
ONTOLOGY-ORIENTED E-GOVERNMENT
SERVICE INTEGRATION

UTILISING THE SEMANTIC WEB

Farzad Sanati

A thesis submitted for the degree of
Doctor of Philosophy

July 2011

Copyright © Farzad Sanati, 2011 all rights reserved

iii

Certificate of Authorship/Originality

I certify that the work in this thesis has not previously been submitted

for a degree nor has it been submitted as part of requirements for a degree

except as fully acknowledged within the text. I also certify that the thesis

has been written by me. Any help that I have received in my research work

and the preparation of the thesis itself has been acknowledged. In addition, I

certify that all information sources and literature used are indicated in the

thesis.

Signature of Student

Production Note:
Signature removed prior to publication.

i

Acknowledgements

This thesis is the result of a four years effort to climb the mount

improbable of my life. It has given me the possibility to engage in even

higher challenges, which there are many ahead. Looking back to my

physical journey from my birth land Kurdistan to Australia and from who I

was to whom I have become, I realise that I could have never completed it

without the help of so many people. This is the time to thank them all!

I would like to express my sincere gratitude to my principal supervisor,

Professor Jie Lu, for her continuous encouragement, advice, help and

invaluable suggestions. She has been a generous, helpful and kind hearted

person. Many thanks also to my co-supervisor, Professor Guangquan

Zhang, for his valued suggestions to this study.

I wish to thank my fellow research students in our Decision Systems

and e-Service Intelligence (DeSI) and the staff of the Faculty of

Engineering and Information Technology, University of Technology,

Sydney (UTS) for their various assistance and advice are of great benefit to

this study. I appreciate the financial support from both the Faculty of

Engineering and Information Technology and the Centre for Quantum

Computation and Intelligent Systems (QCIS).

I appreciate the travel support for attending the international

conferences which I received from the Faculty of Engineering and

Information Technology, the UTS Vice- Chancellor’s Conference Fund and

QCIS. This thesis received editorial advice from Ms Sue Felix, helping to

identify the correct grammar, syntax and presentation problems.

ii

I would like to express my heartfelt appreciation and gratitude to my

parents for all their love and support, also my brothers and sisters for their

constant encouragement over all these years.

The Last but certainly not the least, I am extremely fortunate that I

could share the joy and the pain of the last four years with my dear wife,

Baharak. She has been by my side during hard times and comforted me and

encouraged me to continue. I am grateful for her love and endless optimism

in times when barriers seemed impossible to pass. Shano and Kani this is

also for you to remember that no matter how improbable things may look,

nothing is impossible.

i

Table of Content

CHAPTER 1: INTRODUCTION 12

1.1 BACKGROUND 12

1.2 RESEARCH QUESTIONS 14

1.3 RESEARCH OBJECTIVES 17

1.4 SIGNIFICANCE 18

1.5 CONTRIBUTIONS 20

1.6 RESEARCHMETHODOLOGY 22

1.6.1 Design Research 22
1.6.2 Research Process 25

1.7 THESIS STRUCTURE 28

1.8 PUBLICATIONS RELATED TO THE THESIS 32

1.8.1 Published Journal and Conference Papers 32
1.8.2 Submitted Paper 33

CHAPTER 2: LITERATURE REVIEW 34

2.1 E-GOVERNMENT 35

2.2 KEY E-GOVERNMENT APPLICATION AREAS 36

2.2.1 E-government Interactive Services 36
2.2.2 E-democracy and E-participation 37
2.2.3 E-government Transformation 38

2.3 E-GOVERNMENT EVOLUTIONARYMODELS 40

2.3.1 Ziegler and Dittrich data integration model 40
2.3.2 Gartner E-government Model 42
2.3.3 Layne and Lee E-government model 43

2.4 WEB SERVICES: STATE OF TECHNOLOGY 44

2.4.1 Software as a Service 45
2.4.2 IT Industry Survey 46

2.5 SERVICE DELIVERY IN E-GOVERNMENT 48

2.6 SEMANTICWEB AND E-GOVERNMENT INTEROPERABILITY 49

2.6.1 Semantic Web 49
2.6.2 E-Government and Life Event Initiative 52
2.6.3 Ontology for Semantic Web 55
2.6.4 Service Ontology 56
2.6.5 E-government Ontology 59

ii

2.6.6 Service Ontology for E-government Services 61
2.6.7 Concept of Life Event Ontology 61

2.7 SUMMARY 63

CHAPTER 3: HYBRID E-GOVERNMENT INTEGRATION MODEL 64

3.1 E-GOVERNMENT EVOLUTIONARY DEVELOPMENT 64

3.2 AHYBRIDMODEL 66

3.3 SPECIFICATIONS OF HYBRID E-GOVERNMENT INTEGRATIONMODEL 69

3.3.1 Web Presence 69
3.3.2 Transaction 70
3.3.3 Intelligent Transformation 70

3.4 SUMMARY 73

CHAPTER 4: SERVICE INTEGRATION ENGINEERING PROCESS 74

4.1 INTEGRATION ENGINEERING VS. SOFTWARE ENGINEERING 75

4.2 LIFEEVENT 80

4.3 SERVICE INTEGRATION ENGINEERING IN PRACTICE 82

4.3.1 Analysis Phase 83
4.3.2 Design Phase 84
4.3.3 Delivery Phase 86

4.4 SUMMARY 87

CHAPTER 5: LIFEEVENT ONTOLOGY 89

5.1 DEFINITION OF ONTOLOGY 89

5.2 RDF AND RDF SCHEMA 90

5.2.1 RDF Model 91
5.3 OWL 92

5.3.1 OWL Model 92
5.3.2 Sublanguages 93
5.3.3 OWL Querying 94

5.4 USING ONTOLOGIES VS. DATABASES 95

5.5 WEB SERVICES ONTOLOGY 96

5.6 LIFEEVENT ONTOLOGY 100

5.6.1 LifeEvent Concept 101
5.6.2 LifeEventInstance Concept 102
5.6.3 LifeEventService Concept 103
5.6.4 ServiceInstance Concept 104

5.7 LIFEEVENT ONTOLOGY FORMAL DESCRIPTION 111

5.8 SUMMARY 114

iii

CHAPTER 6: E-GOVERNMENT SERVICE INTEGRATION MODELLING FRAMEWORK 115

6.1 SEMANTIC INFORMATION INTEGRATION 116

6.2 CONCEPT OF ABSTRACTION 117

6.3 ESIM OVERVIEW 117

6.4 ESIM FRAMEWORK 119

6.4.1 Stage 1 - Translating WSDL to OWL-S 121
6.4.2 Stage 2 – LifeEvent Meta Modelling 122
6.4.3 Stage 3: LifeEvent Instantiation and Execution 126

6.5 SUMMARY 131

CHAPTER 7: LIFEEVENT ONTOLOGY ORIENTED SERVICE INTEGRATION PLATFORM 132

7.1 TECHNOLOGY OVERVIEW 133

7.2 ARCHITECTURE OVERVIEW 135

7.3 DESIGN PATTERN OVERVIEW 139

7.4 OBJECT ORIENTED DESIGN 142

7.5 APPLICATION COMPONENT DESCRIPTION 144

7.5.1 WSDL2OWL-S Manager 145
7.5.2 LifeEvent Metamodel Manger 146
7.5.3 LifeEvent Enactment Manger 148

7.6 APPLICATION DEVELOPMENT 150

7.7 SUMMARY 151

CHAPTER 8: FRAMEWORK EVALUATION AND EXPERIMENTATION 153

8.1 LIFEEVENT ONTOLOGY EVALUATION 153

8.2 ONTOLOGY MEASURINGMETHODS 154

8.2.1 Ontology Level Metrics 154
8.2.2 Class Level Metrics 155

8.3 EXPERIMENT PREPARATION 156

8.3.1 Step 1: Building the Ontology 156
8.3.2 Step 2: Selecting a Comparable Ontology 157
8.3.3 Step 3: Experimentation 158

8.4 LOOSI PLATFORM PROTOTYPE EVALUATION 164

8.4.1 Experiment Preparation 164
8.4.2 Register a NewWeb Service 166
8.4.3 Compose a LifeEvent Metamodel 170
8.4.4 Select and Execute a LifeEvent Instance 173

CHAPTER 9: CONCLUSION AND FUTURE WORK 187

iv

9.1 PROBLEM AREA AND OBJECTIVES 187

9.2 THEMAIN CONTRIBUTIONS OF THIS RESEARCH 189

9.2.1 In Theory 189
9.2.2 In Practice 190

9.3 FUTUREWORK 191

v

Table of Figures

Figure 1.1 General Methodology of design Research 23

Figure 1.2 The research process 26

Figure 1.3 Relationship between chapters 31

Figure 2.1 Ziegler and Dittrich integration model 41

Figure 2.2 Gartner Integration Model 42

Figure 2.3 Layne and Lee Integration model 43

Figure 2.4 Layered architecture of semantic web 51

Figure 2.5 Maturity of the Life Event ‘Losing and Finding a Job’ 54

Figure 3.1 A generic structure for federal system of government 66

Figure 3.2 Hybrid E-government Integration Model 69

Figure 4.1 Constructing a LifeEvent from available web services 80

Figure 4.2 LifeEvent as building blocks of integrated e-government 81

Figure 4.3 Conceptual diagram of the SIE process 82

Figure 5.1 LifeEvent ontology conceptual graphs. 108

Figure 6.1 Overview of the ESIM framework. 118

Figure 6.2 ESIM framework for LifeEvent Life Cycle 120

Figure 6.3 LifeEvent ServiceInstance and OWL-S construction process. 122

Figure 6.4 Metamodelling conceptual diagrams 124

Figure 6.5 Creating/Editing LEM 126

Figure 6.6 Runtime workflow construction and LEI execution 127

Figure 7.1 Service Oriented Architecture overview 135

Figure 7.2 Architectural overview of LOOSI platform prototype 137

vi

Figure 7.3 MVC design Patterns 140

Figure 7.4 The prototype compliance of MVC design Patterns 141

Figure 7.5 The LOOSI prototype java classes mapped in MVC 143

Figure 7.6 WSDL2OWL-S component functional flowchart 146

Figure 7.7 LifeEvent Metamodel Manager functional flowchart 148

Figure 7.8 LifeEvent Enactment Manager functional flowchart 149

Figure 7.9 Three main functions of LOOSI prototype 151

Figure 8.1 LifeEvent Ontology Built by Protégé. 157

Figure 8.2 OWL-S Ontology schema 158

Figure 8.3 LifeEvent and OWL-S named individuals 159

Figure 8.4 Physical growths in ontology data as per SOV ratio 161

Figure 8.5 Physical growths in ontology data per ENR ratio 162

Figure 8.6 Physical growths in complexity of ontology data as per NOC ratio 164

Figure 8.7 Home page of LOOSI platform prototype 166

Figure 8.8 Capturing the WSDL URL and service description 167

Figure 8.9 User semantic input to create the OWL-S ontology data 168

Figure 8.10 Actual results of executing the stage 1 of the ESIM by the LOOSI
prototype

169

Figure 8.11 Enforcing the regulatory knowledge provided by LifeEvent
ontology

171

Figure 8.12 Successful assembly of a LifeEvent Metamodel 172

Figure 8.13 Selecting LifeEvent Metamodel 174

Figure 8.14 Personalising LifeEvent Metamodel 175

Figure 8.15 Confirming the execution of personalised LifeEvent instance 177

Figure 8.16 Select an operation from the currently web service 179

vii

Figure 8.17 User data entry screen to invoke an operation from the currently
web service

181

Figure 8.18 Finalised web services are coloured as green on the progress bar. 182

Figure 8.19 Retrieving an incomplete LifeEvent Instance. 183

Figure 8.20 Revisiting an incomplete LifeEvent Instance. 184

Figure 8.21 Web service failure notification 185

Figure 8.22 LifeEvent repair action 186

viii

List of Tables

Table 4.1 Comparing activities in SIE and SE 77

Table 7.1 Notations for web service enactment component functional description 145

Table 8.1 Numerical of ontology growth as per SOV ratio. 160

Table 8.2 Numerical of physical growth for ontology as per ENR ratio 162

Table 8.3 Numerical of physical growth for ontology classes as per NOC ratio 163

Table 8.4 Readily available web service in AXIS2 test server 165

ix

Table of Listings

Listing 5.1 Definition of object property hasService 102

Listing 5.2 Definition of object property hasServiceInstance
103

Listing 5.3 Definition of object property hasPrerequisite
104

Listing 5.4 Definition of hasServiceSubType and hasServiceType
104

Listing 5.5 Implementation of property hasPrecondition in OWL-S
109

Listing 5.6 Class Prerequisite in LifeEvent Ontology
110

Listing 8.1 RDF statements in LifeEvent ontology data file.
173

x

Abstract

E-government service integration process has recently become an

important research topic in e-government domain since many countries

have developed various levels of e-government services. Non-

interoperability between government agencies in service delivery

implementation and platform posing the technical challenge, and the lack of

the formulated modelling framework is the main methodological obstacle

on the way of achieving dynamic delivery of integrated e-government

services.

This research is a study of the problems associated with the integration

and delivery of integrated e-government services, and proposes a novel

solution to tackle them. We start with investigating the fundamentals of e-

government as a field of research to build a sensible argument for the

questions investigated by this research, which lead to the exposure of the

methodological as well as technological problems with the mechanics of e-

government in the areas of service integration and delivery.

The outcomes of this study in Chapters 3, 4, 5, 6, and 7 respectively 1)

suggests the most practically relevant and technically possible evolutionary

pathway to e-government transformation, 2) proposes a modified software

engineering process to achieve such transformation, 3) develops an

innovative framework for modelling the service integration, 4) proposes an

ontology as its knowledgebase, and 5) develops an innovative and

intelligent software to support the practice of service integration and

delivery. These outcomes collectively result in the introduction of a novel,

complete and coherent solution for the abovementioned problems.

xi

This research is a cross disciplinary study of software integration

engineering frameworks, e-government service delivery platform and

semantic web technology, all working to devise the most efficient and

robust framework of using semantic web capabilities to enable the delivery

of integrated e-government services in an intelligent platform.

Chapter 1:
Introduction

1.1 Background

E-government is defined as:

The use by government agencies of information technologies

(such as Wide Area Networks, the Internet, and mobile

computing) that have the ability to transform relations with

citizens, businesses, and other arms of government. (The-World-

Bank, 2007)

Rapid growth in Information and Communication Technology (ICT)

has substantially dominated the ordinary citizen’s everyday life. One visible

extension of this change is measured by the recent surge in public

administration service delivery in the Internet domain. In recent years,

countries of European Union, North America and many Australian

government agencies have developed extensive e-government services for

individual citizens as well as for private businesses.

This rapid growth in e-government services has resulted in duplicate

and redundant services that could lead to confusion for customers and add

complexity to conduct business with government when more than one

government agency is involved. Customers who want to deal with

government must first discover which part of government provides their

desired services, and this problem can become even more complicated if

there are multiple agencies involved, in which case the problem of

Introduction 13

interoperability and incompatibility of these services would add to the

already complicated equation.

Early steps towards ICT interoperability were taken in the early 1980s

when standardisation in ICT started as a typical response to concerns

related to proprietary systems (Guijarro, 2007). Since then, standardisation

has come a long way in easing the burden of connecting disparate and

incompatible systems by introducing many engineering protocols.

The Australian Government has made fundamental changes to the way

it works since the late 1990s under the influence of the rapidly growing

capabilities of the Internet. This Government has started the implementation

of a long-term plan to achieve a unified and integrated web presence for all

its agencies across all levels of government (IMSC, 2007). The integrated

government e-services initiative was intended to eliminate redundant

systems and significantly improve the Government’s quality of customer

service, as well as to generate a dramatic increase in the number of services

provided to citizens over the Internet. Integration of e-government services

would result in the creation of composite services, increasing greatly the

number of information resources and services available to the public

through individual agencies. Considering such an ambitious target, the

semantic and technical interoperability of integration solutions remains the

main problem. This research is committed to proposing a solution to

interoperability problems for e-government service integration and delivery.

This chapter is an overview of the research conducted in this area. It

helps readers to obtain a cohesive picture of the research conducted in this

study and consists of four main sections. Section 1.1 is the problem analysis

of this study and explains the research issues that this study attempts to

tackle. Section 1.2 is a brief description of the contribution of this study to

Introduction 14

the body of knowledge in the area of delivering integrated e-government

services to services users. Section 1.3 illustrates the overall structure of this

thesis. Finally, Section 1.4 offers a list of the author’s publications related

to this study.

1.2 Research Questions

Government policies lean towards encouraging the use of the Internet

by agencies to promote the efficient delivery of all appropriate services and

programs to citizens and other services users. These policies have led to

considerable investment in Internet-based service delivery by agencies.

Based on a preliminary investigation and the literature review, the

following problems have been recognised from the study of existing

Government to Citizen (G2C) service delivery systems, and research

recommendation is extracted for this study.

In order for e-government service integration to become a success it has

to handle the following issues:

1) Incompatible interagency process and workflows,

2) Unfamiliar semantics,

3) Complex inter-agency regulatory rules,

4) Development of duplicated and redundant services, and

5) Automatic composition and delivery of services.

A higher level of intelligence in service delivery is a highly desired

attribute of e-government systems that could add great value to such

systems. Under the guidance of the Australian Federal Government (IMSC,

2007), agencies have launched personalised information delivery services;

Introduction 15

however, these efforts are not in line with a unified structure that is planned

for the maximum efficiency of government future integration projects.

Therefore, this study recognises that to resolve the five aforementioned

issues, it is important to focus on, and find answers to, the following

research questions:

Question one: What is the most intelligent framework for e-

government service integration and delivery?

Recent efforts by public administration to transform itself have resulted

in drastic changes in public service delivery mechanisms. Moving towards

an electronic means of delivering services was the most important step in

the creation of a new paradigm in public service delivery called ‘e-

government’. Integrated e-government is expected to bring increased

efficiency, better and more available services and increased participation by

both government agencies and citizens. Citizens in particular must be able

to access e-government integrated services effortlessly with minimum

working knowledge of their operation.

Integrated delivery of e-government services is one of the most

important steps towards ubiquitous government; however, there is no

proven framework to develop and deliver e-government integrated services

in a coherent, repeatable way. All e-government service integration efforts

investigated by this research seem to have been done on a case-by-case

basis, without a unified methodological framework (Mugellini, 2005, Guidi

et al., 2007) that could be applied to different government systems.

In this research, we pay special attention to the mechanics of e-

government service delivery, and within this topic we highlight the lack of

a formulated modelling and implementation framework as the main

methodological problem in achieving seamless delivery and integration of

Introduction 16

e-government services. The main focus of this study, then, is to investigate

the integration of e-government at Service Delivery Level. This problem is

closely related to issues 1, 2 and 4 mentioned above.

Question two: What and how can semantic web technology be used

to overcome the technical difficulty of automatic integration and

delivery of e-government services?

Service Oriented Computing (SOC) (Munindar et al., 2006) is a

software architecture domain that defines a framework to enable building

new software applications from existing building blocks (web services).

Achieving the best outcome in the integration and delivery of e-government

services would require a facility capable of composing web services, not

only from one service provider but from different locations and providers.

This is a highly complex task and it is already beyond human capability to

deal with the whole process manually.

The traditional workflow design paradigm relies heavily on humans

who specify the business processes in design time. However, such a manual

design approach is not suitable for many cases such as:

1) Inter-agency workflow that crosses autonomous organisational

boundaries and requires experts who possess the knowledge

required for defining workflows from the constituent organisations,

and

2) Customised workflows that might suit individual service users,

which would require many variations and make it infeasible and

error-prone to predefine the complex workflow in advance (design-

time).

Introduction 17

Researchers have often suggested the use of semantic web technologies

to manage and dynamically configure the composition of web services.

Dynamic configuration of integrated web services will enable integration

applications to use ontology as an information source to create personalised

alternative workflows to meet the requirements of specific service users

(citizens) or in response to changing customer preferences in run-time. It

also can be a fatal problem for composite service workflows if one or more

services fail at run-time. This problem is closely related to issues 1, 2, 3 and

5.

1.3 Research Objectives

Achieving repeatability is perceived to be one of the most fundamental

attributes of any framework in any engineering discipline. Many research

projects are currently attempting to formulate modelling strategies utilising

new technologies and development techniques proposed in the Service

Oriented Architecture (SOA) (Erl, 2005) domain. In the absence of a

documented best common practice of design and modelling techniques for

e-government service integration, it would be greatly beneficial to discover

such common practice and describe the detailed specifications of a

repeatable modelling framework for such projects. At the same time, the

absence of an intelligent delivery platform for integrated e-government

services is the other significant problem concerning the concept of e-

government service integration and delivery. Hence, the main objectives of

this study are recognised as follows:

Introduction 18

1) To investigate and recognise the actual e-government evolutionary

trend and propose the most practical and realistic transformation

strategy for e-government.

2) To investigate currently proposed e-government service integration

models in order to scope the problem domain, including service

integration practices and the classification of e-government service

integration strategies. This is essential to discover the

implementation and technical strategies of current solutions,

3) To propose detailed specifications of a repeatable modelling

framework for the delivery of e-government integrated services.

This needs to be a repeatable modelling process, clearly defining all

the tasks and activities needed to effectively model integrated

service workflows and having more effective management control

over all development activities, and

4) To select the technology and develop the most efficient

knowledgebase component for the intelligent automation of the e-

government service integration and delivery system.

5) To propose a delivery platform for integrated e-government

services. This prototype application needs to make use of semantic

web technologies to create and manage personalised configuration

for composite e-service workflows. The platform will be used to

deploy and deliver integrated e-government services in general.

1.4 Significance

Government institutions across the world, at national, regional, and

local levels, are significant consumers of technology. Governmental

Introduction 19

services affect us all. They can range from areas of defence and national

security to health, taxation, law enforcement, judiciary, environment,

energy, social services, disaster management, and land use management.

Web services technology has been embraced by industry and

governments as the new standard for enabling an organisation to transact

with its partners over the Internet in support of its overall business strategy.

IT culture within the public sector has long been known to be unique. The

responsibilities of managing a wide range of often critical public services

establish a distinct set of priorities that cannot be compromised, especially

when it comes to reliance on technology.

Web services technology adoption has grown substantially in

government agencies in federal, state, and local sectors. There is an

increasing realisation that the strategic benefits of service-orientation can

help overcome many of the traditional cost and efficiency-related IT

problems (Juneja et al., 2008).

The outcome of this study will significantly improve the current

position of e-government service delivery practices by introducing an

effective and relatively easy-to-follow framework for the integration and

delivery of e-government services. This study will provide an innovative

design for e-government service integration and delivery workflow

management, using intelligent design to handle dynamic workflow

composition and failure recovery at run-time, such that it would enable

ordinary citizens to create personalised composite service and execute them

to achieve desired legal outcomes. It makes use of the semantic capability

of ontology to achieve this objective.

Semantically transparent e-services make it possible for clients to

successfully use services that are dynamically discovered without prior

Introduction 20

negotiations between the workflow composer (client) and service providers

(government agencies). Such goals are important for web service

environments, including G2C as well as Government to Business (G2B)

applications (Burstein et al., 2005).

1.5 Contributions

This research makes the following contributions to the theory and

practices of e-government service integration and delivery:

1) Present arguments to establish a theory for the proposal of the most

practically relevant and technically possible evolutionary pathway

to e-government transformation, based on the body of evidence

presented in Chapter 2

2) Proposal of a modified software engineering process to deal with the

specific tasks and activities of service integration projects. This new

engineering process is called Service Integration Engineering (SIE)

and is designed to handle the complexity of developing integrated

e-government services.

3) Development of an innovative E-government Service Integration

Modelling (ESIM) framework, recognising that the ability to offer a

citizen-centric view of government model is the key to a successful

e-government service delivery. We adopt the LifeEvent model

which is the most widely-adopted paradigm supporting the idea of

composing a single complex e-government service that corresponds

to an event in a citizen’s life. In our interpretation of LifeEvent,

elementary building blocks of LifeEvent are web services offered

by multiple government agencies or other business partners. This

Introduction 21

research defines ESIM as a framework based on ontological

analysis and modelling that makes extensive use of the LifeEvent

concept. ESIM is a top-down abstraction approach in requirements

elicitation and modelling to define and implement the design of

LifeEvent in the context of e-government service integration and

delivery.

4) The conceptual design of LifeEvent upper ontology. This ontology

will provide knowledgebase support for the implementation of the

LifeEvent Ontology Oriented Integrated Services platform within

the e-government domain. LifeEvent ontology is a logical extension

of Ontology Web Language for Services (OWL-S); we are

interested in extending this existing approach to enable the design

of a LifeEvent Metamodel. This Metamodel is to be used as an

alterable workflow for a composite service. The resulting ontology

covers specific web services semantic concepts to implement the

phenomenon of LifeEvent in the context of e-government by:

a) facilitating the construction of alternative integrated service

workflows from entirely different web service vendors;

b) enabling the repair or re-configuration of LifeEvent workflows

in runtime;

c) the invocation of web services according to the workflow

sequence and user preferences at run-time.

5) LifeEvent Ontology Oriented Integrated Services (LOOIS) platform

is the fifth contribution of this study. It is a prototype software

system for delivery of personalised LifeEvent to customers. This

platform will make use of semantic web technology as the

Introduction 22

knowledgebase of its core functionality and will validate the

modelling assumptions of the ESIM framework. LOOIS will make

use of enhanced semantic web technology design techniques

specialised to achieve more intelligently manageable dynamic

integration of elementary e-government services from multiple

sources.

1.6 Research Methodology

The research methodology applied in this study is a set of methods,

procedures and tools to conduct research in a certain domain (Nunamaker

and Chen, 1990). A number of research methodologies are proposed,

among them case study, design research, field study, experimental, and

action research. This research will apply design research methodology

(AIS, 2007) to achieve the desired objectives of this research.

1.6.1 Design Research

The focus of design research is on preparing and analysing artefacts in

order to gain insight into research problems. Based on the principles of this

model, this study plans to achieve its objectives in the five steps illustrated

in Figure 1.1.

Introduction 23

Figure 1.1: General methodology of design research (AIS, 2007)

Awareness of Problem: This is the starting point of the design

research, in which we focus on the investigation of current general e-

government service applications and development, and in this investigation,

meaningful research problems are identified. A survey-based approach has

been used to investigate the state-of-the-art and characteristics of the

current software development industry. The survey is designed to evaluate

and compare the trends in academic literature with current industry

practices. We were particularly interested in discovering the tools and

methodologies used in web services delivery. In this step, a sufficient

quantity of related literature is reviewed to clarify the research questions.

The areas of review address e-government in general, software engineering

process, e-service integration, semantic web, ontology, and knowledgebase

systems. In this step, research problems are clarified and defined using

Introduction 24

broad literature review and also a survey of the industry practice. The

research problems must clearly reflect a gap between existing applications

and expected status. The corresponding output of this step is a research

proposal.

Suggestion: Following the identification of research problems, a

research method process is suggested. The research process describes what

the intended artefacts will be and how they can be developed. Suggestion is

a creative step towards new functionality foreseen either as a novel

configuration of an existing element in a system or adding elements. This

research has applied a method of system prototype development in order to

validate the theoretical assumptions and concepts.

Development: Artefacts developed in this step testify to the feasibility

and reasonability of the original design. The artefacts are built in an

iterative process wherein an initial prototype evolves in an incremental

manner as the researcher gains a deeper understanding of the research

problem. The techniques for implementation will vary according to the

artefact to be constructed. The knowledge obtained in this step is fed back

to the previous step in order to revise the design and the proposal.

