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Abstract

Making choices is a fundamental part of life. Whether it be the food that we eat, how we get

from A to B, or the things that we do or do not purchase, choices are made all of the time. The

ability to understand and influence these choices is valuable in many areas such as marketing,

health economics, tourism, transportation research, and public policy. Choice experiments allow

researchers in these areas to show respondents sets of options, described by attributes, and use

the attributes of the chosen options to determine how important each of the attributes are to

the ‘attractiveness’ of any option. From this information market share or policy acceptability

can be predicted.

In this thesis we look at optimal designs for the multinomial logit (MNL) model, and for

two extensions of this model. The first extension incorporates tied preferences, and is based on

the extension of the Bradley–Terry model introduced by Davidson [1970]. The second extension

allows the researcher to estimate the effect that the position of an item in the set of alternatives

has on the perceived merit of the item. This extension is based on the extension of the Bradley–

Terry model introduced by Davidson and Beaver [1977]. We prove results that give optimal

designs, both for the extensions of the Bradley–Terry model and the extensions of the MNL

model, and conduct simulations of these models. Finally, we prove results that give optimal

designs for the MNL model when the starting design is an orthogonal array constructed using

the Rao–Hamming construction, rather than a complete factorial design.
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