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Abstract

Behavior refers to the action or property of an actor, entity or otherwise,

to situations or stimuli in its environment. The in-depth analysis of be-

havior has been increasingly recognized as a crucial means for understand-

ing and disclosing interior driving forces and intrinsic cause-eects on busi-

ness and social applications, including web community analysis, counter-

terrorism, fraud detection and customer relationship management, etc. Cur-

rently, behavior modeling and analysis have been extensively investigated by

researchers in dierent disciplines, e.g. psychology, economics, mathematics,

engineering and information science. From those diverse perspectives, there

are widespread and long-standing explorations on behavior studies, such as

behavior recognition, reasoning about action, interactive process modeling,

multivariate time series analysis, and outlier mining of trading behaviors.

All the above emerging methods however suer from the following com-

mon issues and problems to dierent extents: (1) Existing behavior modeling

approaches have too many styles and forms according to distinct situations,

which is troublesome for cross-discipline researchers to follow. (2) Tradi-

tional behavior analysis relies on implicit behavior and explicit business ap-

pearance, often leading to ineective and limited understanding on business

and social activities. (3) Complex coupling relationships between behaviors

are often ignored or only weakly addressed, which fails to provide a complete

understanding of the underlying problems and their comprehensive solutions.

(4) Current research usually overlooks the checking of behavior interactions,

which weakens the soundness and robustness of models built for complex be-

xii



ABSTRACT

havior applications. (5) Most of the classic mining and learning algorithms

follow the fundamental assumption of independent and identical distribution

(i.e. IIDness), but this is too strong to match the reality and complexities in

practical applications.

With the deepening and widening of social/business intelligences and

their networking, the concept of behavior is in great demand to be con-

solidated and formalized to deeply scrutinize the native behavior intention,

lifecycle and impact on complex problems and business issues. In the real-

world applications, group behavior interactions (i.e. coupled behaviors) are

widely seen in natural, social and articial behavior-related problems. The

verication of behavior modeling is further desired to assure the reliability

and stability. In addition, complex behavior and social applications often

exhibit strong explicit or implicit coupling relationships both between their

entities and properties. They can not be abstracted or weakened to the extent

of satisfying the IIDness assumption. These characteristics greatly challenge

the current behavior-related analysis approaches. Moreover, it is also very

dicult to model, analyze and check behaviors coupled with one another due

to the complexity from data, domain, context and impact perspectives.

Based on the above research limitations and challenges, this thesis reports

state-of-the-art advances and our research innovations in modeling, analyz-

ing and learning coupled behaviors, which constitute the coupled behavior

informatics. Coupled behaviors are categorized as qualitative coupled behav-

iors and quantitative coupled behaviors, depending on whether the behavior

involved is qualied by actions or quantied by properties.

In terms of the qualitative coupled behavior modeling and analysis, we

propose an Ontology-based Qualitative Coupled Behavior Modeling and Check-

ing (OntoB for short) system to explicitly represent and verify complex be-

havior relationships, aggregations and constraints. The eectiveness of On-

toB system in modeling multi-robot behaviors and their interactions in the

Robocup soccer competition game has been demonstrated.

With regard to the quantitative coupled behavior analysis and learning,
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we carry out explorations on three tasks below. They are under the non-

IIDness assumption of entities or properties or both of them, which caters

for the intrinsic essence of real-world problems and applications.

For numerical coupled behavior analysis, we introduce a framework to

address the comprehensive dependency among continuous properties. Sub-

stantial experiments show that the coupled representation can eectively

model the global couplings of numerical properties and outperforms the tra-

ditional way. For categorical coupled behavior analysis, we present an ecient

data-driven similarity learning approach that generates a coupled property

similarity measure for nominal entities. Intensive empirical studies witness

that the coupled property similarity can appropriately quantify the intrinsic

and global interactions within and between categorical properties for espe-

cially large-scale behavior data. For coupled behavior ensemble learning, we

explicate the couplings between methods and between entities in the ap-

plication of clustering ensembles, and put forward a framework for coupled

clustering ensembles (CCE ). The CCE is experimentally exhibited to capture

the implicit relationships of base clusterings and entities with higher cluster-

ing accuracy, stability and robustness, compared to existing techniques. All

these models and frameworks are supported by statistical analysis.

Finally, we provide a consolidated understanding of coupled behaviors by

summarizing the qualitative and quantitative aspects, extract the multi-level

couplings embedded in them, and then formalize a coupled behavior algebra

at its preliminary stage. Many open research issues and opportunities related

to our proposed approaches and this novel algebra are discussed accordingly.

Under varying backgrounds and scenarios, our proposed systems, algo-

rithms and frameworks for the coupled behavior informatics are evidenced

to outperform state-of-the-art methods via theoretical analysis or empirical

studies or both of them. All these outcomes have been accepted by top con-

ferences, and the follow-up work has also been recognized. Therefore, coupled

behavior informatics is a promising though wholly new research topic with

lots of attractive opportunities for further exploration and development.
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Chapter 1

Introduction

1.1 Background

At rst, two basic concepts throughout this thesis are introduced: behavior

and coupled behaviors. We then present the modeling, analysis and learning

of coupled behaviors, which form the coupled behavior informatics.

1.1.1 Behavior

Behavior is an important concept and a key component in the scientic, so-

cietal, economic, cultural, political, military, living and virtual world. In

Wikipedia, “behavior” is the range of actions and mannerisms made by or-

ganisms, systems or articial entities in conjunction with their environment,

which includes the other systems or organisms around as well as the physi-

cal environment. It is the response of system or organism to various stimuli

or inputs, whether internal or external, conscious or subconscious, overt or

covert, and voluntary or involuntary1. In dictionaries, “behavior” refers to

manner of behaving or acting, and the action or reaction of any material

under given circumstances (Cao & Philip 2012).

Generally, behavior is the action, reaction or property of an entity, hu-

1http://en.wikipedia.org/wiki/Behavior

1



INTRODUCTION

man or otherwise, to situations or stimuli in its environment (Cao 2010). It is

ubiquitous and can be widely seen anywhere at any time in any form. In dif-

ferent applications and scenarios, behaviors exhibit respective characteristics

and features. A qualitative behavior consists of two important ingredients:

actor and action, while a quantitative behavior is characterized by entity and

property. For instance, from the qualitative perspective, the “buy” order in

a stock market and the “kick of a goal” action in robot soccer game are

behaviors conducted by respective actors: investors and robots. From the

quantitative aspect, the records or observations represented by rows of an

information table can also be regarded as behaviors described by a range of

properties or variables. For example, a plant object depicted by its lengths

and widths of sepal and petal is regarded as a quantitative behavior exhibit-

ing the plant entity, a movie object featured by its director, actor and genre

is also treated as a quantitative behavior that manifests the movie entity.

However, these two entities dier from each other in terms of the property

type. The former (i.e. plant entity) is described by numerical properties,

while the latter (i.e. movie entity) is expressed by categorical properties.

Thus, the quantitative behavior can be further divided into numerical be-

havior and discrete behavior, which correspond to the plant entity and the

movie entity, respectively.

To obtain an integrated understanding, actor and entity can be unied as

the body of behavior, action and property are consolidated as the depictor of

behavior for they appear in dierent forms to describe the body. Accordingly,

the above mentioned plant entity and movie entity are the body, and the

relevant actions and properties are the depictors. From a broad perception,

the actions/operations, properties, responses or presentations associated with

the corresponding actors and entities form a concrete, substantial and rich

concept: behavior (Cao & Yu 2009).

With the fast development and deep engagement of social and digitalized

life by means of advanced computing technology, in particular, virtual real-

ity, multimedia information processing, visualization, machine learning and

2
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pattern recognition techniques, behaviors in the virtual and social world are

emerging increasingly. Additionally, behaviors in the traditional spheres and

environment are becoming more and more complex with the involvement of

both the virtual and social world. They are widely seen on the internet,

social and online networks, multi-agent systems, brain systems, and infor-

mation database.

The in-depth understanding of complex behaviors has been increasingly

recognized as a crucial means for disclosing underlying working mechanism,

interior driving forces, causes and impact, dynamic and evolution on busi-

nesses as well as social systems in handling many challenging issues, such

as intrusion detection (Vigna, Valeur & Kemmerer 2003), social comput-

ing (Wang, Carley, Zeng & Mao 2007), fraud detection (Fast, Friedland,

Maier, Taylor, Jensen, Goldberg & Komoroske 2007), event analysis (Weiss

& Hirsh 1998), outlier detection (Hodge & Austin 2004), and group decision-

making (Cao, Ou & Yu 2012), etc. This forms the need and emergence of

behavior informatics, i.e. understand behaviors from computing and infor-

mation perspective (Cao 2010), which has been recently studied to “formal-

ize”, “quantify”, “compute”, and “learn” complex behavioral applications

and social communities.

1.1.2 Coupled Behaviors

As indicated above, behavior is an essential and critical activity which has

been increasingly investigated in diverse elds, from social and behavioral

sciences to computer science (Pierce & Cheney 2004, Zacharias & MacMillan

2008, Liu, Salerno & Young 2008, Getoor & Taskar 2007). Although there

is an emerging focus on deep behavior studies, such as social network anal-

ysis (Hogg & Szabo 2008), periodic behavior analysis (Cao, Mamoulis &

Cheung 2007) and behavior informatics approach (Cao 2010), previous re-

search work has mainly focused on individual behaviors without considering

the interactions of them. However, with increasing network and community-

based events as well as their applications, e.g. group-based crime and social
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network interactions, coupling relationships between behaviors contribute to

the intrinsic causes and impacts of eventual business and social problems.

In addition, most of the current theories and systems in statistics, data

mining and machine learning are built on the IIDness2 hypothesis, assum-

ing the independent and identical distribution in the underlying objects,

properties and/or values of behaviors. This works perfectly well in abstract

problems and simplied business applications with weakened and avoidable

interactions and heterogeneity, and acts as the foundation of classic min-

ing and learning algorithms. Nevertheless, complex behavioral and social

applications often exhibit strong coupling relationships either explicitly or

implicitly, which are beyond the usual dependency or relationship. They

also embody the heterogeneity between objects, object properties and at-

tribute values of behaviors, which can not be weakened or abstracted to the

extent of satisfying the IIDness assumption.

Couplings may be presented in dierent forms between actors or actions

of behaviors and distinct levels between objects, properties and/or values

of behaviors. Heterogeneity is also embodied through multiple or mixed

structures and distributions within or between behaviors as well as their

properties. This makes it necessary and unavoidable to consider the coupling

and heterogeneity in behavior and social informatics. That is to say, coupling

relationship analysis inevitably emerges as a crucial issue while it even has

not been much studied or realized in the knowledge representation, articial

intelligence, statistics, data mining and machine learning communities.

In both natural and social sciences with their applications, accordingly,

behaviors from one or multiple actors often interact with one another, which

are called coupled behaviors. In other words, coupled behaviors refer to

the activities of one to many actors who are associated with one another in

terms of certain relationships. They play a much more fundamental role than

individuals in the driving cause, dynamics and eect of business problems,

enterprise applications and social communities (Park & Chang 2009, Liu

2Refer to http://en.wikipedia.org/wiki/Iid
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et al. 2008). Eective approaches for analyzing coupled behaviors are not

available, since existing methods mainly focus on individual behavior analysis

or follow the IIDness assumption (Cao 2010).

While very limited research outcomes can be identied in the literature,

coupled behaviors are widely observed in terms of typical applications (Cao

et al. 2012) such as group-based criminal behaviors, cross-reference citation

analysis, cross-market manipulation, car transport system, social network in-

teractions, intrusion detection, and multi-agent systems. Below, we illustrate

coupled behaviors and behavior interactions with two examples respectively

from qualitative and quantitative perspectives.

In this thesis, qualitative coupled behaviors are the qualitative behaviors

by additionally involving the coupling relationships in any form, thus com-

posed by three important elements: actor, action and coupling. Similarly,

quantitative coupled behaviors correspond to the quantitative behaviors to-

gether with their diverse interactions, and consisting of entity, property and

coupling. Accordingly, the qualitative coupled behaviors mainly focus on

reasoning about the temporal and inferential interactions of behaviors con-

ducted by the same or dierent actors, and the quantitative coupled behaviors

mostly address the quantied correlations within or between specic proper-

ties and involved entities of coupled behaviors. Following the same vein in

Section 1.1.1, the quantitative coupled behaviors are further partitioned as

numerical coupled behaviors and categorical coupled behaviors depending on

the type of associated properties3.

Example 1.1.1 (Qualitative Aspect: Multi-robot Soccer Game)

As shown in Figure 1.1, two teams participate in a Robocup soccer com-

petition with four Sony AIBO robots in each group. Each robot is treated as

an actor of the qualitative behavior, the actions of each robot are regarded

as operations of the qualitative behavior. The robot players operate on their

3In this thesis, we only work on the coupled behaviors quantied by purely numerical

properties and purely categorical properties. We will address the mix-type quantitative

coupled behaviors in the future work.
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Figure 1.1: Qualitative coupled behaviors: Robocup soccer competition.

own without any external control, either by humans or by computers. They

communicate with one another by wireless or by using the speakers and mi-

crophones. Their couplings or interactions include the collaborations between

dierent actions of the same robot, e.g., one of the robots kicks the ball after it

gets a message (interaction I); and distinct operations conducted by dierent

robots, such as sending messages between dierent players (interaction II). If

a robot undertakes tasks without appropriate arrangement and coordination

with other robots, the Robocup is likely to be unsuccessful, even though every

robot performs perfectly well.

This example shows that group actors and behaviors by the same or dier-

ent actors within the team are often coupled in dierent forms of interactions

(Cao et al. 2012), such as serial coupling reected by interaction I and causal

coupling exemplied by interaction II. The whole multi-robot system is an in-

stance of the qualitative coupled behaviors.

In this multi-robot soccer game, there are several important issues to con-

sider, namely, how to visually and formally represent such qualitative inter-

actions? How to aggregate and reason about those group actors and related

actions? How to verify and rene the group behavior model to guarantee a
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Base Clustering 1 Base Clustering 2 

Base Clustering 3 Base Clustering 4 

Figure 1.2: Quantitative coupled behaviors: clustering ensemble.

stable and robust system? We will propose an Ontology-based Qualitative

Coupled Behavior Modeling and Checking to solve all these issues in Chapter

3.

Example 1.1.2 (Quantitative Aspect: Clustering Ensemble)

Figure 1.2 (Topchy, Jain & Punch 2005) shows four possible base clus-

terings of 12 data objects into two clusters. Dierent partitions use dierent

sets of labels. The target of clustering ensemble is to obtain a nal clustering

based on these four base clusterings.

Here, we regard each object or observation as an entity of the quantita-

tive behavior. Each base clustering is treated as a property of the quantitative

behavior, and the clustering result of each base clustering is the correspond-
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ing property value or attribute value of the quantitative behavior. The base

clusterings are expected to have interactions with one another, such as the

co-occurrence of their cluster labels over the same set of objects, since they

are all conducted on the same data objects. This kind of interactions em-

bodies the coupling relationships between the properties of behaviors, which is

one coupling aspect of the quantitative coupled behaviors. In addition, each

object has the neighborhood records as its environment. Thus, how this neigh-

borhood impacts the clustering performance reects another coupling aspect

of the quantitative coupled behaviors in terms of the interactions among ob-

jects. Both aspects deliver an example of the quantitative coupled behaviors.

In particular, this example illustrates an application of the categorical cou-

pled behaviors, since the associated property of base clustering is in essence

a categorical attribute with cluster labels to be its values.

For this clustering ensemble problem, Chapter 6 will introduce a coupled

framework of clustering ensemble to formalize and learn both the coupling

relationships between base clusterings (i.e, properties) and between data ob-

jects (i.e. entities), which are based on non-IIDness assumption. Note that

the “IID” in this thesis is short for the independent and identical distribution,

so the non-IIDness suggests the dependent (or relational) and heterogenous

distribution in behavior data.

The above two instances provide an intuitive picture about what kind

of behaviors we are interested in and how we regard the qualitative coupled

behaviors as well as quantitative coupled behaviors. In the following Chapter

3 and Chapter 6, we will model and analyze these two examples in detail.

In reality, there exist a diversity of either qualitative or quantitative coupled

behaviors. Another two case studies are given in Chapter 4 and Chapter 5

to show how we address the coupling relationships between behaviors.

Chapter 3, Chapter 4, Chapter 5 and Chapter 6 explore the qualitative

coupled behaviors and quantitative coupled behaviors individually. Accord-

ingly, in Chapter 7, an integrated understanding is proposed that coupled be-
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haviors are composed of four elements: body, depictor, consolidated coupling

and context. The body is a unied concept for actor and entity. The depictor

is a general notion that embodies the action/operation, property/attribute

and all other characteristics of body. Stated dierently, the operation, the

numerical property, the categorical property to be discussed in this thesis

are the concrete manifestations of depictor under dierent scenarios. The

consolidated coupling is teased out by analyzing either the explicit or im-

plicit interactions and relationships among a collection of behaviors, and it

also shows the hierarchy and diversity of coupling relationships. The context

species the environment and styles in which the couplings are considered,

such as what sorts of couplings are examined at what level including body-

body interaction and depictor-depictor interaction, etc.

1.1.3 Modeling, Analysis and Learning

Due to the emerging popularity and importance of coupled behaviors, the

representation, modeling, analysis, mining and learning, and determination

of coupled behaviors are becoming increasingly useful, essential and challeng-

ing in ubiquitous behavioral applications and problem-solving techniques.

They inevitably and undoubtedly constitute new computing opportunities,

necessity and technology innovations, we refer to them as coupled behav-

ior informatics, which is an important branch of behavior computing and

analytics (Cao & Philip 2012).

Coupled behavior informatics consists of methodologies, techniques and

practical tools for exploring human, organizational, articial and virtual,

qualitative and quantitative behaviors, their interactions and relationships,

the formation and decomposition of behavior-oriented groups, and collective

intelligence. Such observations and discussions motivate this research the-

sis Coupled Behavior Informatics: Modeling, Analysis and Learning. This

thesis reports state-of-the-art advances and our research innovations in rep-

resenting, modeling, analyzing and learning coupled behaviors from both the

qualitative and quantitative aspects.
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(1) Coupled Behavior Modeling: refers to develop representation and

modeling mechanisms, languages and tools to capture behavior char-

acteristics, intrinsic and contextual properties of behaviors, behavior

dynamics, and internal and external communications among behaviors.

Those techniques and methods can also be used to understand interac-

tion, causality, convergence, divergence, selection, decision, evolution,

emergence, and intelligence of behavior entities, behavior properties,

behavior networks, and behavior impact. Both formal and visual spec-

ications are discussed to represent coupled behaviors and behavior

interactions. Case studies are demonstrated to model complex coupled

behaviors in a multi-agent system, shown in Figure 1.1.

(2) Coupled Behavior Analysis: denote proposing eective methods,

techniques and tools for emergent areas and domains in analyzing

coupled behaviors and their properties. Model checking technique is

utilized to verify the coupled qualitative behavior model with desired

requirements, and to further rene the model. Coupled similarities

are also introduced to characterize the quantitative behavior interac-

tions in terms of coupling relationships among between properties (i.e.

attributes, features, variables) and/or entities (i.e. objects, records,

observations). Algorithms and case studies are discussed to analyze

behaviors correlated with one another based on mixed properties and

complex coupled interactions. The analytical results will be used for

detection, prediction, intervention, and grouping of coupled behaviors

as well as their interactive relationships.

(3) Coupled Behavior Learning: to identify clusters and patterns among

the quantitative behavior entities and networks, such as partition and

classify a group of coupled behaviors. Algorithms and case studies

are proposed to induce the non-IIDness learning by teasing out the

attributes coupling, objects coupling, and clusters coupling under the

scenario of numerical and categorical entity clustering, classication
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and ensemble learning tasks. One of the examples, which is cluster-

ing ensemble, is exhibited in Figure 1.2. We aim to show that the

non-IIDness issues are manageable and the involvement of non-IIDness

can result in substantially improved outcomes. These strategies can be

widely used and expanded for analyzing and learning complex behav-

ioral and social problems.

All the above three aspects compose what we call coupled behavior in-

formatics, which contributes to the in-depth understanding, discovery, ap-

plications, and management of coupled behavior intelligence. The coupled

behavior analysis with applications (Cao et al. 2012) and the overview of

non-IIDness learning (Cao 2013) proposed by Cao et al. are the instances of

preliminary investigation for this promising research topic. This thesis cre-

ates an important opportunity and detailed explorations to broaden current

research to areas that consist of coupled behaviors. It aims to serve as the

rst dedicated source of references for the theory and applications of cou-

pled behavior computing, establishing current research work, disseminating

our latest research discoveries, and providing a ground-breaking textbook to

researchers with interest in this eld.

1.2 Limitations and Challenges

Behaviors can be seen everywhere in business and social life. There exist a

diversity of ways to explore and investigate behaviors from multiple disci-

plines and areas covering psychology, economics, mathematics, engineering

and information science.

On one hand, many qualitative approaches have been proposed to model

and analyze behaviors, such as belief-desire-intention model (Wooldridge

2000), situation calculus (Giacomo, Lesperance & Pearce 2010), human-

machine interaction (Kobsa 2001), reasoning about action (Gu & Soutchanski

2007), behavior recognition (Gabaldon 2009) and simulation (Subramanian

2010). On the other hand, a lot of quantitative methods including se-
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quence analysis (Ayres, Flannick, Gehrke & Yiu 2002), activity monitoring

(Fawcett & Provost 1999) and mining (Cao, Zhao, Zhang & Zhang 2008),

customer behavior analysis (Dasgupta, Singh, Viswanathan, Chakraborty,

Mukherjea, Nanavati & Joshi 2008) and web user behavior analysis (Flesca,

Greco, Tagarelli & Zumpano 2005) have been introduced to facilitate the be-

havior computing. In addition, ontological engineering and semantic web

(Breitman, Casanova & Truszkowski 2007), representation and reasoning

(Brachman & Levesque 2004) and model checking (Baier & Joost 2008) are

also helpful techniques and theories to enable the in-depth behavior analysis.

Despite such great progress and development, limited eorts have been

made in deep modeling and analysis of coupled behaviors. Several slightly

relevant areas are coupled Hidden Markov model (Oliver & Pentland 2000),

multivariate time series based approaches (Yoon, Yang & Shahabi 2005) and

social network analysis (Hogg & Szabo 2008). However, demographic data

rather than the genuine behavior structure is the main focus in those meth-

ods. Apart from this, these research suers from the lack of explicit behavior

representation and the stability verication of their models. Limited work

can be identied on formalizing and checking complex behavior structures

and interactions. For example, based on the multi-robot soccer game shown

in Figure 1.1, though Ros and Veloso (Ros & Veloso 2007) designed two

kinds of evaluations to show the superiority of their case-based coordination

mechanism, they neither explicitly represent the interactions among robots

nor verify the stability of that system, which is not convincing enough.

In addition, most of the classic theories, algorithms, systems and tools in

articial intelligence, statistics, data mining and machine learning are built

based on the fundamental assumption of IIDness, which believes the indepen-

dence and identical distribution between underlying objects (i.e. entities),

attributes (i.e. properties) and/or values. For instance, the traditional k-

means or k-modes algorithm to perform clustering and the classical KNN

algorithm to conduct classication (Gan, Ma & Wu 2007). Nevertheless, in-

creasingly complex behavioral applications and social problems often exhibit
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strong couplings and heterogeneity between objects, attributes and values

(i.e., non-IIDness), explicitly or implicitly. This fundamentally challenges

the IIDness-based learning methodologies and techniques. For the example

of clustering ensemble in Figure 1.2, traditional clustering ensemble methods

such as CSPA and MCLA (Strehl & Ghosh 2002), which lack the consider-

ation of any coupling relationship, usually randomly distribute several con-

troversial objects in either an identical cluster or dierent groups. However,

those objects can actually be correctly allocated if non-IIDness assumption

is followed.

Detailed introductions and evaluations of the related work are given in

Chapter 2. Below, we summarize and list the main limitations and challenges

of current research work on behavior computing.

• Existing behavior modeling approaches have too many styles and forms

according to distinct situations. There is very limited research on for-

malizing the concept of behavior and its elements, which is too weak

to reveal that behavior plays the key role of an internal driving force

for social and business activities. Additionally, it is ineective or even

impossible to deeply tease out native behavior intention and impact on

complex issues and business problems. There are no formal behavior

representation models stated from a general perspective and providing

a comprehensive understanding of behavior constitution.

• Traditional behavior analysis is usually built on customer demograph-

ics and business usage related transactions directly. It mainly relies

on implicit behavior and explicit business appearance from behavioral

and social sciences, often leading to ineective and limited analysis

in understanding business and social activities deeply and accurately.

With behavior implied in demographic and transactional data, it is not

possible to support in-depth analysis on behavior interior surrounded

by behavioral elements, but on behavior exterior such as service usage.

The behavior implication in transactional data also determines that
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it fails to to scrutinize behavioral intention and impact on business

appearance and applications.

• State-of-the-art research work is in lack of explicitly modeling and ana-

lyzing complex interactions of group behaviors directly. Complex cou-

pling relationships between behaviors are often ignored or only weakly

addressed. However, behaviors are often observed to be correlated in

terms of certain coupling relationships, for instance, serial or paral-

lel, conjunction or disjunction. Such coupling relationships greatly

challenge existing behavior representation methods, since they involve

multiple behaviors from dierent actors, constraints on the interactions

and behavior evolution, which are often not obvious and exhibit large

complexities. However, a deep exploration of interactive relationships

is necessary for us to understand how behaviors are correlated and how

those coupled behaviors drive and impact business and social problems.

• Current research often overlooks the checking of behavior modeling,

which weakens the soundness and robustness of models built for com-

plex behavior applications. The quality of behavior interactions are not

checked through verication techniques. Little related work is ready

for the formalization and verication of coupled behaviors, including

elaborating and representing behavioral elements, specifying behavior

interactive relationships, and checking the modeling of multiple behav-

ior couplings. The engagement of verication in behavior analysis may

make the ndings much more stable and robust for problem-solving.

• Most of the existing mining and learning algorithms assume that be-

havior entities (i.e. objects) and their properties (i.e. attributes) fol-

low the independence and identical distribution (i.e. IIDness), which

means the involved observations and variables do not have any connec-

tions among one another. They often overlook or abstract the couplings

and heterogeneity, by taking this strong hypothesis. However, the as-

sumption and abstraction taken in IIDness learning techniques are too
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Figure 1.3: Research issues.

strong and seriously mismatch the reality and complexities in behav-

ioral/social systems and applications. For example, in social media,

users are more or less inter-related or inter-inuenced by one another

in terms of various aspects and reasons. Thus, the great demand of

catering for heterogeneity and couplings urge the development of non-

IIDness learning strategies.

This thesis aims to break through and overcome those limitations, intro-

duce new models and novel frameworks to explicitly formalize the concept:

coupled behaviors, analyze their contextual properties, and learn the intrinsic

non-IID data structure and characteristics.

1.3 Research Issues and Objectives

Based on the aforementioned research limitations and challenges, we propose

several research issues and objectives from the following aspects, which are

also shown in Figure 1.3.

– Coupled Behavior Representation: or called coupled behavior
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modeling, is to develop behavior-oriented specications and formal-

izations to describe coupled behaviors (i.e., behaviors from either the

same, or dierent actors are often coupled with each other) and the

relationships among them. It provides a unied and formalized mecha-

nism for describing, presenting and aggregating behavior interactions,

desired requirements or properties, behavior impact and patterns.

– Coupled Behavior Reasoning and Verication: With the for-

mal representation of coupled behaviors, the qualitative analytics ad-

dresses the task of behavior reasoning and verication, which are used

to check and verify complex behavioral elements, relationships, aggre-

gations, properties and constraints. It accordingly renes sensitive and

problematic model proposals, and then guarantees the robustness and

stability of coupled behavior representation schemes.

– Coupled Behavior Learning and Evaluation: Inspired by the non-

IIDness hypothesis, the quantitative research targets behavior learning

and evaluation via exposing the coupling relationships between behav-

ioral objects, between behavioral variables, and/or between behavioral

attribute values. It can be applied in data mining and machine learn-

ing algorithms, such as clustering, classication and ensemble learn-

ing. Those methodologies and techniques are then evaluated by accu-

racy, mutual information, stability and statistical signicance to exhibit

whether the non-IIDness based learning is helpful and eective or not.

– Coupled Behavior Algebra and Integration: To make the qual-

itative coupled behaviors and quantitative coupled behaviors as one

general concept, an appropriate way must be chosen to integrate both

the qualitative reasoning and verication with the quantitative learn-

ing and evaluation to obtain a comprehensive understanding of the

implicit complex coupled behaviors. A coupled behavior algebra is in

great demand to be proposed, formalized and generalized.
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In the following chapters, we aim to clarify and solve all the above research

issues. Chapter 3 focuses on coupled behavior representation, reasoning and

verication. Chapter 4, Chapter 5 and Chapter 6 addresses coupled behav-

ior learning and evaluation. Chapter 7 lays particular emphasis on coupled

behavior algebra and integration.

1.4 Research Contributions

In this thesis, we mainly work on the coupled behavior informatics in terms of

modeling, analysis and learning on coupled behaviors. The proposed coupled

behavior informatics covers our accepted or published research work listed in

Appendix A as follows.

Formalization and verication of coupled behaviors are introduced from

the qualitative perspective (Wang & Cao 2012). Coupled numerical at-

tributes are analyzed for continuous quantitative coupled behaviors (Wang,

She & Cao 2013a). Coupled categorical attributes are also explored for dis-

crete quantitative coupled behaviors (Wang, Cao, Wang, Li, Wei & Ou 2011).

A coupled framework of clustering ensembles is designed for applications on

quantitative coupled behaviors (Wang, She & Cao 2013b). A coupled dis-

cretization algorithm (Wang, Wang, She & Cao 2012), a coupled recommen-

dation system (Yu, Wang, Gao, Cao & Chen 2013) and a coupled document

clustering approach (Cheng, Miao, Wang & Cao 2013) are proposed as well.

This thesis focuses on the rst four research topics mentioned above (i.e.

formalization and verication of coupled behaviors, coupled numerical at-

tributes analysis, coupled categorical attributes analysis, and coupled frame-

work of clustering ensembles), and the last three research issues (i.e. coupled

discretization algorithm, coupled recommendation system, and coupled doc-

ument clustering approach) are solved based on the rst four topics. The

contributions of such tasks are listed individually as below. Note that object

and the entity of coupled behaviors are interchangeable, attributes and base

clusterings are equivalent to the properties of coupled behaviors.
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1.4.1 Coupled Behavior Formalization and Verication

We build an Ontology-based Qualitative Coupled Behavior Modeling and

Checking (OntoB for short) for representing and verifying complex behavior

relationships and interactions. With knowledge representation techniques,

the OntoB system oers the following characteristics and capabilities:

(1) Systematic: The built-in behavior ontology combines the features of

entity-relationship with theoretical semantics to explicitly capture be-

havior interactions, various intra-couplings (interactions between be-

haviors from the same actor) and inter-couplings (interactions between

behaviors from dierent actors) between distinct behaviors as well as

their aggregation and behavior constraints, in terms of behavioral per-

spective rather than transactional aspect.

(2) Solid : The inclusion of model checking (Baier & Joost 2008) in the On-

toB system makes reliable models, and outperforms the manual proof

and test with simulations in terms of nondeterminism and automation;

(3) Generic: The building blocks in the OntoB system are generic and can

be used for modeling behavior-oriented applications with a variety of

coupling relationships; and

(4) Flexible: The semantic mappings of intra-coupled and inter-coupled

syntax in OntoB are exible according to specic requirements when

interpreted as the corresponding aggregations, which means the way

we provide here for verication is only an alternative option.

We introduce the OntoB system, and illustrate it by modeling and verifying

behaviors of all robots as well as their interactions from temporal, inferential

and party-based aspects in the multi-robot soccer game, shown in Figure 1.1.

1.4.2 Numerical Coupled Behavior Analysis

We propose a framework of the coupled attribute analysis on numerical quan-

titative coupled behaviors, in which the continuous properties of coupled be-
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haviors are assumed to follow non-IIDness. The key contributions of this

part are listed as follows:

(1) We consider both the intra-coupled interaction within an attribute, cap-

tured by the correlations between every attribute and its own powers;

and the inter-coupled interaction between dierent attributes, quan-

tied by the correlations between each attribute and the powers of

others.

(2) A coupled representation scheme is introduced for quantitative objects

to integrate the intra-coupled and inter-coupled interactions with the

original information table representation via Taylor-like expansion in a

global way.

(3) The proposed coupled representation method is compared with the tra-

ditional representation approach by applying data structure analysis,

clustering and classication, revealing that the couplings of continuous

attributes are essential to the learning applications.

1.4.3 Categorical Coupled Behavior Analysis

We explicitly discuss the data-driven intra-coupled similarity and inter-coupled

similarity, as well as their global aggregation in unsupervised learning on

nominal quantitative coupled behaviors. Here, the categorical properties of

coupled behaviors are under the assumption of non-IIDness. The key contri-

butions of this part are listed in the following:

(1) We propose a Coupled Attribute Similarity for Objects (CASO) mea-

sure based on the Coupled Attribute Similarity for Values (CASV )

measure, by considering both the Intra-coupled and Inter-coupled At-

tribute Value Similarities (IaASV and IeASV ), which capture the at-

tribute value frequency distribution and the attribute dependency ag-

gregation respectively with a high accuracy and relatively low complex-

ity in a global way.
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(2) We compare the accuracy and eciency of the four proposed measures

for IeASV in terms of four relationships: power set, universal set, join

set and intersection set; and obtain the most ecient candidate based

on the intersection set (i.e. IRSI ) from theoretical and experimental

aspects.

(3) A method is proposed to exibly dene the dissimilarity metrics with

the proposed similarity building blocks according to specic require-

ments.

(4) The proposed measures are compared with the state-of-the-art metrics

on a range of benchmark categorical data sets in terms of the internal

and external clustering criteria, as well as the classication accuracy.

All the results are statistically signicant.

(5) Two new coupled categorical clustering algorithms, which are CROCK

and CLIMBO, are accordingly proposed and veried based on the ex-

isting algorithms ROCK and LIMBO.

1.4.4 Coupled Behavior Ensemble Learning

We propose an eective framework for coupled clustering ensembles (CCE )

as an application on quantitative coupled behaviors by involving non-IIDness

to uncover the intrinsic coupling relationships between base clusterings (i.e.

properties) and between objects (i.e. entities). The key contributions of this

part are as follows:

(1) The non-IIDness nature is described from the perspectives of clustering-

based, object-based, and cluster-based algorithms, and reveals that the

couplings are essential to the clustering ensemble.

(2) Both the couplings between base clusterings and between data objects

are considered in a coupled framework CCE of clustering ensembles to

support an integrated coupling.
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(3) We propose several similarity measures that incorporate the couplings

of base clusterings and objects, and they exhibit an impressive ability

to capture the implicit relationships within the data.

(4) Our proposed framework CCE is evaluated against the eight existing

clustering ensemble methods and two categorical clustering algorithms

on a variety of benchmark data sets in terms of accuracy, stability,

robustness, and statistical signicance.

(5) In addition, we empirically explore the relationship between the data

characteristics of base clusterings and the degree of improvement in the

nal clustering quality.

In this part, the aforementioned Figure 1.2 is used to illustrate how the

CCE framework is applied to conduct clustering ensembles.

1.5 Thesis Organization

The prole and structure of research work in this thesis are exhibited in

Figure 1.4. The thesis is organized as follows.

Chapter 1 provides an introduction to coupled behavior informatics in

terms of modeling, analysis and learning. It describes the research back-

ground and motivation, current limitations and challenges, research issues

and objectives, as well as key contributions.

Chapter 2 reviews the related literatures on qualitative behavior modeling

and analysis, numerical attribute analysis of quantitative behaviors, categor-

ical attribute analysis of quantitative behaviors, and clustering ensemble of

quantitative behaviors individually.

Chapter 3 proposes an ontology based behavior modeling and checking

system to explicitly represent and verify complex behavior relationships, ag-

gregations and constraints. It mainly focuses on the modeling and analysis

of qualitative coupled behaviors.
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Chapter 4 introduces a numerical coupled behavior analysis framework

to capture the global dependency or non-IIDness of continuous properties.

Chapter 5 puts forward a coupled attribute similarity measure for nominal

entities with coupling relationships or non-IIDness between categorical prop-

erties. Chapter 6 discusses the problem of explicating the non-IIDness be-

tween base clusterings and between objects in clustering ensembles, which is

an application on quantitative coupled behaviors. All these chapters address

the analysis and learning of quantitative coupled behaviors.

Chapter 7 integrates the modeling and analysis of qualitative coupled be-

haviors with the analysis and learning of quantitative coupled behaviors to

obtain a unied and comprehensive understanding of complex coupled be-

haviors with multi-level couplings therein, abstracts a preliminary coupled

behavior algebra, and discusses the proposed models, methods and frame-

works in this thesis with open research issues.

Chapter 8 concludes the thesis and outlines the scope for future work.

Appendix A shows a list of publications during my PhD studies. Ap-

pendix B lists the main denotations in this thesis.

23



Chapter 2

Literature Review

In this chapter, the related work and literatures are reviewed in terms of

behavior modeling and analysis, numerical behavior analysis, categorical be-

havior analysis, and a behavior learning application on clustering ensembles.

These four parts overview the related research work in Chapter 3, Chapter

4, Chapter 5 and Chapter 6, respectively.

The rst part on behavior modeling and analysis mainly focuses on state-

of-the-art representation schemes and analysis strategies for behaviors in

general. The second part on numerical behavior analysis, in particular, ad-

dresses the current research on the continuous properties (i.e. attributes)

of a collection of quantitative entities (i.e. objects); while the followed part

on categorical behavior analysis evaluates the existing work on the discrete

properties of entities. Further, the last part on behavior application expli-

cates the research progress in terms of clustering ensemble learning, in which

each object is regarded as the entity of behavior, and each base clustering

is treated as the property of behavior. Figure 2.1 shows the framework of

the literature review for behavior studies. The last column in Figure 2.1 lists

the limitations of current work. The detailed reviews and evaluations of the

related research work are specied as follows.
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Figure 2.1: The framework of literature review.

2.1 Behavior Modeling and Analysis

Behavior is ubiquitous in business and social life. Behavior modeling and

analysis have been extensively studied by researchers in psychology, eco-

nomics (Holcombe 1989), mathematics, engineering (Zacharias & MacMillan

2008) and information science (Wilson & Walsh 1997) among others.

Typical concepts have been proposed to model and analyze a range of be-

haviors, including activity monitoring (Fawcett & Provost 1999), customer

behavior analysis (Dasgupta et al. 2008), user modeling (Kobsa 2001), web

user behavior patterns (Flesca et al. 2005, Kwan, Fong & Wong 2005), action

reasoning and composition (Gu & Soutchanski 2007), belief-desire-intention

model (Wooldridge 2000), situation calculus (Giacomo et al. 2010), and be-

havior compositions (Sardina, Patrizi, Giacomo & Universita 2008). Addi-

tional techniques and theories such as ontological engineering and semantic

web (Breitman et al. 2007, Razmerita 2011), representation and reasoning
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(Brachman & Levesque 2004), reality mining (Eagle, Pentland & Lazer 2008),

sequence analysis (Zaki 2001, Ayres et al. 2002) and model checking (Baier

& Joost 2008) are also helpful for the behavior simulation and computing.

In the sections below, these work on behavior modeling and analysis is

introduced, sorted and evaluated from dierent perspectives.

2.1.1 Demographic and Transactional Perspective

Most of the existing behavior analysis approaches have been directly con-

ducted on customer demographic and transactional data (Cao et al. 2012,

Wang & Cao 2010), in which behavior-oriented elements are hidden in rou-

tinely collected information. For example, in stock markets, transactions

mainly record and manage the price, volume and index related information.

For this kind of data, behavior is hidden and its properties are separately

kept. In the following, we enumerate the behavior modeling and analysis

methods from the demographic and transactional perspective.

In outlier mining of trading behaviors, price movement is usually ad-

dressed to detect abnormal trading (Donoho 2004a, Yamanishi & Takeuchi

2002). In capital markets, relational data associated with brokers and se-

curities as well as the corresponding price information is used to analyze

security and capture fraud (Donoho 2004b, Fast et al. 2007). In telecom

churn analysis, service subscriber demographics and their usage, billing,

credit, application and complaint history are analyzed to classify customers

based on the dynamics of usage change (Mozer, Wolniewicz, Grimes, Johnson

& Kaushanky 2000, Nanavati, Gurumurthy, Das, Chakraborty, Dasgupta,

Mukherjea & Joshi 2006, Dasgupta et al. 2008). In human-computer inter-

action (Kobsa 2001), user modeling aims at designing cognitive models of

human users, including modeling their skills with declarative knowledge and

performing user testing. In web usage and preference analysis (Srivastava,

Cooley, Deshpande & Tan 2000, Flesca et al. 2005), online access and ses-

sion information for navigational location, history and experience is mainly

adopted to simulate and model web user behaviors. In online customer be-
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havior analysis (Kwan et al. 2005), product awareness and exploration of

purchase commitment are investigated to discover customer patterns.

These approaches are only capable of demographic and transactional

modeling, analysis and learning. In scrutinizing the above examples, we

realize that the so-called behavior analysis is actually not based on intrinsic

and genuine behavioral elements, but on straightforward customer demo-

graphic data and in particular on business usage related transactions gener-

ated during business processes (Cao 2010). Behavior is a very weak object

and behavior analysis is widely used without a unied denition of behavior.

Thus, more methods and strategies are expected to be explored from the

behavioral perspective.

2.1.2 Behavioral Perspective

Among limited genuine behavior analysis, behavior modeling from the be-

havioral and social sciences mainly relies on either quantitative or qualitative

methods (Peterson, Cumming & Carpenter 2003, Pierce & Cheney 2004).

On a quantitative aspect, for example, Cao proposed a behavior informat-

ics approach for in-depth human behavior understanding and use (Cao 2010);

Bi et al. (Bi, Tsimhoni & Liu 2011) modeled human performance by us-

ing the support vector regression approach; and Kim et al. (Kim, Breslin,

Decker & Kim 2011) represented and mined user interest under the sce-

nario of tagging practices. From the perspective of qualitative modeling,

behavior-oriented modeling and analysis has been proposed and studied in

areas, including scenario planning (Peterson et al. 2003) and knowledge rep-

resentation (Razmerita 2011). Other typical concepts such as action rea-

soning and composition (Gu & Soutchanski 2007, Giacomo et al. 2010),

coordination and planning (Koenig, Keskinocak & Tovey 2010, Edelkamp

& Kissmann 2009), and modeling systems rather than behaviors (Nagy &

Vargas-Vera 2011, Ros & Veloso 2007, Serrano & Saugar 2010) can also be

found in a number of references. For instance, Serrano and Saugar (Serrano

& Saugar 2010) exploited the application-independent software connector to
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specify multi-agent societies rather than agent behaviors. Gu and Soutchan-

ski (Gu & Soutchanski 2007) discussed action reasoning based on a modied

situation calculus. Sardina et al. (Sardina et al. 2008) considered behavior

compositions when failure presents.

In this chapter, we mainly concentrate on the qualitative model and anal-

ysis of genuine behavioral elements, which capture the intrinsic components

of behavior. We note that many qualitative works on “behavior model-

ing” actually refer to behavior recognition (Gabaldon 2009) and simulation

(Subramanian 2010) instead of representation, which diers from our fo-

cus here. Although several abstract models have been proposed as well,

e.g. belief-desire-intention model (Wooldridge 2000) and situation calculus

(Giacomo et al. 2010), there is little exploration to formalize the concept of

behavior and its elements (Cao 2010). In addition, Ros and Veloso (Ros &

Veloso 2007) designed two kinds of evaluations to show the superiority of

their case-based coordination mechanism, but they did not verify the sta-

bility of that system. Limited work can be identied on formalizing and

checking complex behavior structures and interactions.

All the above methods only concern each individual behavior. Also men-

tioned by (Cao et al. 2012) that previous research has mainly focused on

individual behaviors, e.g. sequence analysis including Spade (Zaki 2001) and

Spam (Ayres et al. 2002), interactive process modeling (Bickhard 2000), ac-

tivity mining (Cao et al. 2008).

An increasing number of researchers however argue that coupled behav-

iors, i.e., behaviors from either the same, or dierent actors, are often as-

sociated with one another in terms of some coupling relationships. They

are widely seen, although very limited research outcomes can be identied

in the literature. Slightly relevant approaches are coupled Hidden Markov

model (CHMM) (Oliver & Pentland 2000), multivariate time series anal-

ysis (Chandrakala & Chandra Sekhar 2008, Yoon et al. 2005) and social

network analysis (Hogg & Szabo 2008). The CHMM (Oliver, Rosario &

Pentland 2000) is introduced to model multiple processes with interactions.
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The CHMM is composed of more than one HMM chains denoting dier-

ent processes. The state of any HMM chain at time t depends on both

the state of its own HMM chain and the states of other HMM chains at

time t − 1. Regarding the multivariate time series analysis, a density-based

clustering approach in the kernel feature space is proposed to cluster multi-

variate time series behavior data with varying lengths (Chandrakala & Chan-

dra Sekhar 2008). Yoon, Yang and Shahabi (Yoon et al. 2005) suggested to

select a feature subset from multivariate time series by adopting common

principal component analysis. For the social network analysis, Hogg and

Szabo (Hogg & Szabo 2008) proposed and evaluated plausible mechanisms

to explain behaviors in online community site. Although all the methods

have somewhat considered interactions, demographic data rather than the

genuine behavior structure is the main focus, which is not aimed at behavior

analysis and overlooks aspects like internal-driven coupling relationships and

behavior actions/properties.

2.1.3 Related Techniques

In this section, we briey introduce two important techniques (i.e. ontology

and model checking) to be used in Chapter 3 when building the coupled

behavior modeling and checking system.

Ontology

The word “ontology” is used with dierent meanings in distinct communities

(Breitman et al. 2007). Originally, the ontology proposed by Aristotle, is the

philosophical study of the nature of being, existence or reality in general, as

well as the basic categories of being and their relations. In computer and

information sciences, ontology is a formal representation of the knowledge

by a set of concepts within a domain and the relationships between those

concepts. For articial intelligence systems, what exist is what can be rep-

resented, we can describe the ontology of a program by dening a set of

representational terms. The most frequently quoted denition of ontology is
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Gruber’s: “An ontology is a formal, explicit specication of a shared concep-

tualization” (Gruber 1993). Here, conceptualization represents an abstract

model, formal means that the mathematical specication should be machine

processable, and explicit indicates that the elements must be clearly dened.

Basically, there are four types of relationship between distinct concepts and

individuals: part-of, kind-of, instance-of (is-a), attribute-of. These are only

the basic ones, a lot more relationships are to be revealed according to varied

situations and application domains.

Due to its strong ability of representation and description, ontology has

witnessed its wide applications in many areas such as articial intelligence

(Lim, Suh & Suh 2011), semantic web (Nagy & Vargas-Vera 2011), software

engineering (Sicilia 2007), biomedical informatics (Yu 2006) and information

architecture (Wessel & Möller 2009). In this thesis, thus, we take advantage

of the ontology to model and represent coupled behaviors in Chapter 3.

Model Checking

System verication techniques are applied to the design of information and

communication technology in terms of software and hardware verication.

