various microwave devices and 

antenna have been provided, which also proves the usefulness of the LOD-FDTD 

methods. Comparing the CPU time required for both the conventional and fundamental 

approaches, the proposed F-LOD-FDTD CPML approach is characterised by lighter 

calculation burden and higher efficiency. 
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Chapter 6 
 

 

3-D LOD-NFDTD: LOD-FDTD Approaches Using 

Non-orthogonal Curvilinear Meshes  
 

 

6.1 Introduction 
    In the previous chapter, we presented efficient C-LOD-FDTD and F-LOD-FDTD 

approaches using orthogonal rectangular meshes for analysing 3-D structures. In this 

chapter, we employ nonorthogonal curved meshes with 3-D LOD-FDTD for modelling 

3-D electromagnetic structures. The conventional LOD-FDTD method that uses 

orthogonal meshes employs staircase approximation to model curved/arbitrarily shaped 

structured. Very fine meshes are required to model the curved structures using 

orthogonal mesh LOD-FDTD method which can reduce the discretisation error 

introduced as a result of staircase approximation. This staircase error can also be 

reduced if nonorthogonal, curved meshes are employed while modelling 3-D curved 

structures. With this aim, we develop C-LOD-NFDTD and F-LOD-NFDTD approaches 

in this chapter using nonorthogonal curvilinear meshes. We also present CPML 

absorbing boundary conditions for nonorthogonal meshes 3-D LOD-FDTDs. 

Theoretical stability analysis of C-LOD-NFDTD and F-LOD-NFDTD will also be 

provided to demonstrate their unconditional stability. Numerical analyses of the C-

LOD-NFDTD and F-LOD-NFDTD methods are also presented. Using our approaches, 

three dimensional (3-D) meshes can be conformed to the curved discontinuities, thereby 

resulting in improved accuracies with shorter computation time. By using the 

fundamental scheme for non-orthogonal meshes with the LOD-FDTD method, the 

computational efficiency of the method is increased. Performance comparisons for both 

the C-LOD-NFDTD and F-LOD-NFDTD will also be presented. 
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6.2 C-LOD-FDTD Method Using Non-orthogonal 

Curvilinear Meshes 
    In Chapter 3, we presented the nonorthogonal mesh 2-D LOD-FDTD method for 

modeling curved 2-D structures. Compared to the orthogonal mesh LOD-FDTD 

scheme, fewer meshes are required to represent the curved or oblique boundary of 

electromagnetic structures when using nonorthogonal meshes, and computational 

efficiency can be improved using LOD-NFDTD method. Here, we derive 3-D C-LOD-

NFDTD method by modifying the orthogonal mesh version described in Section 5.2 of 

Chapter 5. The theory related to nonorthogonal mesh FDTD (NFDTD) has been 

described in section 3.2 of Chapter 3, so will not be repeated here. However, the 

derivation of the 3-D C-LOD-NFDTD method is described next. 

 

 

6.2.1 Derivation of the 3-D C-LOD-NFDTD Method 
    Following the theory of the nonorthogonal FDTD method as described in Section 3.2 

of Chapter 3 and denoting the covariant electric and magnetic field components which 

represent the flow of field along the grid as mE , mH ( m = 1, 2, 3) , and the contra-variant 

electric and magnetic field components which represent the flow through facets of the 

grid as mE , mH  ( m = 1, 2, 3), Maxwell’s equations in a lossy medium are written in the 

generalised curvilinear coordinate system (as shown in Fig. 6.1) as: 

                                         

3 2
13 122 31

2 31
21 233 1

3

2 1
32 311 2

e

H H
u uE

HHE
u u

E H H
u u

         
                    

   

i                                       (6.1a) 

and 

                                         

3 2
13 122 31

2 31
21 233 1

3

2 1
32 311 2

h

E E
u uH

EEH
u u

H E E
u u

         
                    

   

i                                       (6.1b) 
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Fig. 6.1 Nonorthogonal curvilinear coordinate system ( )1 2 3u ,u ,u ; (a) unitary vectors ( )1 2 3a ,a ,a  (b) 

reciprocal unitary vectors ( )1 2 3a ,a ,a  

 

 

where / ( . )  ( , 1, 2,3)pp
pq qqg g g p q    , e et

 
  



i
 , h et

 
   



i
 and g is the 

determinant of the metric with elements pqg  can be calculated using (3.3) given in 

Chapter 3 . In a curvilinear coordinate system, the covariant components of the electric 

( E ) and magnetic ( H ) fields are placed on the cells in the manner suggested by 

Holland [23]. In the explicit FDTD method, the contra-variant like pH and pE on the 

left hand sides of the equations (6.1a) and (6.1b) must be converted to a covariant such 

as pH and pE . The transformation matrix G is defined as  

                                                      
11 12 13

21 22 23

31 32 33

    
    
    

G G G
G G G G

G G G

 
   
  

                                             (6.2) 

To implement the LOD-NFDTD method, each explicit method is changed into an 

implicit time step using a two sub-step procedure following the LOD principle. By 

applying the LOD principle to (6.1a) and (6.1b), the two sub-step equations for C-LOD-

NFDTD can be written as follows: 

 

 

u2

u1

u3

a1

a2

a3
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Sub-step1: 
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Sub-step2: 
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           (6.4b) 

where (4 ) / (4 )e e eC t t        , 2 / (4 )e eD t t     , 2 / (4 )h mD t t      

and (4 ) / (4 )h m mC t t        . The updating equations of the C-LOD-NFDTD 

method can be derived with indices from (6.3) and (6.4) as follows:  

Sub-step 1:  

The electric field updating equations of sub-step 1 are as follows: 
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The magnetic field updating equations of sub-step 1 are as follows: 
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In a similar way, the updating equations for sub-step 2 can be derived as follows. 

Sub-step 2: 

The electric field updating equations of sub-step 2 are as follows: 
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The magnetic field updating equations of sub-step 2 are as follows: 
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          (6.6f) 

where eC , eD , hC , and hD  are the same as mentioned after (6.4). Note that the equations 

(6.5a)-(6.5f) and (6.6a)-(6.6f) of sub-steps 1 and 2 cannot be used directly for numerical 

calculation because the synchronous variables are included on both the left and right 

hand sides. Thus the modified equations must be derived. By placing (6.5f) into (6.5a), 

(6.5e) into (6.5c) and (6.5d) into (6.5b), and following the procedure given in [23], an 

approximation of the desired covariant and contra-variant field components are obtained 

which are second order accurate and they lead to simultaneous linear equations with tri-

diagonal form for 1E , 2E  and 3E field components. Here, a simultaneous linear equation 

with tri-diagonal matrix form for the 1E field component is provided below.  
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In a similar way, simultaneous linear equations with tri-diagonal matrix form for 2E  

and 3E  field components can be derived. Similar to sub-step 1, simultaneous linear 

equations can be obtained for sub-step 2. By substituting (6.6f) into (6.6a), (6.6e) into 

(6.6c) and (6.6d) into (6.6b), and following the procedure given in [23], an 

approximation of the desired covariant and contra-variant field components are obtained 

which are second order accurate, and this leads to simultaneous linear equations with 

tri-diagonal form for 1E , 2E , and 3E field components. In this case, only the 

simultaneous linear equation with tri-diagonal matrix form for 1E is provided below.  
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              (6.8) 

where 12 21
11 3 3

1 1
e hD D

G u G u


 


 
. In a similar way, simultaneous linear equations 

with tri-diagonal matrix form for 2E  and 3E  field components can be derived. An 

important advantage of the present approach is that the above equations have the same 

form as the orthogonal mesh version C-LOD-FDTD method. The convolutional 

perfectly matched layer (CPML) ABC for the C-LOD-NFDTD method will be 

discussed next. 

 

 

6.2.2 CPML ABC for the 3-D C-LOD-NFDTD Method 
    The theory of CPML ABC for non-orthogonal LOD-FDTD in 2-D has been 

described in Chapter 3, so will not be repeated here. By following its derivation, we can 

derive the CPML updating equations for sub-steps 1 and 2 for the 3-D LOD-NFDTD 

method as given below.  

Sub-step 1: 

The updating equations of electric field for sub-step 1 are as follows: 
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    (6.9c)    

The updating equations of magnetic field for sub-step 1 are as follows: 
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     (6.9f)           

In a similar way, the updating equations for sub-step 2 can be derived as follows. 

Sub-step 2: 

The updating equations of electric field for sub-step 2 are as follows: 
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 The updating equations of magnetic field for sub-step 2 are as follows: 

     
 

  12

1 1/2 1 1
1 1 13 3 32, 1/2, 1/2 , 1/2, 1/2 , 1, 1/2 , , 1/2

1/2 1/2 1/2
13 3 3 132 , 1, 1/2 , , 1/2

1 1

1 1 1               |

n n n n
h hi j k i j k i j k i j k

n n n
h h Hi j k i j k

H C H D E E
G u

D E E D
G u G



   

      

  
  

    


      


         (6.10d)            

     
 

  23

1 1/2 1 1
2 2 21 1 131/2, , 1/2 1/2, , 1/2 1/2, , 1 1/2, ,

1/2 1/2 1/2
21 1 1 213 1/2, , 1 1/2, ,

1 1

1 1 1              |

n n n n
h hi j k i j k i j k i j k

n n n
h h Hi j k i j k

H C H D E E
G u

D E E D
G u G



   

      

  
  

    


      


          (6.10e)         

      
 

  31

1 1/2 1 1
3 3 32 2 211/2, 1/2, 1/2, 1/2, 1, 1/2, , 1/2,

1/2 1/2 1/2
32 2 2 321 1, 1/2, , 1/2,

1 1

1 1 1             |

n n n n
h hi j k i j k i j k i j k

n n n
h h Hi j k i j k

H C H D E E
G u

D E E D
G u G



   

      

  
  

    


      


          (6.10f) 

where (4 ) / ( ( )(4 ))e e eC t k j t        , 2 / ( ( )(4 ))e eD t k j t     , 

2 / ( ( )(4 ))h mD t k j t      and (4 ) / ( ( )(4 ))h m mC t k j t        . Note that 

equations (6.9a)-(6.9f) and (6.10a)-(6.10f) of sub-steps 1 and 2 cannot be solved 

directly because the synchronous variables are included on both the left and right hand 

sides. So, by placing (6.9f) into (6.9a), (6.9e) into (6.9c) and (6.9d) into (6.9b), and 

following the procedure given in [23], an approximation for the desired covariant and 

contra-variant field components is obtained which is second order accurate and leads to 

simultaneous linear equations with tri-diagonal form for 1E , 2E , and 3E field 

components. Similar to sub-step 1, simultaneous linear equations can be formed for sub-

step 2. By substituting (6.10f) into (6.10a), (6.10e) into (6.10c) and (6.10d) into (6.10b), 

and following the procedure given in [23], an approximation for the desired covariant 

and contra-variant field components is obtained which are second order accurate and 

leads to simultaneous linear equations with tri-diagonal form for 1E , 2E , and 3E field 

components. However, the auxiliary variables E and H must satisfy the recursive 

relations [39]. The equation of auxiliary variable 
12E is provided below.  
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2

212 12

1/2
1/2, , 1/2, , 3 1/2, 1/2, 3 1/2, 1/2,2| | | |

2
j

j

un n n n
E i j k E i j k i j k i j ku

d
c H H

u
 

       


  (6.11a)            

where                                          0( / ) ( / )s s s t
sc e                                                      (6.11b) 

                           1 2 31 ,   ( , ,  or )
( )

s
s s

s s s s

d c s u u u
   

   


                           (6.11c) 

                                                max 0| |
( )

m
s

s m

s s
s







                                               (6.11d) 

                                           0
max

| |( ) 1 ( 1)
m

s m

s ss 



                                           (6.11e) 

where  is the thickness of the PML absorber, 0s is the PML interface, m is the order of 

the polynomial. In a similar way, the updating equations of other auxiliary variables can 

be derived.  Similar to LOD-FDTD CPML using orthogonal meshes, in the proposed C-

LOD-NFDTD CPML approach only one variable   is enough. The auxiliary term 

12

1/2|nE  contains the same time index ( 1/ 2)n  as that of the field term on the left side. 

This additional time variable at ( 1/ 2)n does not affect numerical results significantly 

except to contribute to additional complexities in the computation. Therefore, for the 

sake of simplification, both auxiliary variables will be considered at the same time 

index “ n ”. The CPML formulations have been used with the C-LOD-NFDTD method 

for the numerical analysis of the 3-D microwave curved structures, as described in 

Section 6.8. 

