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Abstract

Making choices is a fundamental part of life. Whether it be the food that we eat, how we get

from A to B, or the things that we do or do not purchase, choices are made all of the time. The

ability to understand and influence these choices is valuable in many areas such as marketing,

health economics, tourism, transportation research, and public policy. Choice experiments allow

researchers in these areas to show respondents sets of options, described by attributes, and use

the attributes of the chosen options to determine how important each of the attributes are to

the ‘attractiveness’ of any option. From this information market share or policy acceptability

can be predicted.

In this thesis we look at optimal designs for the multinomial logit (MNL) model, and for

two extensions of this model. The first extension incorporates tied preferences, and is based on

the extension of the Bradley–Terry model introduced by Davidson [1970]. The second extension

allows the researcher to estimate the effect that the position of an item in the set of alternatives

has on the perceived merit of the item. This extension is based on the extension of the Bradley–

Terry model introduced by Davidson and Beaver [1977]. We prove results that give optimal

designs, both for the extensions of the Bradley–Terry model and the extensions of the MNL

model, and conduct simulations of these models. Finally, we prove results that give optimal

designs for the MNL model when the starting design is an orthogonal array constructed using

the Rao–Hamming construction, rather than a complete factorial design.



Chapter 1

Introduction and Preliminary

Definitions

This thesis is about how best to design choice experiments for three specific models. In this

chapter we provide a compendium of relevant definitions and results.

In a choice experiment, we present respondents with a series of N choice sets. Each choice

set consists of two or more options. Let there be m ≥ 2 options in a choice set. The task for

each respondent is to make a choice based only on the information provided about the options

presented in that choice set. This choice may be to indicate which option they find most appealing

or which option is least appealing, or sometimes to indicate simultaneously the ‘best’ and the

‘worst’.

In this thesis, we focus on forced choice experiments, where the respondents are compelled to

choose one or more of the options in each choice set. The alternative to this is to provide the

respondent with the opportunity not to select any of the options presented in the choice set. We

do this by adding a none of these option to each choice set.

We present the information about each option in the form of attributes, which take one of

several levels. Attributes describe certain features of an option. Let each option be described by

k attributes, which take one of `1, `2, . . ., `k levels respectively. The experimenter thinks that

these features make a contribution to the decision making process. Each option will then consist

of a combination of the attribute levels, with one level specified for each attribute. We call a

combination of attribute levels an item. This is best illustrated in an example.

EXAMPLE 1.0.1.

Adapted from Phillips et al. [2002]

This experiment was conducted to examine preferences for HIV test methods. Some of the

attributes tested, and the levels the attributes may take, are shown in the Table 1.1. We see

that there are k = 4 attributes: Location, Price, Sample collection, and Timeliness/accuracy.

The levels for the Location attribute, for example, are Public clinic, Doctor’s office, and Home,

so `1 = 3. Table 1.2 shows a typical choice set with m = 2 options that could be presented to a

respondent.

Once the choices have been collected from respondents we use the data to estimate a choice

model, such as the multinomial logit model (MNL model), formally introduced in Section 1.1.
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Attributes Levels

Location Public clinic

Doctor’s office

Home

Price $0

$10

$50

Sample collection Draw blood

Swab mouth/oral fluids

Urine sample

Timeliness/accuracy Results in 1-2 weeks, almost always accurate

Immediate results, almost always accurate

Immediate results, less accurate

Table 1.1: Attributes and levels for the HIV test experiment

Attribute Option 1 Option 2

Location Public clinic Home

Price $10 $50

Sample Collection Draw Blood Urine sample

Timeliness/Accuracy Results in 1-2 weeks, Immediate results,

almost always accurate less accurate

Imagine that you were about to undergo a HIV test.

Which testing method would you prefer? (tick one only)

Option 1 © Option 2 ©

Table 1.2: A typical choice set for the HIV test experiment
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We then use this choice model to determine the relative contribution of each of the attributes to

the desirability of the items presented in the experiment.

To estimate the model accurately, the researcher needs to ensure that these experiments do

not place an undue burden on the respondents. This need to collect as much information as

possible in as few choice sets as possible means that the efficient design of the choice sets to be

included in the choice experiment is an important consideration.

The goal of this thesis is to extend the current theory on the efficient design of choice exper-

iments. This extension includes optimal design theory that allows for ties, or for the estimation

of position effects, or that have smaller starting designs.

In this chapter, we review the existing results that are relevant to the design and analysis of

choice experiments. We begin by introducing the basic models for analysing choice experiments.

We continue by introducing a method for constructing choice experiments from the standard

designs introduced in the appendix of this chapter. We conclude by reviewing the currently

known results that give optimal designs for these choice models. The appendices to this chapter

review some useful definitions and other results from discrete mathematics, and more specifically,

design theory.

1.1 Models for Choice Experiments

In this section, we look at the models that are commonly used to analyse choice experiments.

We begin by looking at paired comparisons experiments, in particular the Bradley–Terry model.

We then look at some extensions to the Bradley–Terry model, which will form the motivation

for later chapters. We conclude this section by looking at the multinomial logit model, which

allows for an arbitrary choice set size.

1.1.1 The Bradley–Terry Model

Paired comparisons modelling was made popular by Thurstone [1927] who conducted an exper-

iment to determine the relative seriousness of a set of 19 offences. Thurstone presented pairs

of offences to the respondent, and asked them to select the offence that they considered more

serious. For example, the author asked respondents the choose between bootlegging and arson,

or between homicide and vagrancy. He presented 171 pairs in total.

The model used in Thurstone [1927] was improved upon by Bradley and Terry [1952] by

changing the distribution of the error term in the model. This improved model is called the

Bradley–Terry paired comparison model, or simply the Bradley–Terry model.

The Bradley–Terry model was first used to analyse information obtained during taste testing

experiments. In these experiments, the respondent was presented with two food samples, and

was asked to indicate which tasted better. We estimate the relative merit of each item using

the preferences collected. We denote the merit of an item Ti as πi, and impose the normalising

constraint
t∏
i

πi = 1.

We use these merits to find the probability of selecting a particular item Ti when compared

to another item Tj . When item Ti appears with item Tj in a choice set, then the probability
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that item Ti is selected from the choice set is

P (Ti|{Ti, Tj}) =
πi

πi + πj
.

Bradley and Terry [1952] derive the likelihood function and maximum likelihood estimates for

the entries in πππ when testing particular hypotheses, and consider appropriate test statistics. The

likelihood function is the joint distribution function for the model parameters given a particular

sample. That is, if we let f(x|θθθ) denote the joint probability density function (PDF) of the

independent sample X = (X1, . . . , Xn), then if we observe x the likelihood function is given by

L(θθθ|x) = f(x, θθθ).

We can use this likelihood function to find the estimates for the parameters in θθθ that fit the

data well. We call these values the maximum likelihood estimators (MLEs). The MLEs θ̂θθ for the

parameters θθθ are the values of θθθ that maximise the likelihood function.

In practice, we maximise the log–likelihood function by differentiating with respect to each

parameter, and setting the derivative to 0. The resulting system of equations are called the

normal equations.

We find the MLEs by solving the normal equations simultaneously. We can also find the

variances and covariances of the MLEs. The Fisher information matrix Iξ(θθθ)ij for a design ξ is

the inverse of the variance–covariance matrix, and has elements

Iξ(θθθ)ij = −Ex
(
∂2 ln(f(xxx,θθθ))

∂θiθj

)
= Ex

((∂ ln(f(xxx,θθθ))

∂θi

)(∂ ln(f(xxx,θθθ))

∂θj

))
.

If we let rijb be the rank given to item Ti in the bth repetition of the comparison between

items Ti and Tj , then the likelihood function is given in the next theorem.

THEOREM 1.1.1.

(Bradley and Terry [1952]) The likelihood function for the Bradley–Terry model for s repetitions

of N pairs of items is given by

L(πππ|r) =

∏
i

π
2s(N−1)−

∑
j 6=i

∑
b rijb

i∏
i<j

(πi + πj)
n{i,j}

,

where n{i,j} is the number of times the choice set {Ti, Tj} is presented in the choice experiment.

Both Zermelo [1929] and Ford [1957] consider the convergence requirements for paired compar-

isons models. Zermelo [1929] examines the convergence requirements for the Thurstone paired

comparisons model, and Ford [1957] considers the convergence requirements for the Bradley–

Terry model. The assumption that guarantees the convergence of πππ estimates in the Bradley–

Terry Model is “if in every possible partition of the objects into two non–empty subsets, some

object in the second set has been preferred at least once to some object in the first set” Ford

[1957].

The Bradley–Terry model is further developed by [Bradley, 1954a,b, 1955]. In particular,

Bradley [1955] considers some large sample properties of the parameter estimates. In Bradley
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[1955], Bradley gives the expectation, variance and covariance of the number of times an item is

chosen. Bradley continues by giving asymptotic joint distributions for the maximum likelihood

estimates of the parameters in the πππ vector. We let wi|C be a selection indicator which takes the

value 1 if item Ti is selected from the choice set C = {Ti, Tj}, and zero otherwise. We also let

wi =
∑
C|Ti∈C wi|C .

THEOREM 1.1.2.

(Bradley [1955]) The selection indicator wi|{i,j} is a binomial random variable with expectation

πi(πi + πj)
−1 and variance πiπj(πi + πj)

−2. Then

Eπ(wi) =
∑

C|Ti∈C

πi
(πi + πj)

,

Varπ(wi) =
∑

C|Ti∈C

πiπj
(πi + πj)2

,

and

Covπ(wi, wj) =
−πiπj

(πi + πj)2
.

THEOREM 1.1.3.

(Bradley [1955]) If π̂1, . . . , π̂t−1 are the maximum likelihood estimates of π1, . . . , πt−1 then the

joint limiting distribution of
√
n(π̂1 − π1), . . . ,

√
n(π̂t−1 − πt−1) is a normal distribution with

zero mean, subject to some regularity conditions.

One of the original limitations of the Bradley–Terry model was “where observations do not

come from a single population but from distinct but related populations, related in the sense

that some populations reasonably may be assumed to have some parameters in common”. This

observation is made in Bradley and Gart [1962].

Bradley and Gart [1962] introduced some conditions that ensured that the estimators for the

parameters remained consistent, and that the asymptotic distributions were unaltered, despite

sampling from associated populations. These conditions are:

• Existence of the first three partial derivatives of the distribution function;

• The first three derivatives of the distribution function must be bounded and convergent

almost everywhere; and

• The information matrix for the parameter estimates is positive definite,

where we define associated populations to be a set of distinct, but related, populations.

Another restriction that was originally placed on the Bradley-Terry model was that each pair

needed to be replicated the same number of times. This restriction is relaxed in Dykstra [1960],

who derives likelihood estimates and sets up appropriate hypothesis tests when the number of

times each pair appears in the experiment is allowed to vary.

The Bradley-Terry model has some useful properties. The first is that the model is consistent

with a set of choice axioms proposed by Luce [1959]. Luce introduced a set of choice axioms

based on a probability measure P ∈ [0, 1] to describe and model the behaviour of a rational

individual.
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AXIOM 1.1.4.

Luce [1959] (Luce’s Choice Axiom)

Let T be a finite subset of U (the set of all possible alternatives) such that for every S ⊂ T , PS

is defined.

1. If P (x, y) 6= 0, 1, then for all x, y ∈ T , and all R ⊂ S ⊂ T , PT (R) = PS(R)PT (S), and

2. If P (x, y) = 0 for some x, y ∈ T , then for every S ⊂ T , PT (S) = PT−{x}(S − {x}).

We demonstrate these ideas with an example.

EXAMPLE 1.1.1.

Consider the choice of the mode of transport used to travel to work. Suppose that there are four

options, car, car pool, bus and train. The first two of these modes are private, and the other

two modes are public. Then according to the first part of Luce’s choice axiom, the probability

of choosing to drive a car is

P (car) = P (private)× P (car|private).

According to the second part of the axiom, if P (train) = 0 then

P (public) = P (public but not train).

Luce discussed this model in terms of utility. Utility is the perceived benefit that the re-

spondent experiences by choosing a particular option. If an option T1 has a higher utility than

another option T2, then a rational respondent will choose T1. We can decompose utility into two

components, a deterministic component and a stochastic component. That is, the utility of an

item Ti experienced by respondent α can be expressed as

Uαi = Vαi + εαi,

where Vαi is the deterministic term based on observed attributes, and εαi is the stochastic term,

which captures any attributes that are relevant, but not specified in Vαi.

Utility is linked to the Bradley–Terry model by letting

πi = eVi .

The deterministic component of utility, Vαi, can be further decomposed into a linear com-

bination of attribute levels, and interactions between attributes. In matrix form this would

be

UUUα = BβββXXXα + εεεα,

where XXXα is the design matrix for respondent α, and Bβββ is a matrix of estimable contrasts, with

contrast coefficients in B. The goal of a choice experiment is to produce good estimates for the

contrasts in Bβββ, and thus make predictions about respondent behaviour.

Bradley and El-Helbawy [1976] discuss the estimation of contrasts when fitting a Bradley-

Terry model, and derive maximum likelihood estimators for the matrix of contrast effects, Bβββ.

The following definition sets up the notation Bradley and El–Helbawy used to estimate contrasts

of the attribute effects, which we will use later.
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El-Helbawy and Bradley [1978] show that the information matrix for
√
sNπ̂ππ can be expressed

as

I(πππ)ij =
∑
i1<i2

λ{i1,i2}Eπ

((
∂ ln f{i1,i2},α(w,πππ)

∂πi

)(
∂ ln f{i1,i2},α(w,πππ)

∂πj

))
,

where the summation is over all distinct choice sets in the design.

We define Σ(πππa) to be the variance–covariance matrix for
√
sNγγγ, where γγγ = ln(πππ). Then

El-Helbawy and Bradley [1978] show that the estimates for Bhγγγ are statistically consistent, and

find the asymptotic distributions of these estimates.

THEOREM 1.1.5.

(El-Helbawy and Bradley [1978]) Given that

1. In every partition of the indices 1, . . . , t into two non–empty subsets S1 and S2 there exists

i ∈ S1 and j ∈ S2 such that λ{i,j} > 0 where we define

λ{i,j} = lim
N→∞

n{i,j}

N
,

for i 6= j, and i, j = 1, . . . , t,

2. each element of the probability vector πππ is positive, and

3.

(
111t

BBBa

)
γγγ = 000a+1,

then
√
N(γ̂γγ − γγγ) has a limiting distribution function that is singular, t-variate normal in the

space of (t− a− 1) dimensions with zero mean vector and variance–covariance matrix

Σ1(πππ) = BhΣ(πππ)Bh = (C(πππ))−1.

El-Helbawy and Bradley [1978] show that the entries of Λ(πππ) = (Σ(πππ))−1 are given by

Λ(πππ)ii = πi
∑

C|Ti∈C

λ{i,i2}
πi

(πi + πi2)2
, and

Λ(πππ)ij = −λ{i,j}
πiπj

(πi + πj)2
,

where the summation is over all choice sets, and λ{i,j} was defined in Theorem 1.1.5. Under the

null hypothesis of equal merits, these entries become

Λ(πππ0)ii =
1

4

∑
C|Ti∈C

λ{i,i2}, and

Λ(πππ0)ij = −1

4
λ{i,j}.

1.1.2 Extensions of the Bradley–Terry Model

Researchers have made several extensions to the Bradley–Terry model to accommodate differ-

ent situations which arise in investigating choice behaviour. Amongst these are models that

incorporate ties and position effects, and loglinear forms for the Bradley–Terry model. We now

introduce these extensions. Chapters 2–5 look at these models in greater detail, as well as some

generalisations of these models.
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Incorporating Ties

As we have mentioned previously, in most discrete choice experiments we force the respondent

to choose one of the options presented, or in some cases we allow them to choose none of them.

There are some occasions where this is not ideal, and we would like to allow a respondent to find

sets of two or more options equally attractive.

Before we discuss how ties could be incorporated into utility theory, let us consider the

meaning of a tied preference. In the absence of tied preferences, if two options were equally

preferable we would expect that the respondent would choose each of the options with probability

0.5. In the presence of repeated choice sets, this may be interpreted as inconsistency, rather than

random selection, on the part of the respondent. It is important to note that even by adding the

option of tied preferences, there is still a random element in the choices made by respondents.

That is, a respondent may state a tied preference between two options on one occasion, but

choose one of the items when presented with the same pair on a different occasion.

A tied preference does not mean that the respondent is choosing both of the options, nor

does it mean that are they choosing neither of the options. While this might be the intention

when allowing the respondent to state equal preferences, it might not be reason the respondent

made that decision. The respondent might choose to tie because they do not want to accept (or

reject) either of the options, or perhaps even because they are unable to evaluate the options.

From this point on, we assume that a respondent declares a tie only when they find the options

equally preferable.

In terms of utility theory, we can interpret this indifference as a result of the utilities of the

two options being too close in value to be distinguishable by the respondent. This idea was

initially introduced by Glenn and David [1960], who extended the Thurstone–Mosteller model

to incorporate ties. Rao and Kupper [1967] were the first authors to incorporate ties into the

Bradley–Terry model.

THEOREM 1.1.6.

(Rao and Kupper [1967]) Suppose that there exists a utility threshold η such that if the utility

differs by less than η then the respondent will declare a tie, and let θ = eη. Then the preference

probabilities will be

P (Ti|{Ti, Tj}) =
πi

πi + θπj
,

P (Tj |{Ti, Tj}) =
πj

θπi + πj
, and

P ({Ti, Tj}|{Ti, Tj}) =
πiπj(θ

2 − 1)

(πi + θπj)(θπi + πj)
.

We call this the Rao–Kupper ties model.

One failing of the Rao–Kupper model is that it is not consistent with Luce’s choice axiom

as shown by Davidson [1970]. That is, the Rao–Kupper ties model does not satisfy the criterion

that for P (Ti|{Ti, Tj}) 6= 0, we require

P (Ti|{Ti, Tj})
P (Tj |{Ti, Tj})

=
πi
πj
,

as is the case in the Bradley–Terry model. Davidson then derived a modification of the Bradley–

Terry model that incorporates ties and is consistent with this criterion. Davidson suggests
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that the probability of a tie between items should be proportional to the geometric mean of the

merits of the items that are found to have similar merit (i.e. π{i,j} = ν
√
πiπj). As a consequence,

when the utilities of the items are similar, the probability of a respondent stating that they are

indifferent between the items will be greater. The Davidson ties model is introduced in the next

theorem.

THEOREM 1.1.7.

(Davidson [1970]) Assuming that ν is independent of items Ti and Tj, then the preference prob-

abilities with ties incorporated into the Bradley–Terry model are

P (Ti|{Ti, Tj}) =
πi

πi + πj + ν
√
πiπj

,

P (Tj |{Ti, Tj}) =
πj

πi + πj + ν
√
πiπj

, and

P ({Ti, Tj}|{Ti, Tj}) =
ν
√
πiπj

πi + πj + ν
√
πiπj

.

Davidson suggests that ν ≥ 0 , or rather 1/ν is a measure of how easily the respondent can

discriminate between items. If ν = 0, then the respondent will never state a tied preference, since

P (Ti, Tj |Ti, Tj) = 0
πi+πj+0 . In this situation, the Davidson ties model simplifies to the Bradley–

Terry model. Furthermore, Davidson assumes that if there are no tied preferences stated by any

of the the respondents then the Bradley–Terry model should be used instead. We make the same

assumption in this thesis.

As ν becomes infinitely large, the probability that the respondent states a tied preference

approaches 1. Suppose that πi = πj = 1. If ν = 0, then P (Ti|Ti, Tj) = P (Tj |Ti, Tj) = 0.5, and

P (Ti, Tj |Ti, Tj) = 0. If ν = 1, then P (Ti|Ti, Tj) = P (Tj |Ti, Tj) = P (Ti, Tj |Ti, Tj) = 1/3. Finally

if ν = 4, then P (Ti|Ti, Tj) = P (Tj |Ti, Tj) = 1/6, and P (Ti, Tj |Ti, Tj) = 2/3. So we see that as ν

increases, the probability that the respondent states a tied preference increases as well.

de Dios Ortúzar et al. [2000] presents a paired comparisons experiment with ties to determine

the demand for a cycle–way network in Santiago, Chile. While the authors do not elaborate on

how these tied preferences are incorporated into the modelling, the survey instrument that they

use does give the option of stating that the items presented are equally preferable.

Grutters et al. [2008] also give respondents the option of a tied preference in their paired

comparisons experiment to determine the willingness to pay for hearing aids. These authors

used a random effects ordered probit model to model the choice behaviour. Such an approach

is reasonable in a paired comparisons experiment, but there is no intuitive generalisation to an

arbitrary choice set size.

Incorporating Position Effects

Another extension to the Bradley–Terry model that has been considered in the literature is the

incorporation of position effects. A position effect models incorporates the effect that the position

the item takes within the choice set has on the probability that the item will be selected. Beaver

and Gokhale [1975] were the first authors to consider incorporating position effects, which they

assumed were additive, into the choice model.

Davidson and Beaver [1977] argue that it is be more natural to consider a multiplicative

order effect for choice sets of size 2. Suppose that there is a new parameter ψij ≥ 0 which, when

multiplied by the utility of the treatment presented second, inflates or deflates the merit of an
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item to reflect the effect of the item being presented in the second position of the choice set.

Then the value of ψij determines how the position effect alters the merit of an item. If ψij < 1

then by presenting an item in the second position, it is less likely that the respondent will choose

the item than if it were presented in the first position, all other things being equal. Conversely, if

ψij > 1 then by presenting the item in the second position, it is more likely that the respondent

would choose the item than if it were in the first position, all other things being equal. If ψij = 1

then there is no position effect at all.

THEOREM 1.1.8.

(Davidson and Beaver [1977]) Suppose that the items Ti and Tj are presented in that order.

Then the selection probabilities of the Davidson–Beaver position effects model are

P (Ti|(Ti, Tj)) =
πi

πi + ψijπj
, and

P (Tj |(Ti, Tj)) =
ψijπj

πi + ψijπj
.

We call this the Davidson–Beaver position effects model. For simplicity, we will assume that

the position effect is independent of the items in the choice set. That is, ψij = ψ for all i 6= j.

Tharp and Marks [1990] undertook a study to determine whether such position effects were

present when comparing three different brands of either beer, cars, or furniture. In these experi-

ments the researchers performed an analysis of variance on the partworth utilities, and found no

significant position effect. Chrzan [1994] also tested the effect of position, but on the selection

of a mail order fashion accessory clubs. He found that position effects did exist when branded

alternatives were used.

van der Waerden et al. [2006] also considered the effect of the position of an item on the

perceived merit on the item when comparing modes of transport. Like Chrzan [1994], the alter-

natives were labelled, in this case the labels were bicycle, public transport and car. The authors

found a small but significant position effect, with respondents appearing to focus on the items

presented later in the choice set.

Incorporating Ties and Position Effects

Davidson and Beaver [1977] extend the Davidson–Beaver position effects model to incorporate

ties. The authors used the methods introduced by Rao and Kupper [1967] and Davidson [1970]

to incorporate ties. The next theorem gives the extended Davidson ties model.

THEOREM 1.1.9.

(Davidson and Beaver [1977]) Suppose that the items Ti and Tj are presented in that order.

Then the selection probabilities of the Davidson–Beaver extension of the Davidson ties model to

incorporate position effects are

P (Ti|(Ti, Tj)) =
πi

πi + ψijπj + ν
√
πiπj

,

P (Tj |(Ti, Tj)) =
ψijπj

πi + ψijπj + ν
√
πiπj

, and

P ({Ti, Tj}|(Ti, Tj)) =
ν
√
πiπj

πi + ψijπj + ν
√
πiπj

.
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Each of the models presented in this section can be expressed as a loglinear model. Fienberg

and Larntz [1976] show that the expected number of times that one option was selected over

another has the same maximum likelihood estimates as those for the loglinear model. The

loglinear model for the Bradley–Terry model is given by

ln(mij1) = Vi +Aij , and

ln(mij2) = Vj +Aij ,

where mij1 = nijpij1 is the expected number of times item Ti will be selected when items Ti and

Tj are presented in a pair, and Vi is the deterministic component of the utility of item Ti. Aij

is a normalising constant, and is the effect of the choice set as a whole in the final model. The

loglinear form of the Davidson Ties model is given in Critchlow and Fligner [1991], and is

ln(mij1) = Vi +Aij ,

ln(mij2) = Vj +Aij , and

ln(mij3) = ln(ν) +
1

2
(Vi + Vj) +Aij .

The loglinear form for the Davidson–Beaver position effects model, as introduced by Fienberg

[1979], is

ln(mij1) = Vi + ln(ψ1) +Aij ,

ln(mij2) = Vj + ln(ψ2) +Aij , and

ln(mij3) = ln(ν) +
1

2
(Vi + Vj) +Aij .

Without ties, the position effects model becomes

ln(mij1) = Vi + ln(ψ1) +Aij , and

ln(mij2) = Vj + ln(ψ2) +Aij .

One restriction on the Bradley–Terry model and on all of the models presented in this section

is that the respondent compares only two options at a time. It is sometimes more efficient to

compare more than two items at a time. To do this, a new model is required. We discuss this in

the next section.

1.1.3 The Multinomial Logit Model

One of the disadvantages of the Bradley-Terry model is that it restricts the experiment to paired

comparisons. This means that it is not possible to model the selection of one item from a set of

three or more items.

Luce [1959] extends the Bradley-Terry model to accommodate the comparison of more than

two items. Suppose that we present m items C = {Ti1 , . . . , Tim} to the respondent. Then we can

estimate a merit, πia , for each of these items. As in the Bradley–Terry model, we let Vi = ln(πi)

be the deterministic part of the utility function. Then the probability that the item Ti ∈ C is

chosen is

P (Ti|C) =
πi∑m
a=1 πia

.

We call this model the multinomial logit model (MNL model). In this form, we notice that the

Bradley–Terry model is a special case of the MNL model with m = 2. The MNL assumes that
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the unobserved components of the utilities, εαj , are independently and identically distributed

with a Type I extreme value distribution with a mean of 0. The probability density function for

this random variable is

f(εαj) = e−εαje−e
−εαj

, where −∞ < ε <∞.

McFadden [1973] shows that this model is consistent with Luce’s choice axiom.

Burgess and Street [2003] show that the entries in the information matrix for the estimation

of the entries in γγγ = ln(πππ) are given by

Λ(πππ)ii = πi
∑

C|Ti∈C

λC
(
(
∑m
a=1 πia)− πi

)
(
∑m
a=1 πia)

, and

Λ(πππ)ij = −πiπj
∑

C|Ti,Tj∈C

λC
(
∑m
a=1 πia)

,

where λC = nC/N , and nC is the number of times the choice set C = {Ti1 , Ti2 , . . . , Tim} appears

in the experiment. Under the null hypothesis of equal merits, these entries become

Λ(πππ0)ii =
m− 1

m2

∑
C|Ti∈C

λC , and

Λ(πππ0)ij = − 1

m2

∑
C|Ti,Tj∈C

λC .

The MNL model assumes what is called Independence from Irrelevant Alternatives (IIA). This

means that the probability of choosing an option Ti over another option Tj does not depend on

any of the other options in the choice set. This also means that when an option is added or

removed, that the change in selection probability is proportional across all options in the choice

set. This is called proportional substitution. That is, if we change an attribute of item Tp, and

denote the probability before the change with superscript 0, and after the change with superscript

1, we have
P 1
ni

P 1
nj

=
P 0
ni

P 0
nj

.

While the IIA assumption is a very useful assumption in terms of modelling ease, it is occa-

sionally an inappropriate assumption. The next example show a case where IIA might reasonably

be violated.

EXAMPLE 1.1.2.

Recall the AIDS test experiment in Example 1.0.1. Suppose that we present the choice set in

Table 1.3 to the respondents, and the options are selected in the proportions given in the last

row of the table. Notice that the proportion of respondents who selected Option 2 is four times

the proportion who selected Option 1.

Now suppose that we add a new option, identical to Option 1 except that the test is performed

by Doctor B. We would expect that the selection proportions for Options 1 and 3 would be equal.

From the IIA assumption, the proportion for respondents selecting Option 2 must still be four

times the proportion selecting Option 1. Then the choice set and selection proportions become

those in Table 1.4.

It is unreasonable to suggest that, by adding another generic doctor with identical attributes

to the first, half of the respondents who preferred the home test over a doctors appointment

would now prefer a doctors appointment over the home test.
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Attribute Option 1 Option 2

Location Doctor A Home

Price $100 $10

Sample Collection Draw Blood Swab mouth

Timeliness/Accuracy Results in 1-2 weeks, Immediate results,

almost always accurate less accurate

Selection Proportion 20% 80%

Table 1.3: Choice set for AIDS test experiment with selection proportions

Attribute Option 1 Option 2 Option 3

Location Doctor A Home Doctor B

Price $100 $10 $100

Sample Collection Draw Blood Swab mouth Draw Blood

Timeliness Results in 1-2 weeks, Immediate results, Results in 1-2 weeks,

/Accuracy almost always accurate less accurate almost always accurate

Selection Proportion 16.7% 66.7% 16.7%

Table 1.4: Choice set for AIDS test experiment with additional option and selection proportions

1.2 Choice Designs from Fractional Factorial Designs

In this section, we look at a method for constructing of stated choice experiments from some

standard designs. Appendix 1.B provides a review of these standard designs. We will use the

designs constructed using this method to form the set of competing designs later in the thesis.

We begin with a starting design. The starting design is an N × k array, usually a factorial

design or an orthogonal array. The N rows in this starting design form the first options in each

of the N choice sets.

EXAMPLE 1.2.1.

Consider the experiment introduced in Example 1.0.1. This experiment has 4 3–level attributes.

A potential starting design is the OA[9, 4, 3, 2] in Table 1.5. This means that the first option in

the last choice set is (2210), which translates to the item described in Table 1.6.

In order to obtain the other options in the choice set, Burgess and Street [2005] suggest the

use of generators, as reviewed in Appendix 1.A. If we have m options in each choice set, then we

need m− 1 further generators to obtain the remaining options from the starting design since we

may as well let ggg1 = (00 . . . 0). In general, a choice set is generated using a set of m generators

G = (ggg1 = 0, ggg2, . . . , gggm).

The next example illustrates this idea.

EXAMPLE 1.2.2.

Suppose that we have an experiment with m = 3 and `1 = `2 = `3 = `4 = 3, and that we add two
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0 0 0 0

0 1 1 1

0 2 2 2

1 0 1 2

1 1 2 0

1 2 0 1

2 0 2 1

2 1 0 2

2 2 1 0

Table 1.5: An OA[9, 4, 3, 2]

Attribute Option 1

Location Home

Price $50

Sample Collection Swab mouth/oral fluids

Timeliness/Accuracy Results in 1-2 weeks,

almost always accurate

Table 1.6: The option described by the last row of the OA in table 1.5

generators to the starting design, as shown in Table 1.7. Let the first of these be ggg2 = (0121).

Then the first attribute of each item remains unchanged, the second and fourth attributes of

each item increase by 1 modulo 3, and the third attribute increases by 2 modulo 3. This gives

the second option in each choice set, as given in the second set of columns in Table 1.7. Similarly,

we add ggg3 = (1220) to the starting design to obtain the third option of each choice set. Then

each row describes a choice set of size 3, which we would present in turn to the respondent.

We can characterise a set of generators by looking at which options differ in which attributes.

For example, options 2 and 3 in Example 1.2.2 differ in the first, second and fourth attributes.

We define a difference ddd between two options a and b to be a vector of length k, there the qth entry

is 1 if the qth attribute takes different levels in these options, and 0 otherwise. So the difference

between options 2 and 3 in Example 1.2.2 is ddd = (1101). We can combine these differences into

a single vector containing all m(m− 1)/2 pairwise differences. We call this the difference vector,

which is denoted by

vvv = (ddd1, ddd2, . . . , dddm(m−1)/2).

We now find the difference vector for the set of generators in our example.

EXAMPLE 1.2.3.

Consider Example 1.2.2. There, we constructed a choice experiment using the set of generators

G = (ggg1 = (0000), ggg2 = (0121), ggg3 = (1220)).

The first and second options differ in attributes 2, 3, and 4, so we express the difference between

this pair of options as ddd = (0111). Similarly, the difference between options 1 and 3 is ddd = (1110),
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Option 1 Option 2 Option 3

0 0 0 0 0 1 2 1 1 2 2 0

0 1 1 1 0 2 0 2 1 0 0 1

0 2 2 2 0 0 1 0 1 1 1 2

1 0 1 2 1 1 0 0 2 2 0 2

1 1 2 0 1 2 1 1 2 0 1 0

1 2 0 1 1 0 2 2 2 1 2 1

2 0 2 1 2 1 1 2 0 2 1 1

2 1 0 2 2 2 2 0 0 0 2 2

2 2 1 0 2 0 0 1 0 1 0 0

Table 1.7: The 34 choice experiment from Example 1.2.2

and the difference between options 2 and 3 is ddd = (1101). Thus the difference vector for this set

of generators is

vvv = ((0111), (1110), (1101)).

EXAMPLE 1.2.4.

Consider a smaller version of the design in Example 1.2.2 with only two attributes which take

three levels each. Then we can use the 32 full factorial design as the starting design. Suppose

that we use the set of generators

G = (ggg1 = (00), ggg2 = (01), ggg3 = (21)).

Then we obtain the choice sets in Table 1.8. This set of generators has the difference vector

vvv1 = ((01), (10), (11)),

where the differences are written in lexicographic order. This is acceptable since the order of

options within a choice set is immaterial at this point. Table 1.9 gives all of the other distinct

sets of generators that have this difference vector and contain 00. Table 1.10 shows all distinct

difference vectors that give rise to choice sets without repeated items when k = 2 and `1 = `2 = 3.

A sample set of generators for each difference vector is also given.

When considering a choice experiment with m options in each choice set, and each option

described by k attributes, there are several possible difference vectors. We denote these difference

vectors by {vvv1, vvv2, . . . , vvvj}. For the set of competing designs, if we assume that there are no

repeated items in any single choice set, there are no repeated choice sets in an experiment, and

that all distinct choice sets characterised by a particular difference vector appear equally often

in the experiment, then we can define a series of constants that describe the choice experiment,

as did Burgess and Street [2005]. Let

• ivvvj be an indicator of whether all choice sets with difference vector vvvj appear in the exper-

iment,

• cvvvj be the number of choice sets containing the item 00 . . . 0 with the difference vector vvvj ,

• xvvvj ;ddd be the number of times the difference ddd appears in the difference vector vvvj ,
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Option 1 Option 2 Option 3

0 0 0 1 2 1

0 1 0 2 2 2

0 2 0 0 2 0

1 0 1 1 0 1

1 1 1 2 0 2

1 2 1 0 0 0

2 0 2 1 1 1

2 1 2 2 1 2

2 2 2 0 1 0

Table 1.8: The 32 choice experiment from Example 1.2.4

00 01 10

00 01 20

00 02 10

00 02 20

00 01 12

00 02 11

00 01 22

00 02 21

Table 1.9: All sets of generators with difference vector vvv = ((01), (10), (11))

Difference Vector Sample Generator

01 01 01 00 01 02

01 10 11 00 01 10

01 11 11 00 01 12

10 10 10 00 10 20

10 11 11 00 10 22

11 11 11 00 11 22

Table 1.10: Difference vectors for an experiment with k = 2 and `1 = `2 = 3



1.2 Choice Designs from Fractional Factorial Designs 17

and let yddd be defined as

yddd =
2

Nm
∏k
q=1(lq − 1)iq

∑
j

cvvvj ivvvjxvvvj ;ddd.

We now see how these constants relate to our example.

EXAMPLE 1.2.5.

Consider the difference vector vvv1 from Example 1.2.4. Since there are 8 sets of generators

characterised by difference vector vvv1 with 00 in the first position of the choice set, one for each

distinct sets of generators in Table 1.9, we have cvvv1 = 8. If all of the choice sets that are

characterised by this difference vector are included in the experiment, then ivvv1 = 1, and if none

of the choice sets characterised by vvv1 are included in the experiment, then ivvv1 = 0. Finally, we

have xvvv1,(00) = 0, xvvv1,(01) = 1, xvvv1,(10) = 1, and xvvv1,(11) = 1. Note that in our class of competing

designs either all choice sets characterised by a particular difference vector are included, or none

of them are.

1.2.1 Contrasts

Next, we consider the construction of contrast matrices for choice designs when main effects are

of interest. These constructions were introduced in Burgess and Street [2005], and are discussed

in more detail in Street and Burgess [2007]. We begin with a matrix of orthogonal polynomial

contrast coefficients for an `q level attribute, denoted by B`q . For example, a 2 level attribute

will have a contrast matrix

B2 =
1√
2

[
−1 1

]
,

and a 3 level attribute will have a contrast matrix

B3 =

 −1√
2

0 1√
2

1√
6

−2√
6

1√
6

 .
These form the building blocks for the contrast matrices when factorial starting designs are

used. We now consider the construction of contrast matrices for full factorial starting designs, or

subsets of attributes that form a full factorial design. In Chapter 6, we continue this discussion,

considering the construction of contrast matrices for fractional factorial starting designs. We will

begin with an example, and then look at the general case.

EXAMPLE 1.2.6.

In this example, we will construct the contrast matrix for the estimation of main effects for the

first option in Table 1.8. The first option in this table gives the possible items in lexicographic

order. The items form the column labels of the contrast matrix.

Consider the first attribute. As this attribute can take levels 0, 1, or 2, (0, 1, 2) is a row vector

that contains the possible levels of the first attribute. Notice that each entry of this levels vector

appears three times in a row in the first column of option 1. We can turn this into a vector of

levels by taking the Kronecker product of (0, 1, 2) and jjjT3 , a row vector containing three 1s, to

give

(0, 1, 2)⊗ jjjT3 = (0, 0, 0, 1, 1, 1, 2, 2, 2).
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This gives the levels that the first attribute takes in each of the first options of the choice

experiment. Since the contrast matrix B3 has columns containing the contrast coefficients cor-

responding to levels 0, 1, and 2 respectively, the rows of the contrast matrix corresponding to

the main effect of the first attribute are given by

B3 ⊗
1√
3
jjjT3 =

 −1√
2

0 1√
2

1√
6

−2√
6

1√
6

⊗ 1√
3

[
1 1 1

]

=
1√
3

00 01 02 10 11 12 20 21 22 −1√
2

−1√
2

−1√
2

0 0 0 1√
2

1√
2

1√
2

1√
6

1√
6

1√
6

−2√
6

−2√
6

−2√
6

1√
6

1√
6

1√
6

 ,

where we multiply jjjT3 by 1√
3

to satisfy the scale requirement for contrast coefficients.

Now consider the second attribute. The second attribute also takes levels 0, 1, or 2. The

sequence (0, 1, 2) appears three times when reading down the second column of the first option.

Again, we use Kronecker products to obtain a row vector corresponding to the levels of the

second attribute. We have

jjjT3 ⊗ (0, 1, 2) = (0, 1, 2, 0, 1, 2, 0, 1, 2).

Then we can make the same transformation to B3 to obtain the contrast coefficients correspond-

ing to the main effect of the second attribute. After scaling, this gives

1√
3
jjjT3 ⊗B3 =

1√
3

[
1 1 1

]
⊗

 −1√
2

0 1√
2

1√
6

−2√
6

1√
6



=
1√
3

00 01 02 10 11 12 20 21 22 −1√
2

0 1√
2

−1√
2

0 1√
2

−1√
2

0 1√
2

1√
6

−2√
6

1√
6

1√
6

−2√
6

1√
6

1√
6

−2√
6

1√
6

 .
Then we see that the scaled contrast matrix for the estimation of main effects is

BF =
1√
3

00 01 02 10 11 12 20 21 22

−1√
2

−1√
2

−1√
2

0 0 0 1√
2

1√
2

1√
2

1√
6

1√
6

1√
6

−2√
6

−2√
6

−2√
6

1√
6

1√
6

1√
6

−1√
2

0 1√
2

−1√
2

0 1√
2

−1√
2

0 1√
2

1√
6

−2√
6

1√
6

1√
6

−2√
6

1√
6

1√
6

−2√
6

1√
6



=

 B3 ⊗ 1√
3
jjjT3

1√
3
jjjT3 ⊗B3

 .
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In general, we consider a complete factorial design F , with k attributes, which take

`1, `2, . . . , `k levels respectively. We can order the combinations of attribute levels in lexico-

graphic order, giving

0 0 . . . 0 0

0 0 . . . 0 1
...

...
...

...

0 0 . . . 0 `k − 1

0 0 . . . 1 0
...

...
...

...

`1 − 1 `2 − 1 . . . `k−1 − 1 `k − 1.

If we order the columns of the contrast matrix to correspond to the items in this order, we

obtain a neat structure for the contrast matrix. We use Kronecker products to describe this

structure.

Consider the first attribute. The first `2 × `3 × . . . × `k columns of the contrast matrix will

correspond to attribute level 0. The next `2 × `3 × . . .× `k columns of the contrast matrix will

correspond to level 1. This pattern continues until the final `2 × `3 × . . . × `k columns of the

contrast matrix, which correspond to level `q − 1. then we can express the rows of the contrast

matrix corresponding to the main effect contrasts for the first attribute as

B`1 ⊗
1√
`2
jjjT`2 ⊗ . . .⊗

1√
`k
jjjT`k ,

where jjj`q is a vector containing `q 1s.

Now consider the second attribute. When written in lexicographic order, we see `3×`4×. . .×`k
0s, followed by `3 × `4 × . . .× `k 1s, and so on. this sequence is repeated `1 times. As a result,

we may express the rows of the contrast matrix corresponding to the main effect contrasts for

the second attribute as
1√
`1
jjjT`1 ⊗B`2 ⊗

1√
`3
jjjT`3 ⊗ . . .⊗

1√
`k
jjjT`k .

We can continue this process until we reach the final attribute which, when written in lexi-

cographic order, appear as `1 × `2 × . . .× `k−1 repetitions of (0, 1, 2, . . . , `k − 1)T . Then we can

express the rows of the contrast matrix corresponding to the main effect contrasts for the final

attribute as
1√
`1
jjjT`1 ⊗ . . .⊗

1√
`k−1

jjjT`k−1
⊗B`k .

Finally we obtain the main effect contrast matrix

B =



B`1 ⊗ 1√
`2
jjjT`2 ⊗ 1√

`3
jjjT`3 ⊗ . . . ⊗ 1√

`k−1

jjjT`k−1
⊗ 1√

`k
jjjT`k

1√
`1
jjjT`1 ⊗ B`2 ⊗ 1√

`3
jjjT`3 ⊗ . . . ⊗ 1√

`k−1

jjjT`k−1
⊗ 1√

`k
jjjT`k

...
1√
`1
jjjT`1 ⊗ 1√

`2
jjjT`2 ⊗ 1√

`3
jjjT`3 ⊗ . . . ⊗ 1√

`k−1

jjjT`k−1
⊗ B`k


.

Now suppose that we would like to reorder the columns of B to reflect the addition of a

generator gggi to the design F . We find this technique is useful in Chapter 6 when we consider the

optimal selection of a set of generators when we use a fractional factorial starting design.
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The addition of a generator gggi = (gi,1, gi,2, . . . , gi,k) to a design F reorders the levels of each

attribute. The next example illustrates this idea.

EXAMPLE 1.2.7.

Suppose that we would like the order of the columns of BF to be determined by the items in

the second position of the choice sets in the experiment in Table 1.8. We obtained the items in

the second position of the choice set by adding a generator to the items presented in the first

position. For the first attribute, we left the attribute levels unchanged, so there is no need to

change the contrast coefficients in the first two rows of BF . For the second attribute, we added

1 modulo 3 to the level of that attribute. That is, the 0s became 1s, the 1s became 2s, and the

2s became 0s. We can use a permutation matrix, as introduced in Section 1.A to permute the

entries in the levels vector accordingly. Let

P1 =


0 0 1

1 0 0

0 1 0

 ,
then

(0, 1, 2) · P1 = (0, 1, 2) ·


0 0 1

1 0 0

0 1 0


= (1, 2, 0).

We then use Kronecker products to obtain

jjjT3 ⊗ ((0, 1, 2) · P1) = (1, 2, 0, 1, 2, 0, 1, 2, 0),

the second column of the second option.

If we post–multiply B3 by P1 then we permute the columns of B3 to reflect the addition of

1 to the column labels. That is,

B3P1 =

 −1√
2

0 1√
2

1√
6

−2√
6

1√
6




0 0 1

1 0 0

0 1 0


=

 0 1√
2

−1√
2

−2√
6

1√
6

1√
6

 .
So the contrast coefficients for the main effect of the second attribute are given by

1√
3
jjjT3 ⊗ (B3P1) =

1√
3

[
1 1 1

]
⊗

 0 1√
2

−1√
2

−2√
6

1√
6

1√
6



=
1√
3

01 02 00 11 12 10 21 22 20 0 1√
2

−1√
2

0 1√
2

−1√
2

0 1√
2

−1√
2

−2√
6

1√
6

1√
6

−2√
6

1√
6

1√
6

−2√
6

1√
6

1√
6

 .
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For consistency, when permuting the columns of B3 for the main effect of the first attribute, we

can post–multiply B3 by P0 = I3, which corresponds to the addition of 0 in the generator. This

gives

BF+ggg2 =

 (B3Pg2,1)⊗ 1√
3
jjjT3

1√
3
jjjT3 ⊗ (B3Pg2,2)



=

01 02 00 11 12 10 21 22 20

−1√
2

−1√
2

−1√
2

0 0 0 1√
2

1√
2

1√
2

1√
6

1√
6

1√
6

−2√
6

−2√
6

−2√
6

1√
6

1√
6

1√
6

0 1√
2

−1√
2

0 1√
2

−1√
2

0 1√
2

−1√
2

−2√
6

1√
6

1√
6

−2√
6

1√
6

1√
6

−2√
6

1√
6

1√
6


,

where g2,1 = 0, and g2,2 = 1.

We can use permutation matrices to capture this reordering. We define the permutation

matrix Pgi,q by

(Pgi,q )x,y =

{
1, if x+ gi,q = y mod `q,

0, otherwise.

This permutation matrix will reorder the columns of B` to reflect the addition of gi,q to the

column labels. This addition need not be modulo `q, but could be within any finite group that

is closed under addition. In Chapter 6, we will also use permutation matrices that reflect the

action of addition within GF[`].

This idea can be used to give the contrast matrix for F + gggi, BF+gggi . We define BF+gggi

such that if the contrast coefficients for item Tj are in the jth column of BF , then the contrast

coefficients for the item Tj + gggi will be in the jth column of BF+gggi . Then BF+gggi is given by

BF+gggi =



B`1Pgi,1 ⊗ 1√
`2
jjjT`2 ⊗ 1√

`3
jjjT`3 ⊗ . . . ⊗ 1√

`k−1

jjjT`k−1
⊗ 1√

`k
jjjT`k

1√
`1
jjjT`1 ⊗ B`2Pgi,2 ⊗ 1√

`3
jjjT`3 ⊗ . . . ⊗ 1√

`k−1

jjjT`k−1
⊗ 1√

`k
jjjT`k

...
1√
`1
jjjT`1 ⊗ 1√

`2
jjjT`2 ⊗ 1√

`3
jjjT`3 ⊗ . . . ⊗ 1√

`k−1

jjjT`k−1
⊗ B`kPgi,k


.

1.3 Optimal Designs for Choice Experiments

We now turn our attention to the optimal design for the choice models presented in the previous

section. We begin this section by looking at a few criteria for design optimality. We then review

some of the results in the literature about the optimal design of choice experiments when the

Bradley–Terry model is used, and when the MNL model is used.

Up to this point we have been using I(πππ) and Λ(πππ) to denote the information matrices for

the estimation of the entries in πππ and γγγ respectively. We now let C(πππ) denote the information

matrix for the estimation of those contrasts of the entries in γγγ that are of interest.

1.3.1 Optimal Design Theory

There are many criteria that may be used to define optimal designed experiments. Atkinson

et al. [2007] provide a comprehensive list of optimality criteria. In this section, we will consider
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three of these, D–optimality, E–optimality, and A–optimality. In the remainder of the thesis, we

will concentrate on the D–optimality criterion.

All three optimality criteria considered in this section depend on different properties of the

variance–covariance matrix. A design is D–optimal if it is the design that minimises the gener-

alised variance of the parameter estimates over the set of competing designs X. That is, it is the

design that minimises the determinant of the variance–covariance matrix. This is equivalent to

maximising the determinant of the information matrix. A design is E-optimal if it is the design

that minimises the largest eigenvalue of the variance–covariance matrix. This is equivalent to

maximising the smallest eigenvalue of the information matrix. A design is A–optimal if it is the

design which minimises the trace of the variance–covariance matrix, that is, minimising the sum

of the variances.

We can also define efficiencies of a design ξ using these criteria. The D–efficiency of a design

ξ will be

Deff(ξ) =

(
det(C−1

opt)

det(C−1
ξ )

) 1
p

,

when there are p parameters to estimate, and we define det(Copt) = max
ξ∈X

det(Cξ). The A–

efficiency of a design ξ will be

Aeff(ξ) =
tr(C−1

opt)

tr(C−1
ξ )

,

when there are p parameters to estimate, and we define tr(C−1
opt) = min

ξ∈X
tr(C−1

ξ ).

These criteria will not always lead to the same choice of design, as the next example shows.

EXAMPLE 1.3.1.

Suppose that there are three possible designs in a particular class of competing designs X. These

designs are labelled ξ1, ξ2, and ξ3 and have the following variance–covariance matrices.

Σξ1 =
1

2

⎛
⎜⎜⎝

7 0 0

0 7 0

0 0 7

⎞
⎟⎟⎠ , Σξ2 =

1

13

⎛
⎜⎜⎝

60 10 50

10 50 10

50 10 50

⎞
⎟⎟⎠ , and Σξ3 =

⎛
⎜⎜⎝

2 0 0

0 2 0

0 0 6

⎞
⎟⎟⎠ .

Then by taking the inverse of each of these variance–covariance matrices, the information

matrix for the three parameters to be estimated can be found. We get

Cξ1 =
1

7

⎛
⎜⎜⎝

2 0 0

0 2 0

0 0 2

⎞
⎟⎟⎠ , Cξ2 =

1

240

⎛
⎜⎜⎝

312 0 −312
0 65 −13

−312 −13 377

⎞
⎟⎟⎠ , and Cξ3 =

1

6

⎛
⎜⎜⎝

3 0 0

0 3 0

0 0 1

⎞
⎟⎟⎠ .

The determinants, and largest eigenvalues of each of these information matrices, as well as

the traces of the variance–covariance matrices are given in Table 1.11.

So design ξ3 maximises det(Cξi), design ξ3 minimises tr(C−1
ξi

), and design ξ1 minimises the

largest eigenvalue of C−1
ξi

. Since these designs were the only possible designs in X, design ξ1 is

the E–optimal design, and ξ3 is both the D–optimal and A–optimal design. We can also give

the relative efficiencies between designs.
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Design det(Cξi) tr(C−1ξi ) Largest Eigenvalue of C−1ξi

ξ1 0.02332 10.5 3.5

ξ2 0.0115 12.31 8.358

ξ3 0.0416 10.0 6.0

Table 1.11: The D–, A–, and E– values for the designs in Example 1.3.1

Deff(ξ1, ξ3) =
(0.02332

0.0416

) 1
3

= 82.5%

Deff(ξ2, ξ3) =
(0.0115

0.0416

) 1
3

= 65.1%

Aeff(ξ1, ξ3) =
10

10.5
= 65.0%

Aeff(ξ2, ξ3) =
10

12.31
= 81.2%

We see that if one design is optimal based on one criterion, it does not necessarily mean that

it will be optimal based on any other criteria. This is especially so in the presence of correla-

tion between parameter estimates, as each criterion treats correlation differently. D–optimality

incorporates correlation between the parameter estimates through the use of determinants. E–

optimality incorporates covariance by finding the largest eigenvalue of the variance–covariance

matrix, which is dependent on the covariances. A–optimality does not incorporate covariances

into the criterion at all.

While the selection of a set of contrasts to describe a main effect is a valid consideration,

we are able to separate this decision from the choice of design. The next example shows that a

change in the contrasts leaves the determinant of the information matrix C unchanged, so long

as both sets of contrasts form a basis for the main effects contrast subspace for the corresponding

attribute.

EXAMPLE 1.3.2.

Suppose that we have two sets of orthogonal contrasts, both forming a basis for the main effects

contrast subspace for a 4–level attribute. The first set will be the set of orthogonal polynomial

contrasts

B4(1) =


− 3

2
√

5
− 1

2
√

5
1

2
√

5
3

2
√

5

1
2 − 1

2 − 1
2

1
2

− 1
2
√

5
3

2
√

5
− 3

2
√

5
1

2
√

5

 ,

with the rows labelled aaa1, aaa2, and aaa3. The second set will be a set of contrasts that treat the
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levels as a 22 design, with the third row being −bbb1bbb2 component–wise. This gives

B4(2) =
1

2


−1 −1 1 1

−1 1 −1 1

−1 1 1 −1

 ,

with the rows labelled bbb1, bbb2, and bbb3.

We can find a linear transformation that maps the rows of B4(1) to the rows of B4(2), and

another linear transformation that is the inverse of the first. To do this, we set up the system of

equations

aaa1 = h11bbb1 + h12bbb2 + h13bbb3,

aaa2 = h21bbb1 + h22bbb2 + h23bbb3,

aaa3 = h31bbb1 + h32bbb2 + h33bbb3.

There are 9 parameters to find. We can use the orthogonality properties of the rows of each

of the matrices to find each. To find h11 we multiply both sides of the first equation by bbbT1

aaa1.bbb
T
1 = h11bbb1.bbb

T
1 + h12bbb2.bbb

T
1 + h13bbb3.bbb

T
1 .

We notice that since the rows of B4(2) are orthogonal, aaa2.bbb
T
1 = aaa3.bbb

T
1 = 0, and as a result of the

scaling of the rows, bbb1.bbb
T
1 = 1. Thus

h11 = aaa1.bbb
T
1 .

Through multiplication, we obtain

h11 =
2√
5
.

We can repeat this process for the other parameters, yielding a system of equations
aaa1

aaa2

aaa3

 =


2√
5

1√
5

0

0 0 −1
−1√

5
2√
5

0

×

bbb1

bbb2

bbb3


B4(1) = RB4(2).

By matrix multiplication, we can show that R is an orthogonal matrix, that is R−1 = RT .

Orthogonal matrices have a determinant of 1.

Suppose that the information matrix when using the first contrast matrix is

C1 = B4(1)ΛB
T
4(1),

and the information matrix when using the second contrast matrix is

C2 = B4(2)ΛB
T
4(2).

We can use the orthogonal property of R, and the fact that R is square to show that C1 and C2

have the same determinant

det(C1) = det(B4(1)ΛB
T
4(1))

= det(RB4(2)ΛB
T
4(2)R

T )

= det(R) det(B4(2)ΛB
T
4(2)) det(RT )

= det(R) det(C2) det(RT )

= det(C2),

as required.
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1.3.2 Optimal Designs for the Bradley–Terry Model

This section reviews the existing theory relating to the optimal design of paired comparison ex-

periments when the Bradley–Terry model is used. Since the Bradley–Terry model is nonlinear in

parameters, the optimal design depends on the values of the parameters βββ. Two main approaches

are used in practice to overcome this problem. The first is to take the view that designs that are

optimal for βββ = 000 will behave well for other values of βββ, and use these designs. Other researchers

take a Bayesian approach, and use designs that are optimal over a distribution of values of βββ.

