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Abstract

Behavior refers to the action or property of an actor, entity or otherwise,

to situations or stimuli in its environment. The in-depth analysis of be-

havior has been increasingly recognized as a crucial means for understand-

ing and disclosing interior driving forces and intrinsic cause-eects on busi-

ness and social applications, including web community analysis, counter-

terrorism, fraud detection and customer relationship management, etc. Cur-

rently, behavior modeling and analysis have been extensively investigated by

researchers in dierent disciplines, e.g. psychology, economics, mathematics,

engineering and information science. From those diverse perspectives, there

are widespread and long-standing explorations on behavior studies, such as

behavior recognition, reasoning about action, interactive process modeling,

multivariate time series analysis, and outlier mining of trading behaviors.

All the above emerging methods however suer from the following com-

mon issues and problems to dierent extents: (1) Existing behavior modeling

approaches have too many styles and forms according to distinct situations,

which is troublesome for cross-discipline researchers to follow. (2) Tradi-

tional behavior analysis relies on implicit behavior and explicit business ap-

pearance, often leading to ineective and limited understanding on business

and social activities. (3) Complex coupling relationships between behaviors

are often ignored or only weakly addressed, which fails to provide a complete

understanding of the underlying problems and their comprehensive solutions.

(4) Current research usually overlooks the checking of behavior interactions,

which weakens the soundness and robustness of models built for complex be-
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ABSTRACT

havior applications. (5) Most of the classic mining and learning algorithms

follow the fundamental assumption of independent and identical distribution

(i.e. IIDness), but this is too strong to match the reality and complexities in

practical applications.

With the deepening and widening of social/business intelligences and

their networking, the concept of behavior is in great demand to be con-

solidated and formalized to deeply scrutinize the native behavior intention,

lifecycle and impact on complex problems and business issues. In the real-

world applications, group behavior interactions (i.e. coupled behaviors) are

widely seen in natural, social and articial behavior-related problems. The

verication of behavior modeling is further desired to assure the reliability

and stability. In addition, complex behavior and social applications often

exhibit strong explicit or implicit coupling relationships both between their

entities and properties. They can not be abstracted or weakened to the extent

of satisfying the IIDness assumption. These characteristics greatly challenge

the current behavior-related analysis approaches. Moreover, it is also very

dicult to model, analyze and check behaviors coupled with one another due

to the complexity from data, domain, context and impact perspectives.

Based on the above research limitations and challenges, this thesis reports

state-of-the-art advances and our research innovations in modeling, analyz-

ing and learning coupled behaviors, which constitute the coupled behavior

informatics. Coupled behaviors are categorized as qualitative coupled behav-

iors and quantitative coupled behaviors, depending on whether the behavior

involved is qualied by actions or quantied by properties.

In terms of the qualitative coupled behavior modeling and analysis, we

propose an Ontology-based Qualitative Coupled Behavior Modeling and Check-

ing (OntoB for short) system to explicitly represent and verify complex be-

havior relationships, aggregations and constraints. The eectiveness of On-

toB system in modeling multi-robot behaviors and their interactions in the

Robocup soccer competition game has been demonstrated.

With regard to the quantitative coupled behavior analysis and learning,
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we carry out explorations on three tasks below. They are under the non-

IIDness assumption of entities or properties or both of them, which caters

for the intrinsic essence of real-world problems and applications.

For numerical coupled behavior analysis, we introduce a framework to

address the comprehensive dependency among continuous properties. Sub-

stantial experiments show that the coupled representation can eectively

model the global couplings of numerical properties and outperforms the tra-

ditional way. For categorical coupled behavior analysis, we present an ecient

data-driven similarity learning approach that generates a coupled property

similarity measure for nominal entities. Intensive empirical studies witness

that the coupled property similarity can appropriately quantify the intrinsic

and global interactions within and between categorical properties for espe-

cially large-scale behavior data. For coupled behavior ensemble learning, we

explicate the couplings between methods and between entities in the ap-

plication of clustering ensembles, and put forward a framework for coupled

clustering ensembles (CCE ). The CCE is experimentally exhibited to capture

the implicit relationships of base clusterings and entities with higher cluster-

ing accuracy, stability and robustness, compared to existing techniques. All

these models and frameworks are supported by statistical analysis.

Finally, we provide a consolidated understanding of coupled behaviors by

summarizing the qualitative and quantitative aspects, extract the multi-level

couplings embedded in them, and then formalize a coupled behavior algebra

at its preliminary stage. Many open research issues and opportunities related

to our proposed approaches and this novel algebra are discussed accordingly.

Under varying backgrounds and scenarios, our proposed systems, algo-

rithms and frameworks for the coupled behavior informatics are evidenced

to outperform state-of-the-art methods via theoretical analysis or empirical

studies or both of them. All these outcomes have been accepted by top con-

ferences, and the follow-up work has also been recognized. Therefore, coupled

behavior informatics is a promising though wholly new research topic with

lots of attractive opportunities for further exploration and development.
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