 

6.3 Stability Analysis of the 3-D C-LOD-NFDTD  
    As stated in Chapter 5, if all the eigenvalues of the amplification matrix are not larger 

than unity in magnitudes, the method is considered to be stable so in this section, we 

demonstrate the unconditional stability of the C-LOD-NFDTD method by evaluating 

the amplification matrix. Since the stability analysis of C-LOD-NFDTD requires 

detailed mathematical procedure, so only the key results of the analysis are summarised 

below. The field components in the spatial spectral domain are assumed to have the 

following form 

                                      
1 2 3

1 2 3( )( , , ) j k i u k j u k k un n
r rE i j k E e                                           (6.12a) 
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1 2 3

1 2 3( )( , , ) j k i u k j u k k un n
r rH i j k H e                                          (6.12b) 

where 1, 2,3r   which is equivalent to x, y, z directions respectively of the orthogonal 

coordinates while 1k , 2k and 3k are wave numbers along the 1 2 3, ,u u u  directions 

respectively. By substituting (6.12a) and (6.12b) in (6.5)-(6.6) of sub-steps 1 and 2 and 

assuming lossless media, we derive the following equation, 

Sub-step 1: 

                                                    1/2
1 1  where  is 6 6 matrixn nU U                     (6.13) 

2 2

2 2

3 3

3 3

1 1

1 1
1

2       0             0             0          0       

2 0                   0              0             0   

20           0                      0             0 

0 

G i A
Q Q

G i A
Q Q

G i A
Q Q













 
3 3

3 3

1 1

1 1

2 2

2 2

2             0                     0           0   

20           0                 0                    0   

2   0            0              0            0         

i A G
Q Q

i A G
Q Q

i A G
Q Q
























 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

Sub-step 2:  

                                               1 1/2
2   n nU U                                                          (6.14) 

3 3

3 3

1 1

1 1

2 2

2 2
2

2       0             0             0             0 

2 0                    0            0          0      

20           0                        0           0 

0        

G i A
Q Q

G i A
Q Q

G i A
Q Q






 

2 2

2 2

3 3

3 3

1 1

1 1

2   0                         0          0 

2      0             0            0                 0

20                 0            0          0         

i A G
Q Q

i A G
Q Q

i A G
Q Q







 
 















 


















  

By combining (6.13) and (6.14), we obtain the following equation 
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                                             1
1 2   n n nU U U                                                     (6.15) 

where 1 2     

3 21 2 2 1

1 2 2 3 1 2

1 3 2 3 3 2 1 3

1 3 2 3 2 3

24 2                   0                 0                       

4 2 20                                       0                 

y z

y z

G G i A GA A i A G
Q Q Q Q Q Q Q Q

G G A A i A G i A G
Q Q Q Q Q Q

  

 





 

1 3

1 31 2 2 1

1 2 1 2 1 3

3 1 2 3 2 3 1 3

1 3 2 3 2 3

  

4 22       0                                             0

2 2 4 0                                          0               

x z

x z

Q Q
A A i AGG G i A G
Q Q Q Q Q Q Q Q

i A G i A G G G A A
Q Q Q Q Q Q



  

  




1 3

1 31 2 1 2

1 2 1 2 1 3

2 31 2

1 2 2 3

2 2 4        0                                            0       

2 42             0                     0                      

z x

x z

y z

y z

Q Q
i A G G Gi A G A A

Q Q Q Q Q Q Q Q
i A G A Ai A G

Q Q Q Q Q Q



  

  



 1 2

1 2

   G G
Q Q

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

   (6.16) 

Six eigenvalues are obtained from equation (6.16). Here, only the numerical computed 

eigenvalues are provided for the verification of the unconditional stability of the C-

LOD-NFDTD method.  By considering 1 0.25k  , 2 0.25k   and 0.25zk  and 

1 2 3 1 u u u mm      , six eigenvalues are computed. Table 6.1 presents the 

magnitude of the computed eigenvalues. From Table 6.1, it can be observed that the 

magnitudes of the eigenvalues are never larger than unity. Therefore, the 3-D C-LOD-

NFDTD method can be considered to be unconditionally stable. 

 

Table 6.1 

Computed eigenvalues using two-steps procedure of C-LOD-NFDTD 

Eigen values CFLN=2 CFLN=4 CFLN=6 

1  1.00000 1.00000 1.00000 

2  0.99976 0.99946 0.99936 

3  0.99667 0.99347 0.99237 

4  0.88598 0.82286 0.81238 

5  0.73297 0.71287 0.69947 

6  0.88598 0.82286 0.81238 
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6.4 3-D F-LOD-NFDTD: Nonorthogonal 3-D LOD-FDTD 

Using Fundamental Scheme Based on Curvilinear 

Meshes 
    The formulations of the 3-D non-orthogonal locally one dimensional finite difference 

time domain method based on fundamental scheme (F-LOD-NFDTD) is presented in 

this section. As we know, substantial arithmetic operations are required for the 

conventional LOD-FDTD even in the case of nonorthogonal meshes which may reduce 

the efficiency of the computational performance of the method. This can be improved 

by deriving the nonorthogonal F-LOD-FDTD method. This formulation will lead to 

matrix-operator-free forms on the right-hand sides of the resultant equations. The 

resultant F-LOD-NFDTD algorithm involves updating equations whose right-hand sides 

are much simpler and more concise than those in the conventional implementation. This 

achieves a substantial reduction in the number of arithmetic operations required for their 

computations. The F-LOD-NFDTD scheme will be derived following the formulation 

described in Section 5.5 of Chapter 5 for F-LOD-FDTD using orthogonal meshes.  

 

 

6.4.1 Formulation of the 3-D F-LOD-NFDTD Method 
    The theory of nonorthogonal meshes curvilinear coordinates has been described in 

Chapter 3, so will not be repeated here. The theory of the fundamental scheme is also 

discussed in Section 5.4 of Chapter 5, and will also not be repeated here. However, by 

following the theories of nonorthogonal meshes and fundamental scheme, we can derive 

the 3-D fundamental scheme based nonorthogonal LOD-FDTD method viz. 3-D F-

LOD-NFDTD method. Denoting the covariant electric and magnetic field components 

which represent the flow of field along the grid as mE , mH , me  , mh  ( m = 1, 2, 3) , and 

the contra-variant electric and magnetic field components which represent the flow 

through facets of the grid as mE , mH , me  , mh  ( m = 1, 2, 3), the electric and magnetic 

field components of sub-steps 1 and 2 for the F-LOD-NFDTD method can be derived as 

follows: 

Sub-step 1: 

Auxiliary implicit updating for electric and magnetic fields are as follows: 
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                                    2
1 1/ 2 1/ 2 1

3
1 | | |
2 2

n n n
u

be h E
g

                            (6.17a) 

                                  3
2 1/ 2 1/ 2 2

1
1 1| | |
2 2

n n n
u

be h E
g

                           (6.17b) 

                                  1
3 1/ 2 1/ 2 3

2
1 1| | |
2 2

n n n
u

be h E
g

                            (6.17c) 

                                3
1 1/ 2 1/ 2 1

2
1 1| | |
2 2

n n n
u

dh e H
g

                            (6.17d) 

                                 1
2 1/ 2 1/ 2 2

3
1 1| | |
2 2

n n n
u

dh e H
g

                          (6.17e) 

                                2
3 1/ 2 1/ 2 3

1
1 1| | |
2 2

n n n
u

dh e H
g

                           (6.17f) 

and the explicit updating for the electric and magnetic fields are as follows: 

                                                1/ 2 1/ 2| | |n n nE e E                                  (6.18) 

                                                1/ 2 1/ 2| | |n n nH h H                                 (6.19) 

where   is 1, 2, 3 which is equivalent to x, y, and z of the orthogonal coordinate 

systems. Here, the covariant components of the E and H  fields are placed on the cells in 

the manner suggested by Holland [23]. Similar to the NFDTD method, the contra-

variant like pe , ph , pE , and pH on the left hand sides of (6.17a)-(6.17f) and both sides 

of (6.18) and (6.19) must be converted to the covariant like pe , ph , pE , and pH  field 

components as follows: 

                              2
1/ 2 1/ 2

1 1 3| 2 | |n n n
u

be E h
G g

                                   (6.20a) 

                             3
1/ 2 1/ 2

2 2 1| 2 | |n n n
u

be E h
G g

                                   (6.20b) 

                                 1
1 / 2 1/ 2

3 3 2| 2 | |n n n
u

be E h
G g

                               (6.20c) 

                               3
1 / 2 1/ 2

1 1 2| 2 | |n n n
u

dh H e
G g

                                (6.20d) 
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                                1
1 / 2 1/ 2

2 2 3| 2 | |n n n
u

dh H e
G g

                               (6.20e) 

                                2
1 / 2 1/ 2

3 3 1| 2 | |n n n
u

dh H e
G g

                               (6.20f) 

                                           1/ 2 1/ 2| | |n n nE e E  
                                          (6.21) 

                                         1/ 2 1/ 2| | |n n nH h H  
                                          (6.22) 

where the transformation matrix G  is defined in (6.2), and g is the determinant of the 

metric with elements pqg . From (6.20a)-(6.20f), it can be observed that these equations 

cannot be solved directly, so by placing (6.20f) into (6.20a), (6.20e) into (6.20c) and 

(6.20d) into (6.20b), a simultaneous linear system with tri-diagonal matrix which can be 

solved efficiently can be obtained as follows. 

     2 2

2

1/ 2 2 1/ 2
1 1 1 3

1 2| | 2 | |n n n n
u u

e bd e E b H
G g G g

 
 

      
 

      (6.23a)   

 3 3

2

1/ 2 2 1/ 2
2 2 2 1

1 2| | 2 | |n n n n
u u

e bd e E b H
G g G g

 
 

      
 

        (6.23b) 

    1 1

2

1/ 2 2 1/ 2
3 3 3 2

1 2| | 2 | |n n n n
u u

e b d e E b H
G g G g

 
 

      
 

      (6.23c)                  

where 
2

tb



 , 
2

td



 , and the explicit updating equations for the electric and 

magnetic field components can be written from (6.21) and (6.22) using (6.23) and 

(6.20). Similar to sub-step 1, we can derive the following equations for sub-step 2. 

Sub-step 2:  

Auxiliary implicit updating for electric and magnetic field components as: 

                            3
1 1/ 2 1

1 1 2
1| 2 | |n n n

u
e E b h

G g
                                   (6.24a)                

                             1
1 1/ 2 1

2 2 3
1| 2 | |n n n

u
e E b h

G g
                                 (6.24b) 

                           2
1 1/ 2 1

3 3 1
1| 2 | |n n n

u
e E b h

G g
                                   (6.24c)                
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                           2
1 1/ 2 1

1 1 3| 2 | |n n n
u

dh H e
G g

                                     (6.24d) 

                            3
1 1/ 2 1

2 2 1| 2 | |n n n
u

dh H e
G g

                                   (6.24e) 

                          1
1 1/ 2 1

3 3 2| 2 | |n n n
u

dh H e
G g

                                     (6.24f) 

From (6.24a)-(6.24f), we can obtain the following simultaneous linear equations for the 

auxiliary electric field components as, 

3 3

2

1 2 1 1/ 2 1/ 2
1 1 1 2

1 2| | 2 | |n n n n
u u

e bd e E b H
G g G g

   
 

      
 

 (6.25a)                

1 1

2

1 2 1 1/ 2 1/ 2
2 2 2 3

1 2| | 2 | |n n n n
u u

e bd e E b H
G g G g

   
 

      
 

  (6.25b) 

2 2

2

1 2 1 1/ 2 1/ 2
3 3 3 1

1 2| | 2 | |n n n n
u u

e b d e E b H
G g G g

   
 

      
 

   (6.25c)   

The explicit electric and magnetic field components can be obtained as follows:     

                                         1 1 1/ 2| | |n n nE e E  
                                           (6.26) 

                                          1 1 1/ 2| | |n n nH h H  
                                         (6.27) 

The updating equations for sub-steps 1 and 2 with indices can be written as follows: 

Sub-step 1: 

Auxiliary implicit updating for electric field component: 

         

 

1/ 2 1/ 2
1 1/ 2 , , 1 1/ 2 , 1, 1 1/ 2 , , 1 1 / 2 , ,

1 / 2
1 1/ 2 , , 1 1 / 2 , 1, 1 1/ 2 , , 1 1/ 2 , ,

1 1 / 2 , , 3 1 / 2 , 1/ 2 , 3 1/ 2 , 1/ 2 ,

| | | |

       | | | |

             | | |

n n
i j k i j k i j k i j k

n n
i j k i j k a i j k i j k

n n
b i j k i j k i j k

e e

e C E

C H H

 



 
    


    

    



 

 

            (6.28a) 

 

 

1/ 2 1/ 2
2 , 1/ 2 , 2 , 1 / 2 , 1 2 , 1 / 2 , 2 , 1/ 2 ,

1 / 2
2 , 1/ 2 , 2 , 1 / 2 , 1 2 , 1 / 2 , 2 , 1 / 2 ,

2 , 1/ 2 , 1 , 1/ 2 , 1 / 2 1 , 1/ 2 , 1 / 2

| | | |

           | | | |

                   | | |

n n
i j k i j k i j k i j k

n n
i j k i j k a i j k i j k

n n
b i j k i j k i j k

e e

e C E
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(6.28b) 
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1/ 2 1/ 2
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1/ 2
3 , , 1 / 2 3 1, , 1 / 2 3 , , 1/ 2 3 , , 1/ 2

3 , , 1 / 2 2 1/ 2 , , 1 / 2 2 1/ 2 , , 1/ 2

| | | |
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               | | |
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i j k i j k i j k i j k

n n
i j k i j k a i j k i j k

n n
b i j k i j k i j k

e e
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(6.28c) 

where 
2

1 1/2, , 2 2

1 1|
2 ( )i j k

bd
uG g

 

 
      

,
2

1 1/2, , 2 2

1 1|
2 ( )i j k

bd
uG g

 

 
      

 

1 1/2, , 1 1/2, , 1 1/2, ,| 1 | |i j k i j k i j k       , 1 1/2, , 2

2 1|b i j kC b
uG g 


.  