Among all the techniques, model checking (Baier & Joost 2008) is currently

attracting considerable attention, and was given the ACM Turing Award

2007 in recognition of the paradigm shifting work on this topic initiated a

quarter century ago. This verication technology provides an algorithm for

determining whether an abstract model, i.e. a hardware or software de-

sign, satises a formal specication normally expressed as a temporal logic

formula (Alur, Henzinger & Kupferman 2002). For instance, the specica-

tion contains safety requirements (i.e. the absence of deadlocks) and similar

critical states that can cause the system to crash, model checking is then

a technique for automatically verifying correctness properties of nite-state

systems. Model checking can manage unknown parameters and the nondeter-

minism caused by uncertain communication delays when concurrent agents

interact with one another. Automation also makes model checking far more
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attractive than other verication techniques such as manual proof of mathe-

matical arguments (Wang, Hidvegi, Bailey & Whinston 2000) and interactive

computer aided theorem proof (Kaufmann, Manolios & Moore 2000).

Following the same vein, we develop the modeling and verication for var-

ious behavior interactions between coupled behaviors in Chapter 3. Speci-

cally, our approach models and checks interactions for coupled behaviors by

formally describing the involved behaviors and required properties as tran-

sition systems and temporal logic formulae, respectively. Though Lomus-

cio, Qu and Raimondi (Lomuscio, Qu & Raimondi 2009) proposed a model

checker for the verication of multi-agent systems, they overlook the explicit

representation of interactions among agents and the unied formalization of

them, which is dierent from our focus in this chapter.

To the best of our knowledge, there is no existing work on both modeling

and verifying the coupled behaviors systematically from a qualitative per-

spective. In Chapter 3 we therefore develop a framework, namely Ontology-

based Qualitative Coupled Behavior Modeling and Checking (OntoB) system

for modeling coupled genuine behaviors, which diers from the current re-

lated research in three aspects: we consider the genuine behavioral elements

on top of demographic and transactional inputs; we spell out the coupling re-

lationships between behaviors explicitly; and we enhance the modeling qual-

ity by formal verication.

2.2 Numerical Behavior Analysis

Numerical behavior refers to the behavior data described by continuous prop-

erties or attributes. In numerical behavior analysis, the entity of behavior

is represented by each object or observation, the property of behavior is

quantied by each continuous attribute.

The traditional way to deal with the numerical behavior data is to treat

each property independently. When calculating the similarity or distance

between the entities of numerical behavior, we usually use the Manhattan
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distance, Euclidean distance and Minkowski distance (Gan et al. 2007), which

are all in lack of the interactions between properties.

An increasing number of researchers however point out that the assump-

tion of independent and identical distribution (IIDness) on attributes often

leads to a mass of information loss, and several papers have addressed the

issue of attribute interactions. In addition to the basic Pearson’s correlation

(Gan et al. 2007), Jakulin and Bratko analyzed the attribute dependency by

information gain (Jakulin & Bratko 2003), but they involve the label infor-

mation which is only eligible in supervised learning. While a rank-correlated

measure (Calders, Goethals & Jaroszewicz 2006) has been proposed to mine

frequent patterns, it only considers the pairwise relationship in a local way

and works on nonintuitive ranks rather than attribute values. More recently,

Wang et al. put forward the coupled nominal similarity in unsupervised

learning (Wang et al. 2011), but only for categorical data. A relational clas-

sier was investigated by using multiple source relations (Bollegala, Matsuo

& Ishizuka 2011), which yet merely contributes to classication tasks. Plant

presented the dependency clustering by mapping objects and attributes in

a cluster-specic low-dimension space (Plant 2012), however, the interaction

mechanism is embedded in the modeling process of clustering and not ex-

plicitly dened. Despite the current research progress, no work has been

reported that systematically takes into account the global relationships (i.e.

non-IIDness) among continuous attributes.

2.3 Categorical Behavior Analysis

Categorical behavior refers to the behavior data described by nominal prop-

erties or attributes. In categorical behavior analysis, the entity of behavior

is also embodied by each object or observation, the property of behavior is

reected by each discrete attribute.

Some surveys, in particular (Gan et al. 2007, Boriah, Chandola & Kumar

2008), discuss the similarity between categorical attributes. The usual prac-

32



LITERATURE REVIEW

tice is to binarize the data and then use binary similarity measures rather

than directly considering nominal data. Cost and Salzberg (Cost & Salzberg

1993) proposed MVDM based on labels, Wilson and Martinez (Wilson &

Martinez 1997) performed a detailed study of heterogeneous distance func-

tions for instance based learning, and Figueiredo et. al (Figueiredo, Rocha,

Couto, Salles, André Gonçalves &Meira Jr 2011) introduced word co-occurrence

features for text classication. Unlike our focus, their similarities are only

designed for supervised approaches.

2.3.1 Nominal Similarity in Unsupervised Learning

There are a number of existing data mining techniques for the unsupervised

learning of nominal data (Boriah et al. 2008, Ahmad & Dey 2007). Well-

known metrics include SMS (Kaufman & Rousseeuw 1990) and its diverse

variants such as Jaccard coecients (Ribeiro & Harder 2011), which are all in-

tuitively based on the principle that the similarity measure is 1 with identical

values and 0 otherwise and are not data-driven. More recently, the frequency

distribution of attribute values has been considered for similarity measures

(Boriah et al. 2008), such as OF and Lin. Similarity computation has been

incorporated into the learning algorithm without explicitly dening general

measures (Gibson, Kleinberg & Raghavan 2000). Neighborhood-based sim-

ilarity (Houle, Oria & Qasim 2010, Guha, Rastogi & Shim 2000) was also

explored to measure the proximity of objects by using functions that oper-

ate on the intersection of two neighborhoods. They present the similarity

between a pair of objects by considering only the relationships among data

objects, which are built on the similarity between attribute values simply

quantied by the variants of SMS. However, we focus on the couplings be-

tween attributes to further develop the similarity between attribute values

and then between data objects. Our proposed similarity measure between

attribute values are incorporated with the neighborhood-based similarity be-

tween data objects to more precisely describe the neighborhood of an object.

It represents the neighborhood-based metric as a meta-similarity measure
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(Boriah et al. 2008) in terms of both the couplings between attributes and

between objects.

All the above methods are attribute-independent (i.e. IIDness) since

similarity is calculated separately for two categorical values of individual

attributes. However, an increasing number of researchers argue that the

attribute value similarity is also dependent on the couplings of other at-

tributes (Boriah et al. 2008, Cao et al. 2012). The Pearson’s correlation

coecient (Houle et al. 2010) measures only the strength of linear depen-

dence between two numerical variables. Das and Mannila put forward the

Iterated Contextual Distances algorithm, believing that the attribute, ob-

ject and sub-relation similarities are inter-dependent (Das & Mannila 2000).

They convert each object with binary attribute values to a continuous vector

by a kernel smoothing function, and dene the similarity between objects as

the Manhattan distance between continuous vectors (Das & Mannila 2000).

By contrast, we directly consider similarity for categorical values to maintain

the least information loss. Andritsos et al. (Andritsos, Tsaparas, Miller &

Sevcik 2004) introduced a context sensitive dissimilarity measure between

attribute values based on the Jensen-Shannon divergence. Similarly, Ahmad

and Dey (Ahmad & Dey 2007) proposed an algorithm ADD to compute

the dissimilarity between attribute values by considering the co-occurrence

probability between each attribute value and the values of another attribute.

Though the dissimilarity metric leads to high accuracy, the computation is

usually very costly (Ahmad & Dey 2007), which limits its application in

large-scale problems. In addition, Ahmad and Dey’s (Ahmad & Dey 2007)

approaches only focus on the interactions of dierent attributes, whereas our

proposed measure also considers the couplings within each attribute globally.

Chapter 5 mainly focuses on the similarity computation by involving the

coupling relationships (i.e. non-IIDness) among discrete properties, speci-

cally for clustering. Below, various categorical clustering methods are briey

reviewed. However, our proposed coupled similarity can also be extended to

supervised learning, which is illustrated in Section 5.7.2.
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2.3.2 Categorical Clustering

Clustering algorithms (Guha et al. 2000), including partition-based methods

such as k-means and hierarchy-based methods like divisive approaches (Gan

et al. 2007), are more suitable for clustering data with numerical attributes

than categorical data.

Clustering of categorical data (categorical clustering for short) is a dif-

cult, yet important task. Many elds, from statistics to psychology, deal

with categorical data. Despite this fact, categorical clustering has received

limited attention with only a handful of relevant publications. Guha et

al. (Guha et al. 2000) proposed a robust hierarchical clustering algorithm

ROCK, which uses the link-based similarity measure to measure the similar-

ity between two categorical data points and between two clusters. Gibson

et al. (Gibson et al. 2000) rst construct a hypergraph according to the

database, and then cluster the hypergraph using a discrete dynamic sys-

tem STIRR. Andritsos et al. (Andritsos et al. 2004) introduced a scalable

hierarchical categorical clustering algorithm LIMBO that builds on the In-

formation Bottleneck (IB) framework for quantifying the relevant informa-

tion preserved when clustering. An incremental algorithm called COOLCAT

(Barbara, Couto & Li 2002) was proposed to cluster categorical attributes

using entropy; however, it is based on the assumption of independence be-

tween attributes. Clustering with sLOPE (CLOPE ), presented by Yang et

al. (Yang, Guan & You 2002), uses a global criterion function instead of a

local one dened by the pairwise similarity to cluster categorical data, es-

pecially transactional data. Rather than aiming for a measure of similarity,

CLICKS (Zaki, Peters, Assent & Seidl 2005) uses a graph-theoretic approach

to nd k disjoint sets of vertices in a graph constructed for a particular data

set. The last three algorithms, i.e. COOLCAT, CLOPE, and CLICKS, have

a dierent focus from our proposed coupled similarity.

Therefore, in the experiments, we compare the clustering quality of ROCK,

STIRR, and LIMBO with the coupled versions of them, i.e., by using our pro-

posed coupled similarity measure to replace the original similarity measure
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between attribute values in ROCK and LIMBO.

2.4 Behavior Application: Clustering Ensem-

ble Learning

In this section, we introduce the related work on the process of the clustering

ensemble as a behavior application, dierentiate the existing consensus func-

tion based clustering ensemble from our proposed framework, and discuss

other related issues. Here, each object stands for the entity of behavior, and

each base clustering is treated as the property of behavior.

2.4.1 Process of Clustering Ensemble

In general, the whole process of the clustering ensemble consists of three

steps: building base clusterings, aggregating base clusterings, and post-

processing clustering. Various heuristics have been proposed to build the

ensemble members, e.g. random initializations (Christou 2011), data sam-

pling (Kuncheva & Vetrov 2006), random projection and random hyperplane

splits (Topchy et al. 2005). The combination of base clusterings can be

constructed by three kinds of method: the consensus functions (Strehl &

Ghosh 2002), the categorical clusterings (Gionis, Mannila & Tsaparas 2007),

and the direct optimizations (Christou 2011). The consensus functions focus

on the total agreement of all the base clusterings from dierent perspectives

(Li, Ogihara & Ma 2010). The clustering ensemble can also be converted

to the problem of clustering categorical data (categorical clustering (Guha

et al. 2000, Andritsos et al. 2004), for short) by viewing each attribute as a

way of producing a base clustering of the data. However, the direct optimiza-

tions (Christou 2011) are substantially performed on the original objective

function of clustering rather than exploring the agreement among partial

solutions. Finally, the post-processing clustering algorithms are conducted

on the consensus building based on the essence of the aggregation struc-
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ture. For instance, partition-based (e.g., k-means (Gionis et al. 2007)) and

hierarchy-based (e.g., single linkage (Kuncheva & Vetrov 2006)) algorithms

are associated with the consensus pairwise matrix, while spectrum-based

(e.g., SPEC (Fern & Brodley 2004)) and graph-based (e.g., METIS (Strehl

& Ghosh 2002)) are applicable to the relevant consensus graphs or hyper-

graphs (Fern & Brodley 2004). The performance of clustering ensemble can

be greatly enhanced if the algorithms of these steps are carefully organized.

Here, we focus on building proper consensus functions to aggregate base

clusterings, which is the essential element in the clustering ensemble. A

consensus function seeks a combination of multiple base clusterings to pro-

vide a prior superior input for post-processing clustering. We can con-

struct consensus functions by the following approaches: direct best match-

ing (Li et al. 2010), graph-based mappings (Fern & Brodley 2004, Strehl

& Ghosh 2002), statistical mixture models (Topchy et al. 2005), pairwise

comparisons (Gionis et al. 2007, Li et al. 2010) and a number of other mod-

els. They are all built on the co-associations or pairwise agreements be-

tween clusterings (e.g., partition dierence (Li et al. 2010) and QMI (Topchy

et al. 2005)), between data objects (e.g., CSPA1 (Strehl & Ghosh 2002)), or

between clusters (e.g., MCLA (Strehl & Ghosh 2002)). While the clustering

ensemble based on consensus functions largely captures the common struc-

ture of the base clusterings, and achieves a combined clustering with better

quality than individual clusterings, it also faces several issues that have not

been explored well in the consensus design. In the next section, we analyze

the problems inherent in the existing work which motivate us to propose a

new eective ensemble framework.

2.4.2 Problems on Consensus Functions

Several papers (Strehl & Ghosh 2002, Gionis et al. 2007) address the issue of

consensus function for the clustering ensemble. Heuristics including CSPA,

1Note that the above categories of approach could overlap; for example, CSPA is both

a graph-based mapping and pairwise comparison.
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HGPA and MCLA (Strehl & Ghosh 2002) solve the ensemble problem by

rst transforming the base clusterings into a hypergraph representation and

then developing consensus functions. Based on CSPA and MCLA, Fern and

Brodley (Fern & Brodley 2004) proposed HBGF to consider the similarity

between objects and the similarity between clusters collectively. By dening

an appropriate distance measure between objects, Gionis et al. (Gionis et al.

2007) mapped the clustering aggregation problem to the weighted correlation

clustering problem with linear cost functions. In addition, Topchy et al.

(Topchy et al. 2005) introduced a mixture probability model EM and an

information-theoretic consensus function QMI to eectively combine weak

base clusterings. Based on the EM model, Nguyen and Caruana (Nguyen

& Caruana 2007) presented an EM -like consensus algorithm with variations,

but they follow the IIDness assumption. Most of the existing research on

the consensus function has been summarized in (Li et al. 2010), in which the

equivalence is revealed between the basic partition dierence (PD) algorithm

and other advanced methods such as Chi-square based approaches.

All of the above methods either fail to address the interactions between

base clusterings and between objects (e.g. CSPA, QMI ) or assume inde-

pendence between them (e.g. EM ), thus they are IIDness based. Further,

the weighted correlation clustering solution proposed in (Gionis et al. 2007)

fails to partition the objects if their distance measures are equally 0.5. How-

ever, an increasing number of researchers argue that the clustering ensem-

ble is also dependent on the relationship between input partitions (Iam-On,

Boongoen, Garrett & Price 2011, Punera & Ghosh 2007, Domeniconi & Al-

Razgan 2009). Punera and Ghosh (Punera & Ghosh 2007) put forward soft

cluster ensembles, in which they used a fuzzy clustering algorithm for the

generation of base clusterings. The weighted distance measure (Domeniconi

& Al-Razgan 2009) represented a soft relation between a pair of objects and

clusters. Unlike our proposed framework, those rened solutions of dierent

base clusterings are stacked up to form the consensus function without explic-

itly addressing the relations among input clusterings. More recently, Iam-On
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et al. (Iam-On et al. 2011) presented a link-based approach, and its improved

model (Iam-On & Boongoen 2012) involves cluster-cluster similarity based

on the interaction between clusters.

However, so far no framework has been proposed to consider comprehen-

sive couplings, including intra-coupling within and inter-coupling between

base clusterings and objects. In Chapter 6, we propose a general and eec-

tive framework for uncovering the non-IIDness nature in ensemble clustering.

2.4.3 Other Related Issues

The clustering ensemble can also be mapped to categorical clustering by

treating each base clustering as an attribute (Gionis et al. 2007). Similar

to Section 2.3.2, let us explore the widely used categorical clustering algo-

rithms again here. Guha et al. (Guha et al. 2000) proposed ROCK, which

uses the link-based similarity between two categorical objects. Andritsos et

al. (Andritsos et al. 2004) introduced LIMBO which is built on the informa-

tion bottleneck framework for quantifying the relevant information preserved

when clustering. In summary, ROCK considers the relationship between

objects by linkage; LIMBO concerns the interaction between dierent at-

tributes. Neither of them takes couplings between attributes and between

objects into account together, but our proposed framework considers both.

In our previous work (Wang et al. 2011) and Chapter 5, we proposed a

coupled nominal similarity measure to specify the coupling relationship be-

tween attributes. In Chapter 6, we introduce a coupled framework for clus-

tering ensemble, which addresses the problem of seeking the global consensus

among base clusterings and also involves the couplings between objects.

2.5 Summary

In this chapter, we present the literature review regarding behavior modeling

and analysis, numerical behavior analysis, categorical behavior analysis, and

a behavior application on clustering ensembles. The conclusions from the
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above literature review include but are not limited to:

(1) Traditional behavior modeling approaches exhibit too many styles and

forms based on dierent situations. There is very limited research on

formalizing the concept of behavior and its elements. There are no for-

mal behavior representation models stated from a general perspective

and providing a comprehensive understanding of behavior constitution.

(2) Current behavior modeling that mainly relies on qualitative methods

from behavioral and social sciences often leads to ineective and lim-

ited analysis in understanding social activities deeply and accurately.

In addition, many qualitative works on “behavior modeling” actually

refer to behavior recognition and simulation rather than representation,

which is dierent from our focus in this thesis.

(3) General behavior expressiveness is too weak to reveal that behavior

plays the key role of an internal driving force for social activities. Cur-

rent behavior-oriented analysis is usually conducted on customer de-

mographic and transactional data directly, which is not organized in

terms of behavior but entity relationships closely related to particular

business problems.

(4) Complex coupling relationships between group behaviors, either from

the same actor or dierent actors, are often ignored or only weakly ad-

dressed. Few building blocks are available to explicitly model complex

interactions of group behaviors. Eective approaches for analyzing cou-

pled behaviors are not available, since existing methods mainly focus

on individual behavior analysis.

(5) The existing work often overlooks the checking, verication and amend-

ments of behavior modeling, which weakens the soundness and ro-

bustness of models built for complex behavior-oriented applications.

Limited work can be identied on formalizing, checking and amend-
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ing complex behavior structures and interactions, in particularly for

coupled behaviors with their constraints.

(6) For most of the existing theories, tools, models and systems in statis-

tics, data mining and machine learning, it is usually assumed that

methods, objects, attributes and values are independent and identi-

cally distributed (i.e. IIDness). This works well in simple business

applications and abstract problems with weakened and avoidable re-

lationships and heterogeneity, and serves as the foundation of classic

analytics, mining and learning theories, algorithms, systems and tools.

The above summary is also consistent with the limitations and challenges

listed in Section 1. As a matter of fact, behavioral and social applications

are ubiquitous, ranging from business, online to social and organizational

domains. With the ever-increasing and continuous development of such ap-

plications, an emerging demand is to explore and establish an in-depth, ro-

bust and comprehensive understanding of underlying driving force, working

mechanism, constraints, dynamics and evolution within a behavioral and/or

social system, as well as the impact on business and its context. In those

applications and domains, coupled behaviors play a much more fundamental

role than individuals in the cause, dynamics and eect of business and so-

cial problems. In addition, complex behavioral and social applications often

exhibit strong but implicit coupling relationships and heterogeneity between

objects, object attributes and attribute values, which cannot be degenerated

or weakened to the extent of satisfying the IIDness assumption.

Therefore, building on the classic theories and algorithms available in

behavioral science, social science and computer science, coupled behavior in-

formatics has been proposed and studied in this thesis to “formalize”, “rep-

resent”, “verify”, “analyze”, “learn”, “compute” and “abstract” complex

behavioral and social applications.
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Formalization and Verication

of Group Behavior Interactions

In this chapter, we model and verify the qualitative coupled behaviors in

terms of group behavior interactions. Below, action and operation are in-

terchangeable, they are both used to describe the characteristics of actors in

the qualitative coupled behaviors. The behavior addressed in this chapter

particularly refers to the qualitative behavior, and the group behaviors with

their interactions correspond to the qualitative coupled behaviors.

Group behavior interactions (i.e. qualitative coupled behaviors), such

as multi-robot teamwork and group communications in social networks, are

widely seen in both natural, social and articial behavior-related applica-

tions. Behavior interactions in a group are often associated with varying

coupling relationships, for instance, conjunction or disjunction. Such cou-

pling relationships challenge existing behavior representation methods, be-

cause they involve multiple behaviors from dierent actors, constraints on

the interactions, and behavior evolution. In addition, the quality of behavior

interactions are not checked through verication techniques.

This chapter proposes an Ontology-based Qualitative Coupled Behavior

Modeling and Checking (OntoB for short) system to explicitly represent and

verify complex behavior relationships, aggregations, and constraints. The
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OntoB system provides both a visual behavior model and an abstract be-

havior tuple to capture behavioral elements, as well as building blocks for

the qualitative coupled behaviors. It formalizes various intra-coupled in-

teractions (behaviors conducted by the same actor) via transition systems,

and inter-coupled behavior aggregations (behaviors conducted by dierent

actors) from temporal, inferential and party-based perspectives. OntoB con-

verts a behavior-oriented application into a transition system and temporal

logic formulae for further verication and renement. We demonstrate the

eectiveness of the OntoB system in modeling multi-robot behaviors and

their interactions in the Robocup soccer competition game. We show that

the OntoB system can eectively model complex behavior interactions, verify

and rene the modeling of complex group behavior interactions in a sound

manner.

3.1 Background and Overview

Behavior refers to the action or reaction of any material under given circum-

stances and environment1. It is intrinsic in many areas, and behavior analysis

has become a fundamental topic which has been increasingly investigated as

an essential activity in many elds, from social and behavioral sciences to

computer science (Pierce & Cheney 2004, Zacharias & MacMillan 2008, Liu

et al. 2008, Getoor & Taskar 2007). In Google, the keyword “behavior”

attracts 281,000,000 hits while “behavior interaction” achieves 76,700,000

results2. In both natural and social sciences and applications, multiple be-

haviors from one or multiple actors often interact with one another, which are

called qualitative coupled behaviors or group behavior interactions. These

coupled behaviors and behavior interactions may form interior driving forces

that shape underlying businesses, such as in online community and social

networks (Liu et al. 2008, Hogg & Szabo 2008), or may even cause challeng-

1http://dictionary.reference.com
2These results are searched on 13th June 2013
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ing problems like group-based manipulation by a group of traders (Cao &

Yu 2009). With the deepening and widening of complex networking, cou-

pled behaviors or group behavior interactions are increasingly seen in both

mainstream and emerging situations, in particular, in enterprise applications,

organizations, complex systems, online and social communities.

We illustrate the coupled behaviors and behavior interactions using the

example of multi-robot soccer game in Figure 1.1 mentioned in Chapter 1.

Figure 1.1 shows that two teams participate in a Robocup soccer competition

(Sony Four Legged Robot Football League Rule Book 2004) with four Sony

AIBO robots in each group. As indicated in the scenario described by Ros

and Veloso (Ros & Veloso 2007), a team of robots intelligently cooperate with

one another and self-adjust their own activities; the successful task execution

and problem resolution rely on the proper implementation of an individual

robot’s activities as well as collaborative interactions between robots. If a

robot undertakes tasks without appropriate arrangement and coordination

with the other robots, the Robocup is likely to be unsuccessful, even though

every robot performs perfectly. This example shows that group actors and

behaviors by the same or dierent actors within the group are often coupled in

dierent forms of interactions (Cao et al. 2012), and it is essential to identify,

represent and verify how the robots interact to ensure the performance of a

multi-robot system.

To enable the above behavior interaction-oriented systems to work prop-

erly, a fundamental task is to develop eective behavior representation tools

to capture, formalize and verify behavioral elements, coupling relationships,

and interactions between behaviors, in both qualitative and quantitative as-

pects (Cao 2010). This challenges the existing behavior representation re-

search3, including user behavior modeling (Kim et al. 2011, Razmerita 2011),

periodic behavior analysis (Cao et al. 2007), social network analysis (Hogg

& Szabo 2008), behavior learning (Subramanian 2010), reasoning about ac-

tion (Gu & Soutchanski 2007), behavior composition (Sardina et al. 2008),

3http://brimsconference.org
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action recognition (Gabaldon 2009), and modeling a system (e.g., modeling

a multi-agent system (Ros & Veloso 2007, Serrano & Saugar 2010)). Most of

the existing research models a single behavior or analyzes behavior groups by

focusing on either demographic or transactional perspectives. For instance,

for the robot soccer game, Lim et al. (Yoshimura, Barnes, Ronnquist &

Sonenberg 2003) built a dynamic formation mechanism based on individual

robots. Though Ros and Veloso (Ros & Veloso 2007) designed a multi-robot

framework with implicit interactions, they did not explicate behavioral el-

ements. Kaminka and Frenkel (Kaminka & Frenkel 2005) presented a ex-

ible teamwork architecture for teams of robots by protocols, but without

the verication of the protocols. Little related work is available for the ex-

plicit formalization and verication of coupled behaviors (Cao et al. 2012),

including elaborating and representing behavioral elements (Brachman &

Levesque 2004, Wang & Cao 2010, Cao 2010), specifying behavior interac-

tion relationships, and checking the modeling of multiple behavior couplings

(Baier & Joost 2008). A detailed review of the related work on behavior

modeling and analysis can be found in Section 2.1.

In summary, the existing work is not eective for modeling and checking

group behaviors with interactions due to the following major issues:

(1) While several abstract models have been proposed, such as the belief-

desire-intention model (Wooldridge 2000) and the situation calculus

(Giacomo et al. 2010), there is very limited research on formalizing the

concept of behavior and its elements (Cao 2010). In fact, behavior is a

fuzzy concept in existing studies; there are no formal behavior represen-

tation stated from a general perspective and providing a comprehensive

understanding of behavior constitution.

(2) Complex coupling relationships between group behaviors are often ig-

nored or only weakly addressed; few building blocks are available to

explicitly model complex interactions between group behaviors (Cao

et al. 2012).
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(3) The existing work often overlooks the checking of behavior modeling

and behavior interactions, which weakens the soundness and robustness

of models built for complex behavior applications.

In this chapter, we build an Ontology-based Qualitative Coupled Behav-

ior Modeling and Checking (OntoB for short) system for representing and

verifying complex relationships and interactions of the qualitative coupled

behaviors. The built-in behavior ontology combines the features of entity-

relationship with theoretical semantics to explicitly capture behavior interac-

tions, various intra-couplings (interactions between behaviors from the same

actor) and inter-couplings (interactions between behaviors from dierent ac-

tors) between distinct behaviors as well as their aggregation and behavior

constraints, in terms of behavioral perspective rather than transactional as-

pect. Further, the inclusion of model checking (Baier & Joost 2008) in the

OntoB system makes reliable models, and outperforms the manual proof

and test with simulations in terms of nondeterminism and automation. As a

matter of fact, the building blocks in the OntoB system are generic and can

be used for modeling behavior-oriented applications with a variety of cou-

pling relationships. In addition, the semantic mappings of intra-coupled and

inter-coupled syntax in OntoB are exible according to specic requirements

when interpreted as the corresponding aggregations, which means the way

we provide here for verication is just an alternative option.

Throughout this chapter, we present the OntoB system, and illustrate it

via modeling and verifying behaviors of all robots as well as their relationships

from temporal, inferential and party-based perspectives in the multi-robot

soccer game, exhibited in Figure 1.1.

The rest of the chapter is structured as follows. In Section 3.2, we provide

a framework to explain the building blocks of our system. Section 3.3 intro-

duces the behavior descriptors in terms of a visual model and formal spec-

ication. The behavior aggregators including intra-coupling, inter-coupling

and their combination are presented in Section 3.4. Case study of a com-

plex system on formalization strategy is provided in Section 3.5. We specify
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the behavior constraint indicator in Section 3.6. Section 3.7 presents the

behavior checking system. The behavior model rener and behavior model

exporter are described in Section 3.8. We end this chapter in Section 3.9.

3.2 Coupled Behavior Modeling Framework

3.2.1 Modeling and Checking System

Previous behavior studies on model checking for rational agents (Bordini,

Fisher, Wooldridge & Visser 2004), multi-agent behavior modeling (Sun

2007), behavior informatics (Cao 2010), coupled behavior analysis (Cao et al.

2012), and ontology-based frameworks (Lim et al. 2011, Razmerita 2011) pro-

vide a solid foundation for forming a unied behavior modeling and checking

framework, to describe group behaviors with coupling relationships from the

low-level visual description to the high-level formal abstraction, as well as

to verify the aforementioned required properties in the resulting behavior

models.

This chapter introduces such a general framework, namely an Ontology-

based Qualitative Coupled Behavior Modeling and Checking (OntoB) sys-

tem, to represent group behaviors and behavior interactions (i.e. qualita-

tive coupled behaviors). OntoB includes several building blocks: behav-

ior descriptor, behavior aggregator, behavior constraint indicator, behavior

checker, behavior model rener, and behavior model exporter. A schematic

overview of OntoB is shown in Figure 3.1.

The ve components in OntoB play dierent roles according to their

specically assigned responsibilities.

• Behavior Descriptor : The qualitative coupled behaviors are repre-

sented in terms of both a visual structure model and a formal ab-

stract model, by extracting and constructing the core behavioral prop-

erties/elements and interactions.
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Behavior 

Descriptor 

Behavior Constraint 

Indicator 

(Natural  Logic) 

Behavior 

Checker  

Behavior 

Model 

Refiner 

Yes

No

Behavior 

Model 

Exporter 

Behavior 

Aggregator 

FormalVisual

Figure 3.1: General framework of the OntoB system.

• Behavior Aggregator : Hierarchical and hybrid combinations of the qual-

itative coupled behaviors are aggregated to generate and convert into

the semantics of transition systems in terms of intra-coupling and inter-

coupling relationships in group behaviors.

• Behavior Constraint Indicator : The natural language description about

the constraints or properties of a behavior-based system is formalized

into logic formula.

• Behavior Checker : This checker veries whether the resulting behav-

ior model satises the properties and constraints imposed by behavior

constraint indicator.

• Behavior Model Exporter : A stable and desired behavior model is gen-

erated and exported as a result of a perfect modeling and checking

process engaging the above components.

• Behavior Model Rener : The behavior model is further revised to x

any problem within the model or to address inaccurate descriptions of

the constraints until no counter example arises.

The Behavior Descriptor provides the coupled behavior representation

mechanism to enable behavior verication in terms of visual description and

formal abstraction, while the Behavior Aggregator generates a combined
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Table 3.1: List of Main Notations in Chapter 3

Variable Explanation

Bc Qualitative coupled behaviors

� Coupling

{�1, . . . ,�I} The set of I actors

{�i1, . . . ,�iJi} The set of Ji operations conducted by actor �i

θ(B) Intra-coupling function

η(B) Inter-coupling function

FM(B) Behavior feature matrix

Bθ(�i) Intra-coupled behaviors of actor �i

Bη(�i) Inter-coupled behaviors of actor �i

transition system for interpreting multiple behavior interactions. The Behav-

ior Constraint Indicator incorporates predened logic properties so that the

resulting behavior model satises the domain specication and priori knowl-

edge. Building on the above three components, the Behavior Checker veries

the resultant behavior model in terms of certain constraints. If nothing is

detected by the Behavior Checker, the Behavior Model Exporter outputs a

behavior model for further exploration such as reasoning and inference; oth-

erwise, the Behavior Model Rener either xes the errors in the model or

corrects the misunderstanding of constraints until no further improvement of

the verication is needed.

The Behavior Descriptor, the Behavior Aggregator, and the Behavior

Constraint Indicator are the prerequisites of the Behavior Checker. The

Behavior Model Rener and the Exporter adjust the outputs based on the

verication results from the Behavior Checker. As a result of the Behavior

Descriptor, the visual model is the intuitive and perceptible understanding

about behaviors in a system, such as multi-agent systems and stock trading

behaviors. In contrast, the corresponding formal model abstracts syntactic

behavior-related concepts to enable further verication, reasoning or infer-

ence. In addition, the Behavior Aggregator interprets the implicit semantics
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Figure 3.2: A case-based multi-robot system with n robots and k retrievers.

about the abstracted coupled behavior syntax for verication. As indicated

in the schematic framework (Figure 3.1), all the above components are built

upon others, logically and reasonably, to form an integrative system for mod-

eling and analyzing behaviors. Note that the main notations in this chapter

are listed in Table 3.1.

3.2.2 Case Study Description

We illustrate the proposed coupled behavior modeling and checking frame-

work in terms of the case study: the multi-robot soccer game in Section 1.

As dened in (Ros & Veloso 2007) and shown in Figure 3.2, this multi-robot

architecture is composed of n robots, including k retrievers. All the robots

interact with the environment. During the interactions, they perceive the

world, perform actions, and communicate messages with one another for a

collaboration. A team of retriever robots RCs and robot players Ords com-

municate with one another and try to put the ball in the opponent’s goal

as frequently as possible, while the opponent’s robots have the same goal.

When a new situation arises, a distinguished set of k retrievers RCs take

charge of selecting cases from a case space and then inform the rest of the

ordinary robot players Ords. Also as the coordinators, RCs send messages

(msg) to all Ords and instruct them to conduct the corresponding actions. If

timeout expires, or messages or cases are lost in the interactions, Ords abort

50



FORMALIZATION AND VERIFICATION OF GROUP BEHAVIOR INTERACTIONS

the executions at any moment based on their own perceptions.

Below, we discuss all modules in the proposed OntoB in detail, and illus-

trate them by concrete examples from the above case study system.

3.3 Behavior Descriptor

According to (Cao 2010), behaviors refer to actions, operations or events

as well as their combinations such as processes, procedures and activity se-

quences conducted by either an individual or a group of actors within certain

contexts and environments in either a virtual or physical organization. The

goal of behavior modeling is to form concepts and facilities that enable rep-

resentation and reasoning about behaviors in an organization. For this, we

propose both a visual model and a formal model to represent the qualitative

coupled behaviors.

3.3.1 Behavior Visual Descriptor

In OntoB, coupled behavior modeling and checking is based on the behav-

ior ontology (Staab & Studer 2009), which typically consists of a number

of classes, relations, instances and axioms to enable the representation and

reasoning of behaviors. As claried by Gruber (Gruber 1993), an ontology

is a formal, explicit specication of a shared conceptualization. This deni-

tion is the most frequently quoted for the concept: ontology, where a set of

objects and their relationships is described by a vocabulary. In this chapter,

we propose the behavior ontology composed of three core units, namely ac-

tor, operation and coupling (Cao 2010), as shown in Figure 3.3. This kind

of behavior that examines coupling is also called the qualitative coupled be-

haviors. Below, an explicit specication of this shared conceptualization (i.e.

qualitative coupled behaviors) is given as the behavior visual descriptor. In

next section, the formal description will be abstracted to complement this

visual representation.
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Behavior 

   Actor Operation  Coupling 

Figure 3.3: The behavior ontology that involves coupling (i.e. coupled be-

haviors).

• Actor : refers to the subject(s) or object(s) of coupled behaviors, for

example, organizations, departments, systems, agents and people in-

volved in an activity or activity sequence.

• Operation: represents activities, actions or events in coupled behaviors

or coupled behavior sequence. For example, in the robot soccer game,

kicking the ball is an operation; in the stock market, placing a buy

order is an operation too.

• Coupling : refers to the interactions in coupled behaviors, including

connections between actors and/or operations of either one or multiple

actors. For example, all actions conducted by a robot player are asso-

ciated with one another, while interactions between behaviors of robot

players in the same team are also coupled.

We categorize coupling relationships into intra-coupling relationship and

inter-coupling relationship. Intra-coupling relationship refers to the associa-

tion between behaviors from the same actor, while inter-coupling relationship

exists in behaviors from dierent actors.

Based on the various communication strategies within a concurrent sys-

tem (Baier & Joost 2008) and knowledge representation mechanisms (Brachman

& Levesque 2004), we classify the behavior coupling relationships into three

categories: temporal, inferential and party-based couplings, as shown in Fig-

ure 3.4. Those nodes that represent couplings can be further zoomed in to see
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the specic relationships stated below by illustrating with the robot soccer

game.

In addition, three types of relationships are displayed in Figure 3.4:

• Instance Of (indicated by “−·→”), connecting instances to their cor-

responding classes;

• Subclass Of (shown by “−→”), linking a subclass to its parent class;

and

• Unit Feature (“”), denoting the relationships between instances,

between an unit and its features, or between features. Here unit refers

to a behavior or its actor, operation or coupling.

The above relationships associate coupled behaviors and their units into a

hierarchical ontology structure. For instance, two relationships: “Behavior 1

−·→ Behavior” and “Behavior 2 −·→ Behavior” depict that Behavior 1 and

Behavior 2 are instances of the root Behavior. Relationships “Intra-coupling

−→ Coupling” and “Inter-coupling −→ Coupling” specify that Intra-coupling

and Inter-coupling are subclasses of Coupling, which further indicates the

interaction between Behavior 1 and Behavior 2. Relationship “Actor 1 
Behavior 1” and “Operation 1  Behavior 1” indicate that Actor 1 and

Operation 1 are the features that characterize Behavior 1, in which Actor

1 conducts Operation 1, and the completion of Operation 1 has impact on

Actor 1. Correspondingly, units Temporal, Inferential and Party-based are

constituents of either Intra-coupling or Inter-coupling between behaviors.

In the following sections, we illustrate each category of coupling rela-

tionships by the relevant instances in the robot soccer game from temporal,

inferential and party-based coupling aspects.

Temporal Coupling

From the temporal perspective, behaviors form into sequences. Such behavior

sequences may take dierent forms, from serial combinations to more complex
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Figure 3.4: Relationships between the qualitative coupled behaviors: In-

stance Of (“−·→”), Subclass Of (”−→”), Unit Feature (“”).

settings, such as serial coupling, parallel coupling, synchronous coupling, and

asynchronous coupling.

• Serial coupling, denoted by {B1;B2}, showing the situation in which

behavior B2 follows behavior B1. For instance, a robot player Ord

kicks the ball to score after capturing it.

• Parallel coupling, by which behaviors happen in varying concurrent

manners, including synchronous coupling and asynchronous coupling.

– Synchronous relationship, denoted by {B1B2}, indicating that B1

and B2 present at the same time based on certain communication

protocols. For instance, a retriever RC and a robot player Ord

both give up execution simultaneously when messages are lost.

– Asynchronous coupling, showing that two behaviors B1 and B2

interact with each other at dierent time points. Here, we focus

on three typical kinds of asynchronous interactions: interleaving,

shared-variable, and channel system.
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∗ Interleaving, denoted by {B1 : B2}, representing the involve-

ment of independent complex behaviors by nondeterministic

choice, i.e., the involved behaviors happen independently. For

example, two Ords independently execute the actions received

from one RC;

∗ Shared-variable, denoted by {B1|||B2}, signifying that the rel-

evant behaviors have variables in common. An instance is

that two RCs coordinate with each other to retrieve a case to

conduct the other robot players; and

∗ Channel system, denoted by {B1|B2}, is a parallel system in

which complex behaviors communicate via a channel, for in-

stance, rst-in and rst-out buers. An example is that a RC

sends an execution message to a robot player Ord through a

channel.

Inferential Coupling

Inferential coupling shows that behaviors are associated with certain logic

reasoning relationships, in particular, causal, conjunction, disjunction and

exclusive couplings.

• Causal coupling, represented as {B1 → B2}, meaning that behavior B1

causes behavior B2. For instance, every message sent from a retriever

RC will lead to a response from the robot player Ords.

• Conjunction coupling, {B1 ∧ B2}, specifying that B1 and B2 take place

together. For instance, all Ords must complete their allocated actions

before a new case is retrieved.

• Disjunction coupling, {B1∨B2}, by which at least one of the associated

behaviors must happen. For instance, any robot player can abort the

execution if the message is lost.
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• Exclusive coupling, {B1⊗B2}, indicating that if B1 happens, B2 will not

happen, and vice versa. For instance, defensive and oensive strategies

cannot be conducted by an Ord at the same time.

The above inferential interactions correspond to the following operators in

the propositional logic: IMPLY, AND, OR and XOR, respectively.

Party-based Coupling

The party-based coupling reects a partner relationship associating actors

and operations. We consider three types of party-based couplings: One-

Party-Multiple-Operation (OPMO),Multiple-Party-One-Operation (MPOO),

and Multiple-Party-Multiple-Operation (MPMO) couplings. Each describes

the amount of behaviors and correspondingly aliated parties. Formally,

• One-Party-Multiple-Operation, represented as {(B1,B2)
[�1]}, depicts that

distinct behaviors B1 and B2 are performed by the same actor �1;

• Multiple-Party-One-Operation, shown as {(B1)
[�1�2]}, represents that

multiple actors �1 and �2 implement the same behavior B1 to achieve

their own intentions;

• Multiple-Party-Multiple-Operation, presented as {(B1, B2)
[�1�2]}, de-

scribes that dierent behaviors B1 and B2 are carried out by distinct

actors �1 and �2, respectively.

For example, the situation in which a robot player Ord sends acknowledg-

ment to the retrievers RCs after receiving an oensive message is like an

OPMO. However, MPOO describes the scenario in which two Ords execute

block simultaneously, and MPMO refers to that in which two Ords com-

plete their designated tasks at the respective stages of waiting and sending

acknowledgment.

The above three types of coupling relationships provide a foundation

for representing complex interactions between behaviors either directly or

through the composition of some of the above couplings, as needed.
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3.3.2 Behavior Formal Descriptor

With the behavior visual model, we further establish the behavior formal

descriptor to enable the verication and reasoning in the subsequent stage.

The behavior visual and formal descriptors complement each other to support

the complete formulation of behavior interactions.

The previous sections focus on revealing the explicit description of the

behavior elements in a visual way. In this section, we rst introduce an ab-

stract behavior model by specifying the concepts and relationships involved

in the qualitative coupled behaviors. Further, we propose a formal behavior

model to represent the various relationships based on the ontology specica-

tion. Inspired by the abstract behavior model proposed in (Cao et al. 2012),

several relevant denitions are given, followed by illustration of their use in

modeling behaviors in the robot soccer game system.

Denition 3.3.1 (Qualitative Coupled Behaviors) Qualitative cou-

pled behaviors Bc are described as a triple tuple Bc = (�,�,�),

• Actor � is the entity that issues a behavior or on which a behavior is

imposed.

• Operation � is what an actor conducts in order to achieve certain goals.

• Coupling � = θ(B), η(B) is a tuple that reveals complex interactions

including intra-coupling (i.e. θ(B)) and inter-coupling (i.e. η(B)).

Note that the specic semantic meanings of intra-coupling θ(B) and inter-

coupling η(B) are claried in Section 3.4. Here, we only propose the syntax

of the concept: qualitative coupled behaviors.

For instance, in a stock market, the qualitative coupled behaviors can

be represented as “an investor places a buy order”. The involved actor is

the “investor” himself or herself, the operation is the transaction of “buy”.

The third component coupling exposes the intra-relationship between this

behavior and this investor’s sell order on the other day, together with the
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inter-relationship between this behavior and another investor’s buy order on

the same day. We tackle the coupled behaviors from either one or dierent

actors, denoted as intra-coupling and inter-coupling, respectively.

Intuitively, suppose there are I actors {�1,�2, . . . ,�I}, an actor �i un-

dertakes Ji operations {�i1,�i2, . . . ,�iJi} individually. From this perspec-

tive, we have a Behavior Feature Matrix FM(B) as follows:

FM(B) =

⎛
⎜⎜⎜⎜⎜⎝

�11 �12 . . . �1Jmax

�21 �22 . . . �2Jmax

...
...

. . .
...

�I1 �I2 . . . �IJmax

⎞
⎟⎟⎟⎟⎟⎠

, (3.3.1)

where Jmax = max{J1, J2, · · · , JI}, for an operation set {�ij|Ji < Jmax}, the
corresponding element �ij is recognized as ∅ when Ji < j ≤ Jmax. In fact,

each (i, j) element in this matrix FM(B) is the jth operation conducted by

actor �i. Further, the intra-coupling, which reveals the complex couplings

within an actor’s distinct behaviors, is the relationship inside one row of the

above matrix, such as the interaction between �11 and �12; while the way

multiple behaviors of dierent actors interact is embodied in each column of

FM(B), indicated as inter-coupling, for example, the relationship between

�11 and �21. In this chapter, operation and behavior are interchangeable if

there is no ambiguity about the involved actors.

In detail, two formal denitions about intra-coupled behaviors and inter-

coupled behaviors are abstracted hierarchically in a recursive way to show

the basic syntax of behavior couplings, followed by the combined syntactic

concept of coupled behaviors (Cao et al. 2012). Note that the syntax below

is proposed to reect how the couplings to be considered, and the semantic

meanings of such syntax are interpreted in Section 3.4.

Denition 3.3.2 (Intra-Coupled Behaviors) Actor �i’s operations �ij

(1 ≤ j ≤ Jmax) are intra-coupled with each other in terms of coupling func-
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tions θj(B), which are called intra-coupled behaviors Bθ(�i).

Bθ(�i) ::= FM(B)i·|
Jmax

j=1

θj(B)a �ij, (3.3.2)

where a means that the operations �ij are intra-coupled via θj(B), and
Jmax

j=1 a is the connection of them.

For instance, in the stock market, the investor will place a sell order at

some time after buying his or her desired instrument due to a great rise in

the trading price. This is, to some extent, one way to express how these two

behaviors are intra-coupled with each other.

Denition 3.3.3 (Inter-Coupled Behaviors) Actor �i’s operations �ij

(1 ≤ i ≤ I) are inter-coupled with each other in terms of coupling functions

ηi(B), which are called inter-coupled behaviors Bη(�i).

Bη(�i) ::= FM(B)·j|
I

i=1

ηi(B)e �ij, (3.3.3)

where e means that the operations �ij are inter-coupled via ηi(B), and
Jmax

j=1 e is the connection of them.

For instance, a trading happens successfully only when an investor sells

the instrument at the same price as the one for which the other investor buys

this instrument. This is another example of how to trigger the interactions

between inter-coupled behaviors.

In practice, behaviors may interact with one another in both ways of

intra-coupling and inter-coupling. Thus, their appropriate combinations are

considered in the following by integrating Denition 3.3.2 and Denition 3.3.2

with Denition 3.3.1.

Corollary 3.3.1 (Qualitative Coupled Behaviors) Actor �i1’s operations

�i1j1 and actor �i2’s operations �i2j2 ((i1 = i2) ∨ (j1 = j2) ∧ (1 ≤ i1, i2 ≤
I) ∧ (1 ≤ j1, j2 ≤ Jmax)) are coupled via function h(θ(B), η(B)), which are
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the qualitative coupled behaviors Bc.

Bc = (Bθ(�i1))
η ◦ (Bθ(�i2))

η ::= FM(B)ij|
I

i1,i2=1

Jmax

j1,j2=1

h(θj1(B), θj2(B), ηi1(B), ηi2(B))c (�i1j1 ,�i2j2), (3.3.4)

where h(θj1(B), θj2(B), ηi1(B), ηi2(B)) is the coupling function denoting the

corresponding relationships between �i1j1 and �i2j2.
I

i1,i2=1

Jmax

j1,j2=1 c means

the connection of operations �i1j1 coupled with h(θj1(B), ηi1(B)) and opera-

tions �i2j2 coupled with h(θj2(B), ηi2(B)).