Evaluation: Once constructed, the artefact is evaluated according to

criteria that are always implicit and frequently made explicit in the

Proposal. Performance of the developed artefacts is evaluated according to

the criteria defined in the research proposal and must confirm to the

suggested design. These results are then fed back to the previous two steps

to improve the design and consequently the artefacts.

Introduction 25

Conclusion: The final task of this research is to reach a conclusion as to

whether the results are satisfactory. There might still be deviations between

the proposal and the developed artefacts; however the conclusions are still

valid if the artefacts are considered ‘good enough’. This phase is the final

stage of a specific research effort. Typically, it is the result of satisfying,

that is, although there are still deviations in the behaviour of the artefact

from the multiply-revised hypothetical predictions, the results are judged to

be ‘good enough’. Not only are the results of the effort consolidated and

written up in this phase, but the knowledge gained in the effort is frequently

categorised as either ‘firm’ - facts that have been learned and can be

repeatably applied or behaviour that can be repeatably invoked - or as

‘loose ends’ – irregular behaviour that defies explanation and may well

serve as the subject of further research.

1.6.2 Research Process

We used design research methodology to prepare the research process.

The complete process of this research consists of nine steps divided in to

three phases (see Figure 1.2).

Introduction 26

Figure 1.2: The research process

(Phase 1 – Theory)

5) Designing ESIM modelling framework

6) Designing LifeEvent Ontology

7) Design LOOIS Platform

9) Experimental Validation & Evaluation

8) Prototype Design & Development (LOOIS)

4)
Construct
Theories

2)
Literature &
Survey
Review

1) Setting Research Area

3)
Problem
domain
definition

Stage 1:
Theory

Stage 2:
Technique

Stage 3:
System

Introduction 27

There are four steps in this Phase, which allows for carrying out major

theoretical work in relation to this research.

x Step 1: in this step a very broad research area is chosen as the

source of knowledge for the foundation of this research.

x Step 2: in this step we focus on retrieving and critically

reviewing the existing literature in our chosen area of research.

Also in this step, a survey-based approached has been used to

investigate the state and characteristics of the current software

development industry practice.

x Step 3: in this step the results of the survey and the literature

review are clarified to help define specific questions for this

research. As research questions have become clearer in light of

more literature reviews, so our focus on the research area has

become more specific.

x Step 4: in this step we begin to construct theories and

hypotheses to answer the research questions.

(Phase 2 – Technique)

This Phase is a design Phase;

x Step 5: the process model ESIM is designed and recommended.

x Step 6: LifeEvent ontology, which is an essential

knowledgebase for the practical deployment and implementation

of ESIM, is designed in this step.

x Step 7: in this step of the research an implementation platform

(LOOIS) is designed as a delivery platform for e-government

integrated services.

Introduction 28

(Phase 3 – System)

x Step 8: in this step the LOOIS prototype system is developed

based on the recommended techniques of Phase 2 of this

research process.

x Step 9: in this step an experiment is conducted to validate the

LifeEvent ontology, ESIM framework and the performance of

LOOIS prototype.

1.7 Thesis Structure

This thesis is consists of nine chapters, described as follows:

Chapter 1: is an overview of the research. It is intended to help readers

obtain a cohesive picture of the research conducted in this study. It consists

of four main sections: the problem analysis and research questions in this

study, the brief description of contributions of this study to the body of

knowledge, the illustration of the overall structure of this thesis, and the list

of authors’ publications related to this study.

Chapter 2: gives a clear description of definitions, technologies, and

concepts to develop an understanding of issues associated with the current

state-of-the-art. It provides a summary of the current general state of

research in the public service domain and the mechanics of service delivery

in most relevant areas of concern to this research. It also discusses a number

of proposed models for e-government transformation and integration,

critical analysis of the current state of research in the area of architectural

and implementation models of e-government service integration, and of

Introduction 29

current technologies, such as the use of ontology, as a knowledgebase and

reasoning tool.

Chapter 3: and the subsequent Chapters 4, 5, 6 and 7 will collectively

present the main contributions of this study. Chapter 3 presents a

comprehensive model for e-government integration. This model provides

important guidance for the design and implementation of the integration

framework discussed in Chapters 4 and 5.

Chapter 4: establishes our argument about the deficiency of current

popular software engineering methods in dealing with web services

integration projects. It proposes additional tasks for the classical software

engineering process to create a more efficient new process for service

integration engineering.

Chapter 5: provides a detailed design and formal description for

LifeEvent ontology. It discusses the definition of ontology and the service

ontology by defining the concept of ‘Ontology’. Chapter 5 explains and

illustrates the overview and details of our conceptual design for the

LifeEvent ontology. It provides the annotation used in our formal method to

establish the main axioms and design rules for the LifeEvent upper

ontology.

Chapter 6: proposes specifications of a repeatable framework for e-

government service integration projects. This process model, called E-

Service Integration Modelling (ESIM), is a repeatable process, that defines

the required tasks and activities for providing effective management control

over the web service integration process.

Chapter 7: discusses the detailed design and implementation of the

LifeEvent Ontology Oriented Service Integration (LOOSI) platform, which

is a novel software application to provide the functionalities required to

Introduction 30

support our web services integration modelling processes called ESIM

framework. The LOOSI platform is a proof of concept for all the theoretical

proposals of this research found in Chapters 3, 4, 5 and 6.

Chapter 8: presents an evaluation of the proposed LifeEvent ontology

by measuring its growth in complexity in comparison with OWL-S

ontology. An evaluation of the LOOSI platform as a proof of concept

validates the design assumptions of the ESIM framework and SIE.

Chapter 9: discusses the conclusion of the research and possible areas

for future research. The relationships of all chapters are shown in Figure

1.3.

Introduction 31

Figure 1.3: Relationship between chapters

Research
Concerns

Modelling
Theory

CHAPTER 1. Introduction

o The overview and background of this
research: Origins?

o Research question: What to do?
o Justification of the study: Why do it?
o Research Methods: How to do it?

CHAPTER 2. Literature Review

o Definitions, concepts.
o Current state of research in public service
domain.

o Critical analysis of existing solutions.

CHAPTER 4:
Service Integration
Engineering

o Critical analysis of
shortcomings of
classical software
engineering in dealing
with service
integration

o Propose a new process
for service integration
engineering

CHAPTER 7: LifeEvent Ontology
Oriented Service Integration Platform

o Detailed design and implementation of
LifeEvent Ontology Oriented Service
Integration platform

o Proof of concept for ESIM and SIE

CHAPTER 8: Framework Evaluation and
Experimentation

o Evaluation of conceptual design of
LifeEvent Ontology by measuring the
growth in complexity.

o Evaluation of LOOSI to validate the
design assumptions of ESIM and SIE

CHAPTER 9: Conclusion

oMain contribution of this research
o Critical analysis of this research
o Future research directions

CHAPTER5:
LifeEvent Ontology

o Formal design of
LifeEvent Ontology
as the
knowledgebase
needed for the
implementation of

o Service Integration
Modelling
Framework

CHAPTER 6:
E-Service Integration
Modelling Framework

Process specification
of a novel modelling
process for integration
and delivery of e-
government services

CHAPTER 3:
E-government
Integration Model

o Introduction of
Hybrid E-
government
Integration
Model

Conclusion

System &
Evaluation

State of
the Art

Introduction 32

1.8 Publications Related to the Thesis

The following are the list of my publications during my PhD study in

descending date order:

1.8.1 Published Journal and Conference Papers

Sanati. F and Lu. J (2011), An Ontology For E-government Service

Integration', International Journal of Computer Systems Science and

Engineering (IJCSSE), ACCEPTED,2011.

Sanati. F and Lu. J (2010), "LifeEvent Ontology Oriented Service

Integration," in IEEE International Conference on Service-Oriented

Computing and Applications (SOCA 2010), Perth Australia, 2010, pp. 268-

273.

Sanati. F and Lu. J (2009), "Life-event Modelling Framework For E-

Government Integration," Electronic Government: An International Journal,

2009, vol. 1, pp. 183-202.

Sanati. F and Lu. J (2009), "Multilevel Life-event Abstraction

Framework for E-government Service Integration," in 9th European

Conference on e-Government London England, 2009, pp. 550-558.

Sanati. F and Lu. J (2008), "Semantic Web for E-Government Service

Delivery Integration," in IEEE Information Technology Next Generation

(ITNG) Las Vegas USA: IEEE, 2008, pp. 459-464.

Introduction 33

Sanati. F and Lu. J (2007), "A Methodological Framework for E-

government Service Delivery Integration," in eGovernment Interoperability

Campus, Paris, http://80.14.185.155/egovinterop/egov07cd/eGov07-

CDROM/pages /papers/ T1C.pdf, 2007, pp. 1-9.

1.8.2 Submitted Paper

Sanati. F and Lu. J (2011), ' Dynamic Integration of E-government Web

Services: Framework and Implementation', International Journal of

Decision Support systems.

Chapter 2:
Literature Review

The primary aim of this study is to develop an intelligent integration

model for e-government services to facilitate a repeatable and more

efficient mechanism for delivering e-government services to customers. In

this chapter, definitions, technologies, concepts and different integration

models will be reviewed to develop an understanding of the issues

associated with the current state-of-the-art. Section 2.1 will give a brief

appraisal of the current general state of research in the public service

domain. We will dig deeper into various areas of e-government research by

identifying and explaining the main application areas of that research in

Section 2.2. Section 2.3 is dedicated to discussing a number of proposed

models for e-government transformation and integration. Sections 2.4 and

2.5 discuss the current state of research in the area of architectural and

implementation models of e-government integration. Finally, Section 2.6

analyses current technologies such as the use of ontology as knowledgebase

and reasoning tools as well as some best practices in the field of integration

of web services in general. The overall aim of this chapter is to provide

detailed knowledge about the state of the research and narrow the focus to

e-government service integration and its delivery domain. The objective is

to highlight the shortcomings and gaps in our knowledge in this domain.

Literature Review 35

2.1 E-government

In recent years, there has been rapid growth in the volume of research

output on the topic of e-government. Researchers in the area of e-

government seem to be working at the cross-roads of number of other

research domains, particularly information systems, computer science,

public science, and political administration, as are researchers in other

fields including statistics, development studies, and linguistics. Research

has been conducted on the philosophical analysis of e-government (Heeks

and Bailur, 2007), but the literature comes predominantly from information

systems. In particular, some of the e-government literature cited (Beer et

al., 2006, Meneklis et al., 2005, Medjahed et al., 2003b, Peng et al., 2006,

Irani et al., 2006) is essentially an IS or e-business idea that has somehow

been modified to fit the public sector context.

By looking at the mechanics of e-service delivery by governments, one

realises that a citizen-centric e-government service delivery platform must

be built on the needs of citizens and government business partners if

government is to develop an efficient and cost effective way to satisfy

service user requirements. To achieve this objective, government has had to

recognise the differences in the nature of its relationships with various

customers based on primary needs and objectives. Three such government

service relationships are recognised in the literature (Soliman, 2003)

namely, G2C, G2B, and Government to Government (G2G). If we take one

step further to include a technical vantage point, some literature has also

described e-government implementation technologies in fine detail. Hepp

(2006) and McIlraith (2001) very successfully predicted the technological

trend of the e-government domain; however they have not gone so far as to

propose a comprehensive and repeatable solution to the integration

Literature Review 36

problem. Hence we see the need to dig deeper in to the roots of e-

government integration and evaluate some well known e-government

evolutionary models to identify the actual problems. Section 2.3 is

dedicated to this purpose, but first we consider some application areas of e-

government to get a sense of where these problems may have originated.

2.2 Key E-government Application Areas

To plan for e-government is to understand the key areas to which e-

government is mainly applied. This section, though not comprehensive,

discusses a number of application areas that are identified in the e-

government domain. We only focus on the ‘e-government transformation’,

which is mostly within the scope of this study. Nonetheless all the other

areas need to be briefly explained for their importance and their probable

influence on other areas of e-government research.

2.2.1 E-government Interactive Services

This constitutes the development efforts that are implemented to

provide a broad range of services and a high level of functionality.

Interactive service initiatives focus on providing information and content

that is transactional in nature and offers a higher level of interaction.

Communication capability is performed in complex mode (both citizens

and government have the capability to provide feedback to one another).

One of the most desirable areas for the implementation of interactive

services is in mobile government, also known as m-government.

A case study by (Chiu et al., 2007) extends an e-government

appointment service into a mobile and ubiquitous one. In this case study,

two main reasons are examined that highlight the importance of context in

Literature Review 37

an interactive service. First, context reduces the input cost and improves

efficiency. Second, context may provide an exciting user experience

without much effort on the user’s part. With the help of context, interactive

services such as appointment reminders are accessories that can make

citizens’ lives easier by taking into account not just their location and

environment (such as traffic conditions and weather), but also their

preferences.

2.2.2 E-democracy and E-participation

Citizens are informed and educated about the decision-making process

and programs to increase the transparency and responsiveness of

government as a whole. Citizen feedback and involvement in day-to-day

governance is encouraged as much as possible. Additionally, access to

legislation and the decision-making process is more widespread, and efforts

seek to bring government to the population and to as wide an audience as

possible.

Research has highlighted the re-design efforts of e-government

platforms offering public services. Some useful data supports this re-design.

Citizens feel more confident and familiar transacting with local town-hall

agencies. One survey has been conducted (Anthopoulos et al., 2007) for the

local administration to assess the expectations of the local community with

regard to e-government and make optimal choices for digital

transformation.

In G2G services, on the other hand, most of the public agencies (87

percent) agree to the use of ICT systems to automate their routine

transactions, according to Anthopoulos (2007).

Literature Review 38

E-democracy can also help improve citizen involvement and

participation in decision-making and rule-making. Examples of e-

democracy include the ‘Lobbyist-in-a-Box’ in the Commonwealth of

Virginia where citizens can track the progress of bills as they move through

the legislative process (Sheng and Trimi, 2008). The bill status information

is updated every hour and users are notified of bill changes. Recent trials of

e-government have met with public acceptance and eagerness. Citizens

participate in online discussions of political issues with increasing

frequency and young people, who traditionally display minimal interest in

government affairs, are now the main group of participants.

Although Internet-based governmental programs have been criticised

for lacking reliable privacy policies, studies have shown that people value

the prosecution of offenders over personal confidentiality (Saumya, 2002).

In the United States, 90 percent of adults approve of Internet tracking of

criminals, and 57 percent are willing to forgo some of their personal

internet privacy if it leads to the prosecution of criminals or terrorists.

Surveys and reports show a promising increase in public participation in

e-government initiatives in general, regardless of minor setbacks that may

arise from the fact that this is a relatively young area of research.

2.2.3 E-government Transformation

E-government is using Information Technology (such as software,

hardware, computer networks, the Internet, and mobile computing) to

improve government agencies’ ability to transform relations with citizens,

businesses, and other arms of government (The-World-Bank, 2007). The

rapid growth in ICT has substantially dominated ordinary citizen’s

everyday life. We can recognise one visible extension of this change by the

Literature Review 39

recent surge in public administration service delivery through the Internet

domain. In recent years, many Australian government agencies (which are

the main reference model of this study) have developed extensive e-

government services for individual citizens.

This rapid growth in e-government services has resulted in duplicate

and redundant services that could eventually lead to confusion for

customers and added complexity in doing business with government where

more than one government agency is involved. Customers who want to deal

with government must first discover which part of government is providing

their desired services, and this problem becomes more complicated if

multiple agencies are involved. In this latter case, the problem of

interoperability and incompatibility of these services will also add to the

equation.

To prevent this issue from getting out of control, a number of proposals

for e-government integration have been. Surveys of recent e-government

integration solutions (Madhusudan, 2006, Umapathy and Purao, 2007)

(Beer et al., 2006, Meneklis et al., 2005, Liu et al., 2007, Lu et al., 2004,

Medjahed et al., 2003a, Peng et al., 2006, Dijkman and Dumas, 2004)

indicate that most efforts have mainly relied on enabling technologies in

order to achieve the desired outcome with very little attention being given

to a unifying, methodological approach. Considerable research works have

been done to design e-government implementation frameworks, some of

which (Chircu, 2008) cover multidimensional aspects of e-government

development, while others pay more attention to planning e-government

development mainly from a project and resource management viewpoint

(Ghapanchi et al., 2008). As far as this study is concerned, this fact is an

Literature Review 40

indication of inadequate attention being given to define repeatable

processes for e-government development.

2.3 E-government Evolutionary Models

In its 2009 report to European Union (EU) commission (Kotsiopoulos

and Rentzepopoulos, 2009), the DG Information Society and Media

indicated that integration attempts so far mostly belong to the so-called

structural or syntactic level integration. This assumes relatively well-

structured data, which allows rather tightly-coupled solutions leading to a

single global schema. The EU commission report touches upon everything

from data integration to organisational collaboration to semantic integration

through the use of multiple ontologies.

2.3.1 Ziegler and Dittrich data integration model

The EU commission report has been built upon a research paper that

originally proposed the classification schema presented by Ziegler and

Dittrich (2004), which is based on a layered architecture for information

systems.

Literature Review 41

Figure 2.1: Ziegler and Dittrich (2004) integration model

Looking into the detail of the Ziegler and Dittrich integration model

illustrated in Figure 2.1 reveals six layers in the e-government structure that

could be exposed for integration.

1. Manual Integration: Users interact directly with all relevant

information systems and manually integrate selected data.

2. Common User Interface: The next step towards more automated

integration is a common user interface, such as a web browser.

3. Integration by Applications: This is the next level towards

automated integration. Integration applications access various data

sources and return integrated results to the user.

4. Integration by Middleware: Middleware provides reusable

functionality that can generally be used to solve dedicated aspects of

the integration problem (SQL-middleware for example).

5. Uniform Data Access: Logical integration of data is accomplished

at the data access level. Global applications are provided with a

Literature Review 42

unified global view of physically distributed data, though only

virtual data is available at this level.

6. Common Data Storage: Physical data integration is performed by

transferring data to new data storage; local sources can either be

retired or remain operational.

Other e-government integration models have been proposed that have

certainly influenced the evolutionary trend of e-government. Amongst them

we explain two models, one proposed by the Gartner organisation (Baum

and DiMaio, 2000) and the other by Layne and Lee(2001).

2.3.2 Gartner E-government Model

According to Gartner’s e-government evolution model (Baum and

DiMaio, 2000), e-government has been evolving in four phases:

Figure 2.2: Gartner Integration Model (Baum and DiMaio, 2000)

x Phase 1 – Presence: in the first phase, governments are incited to

create a homepage on the web.

x Phase 2 – Interaction: this phase provides the ability to download

forms, perform simple searches, and e-mail government officials.

x Phase 3 – Transaction: in this phase, applications typically include

functions such as an online transaction facility for constituents to pay

parking fines, file tax returns, renew a driver's licence, and apply for

building permits.

Transformation

Transaction

Interaction

Presence

Literature Review 43

x Phase 4 – Transformation: In this final phase, governments start

looking at creating web portals to serve as one-stop-shops for their

constituents.

2.3.3 Layne and Lee E-government model

In another model by Layne and Lee (Layne and Lee, 2001), four stages

of e-government growth are described as being:

Figure 2.3: Layne and Lee (2001)Integration model

The Layne and Lee model is explained in terms of complexity involved

and different levels of integration. In Layne and Lee's model, the first stage

of e-government is called 'cataloguing' and focuses on cataloguing

government information and presenting it online; for example, establishing

an online presence, presenting a catalogue, and offering downloadable

forms. The second stage is called 'transaction', which focuses on providing

functions to citizens for transacting with government electronically. The

functions include offering services and forms online, and working on

database to support online transactions.

Citizens view government as an integrated information base by

allowing the participation of agencies across different levels of

governments and by having different agencies with different functionalities

Horizontal integration

Vertical integration

Transaction

Cataloguing

Literature Review 44

talk to each other. This model defines the third stage of e-government as

vertical integration, which refers to local, state and federal governments

being connected for different functions or services of government, such as

when local systems link to higher level systems. In contrast, the fourth stage

of e-government, horizontal integration, is defined as integration across

different functions and services.

The Australian Government, as one of the leaders in public sector ICT

planning and development in the world, has identified the urgency of

integrating stove-pipe e-government services, but it is yet to formulate an

interoperability framework for individual agencies, six year into the

introduction of the plan (Reding, 2006). A number of research papers

presented at conferences and in journals around the world are also

dedicated to identifying the requirements of government transformation

(Baglietto et al., 2005, Burk, 2005, Castellano, 2005, Evans and Yen, 2005,

Fang, 2002, Grant and Chau, 2005, Heeks and Bailur, 2007). Recent

publications (Gil-Garcia and Ignacio, 2007) suggest a modified model of e-

government evolution, splitting the integration stage into three distinct but

closely related sub-stages of Vertical, Horizontal and total integrations.

2.4 Web Services: State of Technology

Service Oriented Architecture (Zimmermann et al., 2004), and in a

broader sense, Service Oriented Computing (Turner et al., 2003) have

influenced ICT towards a design of uncoupled yet coherent architectures of

services. Current ICT industry trends indicate that organisations and

solution vendors are moving towards the decomposition of legacy complex

processes into atomic and simpler components to handle the ever-increasing

Literature Review 45

complexity of current information systems (Huhns and Singh, 2005). This

trend has led to a two-phase solution: Phase 1 is to transform massive

architectures into constructs, consisting of simpler building blocks, called

services; and Phase 2 is to recompose these services into complex services

in order to achieve added value. This research is mainly concerned with the

second phase of this theory.

2.4.1 Software as a Service

Web services interact with one another dynamically and use Internet

standard technologies, making it possible to build bridges between systems

that otherwise would require extensive development efforts. Traditional

application design depends upon a tight interconnection of all subordinate

elements, often running in the same process. The complexity of these

connections requires that developers comprehensively understand and have

control over both ends of the connection; moreover, once established, it is

extremely difficult to extract one element and replace it with another. By

contrast with tight coupling principles that require agreement and shared

context between communicating systems as well as sensitivity to change,

loose coupling requires a much simpler level of coordination and allows for

more flexible reconfiguration (Papazoglou, 2008).

For SOA to work, it is not enough to build and deploy a collection of

systems and services. Services are meant to be shared, which means they

must be created according to certain rules that everyone can follow. The

collations of related rules are known as ‘standards’, without which an SOA

cannot function.

Web services are also defined by an interface that can be formally stated

using the Web Service Description Language (WSDL) (Chinnici et al.,

Literature Review 46

2007), which defines and advertises the functions and behaviours provided

by the Web service (Gudgin et al., 2006).

2.4.2 IT Industry Survey

One of the important areas that this research needed to understand was

the readiness (knowledge and experience) of the Information Technology

industry, particularly in Australia, for participating in e-government service

integration. A recent online industry survey by DeSI laboratory (Sanati,

2010) at the University of Technology, Sydney (UTS) has gathered and

analysed information from practising software engineers, project managers

and developers to determine the common practices and tools used in the

performance of their jobs. This survey was designed to gather data from

current industry practices, in order to evaluate trends within the industry

compared with the academic literature in the same area of knowledge. This

survey was particularly designed to discover the tools and methodologies

used in web services development and composition. It determines how

these methods differ from Object Oriented Development (OOD) methods,

and although the results of are not conclusive, nevertheless the information

obtained in this survey can be used to direct further research into

development and fine-tune the conclusions of this research.

A total of 40 survey participants were selected from entirely different

industries, areas of work and responsibilities within the ICT industry. These

organisations were:

1) Department of Education - State of New South Wales, Australia

2) Department of Justice, State of New South Wales, Australia

3) Centrelink - Australian Federal Government body

Literature Review 47

4) KAZ Technology Services - IT development and infrastructure,

Australia

5) OPTUS - National telecommunication carrier, Australia

6) Woolworths IT division - retail industry, Australia

7) AAS - superannuation industry, Australia

8) Genworth Financials - insurance industry, Australia

9) ING Australia IT division – investment and banking, Australia

According to the statistics obtained in this survey, it appears that most

of the ICT industry in Australia is lagging far behind in most areas of ideal

software engineering practices, and specifically in web services integration

engineering. The statistical results of the survey point to a higher degree of

methodological uncertainty. Most companies tend to adopted experimental

evaluation of different methodologies in order to find the most suitable one

for their needs as a result of this uncertainty, even though in most cases

such experiments prove to be a very costly practice. Following are some

statistical facts from the survey to clarify our argument:

x Close to 35% of participants believe their organisation is not

following any specific formal methodology in software

development.

x One out of 10 developers says they have no or very little

documentation on their development practice.

x Although 57% of IT managers believed their organisation is

developing web services, only 4% are familiar with any formal

Service Oriented Architecture or design patterns.

x Only 27% of the people who are developing web services are

conducting an interoperability analysis for service composition.

Literature Review 48

A brief analysis of the aforementioned industry survey facts,

specifically the last two points, in conjunction with the cited literature are

evidence of the lack of industry adoption of recent results in the area of web

services integration. This may be even worse in the e-government domain.

We specifically stress the need for more research on modelling frameworks

for e-government service integration and interoperability analysis.

2.5 Service Delivery in E-government

The report ‘Australia’s E-government Strategy – New Service

Agenda’ (Reding, 2006) indicates that the Australian Government has taken

many serious steps towards planning and implementing the transformation

and integration of its e-services across all agencies. Some planned

developments in that report were overdue at the time of our review (March

2009) and at the time of writing, some have yet to be realised. Some other

countries or community of countries such as the European Union have

taken many more steps towards integrating their e-government services

within member states. However, by taking a closer look, one can identify

the main problem with some integration proposals as being not their

technical solution but their conceptual perception of e-government

(Mugellini, 2005). Although very expensive, it may well be possible to

integrate all e-government services from all jurisdictions, in limited number

of specific cases, from a technical perspective. We argue that the problem

with this approach lies with the fundamental rule of separation of concerns

between government agencies, known as what we would call a ‘horizontal

separation of concerns’, and the limitation of jurisdictions at different levels,

which we call the ‘vertical separation of jurisdictions’ (for example, Local,

Literature Review 49

State and Federal jurisdictions in a federated system of government (Jaeger,

2002)). These aforementioned issues show that it is all but impossible to

integrate and deliver e-government services from multiple agencies without

a common delivery platform, both at the conceptual and physical level, that

can consolidate all the jurisdictional, geographical and hierarchical

differences. Later in this research we will propose such a framework and its

delivery platform.

2.6 Semantic Web and E-government Interoperability

As we mentioned before, interoperability analysis is the key to e-

government service integration. This section is dedicated to the

investigation of:

1) the current state of technology in relation to general utilisation of

semantic web, and

2) the definition, description and current use of ontology as a form of

knowledgebase for semantic web.

The remainder of the Section 2.6 discusses the use of ontology in e-

government and investigates the literature that introduced the concept of a

‘life event’ in the context of e-government.

2.6.1 Semantic Web

One of the most common barriers to the interoperability of systems,

known as Semantic Interoperability, has proven to be much harder to

overcome, according to a survey conducted in five European countries and

the United States. According to Luis Guijarro’s (2007) results, despite the

surveyed countries’ efforts towards achieving interoperability, Research has

found that each of the six government agencies in the study has developed

Literature Review 50

their own set of standards to address the interoperability. According to the

survey the only common feature of the six interoperability frameworks is

that Internet technologies comprise their core.

According to its 2006 report, the Australian government has identified

the urgency of integrating e-government services (Reding, 2006), however

it is yet to formulate an interoperability framework for individual agencies.

The semantic web is considered an extension of the World Wide Web,

where information has well defined meaning, and it could enable computers

and people to work in greater cooperation (Berners-Lee et al., 2001). The

semantic web has become the default technological standard solution for

achieving interoperability, particularly in the area of web services. It

addresses semantics through standardised connections to related

information (Helbeler et al., 2009). This includes labelling data in a unique

and addressable manner.