The explicit electric field components from (6.21) can be derived as follows: 

                                 1/ 2 1/ 2
1 1/ 2 , , 1 1/ 2 , , 1 1/ 2 , ,| | |n n n

i j k i j k i j kE e E 
                                  (6.29a) 

                                 1/ 2 1/ 2
2 , 1 / 2 , 2 , 1 / 2 , 2 , 1/ 2 ,| | |n n n

i j k i j k i j kE e E 
                                (6.29b) 

                                1/ 2 1/ 2
3 , , 1 / 2 3 , , 1/ 2 3 , , 1 / 2| | |n n n

i j k i j k i j kE e E 
                                  (6.29c) 

Sub-step 2: auxiliary updating for 1
1 |ne  can be written as follows: 

     

1 1
1 1/ 2 , , 1 1 / 2 , 1, 1 1/ 2 , , 1 1 / 2 , ,

1 1 / 2
1 1/ 2 , , 1 1 / 2 , 1, 1 1/ 2 , , 1 1/ 2 , ,

1 / 2 1
1 1/ 2 , , 3 1/ 2 , 1/ 2 , 3 1/ 2 , 1/ 2 ,

| | | |
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                 | | |

n n
i j k i j k i j k i j k

n n
i j k i j k a i j k i j k
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b i j k i j k i j k

e e

e C E

C H H

 



 
    

 
    

 
    



 

  / 2

           (6.30a) 
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| | | |

         | | | |

                | | |
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n n
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              (6.30b) 
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3 , , 1/ 2 3 1, , 1 3 , , 1/ 2 3 , , 1 / 2
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3 , , 1 / 2 3 1, , 1 / 2 3 , , 1/ 2 3 , , 1 / 2

1/ 2 1/ 2
3 , , 1 / 2 2 1/ 2 , , 1 / 2 2 1/ 2 , , 1/ 2

| | | |
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i j k i j k a i j k i j k

n n
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e e
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               (6.30c) 

and the electric field components from (6.26) can be obtained as follows: 

                                     1 1 1/ 2
1 1/ 2 , , 1 1/ 2 , , 1 1/ 2 , ,| | |n n n

i j k i j k i j kE e E  
                             (6.31a) 

                                   1 1 1/ 2
2 , 1 / 2 , 2 , 1 / 2 , 2 , 1/ 2 ,| | |n n n

i j k i j k i j kE e E  
                              (6.31b) 

                                 1 1 1/ 2
3 , , 1 / 2 3 , , 1/ 2 3 , , 1 / 2| | |n n n

i j k i j k i j kE e E  
                                 (6.31c) 

The CPML absorbing boundary conditions for the F-LOD-NFDTD method will be 

discussed next. 
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6.4.2 CPML ABC for the 3-D F-LOD-NFDTD Method 
        Similar to the orthogonal mesh F-LOD-FDTD CPML, efficient ABCs are required 

to truncate the computational domains for modelling open region electromagnetic 

problems using the nonorthogonal mesh F-LOD-NFDTD method. In the literature, only 

the Mur’s ABC [138] and PML ABC [126] have been developed for 3-D LOD-FDTD 

using fundamental scheme with orthogonal meshes. However, it is well known that 

Mur’s ABC [138], and PML [126] are not efficient at absorbing low frequency and 

evanescent waves while at the same time preserving the unconditional stability, even in 

nonorthogonal mesh methods. In this section, we therefore develop the CPML 

absorbing boundary condition for 3-D LOD-NFDTD using fundamental scheme, which 

is highly effective in absorbing low frequency contents and evanescent waves. The 

theory presented in this section will later be used to analyse 3-D structures using 

nonorthogonal meshes. The theory of CPML ABC for nonorthogonal 2-D LOD-FDTD 

was presented in Chapter 3, so will not be repeated here. However, by following the F-

LOD-NFDTD of Section 6.4.1 and CPML for nonorthogonal coordinates of Chapter 3, 

the CPML equations of sub-steps 1 and 2 for F-LOD-NFDTD method can be derived. 

Similar to the formulations of CPML ABC for orthogonal mesh F-LOD-FDTD given in 

Section 5.4.2, the nonorthogonal mesh CPML formulation for sub-steps 1 and 2 of the 

F-LOD-NFDTD method can be derived as follows: 

Sub-step 1: auxiliary implicit updating for electric and magnetic fields are as follows: 

                      2
1/ 2 1/ 2

1 1 3
2

1| 2 | |
j

n n n
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be E h
G g 

                                   (6.32a) 
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                     1
1 / 2 1/ 2

3 3 2
1

1| 2 | |
i

n n n
u

be E h
G g 

                                     (6.32c) 

                  3

1/ 2

1/ 2 1/ 2
1 1 2

3

1| 2 | |
k

n n n
u

dh H e
G g 



                                 (6.32d) 
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                               (6.32e) 
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                   2

1/2

1/ 2 1/ 2
3 3 1

2

1| 2 | |
j

n n n
u

dh H e
G g 



                               (6.32f) 

and explicit updating for the electric and magnetic fields are as follows: 

                
1 2

1 / 2 1/ 2
1 1 1| | | 2n n n n

p EE e E a
                                               (6.33) 

               
1 2

1/ 2 1/ 2
1 1 1| | | 2n n n n

p HH h H b
                                             (6.34) 

Equations (6.32a)-(6.32f) cannot be solved directly, so by placing (6.32f) into (6.32a), 

(6.32e) into (6.32c) and (6.32d) into (6.32b), a simultaneous linear system of equations 

can be derived, as given below, which can be solved efficiently by forming tri-diagonal 

matrix formulation and solution methodologies.  

  21/ 2

2

21/ 2 2 1/ 2
1 2 2 1

1 2 3

| 1 / .(1 / ) |

                                        2 | 2 / ( . ) |

j j

j

n n
u

n n
u

e bd G g e

E G g b H

 





  

  
   (6.35a) 

  
3

1/ 2

3

2

1/ 2 2 1/ 2
2 2

3 3

2 1
3

1 1 1| |

2 1                                          2 | |

k k

k

n n
u

n n
u

e bd e
G g

E b H
G g

 





 
 

   
 

  
        (6.35b) 

    
1

1/ 2

1

2

1/ 2 2 1/ 2
3 3

1 1

3 2
1

1 1 1| |

2 1                                            2 | |

i i

i

n n
u

n n
u

e b d e
G g

E b H
G g

 





 
 

   
 

  
    (6.35c)                    

where 
2

tb



 , 
2

td



 , and the explicit updating equations for the electric and 

magnetic field components can be derived from (6.33) and (6.34) using (6.35) and 

(6.32). Similar to sub-step 1, we can write the following equations for sub-step 2 as: 

Sub-step 2: 

                3

1/ 2

1 1 / 2 1
1 1 2

3

1 1| 2 | |
k

n n n
u

e E b h
G g 



                                   (6.36a)                

                1

1/ 2

1 1/ 2 1
2 2 3

1

1 1| 2 | |
i

n n n
u

e E b h
G g 



                                  (6.36b) 
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               2

1/ 2

1 1/ 2 1
3 3 1

2

1 1| 2 | |
j

n n n
u

e E b h
G g 



                                   (6.36c)                

              2

1

1 1/ 2 1
1 1 3

2

1 1| 2 | |
j

n n n
u

h H d e
G g 



                                     (6.36d) 

              3

1

1 1 / 2 1
2 2 1

3

1 1| 2 | |
k

n n n
u

h H d e
G g 



                                    (6.36e) 

                1

1

1 1/ 2 1
3 3 2

1

1 1| 2 | |
i

n n n
u

h H d e
G g 



                                   (6.36f) 

and the explicit electric and magnetic field components can be written as follows:     

                   1 1 1/ 2 1/ 2
1 2| | | 2n n n n

p eE e E a                                                 (6.37) 

                   1 1 1/ 2 1/ 2
1 2| | | 2n n n n

p hH h H b                                               (6.38) 

Similar to sub-step 1, we obtain the simultaneous linear equations for electric field 

components from the above equations (6.36a)-(6.36f). The updating equations for sub-

steps 1 and 2 with indices (i, j, k) can be written as follows. 

Sub-step 1: auxiliary updating for 1/2
1 |ne  can be written as follows: 

         

 

1/ 2 1/ 2
1 1/ 2 , , 1 1/ 2 , 1, 1 1/ 2 , , 1 1 / 2 , ,

1 / 2
1 1/ 2 , , 1 1 / 2 , 1, 1 1/ 2 , , 1 1/ 2 , ,

1 1 / 2 , , 3 1 / 2 , 1/ 2 , 3 1/ 2 , 1/ 2 ,

| | | |

       | | | |

             | | |

n n
i j k i j k i j k i j k

n n
i j k i j k a i j k i j k

n n
b i j k i j k i j k

e e

e C E

C H H

 



 
    


    

    



 

 

            (6.39a) 

 

1/ 2 1/ 2
2 , 1/ 2 , 2 , 1 / 2 , 1 2 , 1 / 2 , 2 , 1/ 2 ,

1 / 2
2 , 1/ 2 , 2 , 1 / 2 , 1 2 , 1 / 2 , 2 , 1 / 2 ,

2 , 1/ 2 , 1 , 1/ 2 , 1 / 2 1 , 1/ 2 , 1 / 2

| | | |

           | | | |

                   | | |

n n
i j k i j k i j k i j k

n n
i j k i j k a i j k i j k

n n
b i j k i j k i j k

e e

e C E

C H H

 



 
    


    

    



 

 

(6.39b) 

 

1/ 2 1/ 2
3 , , 1/ 2 3 1, , 1 3 , , 1/ 2 3 , , 1/ 2

1/ 2
3 , , 1 / 2 3 1, , 1 / 2 3 , , 1/ 2 3 , , 1/ 2

3 , , 1 / 2 2 1/ 2 , , 1 / 2 2 1/ 2 , , 1/ 2

| | | |

         | | | |

               | | |

n n
i j k i j k i j k i j k

n n
i j k i j k a i j k i j k

n n
b i j k i j k i j k

e e

e C E

C H H

 



 
    


    

    



 

 

(6.39c) 

where 

1/2

2

1 1/2, , 2 2

1 1 1 1|
2 ( )

j j

i j k
y y

bd
uG g


 





 
      

,
1/2

2

1 1/2, , 2 2

1 1 1 1|
2 ( )

j j

i j k
y y

bd
uG g
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1 1/2, , 1 1/2, , 1 1/2, ,| 1 | |i j k i j k i j k       , 1 1/2, , 2

2 1 1|
j

b i j k
y

C b
uG g  


.  

The explicit electric field components from (6.33) can be written as follows: 

        
12 1/2 , ,

1/ 2 1 / 2
1 1/ 2 , , 1 1 / 2 , , 1 1/ 2 , , 1 || | | 2

i j k

n n n n
i j k i j k i j k EE e E a 



 
                               (6.40a) 

     
23 , 1/ 2 ,

1/ 2 1/ 2
2 , 1 / 2 , 2 , 1 / 2 , 2 , 1 / 2 , 2 || | | 2

i j k

n n n n
i j k i j k i j k EE e E a 



 
                                (6.40b)                   

     
31 , , 1/ 2

1 / 2 1/ 2
3 , , 1 / 2 3 , , 1 / 2 3 , , 1 / 2 3 || | | 2

i j k

n n n n
i j k i j k i j k EE e E a 



 
                                 (6.40c)                   

The magnetic field components from (6.34) can be written as follows: 

           
12 , 1/2 , 1/2

1/2 1/2
1 , 1/2, 1/2 1 , 1/2, 1/2 1 , 1/2, 1/2 1 || | | 2

i j k

n n n n
i j k i j k i j k HH h H b

 

 
                                     (6.41a) 

              
23 1/2, , 1/2

1/2 1/2
2 1/2, , 1/2 2 1/2, , 1/2 2 1/2, , 1/2 2 || | | 2

i j k

n n n n
i j k i j k i j k HH h H b

 

 
                                (6.41b) 

           
31 1/2, 1/2,

1/2 1/2
3 1/2, 1/2, 3 1/2, 1/2, 3 1/2, 1/2, 3 || | | 2

i j k

n n n n
i j k i j k i j k HH h H b

 

 
                                    (6.41c) 

Sub-step 2: auxiliary updating for 1|ne
 can be written as follows: 

     

1 1
1 1/ 2 , , 1 1 / 2 , 1, 1 1/ 2 , , 1 1 / 2 , ,

1 1 / 2
1 1/ 2 , , 1 1 / 2 , 1, 1 1/ 2 , , 1 1/ 2 , ,

1 / 2 1
1 1/ 2 , , 3 1/ 2 , 1/ 2 , 3 1/ 2 , 1/ 2 ,

| | | |

          | | | |

                 | | |

n n
i j k i j k i j k i j k

n n
i j k i j k a i j k i j k

n n
b i j k i j k i j k

e e

e C E

C H H

 



 
    

 
    

 
    



 

  / 2

           (6.42a) 

   

 

1 1
2 , 1/ 2 , 2 , 1 / 2 , 1 2 , 1 / 2 , 2 , 1/ 2 ,

1 1/ 2
2 , 1 / 2 , 2 , 1/ 2 , 1 2 , 1/ 2 , 2 , 1/ 2 ,

1/ 2 1/ 2
2 , 1/ 2 , 1 , 1 / 2 , 1 / 2 1 , 1/ 2 , 1 / 2

| | | |

         | | | |

                | | |

n n
i j k i j k i j k i j k

n n
i j k i j k a i j k i j k

n n
b i j k i j k i j k

e e

e C E

C H H

 



 
    

 
    

 
    



 

 

              (6.42b) 

        

 

1 1
3 , , 1/ 2 3 1, , 1 3 , , 1/ 2 3 , , 1 / 2

1 1/ 2
3 , , 1 / 2 3 1, , 1 / 2 3 , , 1/ 2 3 , , 1 / 2

1/ 2 1/ 2
3 , , 1 / 2 2 1/ 2 , , 1 / 2 2 1/ 2 , , 1/ 2

| | | |

      | | | |

           | | |

n n
i j k i j k i j k i j k

n n
i j k i j k a i j k i j k

n n
b i j k i j k i j k

e e

e C E

C H H

 



 
    

 
    

 
    



 

 

               (6.42c) 

and the electric field and magnetic field components from (6.37) and (6.38) can be 

written as follows: 

         
12 1/2 , ,

1 1 1/ 2 1/ 2
1 1/ 2 , , 1 1 / 2 , , 1 1/ 2 , , 1 || | | 2

i j k

n n n n
i j k i j k i j k EE e E a 



   
                              (6.43a) 

        
23 , 1/ 2 ,

1 1 1/ 2 1/ 2
2 , 1 / 2 , 2 , 1 / 2 , 2 , 1 / 2 , 2 || | | 2

i j k

n n n n
i j k i j k i j k EE e E a 



   
                            (6.43b) 

        
31 , , 1/ 2

1 1 1/ 2 1/ 2
3 , , 1 / 2 3 , , 1 / 2 3 , , 1 / 2 3 || | | 2

i j k

n n n n
i j k i j k i j k EE e E a 



   
                              (6.43c) 

          
12 , 1/2 , 1/2

1 1 1/2 1/2
1 , 1/2, 1/2 1 , 1/2, 1/2 1 , 1/2, 1/2 1 || | | 2

i j k

n n n n
i j k i j k i j k HH h H b

 

   
                                      (6.44a) 
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23 1/2, , 1/2

1 1 1/2 1/2
2 1/2, , 1/2 2 1/2, , 1/2 2 1/2, , 1/2 2 || | | 2

i j k

n n n n
i j k i j k i j k HH h H b

 

   
                                     (6.44b) 

       
31 1/2, 1/2,

1 1 1/2 1/2
3 1/2, 1/2, 3 1/2, 1/2, 3 1/2, 1/2, 3 || | | 2

i j k

n n n n
i j k i j k i j k HH h H b

 

   
                                       (6.44c) 

where 1, 2, and 3 are equivalent to x, y, z of the orthogonal coordinate system 

respectively, and 3 / 2b t   , 1 / 2a t   . The auxiliary variables 
1 2E 

 can be written 

as follows.  