As shown above, we take into account the intra-relationship and inter-

relationship hierarchically embedded with each other to form the compre-

hensive couplings between behaviors. For instance, we consider both the

successful trading between investor �1 (buy) and investor �2 (sell), and

then the selling behavior conducted by �1 after he or she has bought the

instrument at a relative low price.

So far, we have presented an abstract syntax for representing the qualita-

tive coupled behaviors. Concrete mappings and semantic interpretations will

be discussed in Section 3.4 to give specic meanings for intra-coupling and

inter-coupling. The case study introduced in Section 3.1 is again described

to briey explain the concepts involved.

Example 3.3.1 (Robot scenario model) We model the multi-robot sys-

tem in the context of the robot soccer game as shown in Figure 3.2. In this

scenario, for the robot’s behavior tuple B = (�,�,�), the involved actors

� are robots RCs (k retrievers), Ords (n − k other robot players) for the

red team; the operations � are the actions of the corresponding actors, for

instance, a robot RC “retrieve case” from the case space to lead the whole

team; and the couplings � are the interactions among these robots. They try

to get the ball and kick it to score; the subject actors RCs retrieve the most

appropriate case and coordinate the object actor Ords to collaborate with one

another in order to win the match. The strategies of all the robots can be
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either defensive ( def) or oensive ( o). The intra-coupled behaviors Bθ(�i)

indicate the behavior interactions within robots RCs, Ords respectively, e.g.,

the robot RC could send messages to its team members only after it has

already retrieved a case from case space; while the relationships between dif-

ferent robots refer to the inter-coupled behaviors Bη(�i), such as the coupling

between one RC and one Ord, e.g., a robot Ord sends acknowledgement to

one of its captains RC when it receives a defensive command from this RC

through communication channels.

The above examples show that coupled behaviors Bc are properly rep-

resented in our proposed model from both intra-coupled and inter-coupled

aspects. In this case, we are concerned with both individual and group-based

scenarios including how each player acts individually, and how all of these

robots interact with one another. In the following sections, for simplicity, B
is used to denote coupled behaviors Bc.

3.4 Behavior Aggregator

The description of qualitative coupled behaviors in Section 3.3.2 can be given

with dierent semantic explanations in relation to distinct purposes, such as

fraud detection (Cao et al. 2012), relational learning (Getoor & Taskar 2007),

machine learning (Wang et al. 2011), inference, and reasoning.

In this section, we conduct behavior aggregations to interpret the inter-

actions of intra-coupled and inter-coupled behaviors. The outcomes of the

behavior aggregations form the basis of behavior verication. Three types of

aggregations will be discussed in the following: intra-coupled aggregation is

used to specify the intra-coupled behaviors with function θj(B), inter-coupled
aggregation is disclosed to described the inter-coupled behaviors with func-

tion ηi(B), and combined aggregation is made to interpret the coupled be-

haviors with function h(θ(B), η(B)).
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3.4.1 Intra-coupled Aggregation

For the behaviors conducted by the same actor, we interpret the behavior

dynamics in terms of a transition system (TS). The transition system (Baier

& Joost 2008) is often used in computer science for modeling the behavior

dynamics of a system. A transition system consists of directed graphs, in

which nodes represent system states and edges represent model transitions,

i.e. state changes of a system. A state describes the behavior status at a

certain moment of system dynamics.

In particular, the TS interpretation of intra-coupled behaviors Bθ(�i) for

actor �i is the tuple (St,Act,→, In) simplied from (Baier & Joost 2008),

where θj(B) is the intra-coupling function introduced in Denition 3.3.2, and

1 ≤ i ≤ I, 1 ≤ j ≤ Jmax.

• St = {θj(B)} is a set of states.

• Act = {�ij} is a set of actions or operations.

• θj(B)
�ij−−→ θj+1(B) is a transition relation, and→ denotes the connection

operator a in Equation (3.3.2).

• In = {θ0(B)} is a set of initial states.

In this behavior-oriented transition system, we regard an operation as

a corresponding action in TS; and the intra-coupling function θj(B), which
links intra-coupled behaviors, represents the associated states in TS to con-

nect all the involved operations. In fact, every actor is interpreted by an

independent transition system unless two actors perform exactly the same in

the observation. Stated dierently, each row of the behavior feature matrix

FM(B) dened in Equation (3.3.1) is mapped as a TS by teasing out the

involved transitions of behaviors. Below, we illustrate this transition-system-

based behavior modeling for intra-coupled behaviors in the robot soccer game

via logic and temporal relationships, in particular for robots RC and Ord.
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Figure 3.5: Transition system models TS(B(RCp)) and TS(B(Ordq)).

Example 3.4.1 (Intra-coupling of robots) The robot RC plays the roles

of both retriever and coordinator. Specically, RCs rst search for a ball

on the eld; they then retrieve cases from the case space according to the

current situation and the coordinations among all the RCs; subsequently,

they send either a def message or an o message to other ordinary robot

players for their information, which is followed by the coordination by RCs

of all robot players. All the operations of the pth (1 ≤ p ≤ k) retriever RCp

and their precedence relationships are shown in the left side of Figure 3.5,

which reveals the logic and temporal interactions among operations conducted

by the retriever robot RCp.

The ordinary robot Ord rst waits for a message from one RC; it then

executes the corresponding action after sending acknowledgement to its co-

ordinator RC. However, it is entitled to abort the whole execution if a case

is lost, the message is lost, or time is out. Since all the robot players Ords

have the same action procedures, their transition systems are equal but have

dierent implementation orders. The entire intra-coupled behaviors of the
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qth (k + 1 ≤ q ≤ n) robot Ordq are indicated on the right side of Figure 3.5,

i.e., how the robot player Ordq acts individually. All the operations involved

consist of {search ball, reposition, input perception, retrieve case, send o

msg, send def msg, wait prepare, execute attack, execute block, wait msg,

receive o msg, receive def msg, ack, wait end, abort}. All the states shown

in this gure refer to the corresponding intra-coupling functions, i.e., S15 de-

notes function θ15, S16 denotes function θ16, and the arrow → in between

represents a.

3.4.2 Inter-coupled Aggregation

Apart from the intra-coupled behaviors, inter-coupling (i.e. Bη(�i)) refers

to interactions between operations by dierent actors. On the basis of the

temporal, inferential, and party-based couplings discussed in Section 3.3.1,

the specic semantic mapping about the inter-coupling is dened as follows.

Note that all the notations in this denition are referred to Section 3.3.1.

Denition 3.4.1 (Inter-coupling Function) The behavior inter-couplings

are essentially the various interactions among multiple behaviors. Let B1 and

B2 be two behaviors, then the inter-coupling function ηi(B) is dened as

ηi(B) ::= B1;B2 | B1B2 | B1 : B2 | B1|||B2 | B1|B2 | B1 →
B2| B1 ∧ B2 | B1 ∨ B2 | B1 ⊗ B2 | f(B1)

[�1]. (3.4.1)

Regarding Equation (3.3.3), the connection operator e is interpreted as

the composition of the above functional symbols. Here, we consider the inter-

actions between dierent actors from the perspectives of temporal, inferential

and party-based aspects. Though they may not describe the complete situ-

ations, they are sucient to characterize the basic features of our concerned

behavior systems: dynamic, concurrent, logic, and hierarchical. Specically,

the temporal operators (serial, synchronous, interleaving, shared-variable,

and channel system) induce a dynamic behavior system with concurrent

processes (Baier & Joost 2008); the inferential operators (causal, conjunc-

tion, disjunction, and exclusive) take into account the logic preferences; and
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part-based operators (OPMO, MPOO, and MPMO) facilitate a hierarchi-

cal integrated behavior system. For instance, stock market and multi-agent

systems both possess these features which mostly concern us during analysis.

Below, we illustrate inter-coupled behaviors in the robot soccer game.

Example 3.4.2 (Inter-coupling of robots) In the robot soccer game, RC

interacts with Ords over channels by sending execution, acknowledgement,

and abort messages, shown in the middle part of Figure 3.5; the retriev-

ers RCs communicate with one another by the way of shared-variable cou-

pling, in which the case to be chosen is the shared variable; while the robots

Ords interact with one another in an interleaving way, i.e., they act indi-

vidually and independently from other Ords. For several operations such as

{execute attack, execute block, abort}, robots RCs and Ords interact syn-

chronously through a channel system with capacity 0.

Formally, the inter-relationships among all robots are:

((B(RC1)|B(Ordk+1))||| · · · |||(B(RCk)|B(Ordk+1))) (3.4.2)

: ((B(RC1)|B(Ordk+2))||| · · · |||(B(RCk)|B(Ordk+2)))

: · · · : ((B(RC1)|B(Ordn))||| · · · |||(B(RCk)|B(Ordn))).

Here, the set {ηi(B)}1≤i≤n of inter-coupling functions is indicated as a collec-

tion of functional symbols {|, |||, :}, and the connection operator e composes

those functions.

In fact, the three communication strategies, i.e. temporal, inferential, and

party-based couplings, are embedded with intra-coupled and inter-coupled

aggregations in dierent ways by taking advantage of either transition sys-

tem semantics or communication operators. Furthermore, combined aggre-

gation integrates intra-coupled and inter-coupled couplings to systematically

represent the interactions between behaviors.
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3.4.3 Combined Aggregation

With the intra-coupled and inter-coupled interactions dened, we develop the

combined aggregation of the qualitative coupled behaviors to model complex

behavior-oriented applications. This is achieved through three steps: be-

havior combination, rule reduction, and TS conversion to represent the com-

plex combined interactions of qualitative coupled behaviors, namely h(θj1(B),
θj2(B), ηi1(B), ηi2(B)). In addition, the connection operator c in Equation

(3.3.4) is interpreted to concatenate these three steps.

First, we consider the extension of behavior sequences towards hierar-

chical and hybrid combinations, in which behaviors are associated in a hi-

erarchical structure that consists of dierent relationships, e.g., f(B1, g(B2,

B3)) = {B1; (B2B3)} indicates that behavior B1 is followed by the hand-

shaking (i.e. g(·)) of B2 and B3; {f(B1).g(B2)}, {f (B1)
}, and {f(B1)

ω}
characterize the concatenation of B1 and B2, nite repetition of B1, and in-

nite iteration of B1, respectively. For example, some robots execute their

actions sent from the coordinator, while other robots often abort executions

due to timeouts.

Second, interaction rules (IR) are induced to support appropriate com-

binational reduction of multiple coupling relationships. Formally, a rule IR

is dened in terms of SOS-notation (Baier & Joost 2008) as follows.

Denition 3.4.2 (Interaction Rule) An interaction rule

IR : B1 × · · · × Bn → f(B1, · · · ,Bn)

g(B1, · · · ,Bn)
(3.4.3)

is the combinational equivalence and reduction about the coupling relation-

ships among behaviors Bi(1 ≤ i ≤ n), where f(·) and g(·) are two coupling

expressions for the involved behaviors.

In the above SOS-notation based interaction rule (see 3.4.3), if the nu-

merator formula holds, then the denominator part holds as well. With in-

teraction rules, we can perform reasoning about behaviors to simplify and

conclude critical rules as in (Kazakov 2009). For instance, four interaction
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rules are induced as follows (where ∗, ∗1, ∗2 are the coupling operators dis-

cussed in (3.4.1) in Section 3.3.1).

IR1 :
(B1 ∗ B2) ∗ B3

B1 ∗ (B2 ∗ B3)
, (3.4.4)

IR2 :
(B1 ∗1 B2) ∗2 (B3 ∗1 B2)

(B1 ∗2 B3) ∗1 B2

, (3.4.5)

IR3 :
(B1 ∗ B2) ∗ (B2 ∗ B3)

B1 ∗ B2 ∗ B3

, (3.4.6)

IR4 :
(B1 ∗1 B2) ∗2 (B1 ∗1 B3)

B1 ∗1 (B2 ∗2 B3)
. (3.4.7)

IR1 reveals the associative law, IR2 and IR4 specify the distributive law, and

IR3 describes the absorption law. They are all the basic equivalence rules

for induction and reduction of behavior aggregation and reasoning (reasoning

about behaviors is not the focus in this chapter).

Finally, concurrent transition systems (TSs) are constructed to specify

complex interactions by utilizing temporal, inferential, and party-based cou-

plings to describe, combine and aggregate the coupling relationships, as spec-

ied in Section 3.3.1. The relationships among TSs are concerned since com-

plex behaviors are represented as TSs. Assume that there are n complex

behaviors (TSs) associated with one another in terms of dierent coupling

relationships, which are further represented as follows:

• Serial Coupling : TS1;TS2; · · · ;TSn

• Synchronous Coupling : TS1  TS2  · · ·  TSn

• Interleaving Coupling : TS1 : TS2 : · · · : TSn

• Shared-variable Coupling : TS1|||TS2||| · · · |||TSn

• Channel System Coupling : TS1 | TS2 | · · · | TSn

• Causal Coupling : TS1 → TS2

• Conjunction Coupling : TS1 ∧ TS2
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• Disjunction Coupling : TS1 ∨ TS2

• Exclusive Coupling : TS1 ⊗ TS2

• Hierarchical Coupling : f(g(TS1, TS2, · · · , TSn))

• Hybrid Coupling : f(TS1).g(TS2), f(TS1)
, (TS1)

ω

• OPMO Coupling :f(TS1, TS2, · · · , TSn)
[A1]

• MPOO Coupling : f(TS1)
[A1A2··· ,An]

• MPMO Coupling : f(TS1, TS2, · · · , TSn)
[A1A2···An]

The combined aggregation of coupled behaviors reects the semantics of

behavior coupling and interaction. Following Example 3.4.2, the instance

below illustrates the combined behavior aggregation in the soccer game.

Example 3.4.3 (Robot behavior aggregation) All the behavior couplings

involved in (3.4.2) are aggregated and formalized as the following interactions

(3.4.8) between the qualitative coupled behaviors according to the right and

left distributive laws (IR2 and IR4, respectively), and the TS transformation:

(TS(B(RC1))|||TS(B(RC2))||| · · · |||TS(B(RCk))) (3.4.8)

|(TS(B(Ordk+1)) : TS(B(Ordk+2)) : · · · : TS(B(Ordn))).

Here, the coupling function h(θ(B), η(B)) is embodied by the above Equation

(3.4.8), and the connection operator c is regarded as the whole process (i.e.

three steps) to obtain the nal transformation result.

3.5 Case Study: Representing Complex Be-

havior Systems

In the above, we detail building blocks for representing group behavior inter-

actions, and illustrate them in terms of specic examples in the case study
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Figure 3.6: Group behavior representation and verication procedures.

system: multi-robot architecture (Figure 3.2). This section provides a more

complete case study, showing the use of the proposed modeling techniques

for representing a complex behavior system.

Figure 3.6 illustrates the process of applying OntoB for representing com-

plex behavior interactions. After a behavior ontology is extracted from the

given behavior-related application, the behavior syntax is explicated by vi-

sualizing and formalizing the behavior descriptor. Based on the syntax for-

malization, the behavior semantics are interpreted through the intra-coupled

aggregation, inter-aggregation, and then combined aggregation to enable ver-

ication. Subsequently, the behavior checker is triggered to conduct the

verication with the obtained combined aggregation by engaging the formal-

ized behavior constraints. Finally, a desired behavior representation system is

provided by the behavior rener and exporter. This process guides the build-

ing of a representation system for a complex behavior application. Below,

we illustrate the above process and the use of OntoB to represent a specic

scenario in the robot soccer game.

The robot architecture presented in Figure 3.2 can be simplied as a spe-

cial case-based multi-robot system (Robocup soccer competition) with four
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Figure 3.7: A simplied case-based multi-robot system.

robots and one retriever, as shown in Figure 3.7. As pointed out in Section

3.2.2, the multi-robot architecture consists of n robots, which include k re-

trievers. There must be at least one retriever in this system, for simplicity,

Ros and Veloso (Ros & Veloso 2007) only consider one retriever and three

ordinary robot players, i.e. k = 1 and n = 4. In detail, as described in Fig-

ure 3.7, robot RC rstly retrieves a case from the case space and then informs

the rest of the Ords robot players. Once the robots Ords successfully receive

the messages from RC, they send acknowledgments back to the retriever

RC for conrmation. As claried in Section 3.2.2, the RC also coordinates

all the other robot players including itself to defeat the opponent. All the

robots, no matter RC or Ord, could abort the executions at any moment if

timeout expires, or messages or cases are lost in the interactions. Although

this is a simplied case of the multi-robot architecture proposed in Section

3.2.2, the inherent behavior system still exhibits several complex features, e.g.

distributed behaviors, concurrent actions, uncertain situations, collaborated

strategies, and nonstop operations. Our purpose here is to demonstrate that

our proposed formalization techniques and the modeling procedures depicted

in Figure 3.6 can be adapted accordingly to capture the complexities in this

scenario (Ros & Veloso 2007).

The given behavior-oriented application is the case-based multi-robot soc-

cer game with four players in each team, as shown in Figure 3.7. At rst,

we extract the behavior ontology, including actor, operation, and coupling,

for this behavior system. In terms of the Visual Behavior Descriptor, it is
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trivial that the actors involved are the robots including the retriever robot

and three ordinary robot players, i.e., � = {RC,Ord2, Ord3, Ord4}. The

retriever RC plays the role of a coordinator which also retrieves cases from

the case space for the problem solving; while the other robots Ords just wait

for the commands from the retriever RC, implement the received orders, and

send acknowledgment back to the retriever RC. These are the main oper-

ations involved. The couplings, i.e., interactions, between dierent actions

of the same robot (namely intra-coupled behaviors Bθ(�i)), and between ac-

tions of distinct robots (inter-coupled behaviors Bη(�i)), are the sequential

or parallel operations of one robot and the communications among them,

respectively. Specically, the retriever RC interacts with the other robots

Ords through channel systems (i.e., B(RC)|B(Ord)), and the other robots

Ords are coupled with one another independently and take their own actions

(i.e., B(Ordi) : B(Ordj), where 2 ≤ i, j ≤ 4).

Accordingly, by taking advantage of the Formal Behavior Descriptor

(3.3.4), the syntax of qualitative coupled behaviors between retriever RC

and ordinary players Ords can be represented as:

B(RC,Ords) = (Bθ(RC)

)η
(RC,Ords) ∗ (Bθ(Ords)

)η
(RC,Ords)

, (3.5.1)

where Bθ(RC)
and Bθ(Ords)

refer to the intra-coupled behaviors of retriever RC

and robot players Ords, respectively; (·)η(RC,Ords)
indicates the inter-coupled

behaviors between the RC and each Ord; and B(RC,Ords) means the com-

bined behaviors between RC and each Ord, which are built on top of the

former two types of behaviors.

To facilitate the purpose of verication, the syntax of behavior descriptor

is further given the semantic explanations by using behavior aggregations.

With respect to the Behavior Aggregator, syntax symbols θ(RC) or θ(Ords),

η(RC,Ords), and ∗ are interpreted as intra-coupled aggregation, inter-coupled

aggregation, and combined aggregation respectively to enable behavior check-

ing. In detail, behaviors of the retriever RC (intra-coupled aggregation θ(RC))

can be modeled as TS(B(RC)) (since only one retriever RC is involved, this

transition system is independent with itself), and the qth (2 ≤ q ≤ 4) robot
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player’s (Ordq) behaviors (intra-coupled aggregation θ(Ordq)) can be repre-

sented as TS(B(Ordq)) in an interleaving way. The specic transition sys-

tems are described in Figure 3.5, where p = 1 and n = 4. Based on the types

of couplings revealed by the Visual Behavior Descriptor above, we get the

formal inter-coupled aggregation η(RC,Ords) of all the robots as follows:

(B(RC)|B(Ord2)) : (B(RC)|B(Ord3)) : (B(RC)|B(Ord4)). (3.5.2)

Further, followed by three steps, i.e. behavior combination, rule reduction

(IR4 here), and TS conversion, the combined aggregation h(RC,Ord) can be

abstracted as the following expression:

TS(B(RC))|(TS(B(Ord2)) : TS(B(Ord3)) : TS(B(Ord4))). (3.5.3)

Subsequently, the pre-formalized Behavior Constraints and the obtained

combined aggregation are entered into the Behavior Checker, and then the

Behavior Rener and Exporter are exemplied to follow this specic case

study based on (Ros & Veloso 2007) to verify and rene potential problems

in it. The required constraints are to be illustrated in Section 3.6 below.

The above process shows that our system OntoB can eectively model the

scenario based on (Ros & Veloso 2007) of the multi-robot architecture. The

proposed formalization techniques can eectively model complex behavior-

oriented applications exhibiting similar features, such as distributed behav-

iors, concurrency, uncertainties, and nonstop operations.

3.6 Behavior Constraint Indicator

In order to improve the robustness and stability of behavior model, a simu-

lation can be conducted prior to the behavior checking. For the verication

purpose, the behavior model under consideration needs to be accompanied

by a relevant constraint specication that is to be veried. Constraints, i.e.

requirements of prior simulations, can be used eectively to get rid of the

simpler categories of modeling errors. For instance, a business constraint in
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stock markets is that investors are not allowed to make transactions after

trading hours. To make a rigorous verication possible, constraints should

be described in a precise and unambiguous manner. This is typically done

through a constraint specication language.

We take advantage of the propositional logic and temporal logic to ex-

press the constraints of the desired model. The temporal logic (Baier &

Joost 2008) is basically an extension of traditional propositional logic with

operators that refer to the behaviors of systems over time. It allows for

the specication of a broad range of relevant behavior constraints such as

functional correctness, reachability, safety, liveness, fairness, and real-time

properties. The underlying nature of time in temporal logic can be either

linear (Linear Temporal Logic, LTL) or branching (Computation Tree Logic,

CTL). At this stage, we mainly focus on LTL; the involved temporal modal-

ities are basic operators, such as next (), until (∪), eventually (♦), and
always (). CTL can then be considered for extension. LTL may be used

to express the timing for the class of synchronous and asynchronous behavior

couplings in which all components proceed in a lock-step fashion. In LTL,

one can encode formulae about the future of paths such that a condition will

eventually be true, and a condition will be true until another fact becomes

true, and so on.

Here, in our consideration of the behavior constraint indicator, the focus is

essentially on four important, though relatively simple, types of constraint:

Ontology Axiom, Inferential Coupling, Desired Constraint, and Forbidden

Constraint (Baier & Joost 2008, Breitman et al. 2007). Dierent constraints

can be categorized into these four classes with distinct emphasis.

• Ontology Axiom: The predened ontology axiom that must be satised

by a behavior ontology model.

• Inferential Coupling : The behavior coupling relationships on inferen-

tial reasoning, including causal, conjunction, disjunction, and exclusive

couplings.
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• Desired Constraint : Features of the desired patterns which are sup-

posed to be satised by the behavior.

• Forbidden Constraint : Wicked characteristics that the behavior should

get rid of.

Specically, the ontology axiom is the constraint that the TS interpre-

tation should consider, otherwise there will be problems with this inherent

ontology. Consequently, if we build a set of TS models of behavior ontology,

this kind of axiom should be satised absolutely. The constraints induced by

inferential couplings are directly formalized according to logic expressions.

The desired constraint is the property that the transition system ontology

need to have. If the constraint is satised, the behavior ontology is rather

stable. Otherwise, risky factors that require further exploration must exist.

The forbidden constraint is a property we do not want to see. We are not sure

about the result of either of these two latter types; therefore, the relevant

analysis is critical.

In the robot soccer game, the constraints and their formal expressions are

presented as follows.

Example 3.6.1 (Robot constraint) Based on the categories of constraints,

note that CR represents the coordinator robot while Ordi denotes an individ-

ual robot player as previously indicated.

C.1 (¬(execute attack[Ordi] ∧ execute block[Ordi]))

It is never the case that any Ord can implement the executions of attack

and simultaneously block opponent players.

C.2 ((TS(retrieve case)[CR]∧TS(send msg)[CR]) → ♦(TS(receive msg)[Ordi]

∧ TS(ack)[Ordi]))

If the case is successfully retrieved by CR, then eventually the message

sent is received and the acknowledgment is sent by Ord.

C.3 (wait end[Ordi] ∪ (∧j =i)wait end
[Ordj ])))
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The execution of a case will not be done until all Ords have completed

their actions.

C.4 ♦(∨iabort
[Ordi])

Ord will innitely often abort the execution.

Within these constraints, constraint C.1 (Ontology) and constraint C.3 (De-

sired) reect the safety properties, which are always or never claims, justi-

fying that something bad never happens; while constraint C.2 (Inferential)

and constraint C.4 (Forbidden) are categorized into the liveness properties,

i.e., eventually claims, specifying that something good will eventually hap-

pen in the future. The safety properties are violated in nite time, whereas

the liveness properties are destroyed in innite time. The constraints stated

above are just a few examples to illustrate how behavior checking is managed

in Section 3.7.

3.7 Behavior Checker

There are dierent types of formal verication, from the manual proof of

mathematical arguments (Wang et al. 2000) to interactive computer aided

theorem proof (Kaufmann et al. 2000), and automated model checking (Baier

& Joost 2008). Manual proofs are time-consuming, error-prone, and often

not economically viable. Computer-aided theorem provers require signicant

expert knowledge. In contrast, model checking (Baier & Joost 2008) is an

automated technique that, given a nite-state model of a system and a for-

mal property, can systematically check whether or not this property holds for

that model. If not, model checkers can help to identify the input sequence

that triggers the failure. This verication technology provides an algorithmic

means of determining whether an abstract model—representing, for exam-

ple, a hardware or software design—satises a formal specication. Model

checking can handle the nondeterminism caused by uncertain communication

delays and unknown parameters when concurrent agents interact with one

75



FORMALIZATION AND VERIFICATION OF GROUP BEHAVIOR INTERACTIONS

another, besides which, automation makes model checking far more attrac-

tive to multi-agent systems. In OntoB, we take advantage of model checking

to verify the behavior systems.

To test the expressiveness and stability of our model, we design a behavior

model checker to analyze those predened constraints. We use SPIN (Simple

Promela Interpreter) (Holzmann 2003) for the checking. SPIN is a typical

LTL model checker, highly recommended for automation, especially in elds

such as security protocol verication, control system verication, software

verication, and optimization schedule.

The behavior ontology model and behavior constraints introduced above

are mapped to TS and linear temporal logic (LTL) formulae, respectively.

Formally, for temporal couplings, the corresponding TS semantics are re-

vealed to unfold the compositions (i.e. serial, interleaving, shared-variable,

channel system, and synchronous couplings) of TSs into a single TS. The

conversion rules can be obtained by the corresponding mappings of transition

system semantics on modeling concurrent systems in (Baier & Joost 2008).

For the party-based couplings, the relevant TSs can be taken into account

based on dierent groups to form intra-coupled interactions separately. Fig-

ure 3.8 illustrates the steps performed for the OntoB system as an integrated

framework, and is specied below.

In particular, if the given constraints are ontology axioms, inferential cou-

plings, or desired constraints, the verication process follows the correspond-

ing LTL formulae. A counter example will be produced when the constraints

are not satised. Renement is made to improve this model where appropri-

ate. The verication process with forbidden constraints is conducted as per

the negative forms of LTL formulae to check whether any path exists that

complies with the unwanted constraints. For instance, as stated in Section

3.6, the forbidden constraint 4 “Ord will abort the execution innitely often”

is actually checked with the form ¬(♦(∨iabort
[Ordi])).

Once the behavior-related application and its constraints are given by a

domain expert, we use the proposed formal components to transform them
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Figure 3.8: Ontology-based Qualitative Coupled Behavior Modeling and

Checking (OntoB).

into a behavior ontology model and the combination of relevant categories

of relationships, respectively. In the next stage, TS and LTL are further

explored. TS is then translated to Promela using the approach discussed

in (Baier & Joost 2008). Note that the language Promela (process met-

alanguage) is the input language for the prominent model checker SPIN

(Holzmann 2003). Promela supports communication over shared variables

and message passing along either synchronous or buered FIFO-channels.

Simultaneously, a never claim is made to indicate the negative form of LTL

formula. A product model is built from the combination of the Promela

model and never claim formalizations. These three steps are achieved within

SPIN. Accordingly, the outputs of SPIN are two alternative answers: one is

“Yes” which means there is no activity or action sequence dissatised with

the constraint or ¬ constraint; while in contrast, counter examples are given

for renements if any mistakes exist.

The robot soccer game is a behavior-oriented application. The following
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Figure 3.9: A scenario in a soccer game that causes deadlock.

example shows the detailed checking process of a related case study in the

robot soccer game with the given constraints indicated in Section 3.6.

Example 3.7.1 (Robot behavior checking) We conduct the verication

of the formalized robot soccer game system. SPIN is used to perform check-

ing of the corresponding TS(B) and constraints. Subsequently, we obtain

the results that the constructed TS satises the rst three constraints, while

a counter example arises for the last forbidden constraint ♦(∨iabort
[Ordi]).

The graphical interface of the counter example process with XSPIN (Holzmann

2003) is shown in Figure 3.9, which is based on a Message Sequence Chart

window of XSPIN. The vertical lines represent robot behaviors, boxes repre-

sent states, and arrows represent messages sent. Behavior 0 (init : 0) does

nothing but initiates the behaviors of RC(1), Ordi(i) (i = 2, 3, 4). Formally,

we have the following states:

- State 10: ack[Ord3] → wait prepare[RC]

- State 18: send def msg[RC] → wait msg[Ord4]

- State 34: send def msg[RC] → wait msg[Ord3]
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- State 39: (receive msg[Ord2] → abort[Ord2])

- State 45: (∧iwait end
[Ordi] ∧ wait prepare[RC])

At State 39, the robot player Ord2 aborts the execution whenever it receives

messages from RC. Consequently, at State 45, Ord2 and RC wait for each

other, resulting in an innite wait loop while the executions of other robots

are interrupted simultaneously, which is the so-called deadlock. A typical

deadlock scenario occurs when components mutually wait for each other to

progress.

Deadlocks are one of the most common problems in multi-agent systems,

and they are often dicult to nd and reproduce. In the following section,

we will rene the model to resolve the deadlock.

3.8 Behavior Model Rener and Exporter

When behavior checking is done, as indicated in the general framework of On-

toB (see Figure 3.2.1), there are two options from which to choose. One is to

provide the behavior model directly by the behavior model exporter if every

constraint is satised; and the other is to revise this model by the behavior

model rener according to the errors pointed out by the behavior checker,

and then deliver the modied model via the behavior model exporter. The

behavior model rener plays the role of improving the behavior model and

make it stable and robust, while the behavior model exporter outputs the

desired model to end the entire behavior modeling and checking system. It is

encouraging that even the subtle errors or mistakes that remain unrevealed

via emulation, testing and simulation can potentially be discovered by us-

ing the behavior checker (Baier & Joost 2008). Accordingly, we can replay

the violating scenario with a simulator, in this way obtain useful debugging

information and then adapt the original model.

Below, we continue with the robot soccer game to explain the renement

and exportation of modeling robot behaviors.
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Example 3.8.1 (Robot model rener and exporter) After analyzing the

deadlock scenario in Example 3.7.1, we introduce an additional state called

“hold on” to break the loop, formalized as the follow formula:

- State 40: State 39→ hold on[Ordi]∨[RC]

When such a deadlock happens, the next state will be “hold on”, which

means that the other two robot players Ord3 and Ord4 will continue their

execution as usual. RC continues to retrieve cases and send messages without

receiving ack from Ord2 until the behaviors of Ord2 become normal. If this

does not occur, there must be design aws in Ord2, which should be explored

by robot experts. In fact, “State 40” serves as a Behavior Model Rener in

OntoB. It renes the design by correcting the errors identied by the formal

verication, and guarantees a robust and stable multi-agent system to satisfy

all the required constraints.

Finally, a rened system (in addition with State 40) will be provided by the

Behavior Model Exporter to ensure that all the given constraints are valid in

this multi-agent system, and to end the Ontology-based Qualitative Coupled

Behavior Modeling and Checking (OntoB) system as the last component. If

the original model has no problem with the required constraints, this block will

output the model directly with a rather high condence. In this example, the

behavior model exporter delivers the desired system without any revision in

terms of the rst three constraints, since they all have been satised already.

3.9 Summary

In this chapter, we have presented a generic and robust system, i.e. an

Ontology-based Qualitative Coupled Behavior Modeling and Checking (On-

toB) system, for modeling and checking complex couplings among behaviors

for both individual and group actors. Unlike existing behavior representa-

tion systems, OntoB consists of comprehensive and solid components for

modeling and verifying behavior elements, couplings, aggregations, and con-

straints. It delivers a generic behavior ontology model to capture behavioral
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elements, as well as building blocks for combining and aggregating behav-

ior intra-couplings and inter-couplings for modeling complex interactions in

behavior-oriented applications. The intra-coupled aggregations are specied

in terms of transition systems, while inter-coupled aggregations are depicted

from temporal, inferential, and party-based perspectives. The Qualitative

coupled behaviors are modeled as the combined aggregations in terms of

behavior combination, rule reduction and TS conversion. The behavior on-

tology and constraints are transformed to a transition system and logic form

respectively to verify and rene behavior models. OntoB eventually outputs

a rened and stable behavior model after verication by the model checker.

We have exemplied the successful use of OntoB in modeling and check-

ing of multi-robot behaviors in the robot soccer game in terms of both visual

and formal modeling by the proposed representation modules and verication

in SPIN. Although the case study looks simple, it embodies complex behav-

ior relationships and primary characteristics of behaviors and group behavior

interactions in a typical behavior-oriented application, including distributed

behaviors, concurrency, uncertainties, and nonstop operations. OntoB sys-

tem will be useful for research peers to apply the proposed formalisms and

verication techniques in group behavior interactions, such as multi-agent

conguration, stock market analysis, transportation control.

[Note] Two Preliminary versions of this chapter have been published in

the rst two items below, and a full journal version has been submitted to the

third item.

• Can Wang, Longbing Cao (2012), “Modeling and Analysis of Social

ctivity Process”. Behavior Computing: Modeling, Analysis, Mining and

Decision, Springer, pp. 21-35.

• Can Wang, Longbing Cao (2010), “SAPMAS: Social Activity Process

Modeling and Analysis System”. The International Workshop on Be-

havior Informatics held in conjunction with The 14th Pacic-Asia Con-
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ference on Knowledge Discovery and Data Mining (BI with PAKDD

2010).

• Can Wang, Longbing Cao (2013), “Formalization and Verication of

Group Behavior Interactions”. IEEE Transactions on Systems, Man,

and Cybernetics–Part A: Systems (TSMC-A).

Apart from the above papers, the following published conference paper is

based on the work introduced in this chapter to address the multi-agent system

conguration.

• Chayapol Moemeng, Can Wang, Longbing Cao (2011), “Obtaining an

Optimal MAS Conguration for Agent-Enhanced Mining Using Con-

straint Optimization”. The 7th International Workshop on Agents and

Data Mining Interaction held in conjunction with the 10th International

Conference on Autonomous Agents and Multiagent Systems (ADMI

with AAMAS 2011), pp. 46-57.
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Chapter 4

Numerical Coupled Behavior

Analysis

In this chapter, we explore and analyze the quantitative coupled behaviors

by revealing the coupling relationship between numerical properties. Here,

numerical behavior refers to the behavior data described by continuous prop-

erties or attributes, and numerical coupled behaviors further examine the

couplings/interactions among a group of numerical behaviors. Throughout

the chapter, object and the entity of coupled behaviors are interchangeable,

numerical attributes indicate the continuous properties of coupled behav-

iors, and accordingly attribute values denote the property values of coupled

behaviors.

The usual representation of numerical behaviors is to formalize them as an

information table, which assumes the independence of properties/attributes.

In the real-world data, properties are more or less interacted and coupled via

explicit or implicit relationships. Limited research has been conducted on

analyzing such property interactions, which only describe a local picture of

numerical property couplings in an implicit way.

A framework of the numerical coupled behavior analysis is introduced to

capture the global dependency of continuous properties. The coupling of nu-

merical properties integrates the intra-coupled interaction within a property
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(i.e. the correlations between attributes and their own powers) and inter-

coupled interaction among dierent properties (i.e. the correlations between

attributes and the powers of others) to form a coupled representation for

numerical entities by the Taylor-like expansion. This work makes one step

forward towards explicitly addressing the global interactions of continuous

properties/attributes, veried by the applications in data structure analysis,

clustering and classication. Substantial experiments on 13 UCI data sets

demonstrate the coupled representation can eectively capture the global

couplings of numerical properties and outperforms the traditional way, sup-

ported by statistical analysis.

4.1 Background and Overview

Real-world data sets predominantly consist of quantitative attributes in di-

verse domains (Saria, Duchi & Koller 2011), such as nance and bioinfor-

matics. The usual recommendation of numerical data is to deliver it as an

information table (Kaytoue, Kuznetsov & Napoli 2011), which is a basic

knowledge representation framework comprising a table with columns desig-

nating “attributes” and rows designating “objects”. Each table cell therefore

stands for the value of a particular attribute for a particular object. This

traditional representation scheme only describes each object by associated

variables and assumes the independent and identical distribution (IIDness)

of them.

The fragment data of Iris (Table 4.1) is an example that six plant ob-

jects are characterized by four numerical attributes (i.e. “Sepal Length”,

“Sepal Width”, “Petal Length”, and “Petal Width”), and divided into three

classes. For instance, the petal width of plant object u1 is 0.2cm, which

does not reect any interaction with other attributes. Based on this classi-

cal representation, many data mining techniques and machine learning tasks

(Plant 2012, Li & Liu 2012) including clustering and classication have been

performed. One of the critical parts in such applications is to study the
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Table 4.1: A Fragment Example of Iris Data Set

Iris
Sepal.L Sepal.W Petal.L Petal.W

Class
(a1) (a2) (a3) (a4)

u1 5.5 cm 4.2 cm 1.4 cm 0.2 cm Setosa

u2 5.0 cm 3.4 cm 1.5 cm 0.2 cm Setosa

u3 6.1 cm 2.9 cm 4.7 cm 1.4 cm Versicolor

u4 6.2 cm 2.2 cm 4.5 cm 1.5 cm Versicolor

u5 6.3 cm 2.7 cm 4.9 cm 1.8 cm Virginica

u6 6.0 cm 2.2 cm 5.0 cm 1.5 cm Virginica

pairwise distance between plant objects. A variety of distance metrics have

been developed for numerical data, such as Euclidean and Minkowski met-

rics (Gan et al. 2007). Since plant objects u4 and u6 have identical values of

“Sepal.W” and “Petal.W”, the normalized Euclidean distance between them

is only 0.493, which is much smaller than that between u4, u3 (i.e. 0.950) and

nearly half of that between u6, u5 (i.e. 0.982). It indicates that u4 and u6

stand a good chance to be clustered into the same group. However, in fact, u4

and u3 belong to “Versicolor”, u6 and u5 are labeled as “Virginica”. Similar

cases can also be observed by the normalized Euclidean distance between u3

and u5 (i.e. 0.75), which is smaller than both the distances between u3, u4

and between u5, u6.

Both instances show that it is often problematic to analyze the numerical

data by assuming all the continuous attributes are independent, while the

traditional data representation schemes fail to capture the genuine couplings

of attributes. In the real world, business and social applications such as in-

vestors in capital markets and members in social networking almost always

see quantitative attributes coupled with each other (Cao et al. 2012). It

is very in demand from both practical and theoretical perspectives to de-

velop eective representation method for analyzing continuous variables by

considering the relationships among attributes (i.e. non-IIDness of numeri-

cal properties). A conventional way to explore the interaction of continuous
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attributes is to measure the agreement of shapes between variables via Pear-

son’s correlation coecient (Gan et al. 2007). Nevertheless, it only caters

for the linear relationship between two variables. More often, numerical

variables are associated with each other via nonlinear relationships, such as

exponential and logarithmic functions. Our motivation is to consider both

linear and nonlinear relationship functions, such couplings among variables

are called global interactions or global dependency. In contrast, any method

to study either the linear relationship or some specic nonlinear function

only captures a local picture of the coupling relationships among variables,

such as the Pearson’s correlation. For Table 4.1, if we adopt the method in

(Kalogeratos & Likas 2012) by treating each correlation as the pairwise sim-

ilarity entry, we then obtain the normalized Euclidean distance between u4

and u6 as 0.223, which is still smaller than that between u4 and u3 (i.e. 0.329)

but only a little larger than that between u6 and u5 (i.e. 0.218). It means the

coupling relationships are only partially revealed with limited improvement

on the distance.

So based on the traditional information table, how to describe the global

interactions with the least information loss? The idea of Taylor expansion

inspires us that we can use a Taylor-like series to quantify the global depen-

dency, since any analytic function can be approximated by its Taylor polyno-

mials. Therefore, we propose to represent the global coupling relationships by

Taylor-like expansion on attribute values, in which the Pearson’s correlations

between attributes and their extended powers (i.e., each extended attribute

value is the power of the original one) play the role of function derivatives.

From this perspective, the Pearson’s correlation just reects the rst-order

Taylor-like expansion of the global dependency; and the mutual information

based attribute interdependency (Nazareth, Soo & Zhao 2007) is a special

case, since function log can be expressed by its Taylor series. For Table 4.1,

the distance between plant objects is then revised by explicitly capturing the

intrinsic correlations between attributes and their powers. That is to say, the

greater dierence in “Petal.L” is expected to remedy the little dierences in
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other attributes since they are correlated signicantly.

A detailed review of the related work on numerical behavior analysis can

be found in Section 2.2. Though most of the current strategies are based

on the hypothesis of IIDness, great eorts have been made to reveal the

implicit interactions between properties, such as Pearson’s correlation (Gan

et al. 2007), rank-correlated measure (Calders et al. 2006), dependency clus-

tering (Plant 2012). Nevertheless, no work that systematically and explicitly

considers the global coupling relationships (i.e. non-IIDness) among contin-

uous attributes has been reported .

Accordingly, this chapter proposes a framework of the coupled attribute

analysis on numerical data to address the aforementioned research issues,

without the IIDness assumption. We consider both the intra-coupled in-

teraction within an attribute, captured by the correlations between every

attribute and its own powers; and the inter-coupled interaction among dif-

ferent attributes, quantied by the correlations between each attribute and

the powers of others. A coupled representation scheme is then introduced

for quantitative objects to integrate the intra-coupled and inter-coupled in-

teractions with the original information table representation via Taylor-like

expansion in a global way. Finally, the proposed coupled representation

method is compared with the traditional representation approach by apply-

ing data structure analysis, clustering and classication, revealing that the

couplings of continuous attributes are essential to the learning applications.

The chapter is organized as follows. A framework of coupled attribute

analysis is proposed in Section 4.2. Section 4.3 species the coupled inter-

actions of numerical attributes. We formalize the coupled representation

for objects in Section 4.4. The eectiveness of coupled representation is

demonstrated in Section 4.5 with extensive experiments. Finally, we end

this chapter in Section 4.6.
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Figure 4.1: A framework of the coupled attribute analysis.

4.2 Framework of Coupled Attribute Analy-

sis on Numerical Data

In this section, a framework of the coupled attribute analysis on numerical

data is proposed in terms of the intra-coupled interaction within an attribute,

the inter-coupled interaction among multiple attributes, and the integration

of them.

The intra-coupled interaction is considered by examining the correlation

between each numerical attribute and its extended powers. For the inter-

coupled interaction, the relevant correlations between each continuous at-

tribute and the extended powers of other attributes are studied. In the

framework described in Figure 4.1, the couplings of numerical attributes are

therefore revealed via the pairwise correlations between attributes and their

powers. Further, those correlations are integrated to form a coupled repre-

sentation for numerical data. Finally, three learning tasks are explored for

the data structure, the data clustering, and the data classication by incor-

porating the coupled interactions, revealing that the couplings of continuous

attributes are essential to the learning applications in empirical study.
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Given a set of m objects U = {u1, · · · .um} and a set of n continuous

attributes A = {a1, · · · , an}, we specify each building block in this framework

in the following sections.

4.3 Coupled Interactions of Attributes

The couplings of continuous attributes are proposed in terms of both intra-

coupled and inter-coupled interactions. Below, the intra-coupled and inter-

coupling relationships, as well as the integrated coupling, are formalized and

exemplied.

The usual way to represent data is to use an information table S =<

U,A, V, f >, where universe U = {u1, · · · , um} consists of nite data objects;

A = {a1, · · · , an} is a nite set of continuous attributes; V =
n

j=1 Vj is

a collection of attribute value sets, in which Vj = {aj.v1, · · · , aj.vtj} is the

set of tj attribute values from attribute aj(1 ≤ j ≤ n); and f =
n

j=1 fj,

fj : U → Vj is an information function which assigns a particular value of

attribute aj to each object. For instance, Table 4.1 is an information table

composed of six objects {u1, · · · , u6} and four attributes {a1, a2, a3, a4}, the
attribute value of object u1 on attribute a4 is f4(u1) = 0.2, and the set of all

attribute values from a4 is V4 = {0.2, 1.4, 1.5, 1.8}.
Based on information table S, we aim to capture the interactive rela-

tionships within a numerical attribute (intra-coupled) and among dierent

continuous attributes (inter-coupled). A common method to explore the

relationship between continuous attributes is to calculate the Pearson’s cor-

relation coecient (Gan et al. 2007), which measures the agreement of shapes

between variables. In detail, the Pearson’s product-moment correlation co-

ecient between attributes aj and ak is formalized as

Cor(aj, ak) =


u∈U (fj(u)− μj)(fk(u)− μk)

u∈U (fj(u)− μj)2


u∈U (fk(u)− μk)2
, (4.3.1)

where μj, μk are the respective mean values of aj, ak.

However, the Pearson’s correlation coecient only describes the linear
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Table 4.2: The Extended Information Table of Iris Data Set
A a11 a12 a21 a22 a31 a32 a41 a42

u1 5.50 30.25 4.20 17.64 1.40 1.96 0.20 0.04

u2 5.00 25.00 3.40 11.56 1.50 2.25 0.20 0.04

u3 6.10 37.21 2.90 8.41 4.70 22.09 1.40 1.96

u4 6.20 38.44 2.20 4.84 4.50 20.25 1.50 2.25

u5 6.30 39.69 2.70 7.29 4.90 24.01 1.80 3.24

u6 6.00 36.00 2.20 4.84 5.00 25.00 1.50 2.25

relationship between two variables. It is insucient if we consider this coe-

cient just between each pair of continuous attributes. So we expect to expand

the numerical space spanned by n continuous attributes with more dimen-

sions, and then expose the coupling relationships of continuous attributes by

exploring the correlation between every two updated attributes. The idea

of increasing dimensionality is also consistent with (Li & Liu 2012), which

extends attribute information but lacks the dependency therein.

Firstly, we lodge some more attributes to the original continuous space.

Each attribute aj is accompanied with L−1 more attributes: aj2, aj3, · · · ,
ajL. The attribute value of ajp (1 ≤ p ≤ L) is the p-th power of the

corresponding value of attribute aj. That is to say, ajp.vt = (aj.vt)
p for all

the attribute values aj.vt ∈ Vj. For example, the values of aj2 and aj3 are
the square and cube of the attribute values in Vj, respectively. In this way,

data can then be represented as an m×L · n extended information table, in

which the (L · (j − 1) + p)-th column corresponds to the updated attribute

ajp. Here, the denotations aj and aj1 are equivalent. For instance, Table
4.2 is an extended information table of the original Table 4.1 if we set L = 2

for simplicity.