The prior distributions of the entries in βββ may come from managers expectations, or from pilot

testing. We will take the first approach in this thesis.

Quenouille and John [1971] introduce the idea of using a subset of the set of all pairs of

items in a choice experiment. The authors establish that by showing a well chosen subset of

the pairs of items to the respondents, these pairs can be used to estimate the effects that are of

interest. The authors continue by conducting a comparison to see which combination of one or

more subsets would be more efficient to estimate certain sets of effects. The authors conclude

that for symmetrical designs with binary attributes the set of all of the pairs which differ in all

of the attributes could be used to construct designs to estimate main effects.

El-Helbawy and Bradley [1978] build on the information matrix for a factorial paired com-

parison experiment, derived earlier in the paper, to look at designs for a 23 factorial experiment.

The authors discuss some optimal designs for the estimation of particular sets of effects. This

was achieved by constructing Λ(πππ) = (Σ(πππ))−1 based on which pairs contribute to each effect,

and then choosing the set of pairs that minimise the determinant of Σ(πππ).

Littell and Boyett [1977] discuss the problem of designing an R×C factorial paired comparison

experiment. The class of competing designs contained two designs, one with all pairs of items,

and another with only those items that differ in the level of one attribute. The authors find

that when testing a single main effect, the design including all pairs where only the attribute

of interest differs across the options performs better than a design with all pairs. When testing

interaction effects, the authors find that the design with all pairs is more efficient.

El-Helbawy [1984] considers the approaches to the construction of designed experiments that

Littell and Boyett [1977], El-Helbawy and Bradley [1978], and Quenouille and John [1971] intro-

duce. The author suggests that some of the approaches work well under some model situations

(e.g. 2k), while other designs work well for the estimation of some sets of effects (e.g. main

effects only).

El-Helbawy and Ahmed [1984] consider only 2k factorial paired comparison experiments.

The authors use different classes of competing designs for testing different sets of effects. For

example, when testing main effects, two competing designs are used. The first design is the set

of all pairs which differ in an even number of attributes, and the second design is the set of all

pairs that differ in an odd number of attributes. When testing all of the odd–factor interactions,

the author compares the design with all pairs which differ in all of the attributes, and the design

which includes pairs with some common attributes.

The authors find that the design consisting of all pairs which differ in all attributes is more

efficient in the estimation of main effects, whose contrast coefficients are contained in BM . The

authors also find that the class of designs where the pairs have all but one attribute the same

are more efficient in the estimation of higher–order interactions than the design with all pairs of

items. The theorem below establishes the former result, where t is the number of distinct items.
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THEOREM 1.3.1.

(El-Helbawy and Ahmed [1984]) Let ξ be the design for which λ{i,j} equals 2
t or 0 as Ti and Tj

differ in the levels of each of the k attributes or not for i 6= j and i, j = 1, . . . , t. Then when the

rows of BM correspond to the
∑k
j=1(lj − 1) main effects we find that ξ will be the A–, D–, and

E–optimal design.

This is best explained by an example.

EXAMPLE 1.3.3.

Let k = 3. Then the set of all distinct pairs which differ in all attributes is shown in Table 1.12.

Each of these pairs will be assigned weight λ = 1
4 , and all other pairs will receive a weight of 0 in

the design. Then by Theorem 1.3.1, this design is optimal for the estimation of main effects.

Option 1 Option 2

0 0 0 1 1 1

0 1 1 1 0 0

1 0 1 0 1 0

1 1 0 0 0 1

Table 1.12: Optimal 23 design for the estimation of main effects, based on Theorem 1.3.1

Street et al. [2001] show that for a 2k design, Λ(πππ0) can be expressed as

4Λ(πππ0) =

(
k∑
i=1

(
k

i

)
ak,i

)
I2k −

k∑
i=1

ak,iDk,i,

where Dk,i is a (0, 1) matrix of order 2k with the rows and columns labelled by the items, with a

1 in position (x, y) if the items x and y have i attributes at different levels. The term ak,i is the

weight given to each pair which differ in the levels of i attributes. The authors show that when

only main effects are of interest, the determinant of the information matrix is

det(C(πππ0)M) = 2−k

[
k∑
i=1

ak,i

(
k − 1

i− 1

)]k
.

When main effects plus two–factor interactions are of interest, the determinant is

det(C(πππ0)MT) =

[
1

2

k∑
i=1

ak,i

(
k − 1

i− 1

)]k
×

[
k∑
i=1

ak,i

(
k − 2

i− 1

)]k(k−1)/2

,

subject to the constraint 2k−1
∑
i

(
k
i

)
ak,i = 1.

Street et al. [2001] use these expressions to find optimal designs for the estimation of main

effects plus two– and three–factor interactions for 2k paired comparisons experiments. The

authors extend the set of competing designs to sets of pairs which differ in the levels of i attributes

and prove that the designs which satisfy the condition in Theorem 1.3.1 are still optimal over

this new class of competing designs.

THEOREM 1.3.2.

(Street et al. [2001]) The D–optimal design for the estimation of main effects and two–factor
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interactions for a 2k paired comparisons experiment when all other effects are assumed zero is

given by:

ak,i =

{ (
2k−1

(
k

(k+1)/2

))−1
i = k+1

2

0 otherwise,

if k is odd, and

ak,i =

{ (
2k−1

(
k
k/2

))−1
i = k

2 ,
k
2 + 1

0 otherwise,

if k is even.

EXAMPLE 1.3.4.

This example will consider two different values of k, k = 2 and k = 3. First, let k = 2, then the

optimal design for the estimation of main effects plus two–factor interactions will consist of all

of the distinct pairs which differ in the levels of k
2 = 1 or k

2 + 1 = 2 attributes, then a2,0 = 0,

a2,1 = 1
4 , and a2,2 = 1

4 . This design is shown in Table 1.13.

Now if we let k = 3, then the optimal design for the estimation of main effects plus two–

factor interactions will consist of all of the pairs which differ in k+1
2 = 2 attributes, then a3,0 = 0,

a3,1 = 0, a3,2 = 1
12 , and a3,3 = 0. The optimal design is shown in Table 1.14.

Option 1 Option 2

0 0 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

Table 1.13: Optimal 22 design for the estimation of main effects and two–factor interactions

based on Theorem 1.3.2

Optimal designs for 2k paired comparisons designs are also discussed by Graßhoff and Schwabe

[2008]. The authors focus on the optimal designs for experiments with either one or two at-

tributes.

El-Helbawy et al. [1994] consider the optimal design of asymmetric paired comparison ex-

periments when only main effects are of interest, and when all pairwise interactions involving

a single factor are of interest. When estimating main effects, the authors compare the design

with all distinct pairs of items to the design with all distinct pairs of items that differ in every

attribute. When estimating interactions involving a single factor, the authors compare the design

with all distinct pairs of items with the design with all distinct pairs of items that differ in only

the attribute involved in all of the interactions.

THEOREM 1.3.3.

(El-Helbawy et al. [1994]) Consider a `1 × `2 × . . .× `k factorial paired comparison experiment.

Assuming that there are no interactions present, and that Bh consists of the main effects, then

the design consisting of all distinct pairs where the options differ in all of the attributes will be

A–, D–, and E–optimal in the design space.
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Option 1 Option 2

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0

0 0 1 1 0 0

0 1 0 0 0 1

0 1 1 1 0 1

1 0 0 0 1 0

1 0 1 1 1 0

1 1 0 0 1 1

1 1 1 0 0 1

1 1 1 0 1 0

1 1 1 1 0 0

Table 1.14: Optimal 23 design for the estimation of main effects and two–factor interactions

based on Theorem 1.3.2

We illustrate this theorem with an example.

EXAMPLE 1.3.5.

Consider a 2 × 3 factorial experiment. Then the optimal design will be the set of all distinct

pairs where the items differ in all attributes. For this experiment, the design in Table 1.15 will

be optimal.

Option 1 Option 2

0 0 1 2

0 1 1 0

0 2 1 1

1 0 0 2

1 1 0 0

1 2 0 1

Table 1.15: Optimal 2 × 3 factorial design for for the estimation of main effects based on

Theorem 1.3.3

Other research into the optimal design of paired comparisons research focuses on continuous

designs. van Berkum [1987] proves results that give continuous optimal designs for the estimation

of main effects, main effects plus two–factor interactions, and for all quadratic effects. Graßhoff

et al. [2003] prove results that give D–optimal continuous designs in the presence of a so–called

profile constraint. That is, the authors consider designs where subsets of S ≤ k attributes

appear in choice sets. Subsequently Graßhoff et al. [2007] proves results that give some small

exact D–optimal designs for the estimation of main effects plus two–factor interactions in 2k

experiments.



1.3 Optimal Designs for Choice Experiments 29

1.3.3 Optimal Designs for the MNL Model

We now turn our attention to the optimal design of experiments that use the MNL model. Since

the MNL model is nonlinear in parameters, the optimal design depends on the values of the

parameters βββ. Like the Bradley–Terry model, in this thesis we take the view that designs that

are optimal for βββ = 000 will behave well for other values of βββ, and use these designs.

The optimal design results discussed here will be based on the constructions considered in

Section 1.2. The class of competing designs will include those designs that include all distinct

choice sets with a particular difference vector, or none of the distinct choice sets with a particular

difference vector, as stated in Section 1.2.

There are several results on the optimal design of 2k choice experiments when the MNL model

is used. The following theorem gives a method of finding the optimal design for the estimation

of main effects, assuming equal selection probabilities. For a 2k experiment, we define dij to be

the sum of the entries in the (i, j)th difference.

THEOREM 1.3.4.

(Burgess and Street [2003]) The D–optimal design for testing main effects only, when all other

effects are assumed to be zero, is given by choice sets in which, for each vvvj present,

m−1∑
i=1

m∑
j=i+1

dij =

{
(m2−1)k

4 m odd,
m2k

2 m even,

and there is at least one vvvj with a non–zero avvvj ; that is, the choice experiment is nonempty.

EXAMPLE 1.3.6.

Consider a 23 experiment the estimation of main effects only, and with m = 3 options per choice

set. In this situation, the optimal design will have
∑2
i=1

∑3
j=i+1 dij = 6. The difference vectors

vvvi that satisfy this are (011, 101, 110), (001, 110, 111), (010, 101, 111), and (100, 011, 111). Then

the set of distinct choice sets which have some or all of these difference vectors will form an

optimal design. This means that there are 15 possible optimal designs. One such design is

shown in Table 1.16.

Option 1 Option 2 Option 3

0 0 0 0 1 1 1 1 0

0 0 1 0 1 0 1 1 1

0 1 0 0 0 1 1 0 0

0 1 1 0 0 0 1 0 1

1 0 0 1 1 1 0 1 0

1 0 1 1 1 0 0 1 1

1 1 0 1 0 1 0 0 0

1 1 1 1 0 0 0 0 1

Table 1.16: Optimal 23 factorial design for the estimation of main effects based on Theorem

1.3.4

If in addition to the main effects, we also want to estimate interactions between pairs of

attributes, then the next theorem provides a method of finding optimal designs. We define yi to
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be the sum of the yddds where the difference ddd has i non–zero entries; that is, the proportion of

choice sets which contains each pair with i attributes different.

THEOREM 1.3.5.

(Burgess and Street [2003]) The D–optimal design for testing main effects plus two–factor in-

teractions when all other effects are assumed to be zero, is given by

yi =


m(m−1)

2k

(
k+1
k/2

)−1
m even, and i = k/2, k/2 + 1

m(m−1)
2k

(
k

(k+1)/2

)−1
m odd, and i = (k + 1)/2

0 otherwise,

when this results in nonzero yis that correspond to difference vectors that actually exist.

EXAMPLE 1.3.7.

Consider the 23 experiment with m = 3 presented in Example 1.3.6. In this situation, the optimal

design for the estimation of main effects plus two–factor interactions will be given by

yi =
m(m− 1)

2k

(
k

(k + 1)/2

)−1

=
3× 2

8

(
3

2

)−1

= 0.25 if i =
k + 1

2
= 2.

The values of yi tell us which difference vectors can be used to obtain an optimal design. All

pairs of items in each choice set must differ in two of the attributes, since yi = 0 for i 6= 2.

Each pair that differs in the levels of two attributes appears in yi = 1
4 of the choice sets. Then

all choice sets with the difference vector (011, 101, 110) will form an optimal design (since each

difference has two non–zero elements). This gives the design in Table 1.17.

Option 1 Option 2 Option 3

0 0 0 0 1 1 1 0 1

0 0 1 0 1 0 1 0 0

0 1 0 0 0 1 1 1 1

0 1 1 0 0 0 1 1 0

1 0 0 1 1 1 0 0 1

1 0 1 1 1 0 0 0 0

1 1 0 1 0 1 0 1 1

1 1 1 1 0 0 0 1 0

Table 1.17: Optimal 23 factorial design for the estimation of main effects and two–factor inter-

actions based on Theorem 1.3.5

Although 2k designs are quite useful, especially in screening experiments, sometimes we need

attributes which have more levels. Results on the optimal asymmetric designs exist when only

main effects are of interest. To date, there are no results on the optimal design of asymmetric

experiments when main effects plus higher order interactions are of interest. Before we introduce

a result giving optimal designs for asymmetric experiments, we look at an example of such an

asymmetric design.

EXAMPLE 1.3.8.

Consider a 2× 4 factorial experiment with m = 4 options per choice set. Let ggg1 = 000, ggg2 = (13),
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ggg3 = (02), and ggg4 = (11). Then the difference vector for this set of generators is

vvv = (01, 01, 11, 11, 11, 11).

The first attribute contains the difference 1 four times, and the difference 0 twice. For the

second attribute, gi1q − gi2q equals ±1 mod 4 four times, and 2 mod 4 twice, so each non–zero

difference modulo `q appears four times. This design is given in Table 1.18.

Burgess and Street [2005] show that, for a choice experiment with k attributes, Λ(πππ0) becomes

Λ(πππ0) =
m− 1

m2
zIL −

1

m2

∑
ddd

ydddDddd∏k
j=1(`j − 1)ij

,

where z =
∑
j cvvvjavvvj and Dddd is a (0, 1) matrix of order L with rows and columns labelled by the

items, with a 1 in position (x, y) if items x and y have difference ddd, and 0 otherwise. The authors

show that the determinant of the information matrix for the estimation of main effects only is

det(C(πππ0)M) =
k∏
q=1

[
1

m2

∑
ddd

yddd

(
1− 1

(1− `q)iq

)]`q−1

=

k∏
q=1

 2`q
m3(`q − 1)

∑
j

cvvvjavvvj
∑
ddd|iq=1

xvvvj ;ddd

`q−1

,

subject to the constraint
∏k
q=1

`qz
m = 1. Since

∑
ddd|iq=1 xvvvj ;ddd is the number of non–zero differences

for the qth attribute, we expect that this sum will be maximised when the number of zero

differences is as small as possible. Then the optimal designs for the estimation of main effects

should consist of choice sets where each pair of options in the choice set differ in as many of the

attributes as possible, for a given m, `1, `2, . . . , `k.

Using the construction method and set of competing designs described in Section 1.2, Burgess

and Street [2005] find optimal designs for the estimation of main effects in an asymmetric exper-

iment.

THEOREM 1.3.6.

(Burgess and Street [2005]) Let F be the complete factorial for k attributes where the qth attribute

has lq levels. Suppose that a set of m generators G = {ggg1 = 000, ggg2, . . . , gggm} such that gggi 6= gggj

for i 6= j. Suppose that gggi = (gi1, gi2, . . . , gik) for i = 1, . . .m and suppose that the multiset of

differences for attribute q {±(gi1q−gi2q)|1 ≤ i1, i2 ≤ m, i1 6= i2} contains each non–zero difference

modulo `q equally often. Then the choice sets given by the rows of F +ggg1, F +ggg2, . . . , F +gggm for

one or more sets of generators G, are optimal for the estimation of main effects only, provided

that there are as few zero differences as possible in each choice set.

EXAMPLE 1.3.9.

When the MNL model is used, the design considered in Example 1.3.8 is optimal for the estima-

tion of main effects only.

Burgess and Street [2005] also show that the determinant of the information matrix for the

estimation of main effects plus two–factor interactions is given by

det(C(πππ0)MT) =
k∏
q=1

[
1

m2

∑
ddd

yddd

(
1− 1

(1− `q)iq

)]`q−1

×
k−1∏
q1=1

k∏
q2=q1+1

[
1

m2

∑
ddd

yddd

(
1− 1

(1− `q1)iq1 (1− `q2)iq2

)](`q1−1)(`q2−1)

.
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Option 1 Option 2 Option 3 Option 4

0 0 1 3 0 2 1 1

0 1 1 0 0 3 1 2

0 2 1 1 0 0 1 3

0 3 1 2 0 1 1 0

1 0 0 3 1 2 0 1

1 1 0 0 1 3 0 2

1 2 0 1 1 0 0 3

1 3 0 2 1 1 0 0

Table 1.18: Optimal 2×4 factorial design for the estimation of main effects based on Theorem

1.3.6

While being able to find optimal designs is desirable, researchers also need to take respondent

burden into account. That is, even if a design is D–optimal, a design with too many choice sets

will place a large burden on respondents. Therefore small, near–optimal designs are also useful

in practice. Graßhoff et al. [2004] provide a discussion of the optimality of designs that are

constructed from orthogonal arrays and from Hadamard matrices for m = 2.

Street et al. [2005] and Street and Burgess [2007] also investigate different methods of ob-

taining small near–optimal designs for choice experiments with arbitrary choice set size. The

authors found that by using a fractional factorial starting design they consistently obtained ef-

ficient designs that allowed for the independent estimation of main effects, or main effects plus

two–factor interactions. Street and Burgess [2007] found that the SAS macros introduced by

Kuhfeld [2005], and the so–called LMA method introduced by Louviere et al. [2000] also provide

near–optimal designs, but in general do not allow for the independent estimation of the effects

of interest.

1.4 Thesis Outline

Chapter 2 examines the Davidson ties model in more detail when m = 2. We find expressions for

the normal equations, and the information matrix when this model is used. We use this infor-

mation matrix to prove results that allow researchers to find optimal designs for the estimation

of main effects and ν where attributes take any combination of levels. We also prove results for

finding optimal designs for the estimation of main effects plus two–factor interactions and ν for

2k experiments. We then conduct simulations to determine the ability of the designs generated

from these results to estimate main effects and ν. We also simulate the designs when main effects

plus two–factor interactions and ν are of interest.

In Chapter 3, we introduce a generalisation of the Davidson ties model that allows an arbitrary

choice set size. This generalisation is analogous to the generalisation of the Bradley–Terry model

to obtain the MNL model. In this chapter, we derive the normal equations for the MLEs, and

the information matrix for the estimation of the contrasts in Bhγγγ. We then prove results that

give the optimal designs for the estimation of main effects and ν where attributes take any

combination of levels. We also prove results that give the optimal design for the estimation of
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main effects plus two–factor interactions and ν for 2k experiments. Again, we use simulations to

investigate the ability of the designs generated by these results to estimate main effects and ν,

as well as to estimate main effects plus two–factor interactions and ν.

In Chapter 4 we derive the information matrix for the estimation of the contrasts in Bhγγγ and

position effects when the Davidson–Beaver position effects is used and m = 2. We then prove

results that give optimal designs for the estimation of main effects and position effects where

attributes may have any number of levels. We also prove results that give optimal designs for the

estimation of main effects plus two–factor interactions and position effects for 2k experiments.

Once again, we use simulations to investigate the ability of the designs generated by these results

to estimate main effects and position effects, as well as to estimate main effects plus two–factor

interactions and position effects.

In Chapter 5 we introduce a generalisation of the Davidson–Beaver position effects model

that allows for an arbitrary choice set size. We derive normal equations for the MLEs and derive

an expression for the information matrix for the estimation of main effects and position effects.

We then use this information matrix to prove a general result for finding optimal designs for the

estimation of main effects and position effects. We also find an expression for the information

matrix for the estimation of main effects, two–factor interactions and position effects. In addition,

we discuss designs that are generated by embedding an orthogonal array into a complete Latin

square. Once again, we use simulations to investigate the ability of the designs generated by

these results to estimate main effects and position effects, as well as to estimate main effects plus

two–factor interactions and position effects.

In Chapter 6, we consider designs generated from fractional factorial designs for an arbitrary

choice set size. Specifically, we consider symmetric designs with a prime power number of levels

and constructed using the Rao–Hamming method, introduced in Section 1.B.3. The benefit of

using a fractional factorial design as a starting design is that we present fewer choice sets to

the respondent, while maintaining design efficiency. We derive an expression for the information

matrix for the estimation of main effects, which will be used to prove optimality results for the

estimation of main effects.

In Chapter 7, we provide a summary of the results proved in this thesis, and discuss future

research directions arising from this work.

1.A Basic Algebraic Results

The optimal designs for choice experiments rely on the properties of a number of algebraic

structures. In this section, we review some results from set theory, group theory, and linear

algebra that we use to construct and describe choice designs, and to find optimal designs.

1.A.1 Set Theory

To describe both the choice sets that are presented to the respondent, and the transformation of

one set of items into another, we need to introduce some terminology from set theory. The first

notion is that of a set. We define a set {x1, . . . , xn} to be a collection of elements, which could

either be finite or infinite.

In Chapters 4 and 5, we consider experiments where the order of presentation is deemed to

be important. Thus we need to describe the choice sets in a way that emphasises the importance
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of order. An ordered set (x1, . . . , xn) is a sequence of elements that is distinguished both by the

identity of the elements and the order of those elements, that is (a, b) is not identical to (b, a),

unless b = a. We enclose unordered sets in braces {} and ordered sets in parentheses ().

Another common task in the construction of choice experiments is to make a new design

from an existing design by adding some number to each of the levels. We will use generators to

describe this transformation. A generator ggg is a 1 × n vector which, when added to an n–set

{x1, x2, . . . , xn} modulo ` forms a new n–tuple, where the ith entry is the sum of the ith entry

in ggg and the ith entry in the original set.

EXAMPLE 1.A.1.

If we have xxx = {1, 2, 4} and add the generator ggg = {2, 2, 1} modulo 5, then

xxx+ ggg = {1, 2, 4}+ {2, 2, 1}

= {1 + 2, 2 + 2, 4 + 1}

= {3, 4, 0}.

To describe the generators used to make new designs from old, we need to introduce the

concept of a multiset, which allows elements to appear more than once in the set. This is

necessary because generators do not necessarily have distinct entries. Bogart [2000] define an

r–element multiset chosen from a set S to be an ordered pair (S, f), where S is a set and f is a

function from S to the nonnegative integers such that the sum of the values of f(x) for all x in

S is m. The number f(x) is called the cardinality of x in S.

EXAMPLE 1.A.2.

Suppose that we have the set S = {0, 1, 2, 3, 4}, and the function f(x) is given by

f(0) = 2 f(3) = 1

f(1) = 0 f(4) = 0

f(2) = 1,

then the multiset defined by this set and function f(x) is

A = {0, 0, 2, 3}.

Notice that the sum of the cardinalities is m = 4, the number of items in the multiset.

Finally, we need to modify the definition of union to allow for multiple entries in the set. We

will call this type of union a strong union. The strong union between two multisets A = (S1, f1)

and B = (S2, f2) is the multiset A&B = (S1 ∪ S2, f1 + f2). That is, the cardinality of an item

in the strong union is the sum of the cardinalities of the item in the multisets A and B. We

illustrate this with an example.

EXAMPLE 1.A.3.

Suppose that we have two multisets A = {a, a, b, b, b, c} and B = {b, c, c}. Then the strong union

between those multisets is

A&B = {a, a, b, b, b, b, c, c, c},

where there are 2+0 = 2 as, 3+1 = 4 bs, and 1+2 = 3 cs in the strong union of the multisets.

We denote the strong union between the sets A1, A2, . . . , An by
n

&
i=1

Ai.
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1.A.2 Group Theory

The construction of many of the common types of designed experiments depends on concepts in

group theory. Choice experiments are no exception. This section introduces the group theory

required to discuss the construction of choice designs.

We begin by introducing the concept of a group. Chouinard et al. [2007] defines a group

(P,×) as a set P , and a binary operation × on P , that satisfies the following conditions

• if x, y ∈ P , then x× y ∈ P ;

• an identity element e ∈ P exists: x× e = e× x = x for all x ∈ P ;

• × is associative: x× (y × z) = (x× y)× z for all x, y, z ∈ P ;

• every element x ∈ P has an inverse, an element x−1 for which x× x−1 = x−1 × x = e.

Later, we will consider a group where the set P which contains all of the items that could

be presented to a respondent in a choice task. The binary operation allows us to transform one

item into another in a systematic way.

On occasion, we may not wish to consider every possible item in P , but would like to retain

the useful properties of a group. Then we may consider a subgroup S of a group P based on a

subset of the items in P . For S to be a subgroup, the elements of a subgroup S need to satisfy

the criteria for a group under the original group operation, × (Macdonald [1968]).

One example of a group is a vector space. A vector space (V,+) consists of a set of vectors

such that if aaa,bbb ∈ V then aaa + bbb ∈ V . The + operation on V satisfies all of the properties given

by Chouinard et al. [2007]. In addition, we can define scalar multiplication in V so that if aaa ∈ V
then λaaa ∈ V , where λ is a scalar. We are also able to define subspaces for vector spaces.

In a vector space, we are also able to define a set of linearly independent vectors from V (or

a subspace of V ) such that any vector in V (or a subspace of V ) can be expressed as a linear

combination of this set of vectors. Such a set of vectors is said to be a basis of the vector space

V (or a subspace of V ).

EXAMPLE 1.A.4.

Consider the vectors in R3. Then the vectors

(1, 0, 0), (0, 1, 0), and (0, 0, 1)

form a basis of R3. That is, any vector in R3 can be expressed as a linear combination of the

above three vectors. If we restrict the third entry in a vector to be equal to 0, then we generate

a subspace of R3. The first two vectors will then form a basis for this subspace.

1.A.3 Finite Fields

Often it is useful to work with a set P and two operators, such as addition and multiplication. If

certain properties are satisfied then such a structure is known as a field. Street and Street [1986]

define a field {P,+,×} as a set, F , closed under two operations, addition (denoted by +) and

multiplication (denoted by ×). Both of these field operations are associative and commutative,

and multiplication distributes over addition. Identity elements exist for both of these operations,

denoted by 0 for addition and by 1 for multiplication, where 0 6= 1. In a field every element
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a ∈ F has an additive inverse (−a) and every non–zero element a ∈ F has a multiplicative inverse

(a−1).

For a prime power ` = sn, where s is a prime number, we call this field a Galois field of

order `, denoted by GF [`]. Street and Street [1986] define a Galois field of order ` as a field that

can be represented by the set of residue classes of polynomials over GF [s] modulo f(x). The

function f(x) is called the irreducible polynomial, and must have no factors of the form αm − 1

for m < n. The non–zero elements of GF [`] form a cyclic multiplicative group, with α`−1 = 1,

where α is a root of f(x). We use f(x) to construct the field. The elements of the Galois field

can be denoted by 0, 1, α, α2, . . . , α`−2.

To find the irreducible polynomial, we look at all of the quadratic functions (since n = 2)

modulo s = 2, checking each to see if the quadratic function can be factorised. We have

α2 = α× α, α2 + 1 = (α+ 1)2, α2 + α = α(α+ 1),

and α2 + α + 1, which cannot be factorised. Then f(α) = α2 + α + 1 is the only irreducible

polynomial for n = s = 2. Then we set f(α) = 0, and obtain α2 = α + 1, since the coefficients

are integers modulo s = 2.

If GF [`] exists, then we can express the field in terms of an n–tuple containing elements of

GF [s]. We use the irreducible polynomial to construct the n–tuple. Let (c0, c1, . . . , cn−1) denote

c0 + c1α+ c2α
2 + . . .+ cn−1α

n−1

where c0, c1, . . . , cn−1 are integers modulo s. Then we generate n–tuples by substituting f(α) = 0

into the expression for each element, and simplify modulo p, to obtain a polynomial of order n−1.

Then we can represent the levels as (0, 0, . . . , 0), (0, 0, . . . , 0, 1), . . . , (s− 1, s− 1, . . . , s− 1). The

next example demonstrates both of these representations, and field operations within GF [`].

EXAMPLE 1.A.5.

Let ` = 4. Then, since n = 2 and s = 2, a Galois field of order 4 exists. The elements in this field

are 0, 1, α, and α2, where α2 = α+1. This Galois field has the addition table and multiplication

tables shown Tables 1.19(a) and 1.19(b) respectively.

+ 0 1 α α2

0 0 1 α α2

1 1 0 α2 α

α α α2 0 1

α2 α2 α 1 0

× 0 1 α α2

0 0 0 0 0

1 0 1 α α2

α 0 α α2 1

α2 0 α2 1 α

Table 1.19: Addition (a) and multiplication (b) tables for GF [4] - multiplicative notation

We now look at an alternative representation of the elements in GF [4], by considering the

coefficients of α and 1 in the expression for each element. The element 0 could be represented

by 0 × α + 0 × 1, the element 1 could be represented by 0 × α + 1 × 1, the element α could be

represented by 1× α+ 0× 1, and the element α2 = α+ 1 could be represented be 1× α+ 1× 1.

Then we obtain the mapping in Table 1.20, where the first entry in the pair is the coefficient of

α, and the second entry is the coefficient of 1. This gives the addition and multiplication tables

in Tables 1.21(a) and 1.21(b) respectively.
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Multiplicative Pairs

0 00

1 01

α 10

α2 = α+ 1 11

Table 1.20: Relationship between two representations of a 4 level attribute

+ 00 01 10 11

00 00 01 10 11

01 01 00 11 10

10 10 11 00 01

11 11 10 01 00

× 00 01 10 11

00 00 00 00 00

01 00 01 10 11

10 00 10 11 01

11 00 11 01 10

Table 1.21: Addition (a) and multiplication (b) tables for GF [4] - pairs notation

We now demonstrate how these two representations are useful when adding and multiplying

in GF [4]. When adding, the pairs representation becomes useful, as we can add each component

modulo s = 2. For example

01 + 10 = 11

or

11 + 01 = 10.

When multiplying, the multiplicative representation is useful, since α3 = 1. Then we have

α2 × α2 = α4

= α3 × α

= α.

1.A.4 Special Matrices

We can represent field operations in matrix notation. This representation will become very useful

in Chapter 6 when we obtain new designs from existing designs. There are some special types

of matrices that are particularly useful in this regard. One of these is a circulant matrix. Horn

and Johnson [1985] define a circulant matrix to be an n× n matrix of the form

A =



a1 a2 a3 . . . an−1 an

an a1 a2 . . . an−2 an−1

an−1 an a1 . . . an−3 an−2

...
...

...
. . .

...
...

a2 a3 a4 . . . an a1


.

The authors also state that circulant matrices are commutative under matrix multiplication.
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The other special matrix that will be used extensively is a permutation matrix. Horn and

Johnson [1985] define a permutation matrix to be an n × n matrix P , where exactly one entry

in each row and column is equal to 1, and all other entries are 0.

If we pre–multiply a matrix by a permutation matrix, we obtain a re–ordering of the rows of

the matrix. If we post–multiply a matrix by a permutation matrix, we obtain a re–ordering of

the columns of the matrix. Theorem 1.A.1 gives a useful property of permutation matrices that

we use later in the thesis.

THEOREM 1.A.1.

For any n× n permutation matrix P , PT = P−1.

We can combine these definitions to obtain a basic circulant permutation matrix. A basic circu-

lant permutation matrix is a matrix that is both a circulant matrix and a permutation matrix. Let

vvv = (v1, v2, . . . , vn). Then the circulant permutation matrix P1, say, with first row (0, 0, . . . , 0, 1)

acts on vvv to give vvvP1 = (v2, . . . , vn, v1).

EXAMPLE 1.A.6.

Consider the integers modulo 3. Suppose that we have a vector containing the elements of Z3,

(0, 1, 2). Then we can post–multiply by permutation matrices to perform addition on this vector

modulo 3. Then post–multiplication by the matrix

P1 =


0 0 1

1 0 0

0 1 0

 .
will add 1 to each element in the vector (0, 1, 2) modulo 3, that is,

(0, 1, 2) · P1 = (0, 1, 2) ·


0 0 1

1 0 0

0 1 0


= (1, 2, 0).

Similarly, we can define a basic circulant permutation matrix that represents the addition of 2

to each entry in the levels vector

P2 =


0 1 0

0 0 1

1 0 0

 = P 2
1

For completeness, we use I3 to represent the addition of 0 to the levels vector.

1.B Standard Designs

In this section, we introduce the most common types of designed experiment. We will use many

of these standard designs to construct designs for choice experiments. We begin by considering

block designs.
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1.B.1 Block Designs

In order to obtain estimates efficiently when conducting a choice experiment, we need to consider

methods that will optimise the information obtained from each respondent. One way to do this

is to create an efficient designed experiment. Street and Street [1986] define a design to be a

finite set of items X, and a family of subsets Bi of X, B = {Bi|i = I}. Here the finite set of

items is the set of all possible items defined by the level combinations of the attributes. For

choice experiments each subset is a choice set. The design of a choice experiment will dictate

which choice sets will be presented to the respondents.

If we consider every possible combination of m items in a choice experiment, then the number

of subsets used in the design, or in our case, the number of choice sets presented to the respondent,

can become very large, even for a modest subset size. For this reason, it is useful to consider a

design with only some of the combinations of items. Street and Street [1986] define an incomplete

design to be a design where at least one block does not contain every item in the set X.

While using an incomplete design makes an experiment smaller, care must be taken to ensure

that the same amount of information is collected about each item. It is also desirable to be able

to estimate the merit of each item independently of other items. One type of incomplete design

that achieves these two goals is a Balanced Incomplete Block Design (BIBD). Street and Street

[1986] define a BIBD as a design in which all the blocks contain the same number of items, all

items appear in the same number of blocks and each pair of items appear in the same number

of blocks. We define b to be the number of blocks in the design, each block containing m items.

There are L =
∏k
q=1 `q items in total, each of which appears in r blocks. The number of times

that each pair appears in the same block is denoted by λ. We write this as BIBD(L, b, r,m, λ).

Bailey [2008] gives a good discussion on the construction of BIBDs.

EXAMPLE 1.B.1.

Suppose that we are conducting an experiment with 7 possible items. Table 1.22 gives a BIBD

that could be used for this experiment. We notice that each block has 3 items, each item appears

in three blocks, and each pair of items appears in the same block exactly once. This design is a

BIBD with b = 7, m = 3, L = 7, r = 3 and λ = 1.

1 2 4

2 3 5

3 4 6

4 5 0

5 6 1

6 0 2

0 1 3

Table 1.22: A BIBD(7, 7, 3, 3, 1)
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1.B.2 Factorial Designs

In many experiments, including choice experiments, the items can be described by a number of

features, also known as factors or attributes. When running such experiments, we are usually

more interested in testing hypotheses about the attributes than testing hypotheses about the

items themselves. The appropriate design for doing this is called a factorial design.

Street [2007] defines a factor to be any feature of the experimental units which may affect

the response observed in the experiment. Each factor may take one of several values. These

values are called the levels of the factor. If there are k factors and the qth factor has `q levels,

for 1 ≤ q ≤ k, then we speak of an `1 × `2 × . . .× `k factorial design.

Notice that Street [2007] uses the term factor instead of attribute. These terms can be used

interchangeably, however the convention for choice experiments is to use attribute, whereas in

the theory of designed experiments the convention is to use factor. From here onwards we will

use attribute, but we will still speak of a factorial design.

We can distinguish between a factorial design that includes all possible combinations of

attribute levels, which is called a complete factorial design, and those that include a subset of

these, called a fractional factorial design. In the next example, we show one type of each design

for the same experiment.

EXAMPLE 1.B.2.

Consider an experiment with three attributes, each of which has three levels. Table 1.23(a) gives

a full factorial design, and Table 1.23(b) gives a fractional factorial design for this experiment.

Notice that the first design consists of all triples of three level attributes, and the second design

contains only a third of these triples.

(a) (b)

Complete Factorial Fractional Factorial

0 0 0 1 0 0 2 0 0 0 0 0

0 0 1 1 0 1 2 0 1 0 1 1

0 0 2 1 0 2 2 0 2 0 2 2

0 1 0 1 1 0 2 1 0 1 0 1

0 1 1 1 1 1 2 1 1 1 1 2

0 1 2 1 1 2 2 1 2 1 2 0

0 2 0 1 2 0 2 2 0 2 0 2

0 2 1 1 2 1 2 2 1 2 1 0

0 2 2 1 2 2 2 2 2 2 2 1

Table 1.23: A complete factorial design (a), and a fractional factorial design (b)

It is convenient to look at two different types of designs based on the number of levels each

attribute can take. The first of these are designs where all of the attributes have the same number

of levels. Such designs are called symmetric designs. The remaining designs have at least one

pair of attributes that differ in the number of levels. Such designs are called asymmetric designs.
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Contrasts

Now that we have designs for factorial experiments, we can look at how we can estimate the

contribution of each attribute, and combinations of attribute levels to the attractiveness of each

item, the goal of our experiment. We use main effects and interaction effects to do this.

In order to estimate main effects and interaction effects, we need to set up contrasts. Suppose

that we order the items lexicographically, that is

(00 . . . 00, 00 . . . 01, . . . , (`1 − 1)(`2 − 1) . . . (`k − 1)).

Then a contrast is a linear function of the expected responses of the items such that the co-

efficients sum to 0. Consider a linear function
∑
i ωiyi, where yi is the response for item Ti,

then

τ = E

(∑
i

ωiyi

)
=
∑
i

ωiE(yi).

Such a linear function is said to be a contrast if
∑
i ωi = 0. If item Ti appears ni times in the

design then two contrasts with coefficients ζi and ωi are said to be orthogonal if and only if∑
i

ζiωi
ni

= 0.

Without loss of generality, we will scale the contrast coefficients so
∑
i ω

2
i = 1.

The main effect of an attribute is the effect of moving between levels of that attribute,

averaged over the levels of the other attributes. Street [2007] defines the main effect of an

attribute A in an `k factorial design as the comparison of responses among the ` sets Tθ =

{(x1, x2, . . . , xk)|xa = θ}, θ ∈ {0, 1, . . . , `−1}. The sets Tθ partition the `k items into ` sets each

of size `k−1. We denote this partition P(A). We then have ` − 1 contrasts that will form the

basis of the main effect contrast subspace. In the next example, we give the partitions for the

main effects for the full factorial design in Table 1.23.

EXAMPLE 1.B.3.

Consider the full factorial design in Table 1.23. We will label the three attributes A, B, and C.

Then the main effect of attribute A will be constructed from the partitions based on the level of

the first attribute

P(A) = {{000, 001, 002, 010, 011, 012, 020, 021, 022}, {100, 101, 102, 110, 111, 112, 120, 121, 122},

{200, 201, 202, 210, 211, 212, 220, 221, 222}}.

Then the contrasts corresponding to the main effect of the first attribute will assign the same

coefficient to each item in the same partition of P(A). The main effect of attribute B will be

constructed using the partitions the based on the level of the second attribute

P(B) = {{000, 001, 002, 100, 101, 102, 200, 201, 202}, {010, 011, 012, 110, 111, 112, 210, 211, 212},

{020, 021, 022, 120, 121, 122, 220, 221, 222}}.

Then the contrasts corresponding to the main effect of the second attribute will assign the same

coefficient to each item in the same partition of P(B). The main effect of attribute C is defined

similarly.
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While in many cases the estimation and testing of main effects are the primary consideration

in an experiment, the interaction between attributes may also be of interest. For example, there

may be little difference in preferences between a urine sample and a mouth swab when the sample

is to be taken at home, but there may be a large difference if the sample is to be taken at the

public clinic.

Street [2007] defines an interaction effect between attributes A and B, to be the comparison of

the responses among the sets within the `−1 partitions given by {(x1, x2, . . . , xk)|xa+θxb = γ},
θ, γ ∈ {0, 1, . . . , `B − 1}, θ 6= 0. For fixed θ, denote the partitions by P(ABθ). There will

be (`1 − 1)(`2 − 1) orthogonal contrasts that will form the basis of the two–factor interaction

contrast space. Higher order interactions are defined similarly. In the next example, we give the

partitions for two–factor interactions for the full factorial design in Table 1.23.

EXAMPLE 1.B.4.

Once again, consider the full factorial design in Table 1.23, with three attributes A, B, and C.

The coefficient of the interaction effect between attributes A and B can be based on contrasts

between the sets of the partition, where such a contrast has the same coefficient for all items in

the set. The contrast coefficient assigned depends on which partition of P(AB) the item belongs

to, and which partition of P(AB2) the item belongs to.

P(AB)={{000, 001, 002, 120, 121, 122, 210, 211, 212},{010, 011, 012, 100, 101, 102, 220, 221, 222},

{020, 021, 022, 110, 111, 112, 200, 201, 202}}.

P(AB2)={{000, 001, 002, 110, 111, 112, 220, 221, 222},{020, 021, 022, 100, 101, 102, 210, 211, 212},

{010, 011, 012, 120, 121, 122, 200, 201, 202}}.

This gives the partition

{{000, 001, 002}, {010, 011, 012}, {020, 021, 022}, {100, 101, 102}, {110, 111, 112},

{120, 121, 122}, {200, 201, 202}, {210, 211, 212}, {220, 221, 222}}.

Then the contrasts corresponding to the two–factor interactions between the first and second

attributes will assign the same coefficient to each item in the same partition in the above parti-

tioning so long as not all of the entries in the same partitions of P(A) have the same coefficients,

and not all of the entries in the same partitions of P(B) have the same coefficients. The inter-

action between attributes A and C, and attributes B and C are defined similarly.

We now look at an example of constructing a set of orthogonal contrasts corresponding to

the main effects in a 2× 3 factorial design.

EXAMPLE 1.B.5.

Consider a 2 × 3 factorial experiment. There are 6 possible items that we could present to the

respondents. These are shown, in lexicographic order, in Table 1.24.

Suppose that we wish to compare the 0 and 1 levels of the first attribute. Then we could set

the coefficients of the items with a 0 for the first attribute to be −1, and the coefficients of the

items with a 1 for the first attribute to be 1. This gives

−φ00 − φ01 − φ02 + φ10 + φ11 + φ12.
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0 0

0 1

0 2

1 0

1 1

1 2

Table 1.24: The complete 2× 3 factorial design

This satisfies the properties of a contrast, but not the additional scale requirement. If we divide

each coefficient by
√

6, then
∑
ω2
i = 1. Then we have

− 1√
6
φ00 −

1√
6
φ01 −

1√
6
φ02 +

1√
6
φ10 +

1√
6
φ11 +

1√
6
φ12.

We have one contrast for the first attribute since the first attribute has 2 levels, and ` − 1 = 1

contrast will form a basis for the main effect subspace.

We can also define contrasts for the main effects of the second attribute. Since the second

attribute has 3 levels, `−1 = 2 orthogonal contrasts will form a basis for the main effect subspace.

If we define one of these contrasts to have a coefficient of − 1
2 for those items with the second

attribute at level 0, a coefficient of 0 for those items with the second attribute at level 1, and a

coefficient of 1
2 for those items with the second attribute at level 2, then we obtain the contrast

−1

2
φ00 − 0× φ01 +

1

2
φ02 −

1

2
φ10 + 0× φ11 +

1

2
φ12.

Another contrast based on the three level attribute is

− 1

2
√

3
φ00 +

1√
3
φ01 −

1

2
√

3
φ02 −

1

2
√

3
φ10 +

1√
3
φ11 −

1

2
√

3
φ12.

We can demonstrate that the two contrasts for the three level attribute are orthogonal to each

other under equal replication (with ni = 1 without loss of generality).∑
i

ωiζi
ni

=
−1

2
× −1

2
√

3
+ 0× 1√

3
+

1

2
× −1

2
√

3
− 1

2
× −1

2
√

3
+ 0× 1√

3
+

1

2
× −1

2
√

3

= 0,

as required.

We can write the coefficients for the contrasts as the rows of a matrix. We call such a matrix

a contrast matrix, which we denote B. In a contrast matrix we label the columns using the items

written in lexicographic order. The next example shows how a set of contrasts can be expressed

as a contrast matrix

EXAMPLE 1.B.6.

We can place the contrast coefficients developed in Example 1.B.5 into a contrast matrix. This
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contrast matrix will be

B =

00 01 02 10 11 12
−1√

6
−1√

6
−1√

6
1√
6

1√
6

1√
6

−1
2 0 1

2
−1
2 0 1

2

−1
2
√

3
1√
3

−1
2
√

3
−1
2
√

3
1√
3

−1
2
√

3


.

In general, we assume that the contrasts in a contrast matrix have been chosen to be pairwise

orthogonal, that is BBT = I. When an attribute has ` levels, we need `− 1 contrasts to be the

basis for the main effect subspace. There are many ways that these contrasts can be defined.

The method that we will use in this thesis is to use orthogonal polynomial contrasts. Orthogonal

polynomial contrasts are particularly useful when the attribute is continuous, since we are fitting

a polynomial function that describes the change in response for a change in attribute level. Tables

of these contrast coefficients can be found in texts such as Kuehl [2000].

While we can define contrasts to represent all main effects and higher order effects, we often

do not wish to estimate them all. In this case, we partition the rows of B into two matrices, Bh

and Ba. The contrasts whose coefficients are in Bh are those that we are interested in estimating,

and the coefficients for the remaining contrasts will be contained in Ba. In general, we will be

finding designs that are optimal for the estimation of the contrasts in Bh, but may not be able

to estimate the contrasts in Ba at all.

EXAMPLE 1.B.7.

Consider again the 2 × 3 experiment in Example 1.B.5. The full set of orthogonal polynomial

contrast coefficients for the estimation of main effects plus the two–factor interaction is

B =

00 01 02 10 11 12

−1√
6

−1√
6

−1√
6

1√
6

1√
6

1√
6

−1
2 0 1

2
−1
2 0 1

2

1
2
√

3
−1√

3
1

2
√

3
−1
2
√

3
1√
3

−1
2
√

3

1
2 0 −1

2
−1
2 0 1

2

−1
2
√

3
1√
3

−1
2
√

3
−1
2
√

3
1√
3

−1
2
√

3


.

The first row of the matrix contains the contrast coefficients for the main effect of the first

attribute. The next two rows contain the contrast coefficients for the main effect of the second

attribute. The final two rows contain the contrast coefficients for the two–factor interaction.

Suppose that only the main effects are of interest. Then Bh will contain the coefficients

corresponding to the main effects, and Ba will contain the coefficients corresponding to the

two–factor interactions. That is,

Bh =


−1√

6
−1√

6
−1√

6
1√
6

1√
6

1√
6

−1
2 0 1

2
−1
2 0 1

2

1
2
√

3
−1√

3
1

2
√

3
−1
2
√

3
1√
3

−1
2
√

3

 ,
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and

Ba =

 1
2 0 −1

2
−1
2 0 1

2

−1
2
√

3
1√
3

−1
2
√

3
−1
2
√

3
1√
3

−1
2
√

3

 .
The set of contrasts that we can use to form a basis for the main effect contrast space of an

` level attribute is not unique for ` ≥ 4. The next example illustrates this for ` = 4.

EXAMPLE 1.B.8.

Consider a 4 level attribute. The orthogonal polynomial contrasts for a 4 level attribute are

B4(1) =


− 3√

20
− 1√

20
1√
20

3√
20

1
2 − 1

2 − 1
2

1
2

− 1√
20

3√
20
− 3√

20
1√
20

 .
Alteratively we could compare two pairs of levels, and then compare within each pair, giving the

contrast matrix

B4(2) =


− 1

2 − 1
2

1
2

1
2

− 1
2

1
2 0 0

0 0 − 1
2

1
2

 .
Finally, we could compare between three different pairings of the levels, giving

B4(3) =


− 1

2 − 1
2

1
2

1
2

− 1
2

1
2 − 1

2
1
2

− 1
2

1
2

1
2 − 1

2

 .
These three contrast matrices contain different comparisons, but all form a basis for the main

effects contrast space.

1.B.3 Orthogonal Arrays

We now consider a design structure that is related to factorial designs, an orthogonal array.

Street and Burgess [2007] define an orthogonal array OA[N, k, `, t] to be an N × k array with

elements from a set of ` symbols such that any N × t subarray has each t–tuple appearing as a

row N/`t times. We say that t is the strength of the array, k is the number of constraints and `

is the number of levels.

Orthogonal arrays exist not only for symmetric designs, as in the definition above, but also

for any combination of levels. Street and Burgess [2007] define an asymmetric orthogonal array

OA[N ; `1, `2, . . . , `k; t] to be an N × k array with the elements in column q from a set of `q

symbols such that any N × t subarray has each t–tuple appearing as a row an equal number of

times.

Orthogonal arrays are useful in the design of choice experiments because they can be con-

structed in a number of ways, whilst retaining the properties that are important in designed

experiments. One such feature is equal replication of each level of an attribute, which is assured

when t ≥ 1.

In this thesis, we will focus our attention on linear orthogonal arrays. Hedayat et al. [1999]

defines an orthogonal array OA[N, k, `, t] with levels taken from GF [`] to be linear if all of its

runs are distinct and if, when considered as k–tuples from GF [`], its N runs form a vector space

over GF [`].
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Rao [1947] and Rao [1949] give a method for constructing linear symmetric orthogonal arrays

where the number of levels for each attribute is a prime power. This construction uses the

properties of GF [`], which we know to exist when ` is a prime power.

CONSTRUCTION 1.B.1.

(Rao–Hamming: Hedayat et al. [1999]) Form an `n × n array with all possible n–tuples from

GF [`]. Let C1, . . . , Cn denote the columns of this array. The columns of the full orthogonal

array then consist of all columns of the form

z1C1 + z2C2 + . . .+ znCn = [C1, C2, . . . , Cn]zzz, (1.1)

where zzz = (z1, . . . , zn)T is an n–tuple from GF [`], not all the zi are zero, and the first non–zero

zi is 1. There are `n−1
`−1 such columns.

In the next example, we illustrate this construction for a 34 experiment.

EXAMPLE 1.B.9.

In this example, we develop a 9 run OA with four 3–level attributes. We begin with all of the

pairs of levels, as shown in the first two columns of Table 1.25. Then we need all pairs from

GF [3] where not all zi are 0 and the first non–zero zi is equal to 1. This gives the four pairs

(1, 0), (1, 1), (1, 2), and (0, 1).

The first and last of these pairs, when substituted for the zs in Equation 1.1, will form the `n×n
array that we begin with. Then zzz = (1, 1) gives the column C1 + C2, and zzz = (1, 2) gives the

column C1 + 2C2, where addition in both cases is in GF [3]. The resulting design is shown in

Table 1.25. Observe that any 2 columns of this array contain every ordered pair exactly once.

Thus t = 2.

C1 C2 C1 + C2 C1 + 2C2

0 0 0 0

0 1 1 2

0 2 2 1

1 0 1 1

1 1 2 0

1 2 0 2

2 0 2 2

2 1 0 1

2 2 1 0

Table 1.25: The OA constructed in Example 1.B.9

This construction underlies the results obtained in Chapter 6.

1.B.4 Latin Squares

The last type of design that we consider in this section are Latin squares. Latin squares were

originally used when both the horizontal and vertical positions of a plot of land were considered
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to be important. Subsequently they have been adopted for use in any situation where there are

orthogonal blocking factors. Dénes and Keedwell [1974] define a Latin square to be an n × n
matrix containing n different elements, each appearing in exactly once in each row and each

column of the matrix. The integer n is called the order of the Latin square. An example of a

Latin square of order 3 is

0 1 2

1 2 0

2 0 1

.

Dénes and Keedwell [1974] also show that the addition table for a finite group G is a Latin square

of order `.

We can sometimes impose an additional constraint on a Latin square to obtain a complete

Latin square. Dénes and Keedwell [1974] define a complete Latin square to be a Latin square

where for any ordered pair of distinct elements (a, b), with 1 ≤ a, b ≤ n, there exists a row of the

Latin square in which a appears to the right of b and a column of the Latin square in which a

immediately precedes b. We use complete Latin squares in Chapter 5 to ensure that each item

appears to the right of every other item exactly once in some choice set.

We conclude this section by looking at two constructions for complete Latin squares. The

first of these was given in Williams [1949]. We call this the Williams construction.

THEOREM 1.B.1.

(Williams [1949])Let n = 2m be any even positive integer and let an n × n Latin square L be

formed whose first row and column is 0, 1, 2m− 1, 2, 2m− 2, . . . ,m+ 1,m, where the integers 0

to 2m− 1 are regarded as residues modulo n, and

Li,j = Li,1 + L1,j mod n,

then L is a complete Latin square.

In the next example, we construct a complete Latin square of order 4 using this method.

EXAMPLE 1.B.10.

Suppose that we wish to construct a complete Latin square of order 4. Thus n = 4, and m = 2.

Then by Theorem 1.B.1 the first row and column of the complete Latin square will be

[0 1 3 2].

Using Theorem 1.B.1 we obtain the complete Latin square in Table 1.26.

0 1 3 2

1 2 0 3

3 0 2 1

2 3 1 0

Table 1.26: The complete Latin square constructed in Example 1.B.10

The sequence 0, 1, 2m − 1, 2, . . . ,m − 1,m is not the only sequence that yields a complete

Latin square. Gordon [1961] shows that all partial orderings of a finite group yield a complete
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Latin square. We define the partial ordering of a sequence a1, a2, . . . , an in a group of order n to

be

a1, a1 · a2, a1 · a2 · a3, . . . , a1 · a2 · . . . · an.

This is best illustrated by an example.

EXAMPLE 1.B.11.

If n = 6 then

[0 5 2 3 4 1]

is a sequencing of Z6 with partial sums

[0 5 1 4 2 3].

By developing the row of partial sums in Z6 we obtain the complete Latin square in Table

1.27.

0 5 1 4 2 3

5 4 0 3 1 2

1 0 2 5 3 4

4 3 5 2 0 1

2 1 3 0 4 5

3 2 4 1 5 0

Table 1.27: The complete Latin square constructed in Example 1.B.11

A list of partial sequencings of small order is given in Evans [2007].



Chapter 2

Choice Models that Incorporate

Ties

Section 1.1 introduced the Davidson ties model as an extension of the Bradley–Terry model. In

this chapter we look at optimal design theory for the Davidson ties model.

We start by looking at Davidson’s original model, including deriving an expression for the

determinant of the information matrix for a design, as defined in Section 1.3.1. We then find

that from the set of competing designs used in Burgess and Street [2003], those designs that are

optimal for the estimation of a set of attribute effects when the Bradley–Terry model is used are

also optimal when the Davidson ties model is used to estimate the same set of attribute effects

plus the ties parameter.

We will now consider an example to motivate our discussion of models incorporating ties.

EXAMPLE 2.0.12.

Consider a smaller version of the experiment presented in Example 1.0.1. This experiment has

two attributes with two levels each. Table 2.1 gives the attributes and levels for this small

experiment, as well as a coding for the levels of each attribute. Then there are 4 possible

combinations of location and collection method:

• Draw blood at a public clinic (Coded 00),

• Draw blood at a doctor’s office (Coded 01),

• Swab mouth at a public clinic (Coded 10), and

• Swab mouth at a doctor’s office (Coded 11).

We wish to present choice sets to the respondent in such a way that if a respondent finds some of

the options equally attractive, they may say so. In that case, we say those options have tied.

We will return to this example as we progress through the chapter.