The picture of a layered stack illustrated in Figure 2.4 outlines how the

elements of the semantic web are related to form an architecture that

supports semantic interoperability. The foundation of this stack is

constructed by Unicode 3 and Universal Resource Identifier (URI).

Unicode provides a unique number for every character, no matter what the

platform, the program, or the language is (Inc., 2010), whereas URI is a

compact sequence of characters that identifies an abstract or physical

resource that underpins the semantic web by allowing machines to

understand and process independently (McGuinness, 2004).

Literature Review 51

Figure 2.4: Layered architecture of semantic web (Berners-Lee, 2000)

On top of the first layer, Extensible Markup Language (XML), Name

Space (NS) and XML Schema are built. XML standard is a simple, very

flexible text format, designed originally to meet the challenges of large-

scale electronic publishing. It is also playing an increasingly important role

in the exchange of a wide variety of data on the web.

The flexibility of a web form enables connections to all the necessary

information, including logic rules, and all these pathways and terms form a

domain vocabulary or Ontology. Unlike relational databases that depend on

a schema for structure, a knowledgebase depends on ontology statements to

establish structure. Relational databases depend on one kind of relationship

(foreign key) whereas the semantic web offers multidimensional

relationships such as ‘inheritance’, ‘part of’, ‘associated with’ and many

other types, including logical relationships and constraints.

Intelligent service delivery systems will require the use of an Open

World (Yu, 2007, Helbeler et al., 2009) knowledgebase such as Ontology as

opposed to relational databases that are considered Close World

environments. Section 2.7.2 is dedicated to investigating the specifications

of ontology as an open world knowledgebase.

Literature Review 52

2.6.2 E-Government and Life Event Initiative

Life Event is a metaphor to group more than two public services

according to citizens’ requirements. This group of services must be

arranged to solve a problem or a need that relates to an event in citizens’

everyday life (i.e. applying for a motorcycle licence or changing address).

A large number of e-government initiatives in the literature were

scanned by this research to establish an understanding of the true state of e-

government and specifically, life event initiatives among developed

countries (Sanati and Lu, 2009a). This literature survey indicates that most

of the efforts have relied on enabling technologies in order to achieve the

desired outcome with very little or in some cases no attention to any

methodological approach. Considerable work is being done to design e-

government implementation frameworks, some of which (Chircu, 2008)

cover multidimensional aspects of e-government development.

From the point of view of governments, the results are less exciting.

Our scan of e-government initiatives in the area of service integration and

life events shows that out of eleven independent states and countries within

the developed world, none has actually implemented or initiated an e-

service integration project and some have reduced the concept of a life

event to simply providing information and directions about some

government services (in some cases not even electronic services). For

example, the Government of Ontario in Canada provides a page on its web

site listing a number of ‘life events’, yet it only provides information about

the physical service by the relevant department. This was similar in a

number of states in Australia (Victoria, NSW, South Australia and

Tasmania) (OntarioGov, 2007, AusTasmaniaGov, 2008, UKSalfordGov,

2007, Retirement-Investments, 2007, AusVictoriaGov, 2006).

Literature Review 53

Below, we discuss other e-government projects that have taken practical

steps to deliver e-government services in a more organised and cohesive

manner.

HELP is a comprehensive citizen portal of the Federal Chancellery in

Austria and is considered as a One-stop shopping portal that is gradually

becoming the norm for citizen services (AustriaGov, 2009).

In some jurisdictions, other initiatives based on life event orientation are

often offered on the portal, bringing together relevant information for

citizens related to a specific stage in life. For example, the Irish General

Register Office life events site (IrishGov, 2010) provides automatic

processing of child benefits claims. CAT365 in Spain (SpainGov, 2008)

addresses education, training, and finding a job, and is mostly known as an

integrated business creation service.

Such citizen portals are becoming more sophisticated by adding

electronic identification, electronic payments and increased interactivity.

The Finnish Centre for Pensions offers a web site (FinnishGov, 2008) in

three languages on pensions, including a service to identified insured

persons who use a personal authentication card to access internet banking.

This service currently reaches some 80% of the working population.

Although such initiatives are a great leap forward towards delivering e-

government services in a better and more efficient way, they are barely

touching the surface of true e-government integration.

Some good practices for truly integrated services do exist, according to

the European digitizing public service ‘i2010’ (Capgemini et al., 2010).

These examples offer a single entry point, i.e. a dedicated portal for the job

seeker, guidance for the unemployed, and a focus on the desired outcome

Literature Review 54

rather than simply fulfilling an agency’s legal obligations. Figure 2.5 is a

statistical graph illustrating the maturity of life events in different counties.

Figure 2.5: Maturity of the Life Event ‘Losing and Finding a Job’ (Capgemini et al., 2010).

Literature Review 55

2.6.3 Ontology for Semantic Web

Ontology is a term that was originally borrowed from philosophy by

computing science. Ontology in philosophical terms can be seen as the

study of the organisation and the nature of the world independently of the

form of our knowledge about it. Thomas R. Gruber (Gruber, 1993) defines

it as a specification of a vocabulary that describe a shared domain of

discourse; in other words, an ontology is a formal representation of the

knowledge by a set of concepts within a domain and the relationships

between those concepts. It is used to reason about the properties of that

domain, and may also be used to describe the domain.

For ontology to trespass into a physical presence and be used as the

knowledgebase of a semantic web system, it needs to be structured around

an expressive language. The Web Ontology Language (OWL) specification

(McGuinness, 2004) is the recommendation of the World Wide Web

Consortium (W3C). This ontology language has become more and more

popular compared to other ontology languages; however, this research does

not intend to explain all the predecessors of OWL as they are of little

relevance to this study.

When ontologies become widely used for rendering rich semantics to

data, it is possible to develop rules and inference mechanisms to take

advantage of them. Highly intelligent web applications and services can be

developed which will finally turn the vision of the semantic web into a

reality. A number of research works presented at conferences and in

journals around the world have identified Interoperability as one of the

critical requirements of modern e-government transformation (Baglietto et

al., 2005, Burk, 2005, Castellano, 2005, Evans and Yen, 2005, Fang, 2002,

Grant and Chau, 2005, Guo and Lu, 2007b, Heeks and Bailur, 2007). From

Literature Review 56

the discussion, the important position of ontologies in the formation of the

semantic web and the solution of the interoperability of systems is obvious.

Ontology typically consists of a hierarchical description of important

concepts in a domain, along with descriptions of the properties of each

concept. Formally, ontology contains a set of concepts which constitutes the

core of the ontology. The notion of concept in ontologies is similar to the

notion of class in object-oriented programming. Each concept has a set of

properties associated with it. This set describes the different features of the

class. Each property has a range indicating a restriction on the values it can

take. Ontology relates classes to each other through ontology relationships.

Examples of relationships include ‘subclassof’ and ‘superclassof’.

Properties are also related through similar relationships such as

‘subpropertyof’ and ‘suprepropertyof’.

2.6.4 Service Ontology

To make use of a web service, a software agent needs a platform-

independent description of the service, and the means by which it is

accessed. An important goal for any semantic web markup languages, then,

is to establish a framework within which these descriptions are made and

shared. Web sites should be able to employ a standard ontology, consisting

of a set of basic classes and properties for declaring and describing services,

and the ontology structuring mechanisms of OWL provide an appropriate

representation language framework within which to do this.

A good starting point for understanding the web services paradigm is to

consider the stated goals, as found in the literature and the standards

communities. The basic motivation of standards such as SOAP and WSDL

Literature Review 57

is to allow a high degree of flexibility in combining web services to create

more complex ones, often in a dynamic fashion.

Diving deeper into the mechanics of web services description,

composition and discovery in (Chinnici et al., 2007), Semantic Annotations

for WSDL (SAWSDL) suggests how to add semantic annotations to various

parts of a WSDL document, such as input and output message structures,

interfaces, and operations. This extension is in line with the WSDL

extensibility framework. SAWSDL defines a new name-space called

‘SAWSDL’ and adds an extension attribute called ‘modelReference’ so that

relationships between WSDL components and concepts in another business

semantic model (i.e. ontology) are handled. However SAWSDL

‘modelReference’ can only annotate concepts in the WSDL Metamodel and

this makes it more difficult to implement an automatic service discovery

and composition based on concepts that do not belong to the Metamodel of

WSDL.

The OWL-S approach proposes an upper ontology for web services

motivated by the need to provide three essential types of knowledge about a

web service:

1) What does the service provide for prospective clients?

2) How it is used?

3) How does one interact with it?

The answer to Question 1 is given in the ’Profile’ which is used to

advertise the service. The service profile elements include: preconditions,

inputs, outputs, results and service category. The answer to Question 2 is

given in the ‘Process Model’ which includes: inputs, outputs, preconditions,

Literature Review 58

effects and the behaviour of the service (data and control flow). The answer

to Question 3 is given in the ‘Grounding’.

Web Service Modelling Ontology (WSMO) was developed (Domingue

et al., 2004) as an ontology for semantic web services based on the Web

Service Modelling Framework (WSMF) (Zhang et al., 2004). WSMO

defines four top level elements as the main concepts which have to be

described in order to describe semantic web services, namely ontologies,

services, mediators and goals. A service is described in terms of non-

functional properties, a provided interface and a provided capability.

Much more ambitious goals are adopted by the OWL-S working group

(W3C, 2004). These goals seek to provide machine-readable descriptions of

web services which will enable automated discovery, negotiation,

composition, enactment, and monitoring of web services. OWL-S is an

ontology language for describing web services in terms of their inputs,

outputs, preconditions and effects, and of their process model. Importantly,

OWL-S provides a formal mechanism for modelling the notion of the state

of the ‘real world’ and describing how atomic web services impact that

state over time. OWL-S also provides a grounding, which provides

mechanisms for mapping an OWL-S specification into a WSDL

specification. A kind of middle ground is also emerging, which provides

abstract ‘signatures’ of web services that are richer than WSDL but retain a

declarative flavour.

The closest recent research to our work that we encountered was on web

services resource adoption (Forte et al., 2008) that proposes the use of

ontologies and web services within a framework of components for the

content adaptation domain, to facilitate the development of software based

on reuse of existing web services. OWL-S with its current specification

Literature Review 59

provides adequate facilities to enable a knowledgebase web services

discovery and invocation. However, what is missing is:

1) support for composition of web services from multiple web services

providers and multiple web service WSDL.

2) infrastructure and mechanics to support the intelligent construction

of complex integrated e-government web service with the capability

of enforcing government regulations at runtime;

3) construction of meta-workflows that could be instantiated with

alternative services based on user requirements;

4) Dynamic re-construction of complex composite web services at

runtime in the event of individual service failure.

2.6.5 E-government Ontology

There are a number of works in the area of e-government ontology, two

of which we found to be closely related to our work in this research. The

first, The Ontology-enabled e-Government Service Configuration Project

(ONTOGOV, 2006)’, constructs services ontology via a domain expert

using a tool called Service Modeller. The domain expert also adds more

semantics by creating instances of the following ontology used throughout

the project. This project has classified and uses a number of separate

ontologies as the knowledgebase of their e-government system

implementation.

x Domain ontology, comprising concepts like data (e.g. name,

first_name, municipality_from, municipality_to) and documents

(e.g. application form, administration leaflet).

Literature Review 60

x Legal ontology, comprising instances of process relevant law or

regulations, e.g. the basis of the new process is a regulation about

settlement. Several instances will then be initiated in the legal

ontology indicating the related law, paragraph and article.

x Organisational ontology, comprising instances of process relevant

to organisational units, e.g. involved in the new service are the

organisational units ‘Registration Office’ and ‘Administration

Office’ with its roles and personnel.

x Lifecycle ontology, comprising instances of all design decisions

relevant for the new service (e.g. technical or process immanent

reasons), including instances of legal and organisational ontologies.

The second is an ontology project called Impact of eGovernment on

Territorial Government Services (TERREGOV) (Anderson, 2006). In a

similar fashion to the ONTOGOV project, it is also a multipurpose

ontology that models the domain of public administration activities. It is

used for semantic document retrieval, semantic discovery and the

orchestration of web services, and so on. The same ontology is handled by

multiple actors responsible for providing the technologies supporting these

various functionalities.

From this project was developed ‘Local Government Ontology’ which

enables local administrations to deal with information as a strategic

resource. The ontology itself is reusable (a first example of data/knowledge

reusability); it has been employed as the first step of the QUALEG project

starting ontology, which was later expanded to fit specific project needs.

The aforementioned ontology projects were developed as part of two e-

government initiatives developed by the EU five and six years ago

respectively, but we found no evidence of further development or progress

Literature Review 61

on those projects after the initial effort. One has to remember that a single

ontology relating to public administration must provide multiple

functionalities, and must allow its maintenance and editing by multiple

users, including domain experts with no particular expertise in ontology

engineering. This makes handling and maintenance extremely complex.

2.6.6 Service Ontology for E-government Services

Research publications as early as the start of this century have

emphasised the role of ontology in e-government integration (Grosof et al.,

2004, Lara et al., 2003). A study carried out by Stojanovic and Apostolou

(Stojanovic et al., 2006b) was interested in the practical implications of

ontology in e-government integration and analysed interoperability issues in

the e-government domain. This work lists only a set of functional

requirements for ontology building, and seems to overlook the overall

qualitative criteria that ontology should be addressing.

2.6.7 Concept of Life Event Ontology

A widely accepted paradigm called the ‘Life Event’ model (Sabol and

Mach, 2004, Skokan and Bednar, 2008, Stojanovic et al., 2006a) was

introduced that can effectively improve the situation by supporting the e-

government web services integration tasks in all their uniqueness and

complexity. Early attempts to model LifeEvent Ontology (Trochidis et al.,

2007) have mainly resulted in producing separate ontologies to provide a

knowledgebase for the functional requirements of the systems that use

them. There are also other research cases involving the concept of

LifeEvent (Momotko et al., 2008) that do not consider ontology as a means

of managing the services knowledgebase, but rather suggest modelling

LifeEvents as workflows of related public services and actions. In other

Literature Review 62

literature such as (Beri. and Vintar, 2004), the concept of LifeEvent is

reduced to no more than a taxonomy of terms in a certain domain.

The importance of LifeEvent in e-government web service composition

was recognised in recent research work by (Wolf and Krcmar, 2008). Other

research work has identified the importance of requirements elicitation and

critical factors in adopting e-government models (Shareef et al., 2009),

although they mostly focus on one aspect of e-government. For example,

the model presented by Wolf and Krcmar (2008) seems to be a very

specific application only designed for B2G, and it suggests a model of

features and phases that might not provide sufficient analysis for the further

development of such a model. One work which is highly related to our

research in e-government integration (Chiu et al., 2007) argues that, in new

interaction devices, the context in which a service is being used becomes an

integral part of the activity carried out with the system, but that research

doesn’t deal with question of how to persist the application context? We

believe that LifeEvent ontology is the proper answer to this question.

Analysis of other relevant literature (Trochidis et al., 2007) recognises

two main approaches for modelling lifeEvents. The first approach suggests

modelling lifeEvents as workflows of related public services and actions

(Trochidis et al., 2006). The second approach suggests modelling

LifeEvents using ontology (Peristeras and Tarabanis, 2006) and thus

capitalises on the idea of semantic representation of knowledge. This model

describes ontology as the network of connections between concepts of a

particular domain with the aim of providing a well-structured model. This

research is built based on the design assumptions of the second approach.

Literature Review 63

2.7 Summary

In this chapter we reviewed a broad spectrum of literature related to all

aspects of e-government service integration and delivery. There are four

major areas of knowledge recognised as being of concern for evaluating the

state of research in e-government.

The first area of knowledge is in the different approaches to the e-

government evolutionary model, for which we argue that a more

comprehensive model is needed to reflect more of the reality of the e-

government evolutionary transformation trend.

The second area of knowledge is the type, the state and the maturity of

the technology to support e-government integration. It seems that the

majority of researchers agree that the web service and SOA are the most

appropriate and popular.

The third area of knowledge is the mechanics of supporting an

intelligent architecture to deliver dynamically assembled and configured

composite web services. OWL-S and WSMO have had the most influence

in this area of research out of many initiatives. We highlighted three major

shortcomings of these technologies that need to be compensated for if a

truly dynamic integration of e-government services is to be achieved.

The fourth area of knowledge is required to achieve a dynamic

integration as a repeatable and comprehensive framework capable of

delivering such a complex task. We believe that the concept of LifeEvent is

well suited for use as the basis of such a model.

Chapter 3:
Hybrid E-government Integration
Model

This chapter and subsequent Chapters 4, 5, 6 and 7 will collectively

present the main contributions of this study. This research presents in this

chapter arguments regarding the most practically relevant and technically

possible evolutionary pathway to e-government transformation, based on

the body of evidence presented in Chapter 2 with the special reference to

the review of recent literature in Section 2.3 that has the most relevance to

the contributions of this chapter.

3.1 E-government Evolutionary Development

In recent years, empirical studies have identified two interesting

dynamics in e-government evolution. First, e-government has evolved from

its initial presence on the Internet to a more transactional and integrated

approach. Second, as a general trend, national governments have started

adding technological sophistication that has been perused by federal, state

and local governments.

In the context of e-government evolutionary development, our theory

that is detailed in this chapter, explains the future trend of e-government

development at the service delivery level.

E-government has been acquiring more technological and

organisational sophistication as a result of both institutional interoperations

Hybrid E-government Integration Model 65

and pressures from different sectors of the society such as citizens,

politicians, businesses, interest groups, and other stakeholders. In addition,

e-government initiatives are evolving from the national to the local level.

Our analysis of e-government evolution in Chapter 2 indicates that rapid

growth in e-government services has resulted in duplicated and redundant

services that could eventually lead to confusion of customers and add to

complexity of doing business with government where more than one

government agency is involved. Customers who want to deal with

government must first discover which part of government is providing their

desired services, and this problem can get even more complicated if there

are multiple agencies involved, in which case the problem of

interoperability and incompatibility of these services will also add to the

equation.

To prevent the propagation of this issue, some proposals have been

published regarding plans for e-government integration. The analysis of the

past proposals have lead this research to propose a new integration model

for e-government that better suits the current trend of e-government

evolution.

Gou and Lu (2007a) have introduced a new e-government evolutionary

model comprised of four stages. The model integrates Layne and Lee’s

(2001) model with Gartner’s (2000) model in the context of Australian

government online services. The four stages of this model are:

1) Government service online

2) Transaction-based government online services

3) Integrated government online services

4) Intelligent government online services.

Hybrid E-government Integration Model 66

The scope of the research conducted by Gou and Lu in the area of e-

government development model did not extend to explain the practical

implications and the model of implementation. However it provides a road

map that better suites the e-government development trend in the real

world. Therefore we use the Gou and Lu model as the foundation of its new

proposed model for e-government evolutionary development. We take the

Gou and Lu’s model one step further to add more details specifically on the

Stages three and four of the model. The model proposed by this research is

a step forward to predict and explain the practical implications and the

possible method of implementation for Stages 3 and 4 of the Gou and Lu

model.

3.2 A Hybrid Model

The general understanding of the models discussed in Sections 2.3.1,

2.3.2 and 2.3.3 clearly identifies four possible categories of e-government

integration models. It is the understanding of this research that most

proposed e-government integration models can more or less fit into the

following categories.

Figure 3.1: A generic structure for federal system of government

a) In different depths; to cover only front offices or across the border

covering front-office and back-office (Chiu et al., 2007).

Technology
Layers

Infrastructure

Transaction

Service Semantics

Back Office

Front Office

Local
Gov

Local
Gov

Local
Gov

Local
Gov

Local
Gov

Local
Gov

State GovernmentState Government

Federal Government

d

c
b

a

Hybrid E-government Integration Model 67

b) In different implementation levels; this could cover semantics or

could go down to cover transaction and/or infrastructure sharing

(Lü, 2007).

c) Horizontal; covering many government agencies at the same level

(local or state or federal).

d) Vertical; cutting across different levels of government such as

local, state and federal government agencies (Shahkooh and

Abdollahi, 2007).

All integration models reviewed in this research either do not mention

or are implicitly assume the integration of the back-office as part of their

model. The integration of e-government back-office is not a trivial task.

The first problem with back-office integration is that its information content

and infrastructure protected by law to some extend (i.e. legislation such as

the Privacy act). The second problem with integrating e-government at the

back-office level is the logic surrounding the modern multilevel

government structures. To illustrate this problem we argue that the

difficulty with this approach lays with the fundamental rule of separation of

concerns between government agencies (horizontal separation of concerns)

as well as the separation of jurisdictions at different levels (vertical

separation of jurisdictions, for example Local, State and Federal

jurisdictions) around which government is structured (Jaeger, 2002). Based

on this logic we can conclude that the integration of the e-government back-

office is unlikely to produce any added value to the current state of e-

government even if legislative and structural impasses imposed by the

current protective laws are ignored.

The existing e-government models cannot meet the current e-

government practices in its current state. Therefore a new evolutionary

Hybrid E-government Integration Model 68

development model is needed in order to achieve better services that are

designed to satisfy the ever increasing demand for more sophisticated and

complex services.

Based on the observations of this research described in chapter 2 we

have proposed a hybrid model that can explain the evolutionary

transformation of e-government. This hybrid e-government integration

model can achieve its goals, only if it is based on the real life requirements

of citizens. In most cases e-government services must be integrated and

packaged from both vertical and horizontal government jurisdictions to

form a composite service. One simple example of this fact would be to

apply for a ‘postgraduate scholarship’ from Australian federal government;

clearly the integration of government services to fulfil this life event would

require the collaboration of a number of state and federal agencies as well

as number of private businesses such as the university itself.

In most cases complex services are needed to satisfy the life event

requirements of citizens. There is no guaranty that the service components

of such complex services would only come from one agency or even only

from one level of government (Local, State or Federal). Therefore it is the

position of this research that an innovative and comprehensive integration

model is needed to facilitate the integration of government services at all

levels.

Introduction of the Hybrid E-government Integration Model can

overcome all the shortcomings of other integration models. This new model

is a crucial building block within the complete solution for e-government

service integration and delivery specified in this research. This model

provides the much needed philosophical and organisational guidance for the

design and implementation of this research.

Hybrid E-government Integration Model 69

3.3 Specifications of Hybrid E-government Integration Model

We mentioned that a more comprehensive model is needed to reflect on

the reality of the e-government evolutionary transformation trend as it

occurs in the real world; this model is described in Figure 3.2.

Figure 3.2: Hybrid E-government Integration Model

This new model is a combination of a number of models described in

Chapter 2 with some modifications. It consists of three main levels:

3.3.1 Web Presence

This is an initial presence, when a government body has a formal

presence on the Internet through a limited number of individual

governmental pages (mostly developed by single governmental agencies).

Governments in this stage normally offer static information about agencies

and some of the services they provide to citizens and private organizations. In

this level government agencies develop their own Internet information

delivery systems to their customers, business and other government

agencies.

Later this level evolves in to more dynamic presence, specialised

information delivery system that is distributed and regularly updated in a

Personalisation

Service Integration

Intelligent Transformation

Web Presence

Transformation
Transaction

Interaction
Presence

Horizontal integration

Vertical integration

Transaction

Cataloguing

Transaction

Hybrid E-government Integration Model 70

large number of government sites. There are other cases where a national

government official site serves as an entry point with links to pages of other

branches of government, ministries, secretariats, departments, and sub-

national administrative bodies (OntarioGov, 2007). Some governments

might start using electronic mail or search engines to interact with citizens,

businesses, and other stakeholders.

In this level governments generally use a state wide service or a national

portal as the initial page providing access to services in multiple agencies.

The interaction between citizens and different government agencies

increases in this stage (e.g., e-mail, forums).

Citizens and businesses can access information according to their

different interests. In some cases, passwords are used to access more

customized and secure information.

3.3.2 Transaction

This level of improvement would allow people also use government

websites to complete transactions. This phase of e-government would

include a database link to online user interfaces. Portals are created as

specialised information and transaction delivery channels. These portals

usually become a unique showcase of all the governmental services

available in the relevant area of interest. The needs of different

constituencies are the main criteria for portal design and access.

These portals allow secure electronic payments to be made, facilitating

transactions such as tax, fines, and services payments.

3.3.3 Intelligent Transformation

This level facilitates the integration and personalisation of government

online services to enable users to cut across services provided by all

Hybrid E-government Integration Model 71

government agencies in order to create their own personalised composite

services. Cross agency integration encompasses the integration of logically

and legally related web services provided by different departments of

government. Horizontal integration between different governmental

services must exist for citizens and other stakeholders to have access and

take advantage of all the potential capabilities of information technologies

in government. Therefore, in this stage governments need to cross the

organisational boundaries and develop a comprehensive and integral vision

of the government as a whole.

E-government services can also be available within the hierarchy of the

same agency, which is called the ‘Vertical Integration’. Vertical integration

encompasses the integration of similar services provided by different levels

of government. Therefore, it does not refer solely to an initial integration in

the form of government web sites but to the change and reconstruction of

all their electronic services to become available as Web Services.

Intelligent Transformation refers to the situation in which government

services are fully integrated (vertically and horizontally. Citizens have

access to a variety of services through a single point of access. All services

can be accessed from the same web page Citizens must be able to construct

and personalise new composite web services from readily available e-

government services. A transformation unnoticed by the public has taken

place, and now services are organized according to citizen everyday life

event requirements. An integrated online service delivery channel is also

needed for the implementation of this level, which will link the existing

delivery channels.

Intelligent Transformation of government online services provides high

quality information in an integrated communication environment, which

Hybrid E-government Integration Model 72

may evolve into a knowledge management system later in the future.

Delivery of this phase will require online integrated services to become

adaptive, personalised, and dynamically configurable. In this stage

government transactional online presence will transform in to a more

intelligent presentation of web content delivering more personalised and

integrated services.

E-government services are aimed at the satisfaction of citizens life event

needs. The relation between government administration and governed

citizens should be described in terms of services. One can observe aspects

of a provider–consumer relation just as in other services, but there is

usually no market to choose a provider, and in many cases citizens may not

choose at all since they are forced by law to use government services.

However, besides efficiency or other money saving goals, e-government

plans frequently emphasise the improvement of service quality. Taking this

seriously, we follow service as the guiding vision and try to explore what it

needs to enable the service provider in order to fulfil their task. For example

the satisfaction of citizens’ needs based on caring for the citizens’ concern.

There is no question that the quantity and quality of e-government

programs are rapidly increasing. They promise a means to deliver better

service at a lowered cost. But no matter how brilliant the idea, it is

worthless unless citizens adopt those services.

Given these requirements, an e-government integration model of web

based self service points of access with the actual operation carried out

somewhere in the back-office does not seem to be a suitable solution.

Instead, as usability and flexibility throughout the process are success

factors for relationship based services, this research introduces a framework

for total integration and delivery of e-government services to satisfy goals

Hybrid E-government Integration Model 73

intended for intelligent transformation of e-government. This framework

discussed in Chapter 6 provides a centralised point of access to integrated e-

government services.

3.4 Summary

This chapter introduced the Hybrid Government Integration Model.

This model provides a conceptual guiding metaphor of e-government

evolutionary development at its final stage of transformation. This chapter

provides the philosophical foundation and guidance needed for the novel

solution discussed in the next four chapters of this thesis that can enable the

Intelligent Transformation of governments. The requirements are elicited

based on observation and analysis of a number of existing models of e-

government development in the literature. The Hybrid Government

Integration Model discussed in this chapter plays an important role on the

success of this research in designing a practical framework (ESIM) in

Chapter 6 that can provide a comprehensive solution for e-government

service integration and delivery.