Next, the correlation between each pair of the updated L · n attributes

is calculated. It reects the global coupling relationships of continuous at-

tributes from both the linear and nonlinear aspects, based on the modeling

of variables. Below, we actually use the revised correlation coecient by
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taking into account the p-values for testing the hypothesis of no correlation

between attributes. Each p-value is the probability of getting a correlation

as large as the observed value by random chance, when the true correlation is

zero. If p-value is small, say less than 0.05, then the correlation Cor(aj, ak)

is signicant. Thus, the revised correlation coecient is dened as

R Cor(aj, ak) =

⎧
⎨
⎩
Cor(aj, ak) if p-value < 0.05,

0 otherwise.
(4.3.2)

In this way, the revised correlation is endowed with the statistical signif-

icance, which makes the correlation between variables more reasonable and

reliable. That is to say, we only consider those signicant coupling relation-

ships of attributes rather than simply involving all of them. The reason is

that in the latter case, the over-tting problem on modeling the coupling

relationships may arise, which will inevitably violate the inherent interac-

tion mechanism of attributes. Based on this revised correlation, we propose

the intra-coupled interaction and inter-coupled interaction of continuous at-

tributes. Below, L is the maximal power, 1 ≤ p, q ≤ L, aj = aj1.
On one hand, the intra-coupled interaction is quantied as the correla-

tions between attribute aj and its powers ajp. Formally, we have

Denition 4.3.1 (Intra-coupled Interaction) The Intra-coupled In-

teraction within numerical attribute aj is represented as an L × L matrix

RIa(aj), in which the (p, q) entry describes the correlation between the up-

dated attributes ajp and ajq. Specically,

RIa(aj) =

⎛
⎜⎜⎜⎜⎜⎝

θ11(j) θ12(j) . . . θ1L(j)

θ21(j) θ22(j) . . . θ2L(j)
...

...
. . .

...

θL1(j) θL2(j) . . . θLL(j)

⎞
⎟⎟⎟⎟⎟⎠

, (4.3.3)

where θpq(j) = R Cor(ajp, ajq) is the Pearson’s correlation coecient

between ajp and ajq.

91



NUMERICAL COUPLED BEHAVIOR ANALYSIS

Based on Table 4.1, for attribute a4, we then haveRIa(a4) =


1 0.989

0.989 1



as the intra-coupled interaction within a4. It means the correlation coe-

cient between the attribute “Petal.W” and its seconder power is as high as

0.989, which signies that they are rather closely related.

On the other hand, the inter-coupled interaction captures the correlations

between each attribute aj and all the powers of other attributes ak (k = j).

Accordingly, we have

Denition 4.3.2 (Inter-coupled Interaction) The Inter-coupled In-

teraction between attribute aj and other attributes ak (k = j) is quantied

as an L×L · (n− 1) matrix RIe(aj|{ak}k =j), in which the (p, (i− 1) ·L+ q)

entry represents the correlation of the updated attributes ajp and akiq.
Specically,

RIe(aj|{ak}k =j) = (4.3.4)
⎛
⎜⎜⎜⎜⎜⎝

η11(j|k1) . . . η1L(j|k1) . . . η11(j|kn−1) . . . η1L(j|kn−1)

η21(j|k1) . . . η2L(j|k1) . . . η21(j|kn−1) . . . η2L(j|kn−1)
...

. . .
...

. . .
...

. . .
...

ηL1(j|k1) . . . ηLL(j|k1) . . . ηL1(j|kn−1) . . . ηLL(j|kn−1)

⎞
⎟⎟⎟⎟⎟⎠

,

where {ak}k =j = {ak1 , · · · .akn−1} is the set of attributes other than aj, and

ηpq(j|ki) = R Cor(ajp, akiq) is the Pearson’s correlation coecient be-

tween ajp and akiq.

For instance, in Table 4.1, we have the inter-coupled interaction of at-

tribute a4 with others (i.e. a1, a2 and a3) to be

RIe(a4|{a1, a2, a3}) =

0.939 0.945 −0.850 −0.854 0.984 0.982

0.925 0.933 0.000 −0.813 0.951 0.952


.

Thus, we capture the hidden relationship that “Petal.W” has negative

correlation with “Sepal.W”, but is positively and closely related with “Sepal.L”

and “Petal.L” as well as their second powers, which are consistent with our

intuition. In particular, there is no signicant correlation between the second
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power of “Petal.W” and “Sepal.W”, indicating the relevant p-value must be

at least as large as 0.05. This shows that the involvement of both the intra-

coupled interaction and the inter-coupled interaction largely enriches the

global coupling than the correlation coecient which only considers every

pair of the original attributes.

4.4 Coupled Representation for Objects

In this section, a coupled representation scheme for numerical objects is pro-

posed by integrating the intra-coupled and inter-coupled interactions of con-

tinuous attributes.

In the extended information table S, each quantitative object is described

by L · n updated variables A = {a11, · · · , a1L, · · · , an1, · · · , anL}.
The updated information function f̃ p

j (u) assigns the corresponding value

of attribute ajp to object u. The attribute values of aj and its powers

for u are presented as a vector u(aj) = [f̃ 1
j (u), · · · , f̃L

j (u)], while the at-

tribute values of other attributes and their powers for u are summarized in

another vector u({ak}k =j) = [f̃ 1
k1
(u), · · · , f̃L

k1
(u), · · · , f̃1

kn−1
(u), · · · , f̃L

kn−1
(u)].

For instance, in Table 4.2, u1(a4) = [0.20, 0.04], we have u1({a1, a2, a3}) =
[5.50, 30.25, 4.20, 17.64, 1.40, 1.96].

Further, the coupled interactions are incorporated into a new object rep-

resentation scheme reecting the coupling relationships within and between

numerical attributes.

Denition 4.4.1 (Coupled Representation) The Coupled Represen-

tation for numerical object u on the continuous attribute aj is a 1 × L

vector uc(aj| A,L), in which the (1, p) component corresponds to the updated

attribute ajp. Specically,

uc(aj| A,L) = u(aj)w ⊗ [RIa(aj)]
T (4.4.1)

+u({ak}k =j) [w,w, · · · ,w  
n−1

]⊗ [RIe(aj|{ak}k =j)]
T ,
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where w = [1/(1!), 1/(2!), · · · , 1/(L!)] is a constant 1×L vector, [w,w, · · · ,w]

is a 1×L·(n−1) vector concatenated by n−1 constant vectors w. “” denotes

the Hadamard product1, and “⊗” represents the matrix multiplication.

For instance, in Table 4.1, we calculate that uc
1(a4| A, 2) = [10.92, 14.50],

where 10.92 and 14.50 are the respective values of a41 and a42. Below,

the reason to choose such a coupled representation method is claried. If

the above Equation (4.4.1) is expanded, for instance, we obtain the (1, p)

element (corresponds to ajp) of the vector uc(aj| A,L) as

uc(aj| A,L).ajp = θp1(j) · f̃1
j (u) +

n−1

i=1

ηp1(j|ki)
1!

f̃ 1
ki
(u) (4.4.2)

+
θp2(j)

2!
f̃ 2
j (u) +

n−1

i=1

ηp2(j|ki)
2!

f̃2
ki
(u) + · · ·+ θpL(j)

L!
f̃L
j (u) +

n−1

i=1

ηpL(j|ki)
L!

f̃L
ki
(u),

which resembles the Taylor expansion (Jia & Zhang 2008) of functions.

The right side of the above Equation (4.4) is expected to accurately exhibit

the intrinsic complete coupled representation uc(aj| A) for object u on the

updated attribute ajp, when the maximal power L tends to innity, i.e.

uc(aj| A) = lim
L→+∞

uc(aj| A,L). (4.4.3)

Further, it is a common practice to approximate a function by using a

nite number of terms of its Taylor series. Thus, we intend to approximate

the intrinsic complete coupled representation by xing a positive integer L to

largely capture the global interactions of attributes with a tolerable residual

error. In the empirical study followed, the maximal power L is evaluated

according to the clustering accuracy.

At last, when all the n original attributes are considered, we obtain the

global coupled representation for numerical object u to be a concatenated

1Hadamard product is a binary operation that takes two row vectors of the same size,

and produces another vector where each (1, i) element is the product of the (1, i) elements

of the original vectors.
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vector:

uc( A,L) = [uc(a1| A,L),uc(a2| A,L), · · · ,uc(an| A,L)]. (4.4.4)

Therefore, each object is now represented as a 1 × L · n numerical vector

incorporated with the couplings of continuous attributes. We then obtain

an m × L · n coupled information table Sc when all the objects in universe

U follow the above steps. For instance, based on Table 4.1, the coupled

information table shown in Table 4.3, is the new representation.

Table 4.3: The Coupled Representation of Iris Data Set

A a11 a12 a21 a22 a31 a32 a41 a42

u1 22.99 23.00 10.74 10.74 10.05 10.04 10.92 14.50

u2 20.09 20.10 6.70 6.69 10.80 10.77 11.48 14.30

u3 41.20 41.27 −7.76 −8.58 34.40 34.32 35.10 36.92

u4 41.13 41.20 −9.35 −10.30 36.35 36.24 37.03 38.22

u5 44.66 44.74 −9.87 −11.21 38.55 38.45 39.28 40.86

u6 42.32 42.39 −11.84 −12.79 37.92 37.82 38.52 39.63

So far, we have obtained the global coupled representation Sc for con-

tinuous data. The coupled representation for numerical objects reects the

mutual inuence and interactions of attributes, and reserves far more cou-

pling relationships from continuous data than the original representation.

Back to the case discussed in Section 4.1, we obtain that the normalized

Euclidean distance between u4 and u6 is 0.448 based on Sc, larger than both

the normalized distances between u4, u3 (i.e. 0.354) and between u6, u5 (i.e.

0.419). Similarly, the normalized distance between u3, u5 (i.e. 0.830) is also

greater than them. It means that u4, u6 and u3, u5 are unlikely to be clus-

tered together, which is consistent with the real situation and veries that

our proposed coupled representation is eective in capturing the implicit

relationships.
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4.5 Empirical Study

In this section, several experiments are performed on 13 UCI data sets (i.e.

Table 4.4) to show the eectiveness of our proposed coupled representation

scheme for numerical objects. Two data representation schemes are consid-

ered and compared: the original representation as an information table S and

the coupled representation as a coupled information table Sc. Each column

of S and Sc is normalized to have zero mean and standard deviation as one,

so as to eliminate value dierences in the order of magnitudes.

The experiments are divided into two categories: parameter estimation

and learning applications. Note that the number of runs is set to be 100 to

obtain the corresponding average results with their sample standard devia-

tions. The number of clusters is xed to be the number of real classes , i.e.

the fourth column in Table 4.4.

Table 4.4: Description of Data Sets in Chapter 4

Data Set Object Attribute Class Short Form

Iris 150 4 3 Ir

Planning 182 12 2 Pl

Parkinsons 195 22 2 Par

Seeds 210 7 3 See

Segment 210 19 7 Seg

Ionos 351 34 2 Io

Patient 583 9 2 Pat

Blood 748 5 2 Bl

Vowel 990 10 11 Vo

Red Wine 1599 11 6 Rw

Waveform 5000 21 3 Wa

Navigation 5456 24 4 Na

Telescope 19020 10 2 Te

96



NUMERICAL COUPLED BEHAVIOR ANALYSIS

1 2 3 4 5 6 7 8 9 10
0.5

0.55

0.6

0.65

0.7

The Maximal Power L

A
cc
u
ra
cy

Data Set: Planning

1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

The Maximal Power L

A
cc
u
ra
cy

Data Set: Parkinsons

1 2 3 4 5 6 7 8 9 10

0.65

0.7

0.75

0.8

The Maximal Power L

A
cc
u
ra
cy

Data Set: Blood

1 2 3 4 5 6 7 8 9 10

0.35

0.4

0.45

0.5

The Maximal Power L

A
cc
u
ra
cy

Data Set: Vowel

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

The Maximal Power L

A
cc
u
ra
cy

Data Set: Red Wine

1 2 3 4 5 6 7 8 9 10
0.5

0.55

0.6

0.65

0.7

The Maximal Power L

A
cc
u
ra
cy

Data Set: Telescope

Original Representation Coupled Representation

Figure 4.2: The performance of L on six data sets: the average accuracy with

± sample standard deviation error bars.

4.5.1 Parameter Estimation

As indicated in Equation (4.4), the proposed coupled representation for nu-

merical objects is strongly dependent on the maximal power L. Here, we

conduct several experiments to study the performance of L with regard to

the clustering accuracy of k-means. The maximal power L is set to range

from L = 1 to L = 10 since L! becomes extremely large when L grows, which

means L = 10 is probably large enough to obtain most of the information in

Equation (4.4).

Figure 4.2 shows the performance of L on six data sets in terms of the

clustering accuracy of k-means based on dierent representations. It is clear

that the clustering accuracy of coupled representation generally reaches to a

stable point when L takes the value 3 or 4, which means that L = 3 or L = 4

is empirically large enough to capture the global couplings of attributes. As

a general trend, the accuracy goes up when L increases. Only except Blood

97



NUMERICAL COUPLED BEHAVIOR ANALYSIS

and Telescope, the correlation coecients between the accuracy and L are

signicantly around 0.75 for the rest data. But the increasing rate of accuracy

gets smaller as L grows. This is consistent with Equation (4.4), since a large

value of L! acting as the denominator makes the corresponding item rather

small. In the experiments followed, we x L to be 3 or 4 and report the

better results between them.

Another important observation is k-means based on the coupled repre-

sentation always outperforms that built on the original representation when

L ≥ 2, though a small deviation exists. That is to say, our proposed represen-

tation is useful and eective to discover the coupling relationships embedded

in the continuous attributes. In addition, the null hypothesis that k-means

with the coupled representation is better than the original k-means in terms

of the accuracy is accepted. However, we can see that our coupled method

does not perform stably well when L = 1. The reason is the case of L = 1

just reects the linear relationship among attributes and only captures a local

picture of the global interactions.

4.5.2 Learning Applications

In this part, three groups of experiments are conducted on extensive data

sets for machine learning applications.

Cluster Structure Analysis

Experiments are performed to explicitly specify the internal structures for the

labeled numerical data. Clusterings are normally evaluated by assigning the

best score to the algorithm that produces clusters with the highest similarity

within a cluster and the lowest similarity between clusters based on a certain

data representation scheme. We work in a dierent way, in which data rep-

resentation methods are evaluated with the given labels and the clustering

internal descriptors: Relative Distance (RD), Davies-Bouldin Index (DBI)

(Davies & Bouldin 1979), Dunn Index (DI) (Dunn 1974), and Sum-Distance
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Figure 4.3: Data structure index comparisons on nine data sets.

(SD). In detail, RD is the ratio of average inter-cluster distance upon aver-

age intra-cluster distance for all the cluster labels; SD is the sum of object

distances within all the clusters. Since the internal criteria seek the clusters

with a high intra-cluster similarity and a low inter-cluster similarity, larger

RD, larger DI, smaller DBI, and smaller SD indicate a better characteriza-

tion of the cluster dierentiation capability, which corresponds to a superior

data representation scheme.

The cluster structures produced by the original and coupled data repre-

sentation schemes are then analyzed on nine data sets in dierent scales. The

results after normalization are shown in Figure 4.3, which shows that, with

the exception of only one item (i.e. Vowel on DI), the corresponding RD

and DI indexes for the coupled representation are larger than those for the

original representation; while the associated DBI and SD indexes for the for-

mer are always smaller than those for the latter. It shows that our proposed

coupled representation, which eectively captures the global interactions of

attributes, is superior to the original method in terms of dierentiating ob-

jects in distinct clusters.
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Data Clustering Evaluation

Two classical clustering approaches are single linkage based agglomerative

algorithm (LC ) (Ackerman & Ben-David 2011) and spectral clustering (SC )

(Luxburg 2007). Here, these two methods are evaluated when incorporating

the original (i.e. LC-OR and SC-OR) and coupled (i.e. LC-CR and SC-

CR) data representation schemes individually. The external clustering qual-

ity measures here include Accuracy, Normalized Mutual Information (NMI),

Precision, and Specicity. As described in (Cai, He & Han 2005, Figueiredo

et al. 2011), the larger these indexes, the better the clustering.

Table 4.5 reports the results for the four approaches on six data sets in

terms of the above four clustering quality measures. The higher measure

scores of each experimental setting are highlighted in boldface, when LC-

CR is compared with LC-OR and SC-CR is compared with SC-OR. This

table indicates that the adapted LC-CR and SC-CR respectively outperform

their baseline algorithms LC-OR and SC-OR on almost all the evaluation

measures for all the data sets, only except the two italic bold values. The

maximal average improvement rate across all the data sets is 95.67%, while

the minimal is 1.44%. Statistical testing also supports the results that LC-

CR performs better than LC-OR and SC-CR performs better than SC-OR,

at a 95% signicance level. Another interesting observation is that SC is

mostly superior to LC, which is also consistent with such a statement in

(Luxburg 2007).

Data Classication Evaluation

To further verify the superiority of our proposed coupled method, we use

the k-nearest neighbor (KNN ) algorithm (Figueiredo et al. 2011) to com-

pare the classication quality when using dierent representation schemes.

KNN is a type of instance-based learning, classifying objects based on the

closest training examples in the attribute space. We carry out experiments

on six data sets from dierent domains. As we know, a better data repre-

sentation approach corresponds to a better classication result, i.e. higher
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Figure 4.4: Data classication comparisons on six data sets: the average

values with ± sample standard deviation error bars.

Accuracy, higher Precision, higher Recall, and higher Specicity (Figueiredo

et al. 2011). We use the 10-fold cross-validation with K = 4.

The results of KNN based on he original and coupled representations

are shown in Figure 4.4. KNN upon the coupled representation remarkably

outperforms the original KNN for all the data sets in terms of all the eval-

uation measures. As can be seen, there is a remarkable improvement in the

results with our proposed coupled scheme compared to the original method

with respect to the classication quality. The maximal relative improvement

rate across all the data sets is 138.89%, while the minimal rate is 5.51%. All

the results are supported by a statistical signicant test at 95% signicance

level. Similar results can also be observed by KNN when K takes other inte-

gers, which again suggests the eectiveness and superiority of our proposed

coupled method.

It is also noted that the improvement on Patient is relatively small with

respect to all the measures. The reason is the coupled interactions among
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the attributes of Patient is weak. Only around 45% pairs of attributes and

their powers have signicant coupling relationships, compared to the average

percentage of around 78% on other data sets.

4.6 Summary

We have proposed a novel coupled representation scheme for objects via teas-

ing out the interactions of numerical attributes (i.e. non-IIDness of continu-

ous properties). Those interactions are quantied by analyzing the Pearson’s

correlation coecients between attributes and their powers, in which the

intra-coupled interaction within an attribute is described by the correlation

between each attribute and its own powers, and the inter-coupled interaction

among dierent attributes is characterized by the correlation between every

attribute and the powers of others. Both interactions are integrated with the

traditional information table in a global way to form the Taylor expansion

of a coupled representation scheme for quantitative objects. The selection of

the maximal power is empirically studied in terms of the clustering accuracy,

reporting that L = 3 or L = 4 is large enough to capture the coupling rela-

tionships of numerical attributes. Substantial experiments have veried that

our proposed coupled representation scheme outperforms the original repre-

sentation method from the perspectives of data structure, data clustering,

and data classication. Statistical analysis supports our conclusion.

[Note] A conference version of this chapter has been accepted already and

will be published soon by AAAI Press as below.

• Can Wang, Zhong She, Longbing Cao (2013), “Coupled Attribute

Analysis on Numerical Data”. The 23rd International Joint Conference

on Articial Intelligence (IJCAI 2013), full paper accepted.
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Chapter 5

Categorical Coupled Behavior

Analysis

In this chapter, we investigate and analyze the quantitative coupled behav-

iors via teasing out the coupling relationship between categorical properties.

Here, categorical behavior refers to the behavior data described by nominal

properties or attributes, and categorical coupled behaviors further explore the

couplings/interactions among a group of categorical behaviors. Throughout

the chapter, data object and the entity of coupled behaviors are interchange-

able, categorical attributes indicate the discrete properties of coupled behav-

iors, and accordingly attribute values denote the property values of coupled

behaviors.

Limited research has been conducted on the similarity analysis for cate-

gorical behaviors, which mainly assumes the independence of nominal proper-

ties, especially in unsupervised learning. Recent work on the attribute value

frequency distribution and attribute dependency aggregation introduces the

frequency and co-occurrence of attribute values to explore the categorical

property coupling, but they are considered separately to exhibit only a local

picture in analyzing the similarity of categorical behaviors. Such a local pic-

ture is not eective for deep analysis, and the integration of frequency and

co-occurrence in dening property similarity is not a trivial task.
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An ecient data-driven similarity learning approach for categorical cou-

pled behaviors is presented. It generates a coupled property similarity mea-

sure for nominal entities with property couplings to capture a global picture of

attribute similarity. It involves the frequency-based intra-coupled similarity

within a property and the inter-coupled similarity upon value co-occurrences

between properties, as well as their integration on the entity level. In partic-

ular, four measures are designed for the inter-coupled similarity to calculate

the similarity between two categorical values by considering their relation-

ships with other attributes in terms of power set, universal set, join set and

intersection set. The theoretical analysis reveals the equivalent accuracy and

superior eciency of the measure based on the intersection set, particularly

for large-scale data sets. Substantial experiments on 20 UCI data sets ver-

ify the theoretical conclusions. In addition, intensive experiments of data

structure, clustering and classication algorithms incorporating the coupled

dissimilarity metric achieve a signicant performance improvement on state-

of-the-art measures and algorithms on 12 UCI data sets and bibliographic

data, which is conrmed by the statistical analysis. The experiment results

show that the proposed coupled property similarity for categorical behav-

iors is generic, and can eectively and eciently capture the intrinsic and

global interactions within and between properties for especially large-scale

categorical behavior data sets.

5.1 Background and Overview

Similarity analysis has been a problem of great practical importance in sev-

eral domains for decades, not least in recent work, including behavior analysis

(Cao et al. 2012), document analysis (Figueiredo et al. 2011) and image anal-

ysis (Wang, Hoiem & Forsyth 2012). A typical aspect of these applications

is clustering, in which the similarity is usually dened in terms of one of the

following levels: between clusters, between attributes, between data objects,

or between attribute values. The similarity between clusters is often built on
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top of the similarity between data objects, e.g. centroid similarity. Further,

the similarity between data objects is in general derived from the similar-

ity between attribute values, e.g. Euclidean distance and simple matching

similarity (Kaufman & Rousseeuw 1990). The similarity measured between

attribute values assesses the relationship between two data objects and even

between two clusters: the more two objects or clusters resemble each other,

the larger is the similarity (Gan et al. 2007). The other similarity between

attributes (Das & Mannila 2000) can also be converted into the dierence

of similarities between pairwise attribute values (Li et al. 2010). Therefore,

the similarity between attribute values plays a fundamental role in similarity

analysis.

The similarity measures for attribute values are sensitive to the attribute

types, which are classied as discrete and continuous. The discrete attribute

is further typed as nominal (categorical) or binary (Gan et al. 2007). The

nominal data, a special case of the discrete type, has only a nite number of

values; while the binary variable has exactly two values. In this chapter, we

regard the binary data as a special case of the nominal data.

Compared to the intensive study on the similarity between two numerical

variables, such as Euclidean and Minkowski distance, and between two cate-

gorical values in supervised learning, e.g. Heterogeneous Distance Functions

(Wilson & Martinez 1997) and Modied Value Distance Matrix (MVDM )

(Cost & Salzberg 1993), the similarity for nominal variables has received

much less attention in unsupervised learning on unlabeled data. Only lim-

ited eorts (Gan et al. 2007) have been made, including Simple Match-

ing Similarity (SMS, which uses 0s and 1s to distinguish the similarity be-

tween distinct and identical categorical values), Occurrence Frequency (OF )

(Boriah et al. 2008) and Information-theoretical Similarity (Lin) (Boriah

et al. 2008, Lin 1998), to discuss the similarity between nominal values. The

challenge is that these methods all follow a classic but strong assumption of

independent and identical distribution (i.e. IIDness). They are too rough

to precisely characterize the similarity between categorical attribute values,
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Table 5.1: An Instance of the Movie Database

Movie Director Actor Genre Class

Godfather II Scorsese De Niro Crime l1

Good Fellas Coppola De Niro Crime l1

Vertigo Hitchcock Stewart Thriller l2

N by NW Hitchcock Grant Thriller l2

Bishop’s Wife Koster Grant Comedy l2

Harvey Koster Stewart Comedy l2

only deliver a local picture of the similarity, and are not data-driven. In ad-

dition, none of them provides a comprehensive picture of similarity between

categorical attributes by combining relevant aspects. Below, we illustrate

the problem with SMS and the challenge of analyzing the categorical data

similarity.

As shown in Table 5.1, six movie objects are divided into two classes

with three nominal attributes: director, actor and genre. The SMS mea-

sure between directors “Scorsese” and “Coppola” is 0, but “Scorsese” and

“Coppola” are very similar1. Another observation by following SMS is that

the similarity between “Koster” and “Hitchcock” is equal to that between

“Koster” and “Coppola”; however, the similarity of the former pair should

be greater because both directors belong to the same class l2.

The above examples show that it is much more complex to analyze the

similarity between nominal variables than between continuous data. SMS

and its variants fail to capture a global picture of the genuine relationship

for nominal data. With the exponential increase of categorical data such as

that derived from social networks, it is important to develop eective and

ecient measures for capturing the similarity between nominal variables.

The similarity between categorical values is sensitive to the data charac-

teristics. In general, two attribute values are expected to be similar if they

present analogous frequency distributions within one attribute (e.g. OF and

1A conclusion drawn from a well-informed cinematic source.
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Lin) (Boriah et al. 2008, Lin 1998); this reects the intra-coupled similarity

within attributes. For example, two directors are very similar if they appear

with almost the same frequency, such as “Scorsese” with “Coppola” and

“Koster” with “Hitchcock”. However, the reality is that the former director

pair is more similar than the latter. Ahmad and Dey (Ahmad & Dey 2007)

introduced the co-occurrence probability of categorical values from dierent

attributes and compared this probability for two categorical values from the

same attribute. This means that the similarity between directors relates to

the dependency of “director” on other attributes such as “actor” and “genre”

over all the movie objects: namely, the inter-coupled similarity between at-

tributes. They both capture local pictures of the similarity from dierent

perspectives. A detailed review of the related work on categorical behavior

analysis can be found in Section 2.3. No work has been reported on systemat-

ically considering both intra-coupled similarity and inter-coupled similarity.

The incomplete description of the categorical value similarity leads to ten-

tative and less eective learning performance. In addition, it is usually very

costly to consider the similarity between values in relation to the depen-

dency between attributes and the aggregation of such dependency (Ahmad

& Dey 2007), which is veried in Section 5.5.

In this chapter, we explicitly discuss the data-driven intra-coupled sim-

ilarity and inter-coupled similarity, as well as their global aggregation in

unsupervised learning on nominal data, reecting our non-IIDness design

in this research task. We propose a Coupled Attribute Similarity for Ob-

jects (CASO) measure based on a Coupled Attribute Similarity for Values

(CASV ) measure, by considering both the Intra-coupled and Inter-coupled

Attribute Value Similarities (IaASV and IeASV ), which globally capture the

attribute value frequency distribution and the attribute dependency aggrega-

tion respectively with high accuracy and relatively low complexity. Then, we

compare the accuracy and eciency of the four proposed measures for IeASV

in terms of four relationships: power set, universal set, join set and intersec-

tion set, and obtain the most ecient candidate based on the intersection
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set (i.e. IRSI ) from theoretical and experimental aspects. In addition, the

proposed measures are compared with the state-of-the-art metrics on vari-

ous benchmark categorical data sets in terms of the internal and external

clustering criteria, as well as the classication accuracy. All the results are

statistically signicant. During the whole process, a method is proposed to

exibly dene the dissimilarity metrics with the proposed similarity build-

ing blocks according to specic requirements. Finally, it is also remarkable

to note that two new coupled categorical clustering algorithms, which are

CROCK and CLIMBO, are accordingly proposed and veried.

The chapter is organized as follows. Preliminary denitions are specied

in Section 5.2. Section 5.3 proposes the framework of the coupled attribute

similarity analysis. Section 5.4 denes the intra-coupled similarity, inter-

coupled similarity, and their aggregation. The theoretical analysis is given in

Section 5.5. We describe the CASO algorithm in Section 5.6. The eciency

and eectiveness of CASO are empirically studied in Section 5.7, two new

categorical clustering methods (CROCK and CLIMBO) are introduced, and

a exible method to dene dissimilarity metrics is also developed. Finally,

we conclude this work and address future work in Section 5.8.

5.2 Preliminary Denitions

A large number of data objects with the same attribute set can be organized

by an information table S =< U,A, V, f >, where universe U = {u1, · · · , um}
is composed of a nonempty nite set of data objects; A = {a1, · · · , an} is a

nite set of attributes; V =
n

j=1 Vj is a collection of attribute value sets,

in which Vj is the set of attribute values from attribute aj(1 ≤ j ≤ n); and

f =
n

j=1 fj, fj : U → Vj(1 ≤ j ≤ n) is an information function which assigns

a particular value of attribute aj to every object. For instance, Table 5.2 is an

information table consisting of six objects {u1, · · · , u6} and three attributes

{a1, a2, a3}, the attribute value of object u1 for attribute a2 is f2(u1) = B1,

and the set of all attribute values for a2 is V2 = {B1,B2,B3}.
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Table 5.2: An Example of Information Table
HHHHHHHHU

A
a1 a2 a3

u1 A1 B1 C1
u2 A2 B1 C1
u3 A2 B2 C2
u4 A3 B3 C2
u5 A4 B3 C3
u6 A4 B2 C3

Generally speaking, the similarity between two objects ux, uy(∈ U) can

be built on top of the similarities between their attribute values vxj , v
y
j (∈ Vj)

for all attributes aj ∈ A. Here, vxj and vyj indicate the respective attribute

values of objects ux and uy for the attribute aj, for example, v12 = B1 and

v21 = A2. By proposing a coupled attribute value similarity measure, we

dene a new object similarity for categorical data. The basic concepts below

facilitate the formulation for a coupled attribute value similarity measure.

They are exemplied by Table 5.2. Below, an information table S is given,

and |set| is the number of elements in a certain set.

Denition 5.2.1 (SIF) Two Set Information Functions (SIFs) are

dened as:

Fj : 2
U → 2Vj , Fj(U

) = {fj(ux)|ux ∈ U }, (5.2.1)

Gj : 2
Vj → 2U , Gj(V


j ) = {ui|fj(ui) ∈ V 

j }, (5.2.2)

where 1 ≤ j ≤ n, 1 ≤ i ≤ m, U  ⊆ U and V 
j ⊆ Vj.

These SIF s describe the relationships between objects and attribute val-

ues from dierent levels. Function Fj(U
) assigns the associated value set of

attribute aj to the object set U . Function Gj(V

j ) maps the value set V 

j of

attribute aj to the dependent object set. For example, based on the attribute

a2, F2({u1, u2, u3}) = {B1,B2} collects the attribute values of u1, u2 and u3;

110



CATEGORICAL COUPLED BEHAVIOR ANALYSIS

and G2({B1,B2}) = {u1, u2, u3, u6} returns the objects whose attribute values
are B1 and B2.

Note that in the two denitions below, the superscripts x and y of vj

are omitted, since any attribute value vj ∈ Vj used here is independent of

the objects ux and uy. However, vxj and vyj are reused when dening the

similarities in the following sections.

Denition 5.2.2 (IIF) The Inter-information Function (IIF) obtains

a value subset of attribute ak for the corresponding objects, which are derived

from the value vj of attribute aj. It is dened as:

ϕj→k : Vj → 2Vk , ϕj→k(vj) = Fk(Gj({vj})). (5.2.3)

This IIF ϕj→k is the composition of Fk and Gj. The involved subscript

j → k means that this mapping ϕ is performed from attribute aj to at-

tribute ak. Intuitively, ϕj→k(vj) computes the set of attribute values from

attribute ak that co-occurs with a particular attribute value vj from attribute

aj. For example, ϕ2→1(B1) = {A1,A2} species that the attribute values B1

of attribute a2 and {A1,A2} of attribute a1 are related by the corresponding

objects: u1 and u2.

Denition 5.2.3 (ICP) The value subset V 
k(⊆ Vk) of attribute ak, and

the value vj(∈ Vj) of attribute aj, then the Information Conditional

Probability (ICP) of V 
k with respect to vj is Pk|j(V 

k|vj), dened as:

Pk|j(V

k|vj) =

|Gk(V

k)


Gj({vj})|

|Gj({vj})|
. (5.2.4)

Intuitively, when given all the objects with the value vj of attribute aj,

ICP is the percentage of common objects whose values of attribute ak fall

in subset V 
k and whose values of attribute aj are exactly vj as well. For

example, P1|2({A1}|B1) = 0.5.

All these concepts and functions form the foundation for formalizing the

coupled interactions within and between categorical attributes, as presented

below. The main notations in this chapter are listed in Table 5.3.
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Table 5.3: List of Main Notations in Chapter 5

Variable Explanation

{u1, · · · , um} The set of m objects U

{a1, · · · , an} The set of n attributes A

l(∈ L) Any label in the label (class) set L

V 
j (⊆ Vj) The subset of value set Vj of attribute aj

R(= max |Vj|) The maximal number of values of each attribute

vxj , v
y
j (∈ Vj) Specic values of attribute aj for objects ux, uy

vk(∈ Vk) Any value of attribute ak

5.3 Framework of the Coupled Attribute Sim-

ilarity Analysis

In this section, a framework for coupled attribute similarity analysis is pro-

posed from a global perspective of the intra-coupled interaction within an

attribute, the inter-coupled interaction among multiple attributes, and the

integration of both.

With respect to the intra-coupled interaction, the similarity between at-

tribute values is considered by examining the occurrence frequencies of them

within one attribute. For the inter-coupled interaction, the similarity be-

tween attribute values is captured by exposing the co-occurrence dependency

of them on the values of other attributes. For example, the coupled value

similarity between B1 and B2 (i.e. values of attribute a2) concerns both the

intra-coupling relationship specied by the repeated times of values B1 and

B2: 2 and 2, and the inter-coupled interaction triggered by the other two

attributes (a1 and a3). Next, the coupled interaction is derived by the in-

tegration of intra-coupling and inter-coupling. In this way, the couplings of

attributes lead to more accurate similarity (∈ [0, 1]) between attribute values,

rather than a rude assignment of either 0 or 1.

In the framework described in Figure 5.1, the couplings of attributes
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Figure 5.1: A framework of coupled attribute similarity analysis, where

 indicates intra-coupling and ←→ refers to inter-coupling.

are revealed via the similarity between attribute values vxj and vyj of each

attribute aj by means of the intra-coupling and inter-coupling. Further,

the coupled similarity for objects is built on top of the pairwise similarity

between attribute values according to the integration of couplings. Finally,

three learning tasks are explored for the data structure, data clustering, and

data classication by incorporating the coupled interactions, revealing that

the couplings of attributes are essential to learning applications in empirical

studies.

Given an information table S with a set of m objects U and a set of n

attributes A, we specify those interactions and couplings individually in the

following sections.

5.4 Coupled Attribute Similarity

The attribute couplings are proposed in terms of both intra-coupled and

inter-coupled similarities. Below, the intra-coupled and inter-coupling rela-

tionships, as well as the integrated coupling, are formalized and exemplied.
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5.4.1 Intra-coupled Interaction

According to (Gan et al. 2007), the discrepancy in attribute value occur-

rence times reects the value similarity in terms of frequency distribution. It

reveals that greater similarity is assigned to the attribute value pair which

owns approximately equal frequencies. The higher these frequencies are, the

closer the two values are. Dierent occurrence frequencies therefore indicate

distinct levels of attribute value signicance.

These principles are also consistent with the similarity theorem presented

in (Lin 1998), in which the commonality corresponds to the product of fre-

quencies and the full description relates to the total sum of individual fre-

quencies and their product. In addition, a comparative evaluation on sim-

ilarity measures for categorical data has been done in (Boriah et al. 2008),

delivering OF and Lin as the two best similarity measures among 14 exist-

ing measures on 18 data sets. Both these measures assign higher weights to

mismatches or matches on frequent values, and the maximum similarity is

attained when the attribute values exhibit approximately equal frequencies

(Boriah et al. 2008).

Thus, when calculating attribute value similarity, we consider the rela-

tionship between the attribute value frequencies of an attribute, proposed as

intra-coupled similarity to satisfy the above principles.

Denition 5.4.1 (IaASV) The Intra-coupled Attribute Similarity for

Values (IaASV) between values vxj and vyj of attribute aj is:

δIaj (vxj , v
y
j ) =

|Gj({vxj })| · |Gj({vyj })|
|Gj({vxj })|+ |Gj({vyj })|+ |Gj({vxj })| · |Gj({vyj })|

. (5.4.1)

Since 1 ≤ |Gj(v
x
j )|, |Gj(v

y
j )| ≤ m and 2 ≤ |Gj(v

x
j )| + |Gj(v

y
j )| ≤ m, then

δIaj ∈ [1/3,m/(m+4)] is obtained according to Proof (a) in the Appendix of

Section 5.9. For example, in Table 5.2, both B1 and B2 are observed twice,

δIa2 (B1,B2) = 0.5.
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Note that there is still an issue in the above denition: if two attribute val-

ues vxj and vyj have the same frequency, then we have δIaj (vxj , v
x
j ) = δIaj (vxj , v

y
j ).

This is somewhat intuitively problematic, but the inter-coupled similarity

proposed in the next section remedies this issue because the inter-coupled

similarities between vxj , v
x
j and between vxj , v

y
j are overwhelmingly distinct.

By taking into account the frequencies of categories, IaASV characterizes

the value similarity in terms of attribute value occurrence times.

5.4.2 Inter-coupled Interaction

IaASV considers the interaction between attribute values within an attribute

aj. It does not involve the couplings between attributes (e.g. between at-

tributes ak(k = j) and aj) when calculating attribute value similarity. For

this, we discuss the dependency aggregation, i.e. inter-coupled interaction.

In 1993, Cost and Salzberg (Cost & Salzberg 1993) presented a power-

ful new method MVDM for measuring the dissimilarity between categorical

values. MVDM takes into account the overall similarity of classication of

all objects on each possible value of each attribute. The dissimilarity Dj|L

between two attribute values vxj and vyj for a specic attribute aj regarding

labels L is:

Dj|L(v
x
j , v

y
j ) =



l∈L
|Pl|j({l}|vxj )− Pl|j({l}|vyj )|, (5.4.2)

where l(∈ L) is a label in the information table S. Pl|j is the ICP dened

in (6.2.1) by replacing the attribute ak with the label l, the attribute value

subset V 
k with the label subset L ⊆ L (here L = {l}), in which g∗l (L

)

refers to the set of objects whose labels fall in L. Dj|L indicates that values

are identied as being similar if they occur with the same relative frequency

for all classes. According to the principle (Gibbs & Su 2002) that, for the

categorical data distribution, the sum of L1 dissimilarities and twice the total

variation dissimilarity are equivalent, we have:

Dj|L(v
x
j , v

y
j ) = 2 ·max

L⊆L
|Pl|j(L

|vxj )− Pl|j(L
|vyj )|. (5.4.3)
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The detailed proof on the equivalence between Equations (5.4.2) and (5.4.3)

is specied by Proof (b) in the Appendix of Section 5.9.

In the absence of labels, the above (5.4.3) is adapted to satisfy our target

problem by replacing the class label information with other attribute knowl-

edge to enable unsupervised learning. We regard this interaction between

attributes as inter-coupled similarity in terms of the co-occurrence compar-

isons of ICP. The most intuitive variant of (5.4.3) is IRSP :

Denition 5.4.2 (IRSP) The Inter-coupled Relative Similarity based

on Power Set (IRSP) between values vxj and vyj of attribute aj based on

another attribute ak is dened as δPj|k(v
x
j , v

y
j , Vk) (below δPj|k for short):

δPj|k = min
V 
k⊆Vk

{2− Pk|j(V

k|vxj )− Pk|j(V 

k|vyj )}, (5.4.4)

where V 
k = Vk\V 

k is the complementary set of a set V 
k under the complete

value set Vk of attribute ak.

The main dierences between (5.4.4) and (5.4.3) are: 1) the multiplier 2

in (5.4.3) is omitted; 2) labels are replaced with other values of a particular

attribute ak, i.e., V

k and Vk are substituted for L and L, respectively; 3)

a complementary set V 
k rather than the original set V 

k is concerned for vyj

in ICP, note that Pk|j(V 
k|vyj )} = 1 − Pk|j(V 

k|vyj )}; and 4) dissimilarity is

considered rather than similarity: the new dissimilarity measure

D
j|k(v

x
j , v

y
j ) = max

V 
k⊆Vk

|Pk|j(V

k|vxj ) + Pk|j(V 

k|vyj )− 1| (5.4.5)

is obtained by following the previous three steps, then we have δPj|k = 1 −
D

j|k(v
x
j , v

y
j ). The detailed conversion process and relevant proof are provided

in Proof (c) in the Appendix of Section 5.9. In fact, two attribute values

are closer to each other if they have more similar probabilities with other

attribute value subsets in terms of co-occurrence object frequencies.

In Table 5.2, by employing (5.4.4), we want to obtain δP2|1(B1,B2, {Ai}4i=1),

i.e. the similarity between two attribute values B1,B2 of attribute a2 regard-

ing attribute a1. As shown in Table 5.4.2, the set of all attribute values of
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Table 5.4: Example of Computing Similarity Using IRSP

V 
1 V 

1 P1|2(V 
1 |B1) P1|2(V 

1 |B2)
2− P1|2(V 

1 |B1)

−P1|2(V 
1 |B2)

∅ {A1,A2,A3,A4} 0 1 1

{A1} {A2,A3,A4} 0.5 1 0.5

· · · · · · · · · · · · · · ·
{A1,A2,A3,A4} ∅ 1 0 1

attribute a1 is V1 = {A1,A2,A3,A4}. The number of all power sets within

V1 is 24, i.e., the number of the combinations consisting of V 
1 ⊆ V1 and

V 
1 ⊆ V1 is 24. The minimal value among them is 0.5, which indicates that

the corresponding similarity δP2|1 is 0.5.
This process shows that the combinational explosion brought about by the

power set needs to be considered when calculating attribute value similarity

by IRSP. For a given set of attribute values, the power set considers all

the subsets, the universal set concerns all the elements involved, and the

join and intersection sets focus on parts of the elements. We start with the

power set-based IRSP, and will proceed to the universal set-based IRSU, the

join set-based IRSJ, and the intersection set-based IRSI to see whether the

problem can be reduced in this way. We therefore try to dene three more

similarity metrics IRSU, IRSJ, IRSI based on IRSP.

Denition 5.4.3 (IRSU, IRSJ, IRSI) The Inter-coupled Relative Sim-

ilarity based on Universal Set (IRSU), Join Set (IRSJ), and In-

tersection Set (IRSI) between values vxj and vyj of attribute aj based

on another attribute ak are dened as δUj|k(v
x
j , v

y
j , Vk), δJj|k(v

x
j , v

y
j , Vk) and

δIj|k(v
x
j , v

y
j , Vk) (below δj|k, δJj|k, and δIj|k for short), respectively:

δUj|k = 2−


vk∈Vk

max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}, (5.4.6)

δJj|k = 2−


vk∈
⋃
max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}, (5.4.7)

δIj|k =


vk∈
⋂
min{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}, (5.4.8)
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where vk ∈ 
and vk ∈ 

denote vk ∈ ϕj→k(x)


ϕj→k(y) and vk ∈
ϕj→k(v

x
j )


ϕj→k(v

y
j ), respectively.

In the above, each value vk(∈ Vk) of attribute ak, rather than its value

subset V 
k ⊆ Vk, is considered to reduce computational complexity. As shown

in Table 5.5, the similarity δU2|1 based on IRSU is δU2|1(B1,B2, {Ai}4i=1) =

2−0.5−0.5−0−0.5 = 0.5. Since IRSU only concerns all the single attribute

values rather than exploring the whole power set, it solves the combinational

explosion issue to a great extent. In IRSU, ICP is merely calculated 8 times

compared with 32 times by IRSP, which leads to a substantial improvement

in eciency.

Table 5.5: Computing Similarity Using IRSU

vk P1|2({vk}|B1) P1|2({vk}|B2) max

A1 0.5 0 0.5

A2 0.5 0.5 0.5

A3 0 0 0

A4 0 0.5 0.5

IIF (5.2.3) is used to further reduce the time cost of ICP with two more

similarity measures: IRSJ (5.4.7) and IRSI (5.4.8). With (5.4.7), the calcu-

lation of δJ2|1 is further simplied since A3 ∈ ϕ2→1(B1)


ϕ2→1(B2). As shown

in Table 5.6, we obtain δJ2|1(B1,B2, {Ai}4i=1) = 2−0.5−0.5−0.5 = 0.5, which

reveals the fact that it is enough to compute ICP with w ∈ V1 that belongs

to ϕ2→1(B1)


ϕ2→1(B2) instead of all the elements in V1. From this aspect,

IRSJ further reduces the complexity compared to IRSU.

Based on IRSU, an alternative IRSI is concerned. With (5.4.8), the

calculation of δI2|1 is once again simplied as in Table 5.7 since only A2 ∈
ϕ2→1(B1)


ϕ2→1(B2). Then, we easily get δI2|1(B1,B2, {Ai}4i=1) = 0.5. In

this case, it is sucient to compute ICP with A2 ∈ V1 which only belongs

to ϕ2→1(B1)


ϕ2→1(B2). It is trivial that the cardinality of intersection


is no larger than that of join set

. Thus, IRSI is more ecient than IRSU

due to the reduction of intra-coupled relative similarity complexity.
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Table 5.6: Computing Similarity Using IRSJ

vk P1|2({vk}|B1) P1|2({vk}|B2) max

A1 0.5 0 0.5

A2 0.5 0.5 0.5

A4 0 0.5 0.5

Table 5.7: Computing Similarity Using IRSI

vk P1|2({vk}|B1) P1|2({vk}|B2) min

A2 0.5 0.5 0.5

Intuitively, IRSI is the most ecient of all the proposed inter-coupled

relative similarity measures: IRSP, IRSU, IRSJ, IRSI. In fact, all four mea-

sures lead to the same similarity result, such as 0.5 in our example. These

measures are mathematically equivalent to one another. This assumption is

proved in Section 5.5.

Accordingly, the similarity between the value pair (vxj , v
y
j ) of attribute aj

can be calculated on top of these four optional measures by aggregating all

the relative similarity on attributes other than aj.

Denition 5.4.4 (IeASV) The Inter-coupled Attribute Similarity for

Values (IeASV) between attribute values vxj and vyj of attribute aj is:

δIej (vxj , v
y
j , {Vk}k =j) =

n

k=1,k =j

αkδj|k(v
x
j , v

y
j , Vk), (5.4.9)

where αk is the weight parameter for attribute ak,
n

k=1,k =j αk = 1, αk ∈
[0, 1], and δj|k(vxj , v

y
j , Vk) is one of the inter-coupled relative similarity candi-

dates.