2.1 Review of the Davidson Ties Model

We begin by reviewing the results of Davidson [1970]. In particular we will recap some of the

properties of the model that have already been developed in the literature, such as the distribution
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Attribute Levels Coding

Sample collection Draw blood 0

Swab mouth/oral fluids 1

Location Public clinic 0

Doctor’s office 1

Table 2.1: Attributes and levels for the HIV experiment with k = 2 and `1 = `2 = 2.

of the responses, the maximum likelihood estimates for the model, and the information matrix for

the model. The logic used here will be used when the model is generalised in Chapter 3. We will

use these results to show that the optimal designs presented in El-Helbawy and Ahmed [1984],

Street et al. [2001] and Burgess and Street [2003] are also optimal when using the Davidson ties

model.

Recall from Section 1.1 that the Davidson ties model is an extension to the Bradley–Terry

model for paired comparisons. By using the Davidson ties model instead of the Bradley–Terry

model we allow the respondent to state that they find the two items presented in the choice

set equally attractive. This model captures this information through an additional parameter,

ν > 0, which measures how well the respondent can discriminate between the items in the choice

set.

We have the following probabilities associated with each possible decision when the choice

set C = {Ti1 , Ti2} is used.

P (Ti1 |C) =
πi1

πi1 + πi2 + ν
√
πi1πi2

,

P (Ti2 |C) =
πi2

πi1 + πi2 + ν
√
πi1πi2

,

and

P (Ti1 or Ti2 |C) =
ν
√
πi1πi2

πi1 + πi2 + ν
√
πi1πi2

.

We denote P (Ti1 or Ti2 |C) as P ({Ti1 , Ti2}|C). Now we will see how these probabilities apply to

our example.

EXAMPLE 2.1.1.

There are six possible choice sets of size 2 from the items listed in Example 2.0.12. If we consider

the choice set C = {00, 11} then the probability of choosing item 00 is

P (00|C) =
π00

π00 + π11 + ν
√
π00π11

,

the probability of choosing item 11 is

P (11|C) =
π11

π00 + π11 + ν
√
π00π11

,

and the probability of stating that the items are equally attractive is

P ({00, 11}|C) =
ν
√
π00π11

π00 + π11 + ν
√
π00π11

.
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In his 1970 paper, Davidson derived the log–likelihood function and information matrix for

this model. Because it will help us describe our generalisation, we provide a detailed derivation

here. We will use the method presented here to derive the information matrix for the generalised

Davidson ties model in Chapter 3.

Suppose that there are t items in total and that these are shown to the respondent in pairs.

In each choice set the respondent may choose the item they prefer, or they can state that the

two items presented are equally attractive. We define indicator variables w for subject α and

task C = {Ti1 , Ti2} to represent the respondent’s choice. We let

w{i1}|C,α =

{
1 if respondent α selects item Ti1 when presented with the choice set C,

0 otherwise,

w{i2}|C,α =

{
1 if respondent α selects item Ti2 when presented with the choice set C,

0 otherwise,

and

w{i1,i2}|C,α =


1 if respondent α finds items Ti1 and Ti2 equally

attractive when presented with the choice set C,

0 otherwise,

where w{i1}|C,α + w{i2}|C,α + w{i1,i2}|C,α = 1, since we do not allow repeated choice sets and do

not have an opt-out process. For simplicity, we will proceed to write w{i}|C,α as wi|C,α, but it

useful to consider the outcome as the selection of a set with a single item. For a respondent α,

the probability density function for their response to the choice set C = {Ti1 , Ti2} is

fC,α(www,πππ, ν) =
π
wi1|C,α
i1

π
wi2|C,α
i2

(ν
√
πi1πi2)w{i1,i2}|i1i2α

(πi1 + πi2 + ν
√
πi1πi2)nC

,

where

www = (wi1|C,α, wi2|C,α, w{i1,i2}|C,α)T ,

and nC is an indicator that equals 1 if the choice set C appears in the experiment and 0 if it

does not. For consistency, if the choice set C does not appear in the experiment then we define

wi1|C,α = wi2|C,α = w{i1,i2}|C,α = 0.

The derivatives of the log of the density function with respect to each of the parameters are

∂ ln(fC,α(www,πππ, ν))

∂πi1
=

wi1|C,α

πi1
+
w{i1,i2}|C,α

2πi1
−

nC

(
1 +

πi2ν

2
√
πi1πi2

)
πi1 + πi2 + ν

√
πi1πi2

,

∂ ln(fC,α(www,πππ, ν))

∂πi2
=

wi2|C,α

πi2
+
w{i1,i2}|C,α

2πi2
−

nC

(
1 +

πi1ν

2
√
πi1πi2

)
πi1 + πi2 + ν

√
πi1πi2

,

∂ ln(fC,α(www,πππ, ν))

∂πi3
= 0 where i3 6= i1, i2,

and

∂ ln(fC,α(www,πππ, ν))

∂ν
=

w{i1,i2}|C,α

ν
−

nC
√
πi1πi2

πi1 + πi2 + ν
√
πi1πi2

.

We will use these derivatives later to derive the entries of the information matrix for this model.

We will now turn our attention to the maximum likelihood estimators for this model.
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Since the likelihood function is the product of the density functions over all distinct choice

sets and over all respondents, we have

L(www,πππ, ν) =
s∏

α=1

∏
C

fC,α(www,πππ, ν)

=
∏
C

π
wi1|C
i1

π
wi2|C
i2

(ν
√
πi1πi2)w{i1,i2}|C

(πi1 + πi2 + ν
√
πi1πi2)snC

,

where wi1|C =
∑s
α=1 wi1|C,α, wi2|C =

∑s
α=1 wi2|C,α, and w{i1,i2}|C =

∑s
α=1 w{i1,i2}|C,α. Notice

that nC is not subscripted by respondent. This is because we will assume that all respondents

are presented with the same set of choice sets.

To maximise this likelihood function, we need to set up a Lagrangian function to incorporate

the restrictions placed on this model. For the purposes of convergence, we will enforce the

normalising constraint present in the Bradley–Terry model

t∑
i=1

ln(πi) = 0.

We will also constrain contrasts that we assume to be negligible to be equal to zero. If we let

Ba be the matrix containing the coefficients of such contrasts, then we have

Baγγγ = 000,

where γγγ is a vector containing γi = ln(πi) for i = 1, . . . , t. This will give the Lagrangian

G(www,πππ, ν) =
∑
C

(
wi1|C ln(πi1) + wi2|C ln(πi2) +

1

2
w{i1,i2}|C

(
ln(πi1) + ln(πi2) + 2 ln(ν)

)
−snC ln(πi1 + πi2 + ν

√
πi1πi2)

)
+ κ1

t∑
i=1

ln(πi) + [κ2, . . . , κa+1]Ba[ln(πi)],

where κ1 and κ2 are Lagrange multipliers. If we differentiate G(πππ, ν) with respect to πi we obtain

∂G(www,πππ, ν)

∂πi
=

∑
C|Ti∈C

(
wi|C

πi
+
w{i,i2}|C

2πi
−

snC(1 +
πi2ν

2
√
πiπi2

)

πi + πi2 + ν
√
πiπi2

+
κ1

πi

)
+

a∑
x=1

κx+1(Ba)xi
1

πi
,(2.1)

and if we differentiate G(πππ, ν) with respect to ν, we obtain

∂G(www,πππ, ν)

∂ν
=

∑
C

(
w{i1,i2}|C

ν
−

snC
√
πi1πi2

πi1 + πi2 + ν
√
πi1πi2

)
.

We obtain the maximum likelihood estimates by setting these derivatives to zero and solving

simultaneously. We can simplify this problem by using matrix notation. Suppose that we let

zi =
∑

C|Ti∈C

wi|C +
1

2
w{i,i2}|C −

snC π̂i(1 +
π̂i2 ν̂

2
√
π̂iπ̂i2

)

π̂i + π̂i2 + ν̂
√
π̂iπ̂i2

 .

Then by multiplying Equation 2.1 by πij we get

zi + κ1 +
a∑
x=1

κx+1(Ba)xi = 0.

This gives the system

zzz + κ1jjjL +BTa κκκ = 000L, (2.2)
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where zzz = (z1, z2, . . . , zt)
T and κκκ = (κ2, . . . , κa+1)T . Similarly, if we let

p =
∑
C

(
w{i1,i2}|C

ν
−

snC
√
πi1πi2

πi1 + πi2 + ν
√
πi1πi2

)
,

then we obtain p = 0 as the other constraint. If we pre–multiply Equation 2.2 by jjjTL, we obtain

κ1 = 0,

since jjjTzzz is shown to be zero in Appendix 2.A, and jjjTBTa = 000 since the rows of Ba are the

coefficients of contrasts which are defined to add to zero.

We can pre–multiply Equation 2.2 by Ba to obtain

κκκ = −Bazzz.

Substituting this back into Equation 2.2, we get

(I −BTa Ba)zzz = 000,

and

p = 0

as the normal equations. These can be solved iteratively to find the MLEs.

EXAMPLE 2.1.2.

Recall the experiment presented in Example 2.0.12. Suppose that we present the choice sets

{{00, 11}, {01, 10}}

to 50 respondents. Table 2.2 gives possible responses summarised over all respondents for this

experiment. Then the likelihood function for this experiment is

L(www,πππ, ν) =
π2

00π
37
11(ν
√
π00π11)11

(π00 + π11 + ν
√
π00π11)50

×
π6

01π
28
10(ν
√
π01π10)16

(π01 + π10 + ν
√
π01π10)50

.

Option 1 Option 2 T1 T2 {T1,T2}

0 0 1 1 w00|C = 2 w11|C = 37 w{00,11}|C = 11

0 1 1 0 w01|C = 6 w10|C = 28 w{00,11}|C = 16

Table 2.2: Responses for the experiment in Example 2.1.2.

Now suppose that we are interested in the estimation of main effects and ν only. Then we

assume that the two–factor interaction is negligible. This gives

Ba =
1

2
[1 − 1 − 1 1].

Then we have the constraints

ln(π00) + ln(π01) + ln(π10) + ln(π11) = 0,

and

ln(π00)− ln(π01)− ln(π10) + ln(π11) = 0.
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This gives the Lagrangian

G(www,πππ, ν)

= 2 ln(π00) + 37 ln(π11) +
11

2
ln(π00) +

11

2
ln(π11) + 11 ln(ν)− 50 ln(π00 + π11 + ν

√
π00π11)

+6 ln(π01) + 28 ln(π10) +
16

2
ln(π01) +

16

2
ln(π10) + 16 ln(ν)− 50 ln(π01 + π10 + ν

√
π01π10)

+κ1 [ln(π00) + ln(π01) + ln(π10) + ln(π11)] + κ2 [ln(π00)− ln(π01)− ln(π10) + ln(π11)] .

We differentiate G(www,πππ, ν) with respect to each πi in turn to obtain

∂G(www,πππ, ν)

∂π00
=

15

2π00
−

50(1 + νπ11√
π00π11

)

π00 + π11 + ν
√
π00π11

+
κ1

π00
+

κ2

π00
,

∂G(www,πππ, ν)

∂π01
=

14

π01
−

50(1 + νπ10√
π01π10

)

π01 + π10 + ν
√
π01π10

+
κ1

π01
− κ2

π01
,

∂G(www,πππ, ν)

∂π10
=

36

π10
−

50(1 + νπ01√
π01π10

)

π01 + π10 + ν
√
π01π10

+
κ1

π10
− κ2

π10
,

and

∂G(www,πππ, ν)

∂π11
=

85

2π11
−

50(1 + νπ00√
π00π11

)

π00 + π11 + ν
√
π00π11

+
κ1

π11
+

κ2

π11
.

Differentiating G(www,πππ, ν) with respect to ν gives

∂G(www,πππ, ν)

∂ν
=

27

ν
−

50
√
π00π11

(π00 + π11 + ν
√
π00π11)2

−
50
√
π01π10

(π01 + π10 + ν
√
π01π10)2

.

If we set each of these to 0 and solve iteratively we obtain the maximum likelihood estimates for

πππ and ν. If we denote τ1 as the main effect of the first attribute and τ2 the main effect of the

second attribute then we get

τ̂1 = 1.11 τ̂2 = 0.34 ν̂ = 1.25.

2.2 Properties of the Davidson ties model

In this section we complete the construction of the information matrix for the estimation of the

πis and ν. We begin by deriving expressions for the expectations, variances and covariances of

the selection indicators in www. We then use these expressions to simplify the information matrix

for πππ and ν.

Recall that wi1|C,α, wi2|C,α and w{i1i2}|C,α are the selection indicators for the choice made

by respondent α when presented with the choice set C = {Ti1 , Ti2}. These indicators have a

Bernoulli distribution with expectations

Eπ(wi1|C,α) =
πi1

πi1 + πi2 + ν
√
πi1πi2

,

Eπ(wi2|C,α) =
πi2

πi1 + πi2 + ν
√
πi1πi2

,

and

Eπ(w{i1i2}|C,α) =
ν
√
πi1πi2

πi1 + πi2 + ν
√
πi1πi2

. (2.3)
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The variances of these indicators are

Varπ(wi1|C,α) =
πi1(πi2 + ν

√
πi1πi2)

(πi1 + πi2 + ν
√
πi1πi2)2

,

Varπ(wi2|C,α) =
πi2(πi1 + ν

√
πi1πi2)

(πi1 + πi2 + ν
√
πi1πi2)2

,

and

Varπ(w{i1i2}|C,α) =
ν
√
πi1πi2(πi1 + πi2)

(πi1 + πi2 + ν
√
πi1πi2)2

. (2.4)

Next we derive the covariances between the selection indicators. First consider the covariance

of two selection indicators for the selection of Ti1 from the choice set C = {Ti1 , Ti3} and the item

Ti2 from the choice set C ′ = {Ti2 , Ti4}, where i1 6= i2. If the selections made in two distinct

choice sets are uncorrelated, then

Covπ(wi1|C,α, wi2|C′,α) = Eπ
((
wi1|C,α − Eπ(wi1|C,α)

)(
wi2|C′,α − Eπ(wi2|C′,α)

))
=

 Eπ
((
wi1|C,α − Eπ(wi1|C,α)

)(
wi2|C,α − Eπ(wi2|C,α)

))
, if C = C ′,

0, otherwise.

If we expand this expectation and notice that only one outcome is possible, we see that

Eπ(wi1|C,αwi2|C,α) = 0,

and hence we obtain

Covπ(wi1|C,α, wi2|C′,α) =


−πi1πi2

(πi1+πi2+ν
√
πi1πi2 )2 , if C = C ′ and i1 6= i2,

Varπ(wi1|C,α), if C = C ′ and i1 = i2,

0, otherwise.

(2.5)

Similarly, we obtain the covariance of the selection indicators for the selection of item Ti1

from C = {Ti1 , Ti3} and stating that the items in C ′ = {Ti2 , Ti4} are equally attractive.

Covπ(wi1|C,α, w{i2,i4}|C′,α) =

{ −πi1ν
√
πi1πi2

(πi1+πi2+ν
√
πi1πi2 )2 , if C = C ′,

0, otherwise.

Finally, the covariance for the selection indicators for stating that the items are equally

attractive in both choice sets is given by

Covπ(w{i1,i3}|C,α, w{i2,i4}|C′,α) =

{
Varπ(w{i1,i3}|C,α), if C = C ′,

0, otherwise.

We can now find the expectations, variances and covariances for the selection indicators in our

example.

EXAMPLE 2.2.1.

Consider the experiment in Example 2.1.2. In particular, consider the first choice set, C =

{00, 11}. The expected values for the selection indicators are given by

Eπ(w00|C,α) =
π00

π00 + π11 + ν
√
π00π11

,

Eπ(w11|C,α) =
π11

π00 + π11 + ν
√
π00π11

,
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and

Eπ(w{00,11}|C,α) =
ν
√
π00π11

π00 + π11 + ν
√
π00π11

.

The variances of each choice are given by

Varπ(w00|C,α) =
π00(π11 + ν

√
π00π11)

(π00 + π11 + ν
√
π00π11)2

,

Varπ(w11|C,α) =
π11(π00 + ν

√
π00π11)

(π00 + π11 + ν
√
π00π11)2

,

and

Varπ(w{00,11}|C,α) =
ν
√
π00π11(π00 + π00)

(π00 + π11 + ν
√
π00π11)2

.

The covariances for each pair of selection indicators are given by

Covπ(w00|C,α, w11|C,α) =
−π00π11

(π00 + π11 + ν
√
π00π11)2

,

Covπ(w00|C,α, w{00,11}|C,α) =
−π00ν

√
π00π11

(π00 + π11 + ν
√
π00π11)2

,

and

Covπ(w11|C,α, w{00,11}|C,α) =
−π11ν

√
π00π11

(π00 + π11 + ν
√
π00π11)2

.

Next we construct the information matrix for the Davidson ties model. This is easier if we

partition the information matrix into four blocks

I(πππ, ν) =

[
Iππ(πππ, ν) Iνπ(πππ, ν)

Iπν(πππ, ν) Iνν(πππ, ν)

]
.

Iππ(πππ, ν) is a t × t matrix containing minus the expected value of the second derivatives with

respect to two of the entries in πππ. Iπν(πππ, ν) is a t × 1 vector that contains minus the expected

value of the second derivatives with respect to one entry in πππ and ν, and Iνπ(πππ, ν) = Iπν(πππ, ν)T .

Iνν(πππ, ν) contains minus the expected value of the second derivative with respect to ν.

El-Helbawy and Bradley [1978] state that under some mild regularity conditions, as given in

Section 1.1, the (i, j)th entry of the information matrix for a discrete choice experiment without

ties is

I(πππ)ij =
t−1∑
q=1

t∑
r=q+1

nqr
N
Eπ
((∂ ln(fqrα(πππ,www))

∂πi

)(∂ ln(fqrα(πππ,www))

∂πj

))
.

We now use this expression, and the results in Equations 2.3, 2.4, and 2.5, to evaluate some

generic entries in each block matrix. To assist the generalisation in Chapter 3 we take the

sum over all choice sets rather than the pairs of items, and modify the notation for nqr and

fqrα(πππ,www) accordingly. We will begin with Iππ(πππ, ν). In this block matrix, we need to consider

the off–diagonal and diagonal entries separately.

We begin with the generic off–diagonal entry. Consider Iππ(πππ, ν)ij , corresponding to product

of the derivatives with respect to πi and with respect to πj ,

Iππ(πππ, ν)ij =
∑
C

nC
N
Eπ
(
∂ ln(fC,α(πππ,www, ν))

∂πi

∂ ln(fC,α(πππ,www, ν))

∂πj

)
.



2.2 Properties of the Davidson ties model 57

We recall that the derivative of the density function for a particular choice set is zero if we

differentiate with respect to an entry in πππ associated with an item that is not in the choice set.

Thus both Ti and Tj must be in the choice set for the product to be non–zero. Since order does

not matter when using this model, the choice sets {Ti, Tj} and {Tj , Ti} are equivalent. Then we

can simplify to give

Iππ(πππ, ν)ij =
n{i,j}

N
Eπ
(
∂ ln(f{i,j},α(πππ,www, ν))

∂πi

∂ ln(f{i,j},α(πππ,www, ν))

∂πj

)
.

By observation, we obtain

∂ ln(f{i,j},α(www,πππ, ν))

∂πi
=

wi|{i,j},α

πi
+
w{i,j}|{i,j},α

2πi
− Eπ

(wi|{i,j},α
πi

+
w{i,j}|{i,j},α

2πi

)
. (2.6)

It then follows that

Iππ(πππ, ν)ij =
n{i,j}

N
Covπ

(wi|{i,j},α
πi

+
w{i,j}|{i,j},α

2πi
,
wj|{i,j},α

πj
+
w{i,j}|{i,j},α

2πj

)
.

We can now substitute Equation 2.5 to get

Iππ(πππ, ν)ij = −
n{i,j}

N

1

4πiπj

4πiπj + (πi + πj)ν
√
πiπj

(πi + πj + ν
√
πiπj)2

.

Next, we consider a generic diagonal entry of Iππ(πππ, ν). This entry corresponds to the deriva-

tive with respect to πi squared. We have

Iππ(πππ, ν)ii =
∑
C

nC
N
Eπ

((
∂ ln(fC,α(πππ,www, ν))

∂πi

)2
)
.

Here, we notice that all choice sets which do not include Ti will have a derivative of 0, so we

obtain

Iππ(πππ, ν)ii =
∑

C|Ti∈C

nC
N
Eπ

((
∂ ln(fC,α(πππ,www, ν))

∂πi

)2
)
.

Using Equation 2.6 this becomes

Iππ(πππ, ν)ii =
∑

C|Ti∈C

nC
N

Varπ

(
wi|C,α

πi
+
w{i,i2}|C,α

2πi

)
.

When we substitute Equations 2.4 and 2.5 we obtain

Iππ(πππ, ν)ii =
∑

C|Ti∈C

nC
4Nπ2

i

(
4πiπi2 + ν

√
πiπi2(πi + πi2)

(πi + πi2 + ν
√
πiπi2)2

)
.

We now turn our attention to Iπν(πππ, ν), a t× 1 vector. We have

Iπν(πππ, ν)i =
∑
C

nC
N
Eπ
(
∂ ln(fC,α(πππ,www, ν))

∂πi

∂ ln(fC,α(πππ,www, ν))

∂ν

)
.

Notice that only the choice sets that include Ti will have a non–zero derivative. Then we obtain

Iπν(πππ, ν)i =
∑

C|Ti∈C

nC
N
Eπ
(
∂ ln(fC,α(πππ,www, ν))

∂πi

∂ ln(fC,α(πππ,www, ν))

∂ν

)
.

If we take into account Equation 2.6 and that

∂ ln(fC,α(πππ,www, ν))

∂ν
=
w{i1,i2}|C,α

ν
− Eπ

(w{i1,i2}|C,α
ν

)
(2.7)
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then we obtain

Iπν(πππ, ν)i =
∑

C|Ti∈C

nC
N

Covπ

(
wi|C,α

πi
+
w{i,i2}|C,α

2πi
,
w{i,i2}|C,α

ν

)
.

We now substitute Equations 2.4 and 2.5 and simplify to obtain

Iπν(πππ, ν)i =
1

2Nπiν

∑
C|Ti∈C

nC(πi2 − πi)ν
√
πiπi2

(πi + πi2 + ν
√
πiπi2)2

.

These expressions will give the entries in the Iπν(πππ, ν) block matrix.

Finally, we look at the single element Iνν(πππ, ν). We begin with

Iνν(πππ, ν) =
∑
C

nC
N
Eπ

((
∂ ln(fC,α(πππ,www, ν))

∂ν

)2
)
.

If we use Equation 2.7, this simplifies to give

Iνν(πππ, ν) =
∑
C

nC
N

Varπ

(
w{i1,i2}|C,α

ν

)
.

We then substitute Equation 2.4 and simplify, giving

Iνν(πππ, ν) =
1

νN

∑
C

nC(πi1 + πi2)
√
πi1πi2

(πi1 + πi2 + ν
√
πi1πi2)2

.

Since our ultimate goal is to test for main effects and interaction effects, which are linear

combinations of the entries in γγγ = ln(πππ), we need to first construct the information matrix for

the estimation of the entries in γγγ and ν. This information matrix, introduced in Section 1.1, is

denoted by Λ(πππ, ν). This takes the form

Λ(πππ, ν) = PI(πππ, ν)PT ,

where

P =



π1 0 . . . 0 0

0 π2 . . . 0 0
...

...
. . .

...
...

0 0 . . . πt 0

0 0 . . . 0 1


,

since ∂πi
∂γi

= πi and ∂ν
∂ν = 1. Again it is convenient to partition the Λ(πππ, ν) matrix in the same

way as we partitioned I(πππ, ν), giving

Λ(πππ, ν) =

[
Λγγ(πππ, ν) Λνγ(πππ, ν)

Λγν(πππ, ν) Λνν(πππ, ν)

]
.

Applying this to each of the generic entries in each block matrix and simplifying gives

Λγγ(πππ, ν)ii =
∑

C|Ti∈C

nC
4N

(
4πiπi2 + ν

√
πiπi2(πi + πi2)

(πi + πi2 + ν
√
πiπi2)2

)
,

Λγγ(πππ, ν)ij = −
n{i,j}

4N

4πiπj + (πi + πj)ν
√
πiπj

(πi + πj + ν
√
πiπj)2

,

Λγν(πππ, ν)1i =
1

2N

∑
C|Ti∈C

nC(πi2 − πi)
√
πiπi2

(πi + πi2 + ν
√
πiπi2)2

,
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and

Λνν(πππ, ν) =
1

N

∑
C

nC(πi1 + πi2)
√
πi1πi2

ν(πi1 + πi2 + ν
√
πi1πi2)2

. (2.8)

If we make the assumption of equal merits then these entries simplify. We will leave ν

unspecified as was done in Davidson [1970]. That is, we assume

πππ = j = πππ0,

and substitute into Equation 2.8 to obtain

Λγγ(πππ0, ν)ii =
1

2N(2 + ν)

∑
C|Ti∈C

nC ,

Λγγ(πππ0, ν)ij =
−n{i,j}

2N(2 + ν)
,

Λγν(πππ0, ν)1i = 0,

and

Λνν(πππ0, ν) =
2

ν(2 + ν)2
.

These entries are defined for all ν > 0, the range of possible values of ν for this model. If

ν = 0 then this model reduces to the Bradley–Terry model, and the Λ(πππ0, ν) matrix reduces to

Λγγ(πππ0, ν).

EXAMPLE 2.2.2.

Recall the experiment introduced in Example 2.0.12 and the design introduced in Example 2.1.2.

The information matrix for the estimation of the entries in γγγ plus ν under the null hypothesis of

equal merits is

Λ(πππ0, ν) =



1
4(2+ν) 0 0 −1

4(2+ν) 0

0 1
4(2+ν)

−1
4(2+ν) 0 0

0 −1
4(2+ν)

1
4(2+ν) 0 0

−1
4(2+ν) 0 0 1

4(2+ν) 0

0 0 0 0 2
ν(2+ν)2


.

Now that we have a general expression for the information matrix for the estimation of

the entries in γγγ plus ν, we can look at constructing information matrices for the estimation of

contrasts of the entries in γγγ plus ν. We can then use these matrices to find designs that are

optimal for the estimation of a set of contrasts of the entries in γγγ plus ν.

2.3 Representing options using k attributes

In this section we consider the construction of the information matrix when contrasts of the

entries in γγγ and the estimation of ν are of interest. In particular, we are interested in contrasts

of the entries in γγγ that represent the main effects of the attributes as introduced in Chapter 1.

Ideally, we would like to find the effect of level fq of attribute q, denoted by βq,fq , or combi-

nations of attribute levels on the merit of an item; that is, we want to estimate

βββ= (β1,0, β1,1, . . . , β1,`1−1, . . . , βk,`k−1, β12,00, . . . , β12...k,`1−1...`k−1, ν)T .
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This is not possible however, because βββ is not estimable. It would be better to estimate contrasts

of the entries in βββ so that we have a set of estimable contrasts. Suppose that the matrixB contains

contrast coefficients that correspond to the coefficients of the effects that are of interest. We can

choose the entries in B such that Bβββ is estimable.

We now construct a matrix Bγ that contains coefficients of the contrasts of the entries in γγγ.

These contrasts may be the main effects of the attributes, or two–factor interactions between

attributes, or perhaps subsets of these. We are not interested in the estimation of contrasts that

include both ν and entries in γγγ, but we do want to estimate ν itself. Then we assume that

any interactions between γγγ and ν are not of interest, and therefore we assume that contrasts

involving both entries in γγγ and ν are zero. Then we can construct a matrix B that contains both

the contrast matrix Bγ and the effect of ν.

B =

[
Bγ 000

000 Bν

]
=

[
Bγ 000

000 1

]
.

Then the information matrix for the estimation of the contrasts in Bγ and the ties parameter ν

is

C(πππ0, ν) = BΛ(πππ0, ν)BT ,

which becomes

C(πππ0, ν) =

[
BγΛγγ(πππ0, ν)BTγ 000

000 2
ν(2+ν)2

]
,

where Λγγ(πππ0, ν) was defined in Section 2.2. Appendix 2.B shows that this information matrix

does not violate the conditions given in El-Helbawy and Bradley [1978] that permit the transfor-

mation above. Since this information matrix is block diagonal, we are able to estimate the ties

parameter independently of the attribute effects.

Now let us apply this to our example when we wish to estimate main effects and ν.

EXAMPLE 2.3.1.

Consider the experiment introduced in Example 2.0.12 and the design introduced in Example

2.1.2 for the estimation of main effects plus ν. The contrast matrix for the estimation of main

effects plus ν is

B =
1

2


−1 −1 1 1 0

−1 1 −1 1 0

0 0 0 0 2

 ,
where Bγ is a 2×4 matrix of contrast coefficients and Bν is the constant 1. Then the information

matrix for the estimation of main effects plus ν is

C(πππ0, ν) =


1

2(2+ν) 0 0

0 1
2(2+ν) 0

0 0 2
ν(2+ν)2

 .
We see that we can estimate the main effects and ν independently when using this design, since

the information matrix is diagonal.

Now that we have an expression for the estimation of a set of contrasts that are of interest

and the ties parameter we may now develop some results on the optimality of designs when using

this model.
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2.4 Optimal designs for the Davidson ties model

In this section we will compare the information matrices for the estimation of a set of effects

when using the Bradley–Terry model and when using the Davidson ties model. Throughout this

section, we assume that the same set of contrasts on the entries of γγγ are of interest, those whose

coefficients are in Bγ . We will proceed to show that the optimal design for the estimation of a

set of effects when estimating the Bradley–Terry model is also optimal for the estimation of the

same set of effects plus ν when estimating the Davidson ties model.

Suppose that we assume πππ = πππ0, then the information matrix for the estimation of the

entries in γγγ when the Bradley–Terry model is used is denoted by Λ(πππ0)B–T. Also suppose that

Λγγ(πππ0, ν)DAV is the (1, 1) block of the information matrix for the estimation of the entries in γγγ

plus ν when the Davidson ties model is used. Then if we compare the diagonal entries of both

matrices, we see that

2(2 + ν)(Λγγ(πππ0, ν)DAV)ii = 4(Λ(πππ0)B–T)ii =
1

N

∑
C|Ti∈C

nC .

If we compare the off–diagonal entries in the two matrices, we see that

2(2 + ν)(Λγγ(πππ0, ν)DAV)ij = 4(Λ(πππ0)B–T)ij =
n{i,j}

N
.

It follows that we can express the information matrix for the estimation of γγγ and ν using the

Davidson ties model in terms of the information matrix for the estimation of γγγ using the Bradley–

Terry model. We get

Λ(πππ0, ν)DAV =

[
2

2+νΛ(πππ0)B–T 000

000 2
ν(2+ν)2

]
.

Since we can express these information matrices in terms of each other, we may now look at

comparing optimality results for these two designs. We will use the D–optimality criterion, as

defined in Section 1.3.1.

THEOREM 2.4.1.

For a set of contrasts on the elements of γγγ, a constant but unknown ν and for the same set of

competing designs X, the D–optimal design for the estimation of the set of contrasts when using

the Bradley–Terry model will also be D–optimal for the estimation of the same set of contrasts

and ν when using the Davidson ties model under the null hypothesis of equal merits.

Proof. We begin by letting B be the block diagonal matrix

B =

[
Bγ 000

000 1

]
,

where Bγ is a p × t matrix containing the coefficients of the contrasts of interest among the

entries in γγγ. Then the information matrix for the estimation of Bγγγγ plus ν when the Davidson

ties model is used, C(πππ0, ν)DAV, is

C(πππ0, ν)DAV = BΛ(πππ0, ν)DAVB
T

=

[
BγΛγγ(πππ0, ν)DAVB

T
γ 000

000 2
ν(2+ν)2

]
.

Since we have shown that

Λγγ(πππ0, ν)DAV =
2

2 + ν
Λ(πππ0)B–T,
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by substitution we obtain

C(πππ0, ν)DAV =

[
2

2+νBγΛ(πππ0)B–TB
T
γ 000

000 2
ν(2+ν)2

]
.

The information matrix for the estimation of Bγγγγ when the Bradley–Terry model is used,

C(πππ0)B–T, is

C(πππ0)B–T = BγΛ(πππ0)B–TB
T
γ .

Thus we may express C(πππ0, ν)DAV in terms of C(πππ0)B–T and ν, giving

C(πππ0, ν)DAV =

[
2

2+νC(πππ0)B–T 000

000 2
ν(2+ν)2

]
.

Then we see that

det(C(πππ0, ν)DAV ) = det

(
2

2 + ν
C(πππ0)B–T

)
× 2

ν(2 + ν)2

=
2p+1

ν(2 + ν)p+2
det(C(πππ0)B–T).

Since

det((C(πππ0)B–T)ξOPT
) ≥ det((C(πππ0)B–T)ξ)

for all ξ ∈ X, the relative efficiency of a generic design ξ compared to ξOPT, the design that is

optimal for the estimation of Bγγγγ when the Bradley–Terry model is used, when the Davidson

ties model is used is

Deff(ξ, ξOPT) =

(
det((C(πππ0, ν)DAV)ξ)

det((C(πππ0, ν)DAV)ξOPT
)

) 1
p+1

=

 2p+1

ν(2+ν)p+2 det((C(πππ0)B–T)ξ)

2p+1

ν(2+ν)p+2 det((C(πππ0)B–T)ξOPT)

 1
p+1

=

(
det((C(πππ0)B–T)ξ)

det((C(πππ0)B–T)ξOPT
)

) 1
p+1

≤ 1,

for all ξ ∈ X. Therefore, by the definition of D–optimality, ξOPT is the D–optimal design for the

estimation of the contrasts in Bγ plus ν when the Davidson ties model is used.

We now consider an example of the relationship between these two models.

EXAMPLE 2.4.1.

Recall the experiment and design introduced in Example 2.1.2. In Example 2.3.1 we found the

information matrix for the estimation of main effects plus ν when the Davidson ties model is

used. Now we will find the information matrix for the estimation of main effects only using

the same design and the Bradley–Terry model. The contrast matrix for the estimation of main

effects is

B =
1

2

[
−1 −1 1 1

−1 1 −1 1

]
.
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From El-Helbawy and Bradley [1978] we know that, under the assumption of the null hypothesis

of equal merits, the information matrix for the estimation of the entries in γγγ when the Bradley–

Terry model is used is

Λ(πππ0, ν)B–T =
1

8


1 0 0 −1

0 1 −1 0

0 −1 1 0

−1 0 0 1

 .
We observe that

Λγ(πππ0, ν)DAV =
2

2 + ν
Λ(πππ0)B–T.

It follows that the information matrix for the estimation of main effects only using the Bradley–

Terry model is

C(πππ0)B–T =

[
1
4 0

0 1
4

]
,

and we see that

C(πππ0, ν)DAV =

[
2

2+νC(πππ0)B–T 0

0 2
ν(2+ν)2

]
.

Taking determinants of both C(πππ0, ν)DAV and C(πππ0)B–T gives

det(C(πππ0, ν)DAV) =
1

2ν(2 + ν)4
,

and

det(C(πππ0)B–T) =
1

16
.

We are estimating p = 2 contrasts on γγγ, so

2p+1

ν(2 + ν)p+2
det(C(πππ0)B–T) =

23

ν(2 + ν)4
× 1

16

=
1

2ν(2 + ν)4

= det(C(πππ0, ν)DAV),

illustrating the results in Theorem 2.4.1.

We now use this theorem to apply the known results for optimal designs when the Bradley–

Terry model is used to the case of the Davidson ties model. First, we consider an extension of

the theorem for a 2k factorial experiment presented in El-Helbawy and Ahmed [1984].

COROLLARY 2.4.2.

Let ξ be the design that contains all distinct pairs that differ in the levels of each attribute in a

2k paired comparisons experiment. Then when the rows of Bγ correspond to the k main effects,

the design will be D–optimal for the estimation of the Davidson ties model.

Proof. By Theorem 1.3.1, the design described in the statement of the theorem is D–optimal for

the estimation of main effects when the Bradley–Terry model is used. It follows from Theorem

2.4.1 that this design must also be optimal for the estimation of the main effects plus the ties

parameter when the Davidson ties model is used.

We can use this corollary to find an optimal design for the estimation of main effects and ν

for the experiment in our examples.
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EXAMPLE 2.4.2.

Consider the 22 experiment introduced in Example 2.0.12. In this experiment we have t = 4

possible items. There are two pairs of items, {00, 11} and {01, 10}, that differ in both attributes.

Then the design with these two pairs is optimal for the estimation of main effects plus ν when

the Davidson ties model is used.

We can also extend the result on the optimal design for a 2k factorial for the estimation of

main effects plus two–factor interaction effects, established by Street et al. [2001], to incorporate

ties.

COROLLARY 2.4.3.

The D–optimal design for testing main effects plus two–factor interactions and the ties parameter

for a 2k paired comparisons experiment, when all other effects are assumed zero, and the Davidson

ties model is used is given by

ak,i =

{
2k−1

(
k

(k+1)/2

)−1
, if i = k+1

2 ,

0, otherwise,

if k is odd, and

ak,i =

{
2k−1

(
k
k/2

)−1
, if i = k

2 or k
2 + 1,

0, otherwise,

if k is even.

Proof. By Theorem 1.3.2, the design described in the statement of the theorem is D–optimal

for the estimation of main effects plus two–factor interactions when the Bradley–Terry model is

used. It follows from Theorem 2.4.1 that this design must also be optimal for the estimation of

main effects plus two–factor interactions and the ties parameter when the Davidson ties model

is used.

We can use this corollary to find an optimal design for the estimation of main effects plus

two–factor interactions and ν for the experiment in our examples.

EXAMPLE 2.4.3.

Consider again the 22 experiment introduced in Example 2.0.12. We are now interested in the

estimation of main effects plus two–factor interactions and ν. Since k = 2 is even the D–optimal

design for the estimation of these effects is given by

a2,i =

{
2×

(
2
1

)−1
, if i = 1 or 2,

0, otherwise.

This is the design with all pairs of distinct items.

Finally, we can extend the results of the general factorial as presented in El-Helbawy et al.

[1994] to incorporate ties.

COROLLARY 2.4.4.

Consider an `1 × . . . × `k factorial paired comparisons experiment. Assuming that there are no

interactions present, and Bh consists of the main effects, then the design consisting of all pairs

where the options differ in all of the attributes will be D–optimal in the design space for the

estimation of main effects plus ν when the Davidson ties model is used.



2.5 Simulations of the Davidson ties model 65

Proof. By Theorem 1.3.3, the design described in the statement of the theorem is D–optimal for

the estimation of main effects when the Bradley–Terry model is used. It follows from Theorem

2.4.1 that this design must also be optimal for the estimation of main effects plus the ties

parameter when the Davidson ties model is used.

We now consider an example of how this result can be used to find optimal designs for the

Davidson ties model.

EXAMPLE 2.4.4.

Let us consider the 32 experiment whose attributes and levels are given in Table 2.3. This

experiment has 9 possible items. The optimal design for the estimation of main effects plus ν is

given in Table 2.4.

Attributes Levels Coding

Sample collection Draw blood 0

Swab mouth/oral fluids 1

Urine sample 2

Location Public clinic 0

Doctor’s office 1

Home 2

Table 2.3: Attributes and levels for the HIV experiment with `1 = `2 = 3.

Option 1 Option 2 Option 1 Option 2

0 0 1 1 1 1 2 2

0 0 1 2 1 2 2 0

0 1 1 0 1 2 2 1

0 1 1 2 2 0 0 1

0 2 1 0 2 0 0 2

0 2 1 1 2 1 0 0

1 0 2 1 2 1 0 2

1 0 2 2 2 2 0 0

1 1 2 0 2 2 0 1

Table 2.4: Optimal design for the estimation of main effects and ν when `1 = `2 = 3.

2.5 Simulations of the Davidson ties model

In this section we consider the performance of the Davidson ties model under various model

assumptions by carrying out a number of simulation studies. The simulations we perform here,

and in later chapters, are based on a Type I extreme value error distribution. A comprehensive

discussion of the simulation methods that we utilise here is given in Train [2003] page 209–210.
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We assume that k = 2, `1 = `2 = 2 and m = 2 throughout. We consider two sets of values for

the parameters. In the first we assume that both main effects parameters, τ1 and τ2, are equal

to 0 and the ties parameter ν = 0.5, and in the second set we assume that τ1 = 1 and τ2 = −1

but ν = 0.5 still.

We find the locally optimal design for each set of values and compare the performance of each

design with both sets of parameter values. The design in Table 2.5 is optimal for the estimation

of the main effects of the attributes plus the ties parameter when τ1 = τ2 = 0, and ν = 0.5, by

Corollary 2.4.2. By an exhaustive search of the 26 − 1 = 63 possible designs, we can show that

the design in Table 2.6 is one of the designs that is optimal for the estimation of the main effects

of the attributes plus the ties parameter when τ1 = 1, τ2 = −1, and ν = 0.5. The other optimal

design consists of the choice sets in Table 2.5 plus the choice set {{1, 0}, {1, 1}}. We will use the

design in Table 2.6 for the simulations. The exhaustive search is illustrated in Figure 2.1, where

the x–coordinate corresponds to the design index, and the y–coordinate is the determinant of

the information matrix for that design when τ1 = 1, τ2 = −1, and ν = 0.5. The determinants of

the information matrix for the designs in Tables 2.5 and 2.6 are labelled in Figure 2.1.

We first assume that τ1 = τ2 = 0, and ν = 0.5 and compare the simulated distributions of the

parameter estimates when the designs in Tables 2.5 and 2.6 are used in turn. Each simulation

is modelled using the simulated responses from 150 respondents, and each boxplot displays

the distribution of the estimates from 1000 such simulations. Figures 2.2(a) and (b) show the

distributions of the parameter estimates when the designs in Tables 2.5 and 2.6, respectively,

are used. Summary statistics for both simulations are provided in Table 2.7. We see that, for

both designs, the distribution of the parameter estimates seem to be unbiased and symmetric.

We see that, in this case, the additional choice set in the design in Table 2.6 does not seem to

reduce the variance of the τ1 or ν, but the variance of τ2 is reduced. This is reasonable given

that the additional choice set requires the respondent to choose between the levels of the second

attribute, while fixing the first attribute at level 0.

We now consider the performance of these two designs when τ1 = 1, τ2 = −1, and ν = 0.5.

Figures 2.3(a) and (b) show the distributions of the parameter estimates when the designs in

Tables 2.5 and 2.6, respectively, are used. Summary statistics for both simulations are provided

in Table 2.8. We see that, for both designs, the distribution of the parameter estimates seem to

be unbiased and close to symmetric. For these parameter estimates, we see that the addition of

an extra choice set does seem to reduce the variance of the parameter estimates across the board,

but most markedly for τ2. The selection probabilities when the design in Table 2.5 is used and

τ1 = 1, τ2 = −1, and ν = 0.5 are given in Table 2.9.

Next, we simulate the effect of changing the magnitude of the ties parameter on the distri-

Option 1 Option 2

0 0 1 1

0 1 1 0

Table 2.5: Optimal design for the estimation of main effects and ν when τ1 = τ2 = 0, and

ν = 0.5.
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Figure 2.1: Exhaustive search for optimal design τ1 = 1, τ2 = −1, and ν = 0.5.

Option 1 Option 2

0 0 1 1

0 1 1 0

0 0 0 1

Table 2.6: Optimal design for the estimation of main effects and ν when τ1 = 1, τ2 = −1, and

ν = 0.5.

Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 2.5

τ1 0.00308(0.00208) 0.00417 0.00434 0.03812(0.07734)

τ2 −0.00002(0.00212) 0.00417 0.00451 −0.05835(0.07734)

ν 0.50383(0.00229) 0.00521 0.00525 0.24420(0.07734)

Design in Table 2.6

τ1 −0.00101(0.00201) 0.00417 0.00404 −0.14353(0.07734)

τ2 0.00056(0.00166) 0.00278 0.00274 −0.09451(0.07734)

ν 0.50239(0.00184) 0.00347 0.00338 0.18347(0.07734)

Table 2.7: Summary statistics for τ1 = τ2 = 0, and ν = 0.5.
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(a) (b)

Figure 2.2: Simulation of Davidson ties model τ1 = τ2 = 0, and ν = 0.5.

(a) (b)

Figure 2.3: Simulation of Davidson ties model τ1 = 1, τ2 = −1, and ν = 0.5.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 2.5

τ1 1.02064(0.00459) 0.00718 0.02103 0.48166(0.07734)

τ2 −1.02260(0.00456) 0.00718 0.02077 −0.51109(0.07734)

ν 0.50506(0.00296) 0.00565 0.00878 0.24441(0.07734)

Design in Table 2.6

τ1 1.00382(0.00364) 0.00479 0.01327 0.33741(0.07734)

τ2 −1.00187(0.00300) 0.00479 0.00902 −0.17943(0.07734)

ν 0.49988(0.00234) 0.00377 0.00550 0.22402(0.07734)

Table 2.8: Summary statistics for τ1 = 1, τ2 = −1, and ν = 0.5.

Choice Set P(T1|{T1,T2}) P(T2|{T1,T2}) P({T1,T2}|{T1,T2})

{00, 11} 0.400 0.400 0.200

{01, 10} 0.017 0.921 0.062

Table 2.9: Selection probabilities when τ1 = 1, τ2 = −1, and ν = 0.5.

bution of the parameter estimates when we let τ1 = 1 and τ2 = −1, and use the design in Table

2.6. Figures 2.4 (a) and (b) give the simulated distributions of the parameter estimates when

ν = 0.25, and when ν = 1, respectively. Summary statistics for both simulations are provided

in Table 2.10. We see that the estimates are unbiased, and the variance of the estimates for τ1

and τ2 are similar for both simulations. The simulated variances of the parameter estimates for

ν seem to be larger when ν = 1. This is confirmed by looking at the theoretical variances of the

parameter estimates, which also increase. We also notice that the distribution of ν is slightly

right skewed. This is consistent with the assumption made in Critchlow and Fligner [1991] that

ln(ν) is normally distributed.

We now compare the ability of four different designs to estimate the main effects plus the

two–factor interaction of the attributes and ν. The first two designs are those in Tables 2.5 and

2.6. The third design is the set of all pairs of items, which is optimal for the estimation of the

main effects plus the two–factor interaction of the attributes and ν when τ1 = τ2 = τ12 = 0, and

ν = 0.5, by Corollary 2.4.3. This design is shown in Table 2.11. The final design, shown in Table

2.12, is locally optimal for the estimation of the main effects plus two–factor interaction of the

attributes and ν when τ1 = 1, τ2 = −1, τ12 = −0.25, and ν = 0.5, by an exhaustive search.

We first consider the case where the interaction effect is assumed to be negligible. Suppose

that τ1 = 1, τ2 = −1, τ12 = 0, and ν = 0.5. Then Figures 2.5(a), (b), (c), and (d) give the

simulated distributions of the parameter estimates when the designs in Table 2.5, Table 2.6,

Table 2.11, and Table 2.12 are used. Summary statistics for all four of the simulations are

provided in Table 2.13.

We see that the design in Table 2.5 can not be used to estimate the two–factor interaction
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(a) (b)

Figure 2.4: Simulation of Davidson ties model τ1 = 1, τ2 = −1, and (a) ν = 0.25 (b) ν = 1 .

Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

(a) τ1 1.01526(0.00376) 0.00929 0.01410 0.29054(0.07734)

τ2 −1.01345(0.00326) 0.00444 0.01065 −0.39184(0.07734)

ν 0.25088(0.00151) 0.00223 0.00228 0.30937(0.07734)

(b) τ1 1.01229(0.00368) 0.01060 0.01358 0.32162(0.07734)

τ2 −1.01078(0.00313) 0.00558 0.00980 −0.31087(0.07734)

ν 1.01487(0.00434) 0.01594 0.01881 0.48877(0.07734)

Table 2.10: Summary statistics for τ1 = 1, τ2 = −1, and (a) ν = 0.25 and (b) ν = 1 .

Option 1 Option 2

0 0 0 1

0 1 1 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

Table 2.11: Optimal design for the estimation of main effects, two–factor interactions, and ν

when τ1 = τ2 = τ12 = 0, and ν = 0.5.



2.5 Simulations of the Davidson ties model 71

Option 1 Option 2

0 0 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

Table 2.12: Optimal design for the estimation of main effects, two–factor interactions, and ν

when τ1 = 1, τ2 = −1, τ12 = −0.25, and ν = 0.5.

at all, and gives biased estimates for the remaining attribute effects. The design in Table 2.6

is able to estimate the two–factor interaction, but with a relatively large variance and skewness

toward the extremes. The designs in Tables 2.11 and 2.12 both give unbiased and symmetric

parameter estimates with relatively small variances. The variance of the parameter estimates

from the design in Table 2.11 is slightly lower than those from the design in Table 2.12.

Next, we consider the case where there is a non–zero interaction effect. Suppose that τ1 = 1,

τ2 = −1, τ12 = −0.25, and ν = 0.5. Then Figures 2.6(a), (b), (c), and (d) give the simulated

parameter estimates when the designs in Table 2.5, Table 2.6, Table 2.11, and Table 2.12 are

used. Summary statistics for all four of the simulations are provided in Table 2.14.

Again we notice that the designs in Tables 2.11 and 2.12 give unbiased and reasonably sym-

metric parameter estimates with a relatively small variance. We also see that the designs in

Tables 2.5 and 2.6 again give poorer estimates for these parameters. Once again, the design in

Table 2.5 can not be used to estimate the two–factor interaction.
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(a) (b)

(c) (d)

Figure 2.5: Simulation: estimating main effects and ν, design in (a) Table 2.5, (b) Table 2.6,

(c) Table 2.11, and (d) Table 2.12.
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(a) (b)

(c) (d)

Figure 2.6: Simulation: estimating main effects, two–factor interactions, and ν, design in (a)

Table 2.5, (b) Table 2.6, (c) Table 2.11, and (d) Table 2.12.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 2.5

τ1 1.02128(0.00449) 0.00718 0.02017 0.67056(0.07734)

τ2 −1.01634(0.00448) 0.00718 0.02005 −0.54560(0.07734)

τ12 Not Estimable

ν 0.50828(0.00314) 0.00565 0.00984 0.38768(0.07734)

Design in Table 2.6

τ1 1.02945(0.00439) 0.00355 0.01926 0.68980(0.07734)

τ2 −1.02916(0.00435) 0.00355 0.01895 −0.70955(0.07734)

τ12 −0.01589(0.00589) 0.00638 0.03464 −0.18825(0.07734)

ν 0.50870(0.00242) 0.00185 0.00586 0.27522(0.07734)

Design in Table 2.11

τ1 1.00271(0.00217) 0.00253 0.00471 0.05708(0.07734)

τ2 −1.00320(0.00221) 0.00199 0.00487 −0.15041(0.07734)

τ12 −0.00035(0.00198) 0.00173 0.00392 −0.13595(0.07734)

ν 0.50460(0.00169) 0.00181 0.00285 0.23190(0.07734)

Design in Table 2.12

τ1 1.00910(0.00236) 0.00256 0.00557 0.18686(0.07734)

τ2 −1.00539(0.00246) 0.00196 0.00608 −0.19718(0.07734)

τ12 0.00025(0.00199) 0.00145 0.00397 0.06125(0.07734)

ν 0.50319(0.00167) 0.00178 0.00280 0.19896(0.07734)

Table 2.13: Summary statistics for τ1 = 1, τ2 = −1, τ12 = 0, and ν = 0.5.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 2.5

τ1 1.01915(0.00458) 0.00718 0.02102 0.56405(0.07734)

τ2 −1.01681(0.00460) 0.00718 0.02112 −0.49041(0.07734)

τ12 Not Estimable

ν 0.50874(0.00297) 0.00565 0.00882 0.39822(0.07734)

Design in Table 2.6

τ1 1.02073(0.00448) 0.00355 0.02008 0.68262(0.07734)

τ2 −1.02401(0.00437) 0.00355 0.01913 −0.49267(0.07734)

τ12 −0.26706(0.00544) 0.00615 0.02964 −0.18378(0.07734)

ν 0.50377(0.00222) 0.00186 0.00494 0.21732(0.07734)

Design in Table 2.11

τ1 1.00766(0.00237) 0.00266 0.00560 0.19277(0.07734)

τ2 −1.00705(0.00227) 0.00199 0.00514 −0.16026(0.07734)

τ12 −0.25287(0.00205) 0.00179 0.00419 −0.02871(0.07734)

ν 0.50522(0.00172) 0.00181 0.00295 0.17568(0.07734)

Design in Table 2.12

τ1 1.00327(0.00250) 0.00272 0.00624 0.20013(0.07734)

τ2 −1.00390(0.00252) 0.00196 0.00633 −0.21386(0.07734)

τ12 −0.25104(0.00211) 0.00150 0.00445 −0.02041(0.07734)

ν 0.50264(0.00175) 0.00178 0.00305 0.27551(0.07734)

Table 2.14: Summary statistics for τ1 = 1, τ2 = −1, τ12 = −0.25, and ν = 0.5.
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2.A Proof that jTLz = 0 for the Davidson Ties Model

We begin by recalling that

zi =
∑
i2 6=i

wii2 +
1

2
w0|ii2 −

snii2 π̂i(1 +
π̂i2 ν̂

2
√
π̂iπ̂i2

)

π̂i + π̂i2 + ν̂
√
π̂iπ̂i2

.

Now, the vector zzz contains the values for zi for each possible item Ti. Then

jjjTLzzz =
t∑
i=1

zi

=
∑
i1 6=i2

wi|ii2 +
1

2
w0(i,i2)|ii2 −

snii2 π̂i(1 +
π̂i2 ν̂

2
√
π̂iπ̂i2

)

π̂i + π̂i2 + ν̂
√
π̂iπ̂i2

=
∑
C

(wi|ii2 + wi2|ii2 + w0(i,i2)|ii2)−
∑
C

snC(π̂i1 + π̂i2 +
π̂i1 π̂i2 ν̂√
π̂i1 π̂i2

)

π̂i1 + π̂i2 + ν̂
√
π̂i1 π̂i2

=
∑
C

snC −
∑
C

snC(π̂i1 + π̂i2 + ν̂
√
π̂i1 π̂i2)

π̂i1 + π̂i2 + ν̂
√
π̂i1 π̂i2

=
∑
C

snC −
∑
C

snC

= 0,

as required.

2.B Proof that the Davidson Ties Model does not violate

El-Helbawy and Bradley [1978] Conditions

In order to apply the results relating to associated populations, we need to show that C(πππ0, ν)

is positive definite, as El-Helbawy and Bradley [1978] did.

THEOREM 2.B.1.

The C matrix for the estimation of a set of contrasts Bhγγγ and ν, where

B =

[
Bh 0

0 1

]
is positive definite.

Proof. El-Helbawy and Bradley [1978] show that C(πππ0)B–T is positive definite. Then the eigen-

values of C(πππ0)B–T, λ1, . . . , λp are all positive. If we consider the matrix

C(πππ0, ν)DAV =

[
2

2+νC(πππ0)B–T 0

0 2
ν(2+ν)2

]
,

Then

det(C(πππ0, ν)DAV − Ip+1) =
2

2 + ν
det(C(πππ0)B–T − Ip)× (

2

ν(2 + ν)2
− 1),

will have roots at λ1, . . . , λp,
2

ν(2+ν)2 . We already know that λ1, . . . , λp are positive, and 2
ν(2+ν)2

is positive for all ν > 0. Since we assume that ν > 0 anyway, all of the eigenvalues are positive.

Therefore the C matrix for the Davidson ties model is positive definite.



Chapter 3

The Generalised Davidson Ties

Model

In Chapter 2, we found optimal designs for experiments when the Davidson ties model is used

for choice sets of size 2. In Section 1.1, we introduced the MNL model as a generalisation of the

Bradley–Terry model, which allows for an arbitrary number of options in a choice set.