Chapter 4:
Service Integration Engineering
Process

This chapter is dedicated to establishing our argument about the

deficiency of current popular Software Engineering (SE) methods in

dealing with web services integration projects. We argue that current

practices of SE that are mainly used for the development and maintenance

of software applications are not efficiently capable of addressing most of

the theoretical and technical issues raised by the emergence of web services

integration projects. This chapter therefore focuses on introducing the

concept of the Service Integration Engineering (SIE) process in the e-

government domain by presenting a comparative analysis of the current

state of SE practices and what we perceive to be the function of SIE. Before

we commence our analysis of and into describing the design of SIE, we

give a brief description and specifications of SIE to clarify our view of SIE

in this. We will then present our comparative analysis of SE vs. SIE to

establish why they differ from each other. To do this, we make a

comparative analysis of SE and SIE in Section 4.1 and explain the concept

of LifeEvent and LifeEvent abstraction in Section 4.2. In Section 4.3, we

explain how the LifeEvent model effectively supports the e-government

service integration task.

Later in this thesis we demonstrate how to arrive at the semantic

interoperability of services in order to achieve e-government integration at

Service Integration Engineering Process 75

the service delivery level. To ensure the repeatability of such a process we

put together the unified modelling approach that is explained in Chapter 6.

4.1 Integration Engineering vs. Software Engineering

Although it is commonly perceived that Web Services are technology

solutions designed to add agility to business processes, experience indicates

that technology solutions rarely deliver agility unless they are primarily

focused on business objectives. Technology vendors claim to add agility to

the e-service development process, trying to sell integration and

development tools which mostly focus on ‘Business Process Orchestration’

or ‘Web Services Workflow’ (Arroyo et al., 2006). They use a technology-

driven approach that essentially misses the main point of the services.

Arguably, as always with IT, the focus falls on technology rather than

methodology.

Recent literature (Siew, 2006) has investigated and analysed existing

component-based agile software methodology to identify the gaps for web

services development. A comparison study of web services development

and agile methodology has identified the additional steps required for web

services development. A traditional component-based software

development approach based on waterfall methodology consists of five

distinguished phases, namely Requirements, Analysis, Design,

Implementation and Testing. Although each phase is intended to be

independent, there is always the possibility of iteration between the

development phases to ensure the correct design and complete

implementation of the requirements. Artefacts or outputs are produced at

Service Integration Engineering Process 76

the end of each phase, which in turn is the input of another phase and also

becomes the benchmark for a test phase at the same level.

Software Development Life Cycle (SDLC) models are designed to

guide the development activity to correctly follow a series of steps in

creating softwares to meet business needs. The SDLC models have evolved

as new technology and new research has addressed the weaknesses of older

models. Ideas have been borrowed and adapted among the various models.

Integrating existing e-government web services could be a challenging

engineering task in that is different from developing web services from

scratch. We compare the generic classical SE tasks including the proposed

SOA extension (Siew, 2006) (Oracle, 2010) with SIE tasks and activities in

order to represent the differences from a comparative perspective.

As illustrated in Table 4.1, every phase in a classical SE lifecycle has a

corresponding phase in our proposed SIE lifecycle although they perform

different tasks and activities to produce appropriate outcomes of each

phase. Some interoperability analysis and provisions have become

necessary SE tasks in recent years, mostly due to the distributed nature of

modern businesses. This highlights the importance of essential

interoperability requirements for distributed databases and applications,

however, this interoperability analysis and design has never been an integral

part of the software lifecycle and has only been performed in an informal

manner as additional activities fitted in between other tasks in all phases of

the SDLC.

Service Integration Engineering Process 77

Software Engineering (SE) tasks
Service Integration Engineering
(SIE) tasks

Analysis

Identify business requirements and
translate them in to functional and
non-functional requirements.

Specify the LifeEvent requirements of
a generic citizen or a business partner.

N/A Specify inter-agency web service
interoperability requirement at
semantics and regulatory levels.

Design

Translate the requirements into
conceptual models. Analyse
requirements to define high-level
design structure.

Identify all existing e-government
services that could play a role in
performing and completing a
LifeEvent. Identify the service
interface contracts.

Design major infrastructure and
system components (use design
patterns).

Construct a Metamodel for the service
group (composite service) from
available Meta Services, required to
perform and satisfy the LifeEvent.

Describe the responsibilities of all
system objects and their relationships
for every component.

Define and Configure the
relationships between all service
component groups with service
providers and service consumers
(Implement and Configure regulatory
requirements).

N/A Specify Ontology Instance
Specifications for the LifeEvent.

Delivery

N/A Interoperability requirements
Implementation (inter-agency
information and workflows)

Implement all the system services,
interfaces and business components as
well as system and data
configurations.

Populate LifeEvent ontology
instances and intelligent algorithms.

Table 4.1: Comparing activities in SIE and SE

Service integration engineering is about configuring the interoperability

of existing services to create new composite web services and workflows so

that they can deliver to customers better and more intelligent services. More

Service Integration Engineering Process 78

or less 50% of the anticipated tasks in SIE are interoperability-related, as is

illustrated in Table 4.1.

Testability of every phase of the software life cycle is also a crucial

component of software project management, and it is imperative to organise

all technical, semantic and organisational interoperability tasks and

activities into formal and testable phases of the SIE process to ensure a

successful web service integration project.

Table 4.1 is a comparative analysis of our proposed SIE with the

classical software engineering process described by Sommerville (2004) in

his book Software Engineering. Analysis of this comparison indicates very

limited similarities between the two, and the greatest emphasis in SIE is on

solving complex interoperability problems and service workflow

configuration rather than designing new components.

Our analysis indicates a substantial difference between activities

performed in the SIE project and a typical SE that uses component-base

software development methodology.

Interoperability specification and enabling tasks seem to have not been

previously considered as an integration-specific stage in any SDLC, yet we

believe these two steps are crucial to any successful e-service integration

project. Important new concepts such as LifeEvent in the context of e-

government services (Castellano, 2005), which are described as citizens’

basic service requests, such as applying for a driver’s licence, are also new

to the classical software engineering. Newly-introduced concepts need to be

more thoroughly analysed in a service integration context in general and in

e-government integration specifically.

A comparative analysis of both processes detailed in Table 4.1 can be

summarised as follows: LifeEvent is considered to be the fundamental unit

Service Integration Engineering Process 79

of requirement for e-government service integration projects, as opposed to

‘functionality’ which is the simplest unit of requirements in the modern

object oriented software development process. In a broader sense, from the

citizen’s point of view, it comes down to using one or more e-government

services to satisfy a typical citizen’s basic private or social need.

The simple fact that the complexity of e-government service integration

is rapidly growing as a result of the constant increase in available services

further highlights the need for a formal methodological approach and

design standards to ensure efficient - and more importantly, repeatable -

service integration process.

The substantial difference between the two processes provides enough

reason to believe that the traditional software development frameworks are

ill-equipped for efficiently dealing with service integration projects, not to

mention the theoretical and technical issues discussed in Chapters 5, 6 and

7, which may increase the risk of complete or partial project failures.

Therefore, we are encouraged to take this study one step further and

research the requirements of a new framework that would be capable of

carrying out successful and efficient service integration.

Repeatability is the most important key attribute of modern engineering

frameworks. From a service integration point of view, it is important to

identify services and their formats that are used by many SOA participants

(agency e-services in this case) in order to drive our integration framework

standards. This will ensure the reliability and scalability of the integrated

services, as well as the repeatability.

Service Integration Engineering Process 80

4.2 LifeEvent

LifeEvent is a concept that we use as guiding metaphor for customer-

centric public service provision. From an e-government integration point of

view, a LifeEvent is a collection of actions including at least one public

service, which when executed in its appropriate workflow fulfils the needs

of a citizen arising from a new real-life situation (Trochidis et al., 2007).

This section explains the principles used for the analysis and modelling

of LifeEvent. The concept of constructing a LifeEvent from available web

services is illustrated in Figure 4.1.

Figure 4.1: Constructing a LifeEvent from available web services

The concept of abstraction in an object-oriented paradigm (Kramer and

Hazzan, 2006) plays an important role in the representation of complex data

structures. Abstract objects or data structures can form hierarchical

representations to provide easy-to-understand solutions for complex

models. Abstraction is the means by which only a certain level of

LifeEvent

ABC Bank

Banking

XYZ school

ABC school

Riding - SafetyMotorcycle
licence
application

XYZ Bank

XYZ school

ABC school

Riding - street

Licensing
Services

RTA

Service Integration Engineering Process 81

information detail is exposed by the entity, depending on the levels of

representation intended for that model.

Different levels of data abstractions are also known as the level of

granularity of a model. This study invokes the principle of data abstraction

in the context of LifeEvent to represent an integrated service in different

levels of granularity, depending on the detailed information about its

underlying service structure and business rules.

The LifeEvent model effectively supports the e-government service

integration task in all its uniqueness and complexity by combining basic

services offered by multiple public authorities into a single composite

service that corresponds to an event in a citizen’s life. We use the concept

of LifeEvent to create the building blocks of an integrated e-government

service delivery system. This concept is illustrated in Figure 4.2.

Figure 4.2: LifeEvent as building blocks of integrated e-government

If it is properly modelled and implemented, LifeEvent has the capacity

to revolutionise the way government web services are analysed, modelled,

composed and delivered to provide a citizen-centric view of the government

Composite
web services
workflow

Administrative rules,
regulations

Available Web
Services

LifeEvent

Integrated
e-government
service structure

Service Integration Engineering Process 82

model. We consider the concept of LifeEvent to be almost equal to the

concept of ‘composite service’ within the scope of this research, and we use

the words LifeEvent and composite service interchangeably. Examples of

LifeEvent are Moving House, Passport Application and Motorcycle

Licence. Throughout this research, we will use the Motorcycle Licence

Application example to demonstrate the related concepts.

4.3 Service Integration Engineering in Practice

This section is dedicated to discussing in detail the main activities of

our proposed SIE process. It is important to note that the services

integration specification is live and subject to change through feedback

within the process. Based on the discussions in Section 4.2, this research

suggests additional activities and techniques that are required to handle the

complexity and unique attributes of developing LifeEvent as an integrated

e-government service. Figure 4.3 is the graphical illustration of the

proposed SIE process. It is very important to note that due to the nature of

this process, integrated web services (LifeEvents) are built and configured

at run-time.

`

Figure 4.3: Conceptual diagram of the SIE process

DeliveryDesignAnalysis

LifeEvent
Specification Service

Regulatory
Compliance

LifeEvent
Metamodel
Design

LifeEvent
Instantiation &
(Personalisation)

Interoperability
Enabling

LifeEvent
Metamodel

LifeEvent
Specification

Failure
Feedback

Web service
Nomination

Service Integration Engineering Process 83

4.3.1 Analysis Phase

Designing predictive applications that can make independent decisions

or provide effective information for humans to make such decisions

requires the use of specific design and modelling techniques. It is widely

recommended by the research that such applications make use of the

knowledgebase in the form of ontology. It is the position of this research

that classical SE is not well-equipped to handle the design of semantically

rich and dynamically configured applications.

There are two clear tasks in the Analysis phase in our proposed process,

each responsible for producing semantic information at a relevant level of

abstraction in the life cycle of a LifeEvent.

The first task is to nominate web services for LifeEvent participation

(Web Services Nomination). In this task, readily available web services are

discovered and registered as potential building blocks for an integrated

composite service.

The second task is to propose an integrated service (LifeEvent

Specification) and indicate its boundaries (scope). The purpose of this task

is to specify all the required web services for a specific LifeEvent (all

services must have already been deployed and made available by

government agencies over the Internet).

First Order Logic is free of all ambiguities associated with natural

language expressions. It provides an unambiguous notation for predicate

calculus which is one of the best design tools for formalising ontology and

deriving axioms for predictive behaviour. The SIE process model described

in Figure 4.3 allows for the use of formal ontology description and design

tools in this phase.

The result of this phase is two artefacts:

Service Integration Engineering Process 84

One is an ontological catalogue providing precise semantic information

on all the technical communication and QoS parameters of services

provided by their WSDL. The role of this ontology (OWL-S) is essential for

the LifeEvent in the delivery phase, because it provides descriptors for

every atomic service participating in the LifeEvent.

Second is the specification of all the services in the form of LifeEvent

Services. This specification is in the form of an ontology data file designed

to provide all the knowledge required to understand the highest level of

requirements for the proposed integrated web services.

A detailed description of the ontology required in this SIE process

model is given in Chapter 5.

4.3.2 Design Phase

Workflow modelling and design can further be divided into generation

and specification stages (Liu et al., 2007). The workflow models are

considered to be manual, semi-automatic or automatic depending on the

level of semantic and dynamic knowledge representation of the model. The

specification of the model, depending on the level of semantic intelligence

representation, can be implemented using industry standards such as

Business Process Engineering for Web Services (BPEL4WS) or OWL-S.

Industry standards such as BPEL4WS are more suitable for static

workflows with no semantic intelligence and are entirely configured at

design time; however standards such as OWL (McGuinness, 2004) handle

specific semantic information that could be used to design a dynamically

configurable workflow (automatic and semi-automatic models).

A unified and repeatable e-government service integration process must

make use of best practice modelling techniques in a way that increases its

Service Integration Engineering Process 85

reusability in different scenarios, even if these scenarios are in different

implementation domains. Our goal in modelling and design is to visualise

the LifeEvent design in various levels of abstraction at various phases of

our proposed SIE process.

The first task in design phase is therefore to prepare knowledgebase

artefacts that can provide knowledge about a more granular level of an

abstract LifeEvent. This task (LifeEvent Metamodel Design) is to produce

an ontology data file that carries all the knowledge required by the system

to understand the various details of a LifeEvent Metamodel in order to

deliver a specific instance of that LifeEvent.

The second task in the Design phase is the Service Regulatory

Compliance design, which ensures that every regulatory requirement of

every web service that participates in a LifeEvent is understood and

enforced as a rule by the LifeEvent designer. If we have chosen a number of

web services to participate in a LifeEvent, we must ensure that they are

arranged in such a way that there are no prerequisite loopholes or conflicts

between the services. For example, if there are three possible web services

involved in our Motorcycle Licence Application LifeEvent, we must ensure

that they are arranged in such a way that the prerequisites of all the services

are satisfiable when the LifeEvent is executed.

E-government service integration projects must pay specific attention to

Regulatory analysis, also possibly to other interoperability issues such as

organisational, procedural and jurisdictions. This information is gathered

and used as part of the requirements analysis for integrating services. To

accomplish semantic interoperability, it is necessary to prepare the service

domain ontology

Service Integration Engineering Process 86

One of the most important areas of analysis and design discussed in this

study relates to government regulation and rules. These regulations are to

be organised in the LifeEvent ontology to illustrate the semantic correlation

of every element. One way to organise the regulatory knowledge is to

imbed them in an ontology data file and attach it to the LifeEvent

Metamodel when it is prepared and delivered as an item of results from the

tasks of this Phase. The other way to approach is to imbed the regulatory

knowledge in the LifeEvent ontology as an object property of a concept. In

this research we chose the latter approach.

4.3.3 Delivery Phase

The design specifications of automatic workflow models differ from

those of static models in that for automatic workflow model. The designer

produces a Metamodel that only describes the type of services and the order

of execution. This method called Metamodelling, a Metamodel must also

contain semantic regulatory information that dictates the terms and

conditions of the execution to determine whether it is the right time to

execute a particular service and how the results of its execution would

affect the overall status of the workflow. A Metamodel produced in the

design phase can be used by citizens to create a personalised instance of the

LifeEvent to suit their requirements.

The Delivery Phase mainly deals with alternative workflow instances

that are produced based on semantic information extracted from LifeEvent

ontology and information provided by the customer. The complexity of the

situation can go even further by assuming that one of the services may fail

at execution time. In this case, the workflow composer must discover the

best available alternative service to replace the failed service; this requires

Service Integration Engineering Process 87

automated feedback to the service user and the composition of an

alternative workflow instance to substitute for the failed workflow. Our

strategy is to facilitate the seamless evaluation of composition candidate

services; to improve composability for run-time workflow construction.

This requires mechanisms that address the requirements related to ontology,

profiles, and their underlying formalism.

Chapter 6 will step through the process of implementing an actual

LifeEvent using the SIE phases mentioned here. This will give us the

opportunity to evaluate the practical implications of the SIE modelling

process.

4.4 Summary

In this chapter we put forward our findings to indicate that the creation

of composite service architecture must focus on and represent business

objectives, which often concerns producing an added value of delivering a

better and more reliable service for users of those composite services.

The complexity of integrating e-government services, especially those

developed to an advanced transactional stage requires a highly documented

and repeatable methodological approach to ensure the most efficient and

reliable transformation of e-government services towards an integrated

LifeEvent driven system. In this chapter, an integration methodology to

accommodate the integration specific tasks into a typical software

engineering process was proposed.

From an engineering process point of view, focusing on the detailed

implementation of an integrated e-government delivery system requires a

specific attention to tasks and activities that are crucial to a successful

Service Integration Engineering Process 88

service integration project. Hence, this chapter proposed a modified version

of the classical software engineering process. SIE has all the tasks and

activities that are necessary to handle the complexity of service integration

process.

From an implementation point of view, focus on the detailed

implementation of our proposed integrated e-government delivery system is

also required. Chapter 6 will provide in-depth, detailed information about

our proposed framework (ESIM) and Chapter 7 will discuss the

implementation platform by developing an integrated e-government service

delivery system that can provide a proof of concept for all our theoretical

assumptions.

Chapter 5:
LifeEvent Ontology

Before discussing the details of our proposed framework for e-

government service integration in Chapter 6, it seems to be helpful and

intuitive to describe our design for ‘LifeEvent Ontology’. The integration

framework makes extensive reference to LifeEvent ontology and it will be

easier to understand if we introduce the concept beforehand.

This chapter intends to provide detailed design and a formal description

for an ontology that is of crucial importance for our framework, proposed in

Chapter 6, to work. It discusses the definition of ‘Ontology’, ‘Service

Ontology’ and ‘LifeEvent Ontology’. Section 5.1 describes the concept of

Ontology, then in Sections 5.2 and 5.3 we give details of what the concepts

of Service and Service Ontology mean in this thesis. Section 5.4 explains

and illustrates the overview of our conceptual design for the LifeEvent

ontology. Section 5.5 explains the annotation used in our formal method

and we use first order logic to establish the main axioms and design rules

for the ‘LifeEvent Ontology’.

5.1 Definition of Ontology

In the information technology domain, the term Ontology is a word

borrowed from philosophy that refers to the science of describing the kind

LifeEvent Ontology 90

of entities in the word and how they are related (Smith et al., 2003).

According to the Merriam Webster online dictionary, it is defined as1:

1) A branch of metaphysics concerned with nature and the

relations of beings

2) A particular theory about the nature of being or the kind of

things that have existence

In the context of information technology, the most typical kind of

ontology has a taxonomy and a set of inference rules (Berners-Lee et al.,

2001). A more formal definition of ontology is given by Maedche (2002) as

follows:

An ontology is a 5-tuple as),,,,(:: OC ArelHRCO , where C is a set

of classes (concepts); R is a set of relations; CCHC u� is called

taxonomy,),(21 ccHC means 1c “is-a” 2c ; CCRrel uo: is a

function defined for other relations; and oA is a logical language.

Aside from these definitions, ontologies are used to describe a variety of

models, ranging from simplest taxonomies such as Online Directory

Project2 to very complex knowledge models written in first order logic3.

5.2 RDF and RDF Schema

The Resource Description Framework (RDF) is a recommendation of

W3C specifications, originally designed as a metadata model. It is used as a

general method for conceptual description or modelling of information that

is implemented in web resources, using a variety of syntax formats.

1 http://www.merriam-webster.com/dictionary/ontology
2 http://www.dmoz.org/
3 http://www.ehealthserver.com/ontology/

LifeEvent Ontology 91

RDF has an XML-based syntax; it provides a metadata model for

ontology knowledgebase and provides a common framework so that

applications can process and exchange the information automatically

through the World Wide Web.

RDF Schema is the description of RDF language. It is also expressed in

XML and provides a simple ontology of RDF concepts and property

definitions. RDF provides the basis on which next generation ontology

languages are developed. In other words, most new ontology languages are

logical extensions of RDF.

5.2.1 RDF Model

RDF identifies objects using URI (Berners-Lee et al., 1998). A URI is a

compact series of characters that identifies an abstract or physical resource.

It is used extensively as a way to identify resources on the web such as web

pages. RDF describes resources in terms of simple properties and property

values. Thus, statements in RDF are represented as triples of (subject,

predicate, object). The subject denotes the resource; the predicate denotes

the relationship between the subject and the object; and the object can itself

be a resource or a string literal which represents a basic data-type such as

Integer, String, or Boolean values.

RDF Schema is a semantic extension of RDF which provides a way to

describe how resources in RDF are related to each other. The schema

divides resources into groups or classes and provides a simple hierarchical

classification structure which relates these classes to each another through

properties.

The predicate or property element is identified to represent the predicate

and object of the statement. Its content is the object of the statement, which

LifeEvent Ontology 92

is a plain literal. These triples can also be represented as a graph where the

nodes are resources (subject and object) and the arcs are the properties

(predicates).

5.3 OWL

OWL ontology is also an RDF graph and is represented by a set of RDF

triples. As with any RDF graph, an OWL ontology graph has different

syntactic forms. OWL extends RDF and RDF schema ontologies by adding

more vocabulary for describing properties and classes such as relations

between classes, cardinality, equality, richer typing of properties,

characteristics of properties, and enumerated classes.

The ontology is not limited to defining the pure hierarchy of classes and

their relationships; they are also used to inference class relationships such

as equivalence or being disjoint.

5.3.1 OWLModel

Every OWL ontology has a root class called owlThing. Every other

class defined with the ontology is a subclass of owlThing. OWL supports

set operators on classes such as union, intersection and complement.

It also allows class enumeration and disjoint. There are two types of

simple properties in owl description: one is ‘datatype’ and the other is

‘object’ properties. Datatype properties are relations between instances of

classes and RDF literals or XML schema data types. Object properties are

relations between instances of two classes. Properties can also have logical

connectivity such as being transitive, symmetric, inverse and functional. As

in RDFS, an OWL class contains individuals, which are instances of the

class and other subclasses.

LifeEvent Ontology 93

Instances are RDF descriptions of a class in which properties are

populated with certain values. OWL allows a class to be defined with

logical restrictions on certain properties. Classes can be restricted by

existential or universal quantifiers. For example, the class LifeEvent may

have subclasses defined with existential quantifiers on the hasService

property such as:

hasService some LifeEventService.

Thus, a restricted subclass of the LifeEvent class can be defined as the

MotorcycleLicenseLifeEvent class, which contains all LifeEvents that have

LifeEventService as a service. This amounts to all the instances that have

the hasService property assigned to the LifeEventService. In addition, these

properties can also have cardinality restrictions. For example, a LifeEvent

must have at least one LifeEventService but may have more than one. Thus,

the hasService property can be restricted to:

hasService > 1 and a LifeEvent instance can have multiple hasService

properties.

5.3.2 Sublanguages

OWL has three sublanguages: OWL Full, OWL DL and OWL Lite, all

described in (McGuinness, 2004). OWL Lite is the least expressive of them.

OWL Lite is somewhat more expressive than RDFS, because it provides

simple constraints of classes and properties in addition to supporting a

classification hierarchy. OWL DL is modelled on description logics, all

conclusions are guaranteed to be computable that means, it supports

maximum expressiveness while retaining computational completeness, and

all computations will finish in finite time.

LifeEvent Ontology 94

OWL DL includes all OWL language constructs. OWL Full is the most

expressive of the three sublanguages. The main difference between OWL

DL and OWL Full is that in OWL DL, a class is only expressed as a

collection of individuals and cannot be regarded as an object in and of

itself. However, in OWL Full, a class can be treated simultaneously as a

collection of individuals and as an individual in its own right. Due to this

difference, OWL Full cannot be checked for soundness using reasoners. A

service class will only represent a collection of individuals and does not

need to be an individual in its own right, and we would like to use OWL

reasoners such as FaCT++ (Tsarkov and Horrocks, 2006) to check for the

soundness of OWL documents.

5.3.3 OWL Querying

There are many ways to query OWL ontology. One way is to use a

reasoner to create a class with certain restrictions and classify this class

within the ontology to see which classes it relates to. The query processor

can then look at the equivalent classes, super classes and subclasses to see

the different relationships of the query class. Another way is to use the

reasoner to reason over the OWL instances. The query processor converts

the query to an instance of an OWL class in which all the property values

are the same as that of the query. The reasoner then finds all the classes

which have this instance as an inferred instance. An inferred instance is one

that has not been explicitly instantiated within a class but is inferred to be

part of a class because of its properties. The instance is then matched to a

number of classes. Aside from these methods, there are a few OWL query

languages which have been developed. The OWL Query Language (OWL-

QL) (Koponen and Virtanen, 2004) is a formal language and protocol that

LifeEvent Ontology 95

queries an OWL ontology by finding class relationships. It also allows

querying and answering agents to conduct a query-answering dialogue in

ontologies represented by OWL.

5.4 Using Ontologies vs. Databases

A logical model of entities and relationships, the Entity Relationship

(ER) model in a domain defines a relational database. The ER model can be

perceived as a simple ontology because it does not define relationship types

and class expressions and thus cannot be classified using ontology

reasoners. In addition, an ER model is used for translating to physical tables

and thus knowledge about the relationships is captured mainly in the

documentation rather than within the ontology itself. This schema is

normally specific to the needs of the given application and cannot be shared

easily across different domains.

The reasoning power of ontology is the motivation behind its use for

representing services rather than using simple attribute-value

representations of data, such as in traditional databases. An example of a

query which can be done using an ontology which is difficult to do using an

SQL query is: ‘Given a service class, find all logically related matches to

my query’. Simple Query Language (SQL) also does not support abstract

data types, thus making it difficult to determine whether a certain property

value belongs in a number of different classes or types. Ontologies can also

be shared, re-used and changed. Ontologies can be distributed across the

Internet and grow limitlessly, and they can be discovered and shared using

their URI.

LifeEvent Ontology 96

When new relationships are established within the ontology schema

because of ontology migration or the addition of new classes, determining

new relationships within the ontology is simply reduced to running a

reasoner on the ontology in order to reclassify the classes. For relational

databases, changes to the schema may have a fundamental impact on the

existing data.

The main drawback to using ontology is that classification is expensive.

As ontologies grow large, and especially when instances of classes are

stored in the ontology, reasoning becomes a bottleneck. We tackle this

problem by storing instances in separate ontology data-files instead of the

ontology schema itself. This speeds up the classification process

considerably. Also, a positive side-effect of the distributed architecture of

LOOSI platform is that it allows each component to handle different

ontologies (OWL-S and LifeEvent).

5.5 Web Services Ontology

In order to understand what real-world services are, we look at the work

done in the economic and business sciences as well as literature originating

from the ICT area.

Hardly any of the generic concepts concerning real-world services show

up in current e-commerce product classifications or standards for Web

Services, a term that refers to Internet-based technologies, rather than

business activities. Web Services are loosely coupled, reusable software

components that semantically encapsulate discrete functionality. Web

Services, however necessary and useful they are, cannot really be seen as

LifeEvent Ontology 97

services in the sense of the business science literature; they are currently

rather restricted to Input / Output interface specifications.

Further requirements on any service ontology are that its components

should be mappable onto configuration task ontologies. This is feasible,

because the component based and configuration like nature is inherent to

services. In addition, service ontology should be consistent with ontologies

that describe value creation in e-government.