                       
1 2| 1/2, , 1 2| 1/2, ,

1/2 1/2
3 1/2, 1/2, 3 1/2, 1/2,| |

2
j

i j k j i j k

yn n n n
E y E i j k i j k

d
c H H

y      
 

 
     


                 (6.45) 

                                                0( / ) ( / )  ,   3 is z,  or s s s t
sc e x y                               (6.46a) 

                                / ( ( )) 1 ,   ( , ,  or )s s s s s s sd c s x y z                           (6.46b) 

                                                   max 0( ) | | /m m
s ss s s                                       (6.46c) 

                                                 max 0( ) 1 ( 1) | | /m m
s s s s                               (6.46d) 

where  is the thickness of the PML absorber, 0s is the PML interface, and m is the 

order of the polynomial. Other auxiliary variables 
1 2H 

 can be written in a similar way. 

Compared to CPML for 3-D C-LOD-NFDTD, in the proposed F-LOD-NFDTD 

approach  is required only to explicitly update the electric and magnetic field 

components given in (6.40a)-(6.40c) and (6.41a)-(6.41c) of sub-step 1 but not during 

the implicit updating process for auxiliary electric fields  (6.39a)-(6.39c). From (6.40a), 

it can also be seen that one variable   is enough for the proposed approach, because the 

auxiliary term 
12

1/2n
E  contains the same time index ( 1/ 2)n  as that of the field on the 

left side. For the sake of simplification, both auxiliary variables will be considered at 

the same time index ‘ n ’. These features obtain improved efficiency and ease of 

programming for the proposed F-LOD-NFDTD CPML.  

    To demonstrate the benefits in terms of efficiency and accuracy, a comparison of the 

number of required arithmetic operations between C-LOD-NFDTD CPML and the F-

LOD-NFDTD CPML over one complete time step is made and shown in Table 6.2. It 

can be observed from Table 6.2 that the total flop count for the right-hand side of the 

resultant equations for the fundamental scheme is 100, which is considerably less than 

196 for the conventional scheme, thus offering an efficiency gain of 1.96.  Table 6.2 

also includes the arithmetic operations needed to invert the tri-diagonal matrices as there 
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is a cost involved in solving them, but the proposed fundamental scheme still offers 

superior performance in reducing arithmetic operations, thus achieving an overall 

efficiency gain of 1.76. In addition, a modified procedure is introduced for the 

fundamental scheme in which implicit and explicit equations are alternatively 

calculated; thus, it is necessary to retain only 7 field arrays, as against 12 field arrays 

required by the C-LOD-NFDTD. In this way, the F-LOD-NFDTD method can obtain 

improved memory savings.  

 

Table 6.2 Comparison of the number of arithmetic operations per grid between C-LOD-

NFDTD-CPML and F-LOD-NFDTD-CPML 

Arithmetic Operations C- LOD-NFDTD- 

CPML  

F-LOD-NFDTD- 

CPML  

Implicit, RHS M/D 64 30 

A/S 70 18 

Explicit, RHS M/D 32 20 

A/S 30 32 

Total, RHS M/D 96 50 

A/S 100 50 

Tridiag. Matrices  M/D 18 18 

A/S 12 12 

Overall M/D+ A/S 226 128 

Efficiency gain RHS 1 1.96 

overall 1 1.76 

 

The stability analysis of the F-LOD-NFDTD method will be discussed next. 

 

 

6.5 Stability Analysis of 3-D F-LOD-NFDTD Method 
    Since the stability analysis of the F-LOD-NFDTD requires large mathematical 

derivation, only the key results of this analysis are summarised below. The field 

components in the spatial spectral domain are considered from (6.12a) and (6.12b). By 



Chapter 6. 3-D LOD-NFDTD: LOD-FDTD Approaches Using Non-orthogonal 
Curvilinear Meshes 

221 

 

substituting (6.12a) and (6.12b) into (6.20)-(6.23) and (6.24)-(6.27), we obtain the 

follow equations for the two sub-steps: 

Sub-Step 1: 

                                                    1/2
1   n nU U                                                       (6.47) 

where 1 is a 12×12 matrix as follows: 

 

2

2 2

3

3 3

1

1

1 0  0  0  0  0  0        0            0          0          0    

1 0  0  0  0  0  0   0                 0              0        0

10   0  0  0  0  0   0         0                 

iW
Q Q

iW
Q Q

Q





 

1

1

3

3 3

1

1 1

2

2

 0            0

10   0  0  0  0  0  0              0                 0         0  

10  0  0  0  0  0   0          0               0                0   

0  0  0  0  0  0      0

iW
Q

iW
Q Q

iW
Q Q

iW
Q







 2

2 2

2 2

3 3

3 3

1           0          0          0         

0  0  0  0  0  0        0           0          0          0       

 0  0  0  0  0  0   0              0               0             0

Q
Q iW
Q Q

Q iW
Q Q









1 1

1 1

3 3

3 3

   

0   0  0  0  0  0   0       0                 0                 0 

0   0  0  0  0  0  0            0                  0           0   

0  0  0  0  0  0   0        0          0  

Q iW
Q Q

iW Q
Q Q









1 1

1 1

2 2

2 2

              0         

0  0  0  0  0  0    0          0           0            0         

iW Q
Q Q

iW Q
Q Q





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

 
  

   

 

Sub-step 2:  

                                               1 1/2
2   n nU U                                                          (6.48) 

where 2  is 12×12 matrix as follows: 
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3

3 3

1

1 1

2

2

1 0  0  0  0  0  0        0            0          0            0

10  0  0  0  0  0   0                 0          0          0       

10   0  0  0  0  0   0         0               

iW
Q Q

iW
Q Q

Q





 

2

2

2

2 2

3

3 3

      0         0

10   0  0  0  0  0  0         0                     0         0  

10  0  0  0  0  0      0           0        0                  0   

0  0  0  0  0  0   0       

iW
Q

iW
Q Q

iW
Q Q

iW







1

1 1

3 3

3 3

1 1

1 1

1     0           0          0         

0  0  0  0  0  0        0           0          0               0

 0  0  0  0  0  0   0              0           0           0       

0 

Q Q
Q iW
Q Q

Q iW
Q Q











2 2

2 2

2 2

2 2

3

3

  0  0  0  0  0   0       0                        0        0 

0   0  0  0  0  0  0        0                       0           0   

0  0  0  0  0  0   0           0          

Q iW
Q Q
iW Q

Q Q
iW

Q











3

3

1 1

1 1

 0                    0  

0  0  0  0  0  0   0            0          0           0            

Q
Q

iW Q
Q Q

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

 
  

 

where 
2

1
1 1

1 sin
2

k utW
uG g

 
    

, 
2

2
2 2

1 sin
2

k utW
uG g

 
    

,  

3
3

3 3

1 sin
2

k utW
uG g

 
    

 

2
1

1
( )1 WQ


   , 
2

2
2

( )1 WQ


   , 
2

3
3

( )1 WQ


   , and 
2

1
1

( )1 WQ


  , 
2

2
2

( )1 WQ


  ,  

2
3

3
( )1 WQ


   

By combining the above equation for both the steps we obtain, 

                                  1
1 2   n n nU U U                                                      (6.49) 
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where 1 2     

 

3 31 2 2 1

2 3 1 2 2 3 1 2

2 3 3 21

1 3 2 3 2 3

 0   0  0  0  0  0             0             0                   

0   0  0  0  0  0       0                          0              

Q iWWW iW Q
Q Q Q Q Q Q Q Q

W W iW QQ i
Q Q Q Q Q Q

  

 

 





 

1

1 3

1 3 1 32 2

1 3 1 2 1 2 1 3

3 1 2 2

1 3 2 3 2 3

0  0  0  0  0  0        0                                    0 

0  0  0  0  0  0        0                              0          

W
Q Q

WW iW QQ iW
Q Q Q Q Q Q Q Q

iW Q iW Q
Q Q Q Q Q Q



  

 




 
 1 3

1 3

3 31 2 1 2

1 3 1 2 1 2 1 3

2 3 2 3

2 3 2

0  0  0  0  0  0       0                                       0 

0   0  0  0  0  0                0                0        x

x y

WW
Q Q

iW QiW Q WW
Q Q Q Q Q Q Q Q

iW Q iW W W
Q Q Q Q Q Q



  

  





 1

3 1 2

2 3 2 3 3 2 2 1

2 3 1 2 2 3 1 2

1 3 2 3 3 2

1 3 2 3

       

0   0  0  0  0  0              0                0                   

0  0  0  0  0   0     0                      

Q
Q Q

Q Q W W iW Q iW Q
Q Q Q Q Q Q Q Q

Q Q W W iW Q
Q Q Q Q Q

  

 



   


  
 1 3

2 3 1 3

1 3 1 31 2 2 1

1 3 1 2 1 2 1 3

3 1 2

1 3

         0             

0  0  0  0  0  0      0                                     0 

0   0  0  0  0  0     0                   

iW Q
Q Q Q

WW iW QQ Q iW Q
Q Q Q Q Q Q Q Q

iW Q iW Q
Q Q



  





  


 3 2 3 1 3

2 3 2 3 1 3

3 1 1 31 2 1 2

1 3 1 2 1 2 1 3

2 3 1 2

2 3 1 2

               0      

0  0  0  0  0  0     0                                  0

0   0  0  0  0  0           

Q Q WW
Q Q Q Q Q Q

iW Q Q QiW Q WW
Q Q Q Q Q Q Q Q

iW Q iW Q
Q Q Q Q

 

  

 

 


  
 

  2 3 1 2

2 3 1 2

        0              0            W W Q Q
Q Q Q Q

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 

  

(6.50) 

The eigenvalues of (6.50) can be obtained as: 

                 1 2 1 1x iy    , 3 5 1 1x iy    , 4 6 2 2x iy                                  (6.51) 

where 

 2 2 4 2 4 4 4 2 4
1 2 3 1 2 3 3 1x W W Q Q Q Q Q     

2 2 2 2
2 2 2 4 2 2 2 2 4

1 1 3 3 1 1 3 2 32 2 2
1 1 22 2 4 2 2 4

21 1 3 2 1 1 2
2 2 2 4

1 1 3 32
1

1
2

2
2

W Q Q Q W Q Q Q Q
Q Q W

y jW W W Q Q Q
W Q Q Q

Q

   



 
               

 



Chapter 6. 3-D LOD-NFDTD: LOD-FDTD Approaches Using Non-orthogonal 
Curvilinear Meshes 

224 

 

 22 2 4 2 4 4 4 2 4 2 2 4 2 4 4 4 2 4
2 2 3 1 2 3 3 1 2 3 1 2 3 3 12x W W Q Q Q Q Q W W Q Q Q Q Q          

2 2
4 2 2 2 2 2 4

3 1 1 1 1 3 32 2
1 12 2 4 2 2 4

22 1 3 2 1 1 2 2 2
2 2 2 2 4 2 2 2 4

1 1 3 2 3 1 1 3 32 2 2
2 1 1

2
2

2

Q Q W W Q Q Q
Q Q

y jW W W Q Q Q
W Q Q Q Q W Q Q Q

W Q Q

  

  

 
                

 

For the first six eigenvalues, only the first six terms have been considered which can be 

written in compact form in (6.51). From (6.51), we can easily obtain the magnitude of 

the eigenvalues unity, i.e 1 2 3 4 5 6 1           . However, we have also 

computed the eigenvalues to check the unconditional stability. For instance, we 

compute the eigenvalues for the case of 1 0.2k  , 2 0.2k   and 3 0.2k  and 

1 2 3 1u u u mm      . The computed eigenvalues for the F-LOD-NFDTD method are 

tabulated in Table 6.3. From Table 6.3, it can be observed that the magnitudes of the 

eigenvalues are never larger than unity. Therefore, the 3-D F-LOD-NFDTD method is 

unconditionally stable. 