Therefore, δIej ∈ [0, 1]. For the parameter αk, in this chapter, we simply

assign αk = 1/(n−1). For example, in Table 5.2, we then have δIe2 (B1,B2, {V1,

V3}) = 0.5 · δ2|1(B1,B2, {Ai}4i=1)+0.5 · δ2|3(B1,B2, {Ci}3i=1) = 0.25 if α1 and α3

equal to 0.5.
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5.4.3 Coupled Interaction

So far, we have built formal denitions for both IaASV and IeASV measures.

IaASV emphasizes the attribute value occurrence frequency, while IeASV

focuses on the co-occurrence comparison of ICP with four inter-coupled rel-

ative similarity options. Then, the Coupled Attribute Similarity for Values

(CASV) is naturally derived by simultaneously considering both measures.

Denition 5.4.5 (CASV) The Coupled Attribute Similarity for Val-

ues (CASV) between attribute values vxj and vyj of attribute aj is:

δAj (v
x
j , v

y
j , {Vk}nk=1) = δIaj (vxj , v

y
j ) · δIej (vxj , v

y
j , {Vk}k =j), (5.4.10)

where Vk(k = j) is a value set of attribute ak dierent from aj to enable the

inter-coupled interaction. δIaj and δIej are IaASV and IeASV, respectively,

which will be detailed in the following sections.

As indicated in Equation (5.4.10), CASV gets larger by increasing either

IaASV or IeASV. Here, we choose the multiplication of these two compo-

nents. The rationale is twofold: (1) IaASV is associated with how often the

value occurs while IeASV reects the extent of the value dierence brought

by other attributes, hence intuitively, the multiplication of them indicates the

total amount of attribute value dierence; (2) the multiplication method is

consistent with the adapted simple matching distance introduced in (Gan

et al. 2007). Alternatively, in our future work, we could consider other

combination forms of IaASV and IeASV according to the data structure,

such as δAj (v
x
j , v

y
j , {Vk}nk=1) = β · δIaj (vxj , v

y
j ) + γ · δIej (vxj , v

y
j , {Vk}k =j), where

0 ≤ β, γ ≤ 1 (β + γ = 1) are the corresponding weights. Thus, IaASV and

IeASV can be controlled exibly to display in which cases the former is more

signicant than the latter, and vice-versa.

Additionally, δAj = δIaj ·δIej ∈ [0,m/(m+4)] since we have δIaj ∈ [1/3,m/(m+

4)](m ≥ 2) as well as δIej ∈ [0, 1]. For example, in Table 5.2, the CASV of

attribute values B1 and B2 is δ
A
2 (B1,B2, {V1, V2, V3}) = δIa2 (B1,B2)·δIe2 (B1,B2,

{V1, V3}) = 0.5×0.25 = 0.125. For the Movie data set, then δADirector(Scorsese,
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Coppola) = δADirector(Coppola, Coppola) = 0.33, and δADirector(Koster, Coppola)

= 0 while δADirector (Koster,Hitchcock) = 0.25. They correspond to the fact

that “Scorsese” and “Coppola” are very similar directors just as “Coppola”

is to himself, and the similarity between “Koster” and “Hitchcock” is larger

than that between “Koster” and “Coppola”, as claried in Section 5.1.

In the following theoretical analysis in Section 5.5, the computational

accuracy and complexity of the four inter-coupled relative similarity options

are analyzed.

5.5 Theoretical Analysis

This section compares the proposed four inter-coupled relative similarity

measures (IRSP, IRSU, IRSJ and IRSI ) in terms of their computational

accuracy and complexity.

1) Accuracy Equivalence

According to the set theory, these four measures are equivalent to one

another in calculating value similarity. We therefore have the following the-

orem, which is deduced by Proof (d) in the Appendix of Section 5.9.

Theorem 5.5.1 Similarity measures IRSP, IRSU, IRSJ and IRSI are all

equivalent to one another.

The above theorem indicates that IRSP, IRSU, IRSJ, and IRSI are equiv-

alent to one another in terms of the information and knowledge they present.

It also explains the similarity result in Section 5.4.2. Thus, these measures

can induce exactly the same computational accuracy in dierent learning

tasks including classication and clustering.

2) Computational Complexity Comparison

When calculating the similarity between every pair of attribute values for

all attributes, the computational complexity linearly depends on the time

cost of ICP, which is quantied by the calculation counts of ICP. This re-

ects the eciency dierence between distinct similarity measures. Table
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Table 5.8: Time Cost of ICP

Metric Calculation Times of ICP δ2|1(B1,B2)

IRSP 2 · 2|Vk| 32

IRSU 2 · |Vk| 8

IRSJ 2 · |ϕj→k(v
x
j )


ϕj→k(v

y
j )| 6

IRSI 2 · |ϕj→k(v
x
j )


ϕj→k(v

y
j )| 2

5.8 summarizes the time costs of the four inter-coupled relative similarity

measures.

Let |ICP
(M)
j|k | represent the time cost of ICP for δMj|k(v

x
j , v

y
j ) with the

associated measure M = {P,U, J, I}, whose elements are IRSP, IRSU, IRSJ,

and IRSI, respectively. From Table 5.8, |ICP
(P )
j|k | ≥ |ICP

(U)
j|k | ≥ |ICP

(J)
j|k | ≥

|ICP
(I)
j|k | holds constantly. It demonstrates the competitive eciency of IRSI

compared to the other three measures. In Table 5.2, 32 calculation counts of

ICP are required in IRSP, compared with only two calculation counts when

using IRSI.

Suppose the maximal number of values for all the attributes is R(=

maxnj=1 |Vj|). In total, the number of value pairs for all the attributes is at

most n ·R(R− 1)/2, which is also the number of calculation steps. For each

inter-coupled relative similarity, we calculate ICP for |ICP
(M)
j|k | times. As we

have n attributes, the total ICP time cost for CASV is 2 · |ICP
(M)
j|k | · (n− 1)

ops per step. The computational complexity for calculating all four options

of CASV is shown in Table 5.9.

As indicated in Table 5.9, all the measures have the same calculation

steps, while their ops per step are sorted in descending order since 2R > R ≥
R∪ ≥ R∩, in which R∪ and R∩ are the cardinality of the join and intersection

sets of the corresponding IIF s, respectively. This evidences that the com-

putational complexity essentially depends on the time cost of ICP linearly

with given data. Specically, IRSP has the largest complexity O(n2R22R),

compared to the smaller equal ones O(n2R3) presented by the other three

measures (IRSU, IRSJ, and IRSI ). Of the latter three candidates, though
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Table 5.9: Computational Complexity for CASV

Metric Calculation Steps Flops per Step Complexity

IRSP nR(R− 1)/2 2(n− 1)2R O(n2R22R)

IRSU nR(R− 1)/2 2(n− 1)R O(n2R2R)

IRSJ nR(R− 1)/2 2(n− 1)R∪ O(n2R2R)

IRSI nR(R− 1)/2 2(n− 1)R∩ O(n2R2R)

they have the same computational complexity, IRSI is the most ecient

due to R∩ ≤ R∪ ≤ R. In fact, the dissimilarity ADD that Ahmad and

Dey (Ahmad & Dey 2007) used for mixed data clustering corresponds to the

worst measure IRSP.

Considering both the accuracy analysis and complexity comparison, we

conclude that IRSI is the best performing measure because it indicates the

least complexity but maintains equal accuracy to present couplings.

5.6 Coupled Similarity Algorithm

In previous sections, we have discussed the construction of CASV and its the-

oretical comparison among the inter-coupled relative similarity candidates.

In this section, a coupled similarity between objects is built based on CASV.

Below, we consider the sum of all these CASV measures, following the Man-

hattan dissimilarity (Gan et al. 2007).

Denition 5.6.1 (CASO) Given an information table S, the Coupled

Attribute Similarity for Objects (CASO) between objects ux and uy

is CASO(ux, uy):

CASO(ux, uy) =
n

j=1

δAj (v
x
j , v

y
j , {Vk}nk=1), (5.6.1)

where δAj is the CASV measure dened in (5.4.10), vxj and vyj are the attribute

values of attribute aj for objects ux and uy respectively, and 1 ≤ x, y ≤ m,

1 ≤ j ≤ n.
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For CASO, all the CASV s with each attribute are summed up for two

objects. For example the similarity between u2 and u3 in Table 5.2 is

CASO(u2, u3) =
3

j=1 δ
A
j (v

2
j , v

3
j , {Vk}3k=1) = 0.5 + 0.125 + 0.125 = 0.75.

CASO has the properties of non-negativity because CASO(ux, uy) ∈
[0,mn/(m+ 4)], in particular CASO(ux, ux) ∈ [n/3,mn/(m+ 4)], and sym-

metry, i.e. CASO(ux, uy) = CASO(uy, ux), but it does not guarantee the

property of triangle inequality. So CASO is a non-metric similarity measure.

We then design an algorithm CASO IRSI, given below, to compute the

coupled object similarity with IRSI (i.e. the best inter-coupled relative sim-

ilarity). The whole process of this algorithm is summarized as follows: (1)

Compute the IaASV for values vxj and vyj of attribute aj (Line 5); (2) Com-

pute the IeASV for attribute values vxj and vyj based on IRSI (Line 10 to

Line 20); (3) Compute the CASV for attribute values vxj and vyj (Line 6); (4)

Compute the CASO for two objects ux and uy (Line 7).

Before the similarity calculation is performed, some data preprocessing

is conducted to enable this algorithm. In detail, all the categories of each

attribute need to be encoded as numberings, starting at one and increasing

to the maximum, which is the respective number of attribute values. To re-

duce unnecessary iterations in Line 7, pairwise CASV similarity for any two

values of the same attribute, rather than the only two values involved of each

attribute, is pre-calculated for reuse when computing the object similarity.

Explicitly, this pseudocode also embodies the fact that the computational

complexity for IRIS is indeed O(n2R3). However, it might not be very at-

tractive for extremely large data sets with attributes that take too many

values. Thus, we are working on strategies of attribute reduction to eec-

tively reduce the number of coupled attributes.

5.7 Experiments and Evaluation

In this section, several experiments are performed on extensive UCI data sets

and bibliographic data (i.e. Table 5.10) to show the eectiveness and e-
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Algorithm 5.1: Coupled Attribute Similarity for Objects CASO IRSI

Data: Data set Sm×n with m objects and n attributes, object

ux, uy(x, y ∈ [1,m]), and weight α = (αk)1×n.

Result: Coupled Similarity for objects CASO(ux, uy).

1 begin

// Compute pairwise similarity for any two values of the

same attribute.

2 for attribute aj, j = 1 : n do

3 for every value pair (vxj , v
y
j ∈ [1, |Vj |]) do

4 U1 ←− {i|vij == vxj }, U2 ←− {i|vij == vyj };
// Compute intra-coupled similarity for values vxj , v

y
j .

5 δIaj (vxj , v
y
j ) = (|U1||U2|)/(|U1|+ |U2|+ |U1||U2|);

// Compute coupled similarity for two attribute

values vxj and vyj .

6 δAj (v
x
j , v

y
j , {Vk}nk=1) ←− δIaj (vxj , v

y
j ) · IeASV (vxj , v

y
j , {Vk}k =j);

// Compute coupled similarity between two objects ux, uy.

7 CASO(ux, uy) ←− sum(δAj (v
x
j , v

y
j , {Vk}nk=1));

8 end

9 Function IeASV (vxj , v
y
j , {Vk}k =j)

10 begin

// Compute inter-coupled similarity for two values vxj , v
y
j .

11 for attribute (k = 1 : n) ∧ (k = j) do

12 {vzk}z∈U3 ←− {vxk}x∈U1

{vyk}y∈U2 ;

13 for intersection z = U3(1) : U3(|U3|) do
14 U0 ←− {i|vik == vzk};
15 ICPx ←− |U0


U1|/|U1|;

16 ICPy ←− |U0


U2|/|U2|;
17 Min(x,y) ←− min(ICPx, ICPy);

// Compute IRSI for vxj and vyj .

18 δIj|k(v
x
j , v

y
j , Vk) = sum(Min(x,y));

19 δlej (v
x
j , v

y
j , {Vk}k =j) = sum[α(k)× δIj|k(v

x
j , v

y
j , Vk)];

20 return δlej (v
x
j , v

y
j , {Vk}k =j);
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Table 5.10: Description of Data Sets in Chapter 5

Data Set Object Attribute Class

Movie 6 3 2

MMR 10 6 3

Shuttle 15 6 2

Balloon 20 4 2

Lense 24 4 3

Corral 32 6 2

Soybean-small 47 35 4

Zoo 101 16 7

Molecular 106 57 2

DNA 106 59 2

Hayesroth 132 4 3

Led24 200 24 10

SPECT 267 22 2

Soybean-large 307 35 19

Voting 435 16 2

Breastcancer 699 9 2

Tic 958 9 2

Solar 1389 10 3

Car 1728 6 4

Letter 2341 16 3

Chess 3196 36 2

Mushroom 8124 22 2

Adult 30718 13 2

Bibliographic Data 720 4 2
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ciency of our proposed coupled similarity measures. All the experiments are

conducted on a Dell Optiplex 960 equipped with an Intel Core 2 Duo CPU

with a clock speed of 2.99 GHz and 3.25 GB of RAM running Microsoft Win-

dows XP. The experiments are divided in two categories: coupled similarity

comparisons and CASO applications. For simplicity, we assign the weight

vector α = (αk)1×n with values α(k) = 1/(n− 1) in Denition 5.4.4.

5.7.1 Coupled Similarity Comparison

To compare eciency, we conduct extensive experiments on the inter-coupled

relative similarity measures: IRSP, IRSU, IRSJ, and IRSI. Experiments are

rst performed for eciency comparison, followed by scalability analysis.

The time cost of ICP is quantied by the calculation counts of ICP.

Eciency Comparison

The goal in this set of experiments is to show the obvious superiority of

IRSI compared with the most time-consuming measure IRSP. As discussed

in Section 5.5, the computational complexity linearly depends on the time

cost of ICP with given data. Thus, we consider the comparison of complexity

represented by the time cost of ICP from the following two aspects.

In terms of a single attribute, the time costs of ICP onMovie (Ahmad

& Dey 2007), MMR, Soybean-small and Zoo data sets are shown in Figure

5.2. We only consider the attributes whose number of values is more than

1, thus, there are only 24 attributes for Soybean-small rather than 35. The

horizontal axis refers to the ordinal number of nominal attributes, e.g., 1

indicates attribute a1; while the vertical axis indicates the total time cost

(i.e. calculation counts) of ICP for all value pairs of each attribute with four

options: IRSP, IRSU, IRSJ, IRSI. The results show that for any individual

attribute, IRSI always has the smallest time cost, followed by IRSJ and

IRSU, while IRSP is far more time-consuming.

In more detail, we observe that the complexity of IRSP for each attribute

is around three or four times the size of IRSU for these four data sets.
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Figure 5.2: Complexity on individual attributes.

Theoretically, this ratio ξ(P/U) can be xed within an interval based on

the given data structure. Suppose we have an information table S with m

objects and n attributes. For all the attributes, let T (= minn
k=1 |Vj|) and R(=

maxnk=1 |Vj|) be their minimal and maximal number of values, respectively.

Then, for any attribute aj:

ξj(P/U) =
|ICP

(P )
j |

|ICP
(U)
j |

∈

2T

T
,
2R

R


, (5.7.1)

where |ICP
(M)
j | is the time cost of ICP for aj. Proof (e) in the Appendix

of Section 5.9 supports this statement. For Zoo, T = 2 and R = 6, and the

corresponding multiples ξj, which range from 2.0 to 3.5, all fall in [2, 10.7].

With respect to all attributes, all the time costs of ICP for all the

attribute value pairs are considered. Table 5.11 reports the total time cost of

ICP with four measures on 12 data sets in terms of relative proportion and
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Table 5.11: Complexity Comparison on All Attributes

Data Set Corral Voting Led24 Lense Tic Chess

R 2 2 2 3 3 3

T 2 2 2 2 3 2

n 6 16 24 4 9 36

ξ(U/P ) 50.0% 50.0% 50.0% 46.4% 37.5% 49.4%

ξ(I/J) 100% 100% 100% 100% 100% 88.7%

|ICP (U)| 120 960 2208 78 1296 5390

|ICP (I)| 120 960 2208 78 1296 4774

Data Set Movie Hayesroth Molecular Solar Mushroom Letter

R 4 4 4 7 12 16

T 3 3 4 2 1 10

n 3 4 57 10 22 16

ξ(U/P ) 27.8% 27.1% 25.0% 20.0% 1.7% 0.1%

ξ(I/J) 11.0% 100% 99.2% 82.3% 42.5% 48.4%

|ICP (U)| 212 468 153216 2544 76020 394294

|ICP (I)| 16 468 152022 1998 21736 140434

direct frequency, where R and n denote the maximal number of attribute

values and the number of attributes, respectively, and |ICP (M)| indicates
the total time cost of ICP for all the attributes. Let ξ(U/P ) and ξ(I/J) de-

note the proportions |ICP (U)|/|ICP (P )| and |ICP (I)|/|ICP (J)|, respectively.
Then ξ(U/P ) ∈ [R/2R, T/2T ] is deduced according to the proof of Equation

(5.7.1). This property can be checked in Table 5.11, 27.1% ∈ [25%, 37.5%]

for the data set Hayesroth.

These results also show that the eciency advantage of IRSU over IRSP

becomes more obvious when the maximal number of values R becomes larger,

i.e., the proportion ξ(U/P ) reduces monotonously from 50% to 0.1% when R

increases from 2 to 16. However, due to the fact that IRSJ and IRSI involve

the relevant join set and intersection set respectively, the variation tendency

of their relative eciency ratio ξ(I/J) ∈ [0, 1] mainly depends on the data

structure rather than R and n alone. The probability of achieving a smaller

ratio ξ(I/J) increases as R grows, since we have more opportunity to obtain
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an intersection set smaller than a join set. This can be observed in Table

5.11 by the fact that there is a general decreasing tendency that nevertheless

has several disorder ratios.

After xing R, we consider the variation law for the eciency of IRSU

and IRSI with the increasing n. It is found that the ICP time costs of both

measures become greater as n grows. For instance, the calculation frequency

of ICP for IRSI increases from 78 to 4774 when n varies between 4 and 36

with R = 3. Similarly, the time costs of the other two options (IRSU and

IRSI ) also increase when either n or R goes up. The superiority of IRSI

becomes more remarkable as the data grows more complicated and bigger

compared to the other three metrics. Table 5.11 further evidences that IRSI

is the most ecient measure in contrast to the worst measure, IRSP.

Scalability Analysis

As we have discussed in Section 5.5, the complexity for IRSP is O(n2R22R),

while the other three have equal smaller complexity O(n2R3). Here, scal-

ability analysis is explored in terms of the number of attributes n and the

maximal number of attribute values R separately.

From the perspective of the number of attributes n, the Soybean-

large data set is considered with 307 objects and 35 attributes. Here, we x

R as 7, and focus on n ranging from 5 to 35 with a step length of 5. In terms

of the total time cost of ICP, the computational complexity comparisons

among four measures (IRSP, IRSU, IRSJ, and IRSI ) are depicted in Figure

5.3 (a). The result indicates that the complexity of all these measures keeps

increasing when n becomes larger. The acceleration of IRSP (from 3328 to

74128) is the greatest by contrast to the slightest acceleration of IRSI (from

632 to 15704). Apart from these two, the scalability curves are almost the

same for IRSU and IRSI, though the complexity of IRSU is slightly higher

than that of IRSJ with varied n. Therefore, IRSI is the most stable and

ecient measure for calculating the intra-coupled relative similarity in terms

of the scalability on n.
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Figure 5.3: Scalability on n and R respectively.

From the perspective of the maximal number of attribute val-

ues R, the variation of R is considered when n is xed. Here, we take

advantage of the Adult data set with 30718 objects and 13 attributes chosen.

Specically, the integer attribute “fnlwgt” is discretized into dierent inter-

vals (from 10 to 10000) to form distinct R ranging from 16 to 10000, since

one of the existing categorial attributes “education” already has 16 values.

The outcomes are shown in Figure 5.3(b), in which the horizontal axis refers

to R, and the vertical axis indicates the relative complexity ratios in terms

of ξ(J/U), ξ(I/J), and ξ(I/U). From this gure, we observe all the ratios

between 10% and 100%, which again veries the complexity order for these

four measures indicated in Section 5.5. Another issue is that all three curves

decrease as R grows, which means the eciency advantage of IRSJ over

IRSU (from 85.5% to 46.8%), IRSI over IRSJ (from 78.2% to 40.2%), and

IRSI over IRSU (from 66.9% to 18.8%) all become more and more obvious
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with the increase of R. The general downturn trend of these ratios comes

from the fact that there is a higher probability of obtaining a join set smaller

than the whole set, and an intersection set smaller than the join set, with

larger R. The same conclusion also holds for the ratio ξ(U/P ), but this is

due to the monotonously decreasing property of ξ(U/P ) on R, which has

been proved in Proof (f) in the Appendix of Section 5.9. We omit this ratio

in Figure 5.3(b) since the denominator |ICP (P )| becomes exponentially large

when R grows, e.g., it equals to 5.12 × 1083 when R = 500. Hence, IRSI is

the least time-consuming intra-coupled similarity with regard to scalability

on R.

In summary, all of the above experiment results clearly show that IRSI

outperforms IRSU, IRSJ and IRSI on computational complexity, no matter

how small or large, simple or complicated a data set is. In particular, with

the increase in the number of either attributes or attribute values, IRSI

demonstrates superior eciency compared to the others. IRSJ and IRSU

follow, with IRSP being the most time-consuming, especially for large-scale

data.

5.7.2 Learning Applications

In this part of our experiments, we focus on two levels of algorithmic accuracy

comparison as follows:

1. Compare the proposed four intra-coupled measures: IRSP, IRSU, IRSJ,

and IRSI.

2. Compare our novel Coupled Attribute Dissimilarity for Objects (CADO)

induced from CASO with existing categorical dissimilarity measures.

Three independent groups of experiments are conducted with extensive data

sets based on machine learning applications. In the following, we evaluate

the CADO which is derived from (5.6.1):

CADO(ux, uy) =
n

j=1

h1[δ
Ia
j (vxj , v

y
j )] · h2[δ

Ie
j (vxj , v

y
j , {Vk}k =j)], (5.7.2)
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where h1(t) and h2(t) are decreasing functions. Based on intra-coupled and

inter-coupled similarities, h1(t) and h2(t) can be exibly chosen to build dis-

similarity measures according to specic requirements. In terms of the capa-

bility of revealing the data relationship, the better the induced dissimilarity,

the better is its similarity.

We consider h1(t) = 1/t − 1 and h2(t) = 1 − t here to reect the com-

plementarity of similarity and dissimilarity measures, since they are both

decreasing functions of t. Moreover, the rationale behind these two functions

is as follows. The rst conversion corresponds to the improved SMD with

frequency (Gan et al. 2007), if only 0 and 1 are assigned to δIej (i.e. SMD

(Hollingsworth, Bowyer & Flynn 2011): dissimilarity 0 for identical values,

and otherwise 1). The second transformation guarantees the consistency of

CADO with the dissimilarity measure ADD (Ahmad & Dey 2007), when a

constant is xed for δIaj . In addition, h1(t) = 1/t− 1 is also consistent with

the converted measures proposed in (Lin 1998); h2(t) = 1− t follows the way

of converting OF to OFD (Boriah et al. 2008), presented in the next section.

Both these functions are designed to include existing classical measures as

special cases of our proposed coupled similarity. The detailed degenerations

to the improved SMD and the ADD are explained in Section 7.4.2.

Data Structure Analysis

This section performs experiments to explicitly specify the internal structures

for the labeled data. Clusterings are normally evaluated by assigning the

best score to the algorithm that produces clusters with highest similarity

within a cluster and lowest similarity between clusters based on a certain

similarity measure. We work in a dierent way, in which similarity measures

are evaluated with the clustering criteria and given labels. In other words,

a better cluster structure can be claried with a better similarity measure

on the clustering internal descriptors, such as Sum-Square, Davies-Bouldin

Index (DBI) (Davies & Bouldin 1979), and Dunn Index (DI) (Dunn 1974).

To reect the data cluster structure more clearly, the induced dissimilarity
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Figure 5.4: Data structure index comparison.

metrics are evaluated by four descriptors: Relative Dissimilarity (RD), DBI,

DI, and Sum-Dissimilarity (SD). In detail, RD is the ratio of average inter-

cluster dissimilarity upon average intra-cluster dissimilarity for all cluster

labels; SD is the sum of object dissimilarities within all the clusters. Since

internal criteria seek clusters with high intra-cluster similarity and low inter-

cluster similarity, dissimilarity metrics that produce clusters with high RD

or DI and low DBI or SD are more desirable.

Four object dissimilarity metrics are considered here: Simple Matching

Dissimilarity (Gan et al. 2007) (SMD, i.e. Hamming distance (Hollingsworth

et al. 2011)), Occurrence Frequency Dissimilarity (OFD) (Boriah et al. 2008),

ADD proposed by Ahmad and Dey (Ahmad & Dey 2007), and CADO. SMD

is a simple, well-known measure for categorical data, while OFD considers

matching in terms of attribute value frequency distribution, both formalized

as the sum of value dissimilarities for all the attributes. Further, attribute

value dissimilarities DSMD
j = DOFD

j = 0 if vxj = xy
j , otherwise they equal
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1 and 1−

1 + log m

|Gj({vxj })|
· log m

|Gj({vyj })|
−1

for SMD and OFD, respectively.

The dissimilarity measure ADD, derived from (5.6.1) with the worst inter-

coupled relative similarity candidate IRSP, considers the sum of inter-coupled

interactions between all the corresponding attribute values. These three

measures only concern the local picture, while our proposed CADO is globally

formalized based on (5.7.2).

The cluster structures produced by the above four dissimilarity metrics

are then analyzed on 10 data sets in dierent scales. The results after dis-

similarity normalization are shown in Figure 5.4, where the X axis refers to

the data sets Movie, Balloon, Soybean-small, Zoo, Hayesroth, Voting, Breast-

cancer, Tic, Letter, and Mushroom, respectively. They are ordered according

to the number of objects involved (i.e. m) to describe distinct data scales,

ranging from 6 to 8124. As discussed previously, larger RD, larger DI, smaller

DBI, and smaller SD indicate better characterization of the cluster dieren-

tiation capability, which corresponds to a better dissimilarity metric being

induced. From Figure 5.4, we observe that, with the exception of a few items,

the corresponding RD and DI indexes on CADO are mostly the largest ones

when compared with those on SMD, OFD, and ADD ; while the associated

DBI and SD index curves on CADO are mostly below the other three curves.

The results show that our proposed CADO is better than SMD and OFD

in terms of dierentiating objects in distinct clusters. ADD also seems to

be slightly better than SMD and OFD in most cases. The degrees of im-

provement of CADO upon SMD, OFD, and ADD mainly depend on data

structure rather than on data scale |U |(= m) alone.

In constructing CADO, all four candidates (IRSP, IRSU, IRSJ, and IRSI )

are used. Just as we proved in Section 5.5, all the indexes are the same

regardless of exactly what δj|k(x, y) refers to, which directly veries that

these four intra-coupled relative similarity measures present equal accuracy.
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Clustering Evaluation

To demonstrate the eectiveness of our proposed CADO and CASO in clus-

tering applications, we conduct two groups of experiments: KM & SC and

ROCK & CROCK. The former compares two classical clustering methods

based on two dissimilarity metrics on six data sets. The latter considers

the clustering quality of the adapted method CROCK by integrating our

proposed CASO with the categorical clustering algorithm ROCK (Guha

et al. 2000). CADO or CASO is used with the outperforming measure IRSI.

(1) KM & SC

One of the clustering approaches is the k-modes (KM ) algorithm (Gan

et al. 2007), designed to cluster categorical data sets. The main idea of KM

is to specify the number of clusters k and then to select k initial modes, fol-

lowed by allocating every object to the nearest mode. The other is a branch

of graph-based clustering, i.e. spectral clustering (SC ) (Luxburg 2007),

which makes use of Laplacian Eigenmaps on a dissimilarity matrix to per-

form dimensionality reduction for clustering prior to the k-means algorithm.

In respect of attribute dependency aggregation, however, Ahmad and Dey

(Ahmad & Dey 2007) evidenced that their proposed metric ADD outperforms

SMD in terms of KM clustering. Thus, we aim to compare the performances

of ADD (Ahmad & Dey 2007) and CADO (5.7.2) for further clustering eval-

uation.

We conduct four groups of experiments on six UCI data sets: KM with

ADD, KM with CADO, SC with ADD, and SC with CADO. The clustering

performance is evaluated by comparing the obtained cluster of each object

with that provided by the data label in terms of accuracy (AC) and nor-

malized mutual information (NMI) (Cai et al. 2005), which are essentially

the external criteria compared with the internal criterion analysis in Section

5.7.2. AC ∈ [0, 1] is a degree of closeness between the obtained clusters and

its actual data labels, while NMI ∈ [0, 1] is a quantity that measures the mu-

tual dependence of two variables: clusters and labels. The larger AC or NMI

is, the better the clustering is, and the better the corresponding dissimilarity
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Figure 5.5: Clustering evaluation on six data sets.

metric is.

Figure 5.5 reports the results on six data sets with dierent |U |, ranging
from 15 to 699 in the increasing order. The performance of AC and NMI is

individually evaluated for KM-ADD, KM-CADO, SC-ADD, and SC-CADO.

Followed by Laplacian Eigenmaps, the subspace dimensions are determined

by the number of labels in SC. For each data set, the average performance is

computed over 100 tests for KM and SC with distinct start points.

As can clearly be seen from Figure 5.5, the clustering methods with

CADO, whether KM or SC, outperform those with ADD on both AC and

NMI. That is to say, the dissimilarity metric CADO is better than ADD for

measuring clustering quality. Specically for KM, the AC improving rate

ranges from 5.56% (Balloon) to 16.50% (Zoo), while the NMI improving

rate falls within 4.76% (Soybean-s, i.e., Soybean-small) and 37.38% (Breast-

cancer). With regard to SC, the former rate takes the minimal and maximal

ratios as 4.21% (Balloon) and 20.84% (Soybean-l, i.e., Soybean-large), re-
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Table 5.12: CROCK vs ROCK on UCI Data Sets

Data Set (|U |)
ROCK CROCK

Pr Re Sp Pr Re Sp

Movie (6) 0.88 0.75 0.92 1 1 1

Hayesroth (132) 0.43 0.39 0.62 0.45 0.44 0.67

SPECT (267) 0.73 0.62 0.57 0.71 0.76 0.62

Voting (435) 0.88 0.88 0.89 0.90 0.90 0.92

Mushroom (8124) 0.78 0.65 0.76 0.87 0.79 0.74

spectively, however, the latter rate belongs to [5.45% (Soybean-l), 38.12%

(Shuttle)]. Since AC and NMI evaluate clustering quality from dierent as-

pects, generally, they take minimal and maximal ratios on distinct data sets.

Statistical analysis, namely the t-test, has been done on AC and NMI, at a

95% signicance level. The null hypothesis that CADO is better than ADD

in terms of AC and NMI is accepted. Another signicant observation is that

SC mostly outperforms KM whenever it has the same dissimilarity metric;

this is consistent with the nding in (Luxburg 2007), indicating that SC very

often outperforms k-means for numerical data.

(2) ROCK & CROCK

ROCK, proposed by Guha et al. (Guha et al. 2000), is a robust clustering

algorithm for categorical attributes. A link-based similarity measure between

two data points is dened based on the neighborhood relation of the two data

points, rather than distance or similarity with other data points.

During the process of choosing neighbors for each data object, Guha et

al. simply considered the Jaccard coecient (Ribeiro & Harder 2011) to

capture the closeness between each pair of data objects, followed by the

determination of neighbors with a user-dened threshold parameter. Their

algorithm mainly focuses on the coupling relationship among objects, with-

out any concern for the coupling relationships among attributes and their

values. Therefore, we propose to replace the Jaccard coecient with our pro-

posed coupled nominal similarity CASO and to construct a coupled ROCK
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(CROCK ) algorithm by considering both coupled objects and coupled at-

tribute values. Specically, we regard two data objects ux and uy to be

neighbors if CASO(ux, uy)/n ≥ θ, instead of |ux


uy|/|ux


uy| ≥ θ pre-

sented in (Guha et al. 2000). The other procedures and functions remain the

same as (Guha et al. 2000).

Below, we experiment with ve real-life data sets, i.e. Movie, Hayesroth,

SPECT, Voting, and Mushroom, to compare the cluster quality between

ROCK and CROCK in terms of three measures: Precision (Pr), Recall (Re),

and Specicity (Sp) (Figueiredo et al. 2011, Andritsos et al. 2004). As de-

scribed in (Andritsos et al. 2004), the larger these indexes, the better the

clustering. The number of runs for each experiment here is set to be 20 to

obtain corresponding average results for the evaluation measures, due to the

high computational complexity.

Table 5.12 shows the results of these two algorithms on the aforemen-

tioned quality measures for the ve data sets. We choose parameters to ob-

tain the best results, such as θ = 0.75 for Voting. As this table indicates, the

adapted CROCK with our proposed CASO outperforms the original ROCK

on almost all the evaluation measures. Statistical testing also supports the

results on Pr, Re and Sp, that CROCK performs better than ROCK, at a

95% signicance level. Thus, CROCK ’s quality is veried to be superior to

that of ROCK due to the fact that the former considers both the couplings

between attributes with their values (through co-occurrence) and between

objects (by links).

Intra-attribute Value Clustering

In this part, we present the results of CASO applications to the problem of

intra-attribute value clustering. We use the bibliographic data taken from the

publicly-accessible bibliographic databases with 720 research papers (Gibson

et al. 2000). Some 190 papers focus on database research, and the remaining

530 papers are written on theoretical computer science and related elds. For

each paper, we record the name of the rst author, the name of the second au-
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Table 5.13: Clustering Qualities for First Author

Algorithm Parameters Pr Sp AC

STIRR � = 9,  = 10 0.5112 0.236 0.5278

LIMBO φ = 0.0, S = ∞ 0.6176 0.4891 0.5375

CLIMBO φ = 0.0, S = ∞ 0.8045 0.4718 0.7333

thor, the name of the conference/journal, and the year of publication. We are

interested in clustering the rst authors, as well as the conferences/journals.

STIRR applies an iterative method based on a linear dynamic system

to assign and propagate weights on the categorical values (Gibson et al.

2000) to conduct the intra-attribute value clustering, and LIMBO denes

a distance between attribute values on the basis of the IB framework to

quantify the degree of interchangeability of attribute values within a single

attribute to group them (Andritsos et al. 2004). Accordingly, we substitute

our proposed CADO in Equation (5.7.2) for the distance δI(ci, cj) described

by the information loss (i.e. Jensen-Shannon divergence) in (Andritsos et al.

2004), and then propose a coupled version of LIMBO, i.e. CLIMBO. LIMBO

reveals that two attribute values are similar if the contexts in which they

appear are similar. It is an alternative way to explicate the inter-coupled

interactions among dierent attributes; however, it lacks the consideration

of the intra-coupled interactions within each attribute. Thus, the metric

CADO can be extended to measure the coupled distance between clusters by

replacing an object ui with a cluster ci, and CLIMBO is naturally induced.

Two experiments below are conducted to compare these algorithms for the

intra-attribute value clustering. The parameters are specied in the second

column of Table 5.13. For STIRR, � and  are the numbers of initial

congurations and iterations, respectively. For LIMBO and CLIMBO, φ

indicates the size bound, S refers to the accuracy bound, and the addition

operator is used. The experiments in this part only run 20 times to display

the average results, since the algorithms itself is computational costly.

The rst experiment is designed to cluster the rst authors of the 720
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academic papers, and the labels for evaluation are the pre-known research

elds: database research (190 papers) and theoretical computer science (530

papers). Note also that all authors are identied by their last names so that,

for instance, an attribute value “Wang” actually represents several Wangs

taken together. In addition, the second author is regarded as being the

same as the rst author if the research paper has only one author. These

two aspects lead to the overall modest clustering quality. STIRR, LIMBO,

and CLIMBO are compared on the intra-attribute value clustering results

of the attribute “rst author” with regard to Precision (Pr), Specicity (Sp)

(Figueiredo et al. 2011) and Accuracy (AC) (Andritsos et al. 2004). Table

5.13 shows that CLIMBO is the best in terms of Pr and AC, and is compa-

rable with LIMBO with respect to Sp. All the results on Pr, Sp and AC are

supported by a statistical signicant test at a 95% signicance level.

We now turn to the problem of clustering the conferences/journals. Fig-

ure 5.6 displays the clusters produced by STIRR, LIMBO, and CLIMBO.

The x-axis represents the academic papers, while the y-axis denotes pub-

lishing venues. The thick horizontal line separates the clusters of confer-

ences/journals, and the thick vertical line distinguishes between database

research related papers (on the left) and theoretical computer science related

papers (on the right). If an author has published a paper in a particu-

lar venue, this is represented by a point. From this gure, it is clear that

CLIMBO yields the best partition, followed by LIMBO, and STIRR per-

forms worst. However, even the clustering of CLIMBO is slightly mistaken

by the conferences/journals between index 50 and 60, which is due to the

inuence of their co-authors.

The above two experiments therefore reveal that CLIMBO is better than

LIMBO and STIRR on the clustering quality of intra-attribute values. More-

over, LIMBO can also be clearly observed to outperform STIRR, which is

consistent with the conclusion drawn in (Andritsos et al. 2004).
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Figure 5.6: Clusterings for conferences/journals.

Classication Evaluation

To further verify the superiority of our proposed method CADO for classi-

cation, we use the k-nearest neighbor (KNN ) algorithm (Figueiredo et al.

2011, Garcia, Derrac, Cano & Herrera 2012) to compare the classication

accuracy using dierent dissimilarity measures. KNN is a type of instance-

based learning, classifying objects based on the closest training examples in

the attribute space. The standard of “closest” is characterized by the largest

similarity or the smallest distance, and the distance or dissimilarity involved

can be measured by SMD, ADD and CADO individually. Though this su-

pervised learning process is chosen for the testing, dissimilarity metrics are

all considered without the label information.

We carry out experiments on eight UCI data sets from dierent domains,

where all the data sets are purely categorical. As we know, a better dis-

similarity metric gives a better description of the similarity between data

objects, and corresponds to a better classication result, i.e. higher classi-

cation accuracy. We run 100 tests; in each run, we randomly pick 90% of

the data set as the training set, taking the rest as the test set. The results

for 1NN with SMD, ADD, and CADO are shown in Figure 5.7. According

to Figure 5.7, we easily discover that 1NN with CADO outperforms 1NN

with SMD for all the data, and the average accuracy induced by 1NN with

CADO is higher than that induced by ADD for most of the data, with the
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Figure 5.7: Comparisons on classication.

exception of only one data set: Corral. As can be seen, there is a remarkable

improvement in the results with our proposed CADO compared to the other

two metrics in terms of accuracy. All the results on accuracy are supported

by a statistical signicant test at a 95% signicance level. Similar results can

also be observed with 3NN and 5NN, which again suggest the eectiveness

and superiority of our method.

In summary, we draw the following conclusions: 1) intra-coupled relative

similarity measures IRSP, IRSU, IRSJ and IRSI all present the same learn-

ing accuracy, but IRSI is the most ecient, especially for large-scale data; 2)

our proposed object dissimilarity metric CADO is better than others, i.e., the

traditional SMD, frequency distribution only OFD, and dependency aggrega-

tion only ADD, for categorical data in terms of data structure analysis, clus-

tering and classication quality; 3) the existing categorical clustering algo-

rithms such as overlap-based methods (e.g. k-modes, ROCK ), context-based

methods (e.g. STIRR), and information-theoretic methods (e.g. LIMBO),

and classication algorithm KNN, perform better than the original methods

and algorithms when incorporated with CASO or CADO.
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5.8 Summary

We have proposed CASO, a novel data-driven and non-IIDness based coupled

attribute similarity measure for objects incorporating both intra-coupled at-

tribute similarity for values and inter-coupled attribute similarity for values in

unsupervised learning on nominal data. The measure involves both attribute

value frequency distribution (intra-coupling) and attribute dependency ag-

gregation (inter-coupling) and the interaction of the two, which captures a

global picture of the similarity and has been shown to improve learning ac-

curacy in diverse similarity measures. Theoretical analysis and substantial

experiments have shown that the inter-coupled relative similarity measure

IRSI signicantly outperforms the other options (IRSP, IRSU and IRSJ )

in terms of eciency, in particular on a large-scale data set having a huge

number of attribute values, while maintaining equal accuracy. Moreover, our

derived dissimilarity metric is more general and accurate in capturing the

internal structures of the predened clusters and clustering quality in ac-

cordance with intensive empirical results. Very substantial experiments on

accuracy and eciency have been conducted on single attributes and on all

attributes, as well as a scalability test on the number of attributes and the

maximal number of attribute values, and on the clustering and classication

performance by incorporating the proposed similarity. This has clearly shown

that the proposed coupled nominal similarity leads to more accurate, ecient

and scalable learning performance on large scale categorical data sets, sup-

ported by statistical analysis. The reason is that our proposed measure is

global as a result of eectively integrating dierent aspects of the similarity.

5.9 Appendix: Proofs

Proof (a)

Theorem 5.9.1 (a) [Denition 5.4.1] Intra-coupled Attribute Similarity

for Values (IaASV) between values vxj and vyj of attribute aj is δIaj (vxj , v
y
j ),
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we have δIaj ∈ [1/3,m/(m+ 4)].

Proof 1 According to Denition 5.4.1, we have that 1 ≤ |Gj({vxj })|, |Gj({vyj })|
≤ m holds, then

δIaj (vxj , v
y
j ) =

|Gj({vxj })| · |Gj({vyj })|
|Gj({vxj })|+ |Gj(v

y
j )|+ |Gj({vxj })| · |Gj({vyj })|

=
1

|Gj({vyj })|−1 + |Gj({vxj })|−1 + 1

≤ 1

2

|Gj({vyj })|−1 · |Gj({vxj })|−1 + 1

On one hand, δIaj (vxj , v
y
j ) is a monotonously increasing function of vari-

ables |Gj({vxj })| and |Gj({vyj })|, respectively. Therefore, δIaj (vxj , v
y
j ) takes its

minimum value 1/3 when |Gj({vxj })| = |Gj({vyj })| = 1.

On the other hand, because of both 2 ≤ |Gj({vxj })| + |Gj({vyj })| ≤ m

and the above function property, then δIaj (vxj , v
y
j ) takes its maximum value

m/(m+ 4) when |Gj({vxj })| = |Gj({vyj })| = m/2.

Thus, considering both aspects above, we have

δIaj (vxj , v
y
j ) ∈ [1/3,m/(m+ 4)].

Proof (b)

Theorem 5.9.2 (b) [Denition 5.4.2] Equations (5.4.2) and (5.4.3) are

equal to each other: Dj|L(vxj , v
y
j ) =


l∈L |Pl|j({l}|vxj ) − Pl|j({l}|vyj )| = 2 ·

maxL⊆L |Pl|j(L|vxj )− Pl|j(L|vyj )| holds.

[Note] This theorem is deduced from a property in probability theory

(Gibbs & Su 2002), which is “The total variation distance between two prob-

ability measures P and Q on a sigma-algebra F of the subsets of the sample

space Ω is dened via δ(P,Q) = supA∈F |P(A)−Q(A)|. For a nite alphabet,
we can write δ(P,Q) = 1

2


x∈Ω |P(x)−Q(x)|.” If we regard P = Pl|j(·|vxj ))

and Q = Pl|j(·|vyj ), A = L and x = l, then the above theorem holds.
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Proof 2 Assume L = {l1, l2, · · · , ln} and L = {l1, l2, · · · , lk} (k ≤ n), then

F (L) = 2 · |Pl|j(L
|vxj )− Pl|j(L

|vyj )|

= |2 ·
k

i=1

Pl|j({li}|vxj )− 2 ·
k

i=1

Pl|j({li}|vyj )|.

Since
n

i=1 Pl|j(li|vxj ) =
n

i=1 Pl|j(li|vyj ) = 1 holds, then:

F (L) = |[
k

i=1

Pl|j({li}|vxj ) + 1−
n

i=k+1

Pl|j({li}|vxj )]

− [
k

i=1

Pl|j({li}|vyj ) + 1−
n

i=k+1

Pl|j({li}|vyj )]|

= |
k

i=1

Pl|j({li}|vxj )−
k

i=1

Pl|j({li}|vyj )

+
n

i=k+1

Pl|j({li}|vyj )−
n

i=k+1

Pl|j({li}|vxj )|

= |
k

i=1

[Pl|j({li}|vxj )− Pl|j({li}|vyj )]

+
n

i=k+1

[Pl|j({li}|vyj )− Pl|j({li}|vxj )]|

≤
k

i=1

|Pl|j({li}|vxj )− Pl|j({li}|vyj )|

+
n

i=k+1

|Pl|j({li}|vyj )− Pl|j({li}|vxj )|

≤
n

i∈1
|Pl|j({li}|vxj )− Pl|j({li}|vyj )|

=


l∈L
|Pl|j({l}|vxj )− Pl|j({l}|vyj )|)

If there exists k > 0, such that

Pl|j({li}|vxj ) ≥ Pl|j({li}|vyj )
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holds for 1 ≤ i ≤ k < n and

Pl|j({li}|vxj ) < Pl|j({li}|vyj )

holds for k + 1 ≤ i ≤ n, then F (L) takes its maximal value:


l∈L
|Pl|j({l}|vxj )− Pl|j({l}|vyj )|.

If for all 1 ≤ i ≤ k < n,

Pl|j({li}|vxj ) < Pl|j({li}|vyj )

holds, then we have

Pl|j({li}|vxj ) ≥ Pl|j({li}|vyj )

for k + 1 ≤ i ≤ n. Thus, we alternatively consider

F (L) = 2 · |Pl|j(L
|vyj )− Pl|j(L

|vxj )|,

where L = L− L. In fact,

max
L⊆L

F (L) = max
L⊆L

F (L)

holds. Similar to the above deduction,

max
L⊆L

F (L) = max
L⊆L

F (L) =


l∈L
|Pl|j({l}|vxj )− Pl|j({l}|vyj )|.

The rest special case is that for 1 ≤ i ≤ n,

Pl|j({li}|vxj ) ≥ Pl|j({li}|vyj )

holds. This is in fact

Pl|j({li}|vxj ) = Pl|j({li}|vyj )

for every possible i, then F (L) = 0 takes the maximal value as well (i.e.


l∈L |Pl|j({l}|vxj )− Pl|j({l}|vyj )|).
Therefore, we have

Dj|L(v
x
j , v

y
j ) =



l∈L
|Pl|j({l}|vxj )− Pl|j({l}|vyj )|

= 2 ·max
L⊆L

|Pl|j(L
|vxj )− Pl|j(L

|vyj )|.
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Proof (c)

[Denition 5.4.2] The conversion is conducted from equations (5.4.3) to

(5.4.4) via (5.4.5): “Dj|L(vxj , v
y
j ) = 2 · maxL⊆L |Pl|j(L|vxj ) − Pl|j(L|vyj )|” to

“δPj|k = minV 
k⊆Vk

{2− Pk|j(V 
k|vxj )− Pk|j(V 

k|vyj )}”.

Proof 3 The whole conversion procedural is divided into four steps.

(1) The multiplier 2 in Dj|L(vxj , v
y
j ) is omitted:

D
(1)
j|L(v

x
j , v

y
j ) = max

L⊆L
|Pl|j(L

|vxj )− Pl|j(L
|vyj )|.