This chapter introduces a generalisation to the MNL model to accommodate ties. This

generalisation is analogous to the use of the Davidson ties model as a generalisation of the

Bradley–Terry model to accommodate ties. We will first set up the model, the probability and

likelihood functions and derive the information matrix for the estimation of a set of contrasts

and the ties parameter.

Once we have established the properties of this model, we will then use the information

matrix to show that the designs that are optimal when the MNL model is used are also optimal

when the generalised Davidson ties model is used. Finally, we will look at some simulations of

the generalised Davidson ties model.

3.1 Estimation of the generalised Davidson ties model

We begin this section by returning to the experiment in Example 2.0.12, looking at how we can

allow for ties when we have larger choice sets.

EXAMPLE 3.1.1.

Consider the experiment introduced in Example 2.0.12. Suppose that we create choice sets with

three items each. One such choice set is {00, 01, 10}. Then if we allow respondents to state that

a subset of these items are equally attractive then there are 7 different outcomes arising from

the choice set

• To state a preference for a single item, 00, 01 or 10,

• To state that a pair of items are equally attractive, {00, 01}, {00, 10} or {01, 10}, and

• To state that all three items are equally attractive, {00, 01, 10}.

Here we notice that the respondent is not only permitted to find pairs of items in the choice

set equally attractive, but is also permitted to state that larger subsets of the items in the choice
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set are equally attractive. In his paper, Davidson argues that the merit of finding a set of items

equally attractive is proportional to the geometric mean of the item merits. We will assume,

as Davidson did, that the proportionality is constant across choice sets, and is strictly positive.

If this constant is equal to zero then this means that no respondent has stated that any of the

items in any of the choice sets are equally preferable to another item in the choice set, and the

MNL model should be used instead.

EXAMPLE 3.1.2.

Consider the experiment introduced in Example 3.1.1. If we assign merits π00, π01, and π10 to

the items in the choice set then we obtain merits ν
√
π00π01, ν

√
π00π10 and ν

√
π01π10 for finding

pairs of items equally preferable, and the merit of finding all three items in the choice set equally

attractive ν 3
√
π00π01π10. Let

D{00,01,10} = π00 + π01 + π10 + ν
√
π00π01 + ν

√
π00π10 + ν

√
π01π10 + ν 3

√
π00π01π10.

Then the selection probabilities of each of the types of choices take the form

P (00|{00, 01, 10}) =
π00

D{00,01,10}
,

P ({00, 01}|{00, 01, 10}) =
ν
√
π00π01

D{00,01,10}
,

and

P ({00, 01, 10}|{00, 01, 10}) =
ν 3
√
π00π01π10

D{00,01,10}
.

If we set ν = 0 then we are saying that respondents will always be able to choose a single item

as best. These probabilities then become

P (00|{00, 01, 10}) =
π00

π00 + π01 + π10
,

P ({00, 01}|{00, 01, 10}) = 0,

and

P ({00, 01, 10}|{00, 01, 10}) = 0,

that is, we are left with the MNL model.

In general, let the merit of choosing item Ti be πi, the merit of finding the items Ti1 and

Ti2 equally attractive be ν
√
πi1πi2 . Let the merit of finding the items Ti1 , Ti2 and Ti3 equally

attractive be ν 3
√
πi1πi2πi3 . We continue this until we get to the respondent finding all of the

m items in the choice set equally attractive, which will have merit ν m
√
πi1πi2 . . . πim . As in the

MNL model, to obtain the probability of making a particular decision, we divide the merit of

that decision by the sum of the merits of all possible decisions from the choice set. For a choice

set C = {Ti1 , Ti2 , . . . , Tim}, we denote the sum of the merits for each of the possible decisions by

DC . That is,

DC =

m∑
a=1

πia +

m∑
x=2

∑
{Tj1 ,...,Tjx}⊆C

ν x
√
πj1 . . . πjx .
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We can then express the probabilities for each decision as

P (Ti1 |C) =
πi1
DC

,

P ({Ti1 , Ti2}|C) =
ν
√
πi1πi2
DC

,

P ({Ti1 , Ti2 , Ti3}|C) =
ν 3
√
πi1πi2πi3
DC

,

...

P ({Ti1 , Ti2 , . . . , Tim}|C) =
ν m
√
πi1πi2 . . . πim
DC

.

As before, we can define indicator variables www to represent whether a particular decision was

made by a particular respondent, α, or not. We let

wi1|C,α =


1, if respondent α selected item Ti1

when presented with choice set C,

0, otherwise,

w{i1,i2}|C,α =


1, if respondent α found items Ti1 and Ti2 equally

attractive when presented with choice set C,

0, otherwise,

...

w{i1,...,im}|C,α =


1, if respondent α found all items in the

choice set C = {Ti1 , . . . , Tim} equally attractive,

0, otherwise,

where for a given choice set and respondent α, we let only one of the ws be equal to 1, depending

on the respondent’s choice. This implies that there will be no repeated choice sets for any

respondent, and no opt–out process. Then, for respondent α, the probability density function

for the response to choice set C = {Ti1 , . . . , Tim} is

fC,α(πππ,www, ν) =
1

DnC
C

×
∏

i|Ti∈C

π
wi|C,α
i ×

m∏
x=2

∏
{Tj1 ,...,Tjx}⊆C

(ν x
√
πj1 . . . πjx)w{j1,...,jx}|C,α ,

where nC is an indicator variable which equals 1 if the choice set C is included in the experiment

and 0 if it is not. For consistency, we will also let w{j1,...,jx}|C,α = 0, where {j1, . . . , jx} ⊆ C,

if the choice set C does not appear in the experiment. The derivative of ln(fC,α(πππ,www, ν)) with

respect to πi is

∂ ln(fC,α(πππ,www, ν))

∂πi

=
wi|C,α

πi
+

m∑
x=2

∑
{Tj2 ,...,Tjx}⊆C

w{i,j2,...,jx}|C,α

xπi
− nC
DC

(
1 +

m∑
x=2

∑
{Ti,Tj2 ,...,Tjx}⊆C

νπj2 . . . πjx
x x
√
πiπj2 . . . πjx

)
= 0 if Ti /∈ C,

and the derivative of ln(fC,α(πππ,www, ν)) with respect to ν is

∂ ln(fC,α(πππ,www, ν))

∂ν
=

m∑
x=2

∑
{Tj1 ,...,Tjx}⊆C

w{j1,...,jx}|C,α

ν
− nC
DC

m∑
x=2

∑
{Tj1 ,...,Tjx}⊆C

x
√
πj1 . . . πjx .
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We will use these derivatives later to derive an expression for the information matrix for this

model. Before we derive the information matrix however, we will consider the MLEs for this

model.

Since the likelihood function is the product of the density function for a respondent and

choice set over all possible choice sets and over all of the respondents, we have

L(πππ,www, ν) =
s∏

α=1

∏
C

fC,α(πππ,www, ν)

=
∏
C

1

DsnC
C

( ∏
i|Ti∈C

π
wi|C
i ×

m∑
x=2

∏
{Tj1 ,...,Tjx}⊆C

(ν x
√
πj1 . . . πjx)w{j1,...,jx}|C

)
.

Notice that nC is not subscripted by respondent. This is because we will assume that all respon-

dents are presented with the same set of choice sets. Once again, we let

w{j1,...,jx}|C =
s∑

α=1

w{j1,...,jx}|C,α.

To maximise the likelihood function subject to the constraints of the model, we need to set

up a Lagrangian function to incorporate the constraints. For purposes of convergence, we enforce

the normalising constraint typically present in the MNL model

t∑
i=1

ln(πi) = 0.

We also constrain the contrasts that we assume to be negligible to be equal to 0. Suppose that

the matrix Ba contains the coefficients of these contrasts. Then

Baγγγ = 0,

where once again γγγ is a vector containing γi = ln(πi) for i = 1, 2, . . . , t. This gives the Lagrangian

G(πππ,www, ν) =
∑
C

( ∑
i|Ti∈C

wi|C,α ln(πi) +
m∑
x=2

∑
{Tj1 ,...,Tjx}⊆C

w{j1,...,jx}|C,α

(
ln(ν) +

1

x

x∑
q=1

ln(πjq )

)

−snC lnDC

)
+ κ1

t∑
i=1

ln(πi) + [κ2, . . . , κa+1]Ba ln(πππ),

where κ1, . . . , κa+1 are Lagrange multipliers. If we differentiate G(πππ,www, ν) with respect to πi, we

obtain

∂G(πππ,www, ν)

∂πi
=

∑
i|Ti∈C

(
wi|C

πi
+

m∑
x=2

∑
{Ti,Tj2 ,...,Tjx}⊆C

w{i,j2,...,jx}|C

xπi
− snC

∂DC

∂πi

)

+
κ1

πi
+

1

πi

a∑
u=1

κu+1(Ba)ui.

If we differentiate G(πππ,www, ν) with respect to ν, we obtain

∂G(πππ,www, ν)

∂ν
=

∑
C

(
m∑
x=2

∑
{Tj1 ,...,Tjx}⊆C

w{j1,...,jx}|C

ν
− snC

∂DC

∂ν

)
.

As usual, we obtain the MLEs by setting these equations equal to 0 and solving simultaneously.
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This problem can be simplified by using matrix notation. Suppose that we let

zi =
∑
i|Ti∈C

(
wi|C +

m∑
x=2

∑
{Ti,Tj2 ,...,Tjx}⊆C

1

x
w{i,j2,...,jx}|C − snC π̂i

∂DC

∂πi

)
.

Then by multiplying ∂G(πππ,www,ν)
∂πi

by each πi in turn, we get

zi + κ1 +
a∑
u=1

κu+1(Ba)ui = 0, for i = 1, 2, . . . , t.

This gives the system of equations

zzz + κ1jjjL +BTa κκκ = 000, (3.1)

where zzz = (z1, z2, . . . , zt)
T and κκκ = (κ2, κ3, . . . , κa+1)T . Similarly, if we let

p =
∑
C

(
m∑
x=2

∑
{Tj1 ,...,Tjx}⊆C

w{j1,...,jx}|C − νsnC
∂DC

∂ν

)
,

then we obtain p = 0 as the other equation to solve.

If we pre–multiply Equation 3.1 by jjjTL we obtain κ1 = 0, since jjjTLzzz is shown to be equal to 0

in Appendix 3.A, and the rows of Ba are the coefficients of contrasts so jjjTLB
T
a = (BajjjL)T = 000.

Pre–multiplying Equation 3.1 by Ba, we obtain

Bazzz + κ1BajjjL +BaB
T
a κκκ = 000

Bazzz + κκκ = 000

κκκ = −Bazzz.

Substituting this into Equation 3.1, we get

(I −BTa Ba)zzz = 000,

and

p = 0

as the normal equations. We obtain the MLEs by solving these equations iteratively.

EXAMPLE 3.1.3.

Recall the experiment introduced in Example 3.1.1. Suppose that we present four choice sets to

each respondent, {00, 01, 10}, {01, 00, 11}, {10, 11, 00} and {11, 10, 01} and that we are interested

in the estimation of main effects and ν. Suppose that we present these choice sets to 150

respondents and obtain the summarised responses in Table 3.1. Then the Lagrangian for this
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Option 1 Option 2 Option 3 T1 T2 T3 {T1,T2} {T1,T3} {T2,T3} All

0 0 0 1 1 0 5 19 54 10 21 20 21

0 1 0 0 1 1 4 4 73 5 25 22 17

1 0 1 1 0 0 26 61 0 27 9 15 12

1 1 1 0 0 1 47 23 8 28 15 10 19

Table 3.1: Responses for the experiment in Example 3.1.3.

estimation of the generalised Davidson ties model for this experiment is

G(www,πππ, ν) =

5 ln(π00) + 19 ln(π01) + 54 ln(π10) + (10 + 21 + 20 + 21) ln(ν) +
10

2
(ln(π00) + ln(π01))

+
21

2
(ln(π00)+ln(π10))+

20

2
(ln(π01)+ln(π10))+

21

3
(ln(π00)+ln(π01)+ln(π10))−150 ln(D00,01,10)

+4 ln(π01) + 4 ln(π00) + 73 ln(π11) + (5 + 25 + 22 + 17) ln(ν) +
5

2
(ln(π01) + ln(π00))

+
25

2
(ln(π01)+ln(π11))+

22

2
(ln(π00)+ln(π11))+

17

3
(ln(π01)+ln(π00)+ln(π11))−150 ln(D01,00,11)

+26 ln(π10) + 61 ln(π11) + 0 ln(π00) + (27 + 9 + 15 + 12) ln(ν) +
27

2
(ln(π00) + ln(π01))

+
9

2
(ln(π00)+ln(π01))+

15

2
(ln(π00)+ln(π01))+

12

3
(ln(π00)+ln(π01)+ln(π10))−150 ln(D10,11,00)

+47 ln(π11) + 23 ln(π10) + 8 ln(π01) + (28 + 15 + 10 + 19) ln(ν) +
28

2
(ln(π00) + ln(π01))

+
15

2
(ln(π00)+ln(π01))+

10

2
(ln(π00)+ln(π01)+

19

3
(ln(π00)+ln(π01)+ln(π10))−150 ln(D11,10,01)

+κ1(ln(π00) + ln(π01) + ln(π10) + ln(π11)) + κ2(ln(π00)− ln(π01)− ln(π10) + ln(π11)).

We differentiate the Lagrangian with respect to each πi in turn. For instance,

∂G(www,πππ, ν)

∂π00
=

200

3π00
+

κ1

π00
+

κ2

π00
− 150

(
1 + νπ01√

π00π01
+ νπ10√

π00π10
+ νπ01π10

3
√
π00π01π10

D00,01,10

−
1 + νπ01√

π00π01
+ νπ11√

π00π11
+ νπ01π11

3
√
π00π01π11

D01,00,11
−

1 + νπ10√
π00π10

+ νπ11√
π00π11

+ νπ10π11
3
√
π00π10π11

D10,11,00

)
,

and

∂G(www,πππ, ν)

∂ν
=

263

ν
−

150(
√
π00π01 +

√
π00π10 +

√
π01π10 + 3

√
π00π01π10)

D00,01,10

−
150(
√
π00π01 +

√
π00π11 +

√
π01π11 + 3

√
π00π01π11)

D01,00,11

−
150(
√
π00π10 +

√
π00π11 +

√
π10π11 + 3

√
π00π10π11)

D10,11,00

−
150(
√
π01π10 +

√
π01π11 +

√
π10π11 + 3

√
π01π10π11)

D11,10,01
.

If we set each of these equal to 0 and solve iteratively then we obtain the MLEs for πππ and ν. If

we let τ1 be the main effect of the first attribute and τ2 the main effect of the second attribute

then we get

τ̂1 = 1.01 τ̂2 = 0.39 ν̂ = 0.93.
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3.2 Properties of the generalised Davidson ties model

In this section, we complete the construction of the information matrix for the estimation of

the entries in πππ and ν. We begin by deriving expressions for the variances and covariances of

the selection indicators, www, introduced previously. We then use these expressions to simplify the

information matrix.

Recall that the entries in www are selection indicators for the choice made by a respondent when

presented with the choice set C = {Ti1 , Ti2 , . . . , Tim}. These wi have a Bernoulli distribution

with expectations

Eπ(wi1|C,α) =
πi1
DC

,

Eπ(w{i1,i2}|C,α) =
ν
√
πi1πi2
DC

,

Eπ(w{i1,i2,i3}|C,α) =
ν 3
√
πi1πi2πi3
DC

,

...

Eπ(w{i1,i2,...,im−1}|C,α) =
ν m−1
√
πi1πi2 . . . πim−1

DC
,

and

Eπ(w{i1,i2,...,im}|C,α) =
ν m
√
πi1πi2 . . . πim
DC

. (3.2)

The variances of these selection indicators are given by

Varπ(wi1|C,α) =
πi1
DC
× DC − πi1

DC
,

Varπ(w{i1,i2}|C,α) =
ν
√
πi1πi2
DC

×
DC − ν

√
πi1πi2

DC
,

Varπ(w{i1,i2,i3}|C,α) =
ν 3
√
πi1πi2πi3
DC

×
DC − ν 3

√
πi1πi2πi3

DC
,

...

Varπ(w{i1,...,im−1}|C,α) =
ν m−1
√
πi1 . . . πim−1

DC
×
DC − ν m−1

√
πi1 . . . πim−1

DC
,

and

Varπ(w{i1,...,im}|C,α) =
ν m
√
πi1 . . . πim
DC

×
DC − ν m

√
πi1πi2 . . . πim
DC

. (3.3)

Next we derive covariances for the selection indicators. We assume that the selections made

in two distinct choice sets are uncorrelated, and thus the selection indicators between choice sets

have zero correlation.

We begin with the correlation between two selection indicators that both represent selections

of a single item. We notice that it would not be possible to select both Ti1 alone and Ti2 alone,

and therefore Eπ(wi1|C,αwi2|C,α) = 0. This yields

Covπ(wi1|C,α, wi2|C,α) = Eπ
((
wi1|C,α − Eπ(wi1|C,α)

)(
wi2|C,α − Eπ(wi2|C,α)

))
= 0− Eπ(wi1|C,α)Eπ(wi2|C,α)

=
−πi1πi2
(DC,α)2

.



3.2 Properties of the generalised Davidson ties model 84

Then

Covπ(wi1|C,α, wi1′ |C′,α) =


−πi1πi1′
(DC,α)2 , if C = C ′ and i1 6= i1′ ,

Varπ(wi1|C,α), if C = C ′ and i1 = i1′ ,

0, otherwise,

where C ′ = {Ti1′ , Ti2′ , . . . , Tim′}. We repeat this procedure for different selection indicators.

This gives

Covπ(wj|C,α, w{j1′ ,...,jx′}|C′,α) =


−πjν x

√
πj

1′
×...×πi

x′

(DC)2 , if C = C ′,

0, otherwise,

and

Covπ(w{j1,...,jx}|C,α, w{j1′ ,...,ju′}|C′,α) =


−ν2 x
√
πj1×...×πix u

√
πi

1′
×...×πi

u′

(DC)2 , if C = C ′,

0, otherwise,
(3.4)

for 2 ≤ x, y ≤ m.

Next we construct the information matrix for this model. As with the Davidson ties model,

the construction will be easier if we partition the information matrix into four blocks. Thus let

I(πππ, ν) =

(
Iππ(πππ, ν) Iνπ(πππ, ν)

Iπν(πππ, ν) Iνν(πππ, ν)

)
,

where Iππ(πππ, ν) contains minus the expected value of second derivatives of the density function

with respect to two of the entries in πππ. Iνν(πππ, ν) contains minus the expected value of the second

derivative of the density function with respect to ν twice. Iπν(πππ, ν) and Iνπ(πππ, ν) contains

minus the expected value of the second derivatives with respect to one entry in πππ and ν, where

Iπν(πππ, ν) = Iνπ(πππ, ν)T .

El-Helbawy and Bradley [1978] state that, under some mild regularity conditions, as given in

Section 1.1, the (i, j)th entry of the information matrix for a discrete choice experiment without

ties is

I(πππ)ij =
t−1∑
q=1

t∑
r=q+1

nqr
N
Eπ
((∂ ln(fqrα(πππ,www))

∂πi

)(∂ ln(fqrα(πππ,www))

∂πj

))
.

We now use this expression, and the results in Equations 3.2, 3.3, and 3.4, to evaluate some

generic cells in each block matrix. Since m ≥ 2 in this case, we sum over the choice sets of size m

rather than pairs of items, and modify the notation for nqr and fqrα(πππ,www) accordingly. We will

begin with Iππ(πππ, ν). In this block matrix, we need to consider the off–diagonal and diagonal

entries separately.

Let us begin with the off–diagonal entries of Iππ(πππ, ν). Suppose that we consider a generic

entry Iππ(πππ, ν)ij , containing the product of the derivatives with respect to πi and with respect

to πj . We begin with

Iππ(πππ, ν)ij =
∑
C

nC
N
Eπ
(
∂ ln(fC,α(πππ,www, ν))

∂πi

∂ ln(fC,α(πππ,www, ν))

∂πj

)
.

The derivative of f(πππ,www, ν) with respect to πi will be 0 unless Ti appears in the choice set C.

Then we can restrict our summation to those choice sets that contain both Ti and Tj . This gives

Iππ(πππ, ν)ij =
∑

C|Ti,Tj∈C

nC
N
Eπ
(
∂ ln(fC,α(πππ,www, ν))

∂πi

∂ ln(fC,α(πππ,www, ν))

∂πj

)
.
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By observation, we obtain

∂ ln(fCα(www,πππ, ν))

∂πi
=

wi|C,α

πi
− Eπ

(wi|C,α
πi

)
. (3.5)

Then it follows that

Iππ(πππ, ν)ij =
∑

C|Ti,Tj∈C

nC
N

Covπ

(
wi|C,α

πi
+

m∑
x=2

∑
{Ti,Tj2 ,...,Tjx}⊆C

w{i,j2,...,jx}|C,α

xπi
,

wj|C,α

πj
+

m∑
u=2

∑
{Tj ,Tj′2 ,...,Tj′u}⊆C

w{j,j′2,...,j′u}|C,α

uπj

)
.

If we expand this covariance, we get

Iππ(πππ, ν)ij

=
∑

C|Ti,Tj∈C

nC
Nπiπj

Covπ(wi|C,α, wj|C,α) +
m∑
u=2

∑
{Ti,Tj2 ,...,Tju}⊆C

1

u
Covπ(wi|C,α, w{j,j′2,...,j′u}|C,α)

+
m∑
x=2

∑
{Ti,Tj2 ,...,Tjx}⊆C

1

x
Covπ(w{i,j2,...,jx}|C,α, wj|C,α)

+
m∑
x=2

∑
{Ti,Tj ,Tj3 ,...,Tjx}⊆C

1

x2
Varπ(w{i,j,j3,...,jx}|C,α)

+
m∑
x=2

m∑
u=2

∑
{Ti,Tj2 ,...,Tjx}
6={Tj ,Tj′2 ,...,Tj′u}⊆C

1

xu
Covπ(w{i,j2,...,jx}|C,α, w{j,j′2,...,j′u}|C,α)

 .

If we then substitute the Equations 3.3 and 3.4 and simplify, we obtain

Iππ(πππ, ν)ij =
∑

C|Ti,Tj∈C

nC
NπiπjD2

C

(
− πiπj −

m∑
u=2

∑
{Ti,Tj′2 ,...,Tj′u}⊆C

πjν u
√
πiπj′2 . . . πj′u
u

−
m∑
x=2

∑
{Ti,Tj2 ,...,Tjx}⊆C

πiν x
√
πjπj2 . . . πjx
x

+
m∑
x=2

∑
{Ti,Tj ,Tj3 ,...,Tjx}

ν x
√
πiπjπj3 . . . πjx(DC − ν x

√
πiπjπj3 . . . πjx)

x2

−
m∑
x=2

m∑
u=2

∑
{Ti,Tj2 ,...,Tjx}
6={Tj ,Tj′2 ,...,Tj′u}

ν2 x
√
πiπj2 . . . πjx u

√
πjπj′2 . . . πj′u

xy

)
.

Now let us consider a generic diagonal term in Iππ(πππ, ν). Again, if we notice that the derivative

of ln(f(πππ,www, ν)) with respect to πi is 0 when Ti does not appear in the choice set, we obtain

Iππ(πππ, ν)ii =
∑

C|Ti∈C

nC
N
Eπ
(
∂ ln(fC,α(πππ,www, ν))

∂πi

∂ ln(fC,α(πππ,www, ν))

∂πi

)
.

Using Equation 3.5, this simplifies to

Iππ(πππ, ν)ii =
∑

C|Ti∈C

nC
N

Varπ

(
wi|C,α

πi
+

m∑
x=2

∑
{Ti,Tj2 ,...,Tjx}⊆C

w{i,j2,...,jx}|C,α

xπi

)
.
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We can expand this variance to get

Iππ(πππ, ν)ii

=
∑

C|Ti∈C

nC
Nπ2

i

Varπ(wi|C,α) +
m∑
u=2

∑
{Ti,Tj′2 ,...,Tj′u}⊆C

Covπ(wi|C,α, w{j,j′2,...,j′u}|C,α)

u

+
m∑
x=2

∑
{Ti,Tj2 ,...,Tjx}⊆C

Covπ(w{i,j2,...,jx}|C,α, wj|C,α)

x
+

m∑
x=2

∑
{Ti,Tj2 ,...,Tjx}⊆C

Varπ(w{i,j2,...,jx}|C,α)

x2

+
m∑
x=2

m∑
u=2

∑
{Ti,Tj2 ,...,Tjx}
6={Tj ,Tj′2 ,...,Tj′u}⊆C

Covπ(w{i,j2,...,jx}|C,α, w{j,j′2,...,j′u}|C,α)

xu

 .

Substituting Equations 3.3 and 3.4 and simplifying gives

Iππ(πππ, ν)ii

=
∑

C|Ti∈C

nC
Nπ2

iD
2
C

(
πi(DC − πi) +

m∑
x=2

∑
{Ti,Tj2 ,...,Tjx}⊆C

ν x
√
πiπj2 . . . πjx(DC − ν x

√
πiπj2 . . . πjx)

x2

−2
m∑
x=2

∑
{Ti,Tj2 ,...,Tjx}⊆C

νπi x
√
πiπj2 . . . πjx
x

−
m∑
x=2

m∑
u=2

∑
{Ti,Tj2 ,...,Tjx}
6={Ti,Tj′2 ,...,Tj′u}⊆C

ν2 x
√
πiπj2 . . . πjx u

√
πiπj′2 . . . πj′u

xu

)
.

We can repeat this process for a generic entry of Iπν(πππ, ν), a 1 × t vector. In the same way

as before we exclude the choice sets that do not include Ti, which will give a zero summand, and

obtain

Iπν(πππ, ν)i =
∑

C|Ti∈C

nC
N
Eπ
(
∂ ln(fC,α(πππ,www))

∂πi

∂ ln(fC,α(πππ,www))

∂ν

)
.

If we take into account Equation 3.5 and that

∂ ln(fCα(πππ,www, ν))

∂ν
=

m∑
x=2

∑
{Tj1 ,...,Tjx}⊆C

w{j1,...,jx}|Cα

ν
− Eπ

 m∑
x=2

∑
{Tj1 ,...,Tjx}⊆C

w{j1,...,jx}|Cα

ν

 ,

(3.6)

then

Iπν(πππ, ν)i

=
∑

C|Ti∈C

nC
N

Covπ

(
wi|C,α

πi
+

m∑
x=2

∑
{Ti,Tj2 ,...,Tjx}⊆C

w{i,j2,...,jx}|C,α

xπi
,
m∑
u=2

∑
{Tj′1 ,...,Tj′u}⊆C

w{j′1,...,j′u}|C,α

ν

)
.
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Again, we expand these covariances to obtain

Iπν(πππ, ν)i =
∑

C|Ti∈C

nC
Nπiν

(
m∑
u=2

∑
{Ti,Tj′2 ,...,Tj′u}⊆C

Covπ(wi|C,α, w{j′1,...,j′u}|C,α)

+
m∑
x=2

∑
{Ti,Tj2 ,...,Tjx}⊆C

1

x
Varπ(w{i,j2,...,jx}|C,α)

+
m∑
x=2

m∑
u=2

∑
{Ti,Tj2 ,...,Tjx}
6={Tj′1 ,...,Tj′u}⊆C

1

x
Covπ(w{i,j2,...,jx}|C,α, w{j′1,...,j′u}|C,α)

)
.

Substituting Equations 3.3 and 3.4 and simplifying gives

Iπν(πππ, ν)i =
∑
i|Ti∈C

nC
NπiνD2

C

(
−

m∑
u=2

∑
{Tj′1 ,Tj′2 ,...,Tj′u}⊆C

πiν u
√
πj′1πj′2 . . . πj′u

+
m∑
x=2

∑
{Ti,Tj2 ,...,Tjx}⊆C

ν x
√
πiπj2 . . . πjx(DC − ν x

√
πiπj2 . . . πjx)

x

−
m∑
x=2

m∑
u=2

∑
{Ti,Tj2 ,...,Tjx}
6={Tj′1 ,Tj′2 ,...,Tj′u}⊆C

ν2 x
√
πiπj2 . . . πjx u

√
πj′1πj′2 . . . πj′u

x

)
.

Finally, we look at the single element Iνν(πππ, ν). We begin with

Iνν(πππ, ν) =
∑
C

nC
N
Eπ
((∂ ln(fC,α(πππ,www))

∂ν

)2
)
.

In this case, there are no derivatives with respect to any πi, so no choice sets are excluded from

the summation. Thus we obtain

Iνν(πππ, ν) =
∑
C

nC
N
Eπ

(( m∑
x=2

∑
{Tj1 ,...,Tjx}

w{j1,...,jx}|C,α

ν
− 1

DC

m∑
x=2

∑
{Tj1 ,...,Tjx}⊆C

x
√
πj1 . . . πjx

)2
)
.

Using Equation 3.6, this simplifies to

Iνν(πππ, ν) =
∑
C

nC
N

Varπ

( m∑
x=2

∑
{Tj1 ,...,Tjx}⊆C

w{j1,...,jx}|C,α

ν

)
.

As in the other cases, we will expand the variance and substitute this expression and covariances

of the single ws. After simplification, we obtain

Iνν(πππ, ν) =
∑
C

nC
Nν2D2

C

×

(
m∑
x=2

∑
{Tj1 ,...,Tjx}⊆C

ν x
√
πj1 . . . πjx(DC − ν x

√
πj1 . . . πjx)

−
m∑
x=2

m∑
u=2

∑
{Tj1 ,...,Tjx}
6={Tj′1 ,...,Tj′u}⊆C

ν2 x
√
πj1 . . . πjx u

√
πj′1 . . . πj′u

)
.

As with the Davidson ties model in Chapter 2, our ultimate goal will be to estimate contrasts

of the γi = ln(πi), and not the πis themselves. In order to achieve this, we will need to find the

information matrix for the estimation of the entries in γγγ plus ν. This information matrix was

introduced for the MNL model in Section 1.1, and was derived for the Davidson ties model in

Chapter 2. We partition this information matrix in the same way as I(πππ, ν), giving

Λ(πππ, ν) =

[
Λγγ(πππ, ν) Λνγ(πππ, ν)

Λγν(πππ, ν) Λνν(πππ, ν)

]
,
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where Λνγ(πππ, ν) = Λγν(πππ, ν)T . As in the case of the Davidson ties models,

Λ(πππ, ν) = PI(πππ, ν)PT

where

P =



π1 0 . . . 0 0

0 π2 . . . 0 0
...

...
. . .

...
...

0 0 . . . πt 0

0 0 . . . 0 1


.

If we look at each of the generic entries, we get

Λγγ(πππ, ν)ij = πiπjIππ(πππ, ν)ij

Λγγ(πππ, ν)ii = π2
i Iππ(πππ, ν)ii

Λγν(πππ, ν)1i = πiIπν(πππ, ν)

Λνν(πππ, ν) = Iνν(πππ, ν).

If we assume, as did Davidson [1970], the null hypothesis of equal merits for each of the items and

that ν is left unspecified, then the expression for Λ(πππ, ν) simplifies greatly. That is, we assume

that

πππ = jjj = πππ0,

and get

Λγγ(πππ0, ν)ij

=
∑

C|Ti,Tj∈C

nC
ND2

C

(
− 1−

m∑
u=2

∑
{Ti,Tj′2 ,...,Tj′u}⊆C

ν

u
−

m∑
x=2

∑
{Ti,Tj2 ,...,Tjx}⊆C

ν

x

+

m∑
x=2

∑
{Ti,Tj ,Tj3 ,...,Tjx}

ν(DC − ν)

x2
−

m∑
x=2

m∑
u=2

∑
{Ti,Tj2 ,...,Tjx}
6={Tj ,Tj′2 ,...,Tj′u}

ν2

xy

)

=
∑

C|Ti,Tj∈C

nC
ND2

C

(
− 1− ν

( m∑
u=2

1

u

(
m− 1

y − 1

)
+

m∑
x=2

1

x

(
m− 1

x− 1

))
+ ν(DC − ν)

m∑
x=2

1

x2

(
m− 2

x− 2

)

−ν2

( m∑
x=2

m∑
u=2

1

x× u

(
m− 1

x− 1

)(
m− 1

u− 1

)
−

m∑
x=2

1

x2

(
m− 2

x− 2

)))
.

If we use the identity

m

x

(
m− 1

x− 1

)
=

(
m

x

)
, (3.7)

and simplify, then we obtain

Λγγ(πππ0, ν)ij =

ν
∑m
x=2

((
(x−1)

xm(m−1) −
1
m2

)(
m
x

))
− 1

m

N(m+ ν
∑m
x=2

(
m
x

)
)

∑
C|Ti,Tj∈C

nC .
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Next we look at the diagonal entries of Λγγ(πππ0, ν). We have

Λγγ(πππ0, ν)ii

=
∑

C|Ti∈C

nC
ND2

C

(
(DC − 1) +

m∑
x=2

∑
{Ti,Tj2 ,...,Tjx}⊆C

ν(DC − ν)

x2
− 2

m∑
x=2

∑
{Ti,Tj2 ,...,Tjx}⊆C

ν

x

−
m∑
x=2

m∑
u=2

∑
{Ti,Tj2 ,...,Tjx}
6={Ti,Tj′2 ,...,Tj′u}⊆C

ν2

xu

)

=
∑

C|Ti∈C

nC
ND2

C

(
(DC − 1) + ν(DC − ν)

m∑
x=2

1

x2

(
m− 1

x− 1

)
− 2ν

m∑
x=2

1

x

(
m− 1

x− 1

)

−ν2

( m∑
x=2

m∑
u=2

1

xu

(
m− 1

x− 1

)(
m− 1

u− 1

)
−

m∑
x=2

1

x2

(
m− 1

x− 1

)))
,

which, by using Equation 3.7, can be simplified to

Λγγ(πππ0, ν)ii =
1− 1

m + ν
∑m
x=2

(
1
mx −

1
m2

)(
m
x

)
N(m+ ν

∑m
x=2

(
m
x

)
)

∑
C|Ti∈C

nC .

Next observe that

Λγν(πππ0, ν)i

=
∑
i|Ti∈C

nC
NνD2

C

(
−

m∑
u=2

∑
{Tj′1 ,Tj′2 ,...,Tj′u}⊆C

ν +
m∑
x=2

∑
{Ti,Tj2 ,...,Tjx}⊆C

ν(DC − ν)

x

−
m∑
x=2

m∑
u=2

∑
{Ti,Tj2 ,...,Tjx}
6={Tj′1 ,Tj′2 ,...,Tj′u}⊆C

ν2

x

)

=
∑

C|Ti∈C

nC
ND2

C

(
− ν

m∑
x=2

(
m

x

)
+ ν(DC − ν)

m∑
x=2

1

x

(
m− 1

x− 1

)

−ν2

( m∑
x=2

m∑
u=2

1

xu

(
m− 1

x− 1

)(
m

u

)
−

m∑
x=2

1

x

(
m− 1

x− 1

)))
,

and we use Equation 3.7 and simplify to give

Λγν(πππ0, ν)i =
∑

C|Ti∈C

nC

(
−
∑m
x=2

(
m
x

)
− ν

m

(∑m
x=2

(
m
x

))2

+
∑m
x=2

(
m
x

)
+ ν

m

(∑m
x=2

(
m
x

))2
)

NπiD2
C

,

which is clearly 0. Thus Λγν(πππ0, ν) = 000. Recall that these off–diagonal blocks were also zero for

the Davidson ties model.

Finally, we have

Λνν(πππ0, ν) =
∑
C

nC
Nν2D2

C

×

(
m∑
x=2

∑
{Tj1 ,...,Tjx}⊆C

ν(DC − ν)−
m∑
x=2

m∑
u=2

∑
{Tj1 ,...,Tjx}
6={Tj′1 ,...,Tj′u}⊆C

ν2

)

=
∑
C

nC

(
ν(DC − ν)

∑m
x=2

(
m
x

)
− ν2

(∑m
x=2

∑m
u=2

(
m
x

)(
m
u

)
−
∑m
x=2

(
m
x

)))
Nν2D2

C

,
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which, using Equation 3.7, simplifies to give

Λνν(πππ0, ν) =
m
∑m
x=2

(
m
x

)
Nν(m+ ν

∑m
x=2

(
m
x

)
)2

∑
C

nC .

Noting that N =
∑
C nC , this will simplify further to give

Λνν(πππ0, ν) =
m
∑m
x=2

(
m
x

)
ν(m+ ν

∑m
x=2

(
m
x

)
)2
.

This is a function of m and ν only and hence we refer to this entry as Λνν(m, ν).

Now let us return to our example and derive the Λ(πππ0, ν) matrix.

EXAMPLE 3.2.1.

Recall the experiment introduced in Example 3.1.1. The information matrix for the estimation

of γγγ and ν under the null hypothesis of equal merits is

Λ(πππ0, ν) =
(4 + ν)

24(3 + 4ν)



3 −1 −1 −1 0

−1 3 −1 −1 0

−1 −1 3 −1 0

−1 −1 −1 3 0

0 0 0 0 288
ν(3+4ν)(4+ν)


.

Now that we have an information matrix for the entries in γγγ and for ν we are able to construct

an information matrix for the estimation of ν and contrasts of the entries in γγγ. This matrix will

then be used to develop some results about the optimal design for sets of contrasts when this

model is appropriate.

3.3 Representing options using k attributes

In this section we consider the construction of the information matrix for the estimation of ν and

contrasts of the entries in γγγ. In particular, we are interested in the estimation of the contrasts

of the entries in γγγ that relate to the main effects and interaction effects of the attributes, as

introduced in Section 1.B.

We begin by constructing a matrix B that contains coefficients of linear combinations of the

entries in γγγ and ν. We assume that any interaction between the entries in γγγ and ν are not of

interest. This allows us to partition B into two non–zero blocks. The first block is Bγ , which

contains contrasts of the entries in γγγ. The other block will equal 1. Appendix 3.B shows that

this will not violate any of the assumptions forced on the information matrix by El-Helbawy and

Bradley [1978]. The partitioned B matrix can be expressed as

B =

[
Bγ 000

000 1

]
.

Then the information matrix for the estimation of ν and the contrasts in Bγγγγ, under the null

hypothesis of equal merits, is

C(πππ0, ν) = BΛ(πππ0, ν)BT

=

[
Bγ 000

000 1

][
Λγγ(πππ0, ν) 000

000 Λνν(m, ν)

][
BTγ 000

000 1

]

=

[
BγΛγγ(πππ0, ν)BTγ 000

000 Λνν(m, ν)

]
.
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Now let us reconsider the experiment introduced in Example 3.1.1, calculating the information

matrix for the estimation of ν and the main effects.

EXAMPLE 3.3.1.

Consider the experiment introduced in Example 3.1.1 and the design introduced in Example

3.1.3 to estimate main effects and ν. The B for the estimation of ν and the main effects is

B =

[
Bγ 000

000 1

]

=
1

2


−1 −1 1 1 0

−1 1 −1 1 0

0 0 0 0 2

 ,
where Bγ is a 2×4 matrix of contrast coefficients. Then the information matrix for the estimation

of ν and the main effects is

C(πππ0, ν) =


4+ν

6(3+4ν) 0 0

0 4+ν
6(3+4ν) 0

0 0 12
ν(3+4ν)2

 ,
Since the information matrix is diagonal, we can estimate ν and the main effects independently

when using this design.

Now that we have the information matrix for the effects that are of interest, we can determine

the optimal designs for the estimation of these effects.

3.4 Optimal designs for the estimation of effects in the

generalised Davidson ties model

In this section we compare the information matrices for the estimation of a given set of contrasts

when the generalised Davidson ties model is used to that obtained when the MNL model is

used. We then show that designs that are optimal for the MNL model are also optimal for the

estimation of ν and the same set of contrasts for the generalised Davidson ties model.

Recall from Section 1.1 that the generic entries for Λ(πππ0) when the MNL model is used,

denoted here as Λ(πππ0)MNL, are

(Λ(πππ0)MNL)ij =
−1

m2N

∑
C|Ti,Tj∈C

nC ,

and

(Λ(πππ0)MNL)ii =
m− 1

m2N

∑
C|Ti∈C

nC .

If we compare this to the first block of Λ(πππ0, ν) when the generalised Davidson ties model is

used, denoted here as (Λγγ(πππ0, ν)DAV), then we obtain

1

N

∑
C|Ti,Tj∈C

nC = −m2(Λ(πππ0)MNL)ij =
(m− 1)(m+ ν

∑m
x=2

(
m
x

)
)

ν
∑m
x=2(( 1

m2 − 1
mx )

(
m
x

)
)

(Λγγ(πππ0, ν)DAV)ij ,
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which simplifies to give

(Λγγ(πππ0, ν)DAV)ij = Q(m, ν)× (Λ(πππ0)MNL)ij ,

where

Q(m, ν) =
m+ ν

∑m
x=2( m−x

x(m−1)

(
m
x

)
)

m+ ν
∑m
x=2

(
m
x

) .

Similarly, we find that

1

N

∑
C|Ti∈C

nC =
m2

m− 1
(Λ(πππ0)MNL)ii =

(m+ ν
∑m
x=2

(
m
x

)
)

m−1
m + ν

∑m
x=2(( 1

mx −
1
m2 )

(
m
x

)
)
(Λγγ(πππ0, ν)DAV)ii,

which simplifies to give

(Λγγ(πππ0, ν)DAV)ij = Q(m, ν)× (Λ(πππ0)MNL)ij .

Thus we see that

Λγγ(πππ0, ν)DAV = Q(m, ν)× Λ(πππ0)MNL,

which gives

Λ(πππ0, ν)DAV =

(
Q(m, ν)× Λ(πππ0)MNL 0

0 Λνν(m, ν)

)
.

Since we can express the information matrix for the estimation of ν and contrasts of the

entries in γγγ when the generalised Davidson ties model is used in terms of the information matrix

for the estimation of the entries in γγγ when the MNL model is used, we may now look at comparing

optimality criteria for designs using these two models. We will use the D–optimality criterion as

defined in Section 1.3.1.

THEOREM 3.4.1.

For a set of contrasts of the entries in γγγ and a constant but unknown ν, the D–optimal design

for the estimation of the contrasts of γγγ over a set of competing designs X when the MNL model

is used will also be D–optimal for the estimation of the same contrasts and ν over the same set

of competing designs for the estimation of the generalised Davidson ties model.

Proof. We begin by letting B be a block diagonal matrix

B =

[
Bγ 000

000 1

]
,

where Bγ is a p × t matrix containing the coefficients of the contrasts of γγγ = ln(πππ) that are of

interest. The contrasts in Bγγγγ are to be estimated in both models. Then the information matrix

for the estimation of the contrasts in Bγγγγ as well as ν when the generalised Davidson model is

used is

C(πππ0, ν)DAV =

[
BγΛγγ(πππ0, ν)BTγ 000

000 Λνν(m, ν)

]
.

However, we have shown that

Λγγ(πππ0, ν)DAV = Q(m, ν)× Λ(πππ0)MNL,

so by substituting this into the expression for C(πππ0, ν)DAV we obtain

C(πππ0, ν)DAV =

[
Q(m, ν)BγΛ(πππ0)MNLB

T
γ 000

000 Λνν(m, ν)

]
.
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We notice that the information matrix for the estimation of the set of effects in Bγγγγ when

the MNL model is used is

C(πππ0)MNL = BγΛ(πππ0)MNLB
T
γ .

That is,

C(πππ0, ν)DAV =

(
Q(m, ν)C(πππ0)MNL 0

0 Λνν(m, ν)

)
.

Then

det(C(πππ0, ν)DAV) = (Q(m, ν))p × Λνν(m, ν)× det(C(πππ0)MNL).

Since

det((C(πππ0)MNL)ξOPT ) ≥ det((C(πππ0)MNL)ξ)

for all ξ ∈ X, the relative efficiency of a generic design compared to the design ξOPT, which is

optimal for the estimation of the set of contrasts using the MNL model, when the generalised

Davidson ties model is used, is

Deff(ξ, ξOPT) =

(
det(Cξ,DAV)

det(CξOPT,DAV
)

) 1
p+1

=

(
(Q(m, ν))p × Λν(m, ν)× det(Cξ,MNL)

(Q(m, ν))p × Λν(m, ν)× det(CξOPT,MNL
)

) 1
p+1

=

(
det(Cξ,MNL)

det(CξOPT,MNL
)

) 1
p+1

≤ 1,

for all ξ ∈ X. Therefore, by the definition of D–optimality, the design ξOPT is also optimal for

the estimation of ν and the set of contrasts in Bγγγγ when the generalised Davidson ties model is

used.

We now consider an example of the relationship between the two models, and also compare

some designs.

EXAMPLE 3.4.1.

Recall the experiment and design introduced in Example 3.1.3. In Example 3.3.1 we found the

information matrix for the estimation of ν and the main effects when the generalised Davidson

ties model is used. Now we will find the information matrix for the estimation of main effects

only for the same design where the MNL model is used. The contrast matrix for the estimation

of main effects is

B =
1

2

[
−1 −1 1 1

−1 1 −1 1

]
.

From Burgess and Street [2003] we know that the information matrix for the estimation of the

entries in γγγ using the MNL model under the assumption of the null hypothesis of equal merits is

Λ(πππ0, ν)MNL =
1

8


3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3

 .
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Notice that

Λγ(πππ0, ν)DAV =
3(4 + ν)

4(3 + 4ν)
Λ(πππ0)MNL.

It follows that the information matrix for the estimation of main effects only using the MNL

model is

C(πππ0)MNL =

[
2
9 0

0 2
9

]
,

so we see that

C(πππ0, ν)DAV =

[
3(4+ν)
4(3+4ν)C(πππ0)MNL 0

0 12
ν(3+4ν)2

]
.

Taking determinants of both C(πππ0, ν)DAV and C(πππ0)MNL gives

det(C(πππ0, ν)DAV) =
(4 + ν)2

3ν(3 + 4ν)6
,

and

det(C(πππ0)MNL) =
4

81
.

We are estimating p = 2 contrasts on γγγ, so

(Q(m, ν))p × Λν(m, ν)× det(C(πππ0)MNL) =
12× (3 + 3

4ν)2

ν(3 + 4ν)6
× 4

81

=
(4 + ν)2

3ν(3 + 4ν)6

= det(C(πππ0, ν)DAV),

which is consistent with the findings in Theorem 3.4.1.

We can use this theorem to apply some of the known results for the MNL model to the

generalised Davidson ties model. First, we consider an extension of the theorem for the estimation

of main effects in a 2k model presented in Burgess and Street [2003] .

COROLLARY 3.4.2.

The D–optimal design for the estimation of ν and the main effects, when all other effects are

assumed to be zero, using the generalised Davidson ties model is given by the choice sets in which,

for each vvvi present,
m−1∑
i=1

m∑
j=i+1

dij =

{
(m2−1)k

4 , m odd,
m2k

4 , m even,

and there is at least one vvvj with a non–zero aj; that is, the choice set is non–empty.

Proof. By Theorem 1.3.4, the design described in the statement of the theorem is optimal for the

estimation of main effects only when the MNL model is used. Then it follows from Theorem 3.4.1

that this design is also optimal for the estimation of ν and the main effects when the generalised

Davidson ties model is used for a 2k factorial experiment.

Now let us use this theorem to find an optimal design for the estimation of ν and the main

effects for our example.

EXAMPLE 3.4.2.

Consider the 22 experiment introduced in Example 3.1.1. In this experiment m2−1
4 = 4, so the

D–optimal design is given by the choice sets with difference vectors whose entries sum to 4. The

only distinct difference vector that doesn’t force repeated items in a choice set is vvv = (01, 10, 11),

giving the design in Table 3.2.
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Option 1 Option 2 Option 3

0 0 0 1 1 0

0 1 0 0 1 1

1 0 1 1 0 0

1 1 1 0 0 1

Table 3.2: The 22 design that is optimal for estimating ν and the main effects.

Now we consider an extension to the theorem for the estimation of main effects plus two–factor

interactions in a 2k factorial presented in Burgess and Street [2003].

COROLLARY 3.4.3.

The D–optimal design for the estimation of ν and the main effects plus two–factor interactions,

using the generalised Davidson ties model, when all other effects are assumed to be zero, is given

by

yi =


m(m−1)

2k

(
k+1
k/2

)−1
, k even and i = k/2, k/2 + 1,

m(m−1)
2k

(
k

(k+1)/2

)−1
, k odd and i = (k + 1)/2,

0, otherwise,

when this results in non–zero yis that correspond to difference vectors that actually exist.

Proof. By Theorem 1.3.5, the design described in the statement of the theorem is optimal for

the estimation of main effects plus two–factor interactions when the MNL model is used. Then

it follows from Theorem 3.4.1 that this design is also optimal for the estimation of ν and the

main effects plus two–factor interactions when the generalised Davidson ties model is used for a

2k factorial experiment.

Now let us use this theorem to find an optimal design for the estimation of main effects plus

two–factor interactions and ν for the experiment in our example.

EXAMPLE 3.4.3.

Consider the 22 experiment introduced in Example 3.1.1. To obtain the D–optimal design for

the estimation of ν and the main effects, two–factor interactions using the generalised Davidson

ties model we need

yi =

{
1
2 , if i = 1 or 2,

0, otherwise.

This gives the design in Table 3.3.

Finally, we look at an extension for the theorem for the estimation of main effects in an

experiment with asymmetric attributes presented in Burgess and Street [2005] to include the

estimation of ν as well.

COROLLARY 3.4.4.

Let F be the complete factorial for k attributes where the qth attribute has `q levels. Suppose

that we choose a set of m generators G = {ggg1 = 000, ggg2, . . . , gggm} such that gggi 6= gggj for i 6= j.

Suppose that gi = (gi1, gi2, . . . , gik) for i = 1, . . . ,m, and suppose that the multiset of differences

for attribute q, {±(gi1q − gi2q)|1 ≤ i1, i2 ≤ m, i1 6= i2}, contains each non–zero difference modulo
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Option 1 Option 2 Option 3

0 0 0 1 1 0

0 1 0 0 1 1

1 0 1 1 0 0

1 1 1 0 0 1

Table 3.3: The optimal 22 design for estimating ν and the main effects plus two–factor inter-

actions.

`q equally often. Then the choice sets given by the rows of F + ggg1, F + ggg2, . . . , F + gggm for one

or more sets of generators, are optimal for the estimation of ν and the main effects using the

generalised Davidson ties model, provided that there are as few zero differences as possible.

Proof. By Theorem 1.3.6, the design described in the statement of the theorem is optimal for

the estimation of main effects when the MNL model is used. Then it follows from Theorem 3.4.1

that this design is also optimal for the estimation of ν and the main effects when the generalised

Davidson ties model is used.

Let us consider an example of how this theorem can be used to find optimal designs.

EXAMPLE 3.4.4.

Consider the 32 experiment introduced in Example 2.4.4. Now we present triples to the respon-

dent. If we choose the set of generators ggg = (00, 11, 22) then there are no zero differences and

each difference modulo 3 appears equally often. Then the design in Table 3.4, produced from

this set of generators and removing any repeated choice sets, is D–optimal for the estimation of

ν and the main effects when the generalised Davidson ties model is used.

Option 1 Option 2 Option 3

0 0 1 1 2 2

1 2 2 0 0 1

2 1 0 2 1 0

Table 3.4: The 32 design that is optimal for estimating main effects and ν.

3.5 Simulations of the generalised Davidson ties model

In this section we consider the performance of the generalised Davidson ties model under various

model assumptions by carrying out a number of simulation studies. We assume that k = 2,

`1 = `2 = 2 and m = 3 throughout. We consider two sets of values for the parameters. In

the first we assume that both main effects parameters, τ1 and τ2, are equal to 0 and the ties

parameter ν = 0.5, and in the second set we assume that τ1 = 1 and τ2 = −1 but ν = 0.5 still.
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We find the locally optimal design for each set of values and compare the performance of each

design with both sets of parameter values. The design in Table 3.5 is optimal for the estimation

of the main effects of the attributes plus the ties parameter when τ1 = τ2 = 0, and ν = 0.5, by

Corollary 3.4.2. By an exhaustive search of the 24− 1 = 15 possible designs, the design in Table

3.6 is optimal for the estimation of the main effects of the attributes plus the ties parameter

when τ1 = 1, τ2 = −1, and ν = 0.5. This exhaustive search is illustrated in Figure 3.1, where

the x–coordinate corresponds to the design index, and the y–coordinate is the determinant of

the information matrix for that design when τ1 = 1, τ2 = −1, and ν = 0.5. The determinants of

the information matrix for the designs in Tables 3.5 and 3.6 are labelled in Figure 3.1.

We first assume that τ1 = τ2 = 0, and ν = 0.5 and compare the simulated distributions of the

parameter estimates when the designs in Tables 3.5 and 3.6 are used in turn. Each simulation

is modelled using the simulated responses from 150 respondents, and each boxplot displays

the distribution of the estimates from 1000 such simulations. Figures 3.2(a) and (b) show the

distributions of the parameter estimates when the designs in Tables 3.5 and 3.6, respectively, are

used. Summary statistics for both simulations are provided in Table 3.7. We see from each of

the figures that the distributions of the parameter estimates are symmetrically distributed. As

expected, the variance of the parameter estimates for the design in Table 3.5 is smaller than that

of the design in Table 3.6, illustrating the efficiency of the former design.

We now consider the performance of these two designs when τ1 = 1, τ2 = −1, and ν = 0.5.

Figures 3.3(a) and (b) show the distributions of the parameter estimates when the designs in

Tables 3.5 and 3.6, respectively, are used. Summary statistics for both simulations are provided

in Table 3.8. We see that, for both designs, the distribution of the parameter estimates seem

to be unbiased and close to symmetric. The difference between the variances arising from the

two designs is smaller in this case than when τ1 = τ2 = 0. The selection probabilities when

τ1 = 1, τ2 = −1, and ν = 0.5 for the design in Table 3.5 are given in Table 3.9.

Next, we simulate the effect of changing the magnitude of the ties parameter on the dis-

tribution of the parameter estimates when we let τ1 = 1 and τ2 = −1, and use the design in

Table 3.6. Figures 3.4(a) and (b) give the simulated distributions of the parameter estimates

when ν = 0.25, and ν = 1, respectively. Summary statistics for both simulations are provided

in Table 3.10. Again, we see that the τ estimates are unbiased and symmetrically distributed.

The variance of the estimate of ν increases as the magnitude of ν increases, while there is little

difference between the variances of τ1 and τ2.

We now compare the ability of four different designs to estimate the main effects plus the

two–factor interaction of the attributes and ν. The first two designs are those in Tables 3.5

Option 1 Option 2 Option 3

0 0 0 1 1 0

0 1 0 0 1 1

1 0 1 1 0 0

1 1 1 0 0 1

Table 3.5: Optimal design for estimating main effects and ν when τ1 = τ2 = 0, and ν = 0.5.
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Option 1 Option 2 Option 3

0 0 1 0 1 1

0 1 1 0 1 1

Table 3.6: Optimal design for estimating main effects and ν when τ1 = 1, τ2 = −1, and ν = 0.5.

Figure 3.1: Exhaustive search for optimal design τ1 = 1, τ2 = −1, and ν = 0.5.