There are many initiatives that have made progress towards defining

and organising ontologies for web services, two of which have contributed

a great deal to the state-of-the-art:

1) OWL-S defines a set of basic classes and properties for declaring and

describing services, i.e. an ontology for describing Web Services that

enable users and software agents to automatically discover, invoke,

compose and monitor Web resources offering services under specified

constraints (W3C, 2004). OWL-S tries to cover the description of

services in a wide sense, not focusing on a particular application

domain or problem.

2) WSMO aims to create ontology for describing various aspects related to

Semantic Web Services, but with a more defined focus: solving the

integration problem (Domingue et al., 2004). WSMO also takes into

account specific application domains (e-Commerce and e-Work) in

order to ensure the applicability of the ontology for these areas.

In comparison of the two standards, WSMO covers most of the

description elements introduced in OWL-S and introduces additional

elements that increase its applicability in real domains. Aspects such as

mediation and compensation are key issues to be solved for the realisation

LifeEvent Ontology 98

of Semantic Web Services, and to make this technology applicable for e-

Commerce and e-Work (Zhang et al., 2004). WSMO should provide a

higher level of detail for the definition of aspects such as choreography or

grounding. If these elements are appropriately covered, WSMO can become

a strict superset of OWL-S that also covers relevant issues not covered by

OWL-S. WSMO also intends to have an execution platform, called Web

Service Modelling eXecution environment (WSMX), while the intentions

of OWL-S in this direction are not yet defined.

A web services transaction involves three parties: the service requesters,

the service provider, and a mediation infrastructure facility. The service

requester, who may broadly be identified as user, seeks a service to

complete its task; the service provider, which can be broadly identified as

provider, provides a service sought by the user. The user may not know of

the existence of the provider ahead of time, so it relies on mediator

infrastructure facilities that act like a service registry and workflow

organiser to find the appropriate provider. The role of the mediator registry

is to match the request with the offers of service providers to identify which

of them is the best match. In Chapters 6 and 7 we will provide the details of

such facilities that can act as a delivery platform for LifeEvent and a

framework for using such platform. The remainder of this chapter explains

the detailed design for an ontology that can provide a foundation for such a

framework.

Consider the utilization of a credit card service. A customer can choose

the simplest form of a credit card or a more expensive card which offers

extra services as free travel insurance, high withdrawal limits, travel

assistance abroad, worldwide card replacement in case of loss, linking the

card to a preferred supplier and more. Multiple aspects of this service

LifeEvent Ontology 99

offering can be facilitated by websites: ordering a card, transactions listing,

buying other services and goods with the card and more.

Another example is the online organisation of events, such as

conferences, board meetings, executive courses, exhibitions, and so on.

Their electronic facilitation requires many capabilities, including a good

predefined classification of such events, together with a description of their

properties, plus the constraints they impose, such as suitable times and

spaces (rooms, halls, room setup).

Essentially, ontology is needed that defines the core contents of the

service. In addition, electronic facilities should provide the capability to

select relevant supplementary services. Such services include travel

insurance and high withdrawal limits in the credit card case, and coffee

breaks, video facilities, Internet connection, translation, sound, technical

assistance, or catering, in the event organisation case. This again occurs in a

predefined and standardised, ontology-based way, such that associated

additional relationships and constraints can be automatically catered for.

Next, customer needs, perceptions and requirements regarding a service

usually contain many ‘soft’ statements, leave many things implicit, and

often necessitate a significant interpretation and transformation step into the

provider's ontological vocabulary and the components that the service

provider can actually deliver.

OWL-S has made progress towards configuration-based service

composition. We suggest that an important part of a paradigm for the

electronic support of real-world services is a generic component-based

description of services and what they contain; in other words, a service

ontology, such that the electronic design and production of services can be

simplified to a configuration task. This task is what is called service

LifeEvent Ontology 100

composition. In a collaborative e-government scenario, then, the ideal is to

have an intelligent support system that:

x Contains ontological descriptions of the service bundle contents;

x Translates customer needs and preferences into suitable terms from

the service provider viewpoint;

x Can deal with all the associated constraints in automatically

constructing the requested service in a configuration-oriented way,

supporting the composition of services from different service

providers into a user-controlled work-flow of compound web

services.

The biggest limitation of OWL-S is that it only allows for the

composition of services (or operations) described in one WSDL. A new

system of web services knowledgebase configuration would be necessary if

we wanted to compose web services from different vendors. One major

challenge is that the service ontology must be sufficiently generic to be

useful across many application domains. We discuss below how such

ontology might look and present its logical formal description.

5.6 LifeEvent Ontology

This research defines the LifeEvent ontology as the logical extension of

OWL-S to provide extended functionality which allows a systematic

integration of e-government web services by means of abstraction in design

and implementation. The advantage of such an extension is that it preserves

and uses all the capabilities inherited from upper ontologies such as OWL

and OWL-S, while adding more specialised ontology concepts to achieve

LifeEvent Ontology 101

precise results for automating the integration of e-government web services

by means of abstraction. Our design for LifeEvent ontology will take the

goal of OWL-S one step further to integrate atomic and composite services

not only from one service provider but from many, to allow the dynamic

construction of a user controlled work-flow of readily available web

services.

Our model for LifeEvent ontology requires two types of knowledge

analysis in order to achieve a more comprehensive solution for the design

of the ontology itself. This ontology needs to provide two essential types of

knowledge about an event in a citizens’ life, as described in Sections 5.8.1

and 5.8.2.

LifeEvent ontology as a service knowledgebase is required to automate

the acquisition of individual web service instances in a LifeEvent workflow.

It provides service specific information such as availability, service type,

service profile, and required communications parameters to the run-time

workflow construction process. A service knowledgebase could use

multiple ontology descriptors (OWL-S ServiceModel) to obtain the

semantic information required by the workflow for the invocation of atomic

services. LifeEvent Ontology embodies the following concepts:

5.6.1 LifeEvent Concept

A meta-model that provides a category of knowledge that is needed to

answer the question ‘In what possible alternative ways can a LifeEvent be

constructed?’ The answer to this question starts with the concept of

LifeEvent that is the root element of the ontology inherited directly from the

generic concept of Thing. This ontology class is the definition of an

abstract construct of all possible services that are nominated to collaborate

LifeEvent Ontology 102

with each other in order to solve a business problem. This ontology class

has the inversed functional object property called hasService. This object

property is of type class LifeEventService. The minimum cardinality of this

property is one; this means that a LifeEvent must be comprised of at least

one service. One of the most important responsibilities of this class is to

enforce the rules of government regulations to make sure a legally

acceptable workflow is provided that can be instantiated and executed to

fulfil a customer request for a service. Listing 5.1 is the RDF code for the

construction of this object property.

<owl:ObjectProperty rdf:about="le#hasService">
<rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>
<rdfs:domain rdf:resource="le#LifeEvent"/>
<rdfs:range rdf:resource="le#LifeEventService"/>
<owl:inverseOf rdf:resource="le#describedByLifeEvent"/>

</owl:ObjectProperty>

Listing 5.1: Definition of object property hasService

5.6.2 LifeEventInstance Concept

One possible way of implementing a LifeEvent is defined by this

concept, meaning that if we consider the LifeEvent as meta-model that only

defines the types and the order of possible web services in the workflow,

then a LifeEventInstance would be one of the possible ways to create such

workflow. This concept has an object property of type ServiceInstance

called hasServiceInstance, with the cardinality of one. This property

represents the individual invoke-able instances of web services that make

up the workflow of the LifeEvent at run time. Listing 5.2 is the RDF code

for the construction of this object property.

LifeEvent Ontology 103

<owl:ObjectProperty rdf:about="le#hasServiceInstance">
<rdfs:domain rdf:resource="le#LifeEventInstance"/>
<rdfs:range rdf:resource="le#ServiceInstance"/>

<owl:inverseOf rdf:resource="le#partOfLifeEventInstance"/> </owl:ObjectProperty>

Listing 5.2 Definition of object property hasServiceInstance

5.6.3 LifeEventService Concept

This concept provides knowledge about the acceptable web service

types and possible sets of actual service instances for every service type. In

other words, this concept is the abstract construction of all service types that

could potentially be instantiated as a ServiceInstance at runtime. As has

been strongly acknowledged by other research literature (Lytras, 2006), the

diversity of structures, regulations and procedures affecting networks of

heterogeneous administrative units represents a challenge for semantic

integration. This type of knowledge is specifically related to e-government

service integration, since every LifeEventService participant in any

LifeEvent may enforce or be affected by one or more government

regulations. These regulations are the governing rules of composite services

in the e-government domain, specifically because regulations are one of the

integral parts of interagency processes (i.e. where the LifeEvent process

flow crosses multiple agencies). Furthermore, regulatory knowledge is

required for designing an inter-agency workflow that crosses the boundaries

of local, state, and federal agencies. It has three object properties:

1) hasPrerequisite, that provides the knowledge about the order of

services in the workflow or possible required action or

LifeEvent Ontology 104

documentation prior to the invocation of the web service. Listing

5.3 is the RDF code for the construction of this object property.

<owl:ObjectProperty rdf:about="le#hasPrerequisite">
<rdfs:domain rdf:resource="le#LifeEventService"/>

<rdfs:range>
<owl:Restriction>

<owl:onProperty rdf:resource="le#hasPrerequisite"/>
<owl:someValuesFrom rdf:resource="le#Prerequisite"/>

</owl:Restriction>
</rdfs:range>

</owl:ObjectProperty>

Listing 5.3: Definition of object property hasPrerequisite

2) hasServiceType, and

3) hasServiceSubType provide knowledge about the type of

LifeEventService. Listing 5.4 is the RDF code for the

construction of these two object properties.

<owl:ObjectProperty rdf:about="le#hasServiceSubType">
<rdfs:domain rdf:resource="le#LifeEventService"/>
<rdfs:range rdf:resource="le#ServiceSubType"/>
<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="le#hasServiceType">
<rdfs:domain rdf:resource="le#LifeEventService"/>
<rdfs:range rdf:resource="le#ServiceType"/>
<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>

</owl:ObjectProperty>

Listing 5.4: Definition of hasServiceSubType and hasServiceType

5.6.4 ServiceInstance Concept

This is a personalised instance of the LifeEventService and provides

knowledge about the user preferences at runtime. It implements all the

prerequisites of the web service that are enforced by the LifeEventService.

LifeEvent Ontology 105

ServiceInstance extends LifeEventService and represents one of many

possible runtime instances of the LifeEventService. This ontology class has

a property partOfLifeEventInstance that points to a class LifeEventInstance

described in Listing 5.3 as the inverse functional property of

hasServiceInstance. It is through this property that we can obtain

knowledge about actual web services participating in a LifeEventInstance.

It is our view that any problem a LifeEvent seeks to address can be

fitted in to two main areas of concern:

For LifeEvent users, it should describe how to ask for an OWL-S

service and what happens when the workflow is being executed. By ‘what

happens’ we mean what are the particular technical and legal requirements

of invoking any of the web services in the LifeEvent work-flow.

For managing the workflow, LifeEvent uses a logical description to

perform four different functions:

1) To create a composite service work-flow from multiple services in

order to perform a specific complex task. It is important to note that

‘composing OWL-S services’ as a LifeEvent is different from

‘composite services’ described in OWL-S specifications. The

composite services described in OWL-S are provided by one service

provider and specified in one WSDL grounding specification,

whereas a LifeEvent composes services from totally different

providers with separate WSDL grounding specifications.

2) To manage the status and results of executing a complete or a

partial LifeEvent work-flow of web services. This means that a

citizen can request a invocation of a LifeEvent but does not

necessarily complete the whole LifeEvent in one go. The user also

LifeEvent Ontology 106

has the ability to choose to invoke any of the operations listed in a

web service descriptor.

3) To coordinate the activities of different service participants

(requester, provider and mediator) during the course of the web

service enactment.

4) To monitor the execution of the web service and compensate for

any web service failures at run-time. This is made possible by the

fact that a LifeEvent is a Metamodel and it can be instantiated in

many possible ways depending on the availability of different actual

ServiceInstances for a particular LifeEventService. There are two

object properties of ServiceType and ServiceSubType that can

provide essential knowledge about a particular ServiceInstance that

enables a LifeEventInstance make a decision on substituting a failed

ServiceInstance with a new one that is the closest match in terms of

its object properties (hasServiceType and hasServiceSubType).

The ontology illustrated in Figure 5.1 displays the main concepts of

LifeEvent. The abstract concept of LifeEvent is extended by

LifeEventInstance. LifeEvent is a ‘Metamodel’ representing a generic event

in a typical citizens’ life. This concept points to one LifeEventService. A

LifeEventService is the conceptual representation of a web service that

holds information about the service type by pointing to an instance of a

class ServiceType and an instance of class ServiceSubType.

LifeEventInstance is also aware of the position of its corresponding web

service within the execution workflow at runtime. LifeEventService

represents one element in a possible set of ‘n’ elements that makes up the

LifeEvent workflow.

LifeEvent Ontology 107

A LifeEventService can be instantiated in many ways since it would be

pointing to one or possibly more than one LifeEventInstance through

ServiceType and ServiceSubType concepts.

LifeEvent Ontology 108

Figure 5.1: LifeEvent ontology conceptual graphs.

LifeEvent Ontology 109

In order to lay down legally acceptable foundation for invocation of

government web services and to attain a legal outcome of such invocation,

one needs to satisfy a set of legally binding regulatory requirements. We

achieve this by setting up the rule: ‘every element in this workflow must

point to at least one prerequisite’. This rule is modelled as concept called

‘Prerequisite’. This new concept extends the concept ‘Thing’, therefore it

could represent anything including but not limited to document, payment

or, in most cases, another LifeEventService. This rule creates a linked list of

services in which every LifeEventService has an object property

hasPrerequisite which is of type ‘Prerequisite’.

It is important to stress that the concept of Prerequisite is very different

than the property of ‘Precondition’ described in OWL-S specifications; this

difference is illustrated in Listing 5.5. OWL-S defines the property

Precondition to be represented as logical formulas like expressions as

literals, either string literals or XML literals. The latter case is used for

languages whose standard encoding is in XML, such as SWRL or RDF.

<Description rdf:about="#process2">
<hasPrecondition>

<expr:KIF-Expression>
<expr:expressionBody>

(!agnt:know_val_is
(!ecom:credit_card_num ?cc)
?num)

</expr:expressionBody>
</expr:KIF-Expression>

</hasPrecondition>
</Description>

Listing 5.5: Implementation of property hasPrecondition in OWL-S

If an OWL-S process has a precondition, then the process cannot be

performed successfully unless the precondition is true. The difference

LifeEvent Ontology 110

between the Precondition properties of OWL-S and the Prerequisite

concept of LifeEvent falls into two major areas:

1) Consider a process that charges a credit card. The charge goes

through if the Precondition (card is not overdrawn) is true. If it is

overdrawn, the only output is a failure notification. This means that

the Precondition is an expression of whether to allow the invocation

of a service to go ahead, whereas the concept Prerequisite of

LifeEventService extends the concept Thing, therefore it could be

anything, including another LifeEventService. A LifeEventService

can be invoked if and only if the prerequisite is not itself and the

property isFulfilled of the prerequisite service is set to true.

2) The other important difference between the two concepts is that the

concept of Precondition is confined within the domain of one web

service, whereas the concept of Prerequisite goes beyond the

domain of one web service and includes a much larger area of the

universe of discourse under the domain of LifeEvent. In later

subsections we will explain the significant role of the concept

Prerequisite where it is of the type LifeEventService. Listing 5.6 is

a snippet of the owl tag for the class Prerequisite.

<owl:Class rdf:about=le#Prerequisite">
<rdfs:comment>

This class could constitute anything and is the root element of all
classes that enforce workflow regulations for the LifeEvent Ontology

</rdfs:comment>
</owl:Class>

Listing 5.6: Class Prerequisite in LifeEvent Ontology

Catering for the possibility of Service substitution in runtime is made

possible by the concept LifeEventService, which points to one or more

LifeEvent Ontology 111

ServiceInstance; this allows for the substitution of similar web services with

some degree of similarity, depending on web service availability or user

preferences at runtime.

5.7 LifeEvent Ontology Formal Description

We find it convenient to be able to speak about ontologies as objects

and to have a theory of these objects. We will use a first-order language that

contains the usual logical operators and symbols: for negation, � for

conjunction, � for disjunction, → for material implication, ↔for logical

equivalence, = for equality (≠ will abbreviate its negation), � for the

universal and � for the existential quantifier. In due course, we will

introduce non-logical symbols for the relevant predicates and relations if

required. We shall use x, y, z as variables ranging over existing entities, and

a, b, c will be constants denoting such entities. We will use ω, ω’ as

variables ranging over ontologies, and α, β, γ will be constants denoting

ontologies.

We do not offer a full logic, and in particular, there will be no

consideration of a deductive system. For the rest, unbound variables are

assumed to be within the scope of universal quantifiers.

LifeEvent candidate is an abstract definition of a complex workflow

comprised of a number of simple or composite web services. LifeEvent

candidate uses OWL-S descriptors of web services nominated by

government agencies in conjunction with government regulatory

information, which is required to ensure a legal outcome whenever it is

executed.

LifeEvent Ontology 112

In the following, we provide a formal description for the main concepts

(classes) of our LifeEvent ontology followed by their description logic:

LifeEvent = LE
LifeEventInstance = LEI
LifeEventService = LES
ServiceInstance = SI
Prerequisite=PR
ServiceType=ST
ServiceSubType=SST

We shall use the predicate ‘concept’ in order to denote Concepts, thus

‘concept(x)’ is to be read ‘x is a concept’, and a Concept can be from any of

the following types: (LE, LEI, LES, SI, PR, ST and SST). We will use x, y, z

as variables ranging over concepts.

Symbolically, the first axiom is an existential one, which asserts that

there is at least one entity of a certain type. Here we indicate that there

exists ontology ωand there exist entity x that is of concept (class) LifeEvent

in a variable ontology ω.

> @)()(, xLEx �:�� ZZ

We use the predicate Ω in order to denote token, thus ‘Ω(ω)’ is to be

read ‘ω is an ontology’. An instance of a given ontology token α is an entity

whose existence is recognised by α. We will write ‘inst(x, α)’ which is to be

read ‘x is an instance of α’. Hence, there is no empty LifeEvent ontology.

> @)()(),(ZZ :�o xconseptxinst

In addition any existence is a constituent of ontology.

> @),()()(ZZ xinstxconseptx ��o:

LifeEvent Ontology 113

The predicate ‘realises’ denotes the instances of associated LES

concepts within the LifeEvent ontology. While each instance may be a

model on its own, a combination of LESs may be aggregated to constitute a

composite model. In that case, the services are considered to be the

components of a model. LES (y) play role (r) that require skills (s) needed

to perform their role.

� �> @),(),()(srhasryplaysyLESy ���

Given that LES provides a set of specific operations O and the x is a

variable over this set to fulfil a t that is a variable over the set of tasks T, it

would be required to have a subset S’ from the skill set of S.

� �> @)(),()(SOxyprovidsyLES ��o

We must ensure that every LES carries enough semantic information to

facilitate the runtime reconfiguration in case of a web service failure during

the LEI execution. Every LES has an object property ‘hasPrerequisite’ that

makes one LES the prerequisite service of the value of this property in the

workflow of LESs. Each of these object properties point to another LES,

essentially creating a linked list of LESs in which every LES is aware of its

place in the list through the data property called workflowPosition. In other

words, a LifeEvent is the construct of a two dimensional linked list, in

which the first dimension is the list of meta-services and the second

dimension is the list of service instances for each meta-service.

LifeEvent Ontology 114

5.8 Summary

In this chapter, we outlined our design to extend the OWL-S in order to

propose LifeEvent ontology as the executable unit for composing e-

government web services. We introduced an ontology that accommodates

the concept of LifeEvent within the process of e-government web services

composition. The idea used in this ontology design introduces an innovative

approach towards the whole process of e-government web service

integration and delivery by shifting the focus of e-government integration

towards citizen-centric view of the e-government development.

We put forward a formal design for an ontology knowledgebase to

manage the workflow of integrated web services in a linear manner.

However, we also recognise that more research is required to specify and

formalise the design of more complex types of web services composition

such as parallel service processes in complex workflows.

In Chapter 6, we will propose a framework (Sanati and Lu, 2008, Sanati

and Lu, 2009b, Sanati and Lu, 2009a) known as ESIM which is a repeatable

modelling framework that formulates efficient and repeatable sets of tasks

performed in a configurable order to achieve the objectives of the e-

government service integration project. The design of this framework is

based on the theoretical constructs of Service Integration Engineering

methods introduced in Chapter 4 and the extensive use of LifeEvent

ontology introduced in this chapter.

Chapter 6:
E-government Service Integration
Modelling Framework

It is widely perceived that one of the most fundamental responsibilities

of any methodology is to support repeatability. Many research projects are

currently attempting to formulate new modelling strategies for web services

composition as the new technologies and development techniques are

proposed in the SOC (Huhns and Singh, 2005) domain. In the absence of

documented best practices of design and modelling techniques for web

services composition, it would be greatly beneficial to discover such

common practices and formulate a repeatable methodology for such

projects. This research recognises e-government service integration as a

sub-domain of web services composition and this chapter describes the

detailed specifications of a repeatable modelling process for e-government

service integration projects. E-government Service Integration Modelling

(ESIM) framework is a repeatable process, defining required tasks and

activities to provide effective management control over the e-government

service integration process. Chapter 6 uses the ESIM framework to model a

simplified example of an e-government integration solution as a proof of

concept.

E-government Service Integration Modelling Framework 116

6.1 Semantic Information Integration

The research community and IT industry have experimented with many

solutions, ideas and modelling theories for integrating web services, some

of which advocate the use of semantic/ontology and some of which

specialise in integrating data and transaction aspects of web services. It is

the position of this research that e-government services cannot be integrated

in one ‘Big Bang’, therefore an automated dynamic process is required to

enable the gradual integration of e-government services in an intelligent

way. This could reduce the risk of failure associated with the traditional

resistance of governments to technology adoption and budgetary issues

such as increasing costs of data and process integration.

Semantic aspects of service integration in the e-government domain are

an active research subject in the international scientific community. In

addition to the examples described in Chapter 2, several other research

papers address this issue and are worth specific mention. For example

Graciela Brusa (2007) discusses how information integration must be

performed through the use of e-government-specific ontologies. Zhang

(2008) proposes the use of grid technology for the storage and retrieval of

diverse information in the context of e-government. Zhou (2005) proposes

semantic grid-based information integration. In this work, fundamental

problem of information integration is addressed by using the de-

centralisation properties of grid technology. Barnickel (2006) propose the

use of cross-ontology semantic web service composition to achieve

interoperability in e-government.

Unlike most aforementioned solutions, this research advocates a client-

centred approach in e-government service integration. Therefore, the basic

design strategy is to create a system that enables the ordinary citizens to

E-government Service Integration Modelling Framework 117

create their own personalised composite services and enact them in a

controlled environment. Chapter 7 is dedicated to discussing the detailed

design and implementation of a software system to validate the conceptual

assumptions of ESIM framework.

6.2 Concept of Abstraction

The concept of abstraction borrowed from an object-oriented paradigm

is used to represent complex data structures. Abstract objects or data

structures can form hierarchical representations to provide easy-to-

understand solutions for complex models. Abstraction is the means by

which only a certain level of detail is exposed by the entity, depending on

the level of representation intended for specific models. This study invokes

the principle of data abstraction in the context of e-government services to

represent LifeEvent as a composite service in different levels of granularity

(abstraction), from very little detailed abstraction to higher levels of detail

about its underlying service structure and business rules in different levels

of granularity. The ESIM framework discussed in this chapter describes

such a conceptual model.

6.3 ESIM Overview

A Citizen-Centric model of e-government integration requires

government organizations to restrict their delivery of services, to be more

closely aligned to the needs of constituents rather than internal business

processes. E-government is a critical component to this Citizen-Centric

view of government as these strategies allow service users to have more

control over how and when they receive services. More than simply

E-government Service Integration Modelling Framework 118

deploying web-based solutions, e-government strategies must aim to

digitalize interactions between governments and citizens, businesses and

other government organisations in order to provide more timely,

personalised and comprehensive integrated service.

Similar to private businesses, improving user satisfaction is also a top

goal for federal, state, and local e-government strategies.

The ESIM framework is a repeatable modelling framework that

formulates an efficient and repeatable sets of tasks performed in a

sequential order to achieve the objectives of e-government service

integration. This framework is constructed based on the assumptions of

Hybrid E-government Integration Model to achieve a Citizen-Centric

process for intelligent delivery of e-government integrated services. Figure

6.1 illustrates an overview of the process flow in ESIM framework, which

is explained in detail later in this chapter. The design of this framework is

based on the theoretical constructs of Service Integration Engineering

methods introduced in Chapter 4 and the extensive use of LifeEvent

Ontology introduced in Chapter 5.

Figure 6.1: Overview of the ESIM framework.

Stage 1
Stage2

Stage3

Service
Ontology

Service
Repository

Integration Engineer

LifeEvent
Ontology

LEM

WSDL

Service provider

Semantics

LOOSI Reasoner

LEI

Personalized
Information

Service User

E-government Service Integration Modelling Framework 119

The automated nature of ESIM framework will reduce the

aforementioned risks by allowing gradual and incremental participation of

government agencies for integration of their web services. Based on an

incremental use of the ESIM framework government agencies can decide

which services to integrate and when.

6.4 ESIM Framework

The process flow of ESIM framework is meant to be of a Control-

oriented type using deadlock resolution, exclusion, concurrency, and

process activation and deactivation. Flowcharting, being one of the primary

process-oriented modelling techniques is therefore the most suitable

modelling technique to used to model the requirements of this type (Thayer

and Dorfman, 1977).

Figure 6.2 illustrates the LifeEvent life cycle from the technical

perspective, begins with the initiation of a LifeEvent candidate at Stage 1

through to the proposed Metamodel at Stag 2 and finally the execution of a

personalized LifeEvent instance at Stage 3, each in deferent levels of

abstraction.

E-government Service Integration Modelling Framework 120

Figure 6.2: ESIM framework for LifeEvent Life Cycle

This model is a component modelling view of the ESIM framework

with different types of stakeholders and their requirements. The framework

is split into three main stages along the logical implementation, to help

better understand its main activities. The ESIM framework requires

E-government Service Integration Modelling Framework 121

LifeEvent to go through three stages in its life cycle before reaching service

consumers. These three stages are summarised as follows:

6.4.1 Stage 1 - Translating WSDL to OWL-S

For an e-government service integration system to work needs to create

a repository of available web services. Stage 1 is designed specifically to

populate such a repository with what is in fact a collection of Service

Ontology Instances, generated from already published and available web

services. In this stage nominated web services are registered in the service

repository and an instance of OWL-S is created for every registered web

service.

Inputs at this stage consist of:

1) The specifications of the participating services, such as a web

services deployment description in the form of WSDL.

2) Complementary semantic information about the services such as

service profile information, quality of service and service category.

This information is needed to form a semantic information

structure about a specific service individual in the OWL-S schema.

Outputs of this stage are:

1) An instance of OWL-S Service. The diagram in Figure 6.3

illustrates an example of how the service provider agent can

perform a fusion of the static data provided by WSDL with

semantic information provided by service owners or service

publishers into an instance of OWL-S. This function is called

service registration, during which the service provider nominates a

web service for participation in LifeEvents.

E-government Service Integration Modelling Framework 122

2) A LifeEvent ServiceInstance. In this example ESIM combines the

syntactic information from WSDL with semantic information to

produce LifeEvent ServiceInstance data files as well as OWL-S

ontology data files.

Figure 6.3: LifeEvent ServiceInstance and OWL-S construction process.