(2) Labels are replaced with other values of a particular attribute ak:

D
(2)
j|k(v

x
j , v

y
j ) = max

V 
k⊆Vk

|Pk|j(V

k|vxj )− Pk|j(V


k|vyj )|.

(3) A complementary set V 
k rather than the original one V 

k is concerned

for vyj in ICP, based on Pk|j(V 
k|vyj ) = 1− Pk|j(V 

k|vyj ):

D
(3)
j|k(v

x
j , v

y
j ) = max

V 
k⊆Vk

|Pk|j(V

k|vxj ) + Pk|j(V 

k|vyj )− 1|,

which is D
j|k(v

x
j , v

y
j ) formalized in equation (5.4.5).

(4) Dissimilarity is considered rather than similarity, we use δPj|k = 1 −
D

j|k(v
x
j , v

y
j ) for simplicity:

D
(4.1)
j|k (vxj , v

y
j ) = 1−D

(3)
j|k(v

x
j , v

y
j )

= 1− max
V 
k⊆Vk

|Pk|j(V

k|vxj ) + Pk|j(V 

k|vyj )− 1|.

If Pk|j(V 
k|vxj ) + Pk|j(V 

k |vyj )− 1 ≥ 0, then we have

D
(4.2)
j|k (vxj , v

y
j ) = min

V 
k⊆Vk

{2− Pk|j(V

k|vxj )− Pk|j(V 

k|vyj )}

according to the fact that

1−max(|f(x)|) = min(1− f(x))

for all f(x) ≥ 0 (x ∈ R), where f(x) is a function and R is the real number

eld.
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If Pk|j(V 
k|vxj )+Pk|j(V 

k|vyj )−1 < 0, we alternatively use V 
k = Vk−V 

k = V 
k.

Then we have

D
(4.1)
j|k (vxj , v

y
j ) = 1− max

V 
k ⊆Vk

|Pk|j(V

k |vxj ) + Pk|j(V 

k |vyj )− 1|

Since Pk|j(V 
k |vxj ) = 1 − Pk|j(V 

k|vxj ) and Pk|j(V 
k |vyj ) = Pk|j(V 

k|vyj ) = 1 −
Pk|j(V 

k|vyj ), we have

Pk|j(V

k |vxj ) + Pk|j(V 

k |vyj )− 1 > 0.

Hence, D
(4.2)
j|k (vxj , v

y
j ) = minV 

k ⊆Vk
{2 − Pk|j(V 

k |vxj ) − Pk|j(V 
k |vyj )} according

to the fact that 1 − max(|f(x)|) = min(1 + f(x)) for all f(x) ≥ 0 (x ∈ R),
where f(x) is a function and R is the real number eld.

In fact, we can see that

D
(4.1)
j|k (vxj , v

y
j ) = D

(4.1)
j|k (vxj , v

y
j ).

Therefore, we have obtained that

D
(4.1)
j|k (vxj , v

y
j ) = D

(4.1)
j|k (vxj , v

y
j ) = D

(4.2)
j|k (vxj , v

y
j ) = D

(4.2)
j|k (vxj , v

y
j ).

By following the above four steps, we have successfully converted from

Equations (5.4.3) to (5.4.4) via (5.4.5): Dj|L(vxj , v
y
j ) to D

(4.2)
j|k (vxj , v

y
j ) or

D
(4.2)
j|k (vxj , v

y
j ) via D

(3)
j|k(v

x
j , v

y
j ) or D

j|k(v
x
j , v

y
j ).

Proof (d)

Theorem 5.9.3 (d) [Theorem 5.5.1] IRSP, IRSU, IRSJ and IRSI are all

equivalent to one another.

Proof 4 Part (I) IRSP⇐⇒IRSU

Let V ∗
k be the value set of attribute ak that makes

Pk|j(V

k|vxj ) + Pk|j(V 

k|vyj )
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maximal. Below, we show that for every vk ∈ V ∗
k ,

Pk|j({vk}|vxj ) ≥ Pk|j({vk}|vyj )

holds. In fact, if there exists vzk (∈ V ∗
k ) satisfying

Pk|j({vzk}|vxj ) < Pk|j({vzk}|vyj ),

then set V ∗∗
k = V ∗

k \{vzk}, V ∗∗
k = V ∗

k

{vzk}, it directly follows that

Pk|j(V
∗∗
k |vxj ) + Pk|j(V ∗∗

k |vyj ) > Pk|j(V
∗
k |vxj ) + Pk|j(V ∗

k |vyj ).

This results in the contradiction between V ∗∗
k and V ∗

k because of the maximal

assumption of V ∗
k .

Similarly, for any vk ∈ V ∗
k , Pk|j({vk}|vxj ) ≤ Pk|j({vk}|vyj ) holds. Hence,

δPj|k(v
x
j , v

y
j ) = min

V 
k⊆Vk

{2− Pk|j(V

k|vxj )− Pk|j(V 

k|vyj )}

= 2− max
V 
k⊆Vk

{Pk|j(V

k|vxj ) + Pk|j(V 

k|vyj )}

= 2− [Pk|j(V
∗
k |vxj ) + Pk|j(V ∗

k |vyj )]
= 2− [



vk∈V ∗
k

Pk|j({vk}|vxj ) +


vk∈V ∗
k

Pk|j({vk}|vyj )]

= 2− [


vk∈V ∗
k

max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}

+


vk∈V ∗
k

max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}]

= 2−


vk∈Vk

max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}

= δUj|k(v
x
j , v

y
j )

Part (II) IRSU⇐⇒IRSJ

Note that in the following Part (II) and Part (III), vk ∈ vxj \vyj and

vk ∈ vyj \vxj are the abbreviated forms for vk ∈ ϕj→k(v
x
j )\ϕj→k(v

y
j ) and vk ∈

ϕj→k(v
y
j )\ϕj→k(v

x
j ), respectively.

Given vk ∈ ϕj→k(v
x
j )


ϕj→k(v

y
j ), that is

vk ∈ ϕj→k(v
x
j ) and vk ∈ ϕj→k(v

y
j ).
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If vk ∈ ϕj→k(v
x
j ), we then have

g∗k({vk})


gj(v
x
j ) = ∅,

so Pk|j({vk}|vxj ) = 0. Similarly, Pk|j({vk}|vyj ) = 0. Therefore,

δUj|k(v
x
j , v

y
j ) = 2−



vk∈Vk

max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )},

= 2− [


vk∈
⋃
max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}

+


vk ∈
⋃
max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}]

= 2−


vk∈
⋃
max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}

= δJj|k(v
x
j , v

y
j )

Part (III) IRSJ⇐⇒IRSI

If vk ∈ ϕj→k(v
x
j )\ϕj→k(v

y
j ), then Pk|j({vk}|vyj ) = 0. Accordingly, we have

max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )} = Pk|j({vk}|vxj ).

Similarly, if vk ∈ ϕj→k(v
y
j )\ϕj→k(v

x
j ), it indicates

max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )} = Pk|j({vk}|vyj ).
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Therefore, we have

δJj|k(v
x
j , v

y
j ) = 2−



vk∈
⋃
max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}

= 2− [


vk∈vxj \v
y
j

max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}

+


vk∈vyj \vxj

max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}

+


vk∈
⋂
max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}]

= 2− [1−


vk∈
⋂
Pk|j({vk}|vxj ) + 1−



vk∈
⋂
Pk|j({vk}|vyj )

+


vk∈
⋂
max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}]

=


vk∈
⋂
[Pk|j({vk}|vxj ) + Pk|j({vk}|vyj )]

−


vk∈
⋂
max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}

=


vk∈
⋂
min{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}

= δIj|k(v
x
j , v

y
j )

Thus, IRSP, IRSU, IRSJ, and IRSI are all equivalent to one another.

Proof (e)

Theorem 5.9.4 (e) [Experiment 5.7.1] For any attribute aj, the propor-

tion ξj(P/U) ∈ [2
T

T
, 2

R

R
]. For all attributes, the proportion ξ(P/U) ∈ [2

T

T
, 2

R

R
].

Proof 5 According to Denitions 5.4.2 and 5.4.3, and Table 5.9, we know

ξj|k(P/U) =
|ICP

(P )
aj|k |

|ICP
(U)
aj|k |

=
2|Vk|

|Vk|
,
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where |ICP
(P )
aj|k | and |ICP

(U)
aj|k | represent the time costs of ICP for δPj|k(v

x
j , v

y
j )

and δUj|k(v
x
j , v

y
j ), respectively. Since T = minn

k=1 |Vj| and R = maxnk=1 |Vj|,
then T ≤ |Vk| ≤ R for any set of attribute values Vk. We know |Vk| is a

positive integer, so based on Lemma 5.9.1 below, the statement

ξj|k(P/U) ∈ [
2T

T
,
2R

R
]

holds. In addition, we have

ξj(P/U) =
|ICP

(P )
j |

|ICP
(U)
j |

=


k =j |ICP

(P )
aj|k |

k =j |ICP
(U)
aj|k |

,

ξ(P/U) =
|ICP (P )|
|ICP (U)| =


1≤j≤n |ICP

(P )
j |


1≤j≤n |ICP

(U)
j |

.

Based on Lemma 5.9.2 below, we then obtain that

ξj(P/U) ∈

2T

T
,
2R

R


and ξ(P/U) ∈


2T

T
,
2R

R


.

Lemma 5.9.1 If x is a positive integer, then function q(x) = 2x/x is a

monotonically increasing function.

Proof 6 To verify the monotonically increasing property of function q(x) =

2x/x, we only need to look at the derivative of q(x) since q(x) is a continuous

function of x, that is

q(x) =
2x · ln 2 · x− 2x

x2
=

2x · (ln 2 · x− 1)

x2
.

If q(x) > 0, then we can guarantee that q(x) is a strictly monotonically

increasing function. Here, q(x) > 0 is equivalent to x > 1/ ln 2. As x is

a positive integer, then q(x) = 2x/x is a strictly monotonically increasing

function when x ≥ 2 > 1/ ln 2. We also have q(1) = 2 when x = 1, and

q(2) = 2 when x = 2, so q(1) ≤ q(2). Thus, q(x) = 2x/x is a monotonically

increasing function when x is a positive integer.

153



CATEGORICAL COUPLED BEHAVIOR ANALYSIS

Lemma 5.9.2 If x1, · · · , xn are positive integers, where T = min1≤i≤n xi

and R = max1≤i≤n xi, then

2T

T
≤ 2x1 + 2x2 + · · ·+ 2xn

x1 + x2 + · · ·+ xn

≤ 2R

R
.

Proof 7 Without loss of generality, we assume 1 ≤ x1 ≤ x2 ≤ · · · ≤ xn,

then T = x1, R = xn, and the question is to prove

2x1

x1

≤ 2x1 + 2x2 + · · ·+ 2xn

x1 + x2 + · · ·+ xn

≤ 2xn

xn

According to Lemma 5.9.1, we have for i = 1, · · · , n,
2x1

x1

≤ 2xi

xi

⇐⇒ 2x1 · xi ≤ 2xi · x1.

Then, we can naturally obtain that

n

i=1

(2x1 · xi) ≤
n

i=1

(2xi · x1),

which is equivalent to

2x1 · (x1 + x2 + · · ·+ xn) ≤ x1 · (2x1 + 2x2 + · · ·+ 2xn).

Therefore, we have

2x1

x1

≤ 2x1 + 2x2 + · · ·+ 2xn

x1 + x2 + · · ·+ xn

.

Similarly, we can prove that

2x1 + 2x2 + · · ·+ 2xn

x1 + x2 + · · ·+ xn

≤ 2xn

xn

Thus, the inequality

2T

T
≤ 2x1 + 2x2 + · · ·+ 2xn

x1 + x2 + · · ·+ xn

≤ 2R

R

holds for T = min1≤i≤n xi and R = max1≤i≤n xi.
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Proof (f)

Theorem 5.9.5 (f) [Experiment 5.7.1] Multi-variant function ξ(U/P ) is

a monotonously decreasing function on the maximal number of values R.

Proof 8 The multi-variant function ξ(U/P ) is

ξ(U/P ) =
|ICP (U)|
|ICP (P )| =


1≤j≤n |ICP

(U)
j |


1≤j≤n |ICP

(P )
j |

=


1≤j≤n


k =j |ICP

(U)
aj|k |

1≤j≤n


k =j |ICP

(P )
aj|k |

.

Since |ICP
(U)
aj|k | = |Vk| and |ICP

(P )
aj|k | = 2|Vk|, then the question is to prove that

the function

F (x1, x2, · · · , xn) =
x1 + x2 + · · ·+ xn

2x1 + 2x2 + · · ·+ 2xn

is a monotonously decreasing function on xn, if we assume integers 1 ≤ x1 ≤
x2 ≤ · · · ≤ xn. To verify this, we only need to look at the partial derivative

of F on xn since F is a continuous function of xn. If ∂F/∂xn ≤ 0, then

we can say that F is a monotonously decreasing function on xn. Suppose

M =
n−1

i=1 xi and N =
n−1

i=1 2xi, then we have

∂F

∂xn

=
N + 2xn − (M + xn) · 2xn · ln 2

(N + 2xn)2

=
(N −M · 2xn · ln 2) + 2xn · (1− xn · ln 2)

(N + 2xn)2
.

To judge whether ∂F/∂xn ≤ 0, we discuss the following four cases:

1) 2 ≤ xn−1 ≤ xn: In this case, according to Lemma 5.9.2, we have

N

M
≤ 2xn−1

xn−1

≤ 2xn · ln 2 ⇐⇒ N ≤ M · 2xn · ln 2,
1

ln2
< 2 ≤ xn ⇐⇒ 1 < xn · ln 2.

Thus, ∂F/∂xn < 0 holds.

155



CATEGORICAL COUPLED BEHAVIOR ANALYSIS

2) xn−1 = 1 and 2 ≤ xn: In this case, according to Lemma 5.9.2, we have

N

M
≤ 21

1
< 22 · ln 2 ≤ 2xn · ln 2 ⇐⇒ N < M · 2xn · ln 2,

1

ln2
< 2 ≤ xn ⇐⇒ 1 < xn · ln 2.

Thus, ∂F/∂xn < 0 holds.

3) xn−1 = xn = 1: In this case, we have

F (x1, · · · , xn−1, xn) = F (1, · · · , 1, 1) = n

2n
=

1

2
.

For xn−1 = 1, xn = 2, then

F (x1, · · · , xn−1, xn) = F (1, · · · , 1, 2) = n− 1 + 2

2(n− 1) + 4
=

1

2
.

Thus, F (x1, · · · , xn−1, 2) ≤ F (x1, · · · , xn−1, 1).

4) 2 ≤ xn−1 and xn = 1: This case is impossible since we assume that

xn−1 ≤ xn.

Therefore, we discover that for both xn−1 = 1 and 2 ≤ xn−1, F is a

monotonously decreasing function on xn. That is to say, multi-variant func-

tion ξ(U/P ) is a monotonously decreasing function on the maximal number

of values R.

[Note] A conference version of this chapter has been published in the rst

item below, and a full journal version has been submitted to the second item.

• Can Wang, Longbing Cao, Mingchun Wang, Jinjiu Li, Wei Wei,

Yuming Ou (2011), “Coupled Nominal Similarity in Unsupervised Learn-

ing”. The 20th ACM Conference on Information and Knowledge Man-

agement (CIKM 2011), pp. 973-978.

• Can Wang, Longbing Cao (2013), “Coupled Attribute Similarity Anal-

ysis on Categorical Data”. IEEE Transactions on Neural Networks and

Learning Systems (TNNLS).
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In addition, the following two published conference papers are based on the

work introduced in this chapter, they have used the proposed coupled similar-

ity measures in dierent applications, such as recommendation system and

document clustering.

• Yonghong Yu, Can Wang, Yang Gao, Longbing Cao, Xixi Chen

(2013), “A Coupled Clustering Approach for Items Recommendation”.

The 17th Pacic-Asia Conference on Knowledge Discovery and Data

Mining (PAKDD 2013), pp. 365-376.

• Xin Cheng, Duoqian Miao, Can Wang, Longbing Cao (2013). “Cou-

pled Term-Term Relation Analysis for Document Clustering”. The

2013 International Joint Conference on Neural Networks (IJCNN

2013), full paper accepted.
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Chapter 6

Coupled Behavior Ensemble

Learning

In this chapter, we analyze and learn the quantitative coupled behaviors by

exploring the coupling relationships between properties and between enti-

ties. Here, behavior ensemble refers to the optimization learning tasks (e.g.

clustering analysis) based on a collection of behavior learning models (e.g.

base clusterings), and coupled behavior ensemble further investigates the cou-

plings/interactions among behavior ensembles. This chapter mainly focuses

on the task of clustering ensemble learning. Throughout the chapter, data

object and the entity of coupled behaviors are interchangeable; base clus-

terings, behavior learning methods/models and discrete attributes all cor-

respond to the categorical properties of coupled behaviors; and accordingly

attribute values (i.e. the related labels in each base clustering) refer to the

property values of coupled behaviors. Therefore, the coupling relationship

between base clusterings (i.e. properties) embodies the interactions between

dierent learning strategies as well. In addition, this work is based on the

coupled categorical behavior analysis discussed in Chapter 5 since they both

deal with the categorical properties of coupled behaviors.

The behavior ensemble learning is a powerful approach for improving the

accuracy and stability of individual (base) behavior learning methods. Most
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of the existing behavior clustering ensembles obtain nal solutions based on

the IIDness (i.e. independent and identical distribution) assumption which

assumes that base clusterings (i.e. behavior learning methods) perform in-

dependently of one another and all entities are also independent. However,

in real-world data sources, entities are more or less associated in terms of

certain coupling relationships. Several base clusterings trained on the source

data are complementary to one another since each of them may only cap-

ture certain specic aspects rather than the full picture of the behavior data.

This forms the non-IIDness nature, which is embodied in strong couplings

and heterogeneity between objects and between methods/properties.

This chapter explicates the non-IIDness or coupling relationships between

behavior learning models and between entities in clustering ensembles, and

propose a corresponding framework for coupled clustering ensembles (CCE ).

CCE not only considers but also integrates the coupling relationships be-

tween base clusterings and between objects. Specically, we examine both

the intra-coupling within one base clustering (i.e. cluster label frequency

distribution) and the inter-coupling between dierent base clusterings (i.e.

cluster label co-occurrence dependency). Furthermore, we engage both the

intra-coupling between two entities by aggregating the interactions of base

clusterings and the inter-coupling among other objects by exploring their

neighborhood domains. This is the rst work to explicitly address the non-

IIDness issue in clustering ensembles, veried by the application of such cou-

plings in three types of consensus function: clustering-based, object-based

and cluster-based. Substantial experiments on two synthetic and nine UCI

data sets demonstrate that the CCE framework can eectively capture the

interactions embedded in behavior learning methods and entities with higher

clustering accuracy, stability, and robustness compared to eleven state-of-

the-art techniques, supported by statistical analysis. In addition, we verify

that the nal learning quality is dependent on the data characteristics (i.e.

the quality and consistency) of the initial behavior learning methods.
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6.1 Background and Overview

Clustering analysis is a fundamental tools for capturing the structure of a

data set. A large number of clustering algorithms (Jain, Murty & Flynn

1999, Chen, Zhang, Liu, Poon & Wang 2012) have been proposed, but the

No Free Lunch theorem (Wolpert & Macready 1996) suggests that there is

no single, supreme algorithm that ts all cluster shapes and structures per-

fectly. It is extremely dicult for users to decide which algorithm will be

the most eective for a given data set. Consequently, as a recent oshoot of

classier ensemble research (Kittler, Hatef, Duin & Matas 1998, Bi, Guan &

Bell 2008, Garćıa-Osorio, de Haro-Garćıa & Garćıa-Pedrajas 2010), the clus-

tering ensemble (Gao, Fan & Han 2010, Vega-Pons & Ruiz-Shulcloper 2011)

has exhibited great potential for enhancing clustering accuracy, robustness

and parallelism (Strehl & Ghosh 2002) by combining results from various

clustering methods. In general, the whole process of the clustering ensemble

can be divided into three parts: building base clusterings, aggregating base

clusterings, and post-processing clustering. The objective is to produce an

overall high-quality clustering that agrees as much as possible with each of

the input clusterings. The essence of the clustering ensemble is to aggregate

the advantages of each base clustering to give a more complete, global un-

derstanding of the underlying data, while each base clustering is assumed to

capture the best local and partial picture of a data set.

The clustering ensemble can be applied in various settings (Gionis et al.

2007, Luo & Jennings 2007), such as clustering heterogeneous data, detect-

ing outliers, improving clustering robustness, decision making, and privacy-

preserving information. While the clustering ensemble largely captures the

common structure of the base clusterings, and achieves a combined clustering

with better quality than that of individual clusterings, it also faces several

issues that have not been explored well in the consensus design. We illus-

trate the problem with the related work and also discuss the challenge of the

clustering ensemble below.

The clustering ensemble described in Figure 6.1 adapted from Figure
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Base Clustering 1 Base Clustering 2 

Base Clustering 3 Base Clustering 4 

Figure 6.1: Four possible base clusterings of 12 data objects into two clusters;

dierent partitions use dierent sets of labels.

1.2 in Chapter 1 is an example of four two-cluster partitions of 12 two-

dimensional data objects. The target of the clustering ensemble is to obtain

a nal clustering based on these four base clusterings. As shown in Figure 6.1,

the four possible cluster labels for the objects u2, u3 and u10 are {2, A,X,α},
{2, A, Y, β} and {1, A, Y,α}, respectively. Two of the four base clusterings

put each pair of objects in the same group, and the remainder of the two

partitions assign dierent cluster labels to this pair. For instance, the rst

and second base clusterings distribute u2 and u3 in the same cluster, while

the last two base clusterings give them distinct labels. In this situation, the

traditional clustering ensemble method (i.e., CSPA (Strehl & Ghosh 2002))

treats the similarity between each pair of these three objects as 0.5, which

is Sim(u2, u3) = Sim(u2, u10) = Sim(u3, u10) = 0.5. In the last stage of
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post-processing clustering, it is thereby dicult to determine the nal label

for these objects. This is because the consensus building assumes that all

four base clusterings are independent, and that each base clustering also

treats all the objects independently based on the “IIDness” (i.e. independent

and identical distribution) assumption. A conventional way to solve this

dilemma is to randomly distribute them in either an identical cluster or

dierent groups, which will inevitably aect the clustering performance.

If we carefully explore the information provided in Figure 6.1, however,

coupling relationships between the base clusterings and between the data

objects can be identied, apart from the consensus among initial results

proposed by traditional ensemble strategies. Below, we illustrate this obser-

vation via the example in Figure 6.1.

On one hand, as indicated in Figure 6.2, objects u2 and u3 are considered

to have a high similarity value (e.g. 1) in base clusterings 1 and 2, in which

they are assigned to the same clusters (i.e. clusters 2 and A, respectively).

In contrast, their similarity value is rather low (e.g. 0) if the information

in base clustering 4 is all that is used, since they are grouped into dierent

clusters: α and β. However, clusters α and β are intuitively more similar

than they appear to be, due to the fact that they connect with two identical

clusters in the other base clusterings 1 and 2 via objects u2 and u3. Thus,

the similarity (i.e. the dashed line) between clusters α and β in relation

to other base clusterings should be larger than 0. The same principle also

applies to the similarity between clusters X and Y in base clustering 3. Note

that here the similarity between the identical clusters (e.g., clusters A or

2) is manually set as 1. In this way, the overall similarity between objects

u2 and u3 must be larger than 0.5 as the traditional method maintains.

Accordingly, objects u2 and u3 are more likely to be assigned to the correct

identical cluster, rather than depending on the random allocation used in

conventional methods (Strehl & Ghosh 2002, Gionis et al. 2007).

On the other hand, the similarity between objects u2 and u3 and the

similarity between u2 and u10 are identical (i.e., both 0.5). Thus, how do we
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Cluster 1 

Cluster 2 

Cluster A 

Cluster B 

Base Clustering 1 

Base Clustering 2 

Cluster X 

Cluster Y 

Base Clustering 3 

Sim >0 

Objects 

Cluster α 

Cluster β 

Base Clustering 4 

Sim >0 

4

m >0

…
 …

 
Figure 6.2: A graphical representation of the coupling relationship between

base clusterings, where a circle denotes an object, a rounded rectangle rep-

resents an cluster, and an edge exists if an object belongs to a cluster.

distinguish between them and assign the correct label to each object? If we

only consider the aforementioned coupling relationship between base cluster-

ings, we may fail since both similarities can be enhanced by involving the

co-occurrence with clusters in other base clusterings. However, we discover

that the discrepancy on the common neighborhood domains of objects u2

with u3 and u2 with u10 is capable of dierentiating u2 and u10 in distinct

clusters. Intuitively, we recognize that, in Figure 6.1, the number of common

neighbors of objects u2 and u3 is much larger than that of u2 and u10. From

this perspective, it is more probable that objects u2 and u3 are in the same

cluster and that object u10 is in another cluster, which corresponds to the

genuine partition.

The above examples and analysis disclose that the IIDness assumption

about base clusterings and objects actually causes the aforementioned prob-

lems. The corresponding problem-solving solutions essentially raise the fol-

lowing three important research questions.

1. Clustering Coupling : There is a likely structural relationship between

base clusterings since they are induced from the same data set. How

do we describe the coupling relationship between base clusterings?
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2. Object Coupling : There is a context surrounding two objects which

makes them dependent on each other. How do we design the similarity

or distance between objects to capture their relation with other data

objects?

3. Integrated Coupling : If there are interactions between both clusterings

and objects, how do we integrate such couplings in the clustering en-

semble?

The above questions suggest a very dierent assumption for clustering

ensembles: non-IIDness (Cao 2013) based clustering ensemble. Non-IIDness

captures strong couplings and heterogeneity between values, attributes, ob-

jects and methods in analyzing and learning complex problems. For the

aforementioned toy example, intuitively, the base clusterings are expected to

have some interactions with one another, such as the co-occurrence of their

cluster labels over the same set of objects, which reects the non-IIDness

assumption of base clusterings. Here, the cluster label refers to the label of

a cluster to which an object belongs, i.e. α, β in Figure 6.1, but most of the

existing methods such as CSPA (Strehl & Ghosh 2002) and QMI (Topchy

et al. 2005) are based on the hypothesis that base clusterings are indepen-

dent of one another. Furthermore, the similarity between any two objects

within the same cluster may dier and should be distinguished. In existing

work, however, the predominant approach is to treat the similarity between

objects as roughly 1 if they belong to the same cluster, otherwise 0. Such

a binary measure is inadequate in terms of capturing the relationships be-

tween objects. In addition, some controversial objects with approximately

equal similarity are observed to have dierent sizes of common neighborhood

domains to dierentiate them, which alternatively reveals the non-IIDness

nature of objects. This issue has not been addressed in current approaches

to the clustering ensemble problem, which instead merely consider the simi-

larity between a pair of objects irrespective of other objects.

Recently, a link-based approach (Iam-On et al. 2011) has been proposed

to consider cluster-cluster similarity by the connected-triple approach, the
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progress of which is promising, but it overlooks the interaction between ob-

jects. A clustering algorithm ROCK for categorical data (Guha et al. 2000)

species the interaction between objects, but it is only designed for cate-

gorical clustering and lacks any consideration of the relationship between

base clusterings. A detailed review of the related work on behavior ensemble

learning can be found in Section 2.4. For integrated coupling, no work has

been reported that systematically takes into account the couplings between

base clusterings or between data objects.

In the real world, business and social applications such as investors in

capital markets and members in social networking almost always see objects

coupled with each other (Cao et al. 2012, Wang & Cao 2012, Song, Cao,

Wu, Wei, Ye & Ding 2012). There is a great demand from both practical

and theoretical perspectives to initiate new mechanisms to explicitly address

the non-IIDness both between base clusterings and between objects, and

to explicate how to incorporate the non-IIDness for the clustering ensemble

based on consensus functions.

In this chapter, we propose an eective framework for coupled cluster-

ing ensembles (CCE ) to address the aforementioned research questions. We

consider both the couplings between base clusterings and between data ob-

jects, and propose a coupled framework of clustering ensembles to form an

integrated coupling (i.e. non-IIDness). We then explicate our proposed

framework CCE from the perspectives of clustering-based, object-based, and

cluster-based algorithms, and reveals that the couplings are essential to the

clustering ensemble. During the whole process, we propose several similar-

ity measures that incorporate the couplings of base clusterings and objects,

and they exhibit an impressive ability to capture the implicit relationships

within the data. In addition, we evaluate our proposed framework CCE with

the existing eight clustering ensemble methods and two categorical clustering

algorithms on a variety of benchmark data sets in terms of accuracy, stabil-

ity, robustness, and statistical signicance. Finally, we empirically explore

the relationship between the data characteristics of base clusterings and the
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degree of improvement in the nal clustering quality.

The chapter is organized as follows. Preliminary denitions are specied

in Section 6.2. Section 6.3 proposes the coupled framework CCE. Coupling

relationships between base clusterings and between objects in CCE are spec-

ied in Section 6.4. Section 6.5 presents the coupled consensus functions for

CCE together with miscellaneous issues. We describe the CCE algorithms in

Section 6.6. The eectiveness of CCE is shown in Section 6.7 with intensive

experiments. We conclude this work and address future work in Section 6.8.

6.2 Preliminary Denitions

The problem of the clustering ensemble can be formally described as follows:

U = {u1, · · · , um} is a set of m objects for clustering; C = {bc1, · · · , bcL}
is a set of L base clusterings, each clustering bcj consists of a set of clusters

bcj = {c1j , · · · , c
tj
j } where tj is the number of clusters in base clustering bcj

(1 ≤ j ≤ L). Our goal is to nd a nal desirable clustering fc∗ = {c1∗, · · · , ct
∗
∗ }

with t∗ clusters such that the objects inside each cluster ct∗ are close to one

another and the objects in dierent clusters are far from one another.

We construct an information table S by mapping each base clustering

as an attribute. Here, vxj indicates the label of a cluster to which the ob-

ject ux belongs in the jth base clustering, and Vj is the set of cluster labels

in base clustering bcj. For example, Table 6.1 (Topchy et al. 2005) is the

representation of Figure 6.1 as an information table consisting of twelve ob-

jects {u1, u2, · · · , u12} and four corresponding attributes (i.e. base clusterings

{bc1, bc2, bc3, bc4}). The cluster label α in base clustering bc4 is mapped as

the attribute value v24 of object u2 on attribute bc4, and cluster label set

V4 = {α, β}.
Based on this information-table representation, we use several concepts

adapted from our previous work (Wang et al. 2011), which has been specied

in Chapter 5. The “set information function” gj(v
x
j ) species the set of

objects whose cluster labels is vxj in base clustering bcj. For example, we have
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Table 6.1: An Example of Base Clusterings
HHHHHHHHU

C
bc1 bc2 bc3 bc4

u1 2 B X β

u2 2 A X α

u3 2 A Y β

u4 2 B X β

u5 1 A X β

u6 2 A Y β

u7 2 B Y α

u8 1 B Y α

u9 1 B Y β

u10 1 A Y α

u11 2 B Y α

u12 1 B Y α

g4(v
2
4) = g4(α) = {u2, u7, u8, u10, u11, u12}. We adopt the “inter-information

function” ϕj→k(v
x
j ) to obtain a subset of cluster labels in base clustering

bck for the corresponding objects, which are derived from the cluster label

vxj in base clustering bcj, e.g., ϕ4→2(α) = {A,B} derived from object set

g4(α). Added to this, the “information conditional probability” Pk|j(vk|vxj )
characterizes the percentage of objects whose cluster labels in base clustering

bck is vk among those objects whose cluster label in base clustering bcj is

exactly vxj , formalized as:

Pk|j(vk|vxj ) =
|gk(vk) ∩ gj(v

x
j )|

|gj(vxj )|
, (6.2.1)

where vk is a xed cluster label in base clustering bck. Note that | · | is the
number of elements in the specic set. For example, we have P2|4(A|α) =

2/6 = 1/3.

All these concepts and functions form the foundation of the framework
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Table 6.2: List of Main Notations in Chapter 6

Variable Explanation

{u1, · · · , um} The set of m objects U

{bc1, · · · , bcL} The set of L base clusterings C

{c1j , · · · , c
tj
j } The set of tj clusters in base clustering bcj

{c1∗, · · · , ct
∗
∗ } A nal clustering fc∗ with t∗ clusters

Vj The set of cluster labels in base clustering bcj

vxj (∈ Vj) The cluster label of object ux in base clustering bcj

vk(∈ Vk) Any cluster label in base clustering bck

δSim The similarity measure

NSim
ux

The neighbor set of object ux based on δSim

(BCj)m×m The associated similarity matrix of objects for bcj

for capturing the coupled interactions between base clustering and between

objects. The main notations in this chapter are listed in Table 6.2. In

addition, several important abbreviations are dened in Table 6.3 to facilitate

the reading of this chapter.

6.3 The Coupled Framework of Clustering En-

sembles

In this section, a coupled framework of clustering ensembles CCE is proposed

in terms of both interactions between base clusterings and between data

objects. In the framework described in Figure 6.3, the couplings between

base clusterings are revealed via the similarity between cluster labels vxj and

vyj of each base clustering bcj; and the couplings between objects are specied

by dening the similarity between data objects ux and uy. In addition, three

models are proposed for clustering-based, object-based, and cluster-based

consensus building, revealing that the couplings are essential to the clustering

ensemble.
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Table 6.3: List of Abbreviations in Chapter 6

Abbreviation Full Name

IaCSC (δIaCj ) Intra-coupled Clustering Similarity for Clusters

IeRSC (δj|k) Inter-coupled Relative Similarity for Clusters

IeCSC (δIeCj ) Inter-coupled Clustering Similarity for Clusters

CCSC (δCj ) Coupled Clustering Similarity for Clusters

IaOSO (δIaO) Intra-coupled Object Similarity for Objects

IeOSO (δIeO) Inter-coupled Object Similarity for Objects

CCOSO (δCO) Coupled Clustering and Object Similarity for Objects

CgC (SC
Cg) Proposed Clustering-based Coupling

OC-Ia (SIaC
O ) Proposed Intra-coupled Object-based Coupling

OC-H (SC
O ) Proposed Hierarchical Object-based Coupling

CrC-Ia (SC
Cr + δIaO) Proposed Intra-coupled Cluster-based Coupling

CrC-C (SC
Cr + δCO) Proposed Coupled Cluster-based Coupling

In terms of the clustering coupling, relationships within each base clus-

tering and the interactions between distinct base clusterings are induced

from the coupled nominal similarity measure COS in (Wang et al. 2011),

which has also been proposed as CASO in Section 5.6. The intra-coupling of

base clusterings captures the cluster label frequency distribution, while the

inter-coupling of base clusterings considers the cluster label co-occurrence

dependency (Wang et al. 2011). Object coupling also focuses on the intra-

and inter-coupling, in which intra-coupling combines all the results of base

clusterings for data objects, whereas inter-coupling is explicated by the neigh-

borhood relationship (Guha et al. 2000) among dierent data objects. The

object coupling also leads to a more accurate similarity (∈ [0, 1]) between

data objects. Moreover, as indicated in Figure 6.3, the data objects and

base clusterings are associated through the corresponding clusters, i.e., the

position of an object in a clustering is determined by which cluster the ob-

ject belongs to. Therefore, an integrated coupling is derived by treating each

cluster label as an attribute value and then dening the similarity between
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Figure 6.3: A coupled framework of clustering ensembles (CCE ), where

 indicates the intra-coupling and ←→ refers to the inter-coupling.

objects grounded on the similarity between cluster labels over all the base

clusterings. Finally, new similarity measures are designed for the clustering-

based, object-based, and cluster-based consensus functions by addressing

clustering coupling, object coupling and both of them respectively.

Given a set of m objects U and a set of L base clusterings C, we spec-

ify those interactions and the coupled consensus functions of CCE in the

following two sections.

6.4 Coupling relationships in CCE

In this section, we discuss how to describe the coupling of base clusterings

and how to represent the coupling of objects.

6.4.1 Coupling of Base Clusterings

Since all base clusterings are conducted on the same data objects, intuitively

we assume there must be some relationship among these base clusterings.

The coupling of base clusterings is proposed from the perspectives of intra-
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coupling and inter-coupling. The intra-coupling of base clusterings indicates

the involvement of cluster label occurrence frequency within one base clus-

tering, while inter-coupling of base clusterings means the interaction of other

base clusterings with this base clustering (Wang et al. 2011). Accordingly,

we have:

Denition 6.4.1 (IaCSC) The Intra-coupled Clustering Similarity

for Clusters between cluster labels vxj and vyj of base clustering bcj is:

δIaCj (vxj , v
y
j ) =

|gj(vxj )| · |gj(vyj )|
|gj(vxj )|+ |gj(vyj )|+ |gj(vxj )| · |gj(vyj )|

, (6.4.1)

where gj(v
x
j ) and gj(v

y
j ) are the set information functions.

By taking into account the frequency of cluster labels, IaCSC charac-

terizes the cluster similarity in terms of cluster label occurrence times. As

claried by (Wang et al. 2011) and in Section 5.4.1 as well, Equation (6.4.1)

is a well-dened similarity measure δIaCj ∈ [1/3,m/(m+4)] and satises two

main principles: greater similarity is assigned to the cluster label pair which

owns approximately equal frequencies; the higher these frequencies are, the

closer are the two clusters. For example, in Table 6.1, δIaCj (α, β) = 3/4.

The above two principles are also consistent with the similarity theorem

presented in (Lin 1998), in which the commonality corresponds to the product

of frequencies and the full description relates to the total sum of individual

frequencies and their product. In addition, a comparative evaluation on

similarity measures for categorical data has been conducted in (Boriah et al.

2008), delivering OF and Lin as the two best similarity measures among 14

existing measures on 18 data sets. Both these measures assign higher weights

to mismatches or matches on frequent values, and the maximum similarity is

attained when the attribute values exhibit approximately equal frequencies

(Boriah et al. 2008).

IaCSC considers the interaction between cluster labels within a base clus-

tering bcj. It does not involve the coupling between base clusterings (e.g.

between base clusterings bck and bcj(k = j)) when calculating cluster label
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similarity. For this, we discuss the dependency aggregation, i.e. inter-coupled

interaction.

Denition 6.4.2 (IeRSC) The Inter-coupled Relative Similarity for

Clusters between cluster labels vxj and vyj of base clustering bcj based on

another base clustering bck is:

δj|k(v
x
j , v

y
j |Vk) =



vk∈∩
min{Pk|j(vk|vxj ), Pk|j(vk|vyj )}, (6.4.2)

where vk ∈ ∩ denotes vk ∈ ϕj→k(v
x
j )∩ϕj→k(v

y
j ), ϕj→k is the inter-information

function, and Pk|j is the information conditional probability formalized in

Equation (6.2.1).

Denition 6.4.3 (IeCSC) The Inter-coupled Clustering Similarity

for Clusters between cluster labels vxj and vyj of base clustering bcj is:

δIeCj (vxj , v
y
j |{Vk}k =j) =

L

k=1,k =j

λkδj|k(v
x
j , v

y
j |Vk), (6.4.3)

where λk is the weight for base clustering bck,
L

k=1 λk = 1, λk ∈ [0, 1],

Vk(k = j) is a cluster label set of base clustering bck dierent from bcj to

enable the inter-coupled interaction, and δj|k(vxj , v
y
j |Vk) is IeRSC.

According to (Wang et al. 2011) and Section 5.4.2, relative similarity

δj|k is an improved similarity measure derived from MVDM proposed by

Cost and Salzberg (Cost & Salzberg 1993). It considers the similarity of

two cluster labels vxj and vyj in base clustering bcj on each possible cluster

label in base clustering bck to capture the co-occurrence comparison between

them. Further, the similarity δIeCj between the cluster pair (vxj , v
y
j ) in base

clustering bcj can be calculated on top of δj|k by aggregating all the relative

similarity on base clusterings other than bcj. For the parameter λk, in this

chapter, we simply assign λk = 1/(L − 1). For example, in Table 6.1, we

obtain δ4|2(α, β|V2) = 1/3 + 1/2 = 5/6 and δIeC4 (α, β|{V1, V2, V3}) = 1/3 ×
5/6 + 1/3× 5/6 + 1/3× 4/6 = 7/9 if we take λ1 = λ2 = λ3 = 1/3.
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Thus, IaCSC captures the base clustering frequency distribution by cal-

culating the occurrence times of cluster labels within one base clustering, and

IeCSC characterizes the base clustering dependency aggregation by compar-

ing the co-occurrence of the cluster labels in objects among dierent base

clusterings. Finally, there is an eligible way to incorporate these two cou-

plings together, specically:

Denition 6.4.4 (CCSC) The Coupled Clustering Similarity for Clus-

ters between cluster labels vxj and vyj of clustering bcj is:

δCj (v
x
j , v

y
j |{Vk}Lk=1) = δIaCj (vxj , v

y
j ) · δIeCj (vxj , v

y
j |{Vk}k =j), (6.4.4)

where δIaCj and δIeCj are IaCSC and IeCSC, respectively.

As indicated in Equation (6.4.4), CCSC becomes larger by increasing ei-

ther IaCSC or IeCSC. For example, in Table 6.1, we could consider the cou-

pled similarity between cluster labels α and β to be δCj (α, β|{V1, V2, V3, V4}) =
3/4× 7/9 = 7/12.

Here, we choose the multiplication of these two components. The ratio-

nale is twofold: (1) IaCSC is associated with how often the cluster label oc-

curs while IeCSC reects the extent of the cluster dierence brought by other

base clusterings. Intuitively, the multiplication of them indicates the total

amount of the cluster dierence; (2) the multiplication method is consistent

with the adapted simple matching distance introduced in (Gan et al. 2007),

which considers both the category frequency and matching distance.

Figure 6.4 summarizes the whole process to calculate the coupled simi-

larity for two cluster labels α and β. As indicated here, the similarity value

between cluster labels α and β is 7/12, which is larger than 0 suggested by

existing methods. Thus, CCSC discloses the implicit relationship for both

the frequency of cluster labels (intra-coupling) in each base clustering and the

co-occurrence of cluster labels (inter-coupling) across dierent base cluster-

ings. Intuitively, the “intra” here means the calculation of similarity between

clusters is limited to only one base clustering, while the “inter” describes how

this calculation also considers the involvement of other base clusterings.
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Figure 6.4: An example of the coupled similarity for cluster labels α and

β, where  indicates the intra-coupling and ←→ refers to the inter-

coupling, with the value along each line being the corresponding similarity.

6.4.2 Coupling of Objects

In the previous section, we presented the couplings of base clusterings from

the aspects of intra-coupled similarity and inter-coupled similarity between

cluster labels. Here, we proceed by considering the coupling relationships

among objects. Similarly, we assume that the objects interact with each

other both internally and externally.

In terms of the intra-perspective, the object ux is coupled with uy by

involving the cluster labels of all the base clusterings for ux and uy. The

similarity between ux and uy could be dened as the average sum of the

similarity between the associated cluster labels ranging over all the base

clusterings. Formally, we have:

Denition 6.4.5 (IaOSO) The Intra-coupled Object Similarity for

Objects between objects ux and uy with respect to all the base clustering
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results of these two objects is:

δIaO(ux, uy) =
1

L
·

L

j=1

δCj (v
x
j , v

y
j |{Vk}Lk=1), (6.4.5)

where δCj (v
x
j , v

y
j , {Vk}Lk=1) refers to CCSC between cluster labels vxj and vyj of

base clustering bcj.

In this way, all the CCSC s δCj (1 ≤ j ≤ L) with each base clustering

bcj are summed up for two objects ux and uy. Intuitively, the “intra” here

represents that the calculation of similarity between objects has nothing to

do with other objects. It just involves the two objects to be considered

with their internal attributes. For example, the similarity between u2 and

u3 in Table 6.1 is δIaO(u2, u3) = 0.655 and δIaO(u2, u10) = 0.684, which

are both larger than 0.5 as provided by the traditional approach. We nd

that the intra-coupled object similarity between objects u2 and u10 is a little

greater than that between u2 and u3, which may prove somewhat misleading

in terms of the nal clustering in the post-processing stage. To solve this

problem, we also examine the coupling between objects to further underscore

the interaction on the object level.

As indicated in (Guha et al. 2000), the set theory-based similarity measure

for categorical values, such as the Jaccard coecient (Gan et al. 2007), often

fails to capture the genuine relationship when the hidden clusters are not well-

separated and there is a wide variance in the sizes of clusters. This is also true

for our proposed IaOSO, since it only considers the similarity between the

two objects in question, and it is superior to the Jaccard coecient because it

concerns the interactions among base clusterings while the latter is too rough

to characterize the pairwise cluster similarity. However, neither IaOSO nor

Jaccard coecient reects the properties of the neighborhood of the objects.

Therefore, we present our new coupled similarity for objects based on the

notions of neighboring and IeOSO as follows.

Denition 6.4.6 (Neighbor) A pair of objects ux and uy are dened as
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neighbors if the following holds:

δSim(ux, uy) ≥ θ, (6.4.6)

where δSim denotes any similarity measure for objects, θ ∈ [0, 1] is a given

threshold.

In the above denition of neighboring, the similarity measure can be the

Jaccard coecient (Guha et al. 2000) for objects described by categorical

attributes, or Euclidean dissimilarity (Gan et al. 2007) for objects depicted

by continuous attributes. The neighborhood set of objects ux is denoted as:

NSim
ux

= {uz|δSim(ux, uz) ≥ θ}, (6.4.7)

which collects all the neighbors of ux to form an object set Nux . For example,

u3 and u10 are the neighbors of object u2, since δ
Sim(u2, u3) = δSim(u2, u10) =

1/3 ≥ 0.3 if we adopt the Jaccard coecient as the similarity measure and set

θ = 0.3, and the neighborhood set of u2 isNu2 = {u1, u3, u4, u5, u6, u7, u10, u11}.
Further, we can embody the inter-coupled interaction between dierent

objects by exploring the relationship between their neighborhoods. Intu-

itively, objects ux and uy more likely belong to the same cluster if they have

a larger overlap in their neighborhood sets Nux and Nuy . Below, we use the

common neighbors to dene the inter-coupled similarity for objects.

Denition 6.4.7 (IeOSO) The Inter-coupled Object Similarity for

Objects between objects ux and uy in terms of other objects {uz} is dened

as the ratio of common neighbors of ux and uy upon all the objects in U ,

based on similarity δSim:

δIeO(ux, uy|U, δSim) =
1

m
· |{uz ∈ U |uz ∈ NSim

ux
∩NSim

uy
}|, (6.4.8)

where NSim
ux

and NSim
uy

are the neighborhood sets of objects ux and uy based

on similarity measure δSim, respectively.

Thus, IeOSO builds the inter-coupling relationship between each pair of

objects by capturing the global knowledge of their neighborhood. Intuitively,
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the “inter” species that the calculation of similarity between objects also

concerns other objects if they are in a neighborhood relationship. For exam-

ple, δIeO(u2, u3|U) = 0.583 and δIeO(u2, u10|U) = 0.417 when setting δSim to

be the Jaccard coecient and θ = 0.3.

Finally, the intra-coupling and inter-coupled interactions can be consid-

ered together to induce the following coupled similarity for objects by exactly

specifying the similarity measure δSim in (6.4.7) to be IaOSO δIaO as dened

in Equation (6.4.5).