(a) (b)

Figure 3.2: Simulation of Davidson ties model τ1 = τ2 = 0, and ν = 0.5.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 3.5

τ1 −0.00088(0.00165) 0.00278 0.00271 0.02920(0.07734)

τ2 −0.00244(0.00165) 0.00278 0.00273 0.13122(0.07734)

ν 0.50130(0.00134) 0.00694 0.00180 0.39140(0.07734)

Design in Table 3.6

τ1 −0.00445(0.00237) 0.00556 0.00564 −0.04829(0.07734)

τ2 −0.00303(0.00232) 0.00556 0.00536 −0.10379(0.07734)

ν 0.50164(0.00184) 0.01389 0.00339 0.29694(0.07734)

Table 3.7: Summary statistics for τ1 = τ2 = 0, and ν = 0.5.

(a) (b)

Figure 3.3: Simulation of Davidson ties model τ1 = 1, τ2 = −1, and ν = 0.5.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 3.5

τ1 1.00248(0.00216) 0.00320 0.00465 0.20895(0.07734)

τ2 −0.99894(0.00226) 0.00320 0.00510 −0.21943(0.07734)

ν 0.50071(0.00156) 0.00702 0.00244 0.19319(0.07734)

Design in Table 3.6

τ1 1.01053(0.00417) 0.00545 0.01736 0.36056(0.07734)

τ2 −0.99980(0.00307) 0.00544 0.00941 −0.18175(0.07734)

ν 0.48061(0.00229) 0.01406 0.00527 0.51062(0.07734)

Table 3.8: Summary statistics for τ1 = 1, τ2 = −1, and ν = 0.5.

Choice Set T1 T2 T3 {T1,T2} {T1,T3} {T2,T3} {T1,T2,T3}

{00, 01, 10} 0.090 0.012 0.668 0.017 0.123 0.045 0.045

{01, 00, 11} 0.042 0.307 0.307 0.056 0.056 0.153 0.079

{10, 11, 00} 0.544 0.074 0.074 0.100 0.100 0.037 0.072

{11, 10, 01} 0.090 0.668 0.012 0.123 0.017 0.045 0.045

Table 3.9: Selection probabilities when τ1 = 1, τ2 = −1, and ν = 0.5.

(a) (b)

Figure 3.4: Simulation of Davidson ties model τ1 = 1, τ2 = 0.5, and (a) ν = 0.25 and (b) ν = 1.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

(a) τ1 1.01026(0.00415) 0.00468 0.01724 0.36999(0.07734)

τ2 −1.00014(0.00299) 0.00468 0.00895 −0.18975(0.07734)

ν 0.23830(0.00138) 0.01822 0.00191 0.41760(0.07734)

(b) τ1 0.99918(0.00443) 0.00680 0.01962 0.28574(0.07734)

τ2 −0.99508(0.00319) 0.00678 0.01018 −0.20531(0.07734)

ν 0.95654(0.00436) 0.01358 0.01905 0.49900(0.07734)

Table 3.10: Summary statistics for τ1 = 1, τ2 = −1, and (a) ν = 0.25 and (b) ν = 1.

and 3.6. The third design is shown in Table 3.11, and is optimal for the estimation of the

main effects plus the two–factor interaction of the attributes and ν when τ1 = τ2 = τ12 = 0,

and ν = 0.5, by Corollary 3.4.3. The final design, shown in Table 3.12, is locally optimal

for the estimation of the main effects plus two–factor interaction of the attributes and ν when

τ1 = 1, τ2 = −1, τ12 = −0.25, and ν = 0.5 by an exhaustive search.

We first consider the case where there is no significant interaction effect. We let τ1 = 1,

τ2 = −1, τ12 = 0, and ν = 0.5. Then Figures 3.5(a), (b), (c), and (d) give the simulated

distributions of the parameter estimates when the designs in Table 3.5, 3.6, 3.11, and 3.12 are

used. Summary statistics for all four of the simulations are provided in Table 3.13.

The design in Table 3.11 gives parameter estimates with the smallest variance, and are also

unbiased and symmetrically distributed. The designs in Tables 3.5 and 3.12 also give unbiased

and symmetric parameter estimates, but with a larger variance than those form the design in

Table 3.11. This is expected, since there are three times as many choice sets in the design in

Table 3.11. The design in Table 3.6 gives parameter estimates that are slightly biased towards

0, skewed, and with the largest variance of the four designs.

Now we consider the case where there is a significant interaction effect. Suppose that τ1 = 1,

τ2 = −1, τ12 = −0.25, and ν = 0.5. Then Figures 3.6(a), (b), (c), and (d) give the simulated

distributions of the parameter estimates when the designs in Table 3.5, Table 3.6, Table 3.11,

and Table 3.12 are used. Summary statistics for all four of the simulations are provided in Table

3.14.

Again we see that the design in Table 3.11 gives parameter estimates with the smallest

variance, and are also unbiased and symmetrically distributed. The designs in Tables 3.5 and

3.12 once again give unbiased and symmetric parameter estimates, but with a larger variance

than those form the design in Table 3.11. The design in Table 3.6 once again gives parameter

estimates that are slightly biased towards 0, skewed, and with the largest variance of the four

designs.
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(a) (b)

(c) (d)

Figure 3.5: Simulation: estimating main effects and ν, designs in (a) Table 3.5, (b) Table 3.6,

(c) Table 3.11, and (d) Table 3.12.
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(a) (b)

(c) (d)

Figure 3.6: Simulation: estimating main effects, two–factor interactions, and ν, designs in (a)

Table 3.5, (b) Table 3.6, (c) Table 3.11, and (d) Table 3.12.
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Option 1 Option 2 Option 3

0 0 0 1 1 0

0 1 0 0 1 1

1 0 1 1 0 0

1 1 1 0 0 1

0 0 1 0 1 1

0 1 1 1 1 0

1 0 0 0 0 1

1 1 0 1 0 0

0 0 0 1 1 1

0 1 0 0 1 0

1 0 1 1 0 1

1 1 1 0 0 0

Table 3.11: Optimal design for estimating main effects, two–factor interactions and ν when

τ1 = τ2 = τ12 = 0, and ν = 0.5.

Option 1 Option 2 Option 3

0 0 0 1 1 0

0 0 0 1 1 1

0 0 1 1 1 0

1 1 1 0 0 1

Table 3.12: Optimal design for estimating main effects, two–factor interactions and ν when

τ1 = 1, τ2 = −1, τ12 = −0.25, and ν = 0.5.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 3.5

τ1 0.98950(0.00240) 0.00320 0.00574 0.14233(0.07734)

τ2 −0.99129(0.00240) 0.00322 0.00578 −0.18005(0.07734)

τ12 −0.02435(0.00233) 0.00321 0.00543 0.17092(0.07734)

ν 0.49902(0.00168) 0.00702 0.00282 0.31447(0.07734)

Design in Table 3.6

τ1 0.99104(0.00482) 0.00549 0.02319 0.60368(0.07734)

τ2 −0.96591(0.00446) 0.00729 0.01985 −0.28153(0.07734)

τ12 −0.03756(0.00438) 0.00729 0.01919 0.30541(0.07734)

ν 0.47858(0.00231) 0.01408 0.00533 0.45193(0.07734)

Design in Table 3.11

τ1 0.98549(0.00141) 0.00107 0.00198 0.08501(0.07734)

τ2 −0.98395(0.00134) 0.00107 0.00180 −0.02499(0.07734)

τ12 −0.02720(0.00133) 0.00107 0.00176 0.05257(0.07734)

ν 0.49884(0.00093) 0.00234 0.00086 0.05704(0.07734)

Design in Table 3.12

τ1 0.98751(0.00282) 0.00400 0.00793 0.18660(0.07734)

τ2 −0.98777(0.00272) 0.00411 0.00738 −0.10613(0.07734)

τ12 −0.03117(0.00257) 0.00404 0.00661 0.17683(0.07734)

ν 0.49696(0.00179) 0.00936 0.00322 0.12208(0.07734)

Table 3.13: Summary statistics for τ1 = 1, τ2 = −1, τ12 = 0, and ν = 0.5.



3.5 Simulations of the generalised Davidson ties model 106

Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 3.5

τ1 0.99699(0.00236) 0.00329 0.00559 0.10950(0.07734)

τ2 −0.99738(0.00239) 0.00331 0.00574 −0.22312(0.07734)

τ12 −0.27001(0.00233) 0.00330 0.00541 0.10207(0.07734)

ν 0.50699(0.00175) 0.00702 0.00307 0.31468(0.07734)

Design in Table 3.6

τ1 1.01073(0.00513) 0.00575 0.02628 0.57665(0.07734)

τ2 −0.98728(0.00462) 0.00764 0.02132 −0.31215(0.07734)

τ12 −0.28134(0.00442) 0.00764 0.01950 0.29241(0.07734)

ν 0.49149(0.00271) 0.01407 0.00732 0.60662(0.07734)

Design in Table 3.11

τ1 0.99521(0.00137) 0.00110 0.00189 0.13158(0.07734)

τ2 −0.99530(0.00138) 0.00110 0.00191 −0.07656(0.07734)

τ12 −0.27166(0.00133) 0.00110 0.00176 0.08612(0.07734)

ν 0.50342(0.00098) 0.00234 0.00095 0.14545(0.07734)

Design in Table 3.12

τ1 1.00344(0.00302) 0.00418 0.00912 0.23760(0.07734)

τ2 −0.99695(0.00260) 0.00431 0.00677 −0.11871(0.07734)

τ12 −0.27676(0.00253) 0.00422 0.00640 0.00381(0.07734)

ν 0.50901(0.00207) 0.00936 0.00429 0.42764(0.07734)

Table 3.14: Summary statistics for τ1 = 1, τ2 = −1, τ12 = −0.25, and ν = 0.5.
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3.A Proof that jTLz = 0 for the generalised Davidson Ties

Model

We begin by recalling that

zi =
∑
i∈C

(
wi|C +

∑
{i,j2,...,jx}⊆C

1

x
w0(i,j2,...,jx)|C − snC π̂i

∂̂DC

∂πi

)
,

where

∂̂DC

∂πi
=

snC
DC

1 +
∑

{i,j2,...,jx}⊆C

νπ̂j2 × . . .× π̂jx
x
√
π̂iπ̂j2 . . . π̂jx


for 2 ≤ x ≤ m. Now, the vector zzz contains the values for zi for each possible item Ti. Then

jjjTLzzz =
t∑
i=1

zi

=
∑
C

∑
j

wj|C +
∑

{j1,j2,...,jx}⊆C

w0(j1,j2,...,jx)|C


−
∑
C

snC
DC

∑
j

π̂j +
∑

{j1,j2,...,jx}⊆C

ν̂π̂j1 . . . π̂jx
x

√
(π̂j1 . . . π̂jx)

x−1


=

∑
C

snC −
∑
C

snC
DC

∑
j

π̂j +
∑

{j1,j2,...,jx}⊆C

ν̂ x

√
π̂j1 . . . π̂jx


=

∑
C

snC −
∑
C

snC
DC

DC

=
∑
C

snC −
∑
C

snC

= 0,

as required.

3.B Proof that the generalised Davidson Ties Model does

not violate El-Helbawy and Bradley [1978] Conditions

In order to apply the results relating to associated populations, we need to show that C(πππ0, ν)

is positive definite, as El-Helbawy and Bradley [1978] did.

THEOREM 3.B.1.

The C matrix for the estimation of a set of contrasts Bhγγγ and ν, where

B =

[
Bh 0

0 1

]
is positive definite.

Proof. McFadden [1973] show that C(πππ0)MNL is positive definite. Then the eigenvalues of

C(πππ0)MNL, λ1, . . . , λp are all positive. If we consider the matrix

C(πππ0, ν)DAV =

[
Q(m, ν)C(πππ0)MNL 0

0 Λνν(m, ν)

]
,
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where

Λνν(m, ν) =
m
∑m
x=2

(
m
x

)
ν(m+ ν

∑m
x=2

(
m
x

)
)2
> 0

Then

det(C(πππ0, ν)DAV − Ip+1) = Q(m, ν)p det(C(πππ0)B–T − Ip)× (Λνν(m, ν)− 1),

will have roots at λ1, . . . , λp,Λνν(m, ν). We already know that λ1, . . . , λp are positive, and

Λνν(m, ν) is positive for all ν > 0. Since we assume that ν > 0 anyway, all of the eigenvalues are

positive. Therefore the C matrix for the generalised Davidson ties model is positive definite.



Chapter 4

Choice Models that Incorporate

Position Effects

The idea that the order of presentation of information can influence responses is well established

in questionnaire design. A good discussion of this influence is given in Kalton et al. [1978]. The

authors suggest that options presented earlier in a set of alternatives will be selected more often

than those appearing later in the set, all other things remaining equal. This is reminiscent of the

donkey vote in elections. These ideas also appear in the design of tournaments where the home

team is expected to have an advantage.

A choice experiment is similar to a questionnaire in this regard since in a choice experiment

we present a set of m alternatives to choose from on each occasion. Given this similarity, it

may be useful to incorporate position effects into the choice model. So far, we have assumed the

position that an item occupies within the choice set is immaterial. This chapter develops optimal

design theory for the Davidson–Beaver position effects model, a model which incorporates the

effect of the position of an item within a choice set.

We start by deriving an expression for the determinant of the information matrix when the

Davidson–Beaver position effects model is used, where m = 2. We then show that, under a mild

restriction, the designs that are optimal for the estimation of a set of attribute effects when the

Bradley–Terry model is used are optimal for the estimation of the same set of attribute effects

and the position main effect over the same set of competing designs when the Davidson–Beaver

position effects model is used.

Throughout this chapter, we continue to use the experiment introduced in Example 2.0.12 to

illustrate the results.

4.1 Review of the Davidson–Beaver Position Effects Model

We begin by reviewing the results of Davidson and Beaver [1977]. This section will recap some

of the properties of the model that have already been developed in the literature, such as the

distribution of the responses, the maximum likelihood estimates, and the information matrix

for the estimation of this model. The methods presented here will be used when the model is

generalised in Chapter 5. We will also use these results to show that the optimal designs for

the estimation of the Bradley–Terry model, as presented in Street et al. [2001] and Burgess and
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Street [2003], are also optimal when the Davidson–Beaver position effects model is used.

Recall from Section 1.1 that Davidson and Beaver [1977] proposed a model that extended

the Bradley–Terry model to incorporate position effects. Position effects are incorporated by

introducing two additional parameters ψ1 and ψ2. When multiplying the merit of an item, πi,

these parameters measure the effect of an item being presented in the first position of the choice

set and in the second position of the choice set respectively. While the model in Davidson and

Beaver [1977] scaled ψ1 → 1 and ψ2 → ψ2/ψ1 without loss of generality, we will not make this

restriction here. Instead, we estimate orthogonal polynomial contrasts of the position effects,

which will be easier to generalise to an arbitrary choice set size.

We have the following probabilities associated with the possible decisions when the ordered

choice set C = (Ti1 , Ti2) is used.

P (Ti1 |C) =
ψ1πi1

ψ1πi1 + ψ2πi2

P (Ti2 |C) =
ψ2πi2

ψ1πi1 + ψ2πi2

We will now see how these probabilities apply to our example.

EXAMPLE 4.1.1.

There are 12 possible ordered choice sets from the ordered pairs of items listed in Example 2.0.12.

If we consider the ordered choice set (00, 11), for instance, then the probability of choosing item

00 is

P (00|(00, 11)) =
ψ1π00

ψ1π00 + ψ2π11
,

and the probability of choosing item 11 is

P (11|(00, 11)) =
ψ2π11

ψ1π00 + ψ2π11
.

In their 1977 paper, Davidson and Beaver derived the log–likelihood function and information

matrix for their position effects model. For the benefit of the reader, we provide a detailed

derivation here. We will use this method to derive the information matrix for the generalised

Davidson–Beaver position effects model in Chapter 5.

Suppose that there are t items in total and that these are shown to the respondent in pairs.

In each choice set, we ask the respondent to choose the item that they prefer. We define indicator

variables wia|C,α for subject α and ordered choice set C = (Ti1 , Ti2) to represent the respondent’s

choice. Thus we let

wi1|C,α =

{
1 if respondent α selects item Ti1 from the ordered choice set C,

0 otherwise,

wi2|C,α =

{
1 if respondent α selects item Ti2 from the ordered choice set C,

0 otherwise,

where wi1|C,α + wi2|C,α = 1, since there are no repeated choice sets and we do not have an

opt–out process. For respondent α, the probability density function for their response to the

ordered choice set C = (Ti1 , Ti2) is

fC,α(www,πππ,ψψψ) =
(ψ1πi1)wi1|C,α × (ψ2πi2)wi2|C,α

(ψ1πi1 + ψ2πi2)nC
,
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where www = [wi1|C,α, wi2|C,α], πππ = (π1, π2, . . . , πt)
T , ψψψ = (ψ1, ψ2)T , and nC is an indicator that

equals 1 if the ordered choice set C appears in the experiment and 0 if it does not. We assume

that nC are the same for all respondents. For consistency, if the ordered choice set C does not

appear in the experiment then we define

wi1|C,α = wi2|C,α = 0.

The derivatives of ln(fC,α(www,πππ,ψψψ)) with respect to each of the parameters are

∂ ln(fC,α(www,πππ,ψψψ))

∂πi1
=

wi1|C,α

πi1
+

nCψ1

(ψ1πi1 + ψ2πi2)
,

∂ ln(fC,α(www,πππ,ψψψ))

∂πi2
=

wi2|C,α

πi2
+

nCψ2

(ψ1πi1 + ψ2πi2)
,

∂ ln(fC,α(www,πππ,ψψψ))

∂πij
= 0 for Tij /∈ C,

∂ ln(fC,α(www,πππ,ψψψ))

∂ψ1
=

wi1|C,α

ψ1
+

nCπi1
(ψ1πi1 + ψ2πi2)

,

and

∂ ln(fC,α(www,πππ,ψψψ))

∂ψ2
=

wi2|C,α

ψ2
+

nCπi2
(ψ1πi1 + ψ2πi2)

.

We will use these derivatives later to derive the entries of the information matrix for the estima-

tion of this model. We now turn our attention to the MLEs for this model.

Since the likelihood function is the product of the density functions over all distinct choice

sets and over all respondents, we have

L(www,πππ,ψψψ) =

s∏
α=1

∏
C

fC,α(www,πππ,ψψψ)

=
∏
C

(ψ1πi1)wi1|C (ψ2πi2)wi2|C

(ψ1πi1 + ψ2πi2)snC
,

where the product is over the the set of distinct choice sets, and wi1|C =
∑s
α=1 wi1|C,α and

wi2|C =
∑s
α=1 wi2|C,α.

To maximise the likelihood function, we need to set up a Lagrangian function to incorporate

the restrictions placed on this model. For the purposes of convergence, we impose the constraint

present in the Bradley–Terry model. Thus

t∑
i=1

ln(πi) = 0.

Similarly, we place the constraint

ln(ψ1) + ln(ψ2) = 0

on the position effects to ensure convergence. We also constrain the contrasts that are assumed to

be negligible to equal 0. If we let Ba be the matrix containing the coefficients of these contrasts,

then we have

Baγγγ = 0,

where γγγ is a vector containing γi = ln(πi) for i = 1, 2, . . . , t. This gives the Lagrangian

G(www,πππ,ψψψ) =
∑
C

[
wi1|C(ln(πi1) + ln(ψ1)) + wi2|C(ln(πi2) + ln(ψ2))

− snC ln(ψ1πi1 + ψ1πi1)] + κ1

t∑
i=1

γi + κ2

m∑
a=1

ln(ψa) + [κ3 . . . κh+2]Baγγγ,
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where there are h contrasts in Ba, and κ1, . . . , κh+2 are Lagrange multipliers. If we differentiate

G(www,πππ,ψψψ) with respect to πi, we obtain

∂G(www,πππ,ψψψ)

∂πi
=

∑
C|Ti∈C

{
wi|C

πi
− snCψai

(ψ1πi1 + ψ2πi2)

}
+
κ1

πi
+

h∑
x=1

κx+2(Ba)xi
πi

,

where ψai is the position effect corresponding to the position of item Ti in choice set C, and πia

is the merit of the item in the ath position of choice set C. If we differentiate G(www,πππ,ψψψ) with

respect to ψa, we obtain

∂G(www,πππ,ψψψ)

∂ψa
=

∑
C

{
wia|C

ψa
− snCπia

(ψ1πi1 + ψ2πi2)

}
+
κ2

ψa
.

We obtain the MLEs by setting these derivatives equal to zero and solving simultaneously.

We can simplify this problem by using matrix notation. Suppose that we let

zi =
∑

C|Ti∈C

wi|C −
snC ψ̂ai π̂i

ψ̂1π̂i1 + ψ̂2π̂i2
.

Then, by multiplying Equation 4.1 by π̂ij , we obtain

zi + κ1 +

h∑
x=1

κx+2(Ba)xi = 0.

This gives the system

zzz + κ1jjj
T
L +BTa κκκ = 000L, (4.1)

as a subset of the normal equations, where zzz = (z1, . . . , zt)
T and κκκ = (κ3, . . . , κh+2)T . Similarly,

if we let

pa =
∑
C

wia|C −
snC ψ̂aπ̂ia

(ψ̂1π̂i1 + ψ̂2π̂i2)
,

then we obtain

ppp+ κ2jjj
T
m = 000m

as the remaining normal equations, where ppp = (p1, p2)T . Appendix 4.A proves that jjjTLzzz = 0, and

it is obvious that jjjTLB
T
a = 000 since the rows of Ba are contrast coefficients. It follows that κ1 = 0.

We pre–multiply Equation 4.1 by Ba to obtain

κκκ = −BTa .

Substituting this back into Equation 4.1, we get

(I −BTa Ba)zzz = 000L,

and

ppp+ κ2jjj
T
m = 000m

as the normal equations. These can be solved simultaneously to find the MLEs.

We now look at how this can be applied to our example to obtain maximum likelihood

estimates.
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EXAMPLE 4.1.2.

Recall the experiment presented in Example 2.0.12. Suppose that we present the ordered choice

sets given in Table 4.1 to 50 respondents. The final two columns of Table 4.1 gives a possible set

of summarised responses for this experiment and the corresponding likelihood function is

L(www,πππ,ψψψ)

=
(ψ1π00)38(ψ2π11)12

(ψ1π00 + ψ2π11)50
× (ψ1π01)11(ψ2π10)39

(ψ1π01 + ψ2π10)50
× (ψ1π10)46(ψ2π01)4

(ψ1π10 + ψ2π01)50
× (ψ1π11)34(ψ2π00)16

(ψ1π11 + ψ2π00)50
.

Now suppose that we are interested in the estimation of main effects of the attributes and the

position main effect only, then

Ba =
1

2
[1 − 1 − 1 1],

and we have the constraints

ln(π00) + ln(π01) + ln(π10) + ln(π11) = 0,

ln(π00)− ln(π01)− ln(π10) + ln(π11) = 0,

ln(ψ1) + ln(ψ2) = 0.

This gives the Lagrangian

G(www,πππ,ψψψ) = 38(ln(π00) + ln(ψ1)) + 12(ln(π11) + ln(ψ2))− 50 ln((ψ1π00 + ψ2π11)

+11(ln(π01) + ln(ψ1)) + 39(ln(π10) + ln(ψ2))− 50 ln(ψ1π01 + ψ2π10)

+46(ln(π10) + ln(ψ1)) + 4(ln(π01) + ln(ψ2))− 50 ln((ψ1π10 + ψ2π01)

+34(ln(π11) + ln(ψ1)) + 16(ln(π00) + ln(ψ2))− 50 ln(ψ1π11 + ψ2π00)

+κ1(ln(π00) + ln(π01) + ln(π10) + ln(π11)) + κ2(ln(ψ1) + ln(ψ2))

+κ3(ln(π00)− ln(π01)− ln(π10) + ln(π11)).

We differentiate G(www,πππ,ψψψ) with respect to each πi to give

∂G(www,πππ,ψψψ)

∂π00
=

38 + 16

π00
− 50ψ1

ψ1π00 + ψ2π11
− 50ψ2

ψ1π11 + ψ2π00
+

κ1

π00
+

κ3

π00
,

∂G(www,πππ,ψψψ)

∂π01
=

11 + 4

π01
− 50ψ1

ψ1π01 + ψ2π10
− 50ψ2

ψ1π10 + ψ2π01
+

κ1

π01
− κ3

π01
,

∂G(www,πππ,ψψψ)

∂π10
=

39 + 46

π10
− 50ψ1

ψ1π01 + ψ2π10
− 50ψ2

ψ1π10 + ψ2π01
+

κ1

π10
− κ3

π10
,

and

∂G(www,πππ,ψψψ)

∂π11
=

12 + 34

π11
− 50ψ1

ψ1π11 + ψ2π00
− 50ψ2

ψ1π00 + ψ2π11
+

κ1

π11
+

κ3

π11
.

Option 1 Option 2 T1 T2

0 0 1 1 w00|C = 38 w11|C = 12

0 1 1 0 w01|C = 11 w10|C = 39

1 0 0 1 w01|C = 46 w10|C = 4

1 1 0 0 w00|C = 34 w11|C = 16

Table 4.1: A set of responses for the experiment in Example 4.1.2.
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Differentiating G(www,πππ,ψψψ) with respect to each ψi gives

∂G(www,πππ,ψψψ)

∂ψ1
=

38 + 11 + 46 + 34

ψ1
− 50π00

ψ1π00 + ψ2π11
− 50π01

ψ1π01 + ψ2π10

− 50π10

ψ1π10 + ψ2π01
− 50π11

ψ1π11 + ψ2π00
+
κ2

ψ1
,

and

∂G(www,πππ,ψψψ)

∂ψ2
=

12 + 39 + 4 + 16

ψ2
− 50π11

ψ1π00 + ψ2π11
− 50π10

ψ1π01 + ψ2π10

− 50π01

ψ1π10 + ψ2π01
− 50π00

ψ1π11 + ψ2π00
+
κ2

ψ2
.

If we set each of these to 0 and solve iteratively we obtain the MLEs for the entries in πππ and ψψψ.

If we let τ1 be the main effect of the first attribute and τ2 the main effect of the second attribute,

and ψL be the main effect of position, then we find

τ̂1 = 0.446 τ̂2 = −0.541 ψ̂L = −0.419.

4.2 Properties of the Davidson–Beaver Position Effects Model

In this section, we complete the construction of the information matrix for the estimation of the

entries in πππ and ψψψ. We begin by deriving expressions for the expectations, variances and covari-

ances of the selection indicators www. We then use these expressions to simplify the information

matrix for the estimation of the entries in πππ and ψψψ.

Recall that wi1|C,α and wi2|C,α are the selection indicators for the choice made by respondent

α when presented with the ordered choice set C = (Ti1 , Ti2). These selection indicators each

have a Bernoulli distribution with expectations

Eπ(wi1|C,α) =
ψ1πi1

ψ1πi1 + ψ2πi2
,

and

Eπ(wi2|C,α) =
ψ2πi2

ψ1πi1 + ψ2πi2
(4.2)

respectively. The variances of these selection indicators are

Varπ(wi1|C,α) =
ψ1ψ2πi1πi2

(ψ1πi1 + ψ2πi2)2
,

and

Varπ(wi2|C,α) =
ψ1ψ2πi1πi2

(ψ1πi1 + ψ2πi2)2
. (4.3)

Next we derive the covariances between the selection indicators. Consider the covariance of

the two selection indicators for the selection of item Ti1 from the ordered choice set C = (Ti1 , Ti3),

and the item Ti2 from the ordered choice set C ′ = (Ti4 , Ti2). If the selections made in two distinct

choice sets are independent, then

Covπ(wi1|C,α, wi2|C′,α) = Eπ
((
wi1|C,α − Eπ(wi1|C,α)

)(
wi2|C′,α − Eπ(wi2|C′,α)

))
=

 Eπ
((
wi1|C,α − Eπ(wi1|C,α)

)(
wi2|C,α − Eπ(wi2|C,α)

))
, if C = C ′;

0, otherwise.
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We expand this expectation and notice that only one outcome is possible. Therefore we have

Eπ(wi1|i1i2αwi2|i1i2α) = 0 once again, and hence

Covπ(wi1|C,α, wi2|C′,α) =


−ψ1ψ2πi1πi2

(ψ1πi1+ψ2πi2 )2 , if C = C ′ and i1 6= i2,

Varπ(wi1|C,α), if C = C ′ and i1 = i2,

0, otherwise.

(4.4)

We now find the expectations, variances and covariances for the selection indicators in our

example.

EXAMPLE 4.2.1.

Consider the experiment in Example 4.1.2. In particular, consider the first choice set, C =

(00, 11). The expected values for the selection indicators for each choice are

Eπ(w00|C,α) =
ψ1π00

ψ1π00 + ψ2π11
,

and

Eπ(w11|C,α) =
ψ2π11

ψ1π00 + ψ2π11
.

The variances of the selection indicators for each choice are

Varπ(w00|C,α) =
ψ1ψ2π00π11

(ψ1π00 + ψ2π11)2
,

and

Varπ(w11|C,α) =
ψ1ψ2π00π11

(ψ1π00 + ψ2π11)2
.

The covariance of these selection indicators is

Covπ(w00|C,α, w11|C,α) =
−ψ1ψ2π00π11

(ψ1π00 + ψ2π11)2
.

Next we construct the information matrix for the Davidson–Beaver position effects model.

This construction is easier if we partition the information matrix into four blocks. Iππ(πππ,ψψψ) is

a t × t matrix that contains minus the expected value of the second derivatives of the density

function with respect to two of the entries in πππ. Iψψ(πππ,ψψψ) is a 2× 2 matrix that contains minus

the expected value of the second derivatives of the density function with respect to two entries

in ψψψ. Iπψ(πππ,ψψψ) and Iψπ(πππ,ψψψ) contain minus the expected value of the second derivatives with

respect to one entry in πππ and one entry in ψψψ. The partitioned matrix is

I(πππ,ψψψ) =

[
Iππ(πππ,ψψψ) Iπψ(πππ,ψψψ)

Iψπ(πππ,ψψψ) Iψψ(πππ,ψψψ)

]
,

where Iπψ(πππ,ψψψ) is a 2× t matrix, and Iψπ(πππ,ψψψ) = (Iπψ(πππ,ψψψ))T .

El-Helbawy and Bradley [1978] state that, under some mild regularity conditions, as given in

Section 1.1, the (i, j)th entry of the information matrix for a discrete choice experiment without

position effects is

I(πππ)ij =
t−1∑
q=1

t∑
r=q+1

nqr
N
Eπ
((∂ ln(fqrα(πππ,www))

∂πi

)(∂ ln(fqrα(πππ,www))

∂πj

))
.
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We now use this expression, and the results given in Equations 4.2, 4.3, and 4.4, to evaluate

some generic cells in each block matrix of I(πππ,ψψψ). To assist the generalisation in Chapter 5 we

take the sum over all choice sets rather than the pairs of items, and modify the notation for nqr

and fqrα(πππ,www) accordingly.

We begin with the Iππ(πππ,ψψψ). In this block matrix we need to consider the diagonal and

off–diagonal entries separately. We begin with the generic off–diagonal entry. Consider

Iππ(πππ,ψψψ)ij =
∑
C

nC
N
Eπ
((∂ ln(fC,α(www,πππ,ψψψ))

∂πi

)(∂ ln(fC,α(www,πππ,ψψψ))

∂πj

))
.

We recall that the derivative of the density function is zero if we differentiate with respect to a

πi that is associated with an item that is not in the choice set. Then, unless both items Ti and

Tj appear in the choice set, the product of the derivatives will be equal to zero. Using this, we

have

Iππ(πππ,ψψψ)ij =
n(i,j)

N
Eπ
((∂ ln(f(i,j),α(www,πππ,ψψψ))

∂πi

)(∂ ln(f(i,j),α(www,πππ,ψψψ))

∂πj

))
+
n(j,i)

N
Eπ
((∂ ln(f(j,i),α(www,πππ,ψψψ))

∂πi

)(∂ ln(f(j,i),α(www,πππ,ψψψ))

∂πj

))
.

We observe that

∂ ln(fC,α(www,πππ,ψψψ))

∂πi
=

wi|C,α

πi
− Eπ

(wi|C,α
πi

)
. (4.5)

Then it follows that

Iππ(πππ,ψψψ)ij =
n(i,j)

N
Covπ

(wi|(i,j),α
πi

,
wj|(i,j),α

πj

)
+
n(j,i)

N
Covπ

(wj|(j,i),α
πj

,
wi|(j,i),α

πi

)
.

We now substitute the covariance given by Equation 4.4, giving

Iππ(πππ,ψψψ)ij =
−n(i,j)ψ1ψ2

N(ψ1πi + ψ2πj)2
+

−n(j,i)ψ1ψ2

N(ψ1πj + ψ2πi)2
.

Next we consider a generic diagonal entry of Iππ(πππ,ψψψ). We have

Iππ(πππ,ψψψ)ii =
∑
C

nC
N
Eπ
((∂ ln(fC,α(www,πππ,ψψψ))

∂πi

)2
)
.

Again, we observe that the derivative in this expression will be 0 unless the ordered choice set

includes the item Ti. So we obtain

Iππ(πππ,ψψψ)ii =
∑

C|Ti∈C

nC
N
Eπ
((∂ ln(fC,α(www,πππ,ψψψ))

∂πi

)2
)
.

Using Equation 4.5, this becomes

Iππ(πππ,ψψψ)ii =
∑

C|Ti∈C

nC
N

Varπ

(wi|Cα
πi

)
.

When we substitute Equation 4.3, we obtain

Iππ(πππ,ψψψ)ii =
∑

C|Ti∈C

nCψ1ψ2πi1πi2
Nπ2

i (ψ1πi1 + ψ2πi2)2
.

Now we turn our attention to the Iπψ(πππ,ψψψ). We begin with

Iπψ(πππ,ψψψ)ia =
∑
C

nC
N
Eπ
((∂ ln(fC,α(www,πππ,ψψψ))

∂πi

)(∂ ln(fC,α(www,πππ,ψψψ))

∂ψa

))
,
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and notice that the product of the derivatives will only be non–zero if the item Ti is in the

ordered choice set. Thus we have

Iπψ(πππ,ψψψ)ia =
∑

C|Ti∈C

nC
N
Eπ
((∂ ln(fC,α(www,πππ,ψψψ))

∂πi

)(∂ ln(fC,α(www,πππ,ψψψ))

∂ψa

))
.

If we take into account Equation 4.5, and that

∂ ln(fC,α(www,πππ,ψψψ))

∂ψa
=

wia|C,α

ψa
− Eπ

(wia|C,α
ψa

)
, (4.6)

where Tia is the item in the ath position of the ordered choice set, then

Iπψ(πππ,ψψψ)ia =
∑

C|Ti∈C

nC
N

Covπ

(wi|C,α
πi

,
wia|C,α

ψa

)
.

We substitute in Equations 4.3 and 4.4 to obtain

Iπψ(πππ,ψψψ)ia =


∑
i2 6=i

n(i,i2)ψ2πi2
N(ψ1πi+ψ2πi2 )2 −

∑
i1 6=i

n(i1,i)
ψ2πi1

N(ψ1πi1+ψ2πi)2
, if a = 1,∑

i1 6=i
n(i1,i)

ψ1πi1
N(ψ1πi1+ψ2πi)2

−
∑
i2 6=i

n(i,i2)ψ1πi2
N(ψ1πi+ψ2πi2 )2 , if a = 2.

These expressions give the entries in Iπψ(πππ,ψψψ). Iψπ(πππ,ψψψ) is the transpose of Iπψ(πππ,ψψψ).

Finally, we look at Iψψ(πππ,ψψψ). Again, it is convenient to consider the generic diagonal and

off–diagonal entries separately. We have

Iψψ(πππ,ψψψ)1,2 =
∑
C

nC
N
Eπ
((∂ ln(fC,α(www,πππ,ψψψ))

∂ψ1

)(∂ ln(fC,α(www,πππ,ψψψ))

∂ψ2

))
.

If we use Equation 4.6, then this simplifies to

Iψψ(πππ,ψψψ)1,2 =
∑
C

nC
N

Covπ

(wi1|C,α
ψ1

,
wi2|C,α

ψ2

)
.

When we substitute in Equation 4.4 and simplify, we obtain

Iψψ(πππ,ψψψ)1,2 =
∑
C

−nCπi1πi2
N(ψ1πi1 + ψ2πi2)2

.

We now look at the diagonal entries of the Iψψ(πππ,ψψψ) block matrix. We begin with

Iψψ(πππ,ψψψ)aa =
∑
C

nC
N
Eπ
((∂ ln(fC,α(www,πππ,ψψψ))

∂ψa

)2
)
.

If we observe the property in Equation 4.6, then this entry simplifies to

Iψψ(πππ,ψψψ)aa =
∑
C

nC
N

Varπ

(wia|C,α
ψa

)
.

Use Equation 4.3, and simplify, to obtain

Iψψ(πππ,ψψψ)aa =
∑
C

nCψ1ψ2πi1πi2
Nψ2

a(ψ1πi1 + ψ2πi2)2
.

Since our ultimate goal is the estimation of main effects and interaction effects, which are

linear combinations of the γγγ = ln(πππ), as well as position effects, we first need to construct the

information matrix for the estimation of the entries in γγγ and ψψψ. The equivalent information
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matrix for the estimation of the MNL model was introduced in Section 1.1, and is denoted by

Λ(πππ). For the Davidson–Beaver position effects model we use the same notation, giving

P =



π1 0 . . . 0 0 0

0 π2 . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . πt 0 0

0 0 . . . 0 1 0

0 0 . . . 0 0 1


,

since ∂πi
∂γi

= πi and ∂ψa
∂ψa

= 1. It is convenient to partition the Λ(πππ,ψψψ) matrix in the same way as

I(πππ,ψψψ), so

Λ(πππ,ψψψ) =

[
Λγγ(πππ,ψψψ) Λγψ(πππ,ψψψ)

Λψγ(πππ,ψψψ) Λψψ(πππ,ψψψ)

]
,

where Λψγ(πππ,ψψψ) = (Λγψ(πππ,ψψψ))T .

If we apply this transformation to each of the generic entries in each block and simplify, we

obtain

Λγγ(πππ,ψψψ)ij =
−n(i,j)ψ1ψ2πiπj

N(ψ1πi + ψ2πj)2
+
−n(j,i)ψ1ψ2πiπj

N(ψ1πj + ψ2πi)2
,

Λγγ(πππ,ψψψ)ii =
∑

C|Ti∈C

nCψ1ψ2πi1πi2
N(ψ1π1 + ψ2πi2)2

,

Λγψ(πππ,ψψψ)ia =


∑
i2 6=i

n(i,i2)ψ2πiπi2
N(ψ1πi+ψ2πi2 )2 −

∑
i1 6=i

n(i1,i)
ψ2πiπi1

N(ψ1πi1+ψ2πi)2
, if a = 1,∑

i1 6=i
n(i1,i)

ψ1πiπi1
N(ψ1πi1+ψ2πi)2

−
∑
i2 6=i

n(i,i2)ψ1πiπi2
N(ψ1πi+ψ2πi2 )2 , if a = 2,

Λψψ(πππ,ψψψ)1,2 =
∑
C

−nCπi1πi2
N(ψ1πi1 + ψ2πi2)2

,

and

Λψψ(πππ,ψψψ)aa =
∑
C

nCψ1ψ2πi1πi2
Nψ2

a(ψ1πi1 + ψ2πi2)2
.

If we make the assumption of equal merits, that is

πππ = jjj = πππ0,

then these expressions simplify further. We leave ψ1 and ψ2 unspecified and substitute into the

generic entries in each block, to obtain

Λγγ(πππ0,ψψψ)ij =
−ψ1ψ2

(ψ1 + ψ2)2

∑
C|Ti,Tj∈C

λC ,

Λγγ(πππ0,ψψψ)ii =
ψ1ψ2

(ψ1 + ψ2)2

∑
C|Ti∈C

λC ,

Λγψ(πππ0,ψψψ)ia =
ψb

(ψ1 + ψ2)2

∑
C|Ti∈C

(λTi in pos a − λTi not in pos a),

Λψψ(πππ0,ψψψ)1,2 =
−1

(ψ1 + ψ2)2
,
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and

Λψψ(πππ0,ψψψ)aa =
ψ1ψ2

ψ2
a(ψ1 + ψ2)2

,

where λC = nC/N , b 6= a,

λTi in pos a =
∑

C|Ti in pos a of C

nC
N
,

and

λTi not in pos a =
∑

C|Ti∈C

(nC
N

)
− λTi in pos a.

Now we will construct this information matrix for our example.

EXAMPLE 4.2.2.

Recall the experiment introduced in Example 2.0.12 and the design introduced in Example 4.1.2.

The information matrix for the estimation of the entries in γγγ and ψψψ, under the null hypothesis

of equal merits, is given by

Λ(πππ0,ψψψ) =



ψ1ψ2

2(ψ1+ψ2)2 0 0 −ψ1ψ2

2(ψ1+ψ2)2 0 0

0 ψ1ψ2

2(ψ1+ψ2)2
−ψ1ψ2

2(ψ1+ψ2)2 0 0 0

0 −ψ1ψ2

2(ψ1+ψ2)2
ψ1ψ2

2(ψ1+ψ2)2 0 0 0

−ψ1ψ2

2(ψ1+ψ2)2 0 0 ψ1ψ2

2(ψ1+ψ2)2 0 0

0 0 0 0 ψ2

ψ1(ψ1+ψ2)2
−1

(ψ1+ψ2)2

0 0 0 0 −1
(ψ1+ψ2)2

ψ1

ψ2(ψ1+ψ2)2


.

4.3 Representing Options using k Attributes

In this section we consider the construction of the information matrix when contrasts of the

entries in γγγ = ln(πππ) and contrasts of the entries in ψψψ are of interest. In particular, we are

interested in contrasts of the entries in γγγ that represent the main effects and interaction effects

of the attributes as introduced in Chapter 1.

Ideally, we would like to find the effect of level fq of attribute q, denoted by βq,fq , or combi-

nations of attribute levels, on the merit of an item. That is, we want to estimate

βββ = (β1,0, β1,1, . . . , β1,`1−1, . . . , βk,`k−1, β12,00, . . . , β12...k,`1−1...`k−1, ψ1, . . . , ψm)T .

This is not possible however, because βββ is not estimable. It would be better to estimate contrasts

of the entries in βββ so that we have a set of estimable contrasts. Suppose that the matrixB contains

contrast coefficients that correspond to the coefficients of the effects that are of interest. We can

choose the entries in B such that Bβββ is estimable.

In general, we are not interested in the interaction between the attribute effects and the

position effects, and we assume that contrasts involving entries in both γγγ and ψψψ will be 0. Thus

we can express the matrix of contrast coefficients as the partitioned matrix

B =

[
Bγ 000

000 Bψ

]
,
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where Bγ contains the contrast coefficients relating to the attribute effects, and Bψ contains

contrast coefficients relating to the position main effect.

The information matrix for the estimation of the contrasts in B is

C(πππ,ψψψ) = BΛ(πππ,ψψψ)BT ,

which becomes

C(πππ0,ψψψ) =

[
BγΛγγ(πππ0,ψψψ)BTγ BγΛγψ(πππ0,ψψψ)BTψ

BψΛψγ(πππ0,ψψψ)BTγ BψΛψψ(πππ0,ψψψ)BTψ

]
.

The terms of the Λ(πππ0,ψψψ) matrix were given in Section 4.2.

Now we find the information matrices in the case where we wish to estimate main effects of

the attributes and the position main effect for our example.

EXAMPLE 4.3.1.

Consider the experiment introduced in Example 2.0.12 and the design introduced in Example

4.1.2 to estimate the main effects of the attributes and the position main effect. The contrast

matrix for the estimation of these effects is

B =
1

2


−1 −1 1 1 0 0

−1 1 −1 1 0 0

0 0 0 0 −
√

2
√

2

 ,
where Bγ is a 2× 4 matrix of contrast coefficients and Bψ a 1× 2 matrix of contrast coefficients.

Then the information matrix for the estimation of the main effects and the position main effect

is

C(πππ0,ψψψ) =


ψ1ψ2

(ψ1+ψ2)2 0 0

0 ψ1ψ2

(ψ1+ψ2)2 0

0 0 1
2ψ1ψ2

 .
Since the information matrix is diagonal, we are able to estimate the main effects of the attributes

and the position main effect independently when using this design .

Now that we have an expression for the information matrix for the estimation of a set of

attribute effects that are of interest and the position main effect, we will develop some results

on the optimality of designs when using this model.

4.4 Optimal Designs for the Davidson–Beaver Position Ef-

fects Model

In this section we compare the information matrix for the estimation of a set of attribute effects

when the Bradley–Terry model is used to the information matrix when the Davidson–Beaver

position effects model is used. Throughout this section we will assume that the same set of

contrasts on the entries in γγγ are of interest in both models, those in Bγ . We will proceed to show

that, with a mild restriction, the optimal designs for the estimation of a set of attribute effects

when the Bradley–Terry model is used are also optional for the estimation of the same set of

attribute effects independently of the contrasts on the entries in ψψψ when the Davidson–Beaver

position effects model is used.
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If we compare the generic diagonal entry of the Λ(πππ0) matrix when the Bradley–Terry model

is used, denoted by Λ(πππ0)B–T, to the generic diagonal entries of Λγγ(πππ0,ψψψ) when the Davidson–

Beaver model is used, denoted by Λγγ(πππ0,ψψψ)D–B, we notice that

(ψ1 + ψ2)2

ψ1ψ2
(Λγγ(πππ0,ψψψ)D–B)ii = 4(Λ(πππ0)B–T)ii =

1

N

∑
i2 6=i

(
n(i,i2) + n(i2,i)

)
, (4.7)

where order is considered important. Similarly, if we compare the off–diagonal entries of the Λ

matrices for the two models, we find that

(ψ1 + ψ2)2

ψ1ψ2
(Λγγ(πππ0,ψψψ)D–B)ij = 4(Λ(πππ0)B–T)ij = −

n(i,j) + n(j,i)

N
, (4.8)

where order is considered important.

We also need to look at conditions that allow the attribute effects and the position main

effect to be estimated independently. This will require the (1, 2) block, and therefore the (2, 1)

block, of the information matrix for, Cγψ(πππ0,ψψψ), to be 0. Before we can find the conditions for

which these blocks are equal to 0, we need to find the expression for the entries in these blocks.

Recall that the (1, 2) block of C(πππ0,ψψψ) is equal to

Cγψ(πππ0,ψψψ) = BγΛγψ(πππ0,ψψψ)BTψ .

A generic entry in the matrix obtained when multiplying the first two of these matrices together

is

(BγΛγψ(πππ0,ψψψ))ja =

T∑
i=1

Bji ×
ψb

(ψ1 + ψ2)2
(λTi in position a − λTi in position b)

=
ψb

(ψ1 + ψ2)2

T∑
i=1

Bji(λTi in position a − λTi in position b),

where b 6= a.

While it is obvious that Cγψ(πππ0,ψψψ) = 0 if all items that appear in the experiment appear

equally often in both positions, this condition proves to be too restrictive. This constraint allows

us to estimate all higher order effects independently of the contrasts of the ψa. Usually we

are only interested in the estimation of the main effects of the attributes, and perhaps also the

two–factor interactions between attributes, independently of the position main effect.

We now prove two lemmas which give conditions for Cγψ(πππ0,ψψψ) = 0, one when the attribute

main effects and the position main effect are of interest, and the other when the main effects

plus two–factor interactions of the attributes and the position main effect are of interest.

LEMMA 4.4.1.

The information matrix for the estimation of the main effects of the attributes and the position

main effect is block diagonal if each of the levels for each attribute appears in each position equally

often.

Proof. For an attribute main effect, every item with the same level for the corresponding attribute

will have the same contrast coefficient. Then, for the jth contrast corresponding to a component

of the main effect of attribute q,

(BγΛγψ(πππ0,ψψψ))ja =
ψb

(ψ1 + ψ2)2

`q∑
x=1

Bjx(λatt q=x in pos a − λatt q=x in pos b),
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where b 6= a. Then (BγΛγψ(πππ0,ψψψ))ja = 0 if λatt q=x in pos a−λatt q=x in pos b = 0 for all attribute

levels 0 ≤ x ≤ `q − 1 and b 6= a. It follows that BγΛγψ(πππ0,ψψψ) = 000 if, for each attribute, each

attribute level appears in both positions equally often. If this is the case, then the information

matrix for the estimation of main effects and the position main effect is block diagonal.

LEMMA 4.4.2.

The information matrix for the estimation of the main effects plus two–factor interactions of the

attributes and the position main effect is block diagonal if, for each pair of attributes, each pair

of attribute levels appears equally often in both positions of the choice set.

Proof. This proof follows the same lines as the proof of Lemma 4.4.1. The contrast coefficients

corresponding to items with the same pair of levels will be the same. Then for the jth contrast,

corresponding to a component of the two–factor interaction between attributes q1 and q2,

(BγΛγψ(πππ0,ψψψ))ja =
ψb

(ψ1 + ψ2)2

`q1∑
x1=1

`q2∑
x2=1

Bj(x1x2)(λq1=x1,q2=x2 in pos a − λq1=x1,q2=x2 in pos b),

where λq1=x1,q2=x2 in pos a = λatt q1=x1, att q2=x2 in pos a. Then (BγΛγψ(πππ0,ψψψ))ja = 0 if, for all x1

and x2,

λq1=x1,q2=x2 in pos a − λq1=x1,q2=x2 in pos b = 0

for b 6= a. This will also result in (BγΛγψ(πππ0,ψψψ))ja = 0, where contrast j corresponds to a main

effect of either attribute q1 or attribute q2, as each level of the attribute must appear in both

positions equally often if each pair of attribute levels appears in each position equally often. It

follows that BγΛγψ(πππ0,ψψψ) = 000 if, for each pair of attributes, each pair of attribute levels appears

equally often in both of the positions in the choice set. Then the information matrix for the

estimation of the main effects plus two–factor interactions and the position main effect is block

diagonal.

Now that we have compared the information matrices for the estimation of the Bradley–Terry

model and the estimation of the Davidson–Beaver position effects model, as well as the conditions

that make the estimation of position effects independent of the estimation of contrasts of the

entries in γγγ, we can compare optimality results for designs for these two models. We will use the

D–optimality criterion as defined in Section 1.3.1.

THEOREM 4.4.3.

Consider a particular set of contrasts of the elements in γγγ and some constant, but unknown,

values for the elements in ψψψ. Let ξOPT be the D–optimal design for the estimation of a set of

contrasts of the entries in γγγ using the Bradley–Terry model over the set of competing designs X.

Then ξOPT is also D–optimal over X for the estimation of the same set of contrasts of the entries

on γγγ and a contrast of the elements in ψψψ that is constant across the designs in X, provided that

the (1, 2) and (2, 1) blocks of the partitioned information matrix are 000.

Proof. We begin by letting B be the block diagonal matrix

B =

[
Bγ 000

000 Bψ

]
,

containing the contrasts of the entries in γγγ that are of interest, and the position main effect. All

of these contrasts will be constant over the class of competing designs. Then the information
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matrix for the estimation of the contrasts in Bγ and Bψ, assuming that the conditions of either

Lemma 4.4.1 or Lemma 4.4.2 are satisfied, is

C(πππ0,ψψψ)D–B = BΛ(πππ0,ψψψ)D–BB
T

=

[
BγΛγγ(πππ0,ψψψ)D–BB

T
γ 000

000 BψΛψψ(πππ0,ψψψ)D–BB
T
ψ

]
.

Equations 4.7 and 4.8 show that

Λγγ(πππ0,ψψψ)D–B =
4ψ1ψ2

(ψ2 + ψ2)2
Λ(πππ0)B–T,

so by substitution we obtain

C(πππ0,ψψψ)D–B =

[
4ψ1ψ2

(ψ2+ψ2)2BγΛ(πππ0)B–TB
T
γ 000

000 BψΛψψ(πππ0,ψψψ)D–BB
T
ψ

]
.

The information matrix for the estimation of the set of contrasts in Bγ when the Bradley–

Terry model is used is

C(πππ0)B–T = BγΛ(πππ0)B–TB
T
γ .

Then we may express C(πππ0,ψψψ)D–B in terms of C(πππ0)B–T and ψψψ, which gives

C(πππ0,ψψψ)D–B =

[
4ψ1ψ2

(ψ2+ψ2)2C(πππ0)B–T 000

000 Cψ(ψψψ)

]
, (4.9)

where

Cψ(ψψψ) = BψΛψψ(πππ0,ψψψ)BTψ ,

and is a function of the entries in ψψψ only.

Since ξOPT is the D–optimal design for the estimation of the set of contrasts in Bγ when the

Bradley–Terry model is used, we have

det((C(πππ0)B–T)ξ) ≤ det((C(πππ0)B–T)ξOPT
)

for all ξ ∈ X, by the definition of D–optimality, as given in Section 1.3.1. Using Equation 4.9 we

see that

det(C(πππ0,ψψψ)D–B) = det

(
4ψ1ψ2

(ψ2 + ψ2)2
C(πππ0)B–T

)
× det(Cψ(ψψψ))

=
(4ψ1ψ2)p

(ψ2 + ψ2)2p
× det(C(πππ0)B–T)× det(Cψ(ψψψ)).

Since p and ψψψ are constant across the set of competing designs, so is detCψ(ψψψ), and thus the

efficiency of an arbitrary design ξ when compared to the design ξOPT when using the Davidson–

Beaver position effects model is

Deff(ξ, ξOPT) =

(
det((C(πππ0,ψψψ)D–B)ξ)

det((C(πππ0,ψψψ)D–B)ξOPT
)

)1/(p+1)

=

( (4ψ1ψ2)p

(ψ2+ψ2)2p det((C(πππ0)B–T)ξ)× det(Cψ(ψψψ))

(4ψ1ψ2)p

(ψ2+ψ2)2p det((C(πππ0)B–T)ξOPT
)× det(Cψ(ψψψ))

)1/(p+1)

=

(
det((C(πππ0)B–T)ξ)

det((C(πππ0)B–T)ξOPT
)

)1/(p+1)

≤ 1.
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Therefore, by the definition of D–optimality, ξOPT is also a D–optimal design for the estimation

of the contrasts in Bγ and Bψ when the Davidson–Beaver position effects model is used, assuming

the conditions in the statement of Lemmas 4.4.1 and 4.4.2 are satisfied.

We now consider an example of the relationship between these two models, and compare

some designs.

EXAMPLE 4.4.1.

Recall the experiment introduced in Example 2.0.12 and design introduced in Example 4.1.2.

In Example 4.3.1 we found the information matrix for the estimation of main effects and the

position main effect when the Davidson–Beaver position effects model is used. Now we will find

the information matrix for the estimation of the main effects only using the same design when

the Bradley–Terry model is used. The contrast matrix for the estimation of main effects is

B =
1

2

[
−1 −1 1 1

−1 1 −1 1

]
.

From El-Helbawy and Bradley [1978] we know that the information matrix for the estimation of

γγγ when the Bradley–Terry model is used, under the assumption of the null hypothesis of equal

merits, is

Λ(πππ0,ψψψ)B–T =
1

8


1 0 0 −1

0 1 −1 0

0 −1 1 0

−1 0 0 1

 .
From Example 4.2.2, it is clear that

Λγγ(πππ0,ψψψ)D–B =
4ψ1ψ2

(ψ2 + ψ2)2
Λ(πππ0)B–T.

It follows that the information matrix for the estimation of main effects only when the Bradley–

Terry model is used is

C(πππ0)B–T =

[
1
4 0

0 1
4

]
,

and we see that

C(πππ0,ψψψ)D–B =

[
4ψ1ψ2

(ψ2+ψ2)2C(πππ0)B–T 0

0 1
2ψ1ψ2

]
.