 

 

Table 6.3 

Computed eigenvalues of F-LOD-NFDTD 

Eigen values CFLN=2 CFLN=4 CFLN=6 

1  1.0000 1.00000 1.00000 

2  1.0000 1.00000 1.00000 

3  0.996544 0.995544 0.994514 

4  0.00584 0.00584 0.00483 

5  0.000623 0.0005523 0.0004223 

6  0.000498 0.005498 0.003598 

7 - 12  0.00000 0.00000 0.00000 

 

The near-field to far-field transformation technique for both the C-LOD-NFDTD and F-

LOD-NFDTD methods will be discussed next. 
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6.6 Near-Field to Far-Field Transformation for both the 3-D 

C-LOD-NFDTD and F-LOD-NFDTD Methods 
    In many applications such as antennas and radar cross section (RCS) scatterer, it is 

necessary to find the radiation or scattered fields in a region that is far away from an 

antenna or scatterer.  However, direct LOD-NFDTD simulation for the far field requires 

a mesh extending many wavelengths from the object which leads to a huge increase in 

computational time, which is not practical in application. Instead the far zone 

electromagnetic fields are computed from the near field LOD-NFDTD data through a 

near-field to far-field transformation technique. For the near-field to far-field 

transformation technique, an imaginary surface is first selected to enclose the 

electromagnetic object.  Following the notation of [2], the radiation vectors N  and L  

are defined as 

                                               ˆexp .  sS
N J jkr r ds


                                              (6.52a) 

                                            ˆexp .  sS
L M jkr r ds


                                                (6.52b) 

where 1j   , k the wavenumber, r̂  the unit vector to the far zone field point, r  the 

vector to the source point of integration and S  the closed surface surrounding the 

scatterer. The electric and magnetic field components in the far field are expressed as: 

                                              04

jkrjkeE L N
r  





                                             (6.53a) 

                                              04

jkrjkeE L N
r  





                                             (6.53b) 

                                              
04

jkr LjkeH N
r


  

  
   

 
                                          (6.53c) 

                                            
04

jkr LjkeH N
r


  

  
   

 
                                            (6.53d) 

where N , N , L  and L can be expressed in terms of the following integrals: 

            cos( )
1 2 3cos( )cos( ) cos( )sin( ) sin( ) jkr

S
N J J J e dS

                     (6.54a) 

                            cos( )
1 2sin cos jkr

S
N J J e dS

                                            (6.54b) 

         cos( )
1 2 3cos( ) cos( ) cos( )sin( ) sin( ) jkr

S
L M M M e dS
                      (6.54c) 
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                                          cos( )
1 2sin cos jkr

S
L M M e dS
                            (6.54d) 

However, 1J , 2J , and 3J are equivalent to xJ , yJ , and zJ  that are used for orthogonal 

mesh LOD-FDTD. Here, the currents J  and M  on the surface are determined by E  

and H fields which are computed using either C-LOD-NFDTD or F-LOD-NFDTD 

method inside the computational domain. These currents are transformed into the 

frequency domain while being captured. After completing for all time steps, the far field 

terms L  , L , N  and N  are calculated. These far field terms are calculated in the 

same way as given in [2] so will not be repeated here. Bistatic RCS can then be 

calculated using the following equation.  

                                             
2

2
0

0

| |
8 inc

kRCS L N
P  


                                       (6.55a)                   

                                           
2

2
0

0

| |
8 inc

kRCS L N
P  


                                         (6.55b)                   

where incP can be calculated as:       2

0

1 | ( ) |
2inc incP E 


   

where ( )incE  is the discrete Fourier transform (DFT) of the incident electric field 

waveform at the frequency for which RCS calculation is required. The near-field to far-

field transformation technique has been used for both C-LOD-NFDTD and F-LOD-

NFDTD to analyse microwave curved 3-D structures. 

 

 

6.7 Pure Scattered Field Formulation for both the C-LOD-

NFDTD and F-LOD-NFDTD Methods 
    In this section, pure scattered field formulation for both 3-D C-LOD-NFDTD and F-

LOD-NFDTD methods will be presented. For the plane wave excitation in LOD-

NFDTD, the problem space is divided into two regions; the total field region and the 

scattered field region. The vectorial sum of incident and scattered fields present within a 

given space provides the total fields. Following the theory of scattered field formulation 

given in Chapter 3, we can write the scattered field formulation for both 3-D C-LOD-

NFDTD and F-LOD-NFDTD as follows. 
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6.7.1 Scattered Field Formulation for 3-D C-LOD-NFDTD  
    Following the theory of scattered field formulation as described in Chapter 3 and the 

C-LOD-NFDTD formulations described in Section 6.2, the scattered field formulation 

for C-LOD-NFDTD for the two-steps can be derived as follows. 

Sub-step 1:  

The updating equations of the electric field for sub-step 1 are as follows: 

 
 

1/2 1/2 1/2

,1 ,1 13 ,3 ,321/2, , 1/2, , 1/2, 1/2, 1/2, 1/2,

13 ,3 ,32 1/2, 1/2, 1/2, 1/2,

1 1

1 1                                       

n n n n

scat e scat e scat scati j k i j k i j k i j k

n n

e scat scati j k i j k

E C E D H H
G u

D H H
G u

  

     

   

    


   


1/2
13 ,1 1/2, , 13 ,1 1/2, ,

1 1                                            | |n n
e inc i j k e inc i j kD E D E

G G

      

(6.56a) 

 1/2 1/2 1/2

,2 ,2 21 ,1 ,13, 1/2, , 1/2, , 1/2, 1/2 , 1/2, 1/2

21 ,1 ,13 , 1/2, 1/2 , 1/2,

1 1

1 1                                             

n n n n

scat e scat e scat scati j k i j k i j k i j k

n

e scat scati j k i j

E C E D H H
G u

D H H
G u

  

     

  

    


   
  1/2

1/2
21 ,2 , 1/2, 21 ,2 , 1/2,

1 1                                                | |

n

k

n n
e inc i j k e inc i j kD E D E

G G




      

(6.56b) 

  

 
 

1/2 1/2 1/2

,3 ,3 32 ,2 ,21, , 1/2 , , 1/2 1/2, , 1/2 1/2, , 1/2

32 ,2 ,21 1/2, , 1/2 1/2, , 1/2

1

1 1                                        

n n n ne
scat e scat scat scati j k i j k i j k i j k

n n

e scat scati j k i j k

DE C E H H
G u

D H H
G u

  

     

   

    


   


1/2
32 ,3 , , 1/2 32 ,3 , , 1/2

1 1                                          | |n n
e inc i j k e inc i j kD E D E

G G


      

(6.56c)  

The updating equations of the magnetic field for sub-step 1 are as follows:  

 1/2 1/2 1/212
,1 ,1 ,2 ,23, 1/2, 1/2 , 1/2, 1/2 , 1/2, 1 , 1/2,

12 ,2 ,23 , 1/2, 1 , 1

1

1 1                                                  

n n n nh
scat h scat scat scati j k i j k i j k i j k

n

h scat scati j k i j

DH C H E E
G u

D E E
G u

  

      

  


  



   
  /2,

1/2
12 ,1 , 1/2, 1/2 12 ,1 , 1/2, 1/2

1 1                                      | |

n

k

n n
h inc i j k h inc i j kD H D H

G G

        

(6.56d)                     

 1/2 1/2 1/223
,2 ,2 ,3 ,311/2, , 1/2 1/2, , 1/2 1, , 1/2 , , 1/2

23 ,3 ,31 1, , 1/2 , ,

1

1 1                                                  

n n n nh
scat h scat scat scati j k i j k i j k i j k

n

h scat scati j k i j

DH C H E E
G u

D E E
G u

  

      

 


   



   
  1/2

1/2
23 ,2 1/2, , 1/2 23 ,2 1/2, , 1/2

1 1                                      | |

n

k

n n
h inc i j k h inc i j kD H D H

G G




        

(6.56e)    
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 1/2 1/2 1/231
,3 ,3 ,1 ,121/2, 1/2, 1/2, 1/2, 1/2, 1, 1/2, ,

31 ,1 ,12 1/2, 1, 1/

1

1 1                                                  

n n n nh
scat h scat scat scati j k i j k i j k i j k

n

h scat scati j k i

DH C H E E
G u

D E E
G u

  

      

  


   



   
  2, ,

1/2
31 ,3 1/2, 1/2, 31 ,3 1/2, 1/2,

1 1                                       | |

n

j k

n n
h inc i j k h inc i j kD H D H

G G

        

(6.56f)               

Sub-step 2:  The updating equations of the electric field for sub-step 2 are as follows: 

 1 1/2 1 112
,1 ,1 ,2 ,231/2, , 1/2, , 1/2, , 1/2 1/2, , 1/2

1/2

12 ,2 ,23 1/2, , 1/2 1/2, , 1/2

1

1 1                                      

n n n ne
scat e scat scat scati j k i j k i j k i j k

n n

e scat scati j k i j k

DE C E H H
G u

D H H
G u

   

     



   


   



   
  1/2

1 1/2
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1 1                              | |n n
e inc i j k e inc i j kD E D E

G G



 
      

(6.57a)   

 1 1/2 1 123
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e scat scati j k i j k

DE C E H H
G u

D H H
G u

   

     

 

   


   



   
  /2

1 1/2
23 ,2 , 1/2, 23 ,2 , 1/2,                                          | |n ne e

inc i j k inc i j k
D DE E
G G

 
      

(6.57b)     

 1 1/2 1 131
,3 ,3 ,1 ,12, , 1/2 , , 1/2 , 1/2, 1/2 , 1/2, 1/2

1/2

31 ,1 ,12 , 1/2, 1/2 , 1/2, 1/2

1

1 1                                      

n n n ne
scat e scat scat scati j k i j k i j k i j k

n n

e scat scati j k i j k

DE C E H H
G u

D H H
G u

   

     



   


   



   
  1/2

1 1/2
31 ,3 1/2, , 31 ,3 1/2, ,

1 1                               | |n n
e inc i j k e inc i j kD E D E
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(6.57c)  

 The updating equations of the magnetic field for sub-step 2 are as follows: 

 1 1/2 1 113
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(6.57d)               
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 1 1/2 1 132
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n
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1 1                                     | |

n
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(6.57f) 

Equations (6.56) and (6.57) of sub-steps 1 and 2 cannot be solved directly, but a tri-

diagonal linear system can be formed from sub-steps 1and 2 by following the procedure 

described in section 6.2.  

 

6.7.2 Scattered Field Formulation for 3-D F-LOD-NFDTD Method 
    Similar to the scatter field formulation of the C-LOD-NFDTD method, the scattered 

field formulation for the F-LOD-NFDTD method can be derived. Following the theory 

of scattered field formulation as described in Chapter 3 and the F-LOD-NFDTD 

formulations as described in Section 6.4, the scattered field formulation for the F-LOD-

NFDTD method for the two-steps can be derived. For brevity only sub-step 1 is given 

below. 

Sub-step 1:  

Auxiliary implicit updating for electric and magnetic fields are as follows: 

    
2

1/ 2 1/ 2
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1 / 2
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      (6.58a)                    
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       (6.58f)   

and the explicit updating for the electric and magnetic fields are as follows: 

                        1/ 2 1/ 2
, , ,| | |n n n

sca t sca t sca tE e E  
                                          (6.59) 

                     1/ 2 1/ 2
, , ,| | |n n n

scat scat scatH h H  
                                          (6.60) 

    In a similar way, the updated scattered field equations for sub-step 2 can be derived 

for the F-LOD-NFDTD method. Therefore, for a given incident wave, the above 

equations can be used to calculate the scattered field. The total field can be obtained by 

adding the scattered field to the incident field. Incident fields are applied only in internal 

region, only the scattered fields exist in the CPML region, which are absorbed by 

CPML ABC. 

 

   

6.8 Numerical Computations Using Both 3-D C-LOD-

NFDTD and F-LOD-NFDTD Methods 
6.8.1     EM Scattering from Conducting and Dielectric  Spheres 
    In this section, computational results obtained using the proposed methods are 

provided in both the frequency domain and the time domain. To test the validity and 

efficiency of the proposed C-LOD-NFDTD and F-LOD-NFDTD algorithms, we first 

consider the scattering by a perfectly electric conducting sphere of radius 8.3ka  , as 

shown in Fig 6.2 (a). Fig. 6.2 (b) presents the nonorthogonal meshes of the conducting 

sphere which was generated following the nonorthogonal mesh generation technique 

outlined in Chapter 3. The structured nonorthogonal gridding techniques discussed in 

Chapter 3 are used here to generate the meshes for 3-D structures. Fig. 6.2 (c)-(d) 

illustrates the validation of the numerical results obtained by both F-LOD-NFDTD and 

C-LOD-NFDTD for CFLN= 4 and 10 with the results obtained using the Mie series 

solution. The result obtained by F-LOD-NFDTD and C-LOD-NFDTD agrees well with 

the Mie series solution, as shown in Fig. 6.2 (c) for CFLN=4. Fig. 6.2 (d) shows the 

RCS of the conducting sphere obtained by both C-LOD-NFDTD and F-LOD-NFDTD 

at CFLN=10. 
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Fig. 6.2 (a) Conducting sphere (b) Nonorthogonal meshes of the conducting sphere, (c)-(d) RCS( ,0) for 

a perfectly conducting sphere 8.3ka  compared with Mie series solution for CFLN=4 and 10 
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It can be observed that the results agree with Mie series even for higher CFLN. An 

eight-layer CPML is used for the conducting sphere which surrounds the entire 

computational domain with parameters σs,max= 0.7σopt, σopt=11.21 (S/m), m=4 , κmax=1, 

and αmax=0.2. In terms of computational resources, the C-LOD-NFDTD CPML requires 

around 30 MB and 6 mins whereas F-LOD-NFDTD needs around 20 MB and 4.4 mins. 

Our simulations were carried out on a six core Linux workstation with 3.4 GHz clock 

and 32 GB RAM using Matlab. From the computational performance in terms of 

memory requirement, it is seen that F-LOD-NFDTD CPML can be computationally 

efficient compared to C-LOD-NFDTD CPML.  