6.4.2 Stage 2 – LifeEvent Meta Modelling

The review of recent literature in Chapter 2 implicitly indicates that the

cost of data and process integration has been a well known obstacle of

integrating web services. We propose an automated dynamic process to

enable a gradual and incremental integration of e-government services in an

intelligent way. This is important, because the system will not know, for

example, what services may be available prior to the instantiation and

execution of a LifeEvent (runtime). The automated nature of ESIM

framework is intended to reduce the cost of data and process integration by

allowing the gradual and incremental integration of web services. This is

Service
owner

WSDL

OWL-S
Instance

Create service
ontology Instance

Syntactic Information
about web services

Semantic information
about web services

OWL-S &
LifeEvent
Schemas

System User

LifeEvent
ServiceInstance

E-government Service Integration Modelling Framework 123

made possible by introducing the concept of the LifeEvent Metamodel

(LEM).

Designing predicative applications that can make independent decisions

or provide effective information for humans to make such decisions

requires the use of specific design and modelling techniques. Predicate

calculus is one of the best design tools for formalising ontology and

deriving intelligent algorithms. OWL has proven to be a very powerful tool

of this type, enabling semantic reasoning in web applications. OWL is

currently the main technology for implementing semantic web applications

and therefore, the capabilities of semantic software engineering (Sheu and

Kitazawa, 2007) are required to handle semantic reasoning design

problems.

The design specification of automatic workflow models differs from

those of static models in that the designer of an automatic workflow model

has to produce a model that only describes the service type and the order of

execution. This model is in fact a metamodel used to generate and configure

a number of possible variations in run-time. The ESIM framework makes

use of all service, regulatory and domain semantic information related to

the Metamodel and its running instance for the run time configuration of

LifeEvent instance. The ontology information dictates the terms and

conditions of the execution in order to determine, whether it is the right

time to execute a particular service and how the results of such an execution

would affect the overall status of the workflow and the user profile. Figure

6.4 is the conceptual illustration of a Metamodel and its run time

instantiation.

E-government Service Integration Modelling Framework 124

Figure 6.4: Metamodelling conceptual diagrams

Based on our design specification, a LEM is a workflow construct of an

individual LifeEventService (LES) that indicates the type and subtype of

web services to be used in a composition. Every MetaService (MS) holds a

set of possible SIs that can alternatively be used in an execution of the

workflow at runtime. Assuming a LEM has n MS. which is shown in the

following definitions:

Definition 1.

Let },....2,1{ niMLEM i , and },....2,1{ kii jjIM
j

 ,

where LEM is a workflow construct of individual,

MS that indicate the type of web services to be used and
iM is the MS

number ‘i’ in the LEM, and
ji
I is the SI number ‘j’ of the MS numbers ‘i’.

Definition 2.

LifeEvent as Metamodel

A B C

Metamodel workflow
is produced at design

time

Use regulatory and
other semantic
information plus

customer preferences

LifeEventInstance 1

a1 b1 c1

LifeEventInstance 2

a2 b2 c2

Produce and suggest
alternate workflow

instances

Construct
LifeEventInstance

E-government Service Integration Modelling Framework 125

Let each MS)(iM consist of)(ki SI so that for any

},...,2,1,...,2,1{, kjniMI ii j
 � m , let x and y be 2 instances

of j in a LEM, we call
xi
I is prerequisite of

yi
I and note

1�
 l

xyyx iiii IIII

.

We also assume each SI is a prerequisite of itself to achieve recursive

search functionality when looping through the SI set of)(iM to determine

the order of execution. The latter concept is expressed in the description 3

as follows:

Definition 3.

)(
xyyxyx iiiiii IIIIII �l

Definitions 1, 2 and 3 have paved the way for defining our recursive

function of instantiating and executing MS in the LEM workflow as

follows:

Definition 4.

Let
iI

R be an ordered set of SI, then }{
ijji IiiI RRRR .

In the Stage 2 of ESIM framework, a LEM is created. Inputs of this

stage are:

1) Regulatory specification that provides the governing rules for the

workflow of LEM.

2) A set of Meta Services that will be used to construct a LEM.

The output of this stage is an instance of LifeEvent ontology that is a

logical extension of OWL-S, semantically enriched with e-government

E-government Service Integration Modelling Framework 126

services regulatory information. The instance is represented in the form of a

Metamodel specification called LEM. In this activity, an integration agent

can construct a LEM. This activity heavily relies on regulatory rules and the

Meta Services specification. Figure 6.5 illustrates the activity in which an

integration engineer will create or edit a LEM instance.

Figure 6.5: Creating/Editing LEM

6.4.3 Stage 3: LifeEvent Instantiation and Execution

This is the LifeEvent Instantiation and execution stage; in this stage the

third level abstraction of LifeEvent is created. An executable

LifeEventInstance (LEI) is created based on its LEM upon request by a

service consumer. The requirements of this stage consist of user preferences

data including domain information and service personalisation. The input of

this stage is a LEM specification from Stage 2 and the LifeEvent ontology

instance associated with the LEM that is required for run time reasoning.

The output of this stage is a personalised executable instance of LEI.

The final stage of the LifeEvent life cycle in ESIM framework is

illustrated in Figure 6.6, in which the e-government service users issue an

execution request for LEI.

Regulatory
information

Create/Edit
LEMMetaServices

LEM

LifeEvent
Ontology
Instance

Upper
LifeEvent
Ontology

E-government Service Integration Modelling Framework 127

In this stage the system analyses the user’s request specifications in

conjunction with the LEM workflow requirements to infer the correct

execution decisions. In this stage:

x Appropriate available service instances are selected,

x Regulatory rules are applied and,

x A service user profile is constructed in order to instantiate and executes

a personalised composite service workflow or what is referred to as

‘Personalised LEI’ in this thesis.

Figure 6.6: Runtime workflow construction and LEI execution

A LEM retains semantic information that dictates the terms and

conditions of its execution. It determines whether it is the right time to

execute a particular service and demonstrates how the results of its

execution would affect the overall state of the workflow. In Figure 6.4 we

show a LEM, which consists of three MSs namely (A, B and C), where

each MS has a set of SIs. Our design strategy facilitates the automated

evaluation of services that are nominated for composition, taking advantage

of other models developed in the community (Soon, 2002). We understand

that improved composability for runtime workflow construction requires

mechanisms that address the ontology requirements, profiles, and their

Create LEI

Instantiate
Personalized
LEI Execution

LEI

Service user
profile

LifeEvent
Request

Feed Back
LEM

LifeEvent
Ontology

E-government Service Integration Modelling Framework 128

underlying formalism (Lu et al., 2006), therefore composite service

Metamodel for a LifeEvent is designed to fulfil those requirements and the

following are specifications of their generic model.

A LEM workflow only indicates the type of an atomic service

nominated for composition, as well as the order of execution. The

specification of the instance of individual services is configured

dynamically at runtime. For example, where a workflow is designed to use

a service of type ‘driving school’, there may be x numbers of different

driving school services available at any given time. A rule engine can use

available ontology information to support a decision in which a specific

service such as a riding school service located in the suburb of Wyong in

NSW Australia can be used at runtime given the customer requirement

parameters and current state of execution.

A LifeEvent must be instantiated by a service user (customer or citizen)

from an already existing LEM based on user specific preferences. When the

LifeEvent instance is executed at runtime, there is always a possibility (for

whatever reason) that the user would like to replace a service with a similar

match with different attributes, or in the case of a failed service system,

may need to reconstruct the LEI by replacing one or more services with the

closest similar match. In order to measure the degree of similarity between

the two instances of the same concept, we define the ‘instance distance’ to

measure instance-level similarity.

We suppose two instances (i and j) are the same concept, where A and

B represent their sets of the data property respectively.

Definition 5. The Instance distance between i and j, denoted by SI(i,j) is

defined as:

E-government Service Integration Modelling Framework 129

°
°
¯

°
°
®

 Af
���
���

{

BA

ABBAPBAID

ABBABAID

BA

jiSI

�

,,),(

,),(

,0

),(

Where � �1...n=j,1...n=i and ID(A,B) is the quantified distance

between the two instances and P is a penalty item always given a positive

number (i.e. 2). For example if the properties of ServiceInstance 1SI is

defined as),,,,,(1 fedcbaSI and the properties of 2SI is defined as

),,,,(2 hgfedSI ,

Therefore instance distance between the two can be denoted as

)(12 SISIID � .

We use TF-IDF based methods for measuring data property similarity

of the two instances. TF-IDF based methods use a vector space model

(Baeza-Yates and Ribeiro, 1999), treating strings as ‘bag of tokens’ and

ignoring the sequential order of tokens in the strings. A data property that

consists of one or more strings can be viewed as a virtual document

containing a bag of string tokens.

If there are N properties, the corresponding n virtual documents form a

virtual quantity, which may finally have a vocabulary of n distinct tokens.

A sparse n-dimensional token vector Vi (i=1...n) can be derived from the

i-th virtual document with each element
jiv , having TF-IDF value computed

as follows:

Definition 6. An element of a virtual document is described as:

E-government Service Integration Modelling Framework 130

j
jiji DF

N
TFv log,, u Where � �1...n=j,1...n=i

Where
jiTF , is the frequency of token jt in the i-th document and jDF is

the frequency of the document that contains the token
jt . For two instances

with A and B as their derived token vectors respectively, the similarity

between them is computed as a normalised dot product between their

corresponding token vectors (Wang et al., 2008).

Definition 7. The similarity between S and T is measured as:

TS

ts
TSSIM

n

j ji

.

.
),(1¦ .

Given the LifeEvent ontology schema, we can construct a hierarchy of

the concepts by computing the subsumption relations between the concepts

using an ontology reasoner such as FaCT++; this allows us to explore the

‘instance-level similarity’ of concepts. Because ontology data is contributed

by different information sources (i.e. government agencies) separately, the

quality and the focus of completeness of the data may vary. However,

instances should have some relationships according to their common

ontology schema.

For example, if two instances from different information sources are

identified as instances of concept SI, we can compute the context similarity

between instances by reasoning with the properties and checking the

similarities of data property values. The computational complexity of

equation 6.3 may be high in general. However, this computation is only

expensive if both A and B property sets have a lot of members. However,

E-government Service Integration Modelling Framework 131

based on the design of the LifeEvent Ontology (Chapter 5), a

LifeEventService may only have handful of properties and not many

alternative instances would exist in the vector of the MS. Therefore, the

value of the computational complexity will not grow significantly.

6.5 Summary

This chapter proposes a repeatable process for e-government service

integration, which is mostly overlooked in the relevant literature. This

research recognises the lack of a unified common practice for e-government

service integration projects in the e-government domain. The goal is

therefore not only to propose enabling tools and technologies but also to

introduce an innovative approach towards the whole process of e-

government service integration. In this chapter we proposed the concept of

LifeEvent abstraction as a unit of requirement for integration and delivery

of e-government services. We introduced the integration framework that

can support the roll of concept ‘LifeEvent’ within the process of e-

government service integration. The concept of LifeEvent is used to

encapsulate the requirements of an integrated complex e-government

service composed from multiple web service provided by possibly many

web service providers.

The LifeEvent model is also designed for ordinary citizens to create and

invoke their own personalised LifeEvent. For this to happen, the LifeEvent

had to be a Metamodel rather than a solid model, So that it would be

flexible enough to allow users to instantiate it in every possible way.

In the following chapters we will show how the proposed ESIM

framework can work in practice.

Chapter 7:
LifeEvent Ontology Oriented
Service Integration Platform

E-government service delivery software design process has mostly been

technology-centred rather than citizen-centred. This has led to a series of

problems. With the growing number of e-government services available,

citizens have to bear the burden of remembering more service locations,

login names and passwords. There is a lack of standard mechanisms to

centrally manage these services and provide integrated single access

capability to multiple applications. It is not unusual that users experience

long response times or failures, especially with transactional operations. A

fundamental shift in the design process is thus required to radically improve

software usability.

In this chapter we discuss the detail analysis, design and implementation

of LOOSI platform prototype, which is a novel software application to

provide the functionalities required to support web services integration

modelling processes called the ESIM framework. This framework as

discussed before is a citizen-centric web service integration modelling

framework that can allow e-government service users to design their own

personalised composite web services and execute them in a safe and

controlled environment.

In Chapters 4, 5 and 6 we introduced SIE, LifeEvent Ontology and

ESIM framework as the prerequisite contributions that can enable and

support the technology discussed in this chapter. In this chapter we present

LifeEvent Ontology Oriented Service Integration Platform 133

the detailed specifications and implementation of a new software

architecture based on workflow and decision support to fulfil the

requirements of the ESIM framework.

In the reminder of this chapter we will explain the LOOSI platform

prototype in details from the following different prospective:

1) Technology overview (Section 7.1)

2) Architectural overview including software logical components of

the system (Section 7.2).

3) Application detailed design, including software physical

components (Section 7.3).

4) Application functional design, which includes software &

application functional design and logical pathways of the main

functions (Section 7.4).

7.1 Technology Overview

In the technology design for the prototype we use semantic web

ontology in order to achieve interoperability in service integration and

delivery. This involves the use of domain-based ontology with reasoning

capability in order to dynamically create the required new workflows of

web services in run time. From methodological point of view the proposed

framework (ESIM) enables gradual and incremental integration of readily

available web services, by allowing the automated transition of

semantically diverse web infrastructure in to an integrated environment.

This method will enable all government agencies to participate in

implementation of the prototype in a gradual and voluntary basis.

LifeEvent Ontology Oriented Service Integration Platform 134

Service integration engineers can use the instructions given by the

ESIM framework to achieve a semi-automated integration of disparate web

services in to workflows with a minimum risk and effort. The proposed

integration framework will therefore dramatically reduce the cost of service

integration by allowing agencies to decide not only which services to

integrate but also when to integrate.

The prototype is designed and developed to deliver the functionalities

promised by the ESIM framework. This software application, acts as a

delivery vehicle for e-government integrated services. This platform makes

use of LifeEvent ontology as its knowledgebase to perform the decision

making on dynamic integration and reconfiguration of LifeEvent services at

run-time. It provides a physical facility for implementation of the ESIM

framework to achieve a systematic and repeatable process for integrating

the e-government web services.

On the technology note, this research has found Service Oriented

Architecture (SOA) to be an emerging premier integration and architectural

approach in contemporary complex and heterogeneous computing

environments. Figure 7.1 is a generic illustration of this architecture. Since

there is a great potential for an SOA system to be built on open standards

and can be realised using web services, developing meaningful web service

has become an important requirement for SOA applications. Therefore, it

can be said that using open source software components is an integral part

of SOA strategy.

LifeEvent Ontology Oriented Service Integration Platform 135

Figure 7.1: Service Oriented Architecture overview (Thomas and McGough, 2009)

7.2 Architecture Overview

In this section we describe the detailed architectural design of the

prototype. This architecture adopts a web based enterprise application,

specifically SOA development (Siew, 2006).

High level of interoperability and accessibility has a significant

importance for a service integration system that is designed to discover,

compose and deliver readily available web services to the service

consumers. The prototype is designed based on the SOA architecture, and it

utilises the maximum versatility of using open source software applications

and persistence. It makes use of enhanced reasoning capabilities of the

semantic web through the extensive use of ontology in order to achieve

more intelligently manageable dynamic integration of web services.

LifeEvent Ontology Oriented Service Integration Platform 136

In Chapter 5 we argued that the reasoning capability of ontology is

more useful when it’s used as knowledgebase for the semantic applications,

In the rest of this chapter therefore we describe a simple design solution for

this purpose, that can take advantage of reasoning capability of ontology

knowledgebase. This design allows for dynamically constructed yet user

controlled workflows to be configured and executed at run time by using an

ontology knowledgebase. The use of ontology reasoning makes the

prototype a dynamically configurable system with a higher degree of

personalisation capability. It is this personalisation capability that gives the

users the freedom of constructing their own LifeEvent workflows. The

diagram in Figure 7.2 is the overall architectural view of the prototype that

describes the main components of the system.

LifeEvent Ontology Oriented Service Integration Platform 137

Figure 7.2: Architectural overview of LOOSI platform prototype

Unified Presentation & User Interface

A
WSDL 2 OWL-S

Manager

C
LifeEvent

Enactment Manager

B
LifeEvent

Metamodel Manager

File System
(XML) Utility

DB Persistence
Utility

Semantic Ontology Manager

WSDL & Semantic info Metamodel LifeEvent User Requirements

Semantic Information for Reasoning

Semantic & Information Persistence

LifeEvent &
OWL-S Service & User profile

Repository

Web Service
Invocation Utility

WSDL

Request Response

Internal system call
Resource call

Persistence

LifeEvent Ontology Oriented Service Integration Platform 138

Functional capabilities of the prototype is categorised and put in to three

major components, each designed to provide one-to-one functional support

for the corresponding stages in the ESIM framework as follows:

1. WSDL2OWL-S is a component that provides the functional support

needed for creating OWL-S ontology data, based on the process

prescribed by the Stage 1 in the ESIM framework that was described in

Section 6.4.1.

2. LifeEvent Metamodel Manager component corresponds to the Stage 2

of the ESIM framework enabling the integration engineers to create

LifeEvent Metamodels from available web services. This component

uses the OWL-S ontology data files that were created in Stage 1 of the

ESIM described in Section 6.4.2.

3. LifeEvent Enactment Manager is a component designed to enable

LifeEvent users to create their own personalised instance of the

LifeEvent Metamodel on the fly. It also provides the facility to invoke

individual web services within a process workflow. This component

corresponds to the Stage 3 of the ESIM framework in Section 6.4.3.

There are many other components in this system that are mostly

facilitators of the aforementioned main components, some important ones

are described as follows:

Unified Presentation & User Interface is a presentation layer based on

Struts technology. It is designed to render the user graphical interface for all

the functionalities of the prototype. This component is capable of producing

the GUI elements required to capture the necessary data for invocation of

web services. This intelligent capability is realised by its ability to translate

the input/output parameters information of the web service obtained from

the WSDL.

LifeEvent Ontology Oriented Service Integration Platform 139

Semantic Ontology Manager is a component comprised of all java

classes required by the system to provide ontology related reasoning,

interrogation and editing functionalities.

File System Utility provides the persistence functional utility such as

read and write for both OWL-S and LifeEvent ontologies.

Web Services Invocation Utility provides end point functional utility for

dynamically invoking and communicating with published web services in

the internat.

DB Persistent Utility provides the functional connection point for

relational database persistence to store edit and use intermediate data

required by the system to continue operations.

7.3 Design Pattern Overview

The LOOSI application prototype has adopted web enterprise

application architecture based on Model-View-Controller (MVC) design

pattern, which is illustrated in Figure 7.3. MVC is a software architecture,

currently considered a popular design pattern used in software engineering.

The most important advantage of this pattern is that it isolates domain logic

(the application logic for the user) from the user interface (input and

presentation), allowing independent development, testing and maintenance

of each layer (separation of concerns).

LifeEvent Ontology Oriented Service Integration Platform 140

Figure 7.3: MVC design Patterns (SunMicrosystems, 2002)

The MVC architecture originally applied to map the traditional input,

processing, and output tasks to the graphical user interaction model. MVC

is currently used straight forward to map these concepts into the domain of

multi-tier enterprise applications.

1) Model - The model represents enterprise data and the business rules

that govern access to and updates of this data.

2) View -The view renders the contents of a model. It accesses

enterprise data through the model and specifies how that data should

be presented.

3) Controller - The controller translates interactions with the view into

actions to be performed by the model.

The prototype is configured as per MVC design pattern specifications.

This application uses JSP technology in its presentation layer to generate

the views of graphical user interface. We use action classes based on

LifeEvent Ontology Oriented Service Integration Platform 141

Apache Struts (Apache, 2007) specifications as controller components that

trigger JSP view via Struts configuration files. We also put in place a data

service layer called Data Access Object (DAO) to play the role of data

facilitator for controller classes. DAO layer will handle all data access

functionalise and transaction controls, passing around java objects as data

models. We use Open Source database MySQL version 5.0 for the

persistence layer to store user profile, temporary and intermediate state of

incomplete LifeEvents.

Figure 7.4 is a visual illustration of the prototype implementation

according to MVC design pattern.

Figure 7.4: The prototype compliance of MVC design Patterns

Data flow
Direct class call
Configuration call

Controller
HTTP
Request

Struts Interceptor

Struts Action

Model

Business
Object

DAO

View
View

Configuration

View
Display
(JSP)

MySQL
DB

XML

Data
Model
Object

HTTP Response

Ontology
Utilities

LifeEvent Ontology Oriented Service Integration Platform 142

7.4 Object Oriented Design

SOA and MVC design pattern require the implementation design of the

target system to be based on Object Oriented Design (OOD). Therefore in

this section we describe the class/object level design based on OOD. Figure

7.5 is a summary class diagram of main classes in the system mapped in to

the MVC design pattern; we use java language for the implementation of

the system.

LifeEvent Ontology Oriented Service Integration Platform 143

Figure 7.5: The LOOSI prototype java classes mapped in MVC

Controller ModelView

Business Objects

Struts Actions StrutsConfig.xml

JSP files

Data Access Objects

Utility

LifeEvent Ontology Oriented Service Integration Platform 144

The Struts action classes in the Controller layer, provide controller

functionality for the system. There is one action class for each major

function in the system.

The WSDL2OWLSAction is the controller class for registering web

services and generating the OWL-S ontology. The functional code that

facilitates the ontology generation is provided by the class

WSDL2OWLSManager. The EditLifeEventAction and the

EditMetaServiceAction classes are designed to work with the

LifeEventMetaModelManager, they collectively enable the user to create a

LifeEvent Metamodel, which corresponds to an ontology individual of type

LifeEvent. The third Action class is ExecuteLifeEventAction, this is a

controller class for creating personalised instances of LifeEvent Metamodel

and executing the ServiceInstances in a user controlled environment.

At the base of the diagram in Figure 7.5 there are a number of utility

classes that provide support for ontology and user information persistence.

7.5 Application Component description

In this section we discuss the design of the prototype in more details and

describe how it uses LifeEvent ontology to achieve semantic

interoperability in service integration and delivery.

Design of predictive applications that can make independent decisions

or provide effective information for users to make such decisions requires

the use of specific design & modelling techniques. First Order Logic (FOL)

of predictive calculus is the best design tool for formalising ontology and

consequently driving intelligent algorithms from them since it is free of all

ambiguities associated with natural languages. This research uses two

LifeEvent Ontology Oriented Service Integration Platform 145

effective tools to express the theorem behind its design, and that is through

both graphically and logical expressions.

1) First we use flowchart diagrams to illustrate main logical pathway that

describes the functional requirements of the component in question,

2) Second we use FOL to express the implementation of any algorithm in

a logical expression language whenever a complex operation is

required.

Before we describe the details of our design lets first introduce some

notations to simplify the presentation of the proposed algorithms. These

notations are summarised in Table 7.1.

Variable Name Meaning

LE A set of LifeEventServices that make up the LifeEvent Metamodel

M Number of members in LE
LEI A set of ServiceInstances that make up the LifeEventInstance

I Number of members in LEI

P A set of web service operations that make up OWL-S process

ST A set of ServiceTypes described by the LifeEvent ontology

PR A set of Prerequisites of a ServiceInstance

Table 7.1: Notations for web service enactment component functional description

7.5.1 WSDL2OWL-S Manager

WSDL2OWL-S is designed to facilitate the registration of readily

available web services in prototype for government agencies and other

businesses. These registered services later can be used to construct

LifeEvent Metamodels. This intelligent component is used to create a set of

OWL-S service ontology data files (profile, service, process and grounding)

that can collectively provide necessary knowledge to the

LifeEvent Ontology Oriented Service Integration Platform 146

LifeEventMetamodelManager. In turn LifeEventMetamodelManager will

be able to create the LifeEvent Metamodel based on its design

requirements. This component is designed to provide support for the Stage

1 of the ESIM framework.

WSDL2OWL-S component uses the information in a WSDL of a web

service and combines it with other semantic information provided by the

web service provider (government agency or a business). The product of

this activity is a set of OWL-S service ontology data files (profile, service,

process and grounding) for the web service in question. Then the newly

created OWL-S ontology data is stored in the repository of the LOOSI

prototype and is used throughout the system for various purposes including

generating LifeEventInstances and web service enactments. Diagram in

Figure 7.6 is the illustration of the main functional pathway in

WSDL2OWL-S component.

Figure 7.6: WSDL2OWL-S component functional flowchart

7.5.2 LifeEvent Metamodel Manger

LifeEvent Metamodel Manger is an intelligent component that can

create LifeEvent Metamodels based on design requirements of a citizen life

event as it is preserved and agreed by the prototype system administrators.

Generate OWL-S
and

ServiceInstance

LifeEvent
Service
Instance

Check
WSDL URI

End
Start

Obtain
WSDL
info &
Service
Semantics

OWL-S
Data
Files

LifeEvent Ontology Oriented Service Integration Platform 147

It uses the OWL-S service descriptors stored in a repository, which was

described in Section 7.3.1.

The main function of this module is to enable the system user to

construct a LifeEvent Metamodel. The system represents the LifeEvent

Metamodel data as a Java object, which is an equivalent Java class to the

ontology concept of LifeEvent. The strategy is to facilitate an automated

evolution of the LifeEvent Metamodel in to an executable workflow of web

services in an iterative environment to improve composability for run-time

workflow construction. Workflow construction requires mechanisms to

address the requirements that pertains ontology, profiles, and their

underlying formalism.

The formal design of the main decision point of LifeEventMetamodel

Manager is illustrated in Figure 7.7 and described as follows:

Consider the situation where a LifeEvent Metamodel is consists of a set

of Meta Services where each MetaService can be a Metamodel of many

possible service instances and in turn each service instance may be a model

on its own.

A combination of services may be aggregated to constitute a composite

model. In that case Meta Services are considered to be the components of a

Metamodel. In this Metamodel the position of every Meta Service is

determined by its prerequisite.

LifeEvent Ontology Oriented Service Integration Platform 148

Figure 7.7: LifeEvent Metamodel Manager functional flowchart

7.5.3 LifeEvent Enactment Manger

LifeEvent Enactment Manger is an intelligent component designed to

generate LifeEvent instances based on one LifeEvent Metamodel and

specific service user requirements.

LifeEvent is modelled at compile time (Stage 3 of the ESIM), which is

called LifeEvent Metamodel and specified as follows:

LifeEvent Metamodel will only indicates the type and position of the

services and the order of invocation in an integrated workflow, not the

instance of individual services (i.e. the workflow uses a service of type

Is
Prerequisite
satisfied?

No

Yes

Is the
Metamodel
complete?

No

Save
LifeEvent
Metamodel

Yes

Find a new
Meta Service

End

Start
Get Meta Model
Initial information

Load all possible
Service Instances

LifeEvent Ontology Oriented Service Integration Platform 149

‘driving school’, there may be x number of different school services

available at any given time).

LifeEvent Enactment Manager uses available ontology knowledge to

decide which specific service to use in runtime, given the customer

requirement information. Hence a conceptual alignment between a

LifeEvent Metamodel and its new context (runtime implementation

instance) LifeEventInstance is established for meaningful integration.

In this section we present the main logical pathway of LifeEvent

Enactment Manager, first in the form of Data Flow Diagram (DFD)

illustrated in Figures 7.7, and then we describe the formal description of the

program logic using FOL description language.

Figure 7.8: LifeEvent Enactment Manager functional flowchart

Find next required
service

Find the alternative
service

Is service
available?

No

Yes

Is workflow
complete?

No

LifeEvent
Instance

Yes

Check the user
requirements

End

Start
LifeEvent
Metamodel

LifeEvent Ontology Oriented Service Integration Platform 150

The two main decision points in LifeEvent Enactment Manager are

illustrated in Figure 7.8 and described as follows:

Mapping every member from LE to a possible set of members in LEI

based on ST such that the ST for every ServiceInstance is the same as the

ST for the LifeEventService. Formal description if the program logic is as

follows:

Do While � �ttt miSTiiLEIimLEm {������)(()(

And � �IM �

7.6 Application Development

This section describes the GUI of the prototype and the development

efforts that resulted in creating a software application that is used to test the

ESIM framework.