Taking determinants of both C(πππ0,ψψψ)D–B and C(πππ0)B–T gives

det(C(πππ0,ψψψ)D–B) =
ψ1ψ2

2 (ψ1 + ψ2) 4
,

det(C(πππ0)B–T) =
1

16
.

We are estimating p = 2 contrasts on the entries in γγγ, which gives

(4ψ1ψ2)p

(ψ1 + ψ2)2p
× det(C(πππ0)B–T)× det(Cψ(ψψψ)) =

(4ψ1ψ2)2

(ψ1 + ψ2)4
× 1

16
× 1

2γ1γ2

=
ψ1ψ2

2(ψ1 + ψ2)4

= det(C(πππ0,ψψψ)DAV),

which is consistent with the findings in Theorem 4.4.3.
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We can use this theorem to apply the results that we know about optimal designs for the

Bradley–Terry model to the Davidson–Beaver position effects model. First, we apply Theorem

4.4.3 for a 2k factorial experiment presented in Theorem 1.3.1.

COROLLARY 4.4.4.

Let ξ be the design that contains all distinct pairs that differ in the levels of each attribute in a

2k paired comparisons experiment. Then when the rows of Bγ correspond to the k main effects,

and each attribute level appears in both positions equally often, the design will be D–optimal

for the estimation of the main effects of the attributes and the position main effect when the

Davidson–Beaver position effects model is used.

Proof. By Theorem 1.3.1, the design in the statement of the theorem is D–optimal for the

estimation of the attribute main effects when the Bradley–Terry model is used. By Lemma

4.4.1, the design will have a block diagonal information matrix. It follows from Theorem 4.4.3

that this design is D–optimal for the estimation of the attribute main effects and the position

main effect when the Davidson–Beaver position effects model is used.

We can use this corollary to find an optimal design for the estimation of the main effects and

the position main effect for the experiment in our example.

EXAMPLE 4.4.2.

Consider the 22 experiment introduced in Example 2.0.12. In this experiment we have t = 4

possible items. There are four ordered pairs of items, shown in Table 4.2, that differ in all k = 2

attributes, and give each attribute level appearing in each position twice. Then the design with

these four ordered pairs is optimal for the estimation of main effects and the position main effect

when the Davidson–Beaver position effects model is used.

Option 1 Option 2

0 0 1 1

0 1 1 0

1 0 0 1

1 1 0 0

Table 4.2: Optimal design for main effects and the position main effect.

We can also use Theorem 4.4.3 to extend the result on the optimal design for a 2k factorial

for the estimation of the main effects plus two–factor interactions and the position main effect

given in Theorem 1.3.2 .

COROLLARY 4.4.5.

The D–optimal design for the estimation of the main effects plus two–factor interactions of the

attributes and the position main effect for a 2k paired comparisons experiment, when all other

effects are assumed zero and the Davidson–Beaver potion effects model is used, is given by

ak,i =

{
2k−1

(
k

(k+1)/2

)−1
, if i = k+1

2 ,

0, otherwise.
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if k is odd and

ak,i =

{
2k−1

(
k
k/2

)−1
, if i = k

2 or k
2 + 1,

0, otherwise.

if k is even, provided that, for each pair of attributes, each pair of attribute levels appear equally

often in both positions.

Proof. By Theorem 1.3.2, the design in the statement of the theorem is D–optimal for the

estimation of the main effects plus two–factor interactions of the attributes when the Bradley–

Terry model is used. By Lemma 4.4.2, this design will also have a block diagonal information

matrix. It follows from Theorem 4.4.3 that this design is D–optimal for the estimation of the

main effects plus two–factor interactions of the attributes and the position main effect when the

Davidson–Beaver position effects model is used.

We can use this corollary to find an optimal design for the estimation of the main effects plus

two–factor interactions and the position main effect for the experiment in our examples.

EXAMPLE 4.4.3.

Consider again the 22 experiment introduced in Example 2.0.12. We are now interested in the

estimation of the main effects plus two–factor interactions of the attributes and the position main

effect. Since k = 2 is even the D–optimal design for the estimation of these effects is given by

a2,i =

{
1
2 ×

(
2
1

)−1
, if i = 1 or 2,

0, otherwise.

This is the design with all ordered pairs of distinct items, as shown in Table 4.3.

Option 1 Option 2 Option 1 Option 2

0 0 0 1 1 0 0 0

0 1 0 0 1 1 0 1

1 0 1 1 0 0 1 1

1 1 1 0 0 1 1 0

0 0 1 0 1 0 0 1

0 1 1 1 1 1 0 0

Table 4.3: Optimal design for main effects, two–factor interactions, and the position main effect.

Finally, we can use Theorem 4.4.3 to extend the results relating to the optimal design for the

general factorial as given in Theorem 1.3.3.

COROLLARY 4.4.6.

Consider an `1 × . . . × `q factorial paired comparisons experiment. Assuming that there are no

interactions present, and Bh contains the contrast coefficients for the attribute main effects, then

the design consisting of all pairs where the options differ in all of the attributes, and where each

attribute level appears equally often in both positions, will be D–optimal for the estimation of the

main effects of the attributes and the position main effect when the Davidson–Beaver position

effects model is used.
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Proof. By Theorem 1.3.3, the design in the statement of the theorem is D–optimal for the

estimation of the attribute main effects in Bh when the Bradley–Terry model is used. By Lemma

4.4.1, the design will also have a block diagonal information matrix. It follows from Theorem

4.4.3 that this design is D–optimal for the estimation of the main effects of the attributes and

the position main effect when the Davidson–Beaver position effects model is used.

We now consider an example of how this result can be used to find optimal designs for the

estimation of main effects when using the Davidson–Beaver model.

EXAMPLE 4.4.4.

Let us consider the 32 experiment introduced in Example 2.4.4. An optimal design for the

estimation of the main effects of the attributes and the position main effect is given in Table 4.4.

Notice that each pair of items that differs in each of the attributes appears, and that each level

in each of the attributes appears 6 times in each position of the choice set, satisfying the criteria

for Corollary 4.4.6.

Option 1 Option 2 Option 1 Option 2

0 0 1 1 0 0 2 2

0 1 1 2 0 1 2 0

0 2 1 0 0 2 2 1

1 0 2 1 1 0 0 2

1 1 2 2 1 1 0 0

1 2 2 0 1 2 0 1

2 0 0 1 2 0 1 2

2 1 0 2 2 1 1 0

2 2 0 0 2 2 1 1

Table 4.4: Optimal design for main effects and the position main effect, `1 = `2 = 3.

4.5 Simulations of the Davidson–Beaver Model

In this section we consider the performance of the Davidson–Beaver position effects model under

various model assumptions by carrying out a number of simulation studies. We assume that

k = 2, `1 = `2 = 2 and m = 2 throughout. We consider two sets of values for the parameters. In

the first we assume that both main effects parameters, τ1 and τ2, are equal to 0 and the position

main effect parameter ψL = −0.2, and in the second set we assume that τ1 = 1 and τ2 = −1 but

ψL = −0.2 still.

We find the locally optimal design for each set of values and compare the performance of each

design with both sets of parameter values. The design in Table 4.2 is optimal for the estimation of

the main effects of the attributes plus the position main effect when τ1 = τ2 = 0 and ψL = −0.2,

as shown in Example 4.4.2. By an exhaustive search of the 212 − 1 = 4095 possible designs, the

design in Table 4.5 is optimal for the estimation of the main effects of the attributes plus the

position main effect when τ1 = 1, τ2 = −1, and ψL = −0.2. This exhaustive search is illustrated
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in Figure 4.1, where the x–coordinate corresponds to the design index, and the y–coordinate is

the determinant of the information matrix for that design when τ1 = 1, τ2 = −1, and ψL = −0.2.

The determinants of the information matrix for the designs in Tables 4.2 and 4.5 are labelled in

Figure 4.1.

We first assume that τ1 = τ2 = 0, and ψL = −0.2 and compare the simulated distributions

of the parameter estimates when the designs in Tables 4.2 and 4.5 are used in turn. Each

simulation is modelled using the simulated responses from 150 respondents, and each boxplot

displays the distribution of the estimates from 1000 such simulations. Figures 4.2(a) and (b) show

the distributions of the parameter estimates when the designs in Tables 4.2 and 4.5, respectively,

are used. Summary statistics for both simulations are provided in Table 4.6. We see that,

in each of the simulations, the simulated parameter estimates are unbiased and symmetrically

distributed. We see that, in this case, the variances of the parameter estimates for the design in

Table 2.6 is larger, illustrating the optimality of the design in Table 4.2.

We now consider the performance of these two designs when τ1 = 1, τ2 = −1, and ψL = −0.2.

Figures 4.3(a) and (b) show the distributions of the parameter estimates when the designs in

Tables 4.2 and 4.5, respectively, are used. Summary statistics for both simulations are provided

in Table 4.7. We see that, for both designs, the distribution of the parameter estimates seem to

be unbiased. In this case, we see that the variance of the parameter estimates for the design in

Table 4.5 is now smaller, illustrating the optimality of this design. The selection probabilities

for the design in Table 4.2 when τ1 = 1, τ2 = −1, and ψL = −0.2 are given in Table 4.8.

Next, we simulate the effect of changing the coefficient of the position main effect on the

distributions of the parameter estimates when we let τ1 = 1 and τ2 = −1, and the design in

Table 4.5 is used. Figures 4.4(a) and (b) give the simulated distributions of the parameter

estimates when the coefficient of the position main effect is 0 and −0.4, respectively. Summary

statistics for both simulations are provided in Table 4.9. We see that in each of the simulations

that the parameter estimates are unbiased, fairly symmetrically distributed and have similar

variances.

We now compare the ability of four different designs to estimate the main effects plus the

two–factor interaction of the attributes and the position main effect. The first two designs are

those in Tables 4.2 and 4.5. The third design is the set of all ordered pairs of items, which is

optimal for the estimation of the main effects plus the two–factor interaction of the attributes

and the position main effect when τ1 = τ2 = τ12 = 0, and ψL = −0.2, as shown in Example 4.4.3.

This design is shown in Table 4.3. The final design, shown in Table 3.12, is locally optimal for

Option 1 Option 2

0 0 0 1

0 0 1 0

0 0 1 1

1 1 0 0

Table 4.5: Optimal design for main effects and the position main effect when τ1 = 1, τ2 = −1,

and ψL = −0.2.
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Figure 4.1: Exhaustive search for optimal design τ1 = 1, τ2 = −1, and ψL = −0.2.

(a) (b)

Figure 4.2: Simulation: τ1 = 0, τ2 = 0, and ψL = −0.2.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 4.2

τ1 0.00266(0.00138) 0.00168 0.00192 −0.05424(0.07734)

τ2 0.00004(0.00133) 0.00168 0.00176 0.14714(0.07734)

ψL −0.20150(0.00132) 0.00167 0.00173 −0.10012(0.07734)

Design in Table 4.5

τ1 0.00247(0.00202) 0.00411 0.00409 −0.15819(0.07734)

τ2 −0.00167(0.00207) 0.00411 0.00428 −0.02982(0.07734)

ψL −0.20152(0.00143) 0.00185 0.00205 −0.00819(0.07734)

Table 4.6: Summary statistics for τ1 = 0, τ2 = 0, and ψL = −0.2.

(a) (b)

Figure 4.3: Simulation: τ1 = 1, τ2 = −1, and ψL = −0.2.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 4.2

τ1 1.02515(0.00417) 0.00191 0.01735 0.86034(0.07734)

τ2 −1.025238(0.00417) 0.00191 0.01739 −1.03217(0.07734)

ψL −0.19870(0.00179) 0.00187 0.00320 −0.10202(0.07734)

Design in Table 4.5

τ1 1.00814(0.00294) 0.00429 0.00863 0.14050(0.07734)

τ2 −1.00626(0.00307) 0.00437 0.00943 −0.15397(0.07734)

ψL −0.20048(0.00157) 0.00189 0.00245 −0.09339(0.07734)

Table 4.7: Summary statistics for τ1 = 1, τ2 = −1, and ψL = −0.2.

Choice Set P(T1|(T1,T2)) P(T2|(T1,T2))

(00, 11) 0.599 0.401

(01, 10) 0.168 0.832

(10, 01) 0.919 0.083

(11, 00) 0.599 0.401

Table 4.8: Selection probabilities for the design in Table 4.2, where τ1 = 1, τ2 = −1, and

ψL = −0.2.

(a) (b)

Figure 4.4: Simulation: τ1 = 0.5, τ2 = −0.5, and ψL = 0 (a), and −0.4 (b).
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

(a) τ1 1.00998(0.00299) 0.00429 0.00895 0.13724(0.07734)

τ2 −1.01125(0.00324) 0.00429 0.01050 −0.15104(0.07734)

ψL −0.40587(0.00174) 0.00189 0.00301 −0.19620(0.07734)

(b) τ1 1.00953(0.00300) 0.00437 0.00903 0.31702(0.07734)

τ2 −1.01020(0.00300) 0.00453 0.00902 −0.31558(0.07734)

ψL 0.00129(0.00158) 0.00189 0.00248 −0.00143(0.07734)

Table 4.9: Summary statistics for τ1 = 1, τ2 = −1, and (a) ψL = 0 and (b) ψL = −0.4 .

the estimation of the main effects plus the two–factor interaction of the attributes and position

the main effect when τ1 = 1, τ2 = −1, τ12 = −0.25, and ψL = −0.2, found by using an exhaustive

search.

We first consider the case where the two–factor interaction is negligible. We let the coefficients

of the main effects be τ1 = 1 and τ2 = −1, and the coefficient of the position main effect be −0.2.

Then Figures 4.5(a), (b), (c), and (d) give the distributions of the parameter estimates when the

designs in Table 4.2, Table 4.5, Table 4.3, and Table 4.10 are used. Summary statistics for all

four of the simulations are provided in Table 4.11.

We see that the designs in Tables 4.3 and 4.10 give unbiased and close to symmetric dis-

tributions with similar variances. The design in Table 4.5 gives slightly biased but reasonably

symmetrically distributed parameter estimates with a larger variance than the designs in Table

4.3 and 4.10. The design in Table 4.2 can not estimate the two–factor interaction at all.

Finally, we consider the estimation of a non–zero interaction effect. If we let the coefficients

of the main effects be τ1 = 1 and τ2 = −1, the coefficient of the position main effect be −0.2

as before, and we let the coefficient of the interaction effect be τ12 = −0.25, then the selection

probabilities for the design in Table 4.3 are given in Table 4.12. Figures 4.6(a), (b), (c), and (d)

give the simulated distributions of the parameter estimates when the designs in Table 4.2, Table

4.5, Table 4.3, and Table 4.10 are used. Summary statistics for all four of the simulations are

Option 1 Option 2 Option 1 Option 2

0 1 0 0 1 1 0 1

1 0 1 1 0 0 1 1

1 1 1 0 0 1 1 0

0 0 1 0 1 0 0 1

0 1 1 1 1 1 0 0

1 0 0 0

Table 4.10: Optimal design for main effects plus two–factor interactions of the attributes and

the position main effect when τ1 = 1, τ2 = −1, τ12 = −0.25, and ψL = −0.2.
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(a) (b)

(c) (d)

Figure 4.5: Simulation: Estimating main effects and the position main effect, designs in (a)

Table 4.2, (b) Table 4.5, (c) Table 4.3, and (d) Table 4.10.



4.5 Simulations of the Davidson–Beaver Model 134

Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 4.2

τ1 1.02367(0.00385) 0.00191 0.01481 0.82857(0.07734)

τ2 −1.02281(0.00389) 0.00191 0.01509 −0.73502(0.07734)

τ12 Not Estimable

ψL −0.20072(0.00186) 0.00187 0.00343 −0.08013(0.07734)

Design in Table 4.5

τ1 1.00942(0.00310) 0.00428 0.00963 0.19616(0.07734)

τ2 −1.01090(0.00325) 0.00428 0.01059 −0.20917(0.07734)

τ12 0.00054(0.00364) 0.00755 0.01328 −0.00248(0.07734)

ψL −0.20118(0.00180) 0.00335 0.00325 −0.30448(0.07734)

Design in Table 4.3

τ1 1.00121(0.00153) 0.00087 0.00233 0.29920(0.07734)

τ2 −1.00138(0.00157) 0.00086 0.00245 −0.25802(0.07734)

τ12 0.00323(0.00139) 0.00086 0.00193 0.03527(0.07734)

ψL −0.19889(0.00113) 0.00057 0.00128 −0.21674(0.07734)

Design in Table 4.10

τ1 1.00914(0.00159) 0.00103 0.00254 0.18692(0.07734)

τ2 −1.00492(0.00156) 0.00101 0.00243 −0.12623(0.07734)

τ12 −0.00131(0.00137) 0.00086 0.00189 0.00943(0.07734)

ψL −0.20199(0.00118) 0.00064 0.00140 −0.20892(0.07734)

Table 4.11: Summary statistics for τ1 = 1, τ2 = −1, τ12 = 0, and ψL = −0.2.

provided in Table 4.13.

Once again, we see that the designs in Tables 4.3 and 4.10 give unbiased and close to sym-

metric distributions with similar variances. The design in Table 4.5 again gives slightly biased

but reasonably symmetrically distributed parameter estimates with a larger variance than the

designs in Table 4.3 and 4.10. The design in Table 4.2 still can not be used to estimate the

two–factor interaction at all.
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(a) (b)

(c) (d)

Figure 4.6: Simulation: Estimating main effects, two–factor interactions and the position main

effect, designs in (a) Table 4.2, (b) Table 4.5, (c) Table 4.3, and (d) Table 4.10.
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Choice Set P(T1|(T1,T2)) P(T2|(T1,T2))

(00, 01) 0.948 0.052

(01, 00) 0.109 0.891

(10, 11) 0.870 0.130

(11, 10) 0.250 0.750

(00, 10) 0.250 0.750

(01, 11) 0.109 0.891

(10, 00) 0.870 0.130

(11, 01) 0.948 0.052

(00, 11) 0.599 0.401

(01, 10) 0.027 0.973

(10, 01) 0.988 0.012

(11, 00) 0.599 0.401

Table 4.12: Selection probabilities for the design in Table 4.2 when τ1 = 1, τ2 = −1, τ12 =

−0.25, and ψL = −0.2.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 4.2

τ1 1.02376(0.00382) 0.00191 0.01457 0.92721(0.07734)

τ2 −1.02326(0.00384) 0.00191 0.01471 −0.88053(0.07734)

τ12 Not Estimable

ψL −0.20173(0.00185) 0.00187 0.00340 −0.13214(0.07734)

Design in Table 4.5

τ1 1.01627(0.00372) 0.00449 0.01382 0.65400(0.07734)

τ2 −1.01545(0.00380) 0.00449 0.01441 −0.61478(0.07734)

τ12 −0.26113(0.00412) 0.00779 0.01700 −0.44014(0.07734)

ψL −0.20197(0.00184) 0.00330 0.00340 −0.06620(0.07734)

Design in Table 4.3

τ1 1.00329(0.00164) 0.00092 0.00269 0.02212(0.07734)

τ2 −1.00288(0.00159) 0.00092 0.00254 −0.10721(0.07734)

τ12 −0.25200(0.00144) 0.00090 0.00207 −0.13281(0.07734)

ψL −0.20179(0.00112) 0.00060 0.00126 0.10934(0.07734)

Design in Table 4.10

τ1 1.00539(0.00165) 0.00107 0.00271 0.01579(0.07734)

τ2 −1.00556(0.00163) 0.00107 0.00266 −0.16227(0.07734)

τ12 −0.25139(0.00141) 0.00090 0.00200 0.03671(0.07734)

ψL −0.20090(0.00112) 0.00067 0.00125 0.06408(0.07734)

Table 4.13: Summary statistics for τ1 = 1, τ2 = −1, τ12 = −0.25, and ψL = −0.2.
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4.A Proof that jTLz = 0 for the Davidson–Beaver Position

Effects Model

We begin by recalling that

zi =
∑
i2 6=i

wi|ii2 −
snii2 ψ̂1π̂i

ψ̂1π̂i + ψ̂2π̂i2
+ wi|i2i −

sni2iψ̂2π̂i

ψ̂1π̂i2 + ψ̂2π̂i
.

Now, the vector zzz contains the values for zi for each possible item Ti. Then

jjjTLzzz =
t∑
i=1

zi

=
∑
i1 6=i2

wi1|i1i2 + wi1|i2i1 −
sni1i2 ψ̂1π̂i1

ψ̂1π̂i1 + ψ̂2π̂i2
− sni2i1 ψ̂2π̂i1

ψ̂1π̂i2 + ψ̂2π̂i1

=
∑
C

(wi1|i1i2 + wi2|i1i2)−
∑
C

snC ψ̂1π̂i1

ψ̂1π̂i1 + ψ̂2π̂i2
+

snC ψ̂2π̂i2

ψ̂1π̂i1 + ψ̂2π̂i2

=
∑
C

snC −
∑
C

snC

= 0,

as required.



Chapter 5

The Generalised Davidson–Beaver

Position Effects Model

In Chapter 4, we found optimal designs for experiments using the Davidson–Beaver position

effects model for choice sets of size 2. In Section 1.1, we introduced the MNL model as a

generalisation of the Bradley–Terry model thus allowing for an arbitrary number of options in

each choice set.

In this chapter we consider a generalisation of the MNL model to accommodate position

effects. This generalisation is analogous to the generalisation of the Bradley–Terry model to

obtain the Davidson–Beaver model. We will first set up the model, looking at probability density

and likelihood functions and derive the information matrix for the estimation of a set of contrasts

on the entries in γγγ and the position effects.

Once we have established some properties of this model, we will then use the information

matrix to develop theory relating to the optimal design of experiments for this model. We

conclude by looking at some relevant simulations.

5.1 Estimation of the generalised Davidson–Beaver posi-

tion effects model

In this section we introduce a model that generalises the MNL model to incorporate position

effects. We also derive the maximum likelihood estimates for this generalised model.

In order to estimate position effects for any choice set size, we need to introduce some addi-

tional parameters. The Davidson–Beaver position effects model incorporates position effects by

multiplying the merit of item Ti, πi, by a parameter ψa to reflect the effect of the item being

presented in position a of the ordered choice set.

In general, we define ψ1, ψ2, . . . , ψm to be the parameters that measure the effect of an item be-

ing presented in positions 1, 2, . . . ,m of the choice set respectively. Then the probability of choos-

ing an item Ti, which is presented in position a of the ordered choice set C = (Ti1 , Ti2 , . . . , Tim),

that is Ti = Tia , is

P (Tia |C) =
ψaπia∑m
b=1 ψbπib

.

To ensure identifiability, we assume that
∏m
a=1 ψa = 1. We now consider an example that applies
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these probabilities to the experiment considered in Example 3.1.1, where m = 3.

EXAMPLE 5.1.1.

Consider the experiment introduced in Example 3.1.1. If we assign merits π00, π01, and π10 to

the items in the ordered choice set C = (00, 01, 10) , then

P (00|C) =
ψ1π00

ψ1π00 + ψ2π01 + ψ3π10
,

P (01|C) =
ψ2π01

ψ1π00 + ψ2π01 + ψ3π10
,

and

P (10|C) =
ψ3π10

ψ1π00 + ψ2π01 + ψ3π10
.

The next example looks at some of the values that ψ1, . . . , ψm may take, and the types of

position effect that they describe.

EXAMPLE 5.1.2.

Consider an experiment with m = 5 items in each choice set, and π1 = . . . = πL = 1. Then

P (Tia |C) = ψa∑m
b=1 ψb

. Table 5.1 gives four different sets of values that ψψψ may take, and the

probability of selection when all entries in πππ are equal to 1. The first two rows describe linear

position effects, the first of which has the probability of selection increasing as the position moves

from left to right, and the second has the probability of selection decreasing as the position moves

from left to right. The final two rows describe a quadratic position effect. In the first of these, the

probability of selection at the extremes of the choice set is higher that the probability of selection

for the items in the middle positions. The second of these describes the opposite effect.

ψψψ P(Ti1 |C) P(Ti2 |C) P(Ti3 |C) P(Ti4 |C) P(Ti5 |C)

(0.64, 0.84, 1.04, 1.24, 1.44) 0.123 0.162 0.200 0.238 0.277

(1.44, 1.24, 1.04, 0.84, 0.64) 0.277 0.238 0.200 0.162 0.123

(1.31, 0.88, 0.74, 0.88, 1.31) 0.256 0.172 0.145 0.172 0.256

(0.74, 1.17, 1.32, 1.17, 0.74) 0.144 0.228 0.257 0.228 0.144

Table 5.1: Selection probabilities for the experiment in Example 5.1.2.

Once again, we define indicator variables www to represent whether a particular decision was

made by a particular respondent, α, or not. We let

wi|Cα =


1 if respondent α selects item Ti from

the ordered choice set C = (Ti1 , Ti2 , . . . , Tim),

0 otherwise,

where for a given choice set and respondent, only one of the wis is equal to 1, depending on the

respondent’s choice. This is because there are no repeated ordered choice sets for any respondent,

and no opt–out process. Then, for respondent α, the probability density function for the response

to the ordered choice set C = (Ti1 , Ti2 , . . . , Tim) is

fCα(www,πππ,ψψψ) =

∏m
a=1(ψaπia)wia|Cα

(
∑m
b=1 ψbπib)

nC
,
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where nC is an indicator variable which equals 1 if the ordered choice set C appears in the

experiment, and 0 if it does not. For consistency we also let wi|Cα = 0, for all items Ti ∈ C, if

the ordered choice set C does not appear in the experiment. Given fCα(www,πππ,ψψψ),

ln(fCα(www,πππ,ψψψ)) =
m∑
a=1

wia|Cα(ln(ψa) + ln(πia))− nC ln

(
m∑
b=1

ψbπib

)

and the derivative of ln(fCα(www,πππ,ψψψ)) with respect to πi is

∂ ln(fCα(www,πππ,ψψψ))

∂πi
=

wi|Cα

πi
− nCψa

(
∑m
b=1 ψbπib)

,

where item Ti appears in position a of the ordered choice set. This derivative will be equal to 0

if item Ti does not appear in the ordered choice set C at all. The derivative of ln(fCα(www,πππ,ψψψ))

with respect to ψa is

∂ ln(fCα(www,πππ,ψψψ))

∂ψa
=

wia|Cα

ψa
− nCπia

(
∑m
b=1 ψbπib)

,

where, once again, item Tia is the item that appears in position a of the ordered choice set C.

We will use these derivatives later to derive an expression for the information matrix for this

model. Before we derive the information matrix, we will find an expression for the MLEs for this

model.

Since the likelihood function is the product of the density function for a respondent and an

ordered choice set over all possible ordered choice sets and over all respondents, we have

L(www,πππ,ψψψ) =
s∏

α=1

∏
C

fCα(www,πππ,ψψψ)

=
∏
C

∏m
a=1(ψaπia)wia|C

(
∑m
b=1 ψbπib)

snC
,

where wia|C =
∑s
α=1 wia|Cα.

To maximise the likelihood function subject to the constraints of the model, we need to set

up a Lagrangian function to incorporate the constraints. For the purposes of convergence, we

enforce the normalising constraint present in the MNL model

t∑
i=1

ln(πi) = 0.

Similarly, we place the constraint
m∑
b=1

ln(ψb) = 0

on the position effects to ensure convergence. We will also constrain the contrasts that are

assumed to be negligible. If we let Ba be the matrix containing h such contrasts, then we have

Baγγγ = 0,

where, once again, γγγ is the vector containing γi = ln(πi). This gives the Lagrangian

G(www,πππ,ψψψ) =
∑
C

m∑
a=1

(
wia|C ln(πia) + wia|C ln(ψa)− snC ln

( m∑
b=1

ψbπib

))

+κ1

t∑
i=1

ln(πi) + κ2

m∑
b=1

ln(ψb) + [κ3 . . . κh+2]Baγγγ,
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where, once again, there are h contrasts in Ba, and κ1, . . . , κh+2 are Lagrange multipliers. When

we differentiate G(www,πππ,ψψψ) with respect to πi, we obtain

∂G(www,πππ,ψψψ)

∂πi
=

∑
i∈C

(
wi|C

πi
− snCψa

(
∑m
b=1 ψbπib)

)
+
κ1

πi
+

h∑
x=1

κx+2(Ba)xi
1

πi
,

where item Ti appears in position a of the ordered choice set C. When we differentiate G(www,πππ,ψψψ)

with respect to ψa, we obtain

∂G(www,πππ,ψψψ)

∂ψa
=

∑
C

(
wia|C

ψa
− snCπia

(
∑m
b=1 ψbπib)

)
+
κ2

ψa
.

As usual, we obtain maximum likelihood estimates by setting these equations equal to 0 and

solving simultaneously. This problem can be simplified using matrix notation. Suppose that we

let

zi =
∑
i∈C

wi|C −
snC ψ̂aπ̂i

(
∑m
b=1 ψ̂bπ̂ib)

,

where Ti appears in position a of the ordered choice set. By multiplying ∂G(www,πππ,ψψψ)
∂πi

by each πi in

turn, we get

zi + κ1 +
h∑
x=1

κx+2(Ba)xi = 0,

for i = 1, . . . , t. This gives the system of equations

zzz + κ1jjj
T
L +BTa κκκ = 000L, (5.1)

where zzz = (z1, . . . , zt)
T and κκκ = (κ3, . . . , κh+2)T . Similarly, if we let

pa =
∑
C

wia|C −
snC ψ̂aπ̂ia

(
∑m
b=1 ψ̂bπ̂ib)

,

then we obtain

ppp+ κ2jjj
T
m = 000m

as the other set of normal equations.

If we pre–multiply Equation 5.1 by jjjTL we obtain κ1 = 0, since jjjTLzzz is shown to be equal to 0

in Appendix 5.A, and the rows of Ba are the coefficients of contrasts so jjjTLB
T
a = (BajjjL)T = 000.

Pre–multiplying Equation 5.1 by Ba, we obtain

κκκ = −BTa .

Substituting this into Equation 5.1, we get

(I −BTa Ba)zzz = 000L,

and

ppp+ κ2jjj
T
m = 000m

as the normal equations. We obtain the maximum likelihood estimates by solving these equations

iteratively.

Now let us look at the estimation of the parameters in the generalised Davidson–Beaver

position effects model for our example.
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EXAMPLE 5.1.3.

Recall the experiment considered in Example 5.1.1. Suppose that we present four ordered choice

sets to the respondent, as shown in Table 5.2, and are interested in the estimation of the main

effects of the attributes and contrasts of the position effects. This means that

Ba =
1

2

[
1 −1 −1 1

]
,

and we are assuming that the contrast for the two–factor interaction

ln(π00)− ln(π01)− ln(π10) + ln(π11)

is zero. Suppose that we present these choice sets to 150 respondents and obtain the set of

summarised responses in Table 5.2. Then the Lagrangian for the estimation of the generalised

Davidson–Beaver position effects model for this experiment is

G(www,πππ,ψψψ) = 54(ln(π00) + ln(ψ1)) + 10(ln(π01) + ln(ψ2)) + 86(ln(π10) + ln(ψ3))

−150 ln(ψ1π00 + ψ2π01 + ψ3π10) + 44(ln(π01) + ln(ψ1)) + 48(ln(π00) + ln(ψ2))

+58(ln(π11) + ln(ψ3))− 150 ln(ψ1π01 + ψ2π00 + ψ3π11) + 102(ln(π10) + ln(ψ1))

+24(ln(π11) + ln(ψ2)) + 24(ln(π00) + ln(ψ3))− 150 ln(ψ1π10 + ψ2π11 + ψ3π00)

+55(ln(π11) + ln(ψ1)) + 82(ln(π10) + ln(ψ2)) + 13(ln(π01) + ln(ψ3))

−150 ln(ψ1π11 + ψ2π10 + ψ3π01) + κ1(ln(π00) + ln(π01) + ln(π10) + ln(π11))

+κ2(ln(ψ1) + ln(ψ2) + ln(ψ3)) + κ3(ln(π00)− ln(π01)− ln(π10) + ln(π11)).

We then differentiate the Lagrangian with respect to each πi and ψa in turn. For example,

∂G(www,πππ,ψψψ)

∂π00
=

54 + 48 + 24

π00
− 150ψ1

ψ1π00 + ψ2π01 + ψ3π10
− 150ψ2

ψ1π01 + ψ2π00 + ψ3π11

− 150ψ3

ψ1π10 + ψ2π11 + ψ3π00
+

κ1

π00
+

κ3

π00
,

and

∂G(www,πππ,ψψψ)

∂ψ1
=

54 + 44 + 102 + 55

ψ1
− 150π00

ψ1π00 + ψ2π01 + ψ3π10
− 150π01

ψ1π01 + ψ2π00 + ψ3π11

− 150π10

ψ1π10 + ψ2π11 + ψ3π00
− 150π11

ψ1π11 + ψ2π10 + ψ3π01
+
κ2

ψ1
.

If we set each of these to 0 and solve iteratively then we obtain the maximum likelihood

estimates of the entries in πππ and ψψψ. Since these entries are not estimable without additional

constraints, we find contrasts of the entries in πππ and ψψψ. If we let τ1 be the main effect of the first

Option 1 Option 2 Option 3 T1 T2 T3

0 0 0 1 1 0 54 10 86

0 1 0 0 1 1 44 48 58

1 0 1 1 0 0 102 24 24

1 1 1 0 0 1 55 82 13

Table 5.2: The design and set of responses for the experiment in Example 5.1.3.



5.2 Properties of the generalised Davidson–Beaver position effects model 144

attribute, τ2 the main effect of the second attribute, ψL be the linear component of the position

effect, and ψQ be the quadratic component of the position effect, then we get

τ̂1 = 0.480 τ̂2 = −0.458 ψ̂L = −0.259 ψ̂Q = 0.121.

5.2 Properties of the generalised Davidson–Beaver posi-

tion effects model

In this section, we complete the construction of the information matrix for the estimation of the

entries in γγγ and the entries in ψψψ. In practice, not all of these parameters are estimable at the same

time so, in the next section, we will transform this information matrix to obtain an information

matrix for an estimable set of contrasts of these parameters. Once again, we begin by deriving

expressions for the expectations, variances and covariances of the selection indicators, www, which

were introduced previously. We then use these expressions to simplify the information matrix.

Recall that the entries in www are selection indicators for the choice made by respondent α

when presented with an ordered choice set C = (Ti1 , Ti2 , . . . , Tim). These wi have a Bernoulli

distribution with expectation

Eπ(wia|C,α) =
ψaπia∑m
b=1 ψbπib

.

The variance of these selection indicators is given by

Varπ(wia|C,α) =
ψaπia∑m
b=1 ψbπib

×
∑m
b=1 ψbπib − ψaπia∑m

b=1 ψbπib
. (5.2)

Next we derive covariances for these selection indicators. As usual, we assume that the selections

made in two distinct ordered choice sets are uncorrelated, and thus the wis of different ordered

choice sets have zero correlation. As usual, we also note that for any ordered choice set and any

respondent, only one w can be equal to 1, therefore Eπ(wia|C,α × wia′ |C,α) = 0 for a 6= b. Then

Covπ(wia|C,α, wia′ |C,α) = Eπ
((
wia|C,α − Eπ(wia|C,α)

)(
wia′ |C,α − Eπ(wia′ |C,α)

))
= 0− Eπ(wia|C,α)Eπ(wia′ |C,α)

= − ψaπia∑m
b=1 ψbπib

×
ψa′πia′∑m
b=1 ψbπib

.

Then in general,

Covπ(wia|C,α, wia′ |C′,α) =


−ψaψa′πiaπia′∑m

b=1 ψbπib
, if C = C ′ and a 6= a′,

ψaπia (
∑m
b=1 ψbπib−ψaπia )

(
∑m
b=1 ψbπib )2 , if C = C ′ and a = a′,

0, otherwise.

(5.3)

We now find the expectations, variances and covariances for the selection indicators in our

example.

EXAMPLE 5.2.1.

Consider the experiment in Example 5.1.1. In particular, consider the first ordered choice set

C = (00, 01, 10). The expectation of each of the selection indicators are

Eπ(w00|C,α) =
ψ1π00

ψ1π00 + ψ2π01 + ψ3π10
,

Eπ(w01|C,α) =
ψ2π01

ψ1π00 + ψ2π01 + ψ3π10
,
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and

Eπ(w10|C,α) =
ψ3π10

ψ1π00 + ψ2π01 + ψ3π10
.

The variances of the selection indicators are

Varπ(w00|C,α) =
ψ1π00(ψ2π01 + ψ3π10)

(ψ1π00 + ψ2π01 + ψ3π10)2
,

Varπ(w01|C,α) =
ψ2π01(ψ1π00 + ψ3π10)

(ψ1π00 + ψ2π01 + ψ3π10)2
,

and

Varπ(w10|C,α) =
ψ3π10(ψ1π00 + ψ2π01)

(ψ1π00 + ψ2π01 + ψ3π10)2
.

The covariances of pairs of these selection indicators are

Covπ(w00|C,α, w01|C,α) =
−ψ1ψ2π00π01

(ψ1π00 + ψ2π01 + ψ3π10)2
,

Covπ(w00|C,α, w10|C,α) =
−ψ1ψ3π00π10

(ψ1π00 + ψ2π01 + ψ3π10)2
,

and

Covπ(w01|C,α, w10|C,α) =
−ψ2ψ3π01π10

(ψ1π00 + ψ2π01 + ψ3π10)2
.

We now construct the information matrix for the estimation of the generalised Davidson–

Beaver position effects model. As with the Davidson–Beaver position effects model, the con-

struction will be easier if we partition the information matrix into four blocks. Iππ(πππ,ψψψ) contains

minus the expected values of the second derivatives of the density function with respect to two

of the entries in πππ. Iψψ(πππ,ψψψ) contains minus the expected values of the second derivatives of

the density function with respect to two entries in ψψψ. Iπψ(πππ,ψψψ) and Iψπ(πππ,ψψψ) contain minus the

expected value of the second derivatives with respect to one entry in πππ and one entry in ψψψ. The

partitioned matrix is denoted by

I(πππ,ψψψ) =

[
Iππ(πππ,ψψψ) Iπψ(πππ,ψψψ)

Iψπ(πππ,ψψψ) Iψψ(πππ,ψψψ)

]
,

where Iπψ(πππ,ψψψ) = (Iψπ(πππ,ψψψ))T .

El-Helbawy and Bradley [1978] states that, under some mild regularity conditions, as given in

Section 1.1, the (i, j)th entry of the information matrix for a discrete choice experiment without

position effects is

I(πππ)ij =
t−1∑
q=1

t∑
r=q+1

nqr
N
Eπ
((∂ ln(fqrα(πππ,www))

∂πi

)(∂ ln(fqrα(πππ,www))

∂πj

))
.

Then we can use the derivatives found earlier, as well as the variance and covariance expres-

sions given above, to simplify the information matrix. Since m ≥ 2 in this case, we sum over the

choice sets of size m rather than pairs of items, and modify the notation for nqr and fqrα(πππ,www)

accordingly. Again, it is convenient to look at one block matrix at a time, and the diagonal

entries of a block matrix separately to the off–diagonal entries.
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We begin with a generic off–diagonal entry of Iππ(πππ,ψψψ), Iππ(πππ,ψψψ)ij . We have

Iππ(πππ,ψψψ)ij =
∑
C

nC
N
Eπ
((∂ ln(fCα(www,πππ,ψψψ))

∂πi

)(∂ ln(fCα(www,πππ,ψψψ))

∂πj

))
.

Since the derivative of ln(fCα(www,πππ,ψψψ)) with respect to πi will be 0 unless the item Ti appears

in choice set C, we can restrict our summation to those ordered choice sets that include both Ti

and Tj . This gives

Iππ(πππ,ψψψ)ij =
∑

C|Ti,Tj∈C

nC
N
Eπ
((∂ ln(fCα(www,πππ,ψψψ))

∂πi

)(∂ ln(fCα(www,πππ,ψψψ))

∂πj

))
.

Straight–forward differentiation gives

∂ ln(fCα(www,πππ,ψψψ))

∂πi
=

wi|C,α

πi
− Eπ

(wi|C,α
πi

)
. (5.4)

Thus we get

Iππ(πππ,ψψψ)ij =
∑

C|Ti,Tj∈C

nC
N

Covπ

(wi|C,α
πi

,
wj|C,α

πj

)
.

If we then substitute the covariance, given in Equation 5.3, we obtain

Iππ(πππ,ψψψ)ij =
∑

C|Ti,Tj∈C

nC
N

−ψaiψaj
(
∑m
b=1 ψbπib)

2
,

where item Tx appears in position ax of the ordered choice set, for all x.

Now let us consider a generic diagonal term in Iππ(πππ,ψψψ). Again, noting that the derivative

of ln(fCα(www,πππ,ψψψ)) with respect to πi is 0 when item Ti is not in the ordered choice set C, we

have

Iππ(πππ,ψψψ)ii =
∑

C|Ti∈C

nC
N
Eπ
((∂ ln(fCα(www,πππ,ψψψ))

∂πi

)2
)
.

Using the result in Equation 5.4, this becomes

Iππ(πππ,ψψψ)ii =
∑

C|Ti∈C

nC
N

Varπ

(wi|C,α
πi

)
.

When we substitute the variance, given in Equation 5.2, we obtain

Iππ(πππ,ψψψ)ii =
∑

C|Ti∈C

nC
Nπi

ψai(
∑m
b=1 ψbπib − ψaiπi)

(
∑m
b=1 ψbπib)

2
.

We now repeat this process to evaluate a generic entry in Iπψ(πππ,ψψψ). Once again, we exclude

choice sets that do not include the item Ti, and so

Iπψ(πππ,ψψψ)ia =
∑

C|Ti∈C

nC
N
Eπ
((∂ ln(fCα(www,πππ,ψψψ))

∂πi

)(∂ ln(fCα(www,πππ,ψψψ))

∂ψa

))
.

Straight–forward differentiation of the density function for a choice set and respondent with

respect to ψa gives

∂ ln(fCα(www,πππ,ψψψ))

∂ψa
=

wia|C,α

ψa
− Eπ

(wia|C,α
ψa

)
. (5.5)
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This result, together with Equation 5.4, gives

Iπψ(πππ,ψψψ)ia=
∑

C|Ti∈C

nC
N

Covπ

(wi|C,α
πi

,
wia|C,α

ψa

)
=

∑
C|Ti∈C

nC
(
δTi is in pos a ×Varπ(wi|C,α) + (1− δTi is in pos a)Covπ(wi|C,α, wia|C,α)

)
Nψaπi

,

where δTi is in pos a is an indicator that equals 1 if Ti appears in position a of the ordered choice

set C, and 0 otherwise. We can then substitute the variance and covariance expressions, given

in Equations 5.2 and 5.3, to obtain

Iπψ(πππ,ψψψ)ia =
∑

C|Ti∈C

nC
N

(
δTi is in pos a(

∑m
b=1 ψbπib− ψaπi)

(
∑m
b=1 ψbπib)

2
− (1− δTi is in pos a)ψaiπia

(
∑m
b=1 ψbπib)

2

)
.

Finally, we look at Iψψ(πππ,ψψψ). We begin with the off–diagonal entries in each block,

Iψψ(πππ,ψψψ)a1a2 =
∑
C

nC
N
Eπ
((∂ ln(fCα(www,πππ,ψψψ))

∂ψa1

)(∂ ln(fCα(www,πππ,ψψψ))

∂ψa2

))
,

where a1 6= a2.

In this case, there are no derivatives with respect to any of the πis, therefore no choice sets

need to be excluded from the summation. We can use Equation 5.5 to obtain

Iψψ(πππ,ψψψ)a1a2 =
∑
C

nC
N

Covπ

(wia1 |C,α
ψa1

,
wia2 |C,α

ψa2

)
.

Since a1 6= a2, we substitute the covariance of the two selection indicators, giving

Iψψ(πππ,ψψψ)a1a2 =
∑
C

nC
Nψa1ψa2

−πia1πia2
(
∑m
b=1 ψbπib)

2
.

Finally, we consider the diagonal entries of Iψψ(πππ,ψψψ). We begin with

Iψψ(πππ,ψψψ)aa =
∑
C

nC
N
Eπ
((∂ ln(fCα(www,πππ,ψψψ))

∂ψa

)2
)
.

Using Equation 5.5, this can be simplified to give

Iψψ(πππ,ψψψ)aa =
∑
C

nC
N

Varπ

(wia|C,α
ψa

)
,

which, when we substitute the variance given in Equation 5.2, becomes

Iψψ(πππ,ψψψ)aa =
∑
C

nC
Nψa

πia((
∑m
b=1 ψbπib)− ψaπia)

(
∑m
b=1 ψbπib)

2
,

where the summation is over all choice sets C.

Once again, our ultimate goal is to estimate contrasts of the entries in γγγ = ln(πππ) and contrasts

of the entries in ψψψ, and not the entries in πππ and ψψψ themselves, since they are not estimable

without additional constraints. One way to do this is to first find the information matrix for the

estimation of the entries in γγγ and ψψψ. The equivalent matrix for the MNL model was introduced

in Section 1.1. We partition this matrix in the same way as in Section 4.2 to give

Λ(πππ,ψψψ) =

[
Λγγ(πππ,ψψψ) Λγψ(πππ,ψψψ)

Λψγ(πππ,ψψψ) Λψψ(πππ,ψψψ)

]
.
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As was the case when estimating the Davidson–Beaver position effects model for m = 2, we have

Λ(πππ,ψψψ) = PI(πππ,ψψψ)PT ,

where

P =



π1 0 . . . 0 000

0 π2 . . . 0 000
...

...
. . .

...

0 0 . . . πt 000

000 000 . . . 000 Im


.

If we apply this transformation to each of the generic entries, we get

Λγγ(πππ,ψψψ)ij = πiπjIππ(πππ,ψψψ)ij ,

Λγγ(πππ,ψψψ)ii = π2
i Iππ(πππ,ψψψ)ii,

Λγψ(πππ,ψψψ)ia = πiIπψ(πππ,ψψψ)ia,

and

Λψψ(πππ,ψψψ) = Iψψ(πππ,ψψψ).

If we assume, as did Davidson and Beaver [1977], the null hypothesis of equal merits for each

of the items, and that the entries of ψψψ are left unspecified, then the expressions for the entries

of Λ(πππ,ψψψ) simplify greatly. If we let

πππ = jjjt = πππ0,

then we obtain

Λππ(πππ0,ψψψ)ij =
∑

C|Ti,Tj∈C

nC
N

(−ψaiψaj )
Ψ1

= − 1

Ψ1

m∑
a=1

∑
b6=a

ψaψbλTi in pos a,Tj in pos b,

where

Ψ1 =

(
m∑
b=1

ψb

)2

and

λTi in pos a,Tj in pos b =
∑

C|Ti,Tj∈C

nC
N
δTi is in pos a × δTj is in pos b.

A similar argument gives

Λγγ(πππ0,ψψψ)ii =
∑

C|Ti∈C

nC
N

ψai(
∑m
b=1 ψb − ψai)

Ψ1

=
1

Ψ1

m∑
a=1

ψa

( m∑
b=1

ψb − ψa
)
λTi in pos a,

where

λTi in pos a =
∑

C|Ti∈C

nC
N
δTi is in pos a.
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The generic term in Λπψ(πππ0,ψψψ) becomes

Λγψ(πππ0,ψψψ)ia =
∑

C|Ti∈C

nC
N

(
δTi is in pos a ×

∑m
b=1 ψb − ψa

Ψ1
− (1− δTi is in pos a)× ψaiπia

Ψ1

)
=

1

Ψ1

∑
b6=a

ψb(λTi in pos a − λTi in pos b).

The off-diagonal entries of Λψψ(πππ0,ψψψ) become

Λψψ(πππ0,ψψψ)a1a2 =
∑
C

−nC
NΨ1

= − 1

Ψ1
,

since
∑
C nC = N . Finally, the diagonal entries of Λψψ(πππ0,ψψψ) become

Λψψ(πππ0,ψψψ)aa =
∑
C

nC
Nψa

(
∑m
b=1 ψb)− ψa

Ψ1

=
(
∑m
b=1 ψb)− ψa
ψaΨ1

.

We notice that the entries in Λψψ(πππ0,ψψψ) depend only on the entries inψψψ under the null hypothesis.

Therefore this block matrix is independent of the design, given a fixed choice set size.

Now let us find the Λ(πππ0,ψψψ) matrix in our example.

EXAMPLE 5.2.2.

Recall the experiment introduced in Example 5.1.1. The information matrix for the estimation

of the γγγ and ψψψ under the null hypothesis of equal merits is shown in Table 5.3.

5.3 Representing options using k attributes

In this section we consider the construction of the information matrix for the estimation of

contrasts of the entries in γγγ and contrasts of the entries in ψψψ. In particular, we are interested in

the estimation of the contrasts of the entries in γγγ that relate to the main effects and interaction

effects of the attributes as introduced in Chapter 1.

We begin by constructing a matrix B that contains the coefficients of the contrasts of the

entries in γγγ and the contrasts of the entries in ψψψ. We will assume that any interactions between

the attributes in the experiment and position are not of interest. We can then partition the B

matrix to give

B =

[
Bγ 000

000 Bψ

]
.

Then the information matrix for the estimation of the contrasts Bγγγγ and Bψψψψ under the

null hypothesis of equal merits and making no assumption about the magnitude of the position

effects is given by

C(πππ0,ψψψ) = BΛ(πππ0,ψψψ)BT

=

 BγΛγγ(πππ0,ψψψ)BTγ BγΛγψ(πππ0,ψψψ)BTψ

BψΛψγ(πππ0,ψψψ)BTγ BψΛψψ(πππ0,ψψψ)BTψ

 .
Let us apply these results to the experiment in Example 5.1.1.
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Λ(πππ0,ψψψ) =
1

2 (ψ1 + ψ2 + ψ3)
2×

ψ2ψ3 + ψ1 (ψ2 + ψ3) −ψ1ψ2 −ψ1ψ3 −ψ2ψ3 0 0 0

−ψ1ψ2 ψ2ψ3 + ψ1 (ψ2 + ψ3) −ψ2ψ3 −ψ1ψ3 0 0 0

−ψ1ψ3 −ψ2ψ3 ψ2ψ3 + ψ1 (ψ2 + ψ3) −ψ1ψ2 0 0 0

−ψ2ψ3 −ψ1ψ3 −ψ1ψ2 ψ2ψ3 + ψ1 (ψ2 + ψ3) 0 0 0

0 0 0 0 2(ψ2+ψ3)
ψ1

−2 −2

0 0 0 0 −2 2(ψ1+ψ3)
ψ2

−2

0 0 0 0 −2 −2 2(ψ1+ψ2)
ψ3



.

Table 5.3: The information matrix for the estimation of γγγ and ψψψ in Example 5.2.2
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EXAMPLE 5.3.1.

Consider the experiment introduced in Example 5.1.1 and the design introduced in Example 5.1.3

for the estimation of the main effects of the attributes and the linear and quadratic components

of the position effect. The contrast matrix for the estimation of the main effects of the attributes

and contrasts of the position effects is

B =



− 1
2 − 1

2
1
2

1
2 0 0 0

− 1
2

1
2 − 1

2
1
2 0 0 0

0 0 0 0 − 1√
2

0 1√
2

0 0 0 0 − 1√
6

2√
6
− 1√

6


.

We see that Bγ is a 2 × 4 matrix of contrast coefficients and Bψ a 2 × 3 matrix of contrast

coefficients. Then the information matrix for the estimation of the main effects of the attributes

and contrasts of the position effects is

C(πππ0,ψψψ) =



(ψ1+ψ2)ψ3

(ψ1+ψ2+ψ3)2 0 0 0

0 ψ2(ψ1+ψ3)
(ψ1+ψ2+ψ3)2 0 0

0 0 ψ1+ψ3

2ψ1ψ3(ψ1+ψ2+ψ3)
ψ1−ψ3

2
√

3ψ1ψ3(ψ1+ψ2+ψ3)

0 0 ψ1−ψ3

2
√

3ψ1ψ3(ψ1+ψ2+ψ3)

ψ2ψ3+ψ1(ψ2+4ψ3)
6ψ1ψ2ψ3(ψ1+ψ2+ψ3)


.

We are able to estimate the main effects of the attributes and the position effect contrasts

independently when using this design, since the information matrix is block diagonal.

Now that we have the information matrix for the estimation of the effects that are of interest,

we will next find results about the optimal designs for the estimation of these effects.

5.4 Optimal designs for the generalised Davidson–Beaver

position effects model

In this section, we determine the optimal designs for the estimation of the main effects of the

attributes and contrasts of the position effects when the generalised Davidson–Beaver position

effects model is used. We will begin by finding design constraints that allow the information

matrix to be block diagonal, and then determine optimal designs for the estimation of the main

effects of the attributes and contrasts of the position effects. We do this by showing that, when

the information matrix for the estimation of the main effects of the attributes and contrasts of the

position effects is block diagonal with respect to the attributes, we can consider each attribute

separately when finding the optimal set of generators used to construct the choice design from

the starting design. We conclude by looking at the form of the determinant of the information

matrix when the main effects plus two–factor interactions of the attributes and specific contrasts

of position effects are of interest.

We begin with the estimation of the main effects of the attributes and contrasts of the position

effects.
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5.4.1 Main Effects plus Position Effects

In this subsection, we consider optimal designs for the estimation of the main effects of the

attributes and contrasts of the position effects. In the next section, we extend this to the

estimation of the main effects plus two–factor interactions of the attributes and contrasts of the

position effects.

It is desirable to be able to estimate the attribute effects independently of the position effects.

This requires Cγψ(πππ0,ψψψ) = 000, and therefore Cψγ(πππ0,ψψψ) = 000, since Cψγ(πππ0,ψψψ) = Cγψ(πππ0,ψψψ)T .

Once again, we need an expression for the entries in this block matrix before we can find the

conditions for a block diagonal information matrix.

Recall that the (1, 2) block of C(πππ0,ψψψ) is equal to

Cγψ(πππ0,ψψψ) = BγΛγψ(πππ0,ψψψ)BTψ .

A generic entry of the matrix obtained by multiplying the first two of these matrices together is

(BγΛγψ(πππ0,ψψψ))ia =
t∑

j=1

Bij
1

Ψ1

∑
b6=a

ψb(λTi in pos a − λTi in pos b)

=
1

Ψ1

∑
b6=a

ψb

t∑
j=1

Bij(λTi in pos a − λTi in pos b).

While it is obvious that Cγψ(πππ0,ψψψ) = 000 if all of the items that appear in the experiment ap-

pear in each position of the choice set equally often, this constraint on the design is far more

restrictive than necessary. This constraint would allow us to estimate all of the higher order

effects independently of the contrasts of the position effects. Usually, we are only interested in

the estimation of the main effects of attributes, or perhaps the estimation of the main effects

plus two–factor interactions of the attributes, and not all estimable contrasts of the entries in

γγγ. Therefore we only need the main effects of the attributes to be independent of the position

effects.

We now prove a lemma that gives conditions for Cγψ(πππ0,ψψψ) = 000 when only the main effects

of the attributes and contrasts of the position effects are of interest.

LEMMA 5.4.1.

The information matrix for the estimation of the main effects of the attributes and contrasts of

the position effects is block diagonal with respect to the main effects of the attributes and the

contrasts of the position effects if each of the levels for each attribute appear in each position

equally often.

Proof. Items that have the attribute of interest at the same level will have the same contrast

coefficient. Then for the jth contrast, corresponding to a component of the main effect of attribute

q,

(BγΛγψ(πππ0,ψψψ))ja =
1

Ψ1

∑
b6=a

ψb

`q∑
x=1

Bjx(λatt q=x in pos a − λatt q=x in pos b).