    Fig. 6.3 (a)-(c) shows the transient scattering obtained using F-LOD-NFDTD from a 

PEC sphere of radius 0.5 m and compares it with the results obtained by C-LOD-

NFDTD for CFLN= 2, 10 and 15 as well as with published results obtained using TD-

IE [169].  
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Fig. 6.3 (a)-(c) Transient scattering of PEC sphere of radius 0.5 m illuminated by a Gaussian plane wave 
 

   It can be observed that the result obtained by the F-LOD-NFDTD method agrees 

reasonably well with the results obtained using C-LOD-NFDTD as well as with the 

analytical result.  From the transient response, it can also be observed that the time 

domain solutions of the PEC sphere are stable in early time.  Now we analyse the 

bistatic scattering from the lossless dielectric sphere (as shown in Fig. 6.4 (a)) 

( 3, 20)rka   . Our numerical results will be compared with the results available in 

the literature [170]. Fig 6.4 (b) presents the nonorthogonal meshes of the dielectric 

sphere and Fig. 6.4 (c) shows the cut view of one quarter of the sphere. An eight-layer 

CPML is used for the dielectric sphere which surrounds the entire computational 

domain with parameters σs,max= 0.7σopt, σopt=11.21 (S/m), m=4 , κmax=1, and αmax=0.2.  
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Fig. 6.4 (a) Lossless dielectric sphere (b) Nonorthogonal meshes for the dielectric sphere (c) 

Nonorthogonal meshes of one quarter of the dielectric sphere 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6.5 Bistatic RCS for a dielectric sphere ( 3, 20)rka   compared Mie series solution 
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Fig. 6.6 (a)-(b) Bistatic RCS for a dielectric sphere ( 3, 20)rka   compared Mie series as well as with 

the results obtained C-LOD-NFDTD for CFLN=5 and 10  

 

The computed bistatic RCS for the lossless dielectric sphere obtained by F-LOD-

NFDTD for CFLN=5, 12 are shown in Fig. 6.5 (a)-(b) compared with the Mie series. 

From the figures, it is observed that the result obtained by the F-LOD-NFDTD with 

higher CFLN agrees reasonably well with the Mie series [170]. Next the computed RCS 

using F-LOD-NFDTD from the lossless dielectric sphere has been compared with the 

results obtained using C-LOD-NFDTD as well as with the Mie series as shown in Fig. 

6.6 (a)-(b). The RCS obtained using F-LOD-NFDTD also agrees reasonably well with 

the result obtained using C-LOD-NFDTD. The computational resources for the 

simulation of the dielectric sphere are the same as those for the conducting sphere. Next 

the transient scattering from the lossless dielectric sphere with radius 0.5 m and the 

relative permittivity εr=2 is computed using F-LOD-NFDTD and C-LOD-NFDTD.  
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Fig. 6.7 (a)-(c) Transient scattering from dielectric sphere of radius 0.5 m illuminated by a Gaussian plane 

wave for CFLN =5, 10, 20 
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Fig. 6.7 (a)-(c) shows the transient scattering compared with the results obtained by C-

LOD-NFDTD for CFLN=5, 15 and 20, as well as with published results obtained using 

TD-EFIE [171]. It can be seen that the result obtained by C-LOD-NFDTD and F-LOD-

NFDTD methods agree reasonably well with the analytical result. From the transient 

response, it can be observed that the time domain solutions of the lossless dielectric 

sphere are stable in early time. 

 

 

6.8.2     EM Scattering from Dielectric Coated Conducting and Two 

Layer Dielectric  Spheres 
    The proposed C-LOD-NFDTD and F-LOD-NFDTD methods are next applied to 

compute the RCS from the dielectric coated conducting sphere (as shown in Fig. 6.8 

(a)) which is illuminated by the following modulated Gaussian plane pulse. 

                                      
2

0
0 0

4( , ) exp cos(2 )
2

inc tt f
T


 

 

        
E r E                (6.70) 

where 0 120E  , 0f  is the centre carrier frequency, 0 8t   and 6 / (2 )bwf  with 

bwf being the nominal bandwidth. The conducting sphere has a diameter of 0.4 m coated 

by a dielectric shell with thickness 0.05 m and relative permittivity 2.0r  . The 

nonorthogonal meshes of the dielectric coated conducting sphere are shown in Fig. 6.8 

(b).  
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Fig. 6.8 (a) Dielectric coated conducting sphere (b) Nonorthogonal meshes for the dielectric coated 

conducting sphere (c) Nonorthogonal meshes of three-quarters of the outer dielectric sphere with 

conducting sphere  

 

Fig. 6.8 (c) shows the nonorthogonal meshes of three-quarters of the outer dielectric 

sphere with inner conducting sphere. For this example, 0 500 MHzf  , 1.0 GHzbwf  , 

0.125 nst  or 0.0375 LMc t   (LM =light meter: the time that light takes to travel 

1 m in vacuum) are used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6.9 (a)-(b) RCS for a dielectric coated conducting sphere obtained using the proposed methods and 

comparison of the results obtained using TDIE [176] available in the literature  
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Fig. 6.10 (a)-(b) Transient responses of the coated conducting sphere using the proposed method 

compared with the results using TDIE [176] available in the literature   

 

The wideband RCS from zero frequency to 1.0 GHz obtained using the C-LOD-

NFDTD, F-LOD-NFDTD and compared with the results available in the literature are 

shown in Fig. 6.9 (a)-(b) for CFLN=2, 10. Fig. 6.10 (a)-(b) shows the transient response 

obtained using F-LOD-NFDTD and C-LOD-NFDTD for CFLN=2 and 12 compared 

with the published results extracted from [176]. From Figs. 6.9 and 6.10, it can be 

observed that the results obtained using the proposed approaches agree reasonably well 

with the published results available in the literature. 

Now, the scattering cross-sections of the two layered small lossless dielectric sphere are 

computed using the proposed methods. It must be noted that the explicit-NFDTD 

method requires excessive computational time to model such a small structure due to 

the CFL constraint.  
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Fig. 6.11 (a) Two layered small dielectric sphere (b) Nonorthogonal meshes for the two layered dielectric 

sphere (c) Nonorthogonal meshes of one quarter of the outer dielectric sphere with inner dielectric sphere 
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Fig. 6.12 (a)-(b) Scattering cross-section for the two layered spheres for CFLN=2 and 10 

 

 

Fig. 6.11 (a) shows the two layered spheres where the outer sphere has the radius b=600 

nm and the refractive indices are n1 =1.44 and n2=2.7, while the inner sphere has the 

radius a= 400 nm. The nonorthogonal meshes for the two layered spheres are shown in 

Fig. 6.11 (b), and Fig. 6.11 (c) shows the nonorthogonal meshes of one quarter of the 

outer dielectric sphere with inner dielectric sphere. Fig. 6.12 (a)-(b) shows the scattering 

cross-section obtained using the proposed methods compared with the results obtained 

from [177] for CFLN=2 and 10. From Fig. 6.12, it can be observed that the results 

obtained using the proposed approaches agree reasonably well even in very small 

structures. 

 

 

6.8.3 Modelling of Cylindrical Dielectric Resonators and Filters 
    To further validate the proposed methods, a cylindrical dielectric resonator (as shown 

in Fig. 6.13 (a)) is considered. Our numerical results on the cylindrical dielectric 

resonator will be compared with the existing results in the literature that were obtained 

by using analytical methods [172]. The parameters of the cylindrical dielectric resonator 

are εr=38, a=5.25 mm, h=4.6 mm. An eight-layer CPML is used for the cylindrical 
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dielectric resonator which surrounds the entire computational domain with parameters 

σs,max= 0.7σopt, σopt=11.21 (S/m), m=4 , κmax=1, and αmax=0.2. The nonorthogonal 

meshes of the cylindrical dielectric resonator are shown in Fig. 6.13 (b). The computed 

resonant frequencies of TE and HE modes of a cylindrical dielectric resonator [172] 

using both the F-LOD-NFDTD CPML and C-LOD-NFDTD CPML are tabulated in 

Table 6.4. The results on resonant frequencies reveal that those obtained using C-LOD-

NFDTD and F-LOD-NFDTD CPML have closer agreement with the published data 

extracted from [172]. 

 

 

 

 

 
 

Fig. 6.13 (a) Cylindrical dielectric resonator, (b) Nonorthogonal meshes for the cylindrical dielectric 

resonator 

 

Table 6.4 

Comparison of resonant frequencies for the cylindrical dielectric resonator [172] with 

εr=38, a=5.25 mm, h=4.6 mm 

Mode F-LOD-NFDTD  LOD-NFDTD  Glisson et al. [172] 

TE01 4.823 4.801 4.82 

HE12 6.634 6.611 6.63 

 

The proposed methods are next applied for analysing a single cavity TE01δ-mode DR 

filter [178], as shown in Fig. 6.14. The parameters of the dielectric resonator are 

dielectric constant, εr=38, diameter of the resonator=27.8 mm, disk_D=25.4 mm, 

DR_H=14.5 mm and disk_H= 3mm. The length and width of the metal cavity are both 

46 mm, and the height is 41 mm. The nonorthogonal meshes for the single cavity DR 

filter are shown in Fig. 6.15 (a). Fig. 6.15 (b) shows the open ended nonorthogonal 

meshes of the cavity. The transmission zero computed using the proposed methods is 

shown in Fig. 6.16 (a)-(b) and compared with the results extracted from [178]. 

(a) (b) 
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Fig. 6.14 Single cavity DR filter with two probes on opposite sides of axis 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6.15 (a) Nonorthogonal meshes for single cavity dielectric resonator (b) Nonorthogonal meshes for 

single cavity dielectric resonator with open end 

 

The computed transmission zero using the proposed methods agrees reasonably well 

with the results obtained from the published results. 

 

(b) 
(a) 
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Fig. 6.16 (a)-(b) Computed transmission zero using the proposed methods for CFLN=2, and 10 

 

Using the analytical solution for the calculation of the conducting sphere as reference 

[156], the maximum errors of the C-LOD-FDTD and F-LOD-FDTD using orthogonal 

and non-orthogonal meshes will be provided in Chapter 7 to demonstrate the superiority 

of the 3-D LOD-FDTD with non-orthogonal meshes.  

 

 

6.9 Discussion 
        In this chapter, nonorthogonal 3-D LOD-FDTD using the curvilinear coordinate 

system has been developed for the first time. The formulations of the C-LOD-NFDTD 

and F-LOD-NFDTD methods have been described. Both formulations can be applied to 

the analysis of curved microwave structures. The CPML ABC for both 3-D C-LOD-
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NFDTD and F-LOD-NFDTD have also been developed along with the stability 

analysis. A theoretical study of both C-LOD-NFDTD and F-LOD-NFDTD shows that 

nonorthogonal meshes are more advantageous for modelling objects with curved 

features and can reduce computational burden compared to orthogonal meshes. New 

pure scattered field formulations of the 3-D C-LOD-NFDTD and F-LOD-NFDTD 

methods have also been presented.  

    The proposed C-LOD-NFDTD and F-LOD-NFDTD have been applied to analyse 

various microwave curved structures. From the analysis, it can be observed that the 

proposed method is unconditionally stable and the numerical results agree closely with 

the results in the literature. A performance comparison in terms of the execution time 

and memory used by C-LOD-NFDTD and F-LOD-NFDTD for analysing various 

microwave devices has been provided and proves the usefulness of the nonorthogonal 

3-D LOD-FDTD methods. Comparing the CPU time required for both the conventional 

and fundamental approaches, the proposed F-LOD-NFDTD CPML approach is 

characterised to be computationally more efficient. 
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Chapter 7 
 

Conclusions and Future work 
 

 

7.1 Overall Contributions 
    In this thesis, efficient implicit LOD-FDTD using orthogonal and non-orthogonal 

meshes has been investigated for solving various electromagnetics problems. Based on 

the investigations and the results obtained in this thesis, this chapter highlights the 

outcomes and contributions that have been achieved. The contributions made in this 

thesis can be grouped into five main areas: 

(1)  Development and implementation of a segmented LOD-FDTD method for 

analysing electrically large symmetric structures. 

(2)  Development and implementation of nonorthogonal LOD-NFDTD for solving 2-

D curved structures. 

(3)  Development and implementation of rotationally symmetric LOD-FDTD with 

dispersion control parameters. 

(4)  Development and implementation of efficient two sub-step conventional and 

fundamental scheme based CPML for LOD-FDTD using orthogonal meshes for 

analysing 3-D structures. 

(5)  Development and implementation of efficient C-LOD-NFDTD and F-LOD-

NFDTD along with CPML employing nonorthogonal meshes for analysing 3-D 

curved structures 

The specific contributions made in each of these areas will now be listed. The following 

contributions have been made in area (1): 

 Derived the formulation of 2-D LOD-FDTD with CPML for the TE and TM 

cases (Chapter 2). 

 Developed a new segmented locally one dimensional FDTD (S-LOD-FDTD) 

technique for analysing electrically large symmetric structures (Chapter 2). 

 Developed S-ADI-FDTD to compare with the S-LOD-FDTD method 
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 Numerical analysis of various electrically large symmetric tunnel structures has 

been performed using the S-LOD-FDTD method (Chapter 2). 

 Provided performance comparison and error analysis of the S-LOD-FDTD 

method (Chapter 2). 

The contributions in area (2) are: 

 Development of the formulation of 2-D LOD-FDTD using nonorthogonal 

meshes based on curvilinear coordinates (Chapter 3).  

 The CPML formulation of 2-D LOD-NFDTD has also been developed 

(Chapter 3). 

 Stability analysis and numerical dispersion analysis of the 2-D LOD-NFDTD 

(Chapter 3). 

 Demonstration of the developed 2-D LOD-NFDTD for analysing various 2-D 

curved structures (Chapter 3). 

 Computational performance analysis of the 2-D LOD-NFDTD method 

(Chapter 3). 

In area (3) the original outcomes are: 

 Derivation of RS-LOD-FDTD with dispersion control parameters (Chapter 4). 

 Development of CPML ABC for D-RS-LOD-FDTD (Chapter 4).  

 Applied D-RS-LOD-FDTD algorithm with CPML ABC to analyse rotationally 

symmetric structures (Chapter 4). 