Denition 6.4.8 (CCOSO) The Coupled Clustering and Object Sim-

ilarity for Objects between objects ux and uy is dened when δSim is in

particular regarded as δIaO:

δCO(ux, uy|U) = δIeO(ux, uy|U, δIaO) (6.4.9)

=
1

m
· |{uz ∈ U |uz ∈ N IaO

ux
∩N IaO

uy
}|,

where the above two sets of objects N IaO
ux

= {uz|δIaO(ux, uz) ≥ θ} and N IaO
uy

=

{uz|δIaO(uy, uz) ≥ θ}.

In this way, the coupled similarity takes into account both the intra-

coupled and inter-coupling relationships between two objects. At the same

time, it also considers both the intra-coupled and inter-coupled interactions

between base clusterings, since one of the components IaOSO of CCOSO is

built on top of them. Thus, we call this the coupled clustering and object

similarity for objects (CCOSO). For example, the corresponding neighbors

of objects u2, u3 and u10 are described in Table 6.4 below, here θ = 0.65.

From this table, we observe that the number of common neighbors of

objects u2 and u3 (i.e., 9) is truly larger than that of objects u2 and u10

(i.e., 7), which correctly corresponds to our claim in Section 6.1. Based

on Equation (6.4.9), we obtain δCO(u2, u3|U) = 0.75 and δCO(u2, u10|U) =

0.5. This means that the similarity between objects u2 and u3 is larger

than that between u2 and u10, which eectively remedies the issue caused by

δIaO(u2, u3) < δIaO(u2, u10).
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Table 6.4: An Example of Neighborhood Domain for Object

Object Neighborhood Domain

u2 {u1, u3, u4, u5, u6, u7, u8, u10, u11, u12}
u3 {u1, u2, u4, u5, u6, u7, u8, u9, u10, u11, u12}
u10 {u2, u3, u6, u7, u8, u9, u11, u12}

Object Pair Common Neighbors

u2, u3 {u1, u4, u5, u6, u7, u8, u10, u11, u12}
u2, u10 {u3, u6, u7, u8, u11, u12}

6.5 Coupled Consensus Function in CCE

There are many ways to dene the consensus function such as pairwise agree-

ments between base clusterings, co-associations between data objects, and

interactions between clusters. Some of the criteria focus on the estimation of

similarity between base clusterings (Li et al. 2010, Topchy et al. 2005), some

are based on the similarity between data objects (Strehl & Ghosh 2002), and

others are associated with the similarity between clusters (Fern & Brodley

2004, Iam-On et al. 2011). In the following, we specify the coupled versions

of clustering-based, object-based, and cluster-based criteria individually.

6.5.1 Clustering-based Coupling

The clustering-based consensus function captures the pairwise agreement be-

tween base clusterings. Note that each base clustering bcj denes an associ-

ated similarity matrix (BCj)m×m that stores the information for each pair of

objects about their similarity. Each entry BCj(x, y) of the matrix represents

the similarity between objects ux and uy within the base clustering bcj.

The usual way to dene the entry BCj(x, y) of the similarity matrix

BCj is to justify whether objects ux and uy are in the same cluster of base
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clustering bcj, i.e., whether ux and uy have the same cluster label. Formally:

BCj(x, y) =

⎧
⎨
⎩
1 if vxj = vyj ,

0 otherwise,
(6.5.1)

where vxj and vyj are the cluster labels of ux and uy in base clustering bcj, re-

spectively. Then, given two base clusterings bcj1 and bcj2 , a common measure

of discrepancy is the partition dierence (PD) (Li et al. 2010):

SCg(bcj1 , bcj2) =


1≤x,y≤m

[BCj1(x, y)− BCj2(x, y)]
2, (6.5.2)

where x and y refer to the indexes of objects ux and uy respectively. However,

this traditional way is too imprecise to characterize the similarity between

objects, and it assumes independence among the base clusterings.

Alternatively, we can focus on the entry BCj(x, y) to incorporate the

coupling of base clusterings as follows:

BCC
j (x, y) = δCj (v

x
j , v

y
j |{Vk}Lk=1), (6.5.3)

SC
Cg(bcj1 , bcj2) =



1≤x,y≤m

[BCC
j1
(x, y)− BCC

j2
(x, y)]

2
, (6.5.4)

where δCj refers to CCSC in Denition 6.4.4. We denote this newly proposed

clustering-based coupling to be CgC.

Intuitively, SC
Cg calculates the sum of similarity between objects that be-

long to dierent base clusterings bcj1 and bcj2 . A target clustering fc∗ thus

should be:

fc∗ = arg
c1,··· ,ct∗

min
L

j=1

SC
Cg(fc, bcj), (6.5.5)

where fc = {c1, · · · , ct∗} denotes the candidate set of clusters for nal clus-

tering fc∗. According to (Topchy et al. 2005), the optimization problem in

(6.5.5) then can be heuristically approached by k-means operating in the

normalized object-label space OL with each entry to be:

OL(ux, v
y
j ) = δCj (v

x
j , v

y
j |{Vk}Lk=1)− μy(δCj ), (6.5.6)
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where ux is an object, vyj is a cluster label in bcj, and μy(δCj ) is the mean of

δCj (v
x
j , v

y
j |{Vk}Lk=1) for every cluster.

Thus, the clustering-based coupling addresses the intra-coupling and inter-

coupling of base clusterings to form the coupled consensus function CgC.

6.5.2 Object-based Coupling

The object-based consensus function captures the co-associations between

objects. Given two objects ux and uy, based on all the base clustering results,

a simple and obvious heuristic to describe the similarity between ux and uy

is the entry-wise average of the L associated similarity matrices induced by

the L base clusterings. In this way, an overall similarity matrix BC∗ with a

ner resolution is yielded (Strehl & Ghosh 2002). Formally, we have:

BC∗(x, y) =
1

L
·

L

j=1

BCj(x, y). (6.5.7)

The entry of the induced overall similarity matrix BC∗ is the weighted

average sum of each associated pairwise similarity BCj between objects of

every base clustering. However, the common pairwise similarity measure

BCj(x, y) is rather inadequate since only 1 and 0 are considered as dened

in Equation (6.5.1). The relationship that is neither within nor between

base clusterings (i.e., bcj1 and bcj2) is explicated. In addition, most existing

methods (Christou 2011, Fern & Brodley 2004, Gionis et al. 2007) only use

the similarity measure between objects when clustering them, which thus

does not involve the context (i.e. neighborhood) of the objects.

To solve the rst two issues above, we regard the entry BC∗(x, y) of the

overall similarity matrix to be IaOSO :

SIaC
O (ux, uy) = BC∗(x, y) = δIaO(ux, uy), (6.5.8)

where δIaO is dened in (6.4.5). Here, SIaC
O captures the intra-coupled in-

teractions within two objects as well as both the intra-coupled and inter-

coupled interactions among base clusterings. Alternatively, we can also as-

sign BCj(x, y) of base clustering bcj to be δCj (6.4.4), in the same way as
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Equation (6.5.3); then, the overall similarity matrix BC∗ is obtained by av-

eraging the associated similarity matrix BCj over all the base clusterings

according to (6.5.7). Afterwards, METIS is applied to the overall similar-

ity matrix BC∗ to produce the nal clustering fc∗. We denote this newly

proposed intra-coupled object-based coupling method as OC-Ia.

Further considering the third issue above, both the intra-couplings and

inter-couplings of clusterings and of objects are incorporated as follows:

SC
O (ux, uy) = BC∗(x, y) = δCO(ux, uy|U), (6.5.9)

where δCO is dened in (6.4.9). We would like to maximize the sum of

δCO(ux, uy|U) (6.4.9) for data object pairs ux, uy belonging to a single clus-

ter, and at the same time minimize the sum of δCO(ux, uy|U) for ux and uy in

dierent clusters. Accordingly, the desired nal clustering fc∗ = {c1∗, · · · , ct
∗
∗ }

with t∗ clusters can be obtained by maximizing the following criterion func-

tion:

fc∗ = arg
c1,··· ,ct∗

max
t∗

t=1

mt ·


ux,uy∈ct

SC
O (ux, uy) ·m
m

1+2f(θ)
t

, (6.5.10)

where ct denotes the tth cluster of size mt, m is the total number of objects,

and f(θ) = (1−θ)/(1+θ). The rationale of the above function is twofold: on

one hand, one of our goals is to maximize δCO(ux, uy|U) for all pairs of objects

in the same cluster ux, uy ∈ ct; on the other hand, we divide the total CCOSO

(i.e., SC
O = δCO) involving pairs of objects in cluster ct by the expected sum

of δCO in ct, which is m
1+2f(θ)
t /m (Guha et al. 2000); and then weigh this

quantity by mt, i.e., the number of objects in ct. Dividing by the expected

sum of δCO prevents a clustering in which all objects are assigned to a single

cluster, and avoids objects with very small coupled similarity value between

them from being put in the same cluster (Guha et al. 2000). Subsequently, we

adapt the standard agglomerative hierarchical clustering algorithm to obtain

the nal clustering fc∗ by solving Equation (6.5.10) (Guha et al. 2000). We

abbreviate this newly proposed hierarchical object-based coupling to OC-H.

The intra-coupled object-based coupling thus examines the intra-coupling

and inter-coupling of base clusterings as well as the intra-coupling of objects
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to form the coupled consensus function OC-Ia, while the hierarchical object-

based coupling considers both the intra-coupling and inter-coupling of base

clustering and objects to build the coupled consensus function OC-H.

6.5.3 Cluster-based Coupling

The cluster-based consensus function characterizes the interactions between

every two clusters. One of the basic approaches based on the relation-

ship between clusters is MCLA proposed by Strehl and Ghosh (Strehl &

Ghosh 2002). The idea in MCLA is to yield object-wise condence estimates

of cluster membership, to group and then to collapse related clusters repre-

sented as hyper-edges. The similarity measure of clusters in MCLA is the

Jaccard matching coecient (Gan et al. 2007), formally:

SCr(c
t1
j1
, ct2j2) =

|ct1j1 ∩ ct2j2 |
|ct1j1 ∪ ct2j2 |

, (6.5.11)

where ct1j1 and ct2j2 are the t1th cluster of base clustering bcj1 and the t2th

cluster of base clustering bcj2 , respectively.

The above similarity measure SCr considers neither coupling between base

clusterings nor interaction between objects. Therefore, it lacks the capability

to reect the essential link and relationship among data. To remedy this

problem, we dene the coupled similarity between clusters ct1j1 and ct2j2 in

terms of both the coupling relationships between clusterings and between

objects. The average sum of every two-object pairs in ct1j1 and ct2j2 respectively

is selected here to specify the coupled similarity between clusters:

SC
Cr(c

t1
j1
, ct2j2) =

1

mt1mt2



ux∈ct1j1 ,uy∈ct2j2

SO(ux, uy), (6.5.12)

wheremt1 andmt2 are the sizes of clusters c
t1
j1
and ct2j2 , respectively; SO(ux, uy)

is the coupled similarity for objects, and can be either δIaO (6.4.5) or δCO

(6.4.9). If SO = δIaO, the cluster-based coupling includes the intra- and inter-

coupled interaction between base clusterings as well as the intra-coupled
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interaction between objects; if SO = δCO, it reveals both the intra- and

inter-coupled interactions between base clusterings and between objects. Af-

terwards, METIS is used based on the cluster-cluster similarity matrix to

conduct meta-clustering as in (Strehl & Ghosh 2002). We denote the cluster-

based coupling as CrC (including CrC-Ia with δIaO and CrC-C with δCO).

The intra-coupled cluster-based coupling considers the intra-coupling and

inter-coupling of base clusterings together with the intra-coupling of objects

to dene the coupled consensus function CrC-Ia, while the coupled object-

based coupling concerns both the intra-couplings and inter-couplings of base

clustering and objects to construct the coupled consensus function CrC-C.

6.5.4 Miscellaneous Issues

How to Establish the Number of Final Clusters: The automatic iden-

tication of the appropriate number of clusters is a deep research problem

that has attracted signicant attention (Gionis et al. 2007, Kuncheva &

Vetrov 2006, Wang, Domeniconi & Laskey 2010). There are four ways to

handle this issue: imposing a hard constraint on the number of clusters or

on their quality, model selection, nding the size t∗ of nal clustering by

similarity analysis, and nonparametric estimation. In our experiments, for

simplicity, the number of clusters t∗ is xed, the same as the number of classes

in each data set. The dierent ways to determine t∗ can also be incorporated

into our proposed coupled consensus functions.

How to Generate Base Clusterings: There are several methods

of providing diverse base clusterings: using dierent clustering algorithms

(Gionis et al. 2007), employing random or dierent parameters for some

algorithms (Iam-On et al. 2011), and adopting random sub-sampling or ran-

dom projection of the data (Fern & Brodley 2004). Since our focus is mainly

on the consensus function, we use k-means on random sub-sampling (Fern

& Brodley 2004) of the data as the base clustering algorithm in our experi-

ments. The number tj of base clustering bcj is pre-dened for each data set

and remains the same for all clustering runs.
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How to Post-process Clustering: In the proposed CCE framework,

we mainly focus on the consensus function based on pairwise interactions

between base clusterings, between objects and between clusters. Those inter-

actions are described by the corresponding similarity matrices. Thus, a com-

mon and recommended way to combine the base clusterings is to re-cluster

the objects using any reasonable similarity-based clustering algorithm. In our

experiments, we choose k-means, agglomerative algorithm (Guha et al. 2000)

and METIS (Strehl & Ghosh 2002) due to their popularity in the clustering

ensemble.

How to Deal with Big Data: In case the data set is large, random

sampling and labeling enable the pairwise similarity-based CCE to reduce

the number of objects to be considered, and ensure that the input data set

ts the main memory. Ecient algorithms for selecting random samples

can be found in (Guha et al. 2000). As indicated in (Gionis et al. 2007),

sampling O(logm) objects is sucient to guarantee that at least one object

in a large cluster will be selected with high probability. Afterwards, CCE

assigns the remaining data objects to the clusters generated by the sampled

objects, according to the similarity between each object and a fraction of

objects from every cluster. If the sum of similarity between the object ux to

be labeled and the objects chosen from a nal cluster ct∗ is maximum, then

the object ux is allocated to the tth nal cluster ct∗. The similarity of objects

here can be either IaOSO (δIaO) or CCOSO (δCO). In our experiments, we

will consider IaOSO (δIaO) for simplicity.

6.6 Algorithm and Analysis

In previous sections, we have discussed the coupled framework of cluster-

ing ensembles CCE from the perspectives of coupling of clusterings, cou-

pling of objects, and coupled consensus functions. They are all based on

the intra- and inter-coupled interactions between clusterings and between
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Algorithm 6.1: Coupled Similarity for Clusters CCSC

Data: Object set U = {u1, · · · , um} and ux, uy ∈ U , base clustering

set C = {bc1, · · · , bcL}, and weight λ = (λk)1×L.

Result: Similarity matrix CCSC between cluster labels.

1 begin

2 maximal cluster label r(j) ←− max(Vj)

3 for every cluster label pair (vxj , v
y
j ∈ [1, r(j)]) do

4 U1 ←− {i|vij == vxj }, U2 ←− {i|vij == vyj }
// Compute intra-coupled similarity between cluster

labels vxj and vyj .

5 δIaCj (vxj , v
y
j ) = (|U1||U2|)/(|U1|+ |U2|+ |U1||U2|)

6 δCj (v
x
j , v

y
j |{Vk}Lk=1) ←− δIaCj (vxj , v

y
j ) · IeCSC(vxj , v

y
j )

7 CCSC(vxj , v
y
j ) ←− δCj (v

x
j , v

y
j |{Vk}Lk=1)

8 end

9 Function IeCSC(vxj , v
y
j , U1, U2)

10 begin

11 for each base clustering (bck ∈ C) ∧ (bck = bcj) do

12 ϕ ←− {vxk |x ∈ U1} ∩ {vyk|y ∈ U2}
13 for every intersection vzk ∈ ϕ do

14 U0 ←− {i|vik == vzk}
15 ICPx ←− |U0 ∩ U1|/|U1|
16 ICPy ←− |U0 ∩ U2|/|U2|
17 Min(x,y) ←− min(ICPx, ICPy)

18 δj|k(vxj , v
y
j |Vk) = sum[Min(x,y)]

// Compute inter-coupled similarity between two cluster

labels vxj and vyj .

19 δIeCj (vxj , v
y
j |{Vk}k =j) = sum[λk · δj|k(vxj , vyj |Vk)]

20 return IeCSC(vxj , v
y
j ) = δIeCj (vxj , v

y
j |{Vk}k =j)
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Algorithm 6.2: Coupled Similarity for Objects CCOSO

Data: Object set U = {u1, · · · , um} and ux, uy ∈ U , base clustering

set C = {bc1, · · · , bcL}, and threshold θ ∈ [0, 1].

Result: Similarity CCOSO(ux, uy) between objects ux, uy.

1 begin

2 for each base clustering bcj ∈ C do

3 δCj (v
x
j , v

y
j |{Vk}Lk=1) ←− CCSC(vxj , v

y
j )

// Compute intra-coupled similarity between two objects ux

and uy.

4 δIaO(ux, uy) = 1/L · sum[δCj (v
x
j , v

y
j |{Vk}Lk=1)]

5 neighbor sets Nux = Nuy = ∅
6 for objects (uz1 , uz2 ∈ U) ∧ (uz1 = ux) ∧ (uz2 = uy) do

7 if δIaO(ux, uz1) ≥ θ then

8 Nux = {uz1} ∪Nux

9 if δIaO(uy, uz2) ≥ θ then

10 Nuy = {uz2} ∪Nuy

// Compute inter-coupled similarity between two objects ux

and uy.

11 δCO(ux, uy|U) = 1/m · |Nux ∩Nuy |
12 CCOSO(ux, uy) ←− δCO(ux, uy|U)

13 end

objects. Therefore, in this section, we design two algorithms CCSC 1 and

CCOSO to compute the coupled similarity for each pair of cluster labels and

the coupled similarity for objects ux and uy, respectively.

As shown in these two algorithms, the computational complexity for

CCSC is O(LT 3), and the computational complexity for CCOSO is O(L2T 3+

1All the cluster labels of each base clustering need to be encoded as numbers, starting

at one and increasing to the maximum which is the respective number of clusters in this

base clustering.
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2m), where L is the number of base clusterings, T is the maximal number of

clusters in all the base clusterings, and m is the total number of objects.

6.7 Empirical Study

This section presents the performance evaluation of the coupled framework

CCE in terms of the clustering-based (CgC ), object-based (OC-Ia and OC-

H ), and cluster-based (CrC-Ia and CrC-C ) couplings. The experiments

are performed on 11 synthetic and real data sets to discover the implicit

relationships between base clusterings and between data objects, to validate

accuracy, stability, and robustness of various consensus functions, as well as

to explore the dependency between data characteristics and nal clustering

quality. All the experiments are conducted on a Dell Optiplex 960 equipped

with an Intel Core 2 Duo CPU with a clock speed of 2.99 GHz and 3.25 GB

of RAM running on Microsoft Windows XP.

Table 6.5: Description of Data Sets in Chapter 6

Data Set m n tp Source

Sy1 200 2 2 modied from (Strehl & Ghosh 2002)

Sy2 400 6 4 modied from (Kuncheva & Vetrov 2006)

Iris 150 4 3 UCI repository (Frank & Asuncion 2010)

Wine 178 13 3 UCI repository (Frank & Asuncion 2010)

Seg 210 19 7 UCI repository (Frank & Asuncion 2010)

Glass 214 9 6 UCI repository (Frank & Asuncion 2010)

Ecoli 336 7 8 UCI repository (Frank & Asuncion 2010)

Ionos 351 34 2 UCI repository (Frank & Asuncion 2010)

Blood 748 5 2 UCI repository (Frank & Asuncion 2010)

Vowel 990 10 11 UCI repository (Frank & Asuncion 2010)

Yeast 1484 8 10 UCI repository (Frank & Asuncion 2010)
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6.7.1 Data Sets

The experimental evaluation is conducted on 11 data sets, including two

synthetic data sets (i.e., Sy1 and Sy2, which are 2-Gaussian modied from

(Strehl & Ghosh 2002) and 4-GaussianN modied from (Kuncheva & Vetrov

2006), respectively) and nine real-life data sets from UCI (Frank & Asuncion

2010). Table 6.5 summarizes the details of these data sets, where m is the

number of objects, n is the number of dimensions, and tp is the number of

pre-known classes. Those true classes are only used to evaluate the quality

of the clustering results, not the process of aggregating base clusterings. The

number of true classes is only used to set the number of clusters both in

building the base clusterings and in the post-processing stage. Since we do

not involve the information of attributes after building base clusterings, we

order the data sets according to the number of objects ranging from 150

to 1484. Note that the second synthetic data set Sy2 is initially created

to follow the two-dimension Gaussian distribution and then added with four

more dimensions of uniform random noise in the way presented in (Kuncheva

& Vetrov 2006). When the data size, which is the number of objects, exceeds

700 (e.g., Blood, Vowel, and Yeast), we regard it as a big data set and use

the method proposed in Section 6.5.4 to deal with it.

6.7.2 Baseline Approaches and Parameters

As previously presented, our experiments are designed from the following

three perspectives:

1. Clustering-based: Besides the partition dierence (PD) proposed in

(Li et al. 2010), QMI is also an eective clustering-based criterion

(Topchy et al. 2005), which has proved to be equivalent to Category

Utility Function in (Li et al. 2010). We will compare the clustering-

based coupling (CgC ) with its baseline method PD (Li et al. 2010),

EM and QMI (Topchy et al. 2005).

2. Object-based: In this group, we will compare the intra-coupled object-
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based coupling OC-Ia with its baseline method CSPA (Strehl & Ghosh

2002), and compare the hierarchical object-based coupling OC-H with

CSPA (Strehl & Ghosh 2002) and with the categorical clustering algo-

rithms: ROCK (Guha et al. 2000) (the baseline method of OC-H ) and

LIMBO (Andritsos et al. 2004).

3. Cluster-based: Based on MCLA (Strehl & Ghosh 2002), HBGF is an-

other promising cluster-based criterion (Fern & Brodley 2004). It also

collectively considers the similarity between objects and clusters but

lacks the discovery of coupling. Iam-On et al. (Iam-On et al. 2011) pro-

posed a link-based approach (LB), which is an improvement on HBGF.

Below, cluster-based coupling CrC (including CrC-Ia and CrC-C ) is

compared with their baseline methods MCLA (Strehl & Ghosh 2002),

HBGF (Fern & Brodley 2004), and LB (Iam-On et al. 2011, Iam-On

& Boongoen 2012) (including LB-P and LB-S 2).

As indicated in Section 6.5.4, k-means on random sub-sampling (Fern &

Brodley 2004) of the data is used to produce a diversity of base clusterings;

k-means and agglomerative algorithm are used to post-process the coupled

consensus functions CgC and OC-H, respectively, and METIS is adopted to

post-process the consensus functions OC-Ia, CrC-Ia and CrC-C. Here, OC-H

is built based on ROCK (Guha et al. 2000), thus agglomerative algorithm

is adopted to do the post-processing as ROCK does. But METIS is much

more ecient than agglomerative algorithm, so we useMETIS to post-process

OC-Ia. The parameters in the following are especially important:

– θ: The neighbor threshold in (6.4.6) is dened to be the average IaOCO

and Jaccard coecient (Guha et al. 2000) values of pairwise objects for

OC-H and ROCK, respectively.

2The performance of the model (i.e., WTU+SPEC ) proposed in (Iam-On & Boongoen

2012) is between that of LB-P (i.e., CSM+PAM (Iam-On et al. 2011)) and that of LB-S

(i.e., CSM+SPEC (Iam-On et al. 2011)), so we only report the results of LB-P and LB-S.
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– L: The ensemble size (i.e., the number of base clusterings) is taken to

be L = 10. The reason for this selecting is explained in Section 6.7.3.

– tj, t∗: The number of clusters in the base clustering bcj and nal clus-

tering fc∗ are both regarded as the number of pre-known classes tp,

i.e., tj = t∗ = tp.

– λk: The weight λk for base clustering bck in Denition 6.4.3 on IeCSC

is simplied as λk = 1/L = 1/10.

– NR: The number of runs for each clustering ensemble is xed as NR =

50 to obtain corresponding average results for the evaluation measures.

Other parameters of the compared methods remain the same as the original

approaches and models.

Since each clustering ensemble method divides data objects into a par-

tition of tp (i.e. the number of true classes) clusters, we then evaluate the

clustering quality against the corresponding true partitions by using these

external criteria: accuracy (AC) (Cai et al. 2005) and normalized mutual

information (NMI) (Cai et al. 2005). We also judge the stability of multiple

runs by using the combined stability index (CSI) (Kuncheva & Vetrov 2006),

as well as the robustness (Topchy et al. 2005) of the clustering ensemble by

comparing the average AC, NMI, and CSI scores across dierent data sets.

In brief, AC and NMI describe the degree of approximation between the ob-

tained clusters and the true data classes. CSI reveals the stability between

them across NR = 50 runs, and reects the deviation of the results across

dierent runs. In fact, the larger the AC or NMI or CSI is, the better the

clustering ensemble algorithm is. Note that the correspondence problem on

mapping between the derived clusters and the known classes needs to be

solved before evaluation. The optimal correspondence can be obtained using

the Hungarian method (Topchy et al. 2005) with O((tp)3) complexity for tp

clusters.
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Table 6.6: Evaluation Measures on Base Clusterings

Data Set
AC NMI CSI

Max Avg Min Max Avg Min Avg

Sy1 0.955 0.950 0.945 0.745 0.720 0.693 0.714

Sy2 0.503 0.460 0.385 0.406 0.406 0.406 0.698

Iris 0.927 0.827 0.513 0.750 0.656 0.427 0.791

Wine 0.708 0.689 0.556 0.441 0.424 0.388 0.659

Seg 0.586 0.529 0.433 0.548 0.496 0.410 0.820

Glass 0.517 0.479 0.449 0.338 0.307 0.276 0.602

Ecoli 0.687 0.512 0.470 0.539 0.437 0.398 0.530

Ionos 0.712 0.704 0.650 0.131 0.107 0.014 0.670

Blood 0.739 0.709 0.707 0.017 0.016 0.013 0.780

Vowel 0.373 0.354 0.339 0.435 0.415 0.388 0.802

Yeast 0.384 0.332 0.319 0.250 0.220 0.218 0.817

6.7.3 Experimental Results

Based on the evaluation measures (i.e., AC, NMI and CSI), Table 6.6 dis-

plays the performance of the base clustering algorithm (i.e., k-means) over

synthetic and real data sets. Note that Max, Avg, and Min represent the

maximal, average, and minimum corresponding evaluation scores among in-

put base clusterings, respectively. Below, we report the experimental results

on implicit relationship discovery, clustering-based comparison, object-based

comparison, and cluster-based comparison individually.

Implicit Relationship Discovery

Prior to the experiments on the clustering ensemble, we rst compare the im-

plicit relationship revealed by dierent similarity measures between objects.

The similarity measures to be compared are listed here: traditional measure

(TO for short) specied in formulae (6.5.1) and (6.5.7), intra-coupled object

similarity (IaO for short) dened in formula (6.4.5), coupled clustering and
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Figure 6.5: Percentage of pairwise similarity ∈ (0, 1) between objects among

all the similarity values.

object similarity (CO for short) formalized in formula (6.4.9). The unknown

relationship captured by similarity measures is quantied as the percentage

of similarity values that fall within the open interval (0, 1) among all of the

pairwise similarities between objects. The ratios reported in this comparison

are the average values across 50 runs of generating base clusterings.

Figure 6.5 presents the percentage of similarity values ∈ (0, 1) (axis y)

for three similarity measures (i.e., TO, IaO and CO) on three data sets

(i.e., Sy1, Iris, and Wine) with dierent ensemble sizes L ranging from 5

to 30 (axis x). It is remarkable to note that the proportions of similarity

values ∈ (0, 1) for IaO and CO are much higher than for TO. This empirical

evidence signies that our proposed IaO and CO are capable of discovering

the hidden relationships among data objects, while the TO performs rather

poorly by mostly assigning 0 and 1 to the similarity between objects.

Another interesting observation is that the percentage score of IaO is

larger than that of CO. This is probably due to the fact that the similarity

measure CO is ltered and rened from IaO, which means CO may amplify

several IaO similarity values and also diminish some IaO values according

to the neighborhood coupling. In essence, IaO captures a partial picture of

192



COUPLED BEHAVIOR ENSEMBLE LEARNING

the similarity between objects, while CO provides a global view in terms of

the context around objects.

A third discovery is that the ensemble size L = 10 is large enough to cap-

ture the relationship between data objects, as compared to L = 15, 20, 30. It

can be also observed that the percentages of TO and IaO have an increasing

trend when L goes up, while the ratio of CO keeps uctuating. The reason

is that the likelihood that the TO and IaO values will take 0 become smaller

with the increasing number of base clusterings. However, the opportunity for

CO to be evaluated as 0 is uncertain since the average threshold for den-

ings neighbors (see formula (6.4.6)) also increases, which probably leads to a

smaller set of neighbors (see formula (6.4.7)). Thus, we select L = 10 in the

experiments below to preserve the ability to discover enough of a relationship

but with relatively low computational complexity.

In the following sections, the experimental results are presented and ana-

lyzed in three groups: clustering-based comparison which focuses on the eval-

uation of coupling between base clusterings, object-based comparison which

studies the utility of intra-coupling and inter-coupling between objects, and

cluster-based comparison which identies the joint eect of couplings between

base clusterings and between objects. We analyze the clustering performance

individually by considering the couplings step by step within each group of

experiments, although a comparison across these three groups is beyond the

scope of this chapter. Note that all the values reported on AC and NMI

are the averages across multiple clustering ensembles (i.e., exactly 50 runs).

The CSI value reveals the total deviation apart from the average of 50 runs

in each experiment, and the improvement rate below refers to the absolute

dierence value between two evaluation scores.

Clustering-based Comparison

Figure 6.6 shows the performance comparison of dierent clustering-based

ensemble methods over two synthetic and nine real-life data sets in terms of

AC, NMI and CSI. It is clear that our proposed CgC usually generates data
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partitions of higher quality than its baseline model PD and other compared

approaches, i.e. EM and QMI. Specically, in terms of accuracy, the AC im-

provement rate ranges from 1.59% (QMI on Sy1) to 12.71% (EM on Vowel),

and there has been signicant CSI improvement (from 0.69% to 49.83%) ex-

cept in one case: Glass. Overall, the average improvement rate of CgC on

AC across all the other methods over all the data sets is 3.85%, and the

average improvement rate of CgC on CSI is 8.99%. Also, in several data sets

such as Sy1, Sy2, Wine, Seg, Ionos, Blood, Vowel and Yeast, the AC mea-

sures exceed the maximum of AC in the corresponding base clusterings, i.e.

Max(AC) in Table 6.6. All the AC and CSI values of CgC are higher than

the corresponding average values of base clustering. Another observation is

that none of the other three consensus functions compared is an outright

winner; QMI is the best in most cases, followed by PD with EM being the

worst. However, our proposed CgC outperforms all the algorithms compared

on almost every data set. A similar situation can also be observed when NMI

is used to evaluate clustering quality. Statistical analysis, namely the t-test,

has been carried out on the AC and NMI of our CgC, at a 95% signicance

level. The null hypothesis that CgC is better than base clusterings and the

best result of other methods in terms of AC and NMI is accepted.

In addition, it seems that the improvement level of CgC upon other meth-

ods is associated with the quality of base clusterings: the better quality of

base clusterings corresponds to a relatively smaller level of improvement.

This point of view will be justied later in Section 6.7.4.

Hence, we draw the empirical conclusion that clustering accuracy and sta-

bility can be further improved with CgC by involving the couplings of cluster-

ings. The improvement rate is dependent on the accuracy of base clusterings.

Object-based Comparison

The evaluations (i.e. AC, NMI and CSI) of distinct object-based ensemble

methods are exhibited in Figure 6.7. Eight data sets with smaller size are

chosen because of the high computational complexity in this group of exper-

194



COUPLED BEHAVIOR ENSEMBLE LEARNING

Sy1 Sy2 Iris Wine Seg Glass Ecoli Ionos Blood Vowel Yeast
0.2

0.4

0.6

0.8

1

Data Set

A
cc
u
ra
cy

Clustering−based Comparisons with AC, NMI and CSI

Sy1 Sy2 Iris Wine Seg Glass Ecoli Ionos Blood Vowel Yeast
0

0.2

0.4

0.6

0.8

Data Set

N
o
rm
al
iz
ed
M
u
tu
al
In
fo
rm
at
io
n

Sy1 Sy2 Iris Wine Seg Glass Ecoli Ionos Blood Vowel Yeast
0.2

0.4

0.6

0.8

1

Data Set

C
o
m
b
in
ed
S
ta
b
ili
ty
In
d
ex

EM QMI PD CgC

Figure 6.6: Clustering-based comparisons on AC, NMI and CSI.

iments. We observe that, with the exception of a few items, our proposed

OC-Ia mostly outperforms the ensemble method CSPA and categorical clus-

tering algorithm ROCK in terms of both NMI and CSI. Our proposed OC-H

has the largest NMI and CSI values over most of the data sets. Here, it

can be clearly seen that our proposed OC-Ia and OC-H both achieve bet-

ter clustering quality compared to their respective baseline methods CSPA

and ROCK. The average NMI and CSI improvement rates for the former

pair are 4.25% and 6.76% respectively, and those values for the latter pair

are 20.80% and 30.10%. When compared with Table 6.6, all the NMI and
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CSI values of OC-Ia and OC-H are greater than the corresponding average

values of base clustering, and several NMI values are even larger than the

maximum values in the base clustering, e.g. Sy2 and Iris. It is also notewor-

thy that the evaluation scores of the categorical clustering algorithm LIMBO

are comparable with our proposed OC-Ia, but worse than OC-H. The reason

is that LIMBO also considers the coupling between attributes but from the

perspective of information theory, and it lacks the concern of the coupling

between objects. However, ROCK as a categorical clustering algorithm also

leads to poor performance in the clustering ensemble, since it only focuses

on the interaction between objects but overlooks the relationship between

base clusterings. This discovery is also evidenced by the evaluation results

quantied by the AC measure. Statistical testing supports the results on AC

and NMI that OC-Ia and OC-H do not perform worse than CSPA, ROCK,

and LIMBO, at a 95% signicance level.

Thus, the clustering quality can be enhanced by the involvement of both

intra-coupling between objects (e.g. OC-Ia) and inter-coupling between ob-

jects (e.g. OC-H) with the latter performing slightly better.

Cluster-based Comparison

Table 6.7 reports the experimental results with the cluster-based ensemble

methods by using the evaluation measures: AC, NMI and CSI. The two high-

est measure scores of each experimental setting are highlighted in boldface.

The last column is the average value for associated measures across all the

data sets. As the table indicates, our proposed CrC-Ia and CrC-C mostly

hold the rst two positions on every individual data set, and their average

evaluation scores are the corresponding largest two among all the average

values. For AC, the average improvement rate of CrC-Ia and CrC-C against

other methods ranges from 1.84% to 6.79%; for NMI, the minimal and max-

imal average improvement rates are 2.19% and 6.56%, respectively; for CSI,

this rate falls between 2.02% and 12.44%. In addition, the average AC, NMI,

and CSI scores of CrC-Ia and CrC-C across all the data sets are larger than
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Figure 6.7: Object-based comparisons on AC, NMI and CSI.

those of comparative approaches and are presented in the last column of

Table 6.7. Thus, both CrC-Ia and CrC-C are more robust than other al-

ternatives. Resembling the above comparisons, all the evaluation scores of

CrC-Ia and CrC-C are at least not smaller than the corresponding average

values of base clustering, with several AC and NMI values being even greater

than the relevant maximal scores in base clustering, e.g., Sy2 and Wine. All

the results on AC and NMI are supported by a statistical signicance test at

a 95% signicance level.

Another signicant observation is that the average AC and NMI improve-
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ment rates of CrC-C on CrC-Ia are only 1.86% and 1.42% respectively, which

are smaller than those of CrC-Ia and CrC-C on other compared methods. We

know that CrC-C built on CrC-Ia also involves the common neighborhood

of objects. When most of the base clusterings have a relatively consistent

grouping of objects, the chances of encountering a situation where half of

the base clusterings put two objects in the same cluster while the other half

separates them into dierent groups is rare. Therefore, the improvement

made by CrC-C upon CrC-Ia is minor or even negative in this scenario,

such as Seg and Yeast whose CSI values across 10 base clusterings are as

high as 0.820 and 0.817 in Table 6.6, respectively. However, for a majority

of cases, dierent base clusterings result in a range of results. Thus, CrC-C

in particular is expected to demonstrate better performance when dieren-

tiating those questionable objects, compared to CrC-Ia. We will verify this

assumption in detail in Section 6.7.4.

Clustering quality consequently benets from both the couplings between

clusterings and the couplings between objects. However, the inter-coupling

of objects is dependent on the consistency of base clustering results, which

aects the degree of improvement.
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Figure 6.8: Quality of base clusterings and the AC performance gain for the

results in Figure 6.6.

6.7.4 Data Characteristics and Performance

Building on the previous quality assessments, here we discuss the data char-

acteristics and performance of our proposed framework CCE. Specically, we

address the two assumptions in the previous sections: we aim to discover how

the quality of base clusterings aects nal clustering accuracy, and how the

consistency of base clustering results improves consensus accuracy. Thus,

we develop another two groups of experiments to explore the relationship

between the data characteristics of base clusterings and the degree of im-

provement in the nal clustering quality.

Quality of Base Clusterings vs Improvement

The rst descriptive indicator of data characteristics for base clusterings ex-

hibits the quality of those base clusterings. Here, we use the average AC

(i.e. accuracy) or average NMI (i.e. normalized mutual information) of base

clusterings generated by k-means to represent this indicator to show the qual-

ity of base clusterings. In terms of the improvement, the AC performance
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gain is regarded as the increased proportion of accuracy for CgC against

the best results among the other three methods (i.e., EM, QMI, PD) con-

sidered in Figure 6.6, while the NMI performance gain is described as the

increased percentage of NMI for OC-Ia against the better results between

CSPA and ROCK compared in Figure 6.7. Note that these ratios are the rel-

ative dierence value between two evaluation scores, which is dierent from

the improvement rate in Section 6.7.3. Formally, the performance gain is

dened as:

Performance Gain = [τ(∗)− τ(Best)]/τ(Best), (6.7.1)

where τ is either AC or NMI as required, ∗ is the proposed method (e.g.

CgC or OC-Ia), and Best is the best comparable algorithm (e.g. Best ∈
{EM,QMI,PD} or Best ∈ {CSPA,ROCK}). τ(∗) and τ(Best) represent the

corresponding τ evaluation scores of ∗ and Best, respectively.

The results of the relationship between quality and performance gain are

reported in Figure 6.8 and Figure 6.9, which correspond to Figure 6.6 and

Figure 6.7, respectively. Figure 6.8(a) shows the staircase chart on AC of

CgC and the best algorithm among EM, QMI and PD. As can be clearly seen

from Figure 6.8(b), the larger the average AC of base clusterings (axis x), the

smaller the AC performance gain (axis y), for most cases. The only exception

is Sy2. This is probably due to the fact that the synthetic data set Sy2

is generated with additional noise, besides which, the Pearson’s correlation

coecient between these two variables (i.e. AC of base clusterings and AC

performance gain) is −0.9486 with p-value 0.8626 × 10−5 (< 0.05), which

means that the correlation is negative at a 95% signicance level. We can

draw the same conclusion if we consider NMI values.

Similarly, Figure 6.9(a) displays the staircase chart on NMI of OC-Ia

and the better algorithm between CSPA and ROCK. Further, Figure 6.9(b)

reveals that with the exception of Iris, the larger the average NMI of base

clusterings (axis x), the smaller the NMI performance gain (axis y). The great

variation of NMI for Iris, which is reected in Table 6.6 with maximal NMI

value 0.750 and minimal NMI value 0.427, probably leads to this exception.
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Figure 6.9: Quality of base clusterings and the NMI performance gain for

the results in Figure 6.7.

The corresponding Pearson’s correlation coecient here is −0.7953 between

two variables: NMI of base clusterings and NMI performance gain, with

p-value 0.0183 (< 0.05). It is also revealed that these two variables are

signicantly associated in anti-correlation at a 95% signicance level. Similar

results can be obtained when AC scores are concerned instead.

We have therefore veried our rst assumption proposed in Section 6.7.3.

We conclude that the performance gain brought by the coupling of base

clusterings against other ensemble methods is negatively associated with the

quality of base clusterings, and the result is statistically signicant. Intu-

itively, this conclusion is easy to understand, since the improvement space

will automatically become smaller when the base clusterings have already

exhibited better quality.

Consistency of Base Clusterings vs Improvement

The consistency of base clusterings is selected as another descriptive indicator

of data characteristics for base clusterings. The consistency here describes
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Figure 6.10: Consistency of base clusterings and the AC, NMI performance

gains for the results in Table 6.7.

the variation of clustering results among base clusterings. As pointed out in

Section 6.7.2, CSI reects the deviation of clustering results across dierent

runs. Thus, we use the CSI of base clusterings (i.e. the last column in Table

6.6) to represent and quantify the consistency of these results. The larger

the CSI, the more consistent the clustering results. Similar to the above

Section 6.7.4, AC and NMI performance gains are again adopted to measure

the improvement of CrC-C upon CrC-Ia in Table 6.7. Here, ∗ is CrC-C and

Best is CrC-Ia in Equation (6.7.1).

The corresponding results obtained for the dependency between consis-
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tency and performance gain are presented in Figure 6.10. In detail, Figure

6.10(a) and Figure 6.10(b) exhibit the staircase charts on AC and NMI of

CrC-C and CrC-Ia, respectively. In Figure 6.10(c), it is clearly observed

that both curves, whether they are AC or NMI, have a general tendency to

decrease. That is to say, for most cases, the larger the CSI of the base clus-

terings (axis x), the smaller the AC or NMI performance gain (axis y). This

also means that the performance gain of CrC-C upon CrC-Ia is associated

with the consistency of the base clusterings. If the initial base clusterings

have more controversial objects for the nal grouping, CrC-C is more likely

to further rene CrC-Ia with the inconsistency. Otherwise, CrC-C obtains

more or less the same clustering results as CrC-Ia; sometimes the results of

CrC-C are even worse than those of CrC-Ia. For instance, there are several

points located around the horizontal line of 0% in Figure 6.10(c) . Moreover,

the Pearson’s correlation coecient between consistency of base clusterings

and AC performance gain is −0.9615 with p-value 0 (< 0.05), and the co-

ecient between consistency and NMI performance gain is −0.8912 with

p-value 0.0002 (< 0.05). The statistical test guarantees that the variables of

consistency and performance gain are correlated by the negative dependency,

signicantly with a condence level at 95%.

The second hypothesis raised in Section 6.7.3 has consequently been con-

rmed. In conclusion, the performance gain caused by the inter-coupling

of objects against other ensemble methods is negatively dependent on the

consistency of base clustering results, and this consequence is statistically

signicant. This conclusion explains that if the initial base clusterings have

a relatively high level of inconsistency, a further improvement is necessary

by also involving the inter-coupling of objects. This conclusion also con-

forms to the viewpoint proposed by Kuncheva and Hadjitodorov (Kuncheva

& Hadjitodorov 2004) as well as Iam-On (Iam-On et al. 2011): a more accu-

rate partition can be obtained from a diverse ensemble than from the non-

diverse case. Here, the diverse ensemble corresponds to the less consistent

base clusterings.
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In all, we draw the following four conclusions to address the research ques-

tions proposed in Section 6.1: 1) Our proposed similarity measures incorpo-

rate the couplings of base clusterings and objects, and have an impressive

capacity to discover the implicit relationships in the data. 2) Base clusterings

are indeed coupled with each other, and the consideration of such couplings

can result in better clustering quality; 3) The inclusion of coupling between

objects further improves clustering accuracy and stability; 4) The improve-

ment level or performance gain brought by the coupling of base clusterings is

negatively associated with the quality of base clusterings, while the further

improvement degree or performance gain caused by the inter-coupling of ob-

jects is inversely dependent on the consistency of the base clustering results.

All the results are accordingly supported by statistical tests.

6.8 Summary

The clustering ensemble has been introduced as a more accurate alternative

to individual (base) clustering algorithms. Existing approaches are mostly

based on the IIDness assumption, and overlook the couplings between ob-

jects. This chapter has proposed a novel framework for coupled clustering

ensembles, i.e. CCE, to incorporate interactions between base clusterings and

between objects. CCE caters for cluster label frequency distribution within

one base clustering (intra-coupling of clusterings), cluster label co-occurrence

dependency between distinct base clusterings (inter-coupling of clusterings),

base clustering aggregation between two objects (intra-coupling of objects),

and neighborhood relationship among other objects (inter-coupling of ob-

jects), which has been shown to improve learning accuracy, stability, and

robustness. The proposed similarity measures that involve the couplings of

base clusterings and objects have been shown to largely tease out the im-

plicit relationships in the data. Substantial experiments have veried that

the consensus functions incorporated with the non-IIDness features signi-

cantly outperform ten state-of-art techniques in terms of the clustering-base,
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object-based and cluster-based ensembles as well as the algorithm to produce

base clusterings (k-means), supported by statistical analysis.

[Note] A conference version of this chapter has been published in the rst

item below, and a full journal version has been submitted to the second item.

• Can Wang, Zhong She, Longbing Cao (2013), “Coupled Clustering

Ensemble: Incorporating Coupling Relationships Both between Base

Clusterings and Objects”. The 29th IEEE International Conference

on Data Engineering (ICDE 2013), , full paper accepted.

• Can Wang, Zhong She, Longbing Cao (2013), “Coupled Clustering

Ensemble Involving Non-IIDness”. Articial Intelligence (AI).
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Chapter 7

Integrated Understanding with

Discussions

In this chapter, we summarize the qualitative coupled behaviors and quan-

titative coupled behaviors in terms of modeling, analysis and learning, and

abstract a preliminary behavior algebra, followed by a series of discussions.

At rst, we provide a consolidated understanding of coupled behaviors. Next,

we extract the multi-level couplings embedded in coupled behaviors. After

that, we formalize a coupled behavior algebra at its preliminary stage. Fi-

nally, our proposed models, systems, measures and frameworks in this thesis

are discussed with open research issues.

7.1 Consolidated Understanding

As previously shown in Figure 1.4 in Section 1, the qualitative perspective

of coupled behaviors has been addressed in Section 3. The quantitative

perspective of coupled behaviors has been studied in Section 4, Section 5

and Section 6. In this part, we aim to give a unied understanding on both

qualitative and quantitative coupled behaviors.

Chapter 1 and Chapter 3 clarify that the qualitative coupled behaviors

are formalized with three components: actor, operation (or action), coupling.
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Similarly, the quantitative coupled behaviors are also characterized by three

elements: entity (object or observation or record), property (or attribute or

feature), coupling, which has been mentioned in Chapter 1 as well. As a

matter of fact, in Chapter 4, the coupled attribute analysis on on numerical

data explores the continuous coupled behaviors composed of entity, numerical

attribute and coupling. The coupled attribute analysis on categorical data

introduced in Chapter 5 focuses on the discrete coupled behaviors, which

consist of entity, categorical attribute and coupling. In addition, Chapter 6

works on the coupled clustering ensemble and regards the coupled behaviors

made up of entity, base clustering (or method) and coupling.