Then (BγΛγψ(πππ0,ψψψ))ja = 0 if λatt q=x in pos a − λatt q=x in pos b = 0 for all attribute levels,

0 ≤ x ≤ `q−1, and all positions, 1 ≤ b ≤ m where a 6= b. It follows that BγΛγψ(πππ0,ψψψ) = 000 if, for

each attribute, each attribute level appears in each position in the choice set equally often. If this

is the case, then the information matrix for the estimation of the main effects of the attributes
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and contrasts of the position effects will be block diagonal, with one block corresponding to the

main effects of the attributes and one block corresponding to the position effects.

We now develop theory on the structure of the optimal design of choice experiments when

the generalised Davidson–Beaver position effects model is used. In order to prove a result similar

to that in Theorem 1.3.6 for the estimation of the main effects of the attributes and contrasts

of the position effects, we need to modify some of the definitions introduced in Section 1.1 to

accommodate the importance of order. Let

• cvvvj ,a be the number of choice sets with ordered difference vector vvvj that contain the item

00 . . . 0 in position a of the choice set,

• xvvvj ;ddd,a,b be the number of times that the difference ddd appears as the difference between

positions a and b in ordered difference vector vvvj (i.e. Tia+ddd = Tib). Note that
∑
ddd xvvvj ;ddd,a,b =

1 and
∑
a6=b

∑
ddd xvvvj ;ddd,a,b =

(
m
2

)
,

• ivvvj be an indicator variable that equals 1 if all of the choice sets with an ordered difference

vector vvvj appear in the choice experiment, and 0 if none of the choice sets with ordered

difference vector vvvj appear in the experiment.

We now illustrate these constants with an example.

EXAMPLE 5.4.1.

Recall the experiment considered in Example 5.1.1 with two 2–level attributes presented in choice

sets of size 3. There are 6 possible ordered difference vectors, which are shown in Table 5.4. The

first entry in each difference vector is the difference between the first and second items in the

choice set, the second entry is the difference between the first and third items in the choice set,

and the third entry is the difference between the second and third items in the choice set.

vvv1 (01, 10, 11)

vvv2 (01, 11, 10)

vvv3 (10, 01, 11)

vvv4 (10, 11, 01)

vvv5 (11, 01, 10)

vvv6 (11, 10, 01)

Table 5.4: Possible ordered difference vectors for the experiment in Example 5.4.1.

The experiment in Table 5.2 contains all of the choice sets with ordered difference vector vvv1.

Therefore ivvv1 = 1, and ivvvj = 0 for all of the other difference vectors. The item 00 appears in

each position once, thus

cvvv1,1 = cvvv1,2 = cvvv1,3 = 1.

Within vvv1, we have

xvvv1;(01),1,2 = xvvv1;(10),1,3 = xvvv1;(11),2,3 = 1,

and all other xvvv1;ddd,a,b = 0.
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Using these definitions, we can give a general form for Λγγ(πππ0,ψψψ) when the generalised

Davidson–Beaver position effects model is used.

THEOREM 5.4.2.

Under the usual null hypothesis of equal merits

Λγγ(πππ0,ψψψ) =
Ψ2

Ψ1
zIL −

1

Ψ1

∑
ddd

m∑
a=1

∑
b6=a

ψaψbyddd,a,bDddd,

where

yddd,a,b =
1

N
∏m
q=1(`q − 1)iq

∑
j

cvvvj ,1ivvvjxvvvj ;ddd,a,b,

Ψ2 =
∑
a6=b

ψaψb, and z =
1

N

∑
j

cvvvj ,aivvvj .

The summations over j and ddd are over all possible difference vectors vvvj and all distinct difference

vector entries ddd respectively.

Proof. We showed earlier that under the null hypothesis of equal merits, the diagonal elements

of Λγγ(πππ0,ψψψ) are given by

Λγγ(πππ0,ψψψ)ii =
1

Ψ1

m∑
a=1

[
λTi in pos a × ψa

( m∑
b=1

ψb − ψa
)]

=
1

Ψ1

m∑
a=1

[
δTi in pos a

N
× ψa

( m∑
b=1

ψb − ψa
)]

.

In the class of competing designs discussed in Section 1.1 we assume that all choice sets with

ordered difference vector vvvj will appear in the experiment if ivvvj = 1. It follows that

cvvvj ,1 = cvvvj ,2 = . . . = cvvvj ,m = cvvvj ,

and that λTi in pos a = 1
N

∑m
a=1

∑
j cvvvj ivvvj . Therefore

Λγγ(πππ0,ψψψ)ii =
1

NΨ1

∑
j

m∑
a=1

cvvvj ivvvjψa

( m∑
b=1

ψb − ψa
)

=
Ψ2

Ψ1
× z.

Under the null hypotheses of equal merits, the off–diagonal elements of the Λγγ(πππ,ψψψ) matrix

are

Λγγ(πππ0,ψψψ)ij = − 1

Ψ1

m∑
a=1

∑
b6=a

ψaψbλTi in pos a,Tj in pos b.

We need to find an expression for the proportion of choice sets with item Ti in position a of

the choice set and item Tj in position b of the choice set in terms of which difference vectors are

used in the experiment. To do this, we enumerate the number of choice sets that have this pair

of items in this pair of positions.

There are Lcvvvj possible choice sets with difference vector vvvj . By the definition of the class

of competing designs, there are Lcvvvj ivvvj choice sets with difference vector vvvj in the experiment.

Then there are ∑
j

Lcvvvj ivvvj
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choice sets in the experiment in total. It follows that the number of these choice sets with

difference ddd between positions a and b of the choice set is∑
j

Lcvvvj ivvvjxvvvj ;ddd,a,b.

If the pair Ti and Tj have a difference ddd, then we find that only one pair of items with ddd will be

the pair Ti and Tj . Then we need to enumerate the number of pairs of items with difference ddd.

The number of pairs with difference ddd depends on which entries in the difference are 0, and

which are 1. If iq = 0 for an attribute q, then the level of the qth attribute must be the same. If

iq = 1, then there are `q − 1 possible levels for the qth attribute that would allow a difference of

ddd from Ti. Then the number of items with difference ddd from Ti is

Γddd =
k∏
q=1

(`q − 1)iq .

If items Ti and Tj have a difference ddd, the proportion of choice sets in the experiment that

contain Ti in position a and Tj in position b is

yddd,a,b =
1

NΓddd

∑
j

cvvvj ivvvjxvvvj ;ddd,a,b.

The off–diagonal elements of Λγγ(πππ,ψψψ) can then be expressed as

Λγγ(πππ0,ψψψ) = − 1

Ψ1

m∑
a=1

∑
b6=a

ψaψb
∑
ddd

yddd,a,bDddd,

where Dddd is a t× t matrix with entries either 0 or 1 such that there is a 1 in position (i, j) if and

only if items Ti and Tj have a difference ddd. It follows that

Λγγ(πππ0,ψψψ) =
Ψ2

Ψ1
zIt −

1

Ψ1

∑
ddd

m∑
a=1

∑
b6=a

ψaψbyddd,a,bDddd,

as required.

We continue by showing that Cγγ(πππ0,ψψψ) when the main effects of the attributes and contrasts

of the position effects are of interest is block diagonal when using the designs introduced in Section

1.1.

THEOREM 5.4.3.

The (1, 1) block of C(πππ0,ψψψ) when using the generalised Davidson–Beaver position effects model,

and the main effects of the attributes and contrasts of the position effects are of interest,

Cγγ(πππ0,ψψψ)MP, is block diagonal.

Proof. Let P`q,eq be an `q × `q matrix with entries either 0 or 1 such that there is a 1 in position

(t1, t2) if the difference between the two items is t2 − t1 = eq. Then P`q,eq ⊗ P`q,eq ⊗ . . .⊗ P`q,eq
will give the pairs that have a difference t2 − t1 = (e1, e2, . . . , ek). Let αeee,a,b be the number of

times eee = (e1, e2, . . . , ek) appears as a difference between the items in positions a and b of the

choice set, and αi =
∑
e1
. . .
∑
ei−1

∑
ei+1

. . .
∑
ek
αeee. Then

Λγγ(πππ0,ψψψ) =
Ψ2

Ψ1
zIt −

1

Ψ1

∑
ddd

Dddd
∑
a6=b

ψaψbyddd,a,b

=
1

NΨ1

[(∑
e1

. . .
∑
ek

∑
a6=b

αeee,a,bψaψb

)(
P`1,0 ⊗ P`2,0 ⊗ . . .⊗ P`k,0

)
−
∑
e1

. . .
∑
ek

∑
a6=b

αeee,a,bψaψb

(
P`1,e1 ⊗ P`2,e2 ⊗ . . .⊗ P`k,ek

)]
.
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Then the information matrix for the contrasts in Bγγγγ is given by

BγΛγγ(πππ0,ψψψ)BTγ = Bγ
1

NΨ1
×
[(∑

e1

. . .
∑
ek

∑
a6=b

αeee,a,bψaψb

)(
P`1,0 ⊗ P`2,0 ⊗ . . .⊗ P`k,0

)
−
∑
e1

. . .
∑
ek

∑
a6=b

αeee,a,bψaψb

(
P`1,e1 ⊗ P`2,e2 ⊗ . . .⊗ P`k,ek

)]
BTγ

=
1

NΨ1

[(∑
e1

. . .
∑
ek

∑
a6=b

αeee,a,bψaψb

)
Bγ

(
P`1,0 ⊗ P`2,0 ⊗ . . .⊗ P`k,0

)
BTγ

−
∑
e1

. . .
∑
ek

∑
a6=b

αeee,a,bψaψbBγ

(
P`1,e1 ⊗ P`2,e2 ⊗ . . .⊗ P`k,ek

)
BTγ

]
.

However, Burgess and Street [2005] and Street and Burgess [2007] showed that both

Bγ

(
P`1,0 ⊗ P`2,0 ⊗ . . .⊗ P`k,0

)
BTγ and Bγ

(
P`1,e1 ⊗ P`2,e2 ⊗ . . .⊗ P`k,ek

)
BTγ

are block diagonal matrices, so Cγγ(πππ0,ψψψ)MP = BγΛγγ(πππ0,ψψψ)BTγ is also a block diagonal matrix.

This theorem allows us to consider only the block diagonal entries of Cγγ(πππ0,ψψψ)MP, that is,

those which correspond to the main effects for a single attribute. In addition, Lemma 4.4.1 states

that if each level of each attribute appears in each position of the choice set equally often then

Cγψ(πππ0,ψψψ)MP = 0, and therefore C(πππ0,ψψψ)MP is block diagonal.

The next theorem gives an expression for the block diagonal entry on Cγγ(πππ0,ψψψ)MP that

corresponds to the main effects of attribute q.

THEOREM 5.4.4.

Under the null hypothesis of equal merits, the block diagonal entry of the information matrix

corresponding to the main effect of attribute q is

1

Ψ1

∑
ddd

∑
a6=b

ψaψbyddd,a,b
Γddd
(
(`q − 1)iq − (−1)iq

)
(`q − 1)iq

I`q−1,

where as before

Γddd =
k∏
q=1

(`q − 1)iq .

Proof. By using

BqDdddB
T
q =

Γddd(−1)iq

(`q − 1)iq
I`q−1,

as shown in Burgess and Street [2005], the qth block of the block diagonal matrix Cγγ(πππ0,ψψψ)MP

is given by

BqΛγγ(πππ0,ψψψ)BTq = Bq

[
Ψ2

Ψ1
zIt −

1

Ψ1

∑
ddd

Dddd
∑
a6=b

yddd,a,bψaψb

]
BTq

=
Ψ2

Ψ1
zI`q−1 −

1

Ψ1

∑
ddd

∑
a6=b

yddd,a,bψaψb
Γddd(−1)iq

(`q − 1)iq
I`q−1,

where Bq is the matrix containing the contrast coefficients for the main effects of the qth attribute.
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By substituting in the expression for z, Cγγ(πππ0,ψψψ)MP can be expressed as

BqΛγγ(πππ0,ψψψ)BTq =
Ψ2

Ψ1

∑
ddd

1

N

∑
j

cvvvj ivvvjxvvvj ;ddd,a,bI`q−1 −
1

Ψ1

∑
ddd

∑
a6=b

yddd,a,bψaψb
Γddd(−1)iq

(`q − 1)iq
I`q−1

=
1

Ψ1

∑
ddd

Γddd
∑
a6=b

ψaψbyddd,a,bI`q−1 −
1

Ψ1

∑
ddd

∑
a6=b

yddd,a,bψaψb
Γddd(−1)iq

(`q − 1)iq
I`q−1

=
1

Ψ1

∑
ddd

∑
a6=b

ψaψbyddd,a,b
Γddd
(
(`q − 1)iq − (−1)iq

)
(`q − 1)iq

I`q−1,

as required.

We can use this theorem to give an expression for the determinant of the information matrix

when the generalised Davidson–Beaver position effects model is used and both the main effects

of the attributes and contrasts of the position effects are of interest.

THEOREM 5.4.5.

When each level of each attribute appears equally often across each of the positions, the deter-

minant of the information matrix for the estimation of the main effects of the attributes and

contrasts of the position effects under the null hypothesis of equal merits, when the Davidson–

Beaver position effects model is used, is given by

det(C(πππ0,ψψψ)MP) =
k∏
q=1

 `q
NΨ1(`q − 1)

∑
j

cvvvj ivvvj
∑
a6=b

ψaψb
∑
ddd|iq=1

xvvvj ;ddd,a,b

`q−1

× det(Cψψ(πππ0,ψψψ))

where det(Cψψ(πππ0,ψψψ)) is the determinant of the (2, 2) block of the information matrix, and is

independent of the design chosen for a given choice set size.

Proof. Since the (1, 1) block of the information matrix for the estimation of the main effects of

the attributes and contrasts of the position effects is block diagonal, as shown in Theorem 5.4.4,

the determinant of the information matrix will be the product of the determinants of each block

of the information matrix. This gives

det(Cγγ(πππ0,ψψψ)) =
k∏
q=1

 1

Ψ1

∑
ddd

∑
a6=b

ψaψbyddd,a,b
Γddd
(
(`q − 1)iq − (−1)iq

)
(`q − 1)iq

`q−1

=
k∏
q=1

[
1

NΨ1

∑
ddd

∑
a6=b

ψaψb
1

Γddd

∑
j

cvvvj ivvvjxvvvj ;ddd,a,b
Γddd
(
(`q − 1)iq − (−1)iq

)
(`q − 1)iq

]`q−1

=
k∏
q=1

 1

NΨ1

∑
ddd

∑
a6=b

∑
j

ψaψb
(`q − 1)iq

cvvvj ivvvjxvvvj ;ddd,a,b
(
(`q − 1)iq − (−1)iq

)`q−1

=
k∏
q=1

 `q
NΨ1(`q − 1)

∑
j

cvvvj ivvvj
∑
a6=b

ψaψb
∑
ddd|iq=1

xvvvj ;ddd,a,b

`q−1

.

So when each level in each attribute appears in each position equally often, the determinant of

the information matrix for the estimation of the main effects of the attributes and contrasts of

the position effects is

det(C(πππ0,ψψψ)MP) =
k∏
q=1

 `q
NΨ1(`q − 1)

∑
j

cvvvj ivvvj
∑
a6=b

ψaψb
∑
ddd|iq=1

xvvvj ;ddd,a,b

`q−1

× det(Cψψ(πππ0,ψψψ)).
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Since Λψψ(πππ0,ψψψ) depends only on the value of m and the entries in ψψψ, Cψψ(πππ0,ψψψ) is also a

function of m and the entries in ψψψ only. That is, Cψψ(πππ0,ψψψ) is independent of the design chosen,

for a fixed value of m under the null hypothesis of equal merits.

We can use this expression to extend the result in Burgess and Street [2005], to find the

optimum value of the determinant of the information matrix for the estimation of the main

effects of the attributes and contrasts of the position effects when the generalised Davidson–

Beaver position effects model is used.

THEOREM 5.4.6.

The D–optimal design for the estimation of the main effects of the attributes and contrasts of the

position effects will be given by the set of choice sets where at least one difference vector vvvj has

a non–zero avvvj , and for each vvvj present, and for each attribute q,

Sq =



m2−1
4 , `q = 2 and m is odd;

m2

4 , `q = 2 and m is even;

m2−(`qx
2+2xy+y)
2 , 2 < `q < m;

m(m−1)
2 , `q ≥ m,

where positive integers x and y satisfy the equation m = `qx+y for 0 ≤ y < `q−1. The maximum

possible value for the determinant of the information matrix will be

det((C(πππ0,ψψψ)MP)OPT) =
k∏
q=1

[
2Sq`qΨ2

Lm(m− 1)Ψ1(`q − 1)

]`q−1

× det(Cψψ(πππ0,ψψψ)),

given that each pair of positions contains equally many non–zero differences.

Proof. In order to maximise the information matrix,
∑
a6=b ψaψb

∑
ddd|iq=1 xvvvj ;ddd,a,b will need to

be maximised. Under the condition that each pair of positions contains equally many non–zero

differences, we obtain∑
a6=b

ψaψb
∑
ddd|iq=1

xvvvj ;ddd,a,b =
2

m(m− 1)

∑
ddd|iq=1

xvvvj ;ddd ×Ψ2,

where Ψ2 is independent of the design used. Theorem 1 in Burgess and Street [2005] shows that∑
ddd|iq=1 xvvvj ;ddd is maximised when it is equal to Sq, where Sq is defined in the statement of the

theorem. In this case, the determinant of the (1, 1) block of the information matrix, Cγγ(πππ0,ψψψ)

relating to the information provided about the main effects of the attributes, will be

det(Cγγ(πππ0,ψψψ)OPT) =
k∏
q=1

 2Sq`qΨ2

m(m− 1)Ψ1L
∑
j cvvvj ivvvj (`q − 1)

∑
j

cvvvj ivvvj

`q−1

=
k∏
q=1

[
2Sq`qΨ2

m(m− 1)Ψ1L(`q − 1)

]`q−1

.

Since all of the ordered choice sets with a particular difference vector are assumed to be in-

cluded equally often, each attribute level will appear in each position equally often, and therefore

Cγψ(πππ0,ψψψ) = 000. For a given m, Cψψ(πππ0,ψψψ) is fixed across all designs, and then for all `1, `2, . . . `k,
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and k, the optimal information matrix for the estimation of the main effects of the attributes

will be

det((C(πππ0,ψψψ)MP)OPT) =
k∏
q=1

[
2Sq`qΨ2

Lm(m− 1)Ψ1(`q − 1)

]`q−1

× det(Cψψ(πππ0,ψψψ)),

as required.

We now look at an example where we compare the determinant of the information matrix for

the estimation of the main effects of the attributes plus contrasts of the position effects to the

optimal determinant given in the previous theorem.

EXAMPLE 5.4.2.

Consider an experiment with two 3-level attributes presented in choice sets of size 3. Suppose

that the choice experiment consists of all choice sets with the difference vector (11, 11, 11). This

gives the design in Table 5.5. The first two items in each choice set differ in both attributes, as

do the first and third items in each choice set, and the second and third items in each choice set.

Then each pair of positions have 2 non–zero differences.

Option1 Option2 Option3 Option1 Option2 Option3

0 0 1 1 2 2 0 0 2 2 1 1

0 1 1 2 2 0 0 1 2 0 1 2

0 2 1 0 2 1 0 2 2 1 1 0

1 0 2 1 0 2 1 0 0 2 2 1

1 1 2 2 0 0 1 1 0 0 2 2

1 2 2 0 0 1 1 2 0 1 2 0

2 0 0 1 1 2 2 0 1 2 0 1

2 1 0 2 1 0 2 1 1 0 0 2

2 2 0 0 1 1 2 2 1 1 0 0

0 0 1 2 2 1 0 0 2 1 1 2

0 1 1 0 2 2 0 1 2 2 1 0

0 2 1 1 2 0 0 2 2 0 1 1

1 0 2 2 0 1 1 0 0 1 2 2

1 1 2 0 0 2 1 1 0 2 2 0

1 2 2 1 0 0 1 2 0 0 2 1

2 0 0 2 1 1 2 0 1 1 0 2

2 1 0 0 1 2 2 1 1 2 0 0

2 2 0 1 1 0 2 2 1 0 0 1

Table 5.5: The design for the choice experiment in Example 5.4.2

The information matrix for the estimation of the main effects of the attributes plus contrasts

of the position effects is shown in Figure 5.1, and has determinant

det(C(πππ0,ψψψ)MP) =
(ψ1ψ2 + ψ1ψ3 + ψ2ψ3) 4

243ψ1ψ2ψ3 (ψ1 + ψ2 + ψ3) 9
.
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C(πππ0,ψψψ)MP =

ψ2ψ3+ψ1(ψ2+ψ3)
3(ψ1+ψ2+ψ3)2 0 0 0 0 0

0 ψ2ψ3+ψ1(ψ2+ψ3)
3(ψ1+ψ2+ψ3)2 0 0 0 0

0 0 ψ2ψ3+ψ1(ψ2+ψ3)
3(ψ1+ψ2+ψ3)2 0 0 0

0 0 0 ψ2ψ3+ψ1(ψ2+ψ3)
3(ψ1+ψ2+ψ3)2 0 0

0 0 0 0 ψ1+ψ3

2ψ1ψ3(ψ1+ψ2+ψ3)
ψ1−ψ3

2
√

3ψ1ψ3(ψ1+ψ2+ψ3)

0 0 0 0 ψ1−ψ3

2
√

3ψ1ψ3(ψ1+ψ2+ψ3)

ψ2ψ3+ψ1(ψ2+4ψ3)
6ψ1ψ2ψ3(ψ1+ψ2+ψ3)


Figure 5.1: The information matrix for the design in Example 5.4.2
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We now compare the determinant above to the optimal determinant as given by Theorem

5.4.6. Since `1 = `2 = m = 3, we have

S1 = S2 =
m(m− 1)

2
= 3,

and

det(Cψψ(πππ0,ψψψ)) =
1

3ψ1ψ2ψ3(ψ1ψ2ψ3)
.

Then

k∏
q=1

(
2Sq`qΨ2

Lm(m− 1)Ψ1(`q − 1)

)`q−1

=
2∏
q=1

(
4× 3× 3Ψ2

9× 3× 2×Ψ1 × 2

)2

=

(
Ψ2

6Ψ1

)2

×
(

Ψ2

6Ψ1

)2

=
Ψ4

2

1296Ψ4
1

.

Then the optimum value of the determinant of the information matrix for the estimation of the

main effects of the attributes and contrasts of the position effects is

det((C(πππ0,ψψψ)MP)OPT) =
Ψ4

2

1296Ψ4
1

× 1

3ψ1ψ2ψ3(ψ1ψ2ψ3)

=
(ψ1ψ2 + ψ1ψ3 + ψ2ψ3) 4

243ψ1ψ2ψ3 (ψ1 + ψ2 + ψ3) 9
.

Since this is equal to the optimal value of the determinant of the information matrix for the

estimation of the main effects of the attributes and contrasts of the position effects, this design

is optimal for the estimation of the main effects of the attributes and contrasts of the position

effects when using the Davidson–Beaver position effects model.

The expression in Theorem 5.4.6 allows us to confirm the optimal designs for the estimation of

the main effects of the attributes and contrasts of the position effects when using the generalised

Davidson–Beaver position effects model.

THEOREM 5.4.7.

Let F be the complete factorial for k attributes where the qth attribute has `q levels. Suppose that

we choose a set of m generators G = {ggg1 = 000, ggg2, . . . , gggm} such that gggi 6= gggj for i 6= j. Suppose

that gggi = (gi1, gi2, . . . , gik) for i = 1, . . . ,m and also that the multiset of differences for attribute

q,

{±(gi1q − gi2q)|1 ≤ i1, i2 ≤ m, i1 6= i2},

contains each non-zero difference modulo `q equally often. Then the ordered choice sets given by

the rows of F +ggg1, F +ggg2, . . . , F +gggm, for one or more sets of generators G, are optimal for the

estimation of the main effects of the attributes and contrasts of the position effects, provided that

there are as few zero differences as possible in each choice set, each pair of positions contains

equally many non–zero differences, and that each level of an attribute is equally replicated across

each position of the set of ordered choice sets.

Proof. Theorem 5.4.4 showed that the (1, 1) block of C(πππ0,ψψψ)MP can be written as

BqΛγγ(πππ0,ψψψ)BTq =
1

Ψ1

∑
ddd

∑
a6=b

ψaψbyddd,a,b
Γddd
(
(`q − 1)iq − (−1)iq

)
(`q − 1)iq

I`q−1.
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Substituting the expression for yddd,a,b given earlier, and simplifying, gives

BqΛγγ(πππ0,ψψψ)BTq =
`q

NΨ1(`q − 1)

∑
ddd|iq=1

∑
a6=b

ψaψb
∑
j

cvvvj ivvvjxvvvj ;ddd,a,bΓdddI`q−1

=
`q

NΨ1(`q − 1)

∑
j

cvvvj ivvvj
∑
a6=b

∑
ddd|iq=1

ψaψbxvvvj ;ddd,a,bI`q−1.

Using the assumption that the differences between any two positions contains all of the non–zero

differences equally often, we obtain∑
a6=b

xvvvj ;ddd,a,bψaψb =
2

m(m− 1)
αqΨ2,

where αq is the number of non–zero differences occurring in the qth position of the differences in

the difference vectors. Substituting this into BqΛγγ(πππ0,ψψψ)BTq gives

BqΛγγ(πππ0,ψψψ)BTq =
2`qαqΨ2

NΨ1m(m− 1)(`q − 1)

∑
j

cvvvj ivvvjI`q−1.

However,
∑
j cvvvj ivvvj = `q − 1, hence

BqΛγγ(πππ0,ψψψ)BTq =
2`qαqΨ2

NΨ1m(m− 1)
I`q−1.

Now that we have shown that the qth diagonal block for the matrix Cγγ(πππ0,ψψψ) is equal to

2`qαqΨ2

NΨ1m(m− 1)
I`q−1,

we can see that the determinant of this block matrix will be maximised if αq is maximised.

Since we have the condition that each non–zero difference must occur equally often, there are

(`q − 1)αq generators with non–zero differences in attribute q. Also, since the complete factorial

has been used as the initial block, there will be L(`q − 1)αq non–zero differences for attribute q

in the experiment. So,

L(`q − 1)αq = SqN

(`q − 1)αq
N

=
Sq
L

2`qαqΨ2

NΨ1m(m− 1)
=

2`qSqΨ2

LΨ1m(m− 1)(`q − 1)
.

This is the same as the entry for attribute q in the expression in Theorem 5.4.6, and therefore

this design is optimal for the estimation of the main effects of the attributes and contrasts of the

position effects.

Example 5.4.2 illustrates these results.

5.4.2 Main Effects plus Two–Factor Interactions and Position Effects

In this subsection, we extend the results developed for the estimation of the main effects of the

attributes and contrasts of the position effects when the generalised Davidson–Beaver position

effects model is used to the case where we are interested in the estimation of two–factor interac-

tions between the attributes in addition to the main effects of the attributes and contrasts of the

position effects. In this subsection, we will consider criteria for independence of attribute main
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effects and two–factor interactions from position effects. We then prove a theorem that gives

an expression for the information matrix when attribute main effects plus two–factor interac-

tions and contrasts of the position effects are all of interest and the generalised Davidson–Beaver

position effects model is used.

We now prove a lemma that gives conditions for Cγψ(πππ0,ψψψ) = 000, when attribute main effects

plus two–factor interactions and contrasts of the position effects are of interest.

LEMMA 5.4.8.

The information matrix for the estimation of the main effects plus two–factor interactions of

the attributes and contrasts of the position effects is block diagonal with respect to the attribute

effects and the position effect if, for each pair of attributes, each pair of attribute levels appears

equally often in each position of the choice set.

Proof. Suppose that BMT contains the contrast coefficients corresponding to the main effects

plus two–factor interactions of the attributes. The contrast coefficients corresponding to items

with the same levels in the pair of attributes that are of interest will be the same. Then for the

jth contrast, corresponding to a component of the two–factor interaction between attributes q1

and q2,

(BMTΛγψ(πππ0,ψψψ))ja=
1

Ψ1

∑
b6=a

ψb

`q1∑
x1=1

`q2∑
x2=1

Bj(x1x2)(λq1=x1,q2=x2 in pos a − λq1=x1,q2=x2 in pos b),

where λq1=x1,q2=x2 in pos a = λatt q1=x1, att q2=x2 in pos a. Then (BMTΛγψ(πππ0,ψψψ))ja = 0 if, for all

x1 and x2,

λq1=x1,q2=x2 in pos a − λq1=x1,q2=x2 in pos b = 0,

for all b 6= a. If this is the case, then it follows that (BMTΛγψ(πππ0,ψψψ))ja = 0, where contrast j now

corresponds to a main effect of either attribute q1 or attribute q2, as each level of the attribute

must appear in each position of the choice set equally often if each pair of attribute levels appears

in each position equally often. It follows that BMTΛγψ(πππ0,ψψψ) = 000 if, for each pair of attributes,

each pair of attribute levels appears equally often in each of the positions in the choice set. Then

the information matrix for the estimation of the main effects plus two–factor interactions of the

attributes and contrasts of the position effects is block diagonal, with one block corresponding

to the attribute effects and one block corresponding to the position effects.

EXAMPLE 5.4.3.

Consider the experiment discussed in Example 5.4.2, and the design in Table 5.5. In this choice

experiment, each item appears in each position of the choice set four times. Thus this design

satisfies the criteria for Lemma 5.4.8. BMTΛ(πππ0,ψψψ) = 000 when this design is used as can be seen

in Figure 5.2. Notice that this matrix is block diagonal.

We can use this lemma to prove a theorem that gives the determinant of the information

matrix for the estimation of the main effects plus two–factor interactions of the attributes and

contrasts of the position effects when the generalised Davidson–Beaver position effects model is

used.

THEOREM 5.4.9.

Under the null hypothesis of equal merits, the determinant of the information matrix for the
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√
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−
√
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
Figure 5.2: BMTΛ(πππ0,ψψψ) for the design in Table 5.5
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estimation of the main effects plus two–factor interactions of the attributes, and contrasts of the

position effects, when the generalised Davidson–Beaver position effects model is used, is given by

det(C(πππ0,ψψψ)MTP)

=
k∏
q=1

 1

Ψ1

`q
(`q − 1)

∑
j

cvvvjavvvj
∑
a6=b

ψaψb
∑
ddd|iq=1

xvvvj ;ddd,a,b

`q−1

×
k−1∏
q1=1

k∏
q2=q1+1

[
Ψ2

Ψ1

∑
ddd

∑
a6=b

∑
j

ψaψbcvvvjavvvjxvvvj ;ddd,a,b

×
[
1− 1

(1− `q1)iq1 (1− `q2)iq2

]
I(`q1−1)(`q2−1)

](`q1−1)(`q2−1)

× det(Cψψ(πππ,ψψψ)),

when each pair of attribute levels appears equally often in each position in the set of ordered

choice sets.

Proof. The first step in the proof is to show that the (1, 1) block of the information matrix

C(πππ0,ψψψ)MTP is block diagonal. We begin with

Cγγ(πππ0,ψψψ) = BMTΛγγ(πππ0,ψψψ)BTMT

= BMT

[
Ψ2

Ψ1
zIL −

1

Ψ1

∑
ddd

Dddd
∑
a6=b

ψaψbyddd,a,b

]
BTMT

=
Ψ2

Ψ1
zBMT ILB

T
MT −

1

Ψ1

∑
ddd

∑
a6=b

ψaψbyddd,a,bBMTDdddB
T
MT ,

where BMT contains the contrast coefficients for the main effects and the two factor interactions

of the attributes. Burgess and Street [2005] have shown that

BMTDdddB
T
MT =

[
BMDdddB

T
M 0

0 BTDdddB
T
T

]
,

where the (`q − 1)× (`q − 1) block matrix of BMDdddB
T
M for attribute q is

Γddd(−1)iq

(`q − 1)iq
I`q−1,

and for the two–factor interactions, the (`q1 − 1)(`q2 − 1) × (`q1 − 1)(`q2 − 1) block matrix of

BTDdddB
T
T for attributes q1 and q2 is

Γddd(−1)iq1 (−1)iq2

(`q1 − 1)iq1 (`q2 − 1)iq2
I(`q1−1)(`q2−1). (5.6)

By using this result, and the orthogonality property of the contrast matrix, we obtain

Cγγ(πππ0,ψψψ) =
Ψ2

Ψ1
zIp −

1

Ψ1

∑
ddd

∑
a6=b

ψaψbyddd,a,b

[
BMDdddB

T
M 0

0 BTDdddB
T
T

]
.

Hence

Cγγ(πππ0,ψψψ) = BlkDiag

(
Ψ2

Ψ1
zI∏k

q=1(`q−1) −
1

Ψ1

∑
ddd

∑
a6=b

ψaψbyddd,a,bBMDdddB
T
M ,

Ψ2

Ψ1
zI∏

q1 6=q2
(`q1−1)(`q2−1) −

1

Ψ1

∑
ddd

∑
a6=b

ψaψbyddd,a,bBTDdddB
T
T

)
.
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So clearly the (1, 1) block of C(πππ0,ψψψ)MTP is block diagonal.

Next, we find an expression for the (`q1 − 1)(`q2 − 1) × (`q1 − 1)(`q2 − 1) block matrix cor-

responding to the two–factor interactions between attributes q1 and q2. Let BTq1,q2 contain

the contrast coefficients for the two–factor interactions involving attributes q1 and q2. Then we

substitute Equation 5.6, and simplify, to obtain

Ψ2

Ψ1
zI(`q1−1)(`q2−1) −

1

Ψ1

∑
ddd

∑
a6=b

ψaψbyddd,a,bBTq1,q2DdddB
T
Tq1,q2

=
Ψ2

Ψ1
zI(`q1−1)(`q2−1) −

1

Ψ1

∑
ddd

∑
a6=b

ψaψbyddd,a,b
Γddd(−1)iq1+iq2

(`q1 − 1)iq1 (`q2 − 1)iq2
I(`q1−1)(`q2−1)

=
1

NΨ1

∑
ddd

∑
a6=b

Γdddψaψb
1

Γddd
×
∑
j

cvvvj ivvvjxvvvj ;ddd,a,b

[
1− 1

(1− `q1)iq1 (1− `q2)iq2

]
I(`q1−1)(`q2−1)

=
1

NΨ1

∑
ddd

∑
a6=b

∑
j

ψaψbcvvvj ivvvjxvvvj ;ddd,a,b

[
1− 1

(1− `q1)iq1 (1− `q2)iq2

]
I(`q1−1)(`q2−1).

Lemma 5.4.8 showed that the main effects and two–factor interactions of the attributes will be

independent of position effects. Using this, and the result in Theorem 5.4.5, the determinant for

the information matrix of the estimation for main effects, two–factor interactions, and position

effects is

det(C(πππ0,ψψψ)MTP) =
k∏
q=1

 `q
NΨ1(`q − 1)

∑
j

cvvvj ivvvj
∑
a6=b

ψaψb
∑
ddd|iq=1

xvvvj ;ddd,a,b

`q−1

×
k−1∏
q1=1

k∏
q2=q1+1

[
1

NΨ1

∑
ddd

∑
a6=b

∑
j

ψaψbcvvvj ivvvjxvvvj ;ddd,a,b

[
1− 1

(1− `q1)iq1 (1− `q2)iq2

]
I(`q1−1)(`q2−1)

](`q1−1)(`q2−1)

×det(Cψψ(πππ0,ψψψ)),

as required.

We now demonstrate this theorem with an example.

EXAMPLE 5.4.4.

Consider again the experiment in Example 5.4.2 and the design in Table 5.5. A generic block

in the block diagonal matrix C(πππ0,ψψψ)MTP corresponding to the two–factor interactions of the

attributes is

1

NΨ1

∑
ddd

∑
a6=b

∑
j

ψaψbcvvvj ivvvjxvvvj ;ddd,a,b

[
1− 1

(1− `q1)iq1 (1− `q2)iq2

]
I(`q1−1)(`q2−1)

=
1

36Ψ1

∑
a6=b

ψaψb4× 1× 1

[
1− 1

(1− 3)1(1− 3)1

]
I4

=
Ψ2

12Ψ1
I4.

Then we get the C(πππ0,ψψψ)MTP matrix in Figure 5.3, which has determinant

det(C(πππ0,ψψψ)MTP) =
(ψ1ψ2 + ψ1ψ3 + ψ2ψ3) 8

314928ψ1ψ2ψ3 (ψ1 + ψ2 + ψ3) 17
.
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C(πππ0,ψψψ)MTP =



Ψ2

6Ψ1
0 0 0 0 0 0 0 0 0

0 Ψ2

6Ψ1
0 0 0 0 0 0 0 0

0 0 Ψ2

6Ψ1
0 0 0 0 0 0 0

0 0 0 Ψ2

6Ψ1
0 0 0 0 0 0

0 0 0 0 Ψ2

12Ψ1
0 0 0 0 0

0 0 0 0 0 Ψ2

12Ψ1
0 0 0 0

0 0 0 0 0 0 Ψ2

12Ψ1
0 0 0

0 0 0 0 0 0 0 Ψ2

12Ψ1
0 0

0 0 0 0 0 0 0 0 ψ1+ψ3

2ψ1ψ3(ψ1+ψ2+ψ3)
ψ1−ψ3

2
√

3ψ1ψ3(ψ1+ψ2+ψ3)

0 0 0 0 0 0 0 0 ψ1−ψ3

2
√

3ψ1ψ3(ψ1+ψ2+ψ3)

ψ2ψ3+ψ1(ψ2+4ψ3)
6ψ1ψ2ψ3(ψ1+ψ2+ψ3)


Figure 5.3: The information matrix for the design in Example 5.4.4
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5.5 A design approach based on complete Latin squares

In this section, we look at a different method of constructing designs for the estimation of

contrasts of the entries in γγγ and contrasts of the position effects. The designs that result are

not in the class of competing designs of the previous section, since in this section we do not

require that all choice sets with difference vector vvvj need be in the design if one such choice

set is included. This construction method uses the columns of a complete Latin square to give

the options in each choice set. An orthogonal array is then used to determine the items that

correspond with each of the elements in the complete Latin square. We give some examples of

this design, and compare the efficiency of a design constructed in this manner to those discussed

in Section 5.4.

Throughout this section we consider only binary experiments, that is

`1 = `2 = . . . = `k = 2.

We will begin with an example of a design constructed using this method.

EXAMPLE 5.5.1.

Suppose that k = 3 and `q = 2 for 1 ≤ q ≤ 3. Then Table 5.6(a) gives a 4 run orthogonal

array of strength 2. We also need a 4 × 4 complete Latin square into which we can embed the

orthogonal array. One such complete Latin square is given in the Table 5.6(b).

(a) (b)

0 0 0 1 2 4 3

0 1 1 2 3 1 4

1 0 1 3 4 2 1

1 1 0 4 1 3 2

Table 5.6: A 4 run orthogonal array of strength 2 (a) and a 4× 4 complete Latin square (b).

Then if we replace the 1s in the complete Latin square by the first row of the orthogonal

array, the 2s by the second row, and so on, we obtain the design in Table 5.7.

Option 1 Option 2 Option 3 Option 4

0 0 0 0 1 1 1 1 0 1 0 1

0 1 1 1 0 1 0 0 0 1 1 0

1 0 1 1 1 0 0 1 1 0 0 0

1 1 0 0 0 0 1 0 1 0 1 1

Table 5.7: The 4 choice sets used in Example 5.5.1.

The next theorem shows that this design will lead to a block diagonal information matrix for

the estimation of contrasts of the entries in γγγ and contrasts of the position effects.
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THEOREM 5.5.1.

The C(πππ0,ψψψ) matrix for the estimation of any set of contrasts of the entries in γγγ and any set

of contrasts of the entries in ψψψ will be block diagonal when using a complete Latin square based

choice design and the generalised Davidson–Beaver position effects model.

Proof. Since this design provides a 1–1 mapping of items and distinct entries in the complete

Latin square, each item will appear in each position of the ordered choice set exactly once.

Therefore λTi in pos a is 1
N for all a if Ti appears in the experiment, and 0 if it does not. Then

Λγψ(πππ0,ψψψ)ia =
1

Ψ1

∑
b6=a

(λTi in pos a − λTi in pos b)

=


1

Ψ1

∑
b6=a

(
1

N
− 1

N

)
, if Ti appears in the experiment;

1

Ψ1

∑
b6=a

(0− 0), otherwise.

= 0.

Then Λγψ(πππ0,ψψψ) = 000, and it follows that

C(πππ0,ψψψ) =

(
BγΛγγ(πππ0,ψψψ)BTγ 000

000 BψΛψψ(πππ0,ψψψ)BTψ

)
.

Therefore C(πππ0,ψψψ) is block diagonal.

The next example compares the information matrices for the design with 4 choice sets con-

structed in this manner to a design constructed using the method of Section 5.4.

EXAMPLE 5.5.2.

The Λ(πππ0,ψψψ) matrix for the design in Table 5.7 is

Λ(πππ0,ψψψ) =

[
Λγγ(πππ0,ψψψ) 000

000 Λψψ(πππ0,ψψψ)

]
,

where Λγγ(πππ0,ψψψ) and Λψψ(πππ0,ψψψ) are given in Table 5.8. It follows that the information matrix

for the estimation of attribute main effects and contrasts of the position effects is

(C(πππ0,ψψψ)MP)CLS = BlkDiag

 1

4 (ψ1 + ψ2 + ψ3 + ψ4)
2 ×Diag

ψ2ψ3 + ψ1ψ4 +
∑
a6=b

ψaψb,

2 (ψ2 + ψ3) (ψ1 + ψ4) , ψ2ψ3 + ψ1ψ4 +
∑
a6=b

ψaψb

 , Cψψ(πππ0,ψψψ)

 ,
where Cψψ(πππ0,ψψψ) is shown in Table 5.9. Then the determinant of this information matrix is

det((C(πππ0,ψψψ)MP)CLS) =
(ψ2 + ψ3) (ψ1 + ψ4) (ψ3ψ4 + ψ2 (2ψ3 + ψ4) + ψ1 (ψ2 + ψ3 + 2ψ4)) 2

128ψ1ψ2ψ3ψ4 (ψ1 + ψ2 + ψ3 + ψ4) 8
.

If we compare this to the determinant of the information matrix for an optimal Street–Burgess

design as used in Section 5.4, shown in Table 5.10, which is

det((C(πππ0,ψψψ)MP)S–B) =
(ψ1 + ψ2) (ψ1 + ψ3) (ψ2 + ψ3) (ψ1 + ψ4) (ψ2 + ψ4) (ψ3 + ψ4)

32ψ1ψ2ψ3ψ4 (ψ1 + ψ2 + ψ3 + ψ4) 8
,
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Λγγ(πππ0,ψψψ) =
1

4 (ψ1 + ψ2 + ψ3 + ψ4) 2
×

2
∑
a6=b ψaψb − (ψ2 + ψ3) (ψ1 + ψ4) −2 (ψ2ψ3 + ψ1ψ4) − (ψ2 + ψ3) (ψ1 + ψ4)

− (ψ2 + ψ3) (ψ1 + ψ4) 2
∑
a6=b ψaψb − (ψ2 + ψ3) (ψ1 + ψ4) −2 (ψ2ψ3 + ψ1ψ4)

−2 (ψ2ψ3 + ψ1ψ4) − (ψ2 + ψ3) (ψ1 + ψ4) 2
∑
a6=b ψaψb − (ψ2 + ψ3) (ψ1 + ψ4)

− (ψ2 + ψ3) (ψ1 + ψ4) −2 (ψ2ψ3 + ψ1ψ4) − (ψ2 + ψ3) (ψ1 + ψ4) 2
∑
a6=b ψaψb



Λψψ(πππ0,ψψψ) =
1

(ψ1 + ψ2 + ψ3 + ψ4) 2
×

ψ2+ψ3+ψ4

ψ1
−1 −1 −1

−1 ψ1+ψ3+ψ4

ψ2
−1 −1

−1 −1 ψ1+ψ2+ψ4

ψ3
−1

−1 −1 −1 ψ1+ψ2+ψ3

ψ4


Table 5.8: The block diagonal components of Λ(πππ0,ψψψ) for the complete Latin square based design of Example 5.5.2
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7
1

Cψψ(πππ0,ψψψ) =


9ψ2ψ3ψ4+ψ1(ψ3ψ4+ψ2(9ψ3+ψ4))

20ψ1ψ2ψ3ψ4(ψ1+ψ2+ψ3+ψ4)
ψ1(ψ2(3ψ3−ψ4)+ψ3ψ4)−3ψ2ψ3ψ4

4
√

5ψ1ψ2ψ3ψ4(ψ1+ψ2+ψ3+ψ4)

3(ψ2ψ3ψ4+ψ1(ψ2(ψ3−ψ4)−ψ3ψ4))
20ψ1ψ2ψ3ψ4(ψ1+ψ2+ψ3+ψ4)

ψ1(ψ2(3ψ3−ψ4)+ψ3ψ4)−3ψ2ψ3ψ4

4
√

5ψ1ψ2ψ3ψ4(ψ1+ψ2+ψ3+ψ4)

ψ2ψ3ψ4+ψ1(ψ3ψ4+ψ2(ψ3+ψ4))
4ψ1ψ2ψ3ψ4(ψ1+ψ2+ψ3+ψ4)

ψ1(ψ2(ψ3+3ψ4)−3ψ3ψ4)−ψ2ψ3ψ4

4
√

5ψ1ψ2ψ3ψ4(ψ1+ψ2+ψ3+ψ4)

3(ψ2ψ3ψ4+ψ1(ψ2(ψ3−ψ4)−ψ3ψ4))
20ψ1ψ2ψ3ψ4(ψ1+ψ2+ψ3+ψ4)

ψ1(ψ2(ψ3+3ψ4)−3ψ3ψ4)−ψ2ψ3ψ4

4
√

5ψ1ψ2ψ3ψ4(ψ1+ψ2+ψ3+ψ4)

ψ2ψ3ψ4+ψ1(9ψ3ψ4+ψ2(ψ3+9ψ4))
20ψ1ψ2ψ3ψ4(ψ1+ψ2+ψ3+ψ4)


Table 5.9: The Cψψ(πππ0,ψψψ) matrix for the complete Latin square based design of Example 5.5.2
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we find that the ratio of the determinants of the information matrices for the two designs can be

expressed as

det((C(πππ0,ψψψ)MP)CLS)

det((C(πππ0,ψψψ)MP)S–B)
= 1− (ψ2 − ψ3) 2 (ψ1 − ψ4) 2

(ψ3ψ4 + ψ2 (2ψ3 + ψ4) + ψ1 (ψ2 + ψ3 + 2ψ4)) 2
,

which is less than or equal to 1 for all values of ψi 6= 0. In this case, the design generated using

the complete Latin square construction method is at least as efficient as the design in Table 5.10

for the estimation of attribute main effects and contrasts of the position effects when using the

Davidson–Beaver position effects model.

If we construct designs of order 8 using complete Latin squares, we find that the main effects

of the attributes cannot always be estimated independently of each other. The following example

shows such a situation.

EXAMPLE 5.5.3.

Suppose that we have an experiment with k = 5 and `i = 2. We can find an 8 run orthogonal

array of strength 2, shown in Table 5.11(a). The defining contrasts for this orthogonal array

are D = AB,E = AC. We then use the complete Latin square in Table 5.11(b), replacing each

entry in the Latin square by the corresponding row of the orthogonal array, to obtain the choice

experiment in Table 5.12.

Suppose that we would like to be able to estimate the main effects of the attributes and

contrasts of the position effects. Then we can calculate the information matrix, which we find

has the form

C(πππ0,ψψψ) =



a 0 0 0 0 000

0 b 0 0 0 000

0 0 c 0 0 000

0 0 0 d e 000

0 0 0 e f 000

000 000 000 000 000 Cψψ(πππ0,ψψψ)


,

where the terms a–f are non–zero. In particular,

e = −ψ1ψ2 + ψ4ψ2 − ψ5ψ2 + ψ8ψ2 + ψ1ψ3 + ψ3ψ4 − ψ3ψ5 − ψ1ψ6 − ψ4ψ6

+ψ5ψ6 + ψ1ψ7 − ψ4ψ7 + ψ5ψ7 − ψ3ψ8 + ψ6ψ8 − ψ7ψ8 6= 0.

This means that the main effects of the fourth and fifth attributes cannot be estimated indepen-

dently.

Option 1 Option 2 Option 3 Option 4

0 0 0 0 1 1 1 1 0 1 0 1

0 1 1 0 0 0 1 0 1 1 1 0

1 0 1 1 1 0 0 1 1 0 0 0

1 1 0 1 0 1 0 0 0 0 1 1

Table 5.10: The Street–Burgess design used in Example 5.5.2.
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(a) (b)

0 0 0 0 0 1 2 8 3 7 4 6 5

0 0 1 0 1 2 3 1 4 8 5 7 6

0 1 0 1 0 8 1 7 2 6 3 5 4

0 1 1 1 1 3 4 2 5 1 6 8 7

1 0 0 1 1 7 8 6 1 5 2 4 3

1 0 1 1 0 4 5 3 6 2 7 1 8

1 1 0 0 1 6 7 5 8 4 1 3 2

1 1 1 0 0 5 6 4 7 3 8 2 1

Table 5.11: An 8 run orthogonal array of strength 2 (a) and a complete Latin square of order

8 (b).

If we use the 8 × 8 complete Latin square that has been constructed using the Williams

construction, as shown in Table 5.11(b), then we can see which orthogonal arrays of order 8 can

be used to estimate the main effects of the attributes independently. Table 5.13 gives the defining

relations for each orthogonal array and, where confounds exist, the groups of attributes that are

confounded. As stated in Section 1.B, we can construct different complete Latin squares by using

different sequencings of groups. Evans [2007] gives a list of such sequencings for groups of small

order. When repeating the above analysis with complete Latin squares constructed from each of

these different sequencings, we find that the same orthogonal arrays give the same confounded

attributes, those shown in Table 5.13.

We finish this section with a discussion about why these confounds occur. Suppose that we

let Λγγ(πππ0,ψψψ) = [αij ], such that αii = −
∑
j 6=i αij . Then we can investigate which contrast

matrices, B, give a diagonal BΛγγ(πππ0,ψψψ)BT matrix. Let BU be the main effects contrast matrix

for attribute U , BV be the main effects contrast matrix for attribute V and so on. Now let B =

[BUBVBWBXBYBZ ]T , where BU = jjjT2 ⊗jjjT2 ⊗B2, BV = jjjT2 ⊗B2⊗jjjT2 , and BW = B2⊗jjjT2 ⊗jjjT2 .

Given BU , BV and BW , what can we say about BX , BY and BZ?

The orthogonality of the contrast matrix imposes the constraints

BUB
T
X = 0,

BVB
T
X = 0,

and

BWB
T
X = 0,

on the entries of BX . Since the entries in BX are contrast coefficients, we also require

BXjjj
T = 0.

In this example, we would like Cγγ(πππ0,ψψψ) to be diagonal, which places further constraints on the

entries in BX . These constraints are

BUΛγγ(πππ0,ψψψ)BTX = 0,

BV Λγγ(πππ0,ψψψ)BTX = 0,
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Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 Option 8

0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 1 1 0 1 0 0 1 1

0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0

1 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 1 1 1 1

0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1

1 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 1 0 1 0

0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 1 1 0 0

1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1

1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0

Table 5.12: Complete Latin square based design used in Example 5.5.3.
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k Defining Relation Confounded Attributes

3 None None

4 D=ABC (1,4)

4 D=AB None

5 D=AB, E=AC None

5 D=AB, E=BC (4,5)

5 D=AC. E=BC None

6 D=AB, E=AC, F=BC (4,5)

7 D=AB, E=AC, F=BC, G=ABC (1,7) and (4,5)

Table 5.13: Confounded attributes when a complete Latin square based design of order 8 is

used

and

BWΛγγ(πππ0,ψψψ)BTX = 0.

It should be noted at this point that BU , BV , and BW have been constructed in such a way that

they are orthogonal to each other, and produce 0 entries in the relevant off–diagonal entries in

Cγγ(πππ0,ψψψ). Suppose that BX is given by

BX = [x1, x2, x3, x4, x5, x6, x7, x8],

and Λγγ(πππ0,ψψψ) is given by

D α1 α2 α3 α4 α3 α2 α1

α1 D α1 α2 α3 α4 α3 α2

α2 α1 D α1 α2 α3 α4 α3

α3 α2 α1 D α1 α2 α3 α4

α4 α3 α2 α1 D α1 α2 α3

α3 α4 α3 α2 α1 D α1 α2

α2 α3 α4 α3 α2 α1 D α1

α1 α2 α3 α4 α3 α2 α1 D


,

where

α1 =
ψ1ψ2 + ψ1ψ3 + ψ2ψ4 + ψ3ψ5 + ψ4ψ6 + ψ5ψ7 + ψ6ψ8 + ψ7ψ8

8Ψ1
,

α2 =
ψ1ψ6 + ψ1ψ7 + ψ2ψ5 + ψ2ψ8 + ψ3ψ4 + ψ3ψ8 + ψ4ψ7 + ψ5ψ6

8Ψ1
,

α3 =
ψ1ψ4 + ψ1ψ5 + ψ2ψ3 + ψ2ψ6 + ψ3ψ7 + ψ4ψ8 + ψ5ψ8 + ψ6ψ7

8Ψ1
,

and

α4 =
ψ1ψ8 + ψ2ψ7 + ψ3ψ6 + ψ4ψ5

4Ψ1
.

Then we can expand BUΛγγ(πππ0,ψψψ)BTX to obtain

BUΛγγ(πππ0,ψψψ)BTX = 2α1(−x1 − x4 + x5 + x8) + 2α2(−x1 − x2 − x3 − x4 + x5 + x6 + x7 + x8)

+2α3(−x1 − 2x2 − 2x3 − x4 + x5 + 2x6 + 2x7 + x8)

+2α4(−x1 − x2 − x3 − x4 + x5 + x6 + x7 + x8),
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which we require to be equal to 0 for all values of αi. By equating coefficients of αi, we find

−x1 − x4 + x5 + x8 = 0,

−x1 − x2 − x3 − x4 + x5 + x6 + x7 + x8 = 0,

and

−x1 − 2x2 − 2x3 − x4 + x5 + 2x6 + 2x7 + x8 = 0.

We also have the constraints

−x1 − x2 − x3 − x4 + x5 + x6 + x7 + x8 = 0,

−x1 − x2 + x3 + x4 − x5 − x6 + x7 + x8 = 0,

and

−x1 + x2 − x3 + x4 − x5 + x6 − x7 + x8 = 0,

that make the contrasts orthogonal to each other, and

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 0,

to make BX a set of contrast coefficients. These reduce to give the following 5 linearly indepen-

dent equations

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 0,

−x1 − x2 − x3 − x4 + x5 + x6 + x7 + x8 = 0,

−x1 − x2 + x3 + x4 − x5 − x6 + x7 + x8 = 0,

−x1 + x2 − x3 + x4 − x5 + x6 − x7 + x8 = 0,

and

−x1 − x4 + x5 + x8 = 0.

The general solution to these equations is given by

x1 = x8, x2 = x7, x3 = x6, x4 = x5, x4 = −x6 − x7 − x8.

One possible solution is

BX =
1

2
√

2
[−1,−1, 1, 1, 1, 1,−1,−1].

If we use this contrast, we can construct a fifth contrast to be estimated in the same manner as

BX . Suppose that this new contrast has coefficients

BY = [y1, y2, y3, y4, y5, y6, y7, y8].