The original outcomes which have been made in area (4) 

 Derivation of CPML ABC for the two sub-step conventional LOD-FDTD 

method with orthogonal meshes (Chapter 5). 

 Development of CPML ABC for the fundamental scheme based LOD-FDTD (F-

LOD-FDTD) method (Chapter 5). 

 Stability analysis of the F-LOD-FDTD method (Chapter 5).  

 Applied the conventional LOD-FDTD with two sub-steps and F-LOD-FDTD 

with CPML ABC for analysing various 3-D microwave structures (Chapter 5). 

The original contributions in area (5) are: 

 Development of 3-D conventional LOD-FDTD based on curvilinear coordinates 

(Chapter 6). 

 Development of CPML ABC for 3-D LOD-NFDTD (Chapter 6). 
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 Development of 3-D nonorthogonal LOD-FDTD using the fundamental scheme 

(Chapter 6). 

 Derivation of CPML ABC for the F-LOD-NFDTD methods (Chapter 6) 

 Stability analysis of the 3-D conventional LOD-NFDTD and F-LOD-NFDTD 

method (Chapter 6). 

 Application of the LOD-NFDTD and F-LOD-NFDTD methods in analysis of 3-

D microwave structures (Chapter 6).   

 

These contributions, and accompanying background material, have been addressed 

within this thesis in the following order. Chapter 1 contains the literature review, 

outlines of the thesis and list of the refereed journal and conference publications which 

have resulted from the research undertaken in this thesis. Chapter 2 introduces the 

relevant background theory of LOD-FDTD and the theory of segmented LOD-FDTD 

for analysing propagation along electrically large symmetric structures. The 

nonorthogonal LOD-FDTD for analysing 2-D curved structures is presented in Chapter 

3. Chapter 4 proposed the computationally efficient D-RS-LOD-FDTD to control 

dispersion for the analysis of rotationally symmetric structures. The two sub-step C-

LOD-FDTD and the F-LOD-FDTD have been presented for analyzing 3-D structures in 

Chapter 5. Chapter 6 proposes a nonorthogonal scheme for 3-D C-LOD-NFDTD and F-

LOD-NFDTD for analysing 3-D curved structures. 

 

 

7.2 Conclusions Based on Individual Chapters 
7.2.1      2-D LOD-FDTD for EM Propagation Modelling in 

Electrically Large Symmetric Structures 
    In this chapter, the theory of the LOD-FDTD method has been introduced. More 

specifically LOD-FDTD in 2-D using orthogonal meshes has been described. The 

CPML formulation of the 2-D LOD-FDTD has also been discussed and the developed 

segmented LOD-FDTD technique has been presented. Note that the segmented LOD-

FDTD method has been applied to modified 2-D large tunnel structures. The application 

of the S-LOD-FDTD method to the analysis of electrically large symmetric structures 
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has been described. Straight, curved and branched tunnels have been analysed as 

electrically large symmetric structures. The results obtained by S-LOD-FDTD for the 

large tunnel structures have been compared with the results obtained by S-ADI-FDTD 

as well as with the published results in the literature. The results indicate higher signal 

attenuation for the junction/transition regions compared to regions away from such 

abrupt transitions. The predictions on path loss agree reasonably well with published 

measured data. Here, the averaged path loss for Roux tunnel obtained using S-LOD-

FDTD is shown in Fig. 7.1 and compared with the results obtained by S-ADI-FDTD as 

well as with the measured data extracted from the published results in [153]. The 

averaged path loss over 50 m length from the published results is considered to compare 

with the averaged simulated data.  

 

 

 

 

 

 

 

 

 
Fig. 7.1 Comparison of averaged (over 50 m) path loss for Roux tunnel 

 

The comparison shows that the result obtained by S-LOD-FDTD agrees reasonably well 

with the results obtained by other methods. The results also reveal that the proposed 

segmentation approach can help to reduce computational resources and hence can be 

extended for electromagnetic modeling of any long symmetric path propagation 

problems. Analysing the electrically large symmetric structures using the developed S-

LOD-FDTD method can provide a large savings in computer resources and offer good 

accuracies. Table 7.1 summarises the computational performance in terms of the 

execution time and memory of the proposed S-LOD-FDTD and S-ADI-FDTD methods. 

The tabulated results indicate that the developed S-LOD-FDTD is more effective than 

S-ADI-FDTD because it requires less time and memory. 
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Table 7.1 

Required computational time and memory using S-LOD-FDTD method for Roux tunnel 

(CFLN=2) 

Tunnel Structures S-LOD-FDTD S-ADI-FDTD 

CPU Times 

(hrs) 

Memory 

(MB) 

CPU Times 

(hrs) 

Memory 

(MB) 

Roux Tunnel 

[153] 

3.5 hrs 1010  4.32 hrs 1090  

Branch Tunnel 

[154] 

2.86 hrs 900  3.45 hrs 1010  

 

The relative error of the S-LOD-FDTD has been compared with the S-ADI-FDTD 

method. The results and error analysis confirm that the proposed S-LOD-FDTD method 

is computationally more efficient compared than S-ADI-FDTD and provides accurate 

results for propagation predictions inside large symmetric tunnels. One journal paper 

has been published based on this in IEEE Transactions on Magnetics and a conference 

paper published in 2011 APSAEM conference (ISBN 978-4-931455-16-0), (see 

publications list in Chapter 1). 

 

7.2.2      Non-orthogonal LOD-FDTD Method for EM Scattering from 

Two Dimensional (2-D) Structures 
    Chapter 3 of this thesis is concerned with the investigation of the nonorthogonal 

LOD-NFDTD method for solving 2-D electromagnetic scattering from curved 

structures. The technique can overcome the limitation of using orthogonal meshes for 

modeling curved bodies using 2-D LOD-FDTD. For the first time, the LOD-NFDTD 

method in 2-D has been proposed in this chapter based on a curvilinear coordinate 

system. A theoretical study of LOD-NFDTD has been performed for both TE and TM 

cases. CPML absorbing boundary condition for the LOD-NFDTD method has also been 

developed for the first time to improve the absorbing efficiency. A new pure scattered 

field formulation of the LOD-NFDTD has also been presented along with stability and 

dispersion error analysis. The new LOD-NFDTD has been applied for analysing EM 

scattering from circular conducting, dielectric, coated conducting and layered elliptic 
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cylinders as well as overfilled dielectric and bent PEC cavity structures to validate the 

method. For the numerical analysis, it is seen that the proposed method is 

unconditionally stable and the numerical results agree reasonably well with the results 

in the literature, as well as with the ADI-NFDTD results. In modelling bodies having 

curvatures for EM scattering, it is found that the proposed nonorthogonal LOD-NFDTD 

technique is more advantageous than employing orthogonal meshes and reduces 

computational burden. 

    A performance comparison of the new LOD-NFDTD method has also been 

conducted.  Compared with ADI-NFDTD, the proposed method provides savings in 

computational resources. The performance comparisons of LOD-NFDTD with ADI-

NFDTD in terms of arithmetic operations, execution time and memory, and maximum 

error are shown in Tables 7.2 to 7.4. It is worth mentioning that only two equations are 

solved in each sub-step for the LOD-NFDTD method. This leads to a reduction in the 

number of arithmetic operations for the updating equations as compared to the ADI-

NFDTD. Table 7.3 shows the comparison of the required execution time and CPU 

memory for the LOD-NFDTD and ADI-NFDTD methods for calculating the RCS of 

the PEC cylinder [156].  

 

Table 7.2 

Number of arithmetic operations 

 Implicit Explicit Total 

M/D A/S M/D A/S M/D A/S 

ADI-NFDTD 40+40 20+20 11+11 6+6 102 52 

LOD-NFDTD 29+29 9+9 6+6 4+4 70 20 

 

Table 7.3 

Comparison of computer resources for calculation of RCS of a PEC cylinder of 

diameter=10 λ 

 Δt=CFLN×ΔtCFL  

 (ps) 

CPU Time 

(s) 

Memory 

(KB) 

LOD-NFDTD (8×1.5)=12 43 925 

ADI-NFDTD (8×1.5)=12 58 970 
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Table 7.4 

Comparison of the maximum errors for calculation of RCS of overfilled cavity using 

LOD-NFDTD and ADI-NFDTD for TMz wave 

CFLN  % Maximum error of LOD-

NFDTD Method 

% Maximum error of ADI-

NFDTD Method 

2 0.002 0.008 

4 0.017 0.025 

6 0.104 0.151 

8 0.345 0.515 

10 0.423 0.672 

 

 

      Table 7.3 shows the comparison of the required execution time and CPU memory 

for the LOD-NFDTD and ADI-NFDTD methods to calculate the RCS of the PEC 

cylinder. It can be observed from Table 7.3 that given the same grids and higher CFLN, 

the LOD-NFDTD method requires less computational time than the ADI-NFDTD 

method when used to calculate the RCS of the PEC cylinder. Using the analytical 

solution provided in [164] for an overfilled cavity for the TM case as reference, the 

maximum errors of the LOD-NFDTD and ADI-NFDTD method for different CFLN are 

calculated as shown in Table 7.4. From the comparison of the above three cases, it is 

seen that the proposed LOD-NFDTD method is superior to the conventional ADI-

NFDTD method. From the contributions in Chapter 3, two papers have been published. 

One journal paper has been published in IEEE Transactions on Electromagnetic 

Compatibility and a conference paper published in 2011 IEEE AP-S/URSI conference 

(available in IEEE xplore). 

 

7.2.3      Rotationally Symmetric LOD-FDTD with Dispersion Control 

Parameters   
    In Chapter 4, the CPML ABC for RS-LOD-FDTD for both TE and TM cases has 

been developed. Next, to improve the computational efficiency and reduced dispersion, 

a novel D-RS-LOD-FDTD method along with CPML ABC has been presented. Various 

rotationally symmetric structures such as resonators, open tip monopole (OTM) antenna 



Chapter 7: Conclusions and Future Work 

 

253 

 

and expanded tip wire (ETW) antennas, have been analysed by the proposed method to 

demonstrate the validation. From the S-parameters and SAR calculations, it can be 

observed that the result obtained by D-RS-LOD-FDTD CPML has lower dispersion as 

well as minimise the computational resources. 

    To compare performances between the D-RS-LOD-FDTD and RS-LOD-FDTD 

methods, we first present the relative error calculation. Fig. 7.2 shows the relative errors 

of D-RS-LOD-FDTD and conventional RS-LOD-FDTD with respect to CFLN (CFL 

number). From Fig. 7.2 it is clear that D-RS-LOD-FDTD has less relative error than 

RS-LOD-FDTD. Additionally, a comparison between D-RS-LOD-FDTD and RS-LOD-

FDTD methods in terms of execution time for calculating SAR of the ETW antenna is 

shown in Fig. 7.3 from which it is seen that the computational time required for D-RS-

LOD-FDTD is less than the RS-LOD-FDTD method.  

 

 

 

 

 

 

 

 
 

Fig. 7.2 Relative error with respect to CFLN 
  

 

 

 

 

 

 

 

 
 

Fig. 7.3 Computational time for D-RS-LOD-FDTD and RS-LOD-FDTD with different CFLN  
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As a result, the simple use of dispersion control parameters enables us to use larger 

times steps, and reduce error and less computational time is required to efficiently 

model rotationally symmetric microwave structures and devices.  One paper based on 

the contributions from Chapter 4 has been presented in ISAP 2012 conference 

(available in IEEE xplore) 

 

 

7.2.4     Efficient LOD-FDTD Approaches for 3-D Bodies Using 

Orthogonal Meshes 
    To analyse realistic 3-D structures using the LOD-FDTD method, we have developed 

a two sub-step C-LOD-FDTD along with two sub-step CPML. Low numerical 

reflections have been demonstrated for the CPML scheme. Analytical stability analysis 

of the C-LOD-FDTD is presented to demonstrate the unconditional stability of the 

proposed approach. The performance of the proposed C-LOD-FDTD CPML is 

investigated and compared with standard explicit FDTD.  

    Because simultaneous linear systems with tri-diagonal matrix are involved in C-

LOD-FDTD, a large number of arithmetic operations are required, which can be 

computationally expensive for modelling many realistic 3-D structures. To overcome 

this cost, a fundamental scheme based LOD-FDTD has been presented. A modified 

calculation procedure is also proposed which further improves the computational 

efficiency. CPML ABC for the F-LOD-FDTD method is also derived for the first time. 

A comparison of the F-LOD-FDTD with the C-LOD-FDTD has been tabulated which 

shows the improvement of the F-LOD-FDTD method. Also, stability analysis of the F-

LOD-FDTD method is provided that demonstrates the unconditional stability of the 

proposed F-LOD-FDTD method. Finally, the fundamental LOD-FDTD (F-LOD-FDTD) 

has been validated using numerical results obtained on resonant frequencies of a 

dielectric resonator as well as current distribution and input reflection coefficients of 

many antennas and microwave 3-D structures.  The results obtained by both the LOD-

FDTD methods agree reasonably well with the results in the literature. Fig. 7.4 shows 

the computed transient current using F-LOD-FDTD induced at the centre of a 1 m long 

thin wire dipole antenna having a radius of 5 cm operating at 300 MHz and the results 

are compared with the published results obtained using MOM [173].  
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Fig.7.4 Calculated currents at the center of the 1 m long dipole antenna 

 

 

 

 

 

 

 

 

 

 
Fig.7.5 Absolute relative error computed of the proposed approach with reference to C-LOD-FDTD 

 

    Fig. 7.5 presents the absolute computational error of the proposed method with 

reference to the C-LOD-FDTD CPML approach which shows that the results obtained 

by F-LOD-FDTD CPML offer lower errors. Fig. 7.6 shows the electric field at a 

distance of 2 mm from the load end of the transmission line computed using the 

proposed scheme and compared with the results published in [175]. 