For either qualitative coupled behaviors or quantitative coupled behav-

iors, there are accordingly both three elements to formalize them. The actor

or entity can be regarded as the body of coupled behaviors.The operation

or property can be treated as the depictor of body in coupled behaviors.

In fact, qualitative operations, numerical attributes, categorical attributes

and base methods are dierent forms to express depictors that are used

to describe the bodies under varied scenarios. The coupling maintains the

same as it denotes the relationships or interactions among coupled behav-

iors. Thus, the coupled behaviors are now characterized by body, depictor

and coupling. Similar to the behavior feature matrix proposed in Chap-

ter 3, we here introduce a coupled behavior information table to exhibit

our consolidated understanding of coupled behaviors. As shown in Figure

7.1, a large number of behaviors can be organized by a coupled behav-

ior information table CB = Body,Depictor, Coupling. Coupled universe

CU = {B1, · · · ,Bm} is composed of a nonempty nite set of bodies. Cou-

pled feature CF = {D1, · · · ,Dn} is a nite set of depictors, and Vij is the

value of depictor Dj for body Bi. Coupling is reected and grouped via the

colored curves, which link depictors and depictors by pink curves “1”, bodies

and bodies by blue curves “2” and orange curves “2.2”, depictors and values

by green curves “1.2”, values and values by red curves “1.1” as well as purple

curves “2.1”.
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2 2.2 1.1 1.2 12.1

Coupling

Figure 7.1: A coupled behavior information table.

For instance, regarding the case of multi-robot soccer game studied in

Chapter 3, the body Bi (1 ≤ i ≤ 4) represents each of the four robots partic-

ipating soccer game, the depictors {Dj} denote the corresponding operations

conducted during the whole game such as “retrieve case” and “abort”, and

the depictor value Vij refers to whether the designated operation Dj has

been implemented by actor Bi or not. In addition, the coupling is teased

out by the behavior aggregator in its framework, in which the links between

depictors (i.e. pink curves “1”) are interpreted as transition systems and

the connections between bodies (i.e. blue curves “2”) are mapped to the

temporal , inferential and party-based interactions. In essence, the behav-

ior feature matrix dened in Equation (3.3.1) corresponds to the coupled

behavior information table if �11 there is treated as Vij here in Figure 7.1.

For the toy example of clustering ensemble proposed in Chapter 6, each

object is regarded as the body Bi (1 ≤ i ≤ 12), every base clustering is

represented as the depictor Dj, and the depictor value Vij is quantied as

the label that body Bi has been assigned in depictor Dj. Additionally,

the coupling is disclosed from two perspectives, i.e. coupling of clusterings
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and coupling of objects, which respectively correspond to the links between

depictors (i.e. pink curves “1”) and the connections between bodies (i.e. blue

curves “2”). Further, the links between depictor values (i.e. red curves “1.1”)

of a depictor specify the intra-coupling within this depictor (e.g. Dj), while

the connections between depictors and the values of other depictors (i.e.

green curves “1.2”) describe the inter-coupling between dierent depictors

(e.g. D2 and Dj). Apart from this, the purple curves “2.1” connecting

depictor values of two bodies exhibit the intra-coupling of two bodies (e.g.

B1 and B2), whereas the orange curves “2.2” linking a pair of bodies with

others expose the inter-coupling of these two bodies.

7.2 Multi-level Couplings

In this section, all the couplings examined in this thesis are synthesized

and organized in terms of a hierarchical structure with multi-levels. Here,

coupling has much broader meaning than the mostly used “dependency”,

which mainly refers to a condition in the statistical sense or to a kind of

relationship in the ontological way.

The coupling nature may be embedded in dierent layers and distinct

aspects of an underlying problem. Depending on the focuses and objectives,

the couplings may involve one to multiple layers: value, depictor, object, and

method which refers to the learning outcomes in a broad sense. The hierar-

chical structure and relevancy between these aspects are displayed in Figure

7.2 from the very fundamental level (i.e. value) to the output of learning

(i.e. method). Below, we briey summarize and overview the various cou-

plings on these levels from multi-layer, multi-framework and multi-relation

aspects. Note that all the denotations and curves mentioned below follow

the explanations of Figure 7.1.

– Value: For a depictor Dj, there is dependence between its values Vi1j

and Vi2j, which is value-value relation. For example, values V1j

to Vm−1,j of depictor Dj more or less inuence its value Vmj, shown
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Figure 7.2: Hierarchical structure of couplings.

in Figure 7.1. In this thesis, the frequency count is used to quantify

the intra-coupling of categorical attributes in Chapter 5, described by

the red curves “1.1”. Alternatively, the relative discrepancy between

attribute values is also adopted to build the intra-coupling of objects

in Chapter 6, denoted by the purple curves “2.1”.

– Depictor: In terms of depictor-value relation, a depictor value Vij

of Dj is coupled with other depictors Dk (k = j). That is to say,

values V1j to Vmj of depictor Dj are somehow aected by depictors

D1, · · · ,Dj−1,Dj+1, · · · ,Dn. In Chapter 5, the co-occurrence of at-

tribute values is proposed to dene the inter-coupling of categorical

attributes, which corresponds to green curves “1.2”. Note that the

intra-coupling of categorical attributes is reected by the value-value

relation above.

With respect to depictor-depictor relation, every pair of depictors

Dj and Dk are related with each other, visualized as pink curves “1”.

These curves are embodied by the intra-coupling of qualitative behav-

iors via transition systems in Chapter 3, and also quantied as correla-

tions between attributes and their powers to dene the intra-coupling
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and inter-coupling of numerical attributes in Chapter 4.

– Body: A body Bi has interactive coupling relationships with other

objects Bl (l = i), which is object-object relation in blue curves

“2” and orange curves “2.2”. For instance, B1 is linked by bodies

B2, · · · ,Bm, displayed in Figure 7.1. In Chapter 3, dierent interactive

schemes ranging from temporal, inferential to party-based aspects are

introduced to characterize the inter-coupling of qualitative behaviors.

In Chapter 6, the common neighborhood rate (e.g., based on common

neighbors of B1 and B2) is proposed to dene the inter-coupling of

objects during the clustering ensemble process, while the intra-coupling

of objects is built by the value-value relation above.

– Method: A proper method delivers the best choice of learning study

for the underlying problem. The generated evaluation scores deter-

mine the learning outcome (e.g. a label to cluster an object) of a

given method. In multi-method-based learning such as ensemble clus-

tering, there may be coupling between constituent methods (say base

clusterings). Each method can be regarded as a depictor and the corre-

sponding results are treated as the depictor values. Thus, the depictor-

value relation (green curves “1.2”) and depictor-depictor relation (pink

curves “1”) are directly applied to describe method-result relation and

method-method relation. The clustering ensemble studied in Chapter 6

illustrates how the ensemble consensus among dierent base clustering

methods is explored via the method-result relation and the method-

method relation.

For the above aspects and levels, we use the word “coupling” to refer to

any forms of relations between the underlying components: value, depictor,

object, method. In practice, couplings may exhibit in a diversity of forms,

styles and formats, such as temporal relation, inferential relation, party-based

relation, numeric correlation, categorical frequency and co-occurrence rela-

tions, neighborhood relation, which have been emphasized in corresponding
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levels and frameworks.

It is also remarkable to note that there exists strong hierarchical depen-

dency between the above levels from input values to output patterns, as they

are constituents linked with one another in a learning system. In fact, the

coupling of depictors are built based on the coupling of values. The coupling

of bodies is reected via the coupling of values and the coupling of depictors.

The coupling of methods is further embodied by the coupling of depictors

and the coupling of bodies. Thus, we rename the coupling as the consolidated

coupling to reect this hierarchy as well as the diversity mentioned above.

7.3 Preliminary Coupled Behavior Algebra

We have unied a coherent understanding of qualitative coupled behaviors

and quantitative coupled behaviors, and teased out a multi-level structure

of couplings therein. In the following, a coupled behavior algebra is then

formalized, thought at its preliminary stage. The semantic meaning of each

component is illustrated with the models and frameworks proposed in this

thesis from dierent perspectives. Note that the following denitions are the

general extensions of the denitions proposed in Section 3.3.2 (i.e. Behavior

Formal Descriptor) of Chapter 3.

As mentioned in Section 7.1, a coupled behavior information table consists

of body, depictor and coupling. In the subsequent Section 7.2, we present a

hierarchical structure of multi-level couplings, which can be regarded as the

context of coupled behaviors describing what kinds of interactive relation-

ships are involved. The context here includes value-value coupling (V-V),

depictor-value coupling (D-V), depictor-depictor coupling(D-D), body-body

coupling (B-B) and method-method coupling (M-M). For instance, the con-

text species that the coupling in consideration is body-body interaction or

depictor-value relationship or both of them. In addition, the coupling has

been renamed as the consolidated coupling to show the diverse and hierar-

chical interactions. Therefore, the integrated coupled behaviors are charac-
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terized by body B, depictor D, consolidated coupling C and context T.

Denition 7.3.1 (Coupled behaviors) Coupled behaviors CB are de-

scribed as a four-ingredient tuple CB = B,D,C,T, specically:

• Body B is the actor or entity that issues a behavior or on which a

behavior is imposed.

• Depictor D is what an actor conducts in order to achieve certain goals

as well as the associated properties or attributes.

• Consolidated Coupling C = (θ(·), η(·)) reveals complex relationships

within a depictor or a body (i.e. consolidated intra-coupling θ(·)) and

those between multiple depictors or bodies (i.e. consolidated inter-

coupling η(·)).

• Context T species what sorts of underlying relationships are under

investigation, and T can be selected from but not limited to {V-V, D-
V, D-D, B-B, M-M}.

Suppose there are m bodies {B1,B2, · · · ,Bm} and in total n depictors

{D1,D2, · · · ,Dn} involved. The value of depictor Dj for body Bi is Vij.

These denotations are all consistent with Figure 7.1.

As claried in the above section, the coupling of values and the coupling

of methods are highly relevant to the coupling of depictors and the coupling

of bodies. Therefore, intra-coupling and inter-coupling of depictors and bod-

ies are formally dened below, and they are essentially derived based on the

values Vij (1 ≤ i ≤ m, 1 ≤ j ≤ n). Intuitively, the intra-couplings of depic-

tors and bodies specify the internal relationships within those depictors and

bodies respectively, while the inter-coupling of depictors and bodies explicate

the respective external interactions with other depictors and bodies. We start

with the intra-coupling of depictors, then the inter-coupling of depictors, fol-

lowed by the intra-coupling of bodies, and nally the inter-coupling of bodies.

Specically, we have:
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Denition 7.3.2 (Intra-coupling of Depictors) A depictor Dj is intra-

coupled with itself in terms of intra-coupling functions θDi (·),

Dθ
j ::= CB·j(B,D,C,T)|

m

i=1

θDi (·)⊕D
a Vij , (7.3.1)

|θDi (·)| ≥ θD0 , (7.3.2)

where θD0 is the depictor intra-coupling threshold,
m

i=1 ⊕D
a means the aggre-

gation of depictor values Vij intra-coupled with θDi (·).

Corollary 7.3.1 If θDi (·) < 0, Dθ
j has negative intra-coupling; if θDi (·) > 0

then there is a positive intra-coupling relationship; θDi (·) = 0 indicates none

intra-coupling exists.

Denition 7.3.3 (Inter-coupling of Depictors) A depictor Dj is inter-

coupled with other depictors in terms of inter-coupling functions ηDk (·),

Dη
j ::= CBi·(B,D,C,T)|

n

k=1,k =j

ηDk (·)⊕D
e Vij, (7.3.3)

|ηDk (·)| ≥ ηD0 , (7.3.4)

where ηD0 is the depictor inter-coupling threshold,
n

k=1,k =j ⊕D
e means the

aggregation of depictor values Vij inter-coupled with ηDk (·).

Corollary 7.3.2 If ηDk (·) < 0, Dη
j has negative inter-coupling; if ηDk (·) > 0

then there is a positive inter-coupling relationship; ηDk (·) = 0 indicates none

inter-coupling exists.

Denition 7.3.4 (Intra-coupling of Bodies) A body Bi is intra-coupled

with itself in terms of intra-coupling functions θBj (·),

Bθ
i ::= CBi·(B,D,C,T)|

n

j=1

θBj (·)⊕B
a Vij, (7.3.5)

|θBj (·)| ≥ θB0 , (7.3.6)

where θB0 is the body intra-coupling threshold,
n

j=1 ⊕B
a means the aggregation

of depictor values Vij intra-coupled with θBj (·).
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Corollary 7.3.3 If θBj (·) < 0, Bθ
i has negative intra-coupling; if θBj (·) > 0

then there is a positive intra-coupling relationship; θBj (·) = 0 indicates none

intra-coupling exists.

Denition 7.3.5 (Inter-coupling of Bodies) A body Bi is inter-coupled

with other bodies in terms of inter-coupling functions ηBl (·),

Bη
i ::= CB·j(B,D,C,T)|

m

l=1,l =i

ηBl (·)⊕B
e Vij , (7.3.7)

|ηBl (·)| ≥ ηB0 , (7.3.8)

where ηB0 is the body inter-coupling threshold,
m

l=1,l =i ⊕B
e means the aggre-

gation of depictor values Vij inter-coupled with ηBl (·).

Corollary 7.3.4 If ηBl (·) < 0, Bη
i has negative inter-coupling; if ηBl (·) > 0

then there is a positive inter-coupling relationship; ηBl (·) = 0 indicates none

inter-coupling exists.

Below, by integrating the denitions on intra-coupling of depictors, inter-

coupling of depictors, intra-coupling of bodies and inter-coupling of bodies

with Denition 7.3.1 on the consolidated coupled behaviors, we obtain that

CB = (Dθ
j)

η ∗ (Bθ
i )

η ::= CBij(B,D,C,T)|
m

i=1

n

j=1

f(θDi (·), ηDj (·), θBj (·), ηBi (·))⊕DB
c Vij , (7.3.9)

|θDi (·)| ≥ θD0 , |ηDk (·)| ≥ ηD0 , |θBi (·)| ≥ θB0 , |ηBl (·)| ≥ ηB0 , (7.3.10)

where f(·) represents the way to composite the consolidated intra-couplings

and inter-couplings,
m

i=1

n
j=1 ⊕DB

c denotes the aggregation of depictor val-

ues Vij intra-coupled with θDi (·) and θBj (·) as well as inter-coupled with ηDj (·)
and ηBi (·). To only emphasize the dierent types of couplings, in the follow-

ing, we use the denotations θD(·), ηD(·), θB(·), ηB(·) for simplicity.

In practice and real life, it is not easy to identify the consolidated intra-

coupling function θ(·) and the consolidated inter-coupling function η(·) as
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well as the composite function f(·). Those coupling relationships are often

implicit to observe and embedded deeply in the social applications and busi-

ness problems. However, as we have emphasized throughout the whole thesis,

coupled behaviors play a much more fundamental role than individuals in the

cause, dynamics and eect of business, social, organizational and behavioral

systems and domains.

One of the key aspects in this thesis is to represent the coupled behav-

iors, which is also called coupled behavior modeling. In terms of this task, we

have dened θ(·), η(·), f(·) and given various semantic explanations to them

according to dierent scenario and problems, including multi-agent system

in Chapter 3, numerical data analysis in Chapter 4, categorical data analysis

in Chapter 5, and clustering ensemble learning in Chapter 6. For instance,

in Chapter 3, ηD(·) and θB(·) are interpreted by a transition system and

θD(·) and ηB(·) are used to characterize dierent interactive schemes for op-

erations, f(·) is then accordingly obtained by a concurrent transition system

conversion. The corresponding context T examines depictor-depictor cou-

pling (D-D) and body-body coupling (B-B). Unlike the multi-agent system,

in the process of coupled clustering ensemble, Chapter 6 denes θD(·) as

the frequency account for each depictor value, ηD(·) as the co-occurrence

probability of values from dierent depictors, θB(·) as the relative discrep-

ancy between depict values, ηB(·) as the common neighborhood of bodies,

and f(·) as the whole framework to embody both the coupling of depictors

(i.e. base clusterings) and the coupling of bodies (i.e. objects). The context

T here includes value-value coupling (V-V), depictor-value coupling (D-V),

body-body coupling (B-B) and method-method coupling (M-M).

In addition, the other two key respects are to analyze and learn the cou-

pled behaviors. Formally, we regard these two tasks as the following theorem.

Theorem 7.3.1 (Coupled Behavior Analysis and Learning) The anal-

ysis of coupled behaviors is to build the objective function g(·) under the pre-

requisite that behaviors are coupled with each other by coupling function f(·),
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and satisfy the following conditions.

f(·) ::= f(θD(·), ηD(·), θB(·), ηB(·)), and (7.3.11)

g(·)|(f(·) ≥ f0) ≥ g0, (7.3.12)

where g0 is the given threshold or requirement. The learning of coupled behav-

iors is to extract the hidden patterns or regularities that optimize the objective

function g(·).

In Chapter 3, the function g(·) represents the constraints to be checked

and g0 denotes the desired standard. Coupled behavior analysis in this sce-

nario mainly focuses on the verication of potential constraints, if any prob-

lem arises, the model itself will be rened according to the checking results.

In Chapter 4 and Chapter 5, the function g(·) stands for the similarity or

distance functions depending on what tasks it aims at, such as clustering and

classication, g0 denotes the domain-driven knowledge for such objectives.

Coupled behavior learning in these two chapters is to identify how to group

bodies and how to classier a new body to an existing class.

In Chapter 6, the consensus among dierent base clustering results is

quantied by the objective function g(·), and the performance of base clus-

terings is reected by g0. Coupled behavior learning corresponds directly

to the clustering ensemble learning with the aim at producing a superior

clustering result compared to the base methods.

7.4 Discussions with Open Issues

In this section, our proposed coupled behavior informatics is discussed from

the qualitative, quantitative and integrated perspectives below. Many rele-

vant research issues are accordingly raised and analyzed.

7.4.1 Qualitative Coupled Behaviors

In Chapter 3, we have designed mechanisms for modeling and checking group

behaviors in terms of intra-coupled and inter-coupled interactions. We under-
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stand the proposed Ontology-based Qualitative Coupled Behavior Modeling

and Checking (OntoB) system can be expanded to a comprehensive tool for

modeling and verifying complex behavior interactions. In this section, we

discuss open issues related to OntoB from two aspects. The depth extension

focuses on the enhancement of the behavior representation and verication,

while the breadth extension emphasizes the wide and a range of applicabili-

ties of our framework on complex behavior interactions.

Depth Extension: In our proposed framework, we model a behavior as a

triple tuple, and then take advantage of model checking to verify the behavior

model. In this system, we limit our work within the range of behavior rep-

resentation and verication to ensure a stable and robust model. However,

we could conduct further reasoning about behaviors to infer other proper-

ties of the group behaviors towards a behavior algebra. We consider the

categorical communications from temporal, inferential, and party-based per-

spectives based on the correlations, collaborations and competitions of the

same or distinct actors. Behaviors in such coupling relationships may inter-

act in dierent modes, e.g. peer-to-peer, master-slave, underlying-derivative,

and contrast modes (Cao et al. 2012). These interaction modes are helpful

for understanding the behavior interactions between behavior sequences once

coupling relationships are determined.

Breadth Extension: For the purpose of verication, intra-coupling rela-

tionship is interpreted as a transition system, while inter-coupled aspect is

explained as inter-coupling operators induced by dierent actor communica-

tion categories. Alternatively, the behavior syntactic framework composed

of intra-coupling and inter-coupling can be given dierent semantics to en-

able quantitative tasks such as fraud detection (Cao et al. 2012), relational

learning (Getoor & Taskar 2007), and machine learning. With regard to the

behavior feature matrix (3.3.1), for instance, we may regard the inter-coupled

interaction ηi(B) as the similarity or distance between every two operations

�i1j conducted by actor �i1 and �i2j performed by actor �i2 ; and the rel-

evant intra-coupled interaction θj(B) can be reected as the co-occurrence

219



INTEGRATED UNDERSTANDING WITH DISCUSSIONS

couplings between dierent features of the same actor. Subsequently, both

interactions are aggregated based on combined distance for clustering analy-

sis or geometric proximity for anomaly detection. Currently, we are working

on this for complex behavior analysis and its application. We have also ap-

plied this framework to analyze the coupled nominal similarities, including

intra-coupled and inter-coupled similarities, to enhance unsupervised learn-

ing accuracy (Wang et al. 2011).

7.4.2 Quantitative Coupled Behaviors

In Chapter 5, we have introduced several coupled nominal similarity mea-

sures: Coupled Attribute Similarity for Values (CASV ), Coupled Attribute

Similarity for Objects (CASO) and Coupled Attribute Dissimilarity for Ob-

jects (CADO). In Chapter 6, we have presented a framework for coupled

clustering ensembles (CCE ). In the following, those coupled similarity mea-

sures are further analyzed, and the CCE framework is deeply explored.

Coupled Nominal Similarity

In this part, we discuss the potential opportunities triggered by our proposed

CASV (see Equation (5.4.10)), CASO (see Equation (5.6.1)) and CADO (see

Equation (5.7.2)) from two aspects. The degenerative aspect discusses the

degeneration of CADO and CASV with special cases, while the extended

aspect focuses on the direct extension of CASO and CADO.

Degenerative Aspect : Many existing similarity measures for attribute val-

ues are special cases of our proposed CADO or CASV. On one hand, CADO

could degenerate as an intra-attribute-independence measure if frequency

functions Gj({vxj }), Gj({vyj }) take a nonzero constant value ξ. In this way,

the dissimilarity measure ADD between vxj and vyj proposed by Ahmad and

Dey (Ahmad & Dey 2007) is exactly ξ/2 · CADO, which considers the in-

teractions between attributes but lacks the couplings within each attribute.

On the other hand, an inter-attribute-independence measure could be pro-

duced by considering δIej (vxj , v
y
j , {Vk}k=j) for IeASV, in which δIj|j(v

x
j , v

y
j , Vj)
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replaces δIj|k(v
x
j , v

y
j , Vk) (k = j) for IRSI. Such an example is the improved

SMD with frequency (Gan et al. 2007). Moreover, an intra-inter-attribute-

independence measure could be obtained by specializing gj(v
x
j ) = gj(v

y
j ) = ξ

and δIej (vxj , v
y
j , {Vk}k=j) both, which corresponds to the classical similarity

measure SMS and its variants such as Jaccard coecients (Gan et al. 2007).

Therefore, our proposed measures have the capability of generalization on

the existing similarity measures which assume independence and partial de-

pendence among attributes.

Extended Aspect : The couplings or relationships between attribute val-

ues, attributes, objects, and even clusters should be considered to cater for

the interactions among the data. We may naturally induce a range of cou-

pled tasks in data mining and machine learning, such as data discretization

and clustering ensemble. We have already proposed a coupled discretization

algorithm CD (Wang, Wang, She & Cao 2012), which concerns both the in-

formation attribute dependency and deterministic attribute relationship to

disclose the couplings of uncertainty and certainty degree. We have also de-

veloped a coupled framework for clustering ensembles by considering both

the relationships within each base clustering and the interactions between

distinct base clusterings, in which CASO or CADO could be applied. In

addition, how to appropriately choose the weights αk for IeASV dened in

Equation (5.4.9), rather than simply treating them as equal, is in great need

of further exploration. Further, we are also working on a exible way to con-

trol the respective importance of IaASV and IeASV by using corresponding

weights β and γ, according to the specic data structure. The other data

mining and machine learning tasks, e.g. fraud detection (Cao et al. 2012)

and relational learning (Getoor & Taskar 2007), can also be considered to

involve coupled interactions.

CCE Framework

We discuss the potential and future opportunities related to our proposed

framework CCE below from two aspects. The depth aspect discusses the
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extension of current denitions on coupling, while the width aspect explores

other approaches apart from the consensus function based clustering ensem-

ble and other stages in the process of the clustering ensemble.

Depth Aspect : According to the conclusion in Section 6.7.4, the improve-

ment on clustering performance is largely dependent on the data character-

istics of base clusterings, which are quantied as the quality and the consis-

tency of base clusterings. Hence, we need to consider these two descriptive

indicators in the coupled framework of clustering ensembles.

In our implementation, we regard the weight λk of base clustering bck in

Denition 6.4.3 as the same, i.e., λk = 1/L, where L is the number of base

clusterings. However, the clustering quality (e.g., AC and NMI) of each base

clustering, denoted as qk, can be adapted to substitute λk to dierentiate

the contributions made by distinct base clusterings. Here, we normalize qk

by qk = qk/
L

k=1 qk to make
L

k=1 q

k = 1 to satisfy the requirement for

λk in Denition 6.4.3. In this way, base clustering that performs better will

contribute more in the calculation of similarity between cluster labels. There-

fore, we can incorporate the indicator qk on the quality of base clusterings

into our framework.

In Denition 6.4.8, the ratio of the number of common neighbors is used

to measure the similarity between two objects. However, the consistency

μ ∈ [0, 1] (e.g., CIS) of all the base clusterings can be utilized to control

the extent to which include the inter-coupling of objects. The purpose here

is to adjust the eect of inter-coupled objects according to the consistency

of base clusterings. We can then alternatively replace δCO(ux, uy|U) with

μ · δIaO(ux, uy) + (1− μ) · δCO(ux, uy|U). Thus, the inter-coupling of objects

will be less emphasized when the base clusterings obtain more approximate

results. If all the base clusterings ideally perform the same (i.e., μ = 1), the

similarity between objects degenerates to δIaO. Consequently, we can involve

the indicator μ on the consistency of base clusterings into our framework.

These two descriptive indicators adapt our framework CCE to a soft

version S-CCE, since S-CCE considers how much contribution each base
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clustering makes and to what extent we involve the inter-coupling of objects.

However, the previous indicator requires the label information at the stage

of generating base clusterings. If this information is unavailable during the

whole process of clustering ensemble, only the second indicator can be used.

Width Aspect : As mentioned in Section 2.4, there are three ways to aggre-

gate the base clusterings: consensus functions, categorical clusterings, and

direct optimizations. We mainly focus on the consensus function based clus-

tering ensemble to propose a coupled framework CCE. For the second option

on categorical clusterings, we have designed the coupled nominal similarity

in unsupervised learning (Wang et al. 2011), which induces alternatives to

cluster categorical data and also forms a part of our framework CCE, besides

which, we have already involved the widely used categorical clustering algo-

rithms (i.e., ROCK (Guha et al. 2000) and LIMBO (Andritsos et al. 2004))

in our experiments. The third group of methods on direct optimizations

selects candidates among all the clusters produced by base clusterings and

then adjusts them to achieve the minimal cost (Christou 2011). They totally

ignore the consensus of base clusterings, and do not rely on the similarity

or distance between base clusterings, objects, and clusters. Thus, our pro-

posed CCE does not t the direct optimizations based clustering ensemble.

In addition, the direct optimizations based approaches require the detailed

information of each object (i.e. the attribute values) to obtain the sum of

intra-cluster distance as the cost of each cluster, while our framework CCE

still works well despite the lack of such prior information and enables the

privacy-preserving and distributed mode of data analysis.

Also as introduced in Section 2.4, the whole process of the clustering en-

semble is composed of three stages: building base clustering, aggregating base

clusterings, and post-processing clustering. In this research, our proposed

framework CCE is constructed for the second stage, and the rst and last

stages are xed as in comparative methods. In reality, base clusterings and

post-processing techniques are also shown to aect the performance of clus-

tering ensemble (Iam-On et al. 2011). In our experiments, k-means on ran-
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dom sub-sampling with a xed k is adopted to build base clusterings, and ho-

mogeneous results are accordingly obtained. Alternatively, dierent values of

k can be selected, and distinct approaches are also expected to generate het-

erogeneous base clusterings. The input base clusterings then exhibit a higher

level of diversity than those we have used. Note that the consistency pointed

out in Section 6.7.4 is only one aspect of diversity among base clusterings.

At the post-processing stage, three fundamental clustering algorithms are

employed, namely, k-means, agglomerative algorithm, and METIS. However,

advanced similarity or distance based clustering algorithms, such as spectral

clustering (Luxburg 2007) and anity propagation (Frey & Dueck 2007),

can be applied to further improve the quality of the clustering ensemble. In

future studies, therefore, we will also examine the heterogeneous structure of

base clusterings and advanced post-processing clustering algorithms in our

proposed framework CCE to enhance the performance of the whole process.

7.4.3 Integrated Coupled Behaviors

Based on the qualitative and quantitative understandings of coupled behav-

iors, we have proposed a consolidated concept for coupled behaviors. The

coupled behavior representation, analysis and learning act as the basic com-

ponents to build the coupled behavior algebra. However, the above de-

nitions, corollaries and theorem in Section 7.3 only constitute a preliminary

roadmap. There are a lot of opportunities for us to widely explore and strictly

dene this coupled behavior algebra. Many open issues are worth widely ad-

dressing and systematically investigating. These interesting research points

include but are not limited to:

• More operators other than ⊕, e.g. the adapted scalar multiplication,

are to be identied and explored to test whether classic properties such

as associativity, commutativity, linearity, continuity and boundedness

are satised or not.

• The context of coupled behaviors is to be formalized to control the
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whole process of coupled behavior modeling, analysis and learning ac-

cording to dierent requirements. More types of consolidated coupling

are to be explored and studied, and the soft computing techniques can

be adopted to propose the fuzzy or rough coupled behavior informatics.

• A coupled behavior space is to be structured based on a collection

of coupled behavior vectors (e.g. each row of the coupled behavior

information table shown in Figure 7.1) and appropriate operators under

certain axioms. Several properties, including topology, completeness,

duality and best approximation, are to be discussed.

• Analytical problems like the convergence or divergence of coupled be-

havior vectors is to be dened and intensively studied. Limits of con-

verged coupled behavior sequences are to be claried, which are essen-

tial to calculus and can be used to dene continuity, derivatives and

integrals.

• Some other research issues, including how to dene the bases and di-

mension of such a coupled behavior space, how to do the space decom-

position, how to conduct the linear and nonlinear transformations, are

to be addressed and deeply explored.

• Mix-type coupled behaviors are to be modeled, analyzed and learnt.

The mix-type here means that the depictors of coupled behaviors can

be any combination of qualitative actions, numerical properties and

categorical properties, which forms a heterogeneous structure of the

coupled behavior informatics.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

Complex behaviors are widely seen on the internet, social and online net-

works, multi-agent systems, and brain systems. The in-depth understanding

of complex behaviors has been increasingly recognized as a crucial means for

disclosing interior driving forces, causes and impact on businesses in handling

many challenging issues. This forms the need and emergence of behavior in-

formatics, i.e. understand behaviors from computing perspective.

Current behavior modeling methods are however designed rather dierent

from one another according to various backgrounds and scenarios. Moreover,

traditional behavior modeling strategies mainly rely on qualitative methods

from behavioral science and social science perspectives. The so-called behav-

ior analysis often focuses on human demographic and business usage data,

in which behavior-oriented elements are hidden in routinely collected trans-

actional data. As a result, it is ineective or even impossible to deeply scru-

tinize native behavior intention, lifecycle, dynamics and impact on complex

problems and business issues. In addition, existing methods mainly focus on

individual behavior analysis, which only captures a local picture of the in-

teractions among behaviors. Further, state-of-the-art relevant research often

overlooks the verication of behavior modeling, which weakens the sound-
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Figure 8.1: Prospects for the coupled behavior informatics

ness and robustness of complex behavior application models. Last but not

the least is that most of the existing mining and learning algorithms follow

the assumption of independence and identical distribution (i.e. IIDness),

which is too strong and seriously mismatches the reality and complexities in

behavioral/social problems.

Coupled behaviors refer to the activities of one to many actors who are as-

sociated with each other via certain relationships. With increasing network

and community-based events and applications, such as group-based crime

and social network interactions, behavior coupling contributes to the causes

of eventual business problems. Eective approaches for analyzing coupled

behaviors are not available, since existing methods mainly focus on individ-

ual behavior analysis. This thesis proposes the coupled behavior informatics

in terms of modeling, analysis and learning, including the formalization and

verication of qualitative group behaviors, the coupled behavior analysis on

numerical data, the coupled behavior analysis on categorical data, and the

coupled framework for clustering ensembles. They have brought about chal-

lenges and opportunities for existing behavior studies and relevant data an-

alytics approaches. We show that the coupled behavior informatics creates

new opportunities, directions and means for qualitative and quantitative,
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formal and systematic modeling, analysis and learning of complex behaviors

in both physical and virtual organizations.

As shown in Figure 8.1, we have developed two directions to explicate a

global picture of the coupled behaviors informatics: qualitative and quantita-

tive behavior analytics. With the formal representation of coupled behaviors,

the qualitative analytics addresses the task of coupled behavior reasoning and

verication, while the quantitative research targets coupled behavior learn-

ing and evaluation. Finally, an appropriate way could be chosen to integrate

these two studies to obtain an integrated understanding of the consolidated

complex coupled behaviors from both qualitative and quantitative aspects.

During this process, many open issues deserve a systematic investigation

along with case studies from aspects such as coupled behavior reasoning, cou-

pled behavior learning, coupled behavior evaluation, coupled behavior integra-

tion at individual but more on group levels.

In this thesis, Chapter 3 focuses on the qualitative perspective in terms

of group behavior formalization and verication. Under the assumption of

non-IIDness, Chapter 4, Chapter 5 and Chapter 6 specify the quantitative

aspects with regard to the numerical coupled behavior analysis, the categor-

ical coupled behavior analysis and the coupled behavior ensemble learning,

respectively. All the new measures, approaches and frameworks introduced

in these chapters have been evidenced to outperform the existing methods

in terms of theoretical analysis or empirical studies or both of them. In ad-

dition, our proposed coupled recommendation system (Yu et al. 2013) and

coupled document clustering (Cheng et al. 2013) also belong to the quantita-

tive direction of coupled behavior informatics. Finally, Chapter 7 abstracts

an integrated coupled behavior algebra to provide a unied understanding

of coupled behaviors. All the current limitations and challenges have been

addressed and solved, although to dierent extents.

Each chapter (i.e. from Chapter 3 to Chapter 6) of this thesis is supported

by at least one accepted or published conference papers listed in Appendix

A, and then enhanced and supplemented by the corresponding journal sub-
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missions. More encouragingly, several novel frameworks proposed in this

thesis have been successfully applied in other topics and domains, such as

multi-agent conguration, recommendation system and document analysis,

with relevant papers recognized by research peers1. Therefore, what we have

done and propose in this thesis is of great signicance to the behavior related

research, and the coupled behavior informatics exposes the intrinsic struc-

ture and essential nature of behavioral, social and business problems and

applications.

8.2 Future Work

In this section, our ongoing work and future directions of coupled behav-

ior informatics are listed and stated below in terms of qualitative coupled

behavior analytics, quantitative behavior analytics and their integrated un-

derstanding. In the rst part, potential tasks of Chapter 3 are addressed.

For the quantitative behavior analytics, future work of Chapter 4, Chap-

ter 5 and Chapter 6 is clearly explained. Finally, we reemphasize possible

research issues regarding the integrated and consolidated understanding of

coupled behaviors in Chapter 7.

8.2.1 Qualitative Behavior Analytics

In Chapter 3, group behavior formalization and verication are analyzed

and explored. Our proposed Ontology-based Qualitative Coupled Behavior

Modeling and Checking (OntoB) system has great potential for designing and

analyzing complex behavior-oriented applications with complex behavior in-

teractions. Currently, we are working on the extension of logic expressions

for constraints, a behavior algebra to consolidate the techniques for model-

ing and checking complex behaviors, and behavior aggregation rules for the

divergence and convergence of complex couplings. Flexible semantic inter-

pretations of intra-coupled and inter-coupled behaviors are also under study

1The detailed information of those papers can be found at the end of each chapter.
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on the top of our fundamental behavior building blocks, according to dierent

requirements. The analysis of group behavior interactions brings about great

challenges and opportunities in many aspects such as representing, checking,

reasoning, learning behavior couplings and interactions, and mining behavior

interaction patterns.

8.2.2 Quantitative Behavior Analytics

Potential research issues are claried one by one from the numerical coupled

behavior analysis, the categorical coupled behavior analysis to the coupled

behavior ensemble learning.

Numerical Coupled Behavior Analysis

In Chapter 4, we propose a framework of the numerical coupled behavior

analysis in terms of the intra-coupled interaction within a property, the inter-

coupled interaction between multiple properties, and the integration of them.

We are currently enriching this framework of the coupled attribute analysis on

numerical data by also addressing the coupling relationships for entities and

clusters. In the future, we will work on modeling the coupling relationships

for mixed behavior data with both numerical and categorical properties. Ad-

ditionally, we intend to extend the current work to the tasks of classication

and fraud detection etc. by also examining the coupling relationships.

Categorical Coupled Behavior Analysis

In Chapter 5, novel data-driven similarity measures of categorical coupled

behavior incorporating both intra-coupled property similarity for values and

inter-coupled property similarity for values are introduced. We are currently

applying the Coupled Attribute Similarity for Objects (CASO) measure

with Inter-coupled Relative Similarity based on Intersection Set (IRSI ) to

attribute discretization, classication and other data mining and machine

learning tasks. We are working on the assignment of attribute weights,
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and the exible engagement of Intra-coupled and Inter-coupled Attribute

Value Similarities (IaASV and IeASV ). We are designing the strategies of

attribute reduction to t extremely large data. Moreover, the proposed con-

cepts Inter-information Function and Information Conditional Probability

have the potential to be used in other applications. One of the clustering

criteria, Minimal-Sum-Square, can also be adapted to involve the couplings

of categorical behavior data and thus can be improved. Flexible dissimilar-

ity measures can also be built on our fundamental similarity building blocks

according to a range of requirements.

Coupled Behavior Ensemble Learning

In Chapter 6, we design a novel framework for coupled clustering ensem-

bles (CCE ) to incorporate interactions both between base clusterings (i.e.

categorical properties or methods) and entities. This work veries that non-

IIDness is essential to the clustering ensemble problem. The coupling of

clusterings can enhance clustering quality in most cases, and the performance

gain depends on the quality of the base clusterings. The inter-coupling of en-

tities is associated with the consistency of base clustering results, which leads

to uctuating improvement on the clustering quality. Thus, how should we

x the weights λk of base clustering bck in IeCSC rather than simply treating

them equally? Further, should we introduce a weight to control the couplings

of entities during the process of the clustering ensemble? Is there any other

way to model the coupling of entities by considering the relative common

neighborhood rather than the absolute neighborhood? How do we x the

number of nal clusters? We are currently working on these issues, as men-

tioned in Section 7.4.2, and will also analyze the heterogeneous structure of

base clusterings and the advanced post-processing clustering techniques in

our framework. Furthermore, we will consider the coupling of clusters and

then extend this coupled idea to the supervised learning process.
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8.2.3 Consolidated Understanding

In Chapter 7, we abstract a coupled behavior algebra by dening the intra-

coupling and inter-coupling of descriptors as well as the intra-coupling and

inter-coupling of bodies, but still at its early stage.

As mentioned in Section 7.3, there are a lot of opportunities and direc-

tions for us to explore and investigate, including the denition of computing

operators and the identication of their properties, the further investigation

of the context and consolidated coupling, the construction of a coupled be-

havior space with dierent characteristics, the analysis on limits, convergence

and divergence of coupled behavior sequences, the base computation of this

coupled behavior space, the coupled behavior space decomposition, the lin-

ear or nonlinear transformation, and the exploration on mix-type coupled

behaviors. After every building block has been dened and explored well,

such a coupled behavior algebra is highly expected to create a totally new

subject to support cross-multi-discipline research with great signicance to

behavioral/social/business applications.

All the above open issues and future directions from a diversity of per-

spectives constitute a large research blueprint with huge opportunities on

this promising topic: coupled behavior informatics.
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Appendix: List of Publications

Papers Accepted and Published

• Can Wang, Zhong She, Longbing Cao (2013), “Coupled Attribute

Analysis on Numerical Data”. The 23rd International Joint Conference

on Articial Intelligence (IJCAI 2013), full paper accepted.

• Can Wang, Zhong She, Longbing Cao (2013), “Coupled Clustering

Ensemble: Incorporating Coupling Relationships Both between Base

Clusterings and Objects”. The 29th IEEE International Conference on

Data Engineering (ICDE 2013), full paper accepted.

• Jinjiu Li, Can Wang, Longbing Cao, Philip S. Yu (2013), “Ecient

Globally Optimal Rule Selection on Large Imbalanced Data Based on

Rule Coverage Relationship Analysis”. 2013 SIAM International Con-

ference on Data Mining (SDM 2013), full paper accepted.

• Jinjiu Li, Can Wang, Wei Wei, Mu Li, Chunming Liu (2013), “E-

cient Mining of Contrast Patterns on Large Scale Imbalanced Real-life

Data”. The 17th Pacic-Asia Conference on Knowledge Discovery and

Data Mining (PAKDD 2013), pp. 62-73. [Best Student Paper

Award]

• Yonghong Yu,CanWang, Yang Gao, Longbing Cao, Xixi Chen (2013),
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“A Coupled Clustering Approach for Items Recommendation”. The

17th Pacic-Asia Conference on Knowledge Discovery and Data Min-

ing (PAKDD 2013), pp. 365-376.

• Zhong She,CanWang (2013). “Volatility Analysis via CoupledWishart

Process”. The 2013 International Joint Conference on Neural Networks

(IJCNN 2013), full paper accepted.

• Xin Cheng, Duoqian Miao, Can Wang, Longbing Cao (2013). “Cou-

pled Term-Term Relation Analysis for Document Clustering”. The

2013 International Joint Conference on Neural Networks (IJCNN 2013),

full paper accepted.

• Can Wang, Mingchun Wang, Zhong She, Longbing Cao (2012), “CD:

A Coupled Discretization Algorithm”. The 16th Pacic-Asia Confer-

ence on Knowledge Discovery and Data Mining (PAKDD 2012), pp.

407-418.

• Can Wang, Longbing Cao (2012), “Modeling and Analysis of Social

Activity Process”. Behavior Computing: Modeling, Analysis, Mining

and Decision, Springer, pp. 21-35.

• Zhong She, Can Wang, Longbing Cao (2012), “CCE: A Coupled

Framework of Clustering Ensembles”. The 26th Conference on Ar-

ticial Intelligence (AAAI 2012), pp. 2455-2456.

• Can Wang, Longbing Cao, Mingchun Wang, Jinjiu Li, Wei Wei, Yum-

ing Ou (2011), “Coupled Nominal Similarity in Unsupervised Learn-

ing”. The 20th ACM Conference on Information and Knowledge Man-

agement (CIKM 2011), pp. 973-978.

• Chayapol Moemeng, Can Wang, Longbing Cao (2011), “Obtaining an

Optimal MAS Conguration for Agent-Enhanced Mining Using Con-

straint Optimization”. The 7th International Workshop on Agents
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and Data Mining Interaction held in conjunction with the 10th Inter-

national Conference on Autonomous Agents and Multiagent Systems

(ADMI with AAMAS 2011), pp. 46-57.

• Juan Zhao, Mingchun Wang, Kun Liu, Can Wang (2011), “Discretiza-

tion based on Positive Domain and Information Entropy”. The 7th

International Conference on Computational Intelligence and Security

(CIS 2011), pp. 258-262.

• Can Wang, Longbing Cao (2010), “SAPMAS: Social Activity Process

Modeling and Analysis System”. The International Workshop on Be-

havior Informatics held in conjunction with The 14th Pacic-Asia Con-

ference on Knowledge Discovery and Data Mining (BI with PAKDD

2010).

• Jiayi Feng, Mingchun Wang, Can Wang, Longbing Cao (2010), “En-

hanced Co-occurrence Distances For Categorical Data in Unsupervised

Learning”, pp. 2071-2078. The Ninth International Conference on Ma-

chine Learning and Cybernetics (ICMLC 2010), 2010.

Papers Submitted/Under Review

• Can Wang, Zhong She, Longbing Cao (2013), “Coupled Clustering

Ensemble Involving Non-IIDness”. Articial Intelligence (AI).

• Can Wang, Longbing Cao (2013), “Formalization and Verication of

Group Behavior Interactions”. IEEE Transactions on Systems, Man,

and Cybernetics–Part A: Systems (TSMC-A).

• CanWang, Longbing Cao (2013), “Coupled Attribute Similarity Anal-

ysis on Categorical Data”. IEEE Transactions on Neural Networks and

Learning Systems (TNNLS).
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Appendix: List of Symbols

The following list is neither exhaustive nor exclusive, but may be helpful.

Bc Qualitative coupled behaviors

{�1, . . . ,�I} The set of I actors

{�i1, . . . ,�iJi} The set of Ji operations conducted by actor �i

� Coupling

θ(B) Intra-coupling function

η(B) Inter-coupling function

FM(B) Behavior feature matrix

Bθ(�i) Intra-coupled behaviors of actor �i

Bη(�i) Inter-coupled behaviors of actor �i

{u1, · · · , um} The set of m entities/objects

{a1, · · · , an} The set of n properties/attributes

vxj , vt ∈ Vj Values of attribute aj in their value set Vj

ajp The p-th power of numerical attribute aj
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θpq, ηpq Pearson’s correlation coecient

RIa(aj) Intra-coupled interaction of numerical attribute aj

RIe(aj|{ak}k =j) Inter-coupled interaction of numerical attribute aj

uc( A,L) Coupled representation for numerical entity u

Fj, Gj Set information functions

ϕj→k Inter-information function

Pk|j Information conditional probability

R(= max |Vj|) The maximal number of categorical attribute values

δIaj (vxj , v
y
j ) Intra-coupled attribute similarity for nominal values

δIej (vxj , v
y
j , {Vk}k =j) Inter-coupled attribute similarity for nominal values

δAj (v
x
j , v

y
j , {Vk}nk=1) Coupled attribute similarity for nominal values

CASO(ux, uy) Coupled attribute similarity for nominal objects

CADO(ux, uy) Coupled attribute dissimilarity for nominal objects

{bc1, · · · , bcL} The set of L base clusterings

{c1j , · · · , c
tj
j } The set of tj clusters in base clustering bcj

{c1∗, · · · , ct
∗
∗ } A nal clustering fc∗ with t∗ clusters

NSim
ux

The neighbor set of object ux based on measure δSim

(BCj)m×m The associated similarity matrix of objects for bcj

δIaCj (vxj , v
y
j ) Intra-coupled clustering similarity for clusters

δIeCj (vxj , v
y
j |{Vk}k =j) Inter-coupled clustering similarity for clusters

δCj (v
x
j , v

y
j |{Vk}Lk=1) Coupled clustering similarity for clusters
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δIaO(ux, uy) Intra-coupled object similarity for objects

δIeO(ux, uy|U, δSim) Inter-coupled object similarity for objects

δCO(ux, uy|U) Coupled clustering and object similarity for objects

SCg(bcj1 , bcj2) Proposed clustering-based coupling for base clusterings

SIaC
O (ux, uy), S

C
O (ux, uy) Proposed object-based coupling for objects

SC
Cr(c

t1
j1
, ct2j2) Proposed cluster-based coupling for clusters

CB Coupled behaviors

B Body

D Depictor

C Consolidated coupling

T Context

V Depictor value

θ(·) Consolidated intra-coupling function

η(·) Consolidated inter-coupling function

Dθ
j Intra-coupling of depictors

Dη
j Inter-coupling of depictors

Bθ
i Intra-coupling of bodies

Bη
i Inter-coupling of bodies
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