GUI for the System is specifically designed to reflect the main three

stages of ESIM framework, therefore providing a seamless translation of

the process flow in to the actual functionality of the application. For

example the entry page of the application prototype is clearly conveying the

ESIM process model. Figure 7.9 is showing the entry page of the web

application that displays the three main functionality of the system in a

form of a link that is to invoke the function in distinctly coloured cells with

a brief description of them next to the link.

Complete walkthrough of the application prototype is described in

Chapter 8 as an experimental evaluation of the software.

LifeEvent Ontology Oriented Service Integration Platform 151

Figure 7.9: Three main functions of the prototype

One of the most important advantages of LOOSI prototype is that it

hides all the complexities of the semantic web application behind the user

friendly and intuitive interface. Chapter 8 will show an experimental run on

the prototype. This experiment will go through all functionalise of the

system displaying the results in screen shots, and then will compare all the

actual and expected results.

7.7 Summary

In this chapter we described the design and implementation of a novel

software system, used as an integration and delivery platform (LOOSI) for

integrating e-government services. This prototype makes use of LifeEvent

ontology as the knowledgebase to assist in decision making on dynamic

integration and reconfiguration of LifeEvent services at run-time. The

LifeEvent Ontology Oriented Service Integration Platform 152

prototype is designed based on the SOA architecture, it utilises the

maximum power of using open source software applications and

persistence. This software application is designed to adopt enterprise

application architecture based on MVC design pattern. The prototype

allows service providers to register their readily available web services. The

results of this registration are a set of service ontology data files and an

instance of a LifeEventService. Ontology data created during service

registration provides the bases for the creation of a LifeEvent ontology that

is a metamodel form of LifeEvent. Finally all the ontology data produced

during the service registration and LifeEvent Metamodel creation can be

used by citizens to create a personalised instance of LifeEvent and executed

to solve a business problem.

Chapter 8:
Framework Evaluation and
Experimentation

In this chapter, we present an evaluation of the proposed LifeEvent

ontology introduced in Chapter 5 and the LOOSI platform prototype

introduced in Chapter 7. Evaluation in Chapter 7 will implicitly validate the

design assumptions of Chapter 6. We conduct this evaluation in two parts.

In Section 8.1 an implementation of LifeEvent ontology presented and the

value of its complexity is measured against the OWL-S ontology schema.

Through a comparative analysis of OWL-S with LifeEvent ontology

schema we arrive on an understanding of the efficiency of our design for

LifeEvent ontology. In Section 7.2 we run through an implementation of

the prototype presented by displaying a test run of the software and present

the results of this execution.LifeEvent Ontology Evaluation

There is no restriction on the complexity of the logic that may be used

to state the axioms and definitions of concepts in ontology. The distinction

between terminological and formal ontologies is one of degree rather than

kind. LifeEvent ontology tends to be smaller than terminological

ontologies, but its axioms and definitions can support more complex

inferences and computations. We conduct the experimental evaluation of

the LifeEvent ontology in two stages. We use the ontology editor tool

Protégé to design and develop the LifeEvent ontology schema as the

preparation for evaluating the LifeEvent ontology. We use the FaCT++

reasoner plug-in from within Protégé to perform structural validation of the

Framework Evaluation and Experimentation 154

schema. To evaluate the efficiency of LifeEvent ontology an experiment is

conducted to measure the complexity of the ontology through a set of well

known formal methods and demonstrate the results in a numerical as well

as graphical representation. We compare the LifeEvent ontology to OWL-S

ontology since it’s the most conceptually similar to it.

8.2 Ontology Measuring Methods

As ontologies grow in size and number, it is important to be able to

measure their complexity quantitatively. Quantitative measurement of

complexity can help ontology developers and maintainers better understand

the current status of the ontology, therefore allowing them to better evaluate

its design and control its development process. We are using a suite of

ontology metrics (Zhang et al., 2009), at both the ontology level and the

class level, to measure the design complexity of LifeEvent ontology. This

ontology complexity measurement metric was evaluated in an empirical

analysis on public domain ontologies to show the characteristics and

usefulness of the metrics. The proposed metric suite is useful for managing

the LifeEvent ontology development projects.

8.2.1 Ontology Level Metrics

We use three different ontology level metrics to measure the complexity

of the ontology:

Size Of Vocabulary (SOV) Measures the amount of vocabulary defined

in ontology. Given a graph representation),,(EPNG of an ontology,

where N is a set of nodes representing classes and individuals; P is a set of

nodes representing properties; and E is a set of edges representing property

instances and other relationships between nodes in the graph G. In this

Framework Evaluation and Experimentation 155

measurement SOV is defined as the cardinality of the named entities nN

and nP in G: nn PNSOV � , where nN representing named classes

and individuals, and nP representing user defined properties.

Edge Node Ratio (ENR) measures the connectivity density. In this

measurement ENR tends to increases as more edges are added between

nodes. The greater the ENR, is the greater the complexity of an ontology.

ENR is calculated as follows:

N

E
ENR , as the division of the number of edges)(E by the

number of nodes)(N .

Tree Impurity (TIP) measures how far ontology’s inheritance hierarchy

deviates from being a tree and it is defined as being:

1�c�c NETIP , where Ec is the number of subclass edges and

N c is the number of nodes in an ontology’s inheritance hierarchy.

8.2.2 Class Level Metrics

These metrics are mostly concerned with the class level specific

statistics, the most popular technique in this method is known as Number of

children (NOC). To calculate NOC for a given class C, NOC measures the

number of its immediate children in the ontology inheritance hierarchy

given, as follows:

^ `ECsubClassOfrdfsDNDDNOCc c��c�),:,(# ,

Where NC c� and symbol # denotes the cardinality and the Ec denotes

the set of entities.

Framework Evaluation and Experimentation 156

8.3 Experiment Preparation

This section will describe the preparation for a comparative evaluation

of LifeEvent ontology against OWL-S using the methods described in

Sections 8.2.2 and 8.2.3.

8.3.1 Step 1: Building the Ontology

This step aims to prepare for the evaluation of the LifeEvent ontology.

The choice of ontology editor was made mainly due to the fact that Protégé

is open source software, and was more suited to our purpose (Stanford-

University, 2009). This tool is developed and maintained by Stanford

University. We used version 4.1, which was more advanced, intuitive and

easier to use than other available ontology editors. Figure 8.1 is a

screenshot of our developed ontology which illustrates the concepts, their

relationships with object properties and data properties in the Protégé

ontology editor.

Framework Evaluation and Experimentation 157

Figure 8.1: LifeEvent Ontology Built by Protégé.

8.3.2 Step 2: Selecting a Comparable Ontology

This step selects an ontology that is conceptually similar to LifeEvent

ontology. OWL-S is chosen because it is not only conceptually very similar

to the LifeEvent ontology but also functionally designed to perform a

similar task. This ontology is also used by the prototype to provide

knowledgebase support for the web service enactment functionality of the

system. The diagram in Figure 8.2 is the graph representation of OWL-S

conceptual schema version 1.1.

Framework Evaluation and Experimentation 158

Figure 8.2: OWL-S Ontology schema (W3C, 2004)

In this comparative evaluation of LifeEvent ontology with OWL-S we

use numerical value results by applying the metrics in Sections 8.2.2 and

8.2.3 on both ontologies to illustrate the measurement of efficiency and

complexity of the LifeEvent ontology in comparison to the OWL-S.

8.3.3 Step 3: Experimentation

The experiment starts by creating and adding five named individuals

that are the representatives of five individual web services that are

published by the Australian Government agencies and other businesses.

One more named individual is created only in the LifeEvent ontology as the

first instance of the schema to point to the LifeEventServices. The list of

these named individuals is described in Figure 8.3.

Framework Evaluation and Experimentation 159

Figure 8.3: LifeEvent and OWL-S named individuals

Considering the populated OWL-S ontology and the LifeEvent

Ontology, we use the actual measurements with the methods described in

Sections 8.2.2 and 8.2.3 to calculate the results as follows:

1) Based on the SOV method we measure the SOV value of the

LifeEvent to be 7+8=15, and for OWL-S to be 12+9=21. This means

Framework Evaluation and Experimentation 160

that if we consider the growth ratio for the LifeEvent as being the

base 15/15=1 then this for the OWL-S would be 21/15= 1.4. Table

8.1 details the numerical representation of the growth of ontology

data in both ontologies.

We register the statistics in Table 8.1 by assuming the initial SOV

to be the sum of the nodes, plus object properties in the ontology

schema. We then increased this number five times as per the number

of named individuals representing the web services created for this

experiment, each time by the amount of SOV ratio, representing the

linear growth in the volume of ontology data.

LifeEvent OWL-S

15 21

30 36

60 86.4

120 207.36

240 497.7

Table 8.1: Numerical representation of ontology growth as per SOV ratio.

Figure 8.4 is the comparative graph representation that illustrates

the trend of growth in the LifeEvent ontology data and the OWL-S

ontology data. It is shown that the rate of growth in the volume of

data in the LifeEvent is dramatically less than the OWL-S, after a

fivefold increases in the number of named individuals.

Framework Evaluation and Experimentation 161

Figure 8.4: Physical representation of growths in ontology data as per SOV ratio

2) Based on the ENR method we measure the ENR value of both

ontologies to be as follows:

LifeEvent= 5.2
7

15
 , OWL-S 63.2

8

21
 .

Table 8.2 shows the growth of ontology data in both ontologies in

terms of ENR in numerical terms. The statistics in Table 8.2 are

obtained by increasing the initial ENR by five times as per the

number of web service named individuals, created for this

experiment, each time by the amount of the ENR ratio.

0

100

200

300

400

500

600

1 2 3 4 5

LifeEvent

OWL-S

Framework Evaluation and Experimentation 162

LifeEvent OWL-S

2.5 2.63

6.25 6.9

15.63 18.2

39.1 47.8

97.75 125.8

Table 8.2: Numerical representation of physical growth for ontology as per ENR ratio

Figure 8.5 is the comparative graph illustrating the trend of growth

in ENR for the LifeEvent ontology and OWL-S ontology in the

event of growth in ontology data. It is shown that this increase in

LifeEvent Ontology is less than OWL-S after a few fold increases in

the number of named individuals.

Figure 8.5: Physical representation of growths in ontology data per ENR ratio

3) Based on the TIP method we measure the value of ‘how far

LifeEvent deviates from being a tree?’ to be (15-7+1=9), and for

Framework Evaluation and Experimentation 163

OWL-S to be (21-8+1=14). It is shown this value is greater for

OWL-S than for LifeEvent ontology.

4) Using the NOC method, we calculated the number of immediate

children (rdf: subClassOf) for the class Parameter that is the most

frequently used in web service invocation to be three. The value of

NOC calculated for LifeEventService, which is the most used class

in LifeEvent ontology is two. Table 8.3 shows the complexity

growth of ontology data for a class Parameter in OWL-S in

comparison with the class LifeEventService in LifeEvent ontology in

terms of the NOC ratio. The statistics in Table 8.3 have been

obtained by initial NOC increased five times as per the number of

web service named individuals, created for this experiment, each

time by the amount of NOC ratio.

LifeEvent OWL-S

2 3

4 9

8 27

16 81

32 243

Table 8.3: Numerical representation of physical growth for ontology classes as per NOC ratio

Figure 8.6 is the comparative graph illustrating the trend of growth

in complexity as per the NOC ratio for class Parameter in OWL-S in

comparison with the class LifeEventService in LifeEvent ontology in

the event of growth in ontology data. It is shown that this increase in

Framework Evaluation and Experimentation 164

LifeEvent Ontology is less than OWL-S after a few fold increases in

the number of named individuals.

Figure 8.6: Physical representation of growths in complexity of ontology data as per NOC
ratio

8.4 LOOSI Platform Prototype Evaluation

This section gives detailed description of our experimental run through

the LOOSI application prototype.

8.4.1 Experiment Preparation

For the purpose of this experiment we already developed six web

services and deployed them in to an AXIS2 server, these available web

services are listed in Table 8.4.

0

50

100

150

200

250

300

1 2 3 4 5 6

LifeEvent

OWL-S

Framework Evaluation and Experimentation 165

Service Name WSDL URL

1 NSWRTACustomerRegistrationService http://localhost:8080/axis2/services/NSWRTACustom

erRegistrationService?wsdl

2 RTAMotorBikeLicenseService http://localhost:8080/axis2/services/RTAMotorBikeLi

censeService?wsdl

3 RydeRidingSchoolService http://localhost:8080/axis2/services/RydeRidingSchool

Service?wsdl

4 LanecoveRidingSchoolService http://localhost:8080/axis2/services/LanecoveRidingSc

hoolService?wsdl

5 WyongRidingSchoolService http://localhost:8080/axis2/services/WyongRidingScho

olService?wsdl

6 LiverpoolRidingSchoolService http://localhost:8080/axis2/services/LiverpoolRidingSc

hoolService?wsdl

Table 8.4: Readily available web service in AXIS2 test server

To start this experiment we go to the home page of the LOOSI project

at http://localhost:8080/LOOSIWeb/ DisplayMenu.action. At this point we

are presented with three functional options each of which related to one of

the main stages of ESIM framework. Colour-coded scheme of the home

page is also illustrating three distinct stages of ESIM framework (see Figure

8.7).

From here on we go through all three stages one by one and observe the

comparison of the actual results with expected results. We consider

activities in Sections 8.2.6 and 8.2.7 as to be the implementation of Stage 1

and 2 of ESIM framework as one project to develop a LifeEvent from a

proposed candidate.

Framework Evaluation and Experimentation 166

Figure 8.7: Home page of LOOSI platform prototype

8.4.2 Register a New Web Service

By clicking on the link ‘Register a New Web Service’ provided in the

blue area of the home page, the user is directed to a page that enables the

user to enter relevant syntactic and semantic information about the

nominated web service. For the purpose of this experiment we choose to

register the third service (RydeRidingSchoolService) from the list in Table

8.4.

The results of clicking on the first option are shown in Figure 8.8. Here

the user is asked to enter the URL of the actual web service descriptor and

some information about the service such as name and description. We enter

the URL in Table 8.4 provided for the third web service and click ‘Next’.

Framework Evaluation and Experimentation 167

Figure 8.8: Capturing the WSDL URL and service description

By clicking the ‘Next’ button we are directed to a page that provides

input facility for semantic information required to build the OWL-S

ontology data and ‘LifeEvent Service Instance’ data file. The image in

Figure 8.9 shows the result of this action. Please note that at this point the

user required to select an available service type in order to create an

association with this service instance (we select the ‘RiderTrainingCourse’

for this service instance) and click “Create Service Instance’.

Framework Evaluation and Experimentation 168

Figure 8.9: User semantic input to create the OWL-S ontology data

By clicking on the ‘Create Service Instance’ the system will perform the

following actions:

1. Validate the existence of the WSDL URL and the availability of the

web service

2. Created individuals for Grounding, Process, Profile and Service

concepts in OWL-S ontology schema

Framework Evaluation and Experimentation 169

3. Created an individual for ServiceInstance concept in LifeEvent

ontology schema.

As a result of our last action the application has performed two main

tasks associated with the ESIM framework: First created a complete set of

OWL-S ontology data and second created a LifeEvent service instance

ontology data file. Actual physical file results of these tasks are shown in

Figure 8.10.

Figure 8.10: Actual results of executing the stage 1 of the ESIM by the prototype

Framework Evaluation and Experimentation 170

8.4.3 Compose a LifeEvent Metamodel

According to the second stage of the ESIM framework integration

engineers are able to create LifeEvent Metamodels. This function is

provided by prototype through clicking on the link ‘Compose a LifeEvent

Metamodel’ provided in the Red area of the home page, Integration

engineers are directed to a page that enables the user to assemble a

LifeEvent Metamodel. In the page ‘Assemble a LifeEvent’ user enters the

name and the description of the candidate Metamodel that is to be created,

then the user can add available MetaServices to the workflow of the

LifeEvent. We note that the system is enforcing the regulatory rules to

assemble the workflow. this is done by blocking the action of adding the

MetaServices in a wrong order from the e-government regulations

prospective. This regulatory knowledge is provided by LifeEvent ontology

at run time to ensure a legally acceptable outcome for the execution of the

LifeEvent. For example if we try to create a LifeEvent for Rider Licensing

then the work flow of MetaServices must be in the following order:

1) RtaRegistrationLES

2) BikeLicenseApplicationLES

3) RiderTrainingCourse

Any other order will generate an error message. To test this function

first we entered ‘RiderTrainingCourse’ as the first MetaService, second

when tried to enter ‘RtaRegistrationLES’, we receive an error message

indicating that the prerequisite of the first MetaService

(BikeLicenseApplicationLES) is not satisfied. This function and the error

message are illustrated in Figure 8.11.

Framework Evaluation and Experimentation 171

Figure 8.11: Enforcing the regulatory knowledge provided by LifeEvent ontology

As soon as we remove the service from the position and replace it with

the correct one the system accepts the LifeEvent and allows the user to

proceed with the LifeEvent Metamodel assembly (see Figure 8.12).

Framework Evaluation and Experimentation 172

Figure 8.12: Successful assembly of a LifeEvent Metamodel

This function generates the ontology data file shown in Figure 8.12. We

inspect this file closer and see all the RDF statements in the ontology data.

Apart from data properties (Label, comment and description), we can see

three object properties of predicates ‘hasService’ is constructed pointing to

the three MetaServices selected by the user through the execution of this

Stage 2 of ESIM framework (see Listing 8.1).

Framework Evaluation and Experimentation 173

Listing 8.1: RDF statements in LifeEvent ontology data file

This action marks the end of Stage 2 of ESIM framework in this project.

Now the system has stored enough information and knowledge to offer one

LifeEvent Metamodel, so ordinary citizens are able to customise and

execute their personalised instance of the LifeEvent.

8.4.4 Select and Execute a LifeEvent Instance

According to the second stage of the ESIM framework service

consumers are able to use the system to select a LifeEvent Metamodel,

create a personalised instance and execute the instance in a user controlled

environment. We initiate this function by clicking on the link (Select &

Execute a LifeEvent Instance) provided in the main page of the prototype.

Framework Evaluation and Experimentation 174

This action takes the user to a page that presents a list of available

LifeEvent Metamodels to choose from (see Figure 8.13). Here we can see

our newly created LifeEvent Metamodel along with an existing one.

Figure 8.13: Selecting LifeEvent Metamodel

We select the one we just created and click on the ‘Get LifeEvent

Details’ button. This takes us to a new page that displays the details of the

Metamodel and allows user to create personalise instance of the Metamodel

by substituting desired web service instances in the place of every

MetaService in the LifeEvent. We customise our LifeEvent Instance, enter

an email address as customer identification for future references and click

on ‘Create LifeEvent Instance’ (see Figure 8.14).

FrameworkEvaluationandExperimentation175

Figure8.14:PersonalisingLifeEventMetamodel

Framework Evaluation and Experimentation 176

Next page displays the details of newly created personalised LifeEvent

instance to confirm the initiation and the execution of the instance by

clicking on the ‘Execute LifeEvent Instance’.

The system also provides a progress bar at the top of the page that

indicates the direction and the progress of the current execution of

individual web services. The instance is initially created on the memory,

and creates persistence for future references and long running transitions

when user confirms the initiation of the LifeEvent Instance (see Figure

8.15).

FrameworkEvaluationandExperimentation177

Figure8.15:ConfirmingtheexecutionofpersonalisedLifeEventinstance

Framework Evaluation and Experimentation 178

Upon clicking on the ‘Execute LifeEvent Instance’ system loads all the

available semantic information from both OWL-S and LifeEvent ontology

data files, and displays all the operations available in the first web service

for user to select and execute. Alternatively user can choose to skip the

operation of the current web service and go to the next service by clicking

on the ‘Go to Next Service’ (see Figure 8.16).

FrameworkEvaluationandExperimentation179

Figure8.16:Selectanoperationfromthecurrentlywebservice

Framework Evaluation and Experimentation 180

In this time we select the operation ‘addNewCustomer’ from the current

executing service (NSWRTA CustomerRegistrationService) in the

workflow. When an operation is selected, the system interrogates the OWL-

S ontology data files to prepare an input screen. This system uses the

‘Semantic Ontology Manager’ component to retrieve the information and

then uses the ‘Unified Presentation & User Interface’ component to

interpret and dynamically render the appropriate input screen for users to

enter their data in order to communicate with the service provider (see

Figure 8.17).

Framework Evaluation and Experimentation 181

Figure 8.17: User data entry screen to invoke an operation from the currently web service

Clicking on the ‘Execute Service Operation’ will result on invocation of

the selected operation from the current service and system will display any

values returned by the remote web service if the invocation is successful. In

the next screen the name of the invoked operation will be displayed in gray

colour under the name of the current service indicative of being already

invoked. The user can stay in this screen and invoke different services from

the current service until ‘Go to Next Service’ is clicked. Then the progress

bar at the top of the screen will show this service as green (meaning that the

user is done with this service) and change the currently executing service to

the next one (RTA Motor Bike License Service in our case). And similar to

Framework Evaluation and Experimentation 182

the last service all the available operations of this system is listed under the

name of the service (see Figure 8.18).

Figure 8.18: Finalised web services are coloured as green on the progress bar.

User can continue this until all services are invoked and all operations

are executed. Alternatively user can choose to leave the system and come

back later (due to possible long running transitions or personal reason). The

system caters for this function via saving the current state of the LifeEvent

Instance at the end of every operation so the user can come back later and

continue the LifeEvent Instance by providing a user id this is illustrated in

Figures 8.19 and 8.20.

Framework Evaluation and Experimentation 183

Figure 8.19: Retrieving an incomplete LifeEvent Instance

Framework Evaluation and Experimentation 184

Figure 8.20: Revisiting an incomplete LifeEvent Instance.

It is possible that some time due to unforeseen circumstances one of the

web services in the LifeEvent workflow fail to respond to the invocation

call from the system. In such situation the system must be able to repair the

LifeEvent workflow by replacing the failed web service with an alternative

similar web service, available from the repository.

We tested this functionality by shutting down one of the web services in

the LifeEvent workflow to investigate the results. In this case we shut down

the web service ‘RTAMotorBikeLicenseService’ in the second in the

position of the LifeEvent Instance and tried to continue the execution of the

LifeEvent. The aforementioned action had the following results:

Framework Evaluation and Experimentation 185

The system conveys a message to the user stating the situation; this

message is illustrated in Figure 8.21.

Figure 8.21: Web service failure notification

By clicking on the available button ‘Replace the Current Service’ we

are directed to a page that provides the information about the current failed

service and offers a list of alternative similar web services to replace the

failed one. Figure 8.22 illustrates the results of this action.

Framework Evaluation and Experimentation 186

Figure 8.22: LifeEvent repair action

We acknowledge that the LOOSI application prototype may have some

negligible defects due to incorrect user data entry, lack of security

implementation, and commercial software quality assurances since it is not

a full-scale commercial application. However this experimental

implementation using the available ontology data has confirmed all our

formal design assumptions made in Chapters 3, 4, 5, 6 and 7 to be true.

Chapter 9:
Conclusion and Future Work

9.1 Problem Area and objectives

Through literature review to various aspects of the e-government

service integration and delivery, we recognised the major areas of

knowledge that was of concern for evaluating the state of research in e-

government.

This study recognised that the various approaches to e-government

development model lacking one or another aspect of the reality. Argument

was made that a more comprehensive model is needed to reflect better on

the reality of e-government evolutionary transformation trend.

Type, State and the Maturity of technology to support the e-government

integration was another area investigated by this research. The majority of

recent research agrees that the web service and SOA are the most

appropriate and popular integration technologies among other technologies

such as CORBA. We also closely looked at the mechanism of support for

intelligent architecture that could deliver a dynamically assembled and

configured composite web services. OWL-S and WSMO have had the most

influence in this area of research out of many other initiatives. We

highlighted three major shortcomings of these technologies that need to be

compensated if a truly dynamic integration of e-government services was to

be achieved.

Broad knowledge was required about a model that could encapsulate the

requirements of service integration (a unit of requirement) to achieve a

Conclusion and Future Work 188

dynamic integration of e-government services. We argued that the concept

of LifeEvent is well suited to be used as the bases of such model.

We found four issues stoping the e-government service integration to

become a success as follows:

1) Incompatible interagency process and workflows

2) Unfamiliar semantics

3) Complex inter-agency regulatory rules

4) Development of duplicated and redundant services

5) Lack of a comprehensive model for automatic composition and

delivery of web services

Our analysis of these issues have lead us to pose two main questions of

this research that would cover aforementioned issues, these questions are:

1) What is the most intelligent framework for e-government service

integration and delivery?

2) What semantic web technologies can be used to overcome the

technical difficulty of automatic integration and delivery of e-

government service, and how?

To answer these research questions we needed to define clear objectives

that could lead this research towards a final solution for the two questions

above. Hence, the main objectives of this study are recognised as follows:

1) To investigate currently proposed e-government service

integration models. This was essential to discover

implementation and technical strategies of current solutions

2) To propose detailed specifications of a repeatable modelling

framework for delivery of e-government integrated services.

Conclusion and Future Work 189

3) To propose a delivery platform for integrated e-government

services, this prototype application needs to make use of

semantic web technology to create and manage personalised

configuration for composite e-governments service workflows.

9.2 The Main Contributions of This Research

9.2.1 In Theory

This research proposed an implementation framework for e-government

service integration and delivery. We anticipated that the findings of this

research to have an important impact on efficiency and success of future e-

government service integration and delivery projects by providing a unified

methodological approach to such projects.

From engineering process point of view, to focus on the detail

implementation of integrated e-government delivery system requires a

specific attention to tasks and activities that are crucial to a successful

service integration project. Hence we proposed and put on work a modified

version of classical software engineering process. This modified process

(SIE) has all the tasks and activities that are necessary to handle the

complexity of service integration projects.

This research outlined the design concepts to extend the OWL-S in

order to propose LifeEvent Ontology as a semantic knowledgebase for

composing e-government web services. This ontology accommodates the

concept of LifeEvent within the process of e-government web services

integration. The idea used in this ontology design introduces an innovative

approach towards the whole process of e-government web service

Conclusion and Future Work 190

integration and delivery. The design of LifeEvent ontology knowledgebase

can manage the workflow of integrated web services.

However we also recognise that more research is required to specify and

formalise the design of more complex types of web services composition

that are not covered by this research, such as parallel service processes in

complex workflows.

The concept of LifeEvent has been used to encapsulate the requirements

of an integrated complex e-government service, composed from multiple

web service, provided by possibly many service providers. The LifeEvent

model is also designed for ordinary citizens to create and invoke their own

personalised LifeEvent. For that to happen, LifeEvent had to be a

Metamodel rather than an ordinary crystallised Model. This way it would

be flexible enough to allow users to instantiate it in every possible way.

A modelling framework (ESIM) is proposed that uses the concept of

LifeEvent and provides a process framework for the complete life cycle of

LifeEvent from the design and creation of the Metamodel to the

reconfiguration and instantiation of a LifeEvent instance by a service users.

9.2.2 In Practice

This research described the design and implementation of a novel online

software system, used as an integration and delivery platform for integrated

e-government services (LOOSI). This platform makes use of LifeEvent

ontology as the knowledgebase to assist in decision making on dynamic

integration and reconfiguration of LifeEvent services at run-time. LOOSI is

designed based on the SOA architecture, it utilises the maximum power of

using open source software applications and persistence. This software

system is designed to adopt web-based enterprise application architecture

Conclusion and Future Work 191

based on MVC design pattern. LOOSI platform allows service providers to

register their readily available web services. The result of this registration is

a service ontology data file and an instance of a LifeEventService.