    It can be observed from the Fig. 7.6 that the result obtained by the proposed F-LOD-

FDTD-CPML method agrees reasonably well with the published result [175].    Fig. 7.7 

presents the absolute computational error of the proposed method with reference to the 

C-LOD-FDTD CPML approach which shows that the results obtained by F-LOD-

FDTD CPML offer lower errors. The performance comparison in terms of execution 

time and memory used by the conventional LOD-FDTD and F-LOD-FDTD for 

analysing each problem have been provided as shown in Table 7.5 which also proves 

the usefulness of the LOD-FDTD methods. 
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Fig. 7.6 Normalised zE  field observed at 2 mm from the load end of the microstrip interconnect 

 

 

 

 

 

 

 

 

 
Fig. 7.7 Absolute error calculated of the proposed approach with C-LOD-FDTD as reference method 

 

Table 7.5 

Comparison of CPU time and memory for various 3-D structures 

Scheme Dipole VLSI Interconnect 

F-LOD-

FDTD  

Execution time (s) 150.66 4536 

Memory (MB) 53 184.9 

C-LOD-

FDTD 

Execution time (s) 215.31 6804 

Memory (MB) 60.5 215.3 

 

Comparing the CPU time and memory of the conventional and fundamental approaches, 

large savings in computer memory and CPU time are obtained for the F-LOD-FDTD 

approach. The main contribution of Chapter 5 of this thesis is the development of the 

efficient two sub-step CPML ABC for C-LOD-FDTD for analysing 3-D microwave 

structures. The developed C-LOD-FDTD CPML approach provides better performance 
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than the standard explicit FDTD method. One paper from this contribution has been 

accepted in the 2013 IEEE iWEM conference (to be published in IEEE xplore). 

Another contribution of this chapter is the development of F-LOD-FDTD CPML 

approach. The developed approach is more computationally efficient compared to C-

LOD-FDTD. The numerical results on 3-D microwave structures are provided to 

demonstrate the superiority of the F-LOD-FDTD CPML approach over C-LOD-FDTD 

CPML approach. One journal paper on this has been accepted for publication in IEEE 

Microwave and Wireless Components Letters (see publications list in Chapter 1).    

 

 

7.2.5     3-D LOD-NFDTD: LOD-FDTD Approaches Using Non-

orthogonal Curvilinear Meshes 
This thesis also made the contributions on both conventional LOD-FDTD (C-LOD-

FDTD) and F-LOD-FDTD based on a curvilinear coordinate system for analysing 3-D 

curved structures.  The formulation of C-LOD-NFDTD has been described. The C-

LOD-NFDTD formulation is easy to formulate and can be applied easily for analysing 

curved structures. The CPML ABC for 3-D C-LOD-NFDTD has also been developed 

and the stability analysis of C-LOD-NFDTD has been presented. Numerical verification 

of the stability analysis is also presented to demonstrate the unconditional stability of 

the C-LOD-NFDTD method. An efficient C-LOD-NFDTD has been combined with 

CPML ABC to analyse the 3-D curved structures. Several 3-D curved structures have 

been analysed. Good agreement has been obtained between C-LOD-NFDTD and 

published results from the literature. Large savings in CPU time and computer memory 

have been achieved in the analysis of 3-D structures compared to other methods.  

    To further improve the computational efficiency of analysing 3-D curved microwave 

structures, nonorthogonal LOD-FDTD with fundamental scheme (F-LOD-NFDTD) has 

been developed to minimise the number of matrix operations and field variables. The 

CPML ABC for the F-LOD-NFDTD method has also been developed. The 

computational performance in terms of arithmetic operations has been provided which 

exhibits the merits of the F-LOD-NFDTD method over C-LOD-NFDTD method. The 

stability analysis of the F-LOD-NFDTD method is derived and then the numerical 

verification of the stability analysis proves the unconditional stability of the F-LOD-
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NFDTD method. The 3-D curved microwave structures have also been analysed with 

the proposed F-LOD-NFDTD CPML. Good agreement between F-LOD-NFDTD 

CPML and C-LOD-NFDTD CPML has been obtained. Computational performance in 

terms of CPU time and memory requirements (as shown in Table 7.6) has been 

provided to illustrate the significance of the nonorthogonal 3-D LOD-FDTD 

approaches. The main contribution of Chapter 6 of this thesis is the development of the 

3-D C-LOD-NFDTD CPML, and F-LOD-NFDTD CPML. Numerical results on 3-D 

microwave curved structures obtained by C-LOD-NFDTD and F-LOD-NFDTD 

methods are presented to illustrate the usefulness of the proposed approaches. Finally, 

using the analytical solution for the calculation of the conducting sphere as reference 

[156], the maximum errors of the C-LOD-FDTD and F-LOD-FDTD using orthogonal 

and non-orthogonal meshes are shown in Table 7.7. From the comparison of maximum 

errors, it can be concluded that the LOD-FDTD with non-orthogonal mesh has 

improved performance over LOD-FDTD with orthogonal meshes.  

 

Table 7.6 

Comparison of CPU time and memory for various 3-D curved structures 

Scheme Conducting Sphere Dielectric Sphere 

F-LOD-

NFDTD  

Execution time (min) 4.5 11.5 

Memory (MB) 18 34.5 

C-LOD-

NFDTD 

Execution time (min) 6.5 19.8 

Memory (MB) 28 36.2 

 

Table 7.7 

Comparison of the maximum errors in RCS calculation of conducting sphere using C-

LOD-FDTD and F-LOD-FDTD using orthogonal and non-orthogonal meshes 

CFLN  % Maximum error of C-LOD-

FDTD Method 

% Maximum error of F-LOD-

FDTD Method 

Orthogonal 

meshes 

Non-orthogonal 

meshes 

Orthogonal 

meshes 

Non-orthogonal 

meshes 

8 0.345 0.0845 0.215 0.0615 

10 0.423 0.0923 0.272 0.082 
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Papers based on these contributions will be submitted to IEEE Transactions soon. 

 

7.3 Suggestions for Future Work 
     The work from this thesis could be extended in the future. One is the application of a 

fundamental scheme with D-RS-LOD-FDTD to analyse the electrically large 

rotationally symmetric antennas and scatterers. The developed 3-D LOD-FDTD CPML 

could be used to analyse more complex problems. Higher order schemes can also be 

investigated for the F-LOD-FDTD to reduce the dispersion error. More complex 3-D 

curved structures could be analysed using the developed F-LOD-NFDTD method. 

Numerical dispersion analysis for the C-LOD-NFDTD and F-LOD-NFDTD could also 

be studied. Higher order scheme or dispersion control parameters scheme can also be 

developed for reducing the dispersion of the 3-D nonorthogonal LOD-FDTD 

approaches.      
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Appendix A 
A1. Numerical Formulation of the 2-D ADI-FDTD Method Using 

Orthogonal Meshes: 
For a 2-D TE Wave: 
The numerical formulation of the ADI–FDTD method for the 2D TE and TM wave are 

presented below which have been used in each segment of the S-ADI-FDTD method in 

Chapter 2. These formulations are available for an inhomogeneous lossy medium and 

when uniform cells are used. Two procedures are used to calculate one discrete time-

step. The updating equations for the TE wave are presented first. 

Sub-step 1: 
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In sub-step 1, (A.1b) and (A.1c) cannot be used for direct numerical calculation, thus, 

(A.3) is derived from (A.1b) and (A.1c) by eliminating the 1/2|nzH   components as 

follows: 

 

1/ 2 1/2 1/ 2
1, 1/2 , 1/2 1, 1/2
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     (A.3) 

where ( 1/ 2, 1/ 2) ( , 1/ 2)a aB i j D i j      , ( 1/ 2, 1/ 2) ( , 1/ 2)a aB i j D i j       

1      

In the sub-step 2, (A.2a) and (A.2c) cannot be used for direct numerical calculation, 

thus, (A.4) is derived from (A.2a) and (A.2c) by eliminating the 1/2|nzH  components as 

follows: 
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    (A.4) 

where ( 1/ 2, 1/ 2) ( 1/ 2, )b bB i j D i j      , ( 1/ 2, 1/ 2) ( 1/ 2, )b bB i j D i j       

1      

For a 2-D TM Wave: 

The numerical formulation of the ADI–FDTD method for a 2D TM wave is presented 

below. The calculation is made in the same way as in the case of the TE wave as 

follows: 
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Sub-step 1: 
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Unlike (A.1b) and (A.1c), the equations of sub-step 1 and 2 of the TMz case cannot be 

used for direct numerical calculation. Placing (A.5b) into (A.5c) of sub-step 1 and 

(A.6a) into (A.6c) of sub-step 2 yields the simultaneous linear equations 1/2
,|nz i jE   and 

1
,|nz i jE   that result in the tri-diagonal matrix form which can be solved by using 

Approach A) that has been described in Section 2.3.2.  

 

A2. Numerical Formulation of the 2-D ADI-FDTD Method with 

CPML Absorbing Boundary Conditions 
The CPML equations for the 2-D ADI-FDTD method for the TEz case are formulated 

into two sub-steps which are shown below. 

Sub-step 1: 
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                              (A.9d) 

Here, subscripts e and h indicate the coefficients for the electric and magnetic fields. 

hxy , hyx , ezx  and ezy are discrete variables that have non-zero values only in some 

CPML regions and are necessary for the implementation of the absorbing boundary. In 

a similar way the updating equations of the 2-D ADI-FDTD CPML for the TM case can 

be derived. 
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A3. Numerical Formulation of the 2-D ADI-FDTD Method Using Non-

orthogonal Meshes: 
For a 2-D TE Wave: 

To simplify the problem, it is assumed that the wave propagates is in an isotropic lossy 

medium. In the 2-D ADI-NFDTD formulation, each explicit time step is changed to 

implicit time step using two procedures as follows: 

Sub-step 1: 
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where,  (4 ) / (4 )e ea t t        , 2 / (4 )eb t g t     , 

(4 ) / (4 )m mc t t        , 2 / (4 )d t g t      

The covariant mE , mH  and contravariant mE , mH  ( m = 1, 2, 3), together with g , are all 

defined in [23] and this can also be calculated using (3.4). The relationship between 

covariant fields mH , and contra-variant fields mH  ( m =1, 2, 3) are given by 

1 2 3
1 2 3m m m mH g H g H g H    and 1 2 3

1 2 3
m m m mH g H g H g H    , where mlg  and mlg   

( ,m l = 1, 2, 3), are tensors defined in (3.4). A similar relation holds for mE and mE . 

Here mH and mE  ( m = 1, 2, 3), are true fields components. For 2-D TEz case, 
3

3H H , the 2 1/2|nE  , 1/2
3 |nH   in (A.7ba) and 3 1/2|nH  , 1/2

2 |nE  in (A.7c) are defined as 

synchronous variables. Since (A.7b) cannot be calculated directly, simultaneous linear 

equations have to be formed from (A.7b) and (A.7c) by eliminating the synchronous 

variables 1/2 1/2
3 1/2, 1/2 3 1/2, 1/2| , |n n

i j i jH H 
    . Since 3

3H H  for the 2-D TEz case, we can obtain 

the expression of the 1/2
3 1/2, 1/2|ni jH 

   , from (A.7c).  (A.7c) is placed in (A.7b), then, 

according to [23], the desired covariant field components are averaged by known 

contra-variant fields to give a second order accurate approximation 

 

 

For a 2-D TM Wave: 

The numerical formulation of the ADI–NFDTD method for the 2D TM wave is 

presented below. The calculation is made in the same way as in the case of the TE wave 

as follows: 
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Sub-step 2: 

          1 1 1 1 / 2 1 1
1 / 2 , 1 / 2 , 3 1 / 2 , 1 / 2 3 1 / 2 , 1 / 22| | | |n n n n

i j i j i j i j
bH a H E E
u

   
       


          (A.10a) 

         2 1 / 2 2 1 / 2 1 / 2
, 1 / 2 , 1 / 2 3 1 / 2 , 1 / 2 3 1 / 2 , 1 / 21| | | |n n n n

i j i j i j i j
bH a H E E
u

  
       


          (A.10b) 

      

3 1 3 1/2
1/2, 1/2 1/2, 1/2

1 1 1/2 1/2
1 1/2, 1 1 1/2, 2 1, 1/2 2 , 1/22 1

| |

         | | | |

n n
i j i j

n n n n
i j i j i j i j

E cE

d dH H H H
u u

 
   

   
     



   
 

    (A.10c) 

 

where a , b , c , d are same as those mentioned previously. Similar to the TE case, the 

covariant and contra-variant together with g , are taken to be the same as those given in 

[23] and this can be calculated using (3.4).  For 2-D TMz case, 3
3E E , the 3E , 2H in 

equation (A.9b) and 2H and 3E in equation (A.9c) are defined as synchronous variables. 

Since the equation (A.9c) is not directly solved, by placing (A.9c) in (A.9b), and as per 

[23], the desired covariant field components are averaged by known contra-variant 

fields to give a second order accurate approximation, leading to tri-diagonal matrix 

equation. 

 

 

A4. Numerical Formulation of the 2-D ADI-NFDTD Method with 

CPML Absorbing Boundary Conditions 
The CPML equations for the 2-D ADI-FDTD method for the TEz case are formulated 

into two sub-steps which are shown below. 
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where 2 / ( ) (4 )eb t k j g t     , 
1

2/ ( ) (4 )
e
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32 32
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h i j r h i j r i j i jb a E E  
                                  (A.13b)    

Unlike (A.7b) and (A.7c), (A.11b) and (A.11c) as well as (A.12a) and (A.12c) cannot be 

used for direct numerical calculation. Placing (A.11c) in (A.11b) and (A.12c) in (A.12a) 

yields the simultaneous linear equations that result in the tri-diagonal matrix.  

In a similar way the updating equations of the 2-D ADI-NFDTD CPML for the TM case 

can be derived. 
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