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ABSTRACT

In this thesis we aim to develop efficient, enhanced versions of locally one

dimensional finite difference time domain (LOD-FDTD) using orthogonal and non-

orthogonal meshes with convolutional perfectly matched layered (CPML) absorbing

boundary condition (ABC) for solving a range of electromagnetic (EM) and microwave

problems. To solve many real world propagation problems related to electrically large

structures and compute the EM response from resonant and curved structures both in

two dimensional (2-D) and three dimensional (3-D) employing orthogonal and non-

orthogonal meshes, novel LOD-FDTD with CPML ABC are presented to render the

problem manageable and treatable with available resources within a reasonable time

frame and without placing an unrealistic burden on the computational resources.

In the first part of the thesis, a segmented (S)-LOD-FDTD method has been

developed for EM propagation modelling in electrically large symmetric structures.

After modifying 3-D symmetric structures to two dimensional (2-D) structures, the

segmentation approach is applied. The developed S-LOD-FDTD method has been

validated through propagation prediction inside large straight, branched and curved

tunnels. The predictions on path loss agree reasonably well with the results obtained

using segmented alternating direction implicit finite difference time domain (S-ADI-

FDTD) method as well as with published measured data. The results indicate higher

signal attenuation for the junction/transition regions as compared to regions away from

such abrupt transitions. A performance comparison of the proposed method has also

been described in terms of CPU time and memory. It was found that by dividing the

domain into more segments, both execution time and memory usage can be reduced.

Subsequently, a non-orthogonal LOD-FDTD (LOD-NFDTD) method is presented for

EM scattering from 2-D structures. Formulations of scattered field and CPML ABC in

generalised non-orthogonal curvilinear grids for 2-D LOD-NFDTD are also presented.

The non-orthogonal grids are used to fully mesh the computational domain, which leads

to efficient computation. Moreover, the proposed technique requires fewer arithmetic

operations than the nonorthogonal ADI-FDTD (ADI-NFDTD) method, leading to a

reduction of CPU time. The numerical dispersion of the proposed method as a function

of Courant-Friedrich-Lewy (CFL) number (CFLN) is also discussed. Computational
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results for EM scattering from 2-D conducting, dielectric, and coated cylinders are

presented. The proposed method is unconditionally stable and the numerical results

agree reasonably well with the results in the literature, as well as with the ADI-NFDTD

results. Compared to ADI-NFDTD, the proposed method is characterised by a lighter

calculation burden and higher accuracy.

We also propose a dispersion controlled rotationally symmetric LOD-FDTD (D-RS-

LOD-FDTD) method for analysing rotationally symmetric (RS) microwave structures

and antennas. First, the formulation for conventional RS-LOD-FDTD with CPML ABC

is presented. Then D-RS-LOD-FDTD algorithm with CPML is derived and utilised to

reduce the dispersion that may result from modelling RS microwave structures. As a

preliminary calculation, the open tip monopole (OTM) antenna has been analysed. The

dispersion control parameters contribute to the improvement in accuracy even with a

large time step beyond the CFL limit. Computational results for the return loss and

specific absorption rate from OTM and expanded tip wire (ETW) antennas embedded

inside a tissue-like phantom media are presented. The use of the dispersion control

parameters not only reduces the resultant dispersion effectively but also enables us to

employ a large time step for efficient computations, so that the computation time can be

reduced to about half of that required for its explicit counterpart (RS-FDTD).

We also present a two sub-step CPML ABC for the conventional (C)-LOD-FDTD

method for both orthogonal and non-orthogonal curvilinear meshes for analysing 3-D

microwave structures. Numerical results on three dimensional (3-D) microwave

structures using the proposed methods are also presented. A fundamental scheme based

LOD-FDTD (F-LOD-FDTD) for both orthogonal and non-orthogonal meshes are

proposed to minimise the resultant computational load for solving 3-D microwave

structures, in addition to freeing the right-hand side of the resultant update equations of

matrix operations. Numerical stability of the F-LOD-FDTD for both orthogonal and

non-orthogonal meshes is also presented to demonstrate the unconditional stability of

the proposed methods. Numerical results are presented to illustrate the significance of

the proposed approaches. A comparison with the C-LOD-FDTD-CPML in terms of

CPU time and memory requirements reveals the merits of the proposed F-LOD-FDTD

CPML method for both orthogonal and non-orthogonal curvilinear meshes in terms of

lighter calculation burden and higher efficiency.
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