Ontology data created during service registration provides the bases for the

creation of a LifeEvent ontology that is a Metamodel form of LifeEvent.

Finally all the ontology data produced during the service registration and

Metamodel creation is used by ordinary citizens to create a personalised

instance of LifeEvent and executed to solve a business problem.

9.3 Future Work

Although we have achieved a great successes in tackling the issues

related to dynamic integration of e-government services and web services

integration in general, there still exist more research tasks that are worth

taking in the future work. In another sense, the issues in this research area

are so significant and challenging and the topics are so attractive that a

further pursuit is worthwhile. For example, intelligent transformation of

government online services provides high quality information in an

integrated communication environment; further research may be able to

evolve this into a knowledge management system giving service across the

entire government body. Nevertheless as a short reference, the future work

is discussed in the following several subsections respectively based on the

current studies discussed in this thesis.

1) _Enhancements to the composition engine (Semantic Ontology

Manager): This engine can be extended to support extended large

integrated services. This will be particularly useful when service

repositories grow extremely large in size due to integration with none-

Conclusion and Future Work 192

government services. Also, the engine can be extended to find other

kinds of compositions with loops such as repeat-until and iterations.

2) Web services integration in other industries: Composition of web

service from multiple vendors can be applied to other industries such as

finance and insurance. There is a great business opportunity for

industries other than Public Service to take advantage of added value of

the integrated web services to their customers. For example specific

industries such as assurance may form a taskforce to develop a unifying

service protocol and the required infrastructure to support and take

advantage of the solution of this thesis. However in a technical note,

this would require drastic changes in the control structure and extension

of regulatory knowledgebase and some other areas of the original

solution.

3) Service integration for embedded systems and Mobile-Computing:

Web services can also be used in embedded systems and mobile devices

which have limited processing power and memory. Accessing and using

web services, web service selection, and integration in such devices will

need light-weight and high-performance solutions.Adapting our current

solutions for embedded systems and mobile devices will be considered

as part of future work.

4) Type systems and type checking of Web services: The composition

engine produces new functionality by joining or putting together,

different web services. We also need to ensure the safe interoperability

of these services involved in the composition. A typing system for the

languages that describe Web services can help formalise the process of

type verification and thereby ensuring safe interoperability.

ABRIVIATIONS

BPEL4WS Business Process Engineering Language for Web Services

DAO Data Access Object

DFD Data Flow Diagram

e-GIF e-Government Interoperability Framework

ER Entity Relationship

ESIM E-government Service Integration Modelling

FOL First Order Logic

G2B Government to Business

G2C Government to Citizen

G2G Government to Government

ICT Information and Communication Technology

LE LifeEvent

LEI LifeEvent Instance

LEM LifeEvent Metamodel

LES LifeEvent Service

LOOSI LifeEvent Ontology Oriented Integrated Services

MS Meta Service

MVC Model-View-Controller

NS Name Space

OOD Object Oriented Design

OWL Web Ontology Language

OWL-S Ontology Web Language for Services

OWL-GL OWL Query Language

PR Prerequisite

QoS Quality of Service

RDF Resource Description Framework

RDFS Resource Description Framework Schema

SAWSDL Semantic Annotations for Web Service Description Language

SDLC Software Development Life Cycle

SE Software Engineering

ABRIVIATIONS 194

SI Service Instance

SIE Service Integration Engineering

SQL Simple Query Language

SOC Service Oriented Computing

SOA Service Oriented Architecture

SST Service Sub Type

ST Service Type

URI Universal Resource Identifier

UTS University of Technology Sydney

W3C World Wide Web Consortium

WSDL Web Service Description Language

WSMF Web Service Modelling Framework

WSMO Web Service Modelling Ontology

WSMX Web Service modelling eXecution environment

XML Extensible Markup Language

REFERENCES

AIS. 2007. Design Research in Information Systems [Online]. Association for
Information Systems,
http://home.aisnet.org/displaycommon.cfm?an=1&subarticlenbr=794#resourcesF
orDesignResearch. Available:
http://home.aisnet.org/displaycommon.cfm?an=1&subarticlenbr=794#resourcesF
orDesignResearch [Accessed 30 December 2008 2008].

ANDERSON, P. 2006. Impact of eGovernment on Territorial Government Service
[Online]. TERREGOV, http://www.terregov.eupm.net/my_spip/index.php.
Available: http://www.terregov.eupm.net/my_spip/index.php [Accessed].

ANTHOPOULOS, L. G., SIOZOS, P. & TSOUKALAS, I. A. 2007. Applying
participatory design and collaboration in digital public services for discovering
and re-designing e-Government services. Government Information Quarterly, 24,
353-376.

APACHE. 2007. Apache Struts 2 documentation [Online].
http://struts.apache.org/2.x/index.html, accessed 24/04/2011. Available:
http://struts.apache.org/2.x/index.html [Accessed 24/04/2011 2011].

ARROYO, S., SICILIA, M.-A. & DODERO, J.-M. 2006. Choreography frameworks for
business integration: Addressing heterogeneous semantics. Computers in Industry,
In Press, Corrected Proof.

AUSTASMANIAGOV. 2008. Tasmania Life Event Services [Online].
http://www.service.tas.gov.au/LifeEvents/. Available:
http://www.service.tas.gov.au/LifeEvents/ [Accessed 15/10/2010].

AUSTRIAGOV. 2009. HELP [Online]. http://www.help.gv.at/. Available:
http://www.help.gv.at/ [Accessed 9/5/2010].

AUSVICTORIAGOV. 2006. Victoria E-government Initiatives [Online].
http://www.egov.vic.gov.au/victorian-government-resources/government-2-0-
action-plan.html. Available: http://www.egov.vic.gov.au/victorian-government-
resources/government-2-0-action-plan.html [Accessed 15/10/2010].

BAEZA-YATES, R. & RIBEIRO, B. D. A. N. 1999. Modern Information Retrival,
Addison-Wesley Longman.

REFERENCES 196

BAGLIETTO, P., MARESCA, M., PARODI, A. & ZINGIRIAN, N. 2005. Stepwise
deployment methodology of a service oriented architecture for business
communities. Information and Software Technology, 47, 427-436.

BARNICKEL, N., FLUEGGE, M. & SCHMIDT, K.-U. 2006. Interoperability in
eGovernment through Cross-Ontology Semantic Web Service Composition. The
Workshop on Semantic Web for eGovernment 2006 Workshop at the 3rd
European Semantic Web Conference. Budva, Serbia & Montenegro.

BAUM, C. & DIMAIO, A. 2000. Gartner's four phases of E-government model.

BEER, D., KUNIS, R. & RÜNGER, G. 2006. A Component Based Software
Architecture for E-Government Applications. First International Conference on
Availability, Reliability and Security. Hawaii.

BERI., B. & VINTAR, M. 2004. Simple Life-Events Ontology in SU(M)O-KIF
Knowledge Management in Electronic Government.

BERNERS-LEE, T. Year. Semantic web - talk at XML 2000 In: XML 2000 2000
Washington DC. W3C - http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-
0.html

BERNERS-LEE, T., FIELDING, R. & MASINTER, L. 1998. Uniform Resource
Identifiers (URI): Generic Syntax. RFC Editor

BERNERS-LEE, T., HENDLER, J. & LASSILA, O. 2001. The Semantic Web. Scientific
American 284 (2001), 34-43.

BRUSA, G., CALIUSCO, M. L. & CHIOTTI, O. 2007. Enabling knowledge sharing
within e-Government back-office through ontological engineering. Journal of
Theoretical and Applied Electronic Commerce Research, 2, 33-48.

BURK, R. R. 2005. Enabling Citizen-Centered Electronic Government Action Plan. In:
OFFICE OF E-GOVERNMENT AND INFORMATION TECHNOLOGY, U.
(ed.).

BURSTEIN, M., BUSSLER, C., ZAREMBA, M., FININ, T. & PAOLUCCI, M. 2005. A
Semantic Webservice Architecture. In: HUHNS, M. N. & SINGH, M. P. (eds.)
IEEE INTERNET COMPUTING. IEEE Computer Society.

REFERENCES 197

CAPGEMINI, IDC, EUROPE, R., SOGETI & DTI 2010. Digitizing Public Services in
Europe: Putting ambition into action. In: EUROPEAN COMMISSION, D. G. F.
I. S. A. M. (ed.). European Commission.

CASTELLANO, M. 2005. An e-Government Cooperative Framework for Government
Agencies. 38th Hawaii International Conference on System Sciences. Hawaii.

CHINNICI, R., MOREAU, J.-J., RYMAN, A. & WEERAWARANA, S. 2007. Web
Services Description Language (WSDL) Version 2.0 Part 1: Core Language
[Online]. W3C. Available: http://www.w3.org/TR/wsdl20/ [Accessed 02/09/2010
2010].

CHIRCU, A. M. 2008. E-government evaluation: towards a multidimensional
framework. Electronic Government, an International Journal, 5, 345 - 363.

CHIU, D. K. W., CHEUNG, D. H. S. C. & KAFEZA, E. 2007. Towards Ubiquitous
Government Services through Adaptations with Context and Views in a Three-
Tier Architecture. 40th International Conference on System Sciences. Waikoloa,
HI, USA IEEE CPS.

DIJKMAN, R. & DUMAS, M. 2004. Service-Oriented Design: A Multi-viewpoint
Approach. International Journal of Cooperative Information Systems, 13, 337-
368.

DOMINGUE, J., ROMAN, D. & STOLLBERG, M. 2004. Web Service Modeling
Ontology (WSMO) - An Ontology for Semantic Web Services [Online]. W3C.
Available:
http://www.w3.org/2005/04/FSWS/Submissions/1/wsmo_position_paper.html
[Accessed 02/09/2010 2010].

ERL, T. 2005. Service-Oriented Architecture: Concepts, Technology, and Design, NJ
USA, Prentice Hall PTR Upper Saddle River.

EVANS, D. & YEN, D. C. 2005. E-government: An analysis for implementation:
Framework for understanding cultural and social impact. In: OFFICE, A. G. I. M.
(ed.).

FANG, Z. 2002. E-Government in Digital Era: Concept, Practice, and Development.
International Journal of The Computer, The Internet and Management, 10, 1-22.

REFERENCES 198

FINNISHGOV. 2008. The Finnish Centre for Pensions [Online]. Available:
http://www.tyoelake.fi/ [Accessed 15/10/2010].

FORTE, M., DE SOUZA, W. L. & DO PRADO, A. F. 2008. Using ontologies and Web
services for content adaptation in Ubiquitous Computing. Journal of Systems and
Software, 81, 368-381.

GHAPANCHI, A., ALBADVI, A. & ZAREI, B. 2008. A framework for e-government
planning and implementation. Electronic Government, an International Journal,
5.

GIL-GARCIA, J. R. & IGNACIO, M.-M. 2007. Understanding the evolution of e-
government: The influence of systems of rules on public sector dynamics.
Government Information Quarterly, 24, 266-290.

GRANT, G. & CHAU, D. 2005. Developing a Generic Framework for E-Government.
Journal of Global Information Management, 13, 1.

GROSOF, B., GRUNINGER, M., KIFER, M., MARTIN, D., MCGUINNESS, D.,
PARSIA, B., PAYNE, T. & TATE, A., W. VAN DER. 2004. Semantic Web
Services Language Requirements [Online].
http://www.daml.org/services/swsl/requirements/swsl-requirements.shtml.
Available: http://www.daml.org/services/swsl/requirements/swsl-
requirements.shtml [Accessed 2007].

GRUBER, T. 1993. A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2), 199-220.

GUDGIN, M., HADLEY, M. & ROGERS, T. 2006. W3C Web Services Activity [Online].
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/. Available:
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/ [Accessed
16/11/2010 2010].

GUIDI, C., LUCCHI, R. & MAZZARA, M. 2007. A Formal Framework for Web
Services Coordination. Electronic Notes in Theoretical Computer Science, 55-70.

GUIJARRO, L. 2007. Interoperability frameworks and enterprise architectures in e-
government initiatives in Europe and the United States. Government Information
Quarterly, 24, 89-101.

REFERENCES 199

GUO, X. & LU, J. 2007a. Intelligent e-government services with personalized
recommendation techniques. International Journal of Intelligent Systems, 22, 401-
417.

GUO, X. & LU, J. 2007b. Intelligent E-government Services with Personalized
Recommendation Techniques.

HEEKS, R. & BAILUR, S. 2007. Analyzing e-government research: Perspectives,
philosophies, theories, methods, and practice. Government Information Quarterly,
24, 243-265.

HELBELER, J., FISHER, M., BLANCE, R. & PEREZ-LOPEZ, A. 2009. Semantic Web
Programming, Indianapolis, USA, Wiley Publishing, Inc.

HEPP, M. 2006. Semantic Web and Semantic Web Services. IEEE INTERNET
COMPUTING.

HUHNS, M. N. & SINGH, M. P. 2005. Service-Oriented Computing: Key Concepts and
Principles. IEEE Internet Computing, 1.

IMSC. 2007. ICT-Architecture principles and standards in Australian Government
[Online]. Available: http://www.apsc.gov.au/mac/technology.htm [Accessed
25/02/2008].

INC., U. 2010. What is unicode?
[http://www.unicode.org/standard/WhatIsUnicode.html] [Online]. Available:
http://www.unicode.org/standard/WhatIsUnicode.html [Accessed].

IRANI, Z., AL-SEBIE, M. & ELLIMAN, T. 2006. Transaction Stage of e-Government
Systems: Identification of Its Location and Importance. System Sciences, 2006.
HICSS '06. Proceedings of the 39th Annual Hawaii. Hawaii USA.

IRISHGOV. 2010. The Irish General Register Office [Online]. Available:
http://www.groireland.ie/ [Accessed 05/07/2010].

JAEGER, P. T. 2002. Constitutional principles and E-Government: an opinion about
possible effects of Federalism and the separation of powers on E-Government
policies. Government Information Quarterly, 11.

REFERENCES 200

JUNEJA, G., DOURNAEE, B., NATOLI, J. & BIRKEL, S. 2008. SOA in Government: A
Law Enforcement Use Case [Online]. USA: The SOA Magazine. Available:
http://www.soamag.com/I15/0208-1.php [Accessed 15/11/2010].

KOPONEN, T. & VIRTANEN, T. 2004. A Service Discovery: a Service Broker
Approach. 37th Annual Hawaii Internation Conference on System Science.
Hawaii USA.

KOTSIOPOULOS, I. & RENTZEPOPOULOS, P. 2009. Bringing Together and
Accelerating eGovernment Research in the EU. DG Information Society and
Media European Commission.

KRAMER, J. & HAZZAN, O. 2006. The role of abstraction in software engineering.
Proceedings of the 28th international conference on Software engineering.
Shanghai, China: ACM.

LARA, R., LAUSEN, H., ARROYO, S., DE BRUIJN, J. & FENSEL, D. Year. Semantic
Web Services: description requirements and current technologies. In:
Proceedings of the International Workshop on Electronic Commerce, Agents, and
Semantic Web Services held in conjunction with the Fifth International
Conference on Electronic Commerce (ICEC 2003), 2003 Pittsburgh.

LAYNE, K. & LEE, J. 2001. Developing fully functional e-government: A four stage
model. Government Information Quarterly.

LIU, W., HUSNI, H. & PADGHAM, L. 2007. E-Service Composition Tools from a
Lifecycle Perspective. In: LU, J., RUAN, D. & ZHANG, G. (eds.) E-Service
Intelligent. Springer.

LU, L., ZHU, G. & CHEN, J. 2004. An Infrastructure for E-government Based on
Semantic Web Services. IEEE International Conference on Services Computing.
IEEE.

LU, S., BERNSTEIN, A. & LEWIS, P. 2006. Automatic workflow verification and
generation. Theoretical Computer Science, 353, 71-92.

LÜ, X. 2007. Distributed Secure Information Sharing Model for E-Government in China.
Eighth ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing. IEEE.

REFERENCES 201

LYTRAS, M. D. 2006. The Semantic Electronic Government: Knowledge Management
for citizen relationship and new assessment scenarios. Electronic Government an
International Journal, 3, 13.

MADHUSUDAN, T. 2006. A web services framework for distributed model
management Information Systems Frontiers, 9–27.

MAEDCHE, A. 2002. Ontology learning for the Semantic Web, Bosston, Kluwer
Academic.

MCGUINNESS, D. L. 2004. OWL Web Ontology Language Overview [Online].
Available: http://www.w3.org/TR/2004/REC-owl-features-20040210/ [Accessed].

MCILRAITH, S., CAO, S. T. & HONGLEI, Z. 2001. Semantic Web Services. IEEE
INTELLIGENT SYSTEMS.

MEDJAHED, B., REZGUI, A., BOUGUETTAYA, A., OUZZANI, A. M. & TECH, V.
2003a. InfrastructureFor E-governmant webservices. IEEE Internet Computing.

MEDJAHED, B., REZGUI, A., BOUGUETTAYA, A. & OUZZANI, M. 2003b.
Infrastructure for E-Government Web Services. IEEE INTERNET COMPUTING.

MENEKLIS, B., KALIONTZOGLOU, A., DOULIGERIS, C. & POLEMI, D. 2005.
Engineering and Technology Aspects of an e-Government Architecture Based on
Web Srvices. Third European Conference on Web Services. IEEE.

MOMOTKO, M., IZDEBSKI, W., TAMBOURIS, E., TARABANIS, K. & VINTAR, M.
2008. An Architecture of Active Life Event Portals-Generic Workflow Approach

Electronic Government. 6th International Conference, EGOV Regensburg, Germany.

MUGELLINI, E. P., MARIA. CHIARA. KHALED, OMAR. ABOU. PIRRI, FRANCO.
2005. eGovernment Service Marketplace: Architecture and Implementation. TED
Conference on eGovernment. Bolzano (Italy)

MUNINDAR, P., SINGH, B. & HUHNS, M. 2006. Front Matter, in Service-Oriented
Computing: Semantics Processes, Agents, Chichester, UK, John Wiley & Sons,
Ltd.

NUNAMAKER, J. F., JR. & CHEN, M. Year. Systems development in information
systems research. In: System Sciences, 1990., Proceedings of the Twenty-Third
Annual Hawaii International Conference on, 2-5 Jan 1990 1990. 631-640 vol.3.

REFERENCES 202

ONTARIOGOV. 2007. Canada Ontolrio Life events [Online].
http://www.ontario.ca/en/life_events/index.htm. Available:
http://www.ontario.ca/en/life_events/index.htm [Accessed 15/10/2010].

ONTOGOV. 2006. ONTOGOV project [Online]. http://www.ontogov.com/. Available:
http://www.ontogov.com/ [Accessed 2007].

ORACLE. 2010. Software Engineering in an SOA Environment [Online].
http://www.oracle.com/technetwork/topics/entarch/oracle-pg-soa-sw-engineering-
r3-0-176714.pdf. Available:
http://www.oracle.com/technetwork/topics/entarch/oracle-pg-soa-sw-engineering-
r3-0-176714.pdf [Accessed 2/05/2011].

PAPAZOGLOU, M. 2008. Web Services Technologies and Standards. Computing
Surveys.

PENG, Z., YANZHANG, W. & XUEHUA, W. Year. Research on the Integration in E-
government Based on Multi-Agent. In: Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technology,
2006. IEEE.

PERISTERAS, V. & TARABANIS, K. 2006. “Reengineering the public administration
modus operandi through the use of reference domain models and Semantic Web
Service technologies. AAAI Spring Symposium, The Semantic Web meets
eGovernment (SWEG). Stanford University, California, USA.

REDING, V. 2006. E-Government Developments, E-Government for All Europeans.
Australia’s E-Government Strategy – New Service Agenda. IOS press.

RETIREMENT-INVESTMENTS. 2007. National Information Centre on Retirement
Investments [Online]. Available: http://www.nicri.org.au/go/life-events/life-events
[Accessed 15/10/2010].

SABOL, T. & MACH, M. 2004. Semantic Web in e-Government. Kosice, Slovak
Republic: Faculty of Economics, Technical University of Kosice.

SANATI, F. 2010. Software Industry Practice Survey [Online]. Sydney, Australia
http://farzadsanati.blogspot.com/p/software-industry-survey.html, University of
Technology Sydney. Available: http://farzadsanati.blogspot.com/p/software-
industry-survey.html [Accessed 05/11/2010 2010].

REFERENCES 203

SANATI, F. & LU, J. 2008. Semantic Web for E-Government Service Delivery
Integration. IEEE Information Technology Next Generation (ITNG) Las Vegas
USA: IEEE.

SANATI, F. & LU, J. 2009a. Life-event Modelling Framework For E-Government
Integration. Electronic Government: An International Journal, 1, 183-202.

SANATI, F. & LU, J. 2009b. Multilevel Life-event Abstraction Framework for E-
government Service Integration. 9th European Conference on e-Government.
London England.

SAUMYA, R. 2002. How Much Government Snooping Is Okay? [Online].
http://pcworld.about.com/news/Mar122002id88684.htm. Available:
http://pcworld.about.com/news/Mar122002id88684.htm [Accessed 11/11/2010
2010].

SHAHKOOH, K. A. & ABDOLLAHI, A. 2007. A strategy-based model for e-
government planning. International Multi-Conference on Computing in the
Global Information Technology. IEEE.

SHAREEF, M. A., KUMAR, U., KUMAR, V. & DWIVEDI, Y. K. 2009. Identifying
critical factors for adoption of e-government. Electronic Government, an
International Journal, 6, 70-96.

SHENG, H. & TRIMI, S. 2008. M-government: technologies, applications and
challenges. Electronic Government, An International Journal, 5.

SHEU, P. C.-Y. & KITAZAWA, T. 2007. From Semantic objects to Semantic Software
Engineering. Journal of Semantic Computing, 1, 18.

SIEW, P. L. L., P. C. ENG, WAH. LEE. 2006. Web Services Implementation
Methodology for SOA Application IEEE International Conference on Industrial
Informatics.

SKOKAN, M. & BEDNAR, P. Year. Orchestration of public administration services with
a use of semantic technologies. In: Applied Machine Intelligence and
Informatics, 2008. SAMI 2008. 6th International Symposium on, 2008. 209-212.

SMITH, M. K., WELTY, C. & MCGUINNESS, D. L. 2003. Owl web ontology guide
[Online]. [Accessed 2011].

REFERENCES 204

SOLIMAN, K. S. 2003. E-government: a strategic operations management framework for
service delivery. E-Government. Bradford, , UK: Emerald Group Publishing
Limited.

SOMMERVILLE, I. 2004. Software Engineering, Pearson.

SOON, C. A. 2002. Domain Knowledge-Based Automatic Workflow Generation. Berlin:
Springer-Verlag.

SPAINGOV. 2008. Integrated business creation service [Online]. Available:
http://www.cat365.net/inici/default [Accessed 18/10/2010].

STANFORD-UNIVERSITY. 2009. Protégé [Online]. Medicine: Stanford Center for
Biomedical Informatics Research. Available: http://protege.stanford.edu/
[Accessed 2010].

STOJANOVIC, L., ABECKER, A., APOSTOLOU, D., MENTZAS, G. & STUDER, R.
2006a. The role of semantics in e-government service model verification and
evolution. American Association for Artificial Intelligence Spring Symposia.

STOJANOVIC, L., APOSTOLOU, D. & STOJANOVIC, N. 2006b. Change
management in e-government: OntoGov case study. Electronic Government an
International Journal, 3, 19.

SUNMICROSYSTEMS. 2002. Java BluePrints Model-View-Controller [Online].
SunMicrosystems. Available: http://java.sun.com/blueprints/patterns/MVC-
detailed.html [Accessed 23/04/2011 2011].

THAYER, R. H. & DORFMAN, M. 1977. Requirements Engineering, Los Alamitos,
IEEE Computer Society Press.

THE-WORLD-BANK. 2007. e-government definition [Online]. Available:
http://web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTINFORMATION
ANDCOMMUNICATIONANDTECHNOLOGIES/EXTEGOVERNMENT/0,,me
nuPK:702592~pagePK:149018~piPK:149093~theSitePK:702586,00.html
[Accessed 4/12/2007 2007].

THOMAS, J. & MCGOUGH, B. 2009. Kuali Architecture Standards [Online].
https://wiki.kuali.org/display/KULRICE/Architecture+(Archive+from+Original+
KTC+Work. Available:

REFERENCES 205

https://wiki.kuali.org/display/KULRICE/Architecture+(Archive+from+Original+
KTC+Work [Accessed 21/04/2011 2011].

TROCHIDIS, I., TAMBOURIS, E. & TARABANIS, K. 2006. Identifying Common
Workflow Patterns in Life-Events and Business Episodes. The second
International Conference on e-Government.

TROCHIDIS, I., TAMBOURIS, E. & TARABANIS, K. Year. An Ontology for
Modeling Life-Events. In: Services Computing, 2007. SCC 2007. IEEE
International Conference on, 2007. 719-720.

TSARKOV, D. & HORROCKS, I. 2006. FaCT++ Description Logic Reasoner: System
Description. Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006).
Springer.

TURNER, M., BUDGEN, D. & BRERETON, P. 2003. Turning software into a service.
Computer, 36, 38-44.

UKSALFORDGOV. 2007. UK Salford Government Life Events [Online].
http://www.salford.gov.uk/life-events.htm. Available:
http://www.salford.gov.uk/life-events.htm [Accessed 15/10/2010].

UMAPATHY, K. & PURAO, S. 2007. A theoretical investigation of the emerging
standards for web services. Information Systems Frontiers, 119–134.

W3C. 2004. OWL-S: Semantic Markup for Web Services [Online].
http://www.ai.sri.com/daml/services/owl-s/. [Accessed 16/11/2010].

WANG, C., LU, J. & ZHANG, G. 2008. An Ontology Data Matching Method for Web
Information Integration. Proceedings of iiWAS2008. Linz, Austria.

WOLF, P. & KRCMAR, H. Year. Needs Driven Design for eGovernment Value Webs.
In: Hawaii International Conference on System Sciences, Proceedings of the 41st
Annual, 2008. 220-220.

YU, L. 2007. Introduction to the Semantic Web and Semantic Web Services, Boca Raton,
FL, USA, Chapman & Hall/CRC.

ZHANG, H., LI, Y.-F. & TAN, H. B. K. 2009. Measuring design complexity of semantic
web ontologies. Journal of Systems and Software, 83, 803-814.

REFERENCES 206

ZHANG, L.-J., JECKLE, M., LARA, R., ROMAN, D., POLLERES, A. & FENSEL, D.
2004. A Conceptual Comparison of WSMO and OWL-S. Web Services. Springer
Berlin / Heidelberg.

ZHANG, W. & WANG, Y. 2008. Towards building a semantic grid for E-government
applications. WSEAS Transactions on Computer Research, 3, 273-282.

ZHOU, J., ZHANG, S., ZHAO, H. & WANG, M. Year. Towards Semantic Grid-Based
Enterprise Information Integration. In: Grid and Cooperative Computing GCC
2005, 2005. SGII.

ZIEGLER, P. & DITTRICH, K. R. Year. THREE DECADES OF DATA
INTEGRATION—ALL PROBLEMS SOLVED? In: 18th IFIP World Computer
Congress (WCC 2004), 2004 Toulouse, France.

ZIMMERMANN, O., KROGDAHL, P. & GEE, C. 2004. Elements of Service-Oriented
Analysis and Design [Online]. IBM. Available: http://www-
128.ibm.com/developerworks/webservices/library/ws-soad1/ [Accessed
30/05/2008].