The constraints on the yi will include all of those that were imposed on the xi, plus some

more to ensure that BX and BY are orthogonal, and have a 0 in the corresponding entry of

Cγγ(πππ0,ψψψ). By repeating the process that we used to derive BX , we have the following seven
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linearly independent constraints on the yi:

y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 = 0,

−y1 − y2 − y3 − y4 + y5 + y6 + y7 + y8 = 0,

−y1 − y2 + y3 + y4 − y5 − y6 + y7 + y8 = 0,

−y1 + y2 − y3 + y4 − y5 + y6 − y7 + y8 = 0,

−y1 − y4 + y5 + y8 = 0,

−y1 − y2 + y3 + y4 + y5 + y6 − y7 − y8 = 0,

and

−y1 + y4 + y5 − y8 = 0.

This gives the general solution

y1 = y4 = y5 = y8, y2 = y3 = y6 = y7.

One possible solution is

BY =
1

2
√

2
[−1, 1, 1,−1,−1, 1, 1,−1].

If we continue this process, we will have one additional constraint on BZ that is independent

of the existing constraints. This constraint is

−z1 + z2 + z3 − z4 − z5 + z6 + z7 − z8 = 0.

The only consistent set of solutions to these constraints is zi = 0 for 1 ≤ i ≤ 8. Therefore, no

additional contrasts can be estimated independently without forming a non–diagonal Cγγ(πππ0,ψψψ)

matrix.

Thus, we can see that while designs constructed using complete Latin squares can be more

efficient than those designs used in Section 5.4 in some cases, there are restrictions on the number

of attributes that we can use in designs.

5.6 Simulations of the generalised Davidson–Beaver posi-

tion effects model

In this section we consider the performance of the generalised Davidson–Beaver position effects

model under various model assumptions by carrying out a number of simulation studies. We

assume that k = 2, `1 = `2 = 2 and m = 3 throughout. We consider two sets of values for the

parameters. In the first we assume that both main effects parameters, τ1 and τ2, are equal to 0

and the position main effect parameters are equal to ψL = −0.3 and ψQ = 0.1, and in the second

set we assume that τ1 = 1 and τ2 = −1 but ψL = −0.3 and ψQ = 0.1 still.

We find efficient designs for each set of values and compare the performance of each design

with both sets of parameter values. The design in Table 5.14 is optimal for the estimation of

the main effects of the attributes plus the position main effects when τ1 = τ2 = 0, ψL = −0.3,

and ψQ = 0.1, by Theorem 5.4.7. An alternative design is shown in Table 5.15, which is more

efficient than the design in Table 5.14 when τ1 = 1, τ2 = −1, ψL = −0.3, and ψQ = 0.1.
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Option 1 Option 2 Option 3 P(T1) P(T2) P(T3)

0 0 0 1 1 0 0.195 0.014 0.791

0 1 0 0 1 1 0.110 0.445 0.445

1 0 1 1 0 0 0.871 0.065 0.065

1 1 1 0 0 1 0.195 0.791 0.014

Table 5.14: Optimal design for the estimation of attribute main effects and contrasts of the

position effects when τ1 = τ2 = 0, ψL = −0.3, and ψQ = 0.1, with selection

probabilities when τ1 = 1, τ2 = −1, ψL = −0.3, and ψQ = 0.1.

Option 1 Option 2 Option 3

0 0 0 1 1 0

0 1 0 0 1 1

1 0 1 1 0 0

1 0 1 1 0 1

1 1 1 0 0 1

Table 5.15: A design more efficient than the design in Table 5.14 when τ1 = 1, τ2 = −1, ψL =

−0.3, and ψQ = 0.1.

We first assume that τ1 = τ2 = 0, ψL = −0.3, and ψQ = 0.1 and compare the simulated

distributions of the parameter estimates when the designs in Tables 5.14 and 5.15 are used in

turn. Each simulation is modelled using the simulated responses from 150 respondents, and each

boxplot displays the distribution of the estimates from 1000 such simulations. Figures 5.4(a) and

(b) show the distributions of the parameter estimates when the designs in Tables 5.14 and 5.15,

respectively, are used. Summary statistics for both simulations are provided in Table 5.16. We

see that, for both designs, the distribution of the parameter estimates seem to be unbiased and

symmetric. We see that, in this case, the additional choice set in the design in Table 5.15 does

not seem to reduce the variance of the parameter estimates.

We now consider the performance of these two designs when τ1 = 1, τ2 = −1, ψL = −0.3, and

ψQ = 0.1. Figures 5.5(a) and (b) show the distributions of the parameter estimates when the

designs in Tables 5.14 and 5.15, respectively, are used. Summary statistics for both simulations

are provided in Table 5.17. We see that, for both designs, the distribution of the parameter

estimates seem to be unbiased and close to symmetric. For these parameter estimates, we see

that the addition of an extra choice set does seem to reduce the variance of the parameter

estimates. The selection probabilities when τ1 = 1, τ2 = −1, ψL = −0.3, and ψQ = 0.1 for the

design in Table 5.14 are given in the last three columns of Table 5.14.

Next, we compare the distributions of the parameter estimates for different values of ψL and

ψQ when the design in Table 5.15 is used. Suppose that τ1 = 0.5, and τ2 = −1. Then Figures

5.6(a) and (b) show the distributions of the parameter estimates when the coefficient of the linear

component of the position effect is −0.2 and −0.4, respectively, with a zero quadratic component
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(a) (b)

Figure 5.4: Simulations: τ1 = τ2 = 0, ψL = −0.3, and ψQ = 0.1.

Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 5.14

τ1 0.00065(0.00145) 0.00203 0.00209 0.09595(0.07734)

τ2 −0.00244(0.00147) 0.00191 0.00217 −0.03946(0.07734)

ψL −0.30190(0.00159) 0.00748 0.00251 −0.14780(0.07734)

ψQ 0.10039(0.00099) 0.00254 0.00098 0.08010(0.07734)

Design in Table 5.15

τ1 0.00074(0.00138) 0.00184 0.00191 −0.01432(0.07734)

τ2 0.00060(0.00134) 0.00172 0.00178 −0.03239(0.07734)

ψL −0.30178(0.00144) 0.00719 0.00206 0.07623(0.07734)

ψQ 0.10125(0.00090) 0.00218 0.00080 0.08965(0.07734)

Table 5.16: Summary statistics for τ1 = τ2 = 0, ψL = −0.3, and ψQ = 0.1.
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(a) (b)

Figure 5.5: Simulations: τ1 = 1, τ2 = −1, ψL = −0.3, and ψQ = 0.1.

Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 5.14

τ1 1.01674(0.00274) 0.00245 0.00749 0.46021(0.07734)

τ2 −1.01164(0.00275) 0.00221 0.00758 −0.39469(0.07734)

ψL −0.31189(0.00283) 0.00970 0.00800 −0.40517(0.07734)

ψQ 0.10227(0.00188) 0.00292 0.00354 0.23414(0.07734)

Design in Table 5.15

τ1 1.00935(0.00263) 0.00184 0.00693 0.51804(0.07734)

τ2 −1.00761(0.00212) 0.00173 0.00450 −0.18823(0.07734)

ψL −0.30817(0.00273) 0.00751 0.00748 −0.52933(0.07734)

ψQ 0.10126(0.00159) 0.00209 0.00254 0.00055(0.07734)

Table 5.17: Summary statistics for τ1 = 1, τ2 = −1, ψL = −0.3, and ψQ = 0.1.
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in both cases. Figures 5.7 (a) and (b) show the distributions of the parameter effects when

the coefficient of the linear component of the position effect is assumed to be −0.2 and −0.4,

respectively, and the coefficient of the quadratic component of the position effect is 0.2 in both

cases. Summary statistics for all four simulations are provided in Table 5.18. For each of the

sets of parameter values, this design gives unbiased and close to symmetric parameter estimates.

The variance of these parameter estimates remains relatively constant across the values of ψL

and ψQ, demonstrating the robustness of this design.

We now look at the ability of a range of designs to estimate the main effects plus two–factor

interactions of the attributes and the position main effects. The first two designs we consider are

those in Tables 5.14 and 5.15. The third design is that in Table 5.19, which is optimal for the

estimation of the main effects plus the two–factor interaction when the MNL model is used and

τ1 = τ2 = τ12 = 0, by Theorem 1.3.5. The final design is shown in Table 5.20, and is more efficient

than the design in Table 5.19 for estimating the main effects plus the two–factor interaction of

the attributes and the position main effects when τ1 = 1, τ2 = −1, τ12 = −0.25, ψL = −0.3, and

ψQ = 0.1.

First, we consider the case where the interaction is assumed to be negligible. We let the

coefficients of the attribute main effects be τ1 = 1, and τ2 = −1 as before, with the coefficient

of the linear component of the main effect fixed to be −0.3 and the coefficient of the quadratic

component fixed to be 0.1. Then Figures 5.8(a), (b), (c), and (d) give simulated distributions

when the designs in Table 5.14, Table 5.15, Table 5.19, and Table 5.20 are used. Summary

statistics for all four of the simulations are provided in Table 5.21.

Both the design in Table 5.19 and the design in Table 5.20 give unbiased and symmetric

parameter estimates with relatively small variances. Slightly more bias and skewness can be

seen in the estimates from the designs in Tables 5.14 and 5.15, as well as larger variances. The

larger variances are not surprising, since the designs in Tables 5.19 and 5.20 contain about three

times as many choice sets as the designs in Tables 5.14 and 5.15.

Now suppose that we have a non–zero interaction between the attributes. We let the co-

efficients of the attribute main effects and the contrasts of the position effects be the same as

the zero–interaction case, and fix τ12 = −0.25. Figures 5.9(a), (b), (c), and (d) give simulated

distributions when the designs in Table 5.14, Table 5.15, Table 5.19, and Table 5.20 are used.

Summary statistics for all four of the simulations are provided in Table 5.22.

Again, both the design in Table 5.19 and the design in Table 5.20 give unbiased and symmetric

parameter estimates with relatively small variances. Once again, we see slightly more bias and

skewness in the estimates from the designs in Tables 5.14 and 5.15, as well as larger variances.
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(a) (b)

Figure 5.6: Simulations: τ1 = 1, τ2 = −1, (a) ψL = −0.2 and (b) ψL = −0.4, and ψQ = 0.

(a) (b)

Figure 5.7: Simulations: τ1 = 1, τ2 = −1, (a) ψL = −0.2 and (b) ψL = −0.4, and ψQ = 0.2.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

τ1 = 1, τ2 = −1,ψL = −0.2, and ψQ = 0

τ1 1.00573(0.00259) 0.00179 0.00671 1.15483(0.07734)

τ2 −1.00355(0.00190) 0.00172 0.00359 −0.27256(0.07734)

ψL −0.20135(0.00264) 0.00766 0.00696 −0.67568(0.07734)

ψQ 0.00031(0.00138) 0.00206 0.00190 −0.09086(0.07734)

τ1 = 1, τ2 = −1,ψL = −0.4, and ψQ = 0

τ1 1.01584(0.00287) 0.00194 0.00825 0.45435(0.07734)

τ2 −1.00950(0.00199) 0.00170 0.00394 −0.21212(0.07734)

ψL −0.41253(0.00298) 0.00768 0.00887 −0.34218(0.07734)

ψQ −0.00264(0.00149) 0.00204 0.00222 0.00867(0.07734)

τ1 = 1, τ2 = −1,ψL = −0.2, and ψQ = 0.2

τ1 1.01168(0.00243) 0.00176 0.00592 0.38612(0.07734)

τ2 −1.00968(0.00224) 0.00176 0.00504 −0.34004(0.07734)

ψL −0.21025(0.00250) 0.00739 0.00623 −0.44861(0.07734)

ψQ 0.20143(0.00167) 0.00214 0.00280 0.15214(0.07734)

τ1 = 1, τ2 = −1,ψL = −0.4, and ψQ = 0.2

τ1 1.01265(0.00273) 0.00189 0.00744 0.63841(0.07734)

τ2 −1.01266(0.00237) 0.00174 0.00564 −0.63725(0.07734)

ψL −0.40498(0.00277) 0.00741 0.00768 −0.55272(0.07734)

ψQ 0.20355(0.00170) 0.00212 0.00290 0.20674(0.07734)

Table 5.18: Summary statistics for τ1 = 1, τ2 = −1 and various values for ψL and ψQ.

Option 111 Option 222 Option 333 Option 111 Option 222 Option 333

0 0 0 1 1 0 1 0 0 0 0 1

0 1 0 0 1 1 1 1 0 1 0 0

1 0 1 1 0 0 0 0 0 1 1 1

1 1 1 0 0 1 0 1 0 0 1 0

0 0 1 0 1 1 1 0 1 1 0 1

0 1 1 1 1 0 1 1 1 0 0 0

Table 5.19: Optimal design for the estimation of attribute main effects and two–factor inter-

actions when τ1 = τ2 = τ12 = 0, ψL = −0.3, and ψQ = 0.1.
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Option 111 Option 222 Option 333 Option 111 Option 222 Option 333

0 0 0 1 1 1 1 0 0 0 0 1

0 1 0 0 1 1 1 1 0 1 0 0

1 0 1 1 0 0 0 1 0 0 1 0

1 1 1 0 0 1 1 0 1 1 0 1

0 0 1 0 1 1 1 1 1 0 0 0

0 1 1 1 1 0

Table 5.20: Optimal design for the estimation of attribute main effects and two–factor inter-

actions when τ1 = 1, τ2 = −1, τ12 = −0.25, ψL = −0.3, and ψQ = 0.1.

Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 5.14

τ1 1.01505(0.00301) 0.00251 0.00907 0.41817(0.07734)

τ2 −1.01785(0.00306) 0.00226 0.00934 −0.45840(0.07734)

τ12 −0.00464(0.00224) 0.00192 0.00503 −0.21515(0.07734)

ψL −0.31117(0.00281) 0.00970 0.00789 −0.57501(0.07734)

ψQ 0.10462(0.00192) 0.00292 0.00369 0.37087(0.07734)

Design in Table 5.15

τ1 1.01857(0.00294) 0.00184 0.00865 0.55270(0.07734)

τ2 −1.01279(0.00247) 0.00185 0.00609 −0.26282(0.07734)

τ12 −0.00673(0.00220) 0.00180 0.00486 −0.18801(0.07734)

ψL −0.30781(0.00275) 0.00752 0.00756 −0.47014(0.07734)

ψQ 0.09889(0.00157) 0.00233 0.00245 −0.01713(0.07734)

Design in Table 5.19

τ1 1.00307(0.00146) 0.00073 0.00215 0.13036(0.07734)

τ2 −1.00299(0.00140) 0.00069 0.00195 −0.03680(0.07734)

τ12 −0.00155(0.00142) 0.00068 0.00202 −0.07224(0.07734)

ψL −0.30201(0.00130) 0.00288 0.00170 −0.04205(0.07734)

ψQ 0.10111(0.00077) 0.00090 0.00059 0.07402(0.07734)

Design in Table 5.20

τ1 1.00217(0.00157) 0.00077 0.00246 0.12641(0.07734)

τ2 −1.00306(0.00142) 0.00076 0.00203 −0.13142(0.07734)

τ12 −0.00169(0.00140) 0.00077 0.00196 −0.11987(0.07734)

ψL −0.29905(0.00139) 0.00308 0.00194 −0.00880(0.07734)

ψQ 0.10002(0.00077) 0.00101 0.00059 −0.03074(0.07734)

Table 5.21: Summary statistics for τ1 = 1, τ2 = −1, τ12 = 0, ψL = −0.3 and ψQ = 0.1.
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(a) (b)

(c) (d)

Figure 5.8: Simulations: Estimating attribute main effects and contrasts of the position effects,

designs in (a) Table 5.14, (b) Table 5.15, (c) Table 5.19, and (d) Table 5.20.
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(a) (b)

(c) (d)

Figure 5.9: Simulations: Estimating attribute main effects, two–factor interactions and con-

trasts of the position effects, designs in (a) Table 5.14, (b) Table 5.15, (c) Table

5.19, and (d) Table 5.20.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 5.14

τ1 1.01295(0.00298) 0.00250 0.00887 0.33390(0.07734)

τ2 −1.01650(0.00301) 0.00225 0.00906 −0.44446(0.07734)

τ12 −0.25309(0.00252) 0.00193 0.00633 −0.31484(0.07734)

ψL −0.30672(0.00244) 0.00999 0.00597 −0.32199(0.07734)

ψQ 0.10299(0.00171) 0.00286 0.00291 0.52240(0.07734)

Design in Table 5.15

τ1 1.02163(0.00288) 0.00184 0.00829 0.34026(0.07734)

τ2 −1.01232(0.00250) 0.00186 0.00624 −0.45037(0.07734)

τ12 −0.26029(0.00247) 0.00179 0.00613 −0.58993(0.07734)

ψL −0.30944(0.00239) 0.00762 0.00574 −0.28540(0.07734)

ψQ 0.09738(0.00135) 0.00229 0.00182 0.02016(0.07734)

Design in Table 5.20

τ1 1.00222(0.00162) 0.00073 0.00263 0.36760(0.07734)

τ2 −1.00286(0.00161) 0.00069 0.00259 −0.29557(0.07734)

τ12 −0.24988(0.00155) 0.00068 0.00240 −0.27733(0.07734)

ψL −0.30057(0.00122) 0.00287 0.00150 −0.14386(0.07734)

ψQ 0.09990(0.00070) 0.00090 0.00049 0.02138(0.07734)

Design in Table 5.19

τ1 1.00448(0.00168) 0.00078 0.00283 0.27812(0.07734)

τ2 −1.00390(0.00167) 0.00077 0.00280 −0.22667(0.07734)

τ12 −1.00390(0.00167) 0.00077 0.00280 −0.22667(0.07734)

ψL −0.30149(0.00132) 0.00305 0.00174 −0.08309(0.07734)

ψQ 0.10114(0.00069) 0.00101 0.00048 0.02933(0.07734)

Table 5.22: Summary statistics for τ1 = 1, τ2 = −1, τ12 = −0.25, ψL = −0.3 and ψQ = 0.1.
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5.A Proof that jTLz = 0 for the generalised Davidson–Beaver

Position Effects Model

We begin by recalling that

zi =
∑
i∈C

wi|C −
snC ψ̂aπ̂i∑m
b=1 ψ̂bπ̂ib

,

Now, the vector zzz contains the values for zi for each possible item Ti. Then

jjjTLzzz =
t∑
i=1

zi

=
∑
i

∑
i∈C

(
wi|C −

snC ψ̂aπ̂i∑m
b=1 ψ̂bπ̂ib

)

=
∑
i

∑
i∈C

(wi|C)−
∑
C

snC
∑m
b=1 ψ̂bπ̂ib∑m

b=1 ψ̂bπ̂ib

=
∑
C

snC −
∑
C

snC

= 0,

as required.



Chapter 6

Optimal Designs when using

Fractional Factorial Starting

Designs

In Section 1.3 we gave results about the construction of optimal choice experiments which were

obtained from a starting design to which we added a suitable set of generators. In all of the

results so far, the starting design has been a full factorial design. In this chapter, we will give

some results about the construction of choice experiments where the starting design is a fractional

factorial design. We will restrict our discussion to symmetric designs with a prime power number

of levels.

We begin this chapter by looking at the construction of contrast matrices that contain the

contrast coefficients of only the items in that fraction, when main effects are of interest. We then

consider the construction of contrast matrices when a generator is added to the starting design,

where the addition is performed component–wise in GF [`]. We work in GF [`] to take advantage

of the field properties, in particular the fact that xy = 0 implies that at least one of x and y is 0

(so 2× 3 = 0 mod 6 but neither 2 nor 3 is 0). Finally, we prove a theorem that gives rules for

the optimal design for the estimation of main effects by using the properties of these contrast

matrices and of the associated choice sets.

6.1 Constructing a Contrast Matrix for Regular Designs

Consider an `k−p regular fractional factorial starting design, where ` is a prime or a prime

power. We can reorder the rows and columns of the design so the first k − p columns form a

complete `k−p factorial with the rows in lexicographic order. Then, the rows of the contrast

matrix corresponding to the first k − p attributes are given by

BF,(1,2,...,k−p) =


B` ⊗ 1√

`
jjjT` ⊗ 1√

`
jjjT` ⊗ . . .⊗ 1√

`
jjjT` ⊗ 1√

`
jjjT`

1√
`
jjjT` ⊗B` ⊗ 1√

`
jjjT` ⊗ . . .⊗ 1√

`
jjjT` ⊗ 1√

`
jjjT`

...
1√
`
jjjT` ⊗ 1√

`
jjjT` ⊗ 1√

`
jjjT` ⊗ . . .⊗ 1√

`
jjjT` ⊗B`

 ,
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where B` is an (`−1)×` matrix of orthogonal polynomial contrast coefficients with B`B
T
` = I`−1,

and jjj` is an `× 1 column vector of 1s, as defined in Section 1.2.

We use a slightly altered version of the Rao–Hamming construction to obtain the remaining

attributes. Instead of the usual constraint, that the first non–zero coefficient to be equal to 1,

we constrain the last non–zero coefficient to be equal to 1. This alteration will simplify the

description of the contrast matrices later on. In this chapter we will restrict our scope to designs

constructed in this way.

If we recall Construction 1.B.1, we note that the construction begins with an `k−p full factorial

design in the columns C1 to Ck−p of the starting design and we obtain the remaining p columns of

the starting design from linear combinations of the first k− p columns, with addition conducted

component–wise in GF [`]. Thus we let bbb1 be a row vector that contains the levels for the first

attribute, bbb2 be a row vector that contains the levels for the second attribute, and so forth up

to bbbk be a row vector that contains the levels for the kth attribute, and we define bbbk−p+1, . . . , bbbk

as linear combinations of bbb1, . . . , bbbk−p. Note that by our assumption, the last non–zero bbbi will

have a coefficient of 1. This ensures that we produce a set of attributes that form a fractional

factorial design. We now consider two examples of this construction.

EXAMPLE 6.1.1.

In this example, we construct a 34−2 regular fractional factorial starting design in 9 runs. We

begin with two attributes that form a 32 complete factorial design. We define two further

attributes as linear combinations of the first two attributes. We define these linear combinations

by considering all linear combinations of bbb1 and bbb2 where the coefficient of bbb2 is equal to 1. The

additions carried out in this construction use the addition rules of GF [3]. This gives

bbb1 = (0, 0, 0, 1, 1, 1, 2, 2, 2),

bbb2 = (0, 1, 2, 0, 1, 2, 0, 1, 2),

bbb3 = bbb1 + bbb2

= (0, 0, 0, 1, 1, 1, 2, 2, 2) + (0, 1, 2, 0, 1, 2, 0, 1, 2)

= (0, 1, 2, 1, 2, 0, 2, 0, 1),

and

bbb4 = 2× bbb1 + bbb2

= (0, 0, 0, 2, 2, 2, 1, 1, 1) + (0, 1, 2, 0, 1, 2, 0, 1, 2)

= (0, 1, 2, 2, 0, 1, 1, 2, 0).

We can represent this resolution 3 fractional factorial design as a matrix F , shown in Table 6.1.

We will use each row of F to correspond to an item that will be presented to the respondent in

the first position of a choice set.

EXAMPLE 6.1.2.

In this example, we construct a 27−4 starting design in 8 runs. We construct this design start-

ing with the 23 complete factorial design, and adjoin four attributes which we define as linear
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F

0 0 0 0

0 1 1 1

0 2 2 2

1 0 1 2

1 1 2 0

1 2 0 1

2 0 2 1

2 1 0 2

2 2 1 0

Table 6.1: The 34−2 regular fractional factorial design constructed in Example 6.1.1

combinations of the first three attributes.

bbb4 = 0× bbb1 + 1× bbb2 + 1× bbb3

= (0, 0, 1, 1, 0, 0, 1, 1) + (0, 1, 0, 1, 0, 1, 0, 1)

= (0, 1, 1, 0, 0, 1, 1, 0)

bbb5 = 1× bbb1 + 0× bbb2 + 1× bbb3

= (0, 0, 0, 0, 1, 1, 1, 1) + (0, 1, 0, 1, 0, 1, 0, 1)

= (0, 1, 0, 1, 1, 0, 1, 0)

bbb6 = 1× bbb1 + 1× bbb2 + 1× bbb3

= (0, 0, 0, 0, 1, 1, 1, 1) + (0, 0, 1, 1, 0, 0, 1, 1) + (0, 1, 0, 1, 0, 1, 0, 1)

= (0, 1, 1, 0, 1, 0, 0, 1)

bbb7 = 1× bbb1 + 1× bbb2 + 0× bbb3

= (0, 0, 0, 0, 1, 1, 1, 1) + (0, 0, 1, 1, 0, 0, 1, 1)

= (0, 0, 1, 1, 1, 1, 0, 0)

The first three of these additional attributes have the constraint on the coefficient of bbb3, and the

final attribute has 0 as the coefficient of bbb3 and thus the constraint is placed on the coefficient

of bbb2. All of the additions will be carried out component–wise using the addition rules of GF [2].

This gives the design in Table 6.2.

We can generalise the construction method presented in Examples 6.1.1 and 6.1.2. The

defining equations for a fractional factorial design using the Rao–Hamming construction, as
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F

0 0 0 0 0 0 0

0 0 1 1 1 1 0

0 1 0 1 0 1 1

0 1 1 0 1 0 1

1 0 0 0 1 1 1

1 0 1 1 0 0 1

1 1 0 1 1 0 0

1 1 1 0 0 1 0

Table 6.2: The 27−4 starting design constructed in Example 6.1.2

introduced in Section 1.B.3, will be

bbbk−p+1 = bbbk−p−1 + bbbk−p
...

bbbk−p+`−1 = α(`−1) × bbbk−p−1 + bbbk−p

bbbk−p+` = bbbk−p−2 + bbbk−p

bbbk−p+`+1 = bbbk−p−2 + bbbk−p−1 + bbbk−p
...

bbbk−p+(`−1)k−1 = α(`−1) × bbb1 + . . .+ α(`−1) × bbbk−p−1 + bbbk−p

bbbk−p+(`−1)k−1+1 = bbbk−p−2 + bbbk−p−1

...

bbbk−p+(`−1)k−1+(`−1)k−2 = α(`−1) × bbb1 + . . .+ α(`−1) × bbbk−p−2 + bbbk−p−1

...

bbbk = α(`−1) × bbb1 + bbb2,

with addition and multiplication performed component–wise using the rules of GF [`], whose root

is denoted by α. An arbitrary entry in the vector bbbq, bq,i, which corresponds to the level of the

qth attribute in the ith item is given by

bq,i =

k−p∑
j=1

aq,j × bj,i,

subject to the constraint that the last non–zero aq,j be equal to 1. As was the case in the

examples, let F be the set of items generated from this construction.

We can describe bbbk−p+1, . . . , bbbk in terms of permutation matrices. Suppose that for the qth

attribute, attribute h, 2 ≤ h ≤ k − p, has the last non–zero coefficient in the defining equation

for bbbq. Then we begin the construction of bbbq with bbbh, which has `h−1 repetitions of

(0, 1, 2, . . . , `− 1)⊗ jjjT` ⊗ . . .⊗ jjjT` , (6.1)
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where there are (k − p− h− 1) jjjT` s. We then add

h−1∑
j=1

aq,jbj,i

component–wise in GF [`]. Within each repetition of the expression in Equation 6.1, the value

of this sum will be the same, since there are more jjjT` s following the (0, 1, . . . ` − 1) in the

expressions for bbb1, bbb2, . . . , bbbh−1 than in the expression for bbbh. Therefore we can post–multiply

(0, 1, . . . , ` − 1) in each repetition of Equation 6.1 by a permutation matrix that reflects the

addition of
∑h−1
j=1 aq,jbj,i.

Since these additions are being carried out in GF [`], we define Qi to be an `× ` permutation

matrix where

(Qi)xy =

{
1, if x+ i = y in GF [`],

0, otherwise.

We note thatQi is a permutation matrix that reflects addition inGF [`], whereas Pi, as introduced

in Section 1.2, is a permutation matrix that reflects addition modulo `. These matrices are the

same only if ` is prime.

In the next two examples, we illustrate the construction of a fractional factorial design using

the permutation matrices Qi.

EXAMPLE 6.1.3.

Consider the 34−2 choice experiment introduced in Example 6.1.1. In this example we constructed

a resolution 3 fractional factorial design using

bbb1 = (0, 0, 0, 1, 1, 1, 2, 2, 2),

bbb2 = (0, 1, 2, 0, 1, 2, 0, 1, 2),

bbb3 = (0, 1, 2, 1, 2, 0, 2, 0, 1), and

bbb4 = (0, 1, 2, 2, 0, 1, 1, 2, 0).

Notice that the third and fourth attributes do not contain three repetitions of (0, 1, 2), but

instead three permutations of (0, 1, 2). We can use 3 × 3 permutation matrices to permute the

columns of (0, 1, 2) to form bbb3 and bbb4, giving

bbb3 =
(

(0, 1, 2) ·Q1×b1,1 , (0, 1, 2) ·Q1×b1,2 , (0, 1, 2) ·Q1×b1,3

)
=
(

(0, 1, 2) ·Q1×0, (0, 1, 2) ·Q1×1, (0, 1, 2) ·Q1×2

)
=
(

(0, 1, 2) ·Q0, (0, 1, 2) ·Q1, (0, 1, 2) ·Q2

)
= ((0, 1, 2), (1, 2, 0), (2, 0, 1))

bbb4 =
(

(0, 1, 2) ·Q2×b1,1 , (0, 1, 2) ·Q2×b1,2 , (0, 1, 2) ·Q2×b1,3

)
=
(

(0, 1, 2) ·Q2×0, (0, 1, 2) ·Q2×1, (0, 1, 2) ·Q2×2

)
=
(

(0, 1, 2) ·Q0, (0, 1, 2) ·Q2, (0, 1, 2) ·Q1

)
= ((0, 1, 2), (2, 0, 1), (1, 2, 0))

EXAMPLE 6.1.4.

In this example, we use permutation matrices to construct the last four attributes of the 27−4

fractional factorial design in Example 6.1.2 from the first three attributes.
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For the fourth, fifth and sixth attributes, we can see that the corresponding columns of Table

6.2 contain four copies of (0, 1), each permuted based on the values of the first two attributes, and

their contribution in the defining equations for these attributes. We can define 2×2 permutation

matrices to permute each (0, 1) to obtain

bbb4 =
(

(0, 1) ·Q0×b1,1+1×b2,1 , (0, 1) ·Q0×b1,2+1×b2,2 , (0, 1) ·Q0×b1,3+1×b2,3 , (0, 1) ·Q0×b1,4+1×b2,4

)
=
(

(0, 1) ·Q0×0+1×0, (0, 1) ·Q0×0+1×1, (0, 1) ·Q0×1+1×0, (0, 1) ·Q0×1+1×1

)
=
(

(0, 1) ·Q0, (0, 1) ·Q1, (0, 1) ·Q0, (0, 1) ·Q1

)
= ((0, 1), (1, 0), (0, 1), (1, 0)),

bbb5 =
(

(0, 1) ·Q1×b1,1+0×b2,1 , (0, 1) ·Q1×b1,2+0×b2,2 , (0, 1) ·Q1×b1,3+0×b2,3 , (0, 1) ·Q1×b1,4+0×b2,4

)
=
(

(0, 1) ·Q1×0+0×0, (0, 1) ·Q1×0+0×1, (0, 1) ·Q1×1+0×0, (0, 1) ·Q1×1+0×1

)
=
(

(0, 1) ·Q0, (0, 1) ·Q0, (0, 1) ·Q1, (0, 1) ·Q1

)
= ((0, 1), (0, 1), (1, 0), (1, 0)),

and

bbb6 =
(

(0, 1) ·Q1×b1,1+1×b2,1 , (0, 1) ·Q1×b1,2+1×b2,2 , (0, 1) ·Q1×b1,3+1×b2,3 , (0, 1) ·Q1×b1,4+1×b2,4

)
=
(

(0, 1) ·Q1×0+1×0, (0, 1) ·Q1×0+1×1, (0, 1) ·Q1×1+1×0, (0, 1) ·Q1×1+1×1

)
=
(

(0, 1)×Q0, (0, 1)×Q1, (0, 1)×Q1, (0, 1)×Q0

)
= ((0, 1), (1, 0), (1, 0), (0, 1)),

where the first entry in each permutation matrix accounts for the effect of the addition of a

multiple of bbb1 to (0, 1) and the second entry in each permutation matrix accounts for the addition

of a multiple of bbb2 to (0, 1).

For the final attribute, we notice that the coefficient of bbb3 in the defining equation is 0, and

the attribute with the last non–zero coefficient is the second attribute, that is h = 2. We can

then break the entries for this attribute into

bbb7 =
(

((0, 1)×Q1×b1,1)⊗ jjjT2 , ((0, 1)×Q1×b1,2)⊗ jjjT2
)

=
(

((0, 1)×Q1×0)⊗ jjjT2 , ((0, 1)×Q1×1)⊗ jjjT2
)

=
(

((0, 1)×Q0)⊗ jjjT2 , ((0, 1)×Q1)⊗ jjjT2
)

=
(

(0, 1)⊗ jjjT2 , (1, 0)⊗ jjjT2
)

= ((0, 0, 1, 1), (1, 1, 0, 0)),

where the permutation matrices account for the addition of a multiple of bbb1.

This procedure also works if ` is a prime power as the next example illustrates.

EXAMPLE 6.1.5.

We now use permutation matrices to construct a 45−3 starting design. Since 4 is a prime power,

GF [4] exists with elements 0, 1, α, and α2 = α+ 1. We can represent addition in GF [4] in terms
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of the permutation matrices

Q0 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 Q1 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0



Qα =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 Qα2 =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


Notice that these permutation matrices are different from permutation matrices that reflect

addition modulo 4, which would be cyclic. These permutation matrices are in fact the Kronecker

product of two 2× 2 cyclic permutation matrices.

Using the modified Rao–Hamming construction, we have the following defining equations,

which we will use to construct the starting design.

bbb3 = 1× bbb1 + 1× bbb2,

bbb4 = α× bbb1 + 1× bbb2,

and

bbb5 = α2 × bbb1 + 1× bbb2,

where

bbb1 = (0, 1, α, α2)⊗ jjjT4
= (0, 0, 0, 0, 1, 1, 1, 1, α, α, α, α, α2, α2, α2, α2),

and

bbb2 = jjjT4 ⊗ (0, 1, α, α2)

= (0, 1, α, α2, 0, 1, α, α2, 0, 1, α, α2, 0, 1, α, α2).

Then, in the same way as Examples 6.1.3 and 6.1.4, we use the defining equations to permute

the entries of bbb2 to obtain the remaining attributes. So we have

bbb3 =
(

(0, 1, α, α2) ·Q1×b1,1 , (0, 1, α, α
2) ·Q1×b1,2 , (0, 1, α, α

2) ·Q1×b1,3 , (0, 1, α, α
2) ·Q1×b1,4

)
=
(

(0, 1, α, α2) ·Q1×0, (0, 1, α, α
2) ·Q1×1, (0, 1, α, α

2) ·Q1×α, (0, 1, α, α
2) ·Q1×α2

)
=
(

(0, 1, α, α2) ·Q0, (0, 1, α, α
2) ·Q1, (0, 1, α, α

2) ·Qα, (0, 1, α, α2) ·Qα2

)
= ((0, 1, α, α2), (1, 0, α2, α), (α, α2, 0, 1), (α2, α, 1, 0)),

bbb4 =
(

(0, 1, α, α2) ·Qα×b1,1 , (0, 1, α, α2) ·Qα×b1,2 , (0, 1, α, α2) ·Qα×b1,3 , (0, 1, α, α2) ·Qα×b1,4
)

=
(

(0, 1, α, α2) ·Qα×0, (0, 1, α, α
2) ·Qα×1, (0, 1, α, α

2) ·Qα×α, (0, 1, α, α2) ·Qα×α2

)
=
(

(0, 1, α, α2) ·Q0, (0, 1, α, α
2) ·Qα, (0, 1, α, α2) ·Qα2 , (0, 1, α, α2) ·Q1

)
= ((0, 1, α, α2), (α, α2, 0, 1), (α2, α, 1, 0), (1, 0, α2, α)),
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and

bbb5 =
(

(0, 1, α, α2) ·Qα2×b1,1 , (0, 1, α, α
2) ·Qα2×b1,2 , (0, 1, α, α

2) ·Qα2×b1,3 , (0, 1, α, α
2) ·Qα2×b1,4

)
=
(

(0, 1, α, α2) ·Qα2×0, (0, 1, α, α
2) ·Qα2×1, (0, 1, α, α

2) ·Qα2×α, (0, 1, α, α
2) ·Qα2×α2

)
=
(

(0, 1, α, α2) ·Q0, (0, 1, α, α
2) ·Qα2 , (0, 1, α, α2) ·Q1, (0, 1, α, α

2) ·Qα
)

= ((0, 1, α, α2), (α2, α, 1, 0), (1, 0, α2, α), (α, α2, 0, 1)),

where the permutation matrices account for the addition of bbb1. This gives the fractional factorial

design in Table 6.3.

F

0 0 0 0 0 α 0 α α2 1

0 1 1 1 1 α 1 α2 α 0

0 α α α α α α 0 1 α2

0 α2 α2 α2 α2 α α2 1 0 α

1 0 1 α α2 α2 0 α2 1 α

1 1 0 α2 α α2 1 α 0 α2

1 α α2 0 1 α2 α 1 α2 0

1 α2 α 1 0 α2 α2 0 α 1

Table 6.3: The 45−3 fractional factorial design constructed in Example 6.1.5

Recall that in Section 1.2 we used these vectors of attribute levels as the column labels for

contrast matrices. In particular, we repeated the operations that we performed on the vectors

of attribute levels on BF to obtain BF+gggi . The next two examples show how this idea can be

used to define the rows of a contrast matrix for new attributes constructed using the modified

Rao–Hamming construction.

EXAMPLE 6.1.6.

In this example, we use the permutation matrices introduced in Example 6.1.3 to rearrange the

columns in the contrast matrix corresponding to the second attribute to obtain the rows of the

contrast matrix corresponding to the third and fourth attributes of the fractional factorial design.

Recall from Example 1.B.5 that the normalised contrast matrix corresponding to the main

effects of the first two attributes is given by

BF,(1,2) =

B3 ⊗ 1√
3
jjjT3

1√
3
jjjT3 ⊗B3



=
1√
3

00 01 02 10 11 12 20 21 22

−1√
2

−1√
2

−1√
2

0 0 0 1√
2

1√
2

1√
2

1√
6

1√
6

1√
6

−2√
6

−2√
6

−2√
6

1√
6

1√
6

1√
6

−1√
2

0 1√
2

−1√
2

0 1√
2

−1√
2

0 1√
2

1√
6

−2√
6

1√
6

1√
6

−2√
6

1√
6

1√
6

−2√
6

1√
6


.
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The columns of the contrast matrix can be labelled by the items in the fraction. In particular,

if we consider the rows of the contrast matrix corresponding to the main effect of the qth attribute,

then we can labels the columns by the level that that attribute takes in the corresponding item.

So we can permute the rows of the contrast matrix corresponding to the second attribute to

obtain the rows of the contrast matrix corresponding to the third and fourth attributes in the

same way as we permuted the levels vectors in Example 6.1.3. The rows of the contrast matrix

corresponding to the last attribute in bbbq with a non–zero coefficient, which in this case the second

attribute, can be expressed as

BF (2) =
1√
3

[
B3 B3 B3

]
,

with each B3 corresponding to the contrast coefficients for the levels of one replication of (0, 1, 2).

Then, in the same way that we used permutation matrices to change the order of (0, 1, 2), we can

post–multiply each B3 by a permutation matrix to permute the columns of B3 to be consistent

with the entries in bbb3 and bbb4, giving the contrast matrix BF,(3,4).

BF,(3,4) =
1√
3

 B3Q1×b1,1 B3Q1×b1,2 B3Q1×b1,3

B3Q2×b1,1 B3Q2×b1,2 B3Q2×b1,3


=

1√
3

 B3Q0 B3Q1 B3Q2

B3Q0 B3Q2 B3Q1



=
1√
3

00 11 22 12 20 01 21 02 10

−1√
2

0 1√
2

0 1√
2

−1√
2

1√
2

−1√
2

0

1√
6

−2√
6

1√
6

−2√
6

1√
6

1√
6

1√
6

1√
6

−2√
6

−1√
2

0 1√
2

1√
2

−1√
2

0 0 1√
2

−1√
2

1√
6

−2√
6

1√
6

1√
6

1√
6

−2√
6

−2√
6

1√
6

1√
6


.

The full contrast matrix for BF will be a matrix containing the rows of the contrast matrix

corresponding to each of the attributes, giving

BF =
1√
3

0000 0111 0222 1012 1120 1201 2021 2102 2210

−1√
2

−1√
2

−1√
2

0 0 0 1√
2

1√
2

1√
2

1√
6

1√
6

1√
6

−2√
6

−2√
6

−2√
6

1√
6

1√
6

1√
6

−1√
2

0 1√
2

−1√
2

0 1√
2

−1√
2

0 1√
2

1√
6

−2√
6

1√
6

1√
6

−2√
6

1√
6

1√
6

−2√
6

1√
6

−1√
2

0 1√
2

0 1√
2

−1√
2

1√
2

−1√
2

0

1√
6

−2√
6

1√
6

−2√
6

1√
6

1√
6

1√
6

1√
6

−2√
6

−1√
2

0 1√
2

1√
2

−1√
2

0 0 1√
2

−1√
2

1√
6

−2√
6

1√
6

1√
6

1√
6

−2√
6

−2√
6

1√
6

1√
6



.

In the next example we use the same procedure to construct BF for the 27−4 design introduced

in Example 6.1.2.
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EXAMPLE 6.1.7.

Consider the 27−4 fractional factorial design introduced in Example 6.1.2. The contrast matrix

for the main effects of the first three attributes will form the contrast matrix BF,1 is

BF,(1,2,3) =


B2 ⊗ 1√

2
jjjT2 ⊗ 1√

2
jjjT2

1√
2
jjjT2 ⊗B2 ⊗ 1√

2
jjjT2

1√
2
jjjT2 ⊗ 1√

2
jjjT2 ⊗B2



=

000 001 010 011 100 101 110 111
−1
2
√

2
−1
2
√

2
−1
2
√

2
−1
2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2

−1
2
√

2
−1
2
√

2
1

2
√

2
1

2
√

2
−1
2
√

2
−1
2
√

2
1

2
√

2
1

2
√

2

−1
2
√

2
1

2
√

2
−1
2
√

2
1

2
√

2
−1
2
√

2
1

2
√

2
−1
2
√

2
1

2
√

2

 .

We can use the relationships developed in Example 6.1.4 to adapt the row of the contrast

matrix corresponding to the third attribute to obtain the rows corresponding to the fourth, fifth

and sixth attributes. First we note that the row of the contrast matrix corresponding to the

third attribute can be expressed as

BF,(3) =
1

2

[
B2 B2 B2 B2

]
,

where each B2 corresponding to the contrast coefficients for one replication of (0, 1) in bbb3. Then

we can permute the columns of B2 in the same way as the (0, 1)s, giving the rows of the contrast

matrix corresponding to the fourth, fifth and sixth attributes BF ;

BF,(4,5,6) =
1

2


B2Q0×b1,1+1×b1,2 B2Q0×b2,1+1×b2,2 B2Q0×b1,3+1×b2,3 B2Q0×b1,4+1×b2,4

B2Q1×b1,1+0×b1,2 B2Q1×b2,1+0×b2,2 B2Q1×b1,3+0×b2,3 B2Q1×b1,4+0×b2,4

B2Q1×b1,1+1×b1,2 B2Q1×b2,1+1×b2,2 B2Q1×b1,3+1×b2,3 B2Q1×b1,4+1×b2,4



=
1

2


B2Q0×0+1×0 B2Q0×0+1×1 B2Q0×1+1×0 B2Q0×1+1×1

B2Q1×0+0×0 B2Q1×0+0×1 B2Q1×1+0×0 B2Q1×1+0×1

B2Q1×0+1×0 B2Q1×0+1×1 B2Q1×1+1×0 B2Q1×1+1×1



=
1

2


B2Q0 B2Q1 B2Q0 B2Q1

B2Q0 B2Q0 B2Q1 B2Q1

B2Q0 B2Q1 B2Q1 B2Q0



=

000 111 101 010 011 100 110 001
−1
2
√
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1
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√

2
1

2
√

2
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2
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−1
2
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1
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2
√

2
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2
√

2
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2
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2
1

2
√

2
−1
2
√

2
1

2
√

2
1

2
√

2
−1
2
√

2
1

2
√

2
−1
2
√

2

−1
2
√

2
1

2
√

2
1

2
√

2
1−
2
√

2
1

2
√

2
−1
2
√

2
−1
2
√

2
1

2
√

2

 .

We also notice that the row of the contrast matrix corresponding to the second attribute can

be expressed as

BF,(2) =
1

2

[
B2 ⊗ jjjT2 B2 ⊗ jjjT2

]
.

Then we can permute the columns of B2 in the same way as the ((0, 1)⊗ jjjT2 )s in Example 6.1.4,
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giving the rows of the contrast matrix corresponding to the final attribute BF,(7).

BF,(7) =
1√
2

[
(B2Q1×b1,1)⊗ 1√

2
jjjT2 (B2Q1×b1,2)⊗ 1√

2
jjjT2

]
=

1√
2

[
(B2Q1×0)⊗ 1√

2
jjjT2 (B2Q1×1)⊗ 1√

2
jjjT2

]
=

1

2

[
(−1√

2
, 1√

2
)⊗ (1, 1) ( 1√

2
, −1√

2
)⊗ (1, 1)

]
=

0 0 1 1 1 1 0 0[
−1
2
√

2
−1
2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
−1
2
√

2
−1
2
√

2

] .
Putting all of this together, we obtain the contrast matrix for this fractional factorial design.

The constructions in these two examples can be generalised for any `k−p regular fractional

factorial design where ` is a prime or a prime power. For each ` level attribute there will be

`− 1 associated contrasts to describe the components of the main effect. Then the contrast for

a particular attribute can be represented as a row of block matrices. We construct this row of

block matrices based on the defining equation for the attribute. The form of this row will depend

on the value of h, where the hth attribute is the last attribute in the defining equation with a

non–zero coefficient.

For the first (`−1)k−p−1 attributes, bbbk−p will have the last non–zero coefficient in the defining

equation. Thus the row of block matrices of the contrast matrix corresponding to one of these

(`− 1)k−p−1 attributes is given by

1

`(k−p−1)/2

[
B`Q(0×aq,1+...+0×aq,k−p−1), B`Q(0×aq,1+...+0×aq,k−p−2+1×aq,k−p−1), . . . ,

B`Q(0×aq,1+...+0×aq,k−p−2+α`−2×aq,k−p−1), . . . , B`Q(α`−2×aq,1+...+α`−2×aq,k−p−1)

]
.

For the next (`−1)k−p−2 attributes, the last non–zero coefficient in the defining equation will be

the coefficient of bbbk−p−1. Then the row of block matrices of the contrast matrix corresponding

to one of these (`− 1)k−p−2 attributes is given by

1

`(k−p−2)/2

[
(B`Q(0×aq,1+...+0×aq,k−p−2))⊗

1√
`
jjjT` ,

(B`Q(0×aq,1+...+0×aq,k−p−3+1×aq,k−p−2))⊗
1√
`
jjjT` , . . . ,

(B`Q(0×aq,1+...+0×aq,k−p−3+α`−2×aq,k−p−2))⊗
1√
`
jjjT` , . . . ,

(B`Q(α`−2×aq,1+...+α`−2×aq,k−p−2))⊗
1√
`
jjjT`

]
.

This construction can be continued until the final `−1 attributes, whose last non–zero coefficient

in their defining equation will be bbb2. Then the row of block matrices of the contrast matrix

corresponding to one of these `− 1 attributes is given by

1

`1/2

[
(B`Q(0×aq,1))⊗

1√
`
jjjT` ⊗ . . .⊗

1√
`
jjjT` , (B`Q(1×aq,1))⊗

1√
`
jjjT` ⊗ . . .⊗

1√
`
jjjT` ,

(B`Q(α×aq,1))⊗
1√
`
jjjT` ⊗ . . .⊗

1√
`
jjjT` , . . . , (B`Q(α`−2×aq,1))⊗

1√
`
jjjT` ⊗ . . .⊗

1√
`
jjjT`

]
.

Putting the complete and fractional components together, the contrast matrix for the first

fractional factorial design which gives rise to the options in each of the choice sets in the exper-
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iment can be expressed as

BF =


BF,(1)

BF,(2)

...

BF,(k)

 .
Now that we have constructed a contrast matrix for the items that appear in the first position

of each choice set, we use this to construct the contrast matrices for the items that appear in the

remaining positions of the choice set.

6.2 Adding Generators to a Starting Design

In this section, we consider how to transform the contrast matrix of a fractional factorial design

to incorporate the consequences of changing the items in the fraction caused by the addition of

a generator to each row of that design. The method that will be used to do this is the same as

the method we used in Section 1.2 when a full factorial starting design was used. That is, we

can define a permutation matrix Qgi,q that will, when BF is post–multiplied by the permutation

matrix, permute the columns of BF in such a way that it will reflect the change in items caused

by the addition of a generator gggi = [gi,q] in GF [`] to the starting design.

Suppose that m − 1 generators are added to the rows of F to obtain m fractional factorial

designs. We form the choice sets by presenting items described by the same row of each of the m

fractional factorial designs. There are N = `k−p such choice sets. Let G = (ggg1 = 000, ggg2, . . . , gggm),

and for each of these gggi, let gggi = (gi,1, gi,2, . . . , gi,k). Then the choice sets become the rows of

[F, F + ggg2, F + ggg3, . . . , F + gggm].

We now consider a small example of how we can modify the contrast matrix to incorporate the

addition of a generator. We will use the permutation matrices introduced in Section 6.1 to do

this.

EXAMPLE 6.2.1.

Suppose that we begin with the design developed in Example 6.1.1. In Example 6.1.6 we found

the contrast matrix for the items that appear in the first positions of each choice set. Now

suppose that we add the generator ggg2 = (1212) to obtain a second design, as shown by the

second set of columns of the design in Table 6.4.

To obtain the contrast matrix for the second design, F+ggg2, we post–multiply each occurrence

of B3 by a permutation matrix to reorder the columns of B3, as we did in Example 1.2.7. The

choice of the permutation matrix will depend on which attribute the row of blocks containing

B3 corresponds to.

B3 is post-multiplied by the chosen permutation matrix. This will permute the columns of

B3 in a way that reflects the changed order caused by the addition of the generator ggg2. Then

each occurrence of B3 in the row of blocks corresponding to attribute q will be post–multiplied
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by the permutation matrix Qg2,q . Thus we obtain

BF+ggg2 =



(B3Qg2,1)⊗ 1√
3
jjjT3

1√
3
jjjT3 ⊗ (B3Qg2,2)

1√
3
(B3Qg2,3Q0 B3Qg2,3Q1 B3Qg2,3Q2)

1√
3
(B3Qg2,4Q0 B3Qg2,4Q2 B3Qg2,4Q1)



=



(B3Q1)⊗ 1√
3
jjjT3

1√
3
jjjT3 ⊗ (B3Q2)

1√
3
(B3Q1Q0 B3Q1Q1 B3Q1Q2)

1√
3
(B3Q2Q0 B3Q2Q2 B3Q2Q1)



=



(B3Q1)⊗ 1√
3
jjjT3

1√
3
jjjT3 ⊗ (B3Q2)

1√
3
(B3Q1 B3Q2 B3Q0)

1√
3
(B3Q2 B3Q1 B3Q0)



=
1√
3

1212 1020 1101 2221 2002 2110 0200 0011 0122

0 0 0 1√
2

1√
2

1√
2

−1√
2

−1√
2

−1√
2

−2√
6

−2√
6

−2√
6

1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

1√
2

−1√
2

0 1√
2

−1√
2

0 1√
2

−1√
2

0

1√
6

1√
6

−2√
6

1√
6

1√
6

−2√
6

1√
6

1√
6

−2√
6

0 1√
2

−1√
2

1√
2

−1√
2

0 −1√
2

0 1√
2

−2√
6

1√
6

1√
6

1√
6

1√
6

−2√
6

1√
6

−2√
6

1√
6

1√
2

−1√
2

0 0 1√
2

−1√
2

−1√
2

0 1√
2

1√
6

1√
6

−2√
6

−2√
6

1√
6

1√
6

1√
6

−2√
6

1√
6



.
(6.2)

This method can be generalised to allow any regular fractional factorial design to be used as

the starting design. We begin by considering the attributes that were chosen in Section 6.1 to

form an `k−p complete factorial when the columns and rows of the starting design were reordered.

Let the contrast matrix for these attributes form BF,1. If a generator gggi is added to F , then the

contrast matrix BF,1 becomes

BF+gggi,1 =


B`Qgi,1 ⊗ 1√

`
jjjT` ⊗ 1√

`
jjjT` ⊗ . . .⊗ 1√

`
jjjT` ⊗ 1√

`
jjjT`

1√
`
jjjT` ⊗B`Qgi,2 ⊗ 1√

`
jjjT` ⊗ . . .⊗ 1√

`
jjjT` ⊗ 1√

`
jjjT`

...
1√
`
jjjT` ⊗ 1√

`
jjjT` ⊗ 1√

`
jjjT` ⊗ . . .⊗ 1√

`
jjjT` ⊗B`Qgi,k−p

 .

We can do the same thing for the remaining p attributes. We do this by post–multiplying

each occurrence of the contrast matrix B` by a permutation matrix Qgi,q , permuting the entries
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F F + g2

0 0 0 0 1 2 1 2

0 1 1 1 1 0 2 0

0 2 2 2 1 1 0 1

1 0 1 2 2 2 2 1

1 1 2 0 2 0 0 2

1 2 0 1 2 1 1 0

2 0 2 1 0 2 0 0

2 1 0 2 0 0 1 1

2 2 1 0 0 1 2 2

Table 6.4: Adding the generator (1212) to the design in Example 6.1.1

of the contrast matrix to reflect the effect of adding a generator to the starting design. Again the

form of the row of block matrices corresponding to the qth attribute, where k − p + 1 ≤ q ≤ k,

depends on the value of h, the attribute in the defining equation for attribute q with the last

non–zero coefficient.

For the rows of block matrices corresponding to the first (`− 1)k−p−1 of these attributes, the

jth block matrix in the row of block matrices corresponding to the qth attribute is given by

(BF+gggi)q,j =
1

`(k−p−1)/2
B` ×Qgi,q ×Q(b1,jaq,1+...+bk−p−1,j×aq,k−p−1).

For the rows of block matrices corresponding to the next (`− 1)k−p−2 attributes, the jth block

matrix in the row of block matrices corresponding to the contrasts of the qth attribute is given

by

(BF+gggi)q,j =
1

`(k−p−1)/2
(B` ×Qgi,q ×Q(b1,jaq,1+...+bk−p−2,jaq,k−p−2))⊗ jjjT` .

This can be continued until the rows of block matrices corresponding to the final (`−1) attributes,

the jth block matrix in the row of block matrices corresponding to the contrasts of the qth

attribute is given by

(BF+gggi)q,j =
1

`(k−p−1)/2
(B` ×Qgi,q ×Q(b1,jaq,1))⊗ jjjT` ⊗ . . .⊗ jjjT` .

In order to find an expression for the information matrix for the estimation of main effects,

we also need to derive the Λ(πππ0) matrix. The form of the Λ(πππ0) matrix depends on whether the

generator gggi forms a row of the starting design F or not. If gggi ∈ F , then F + gggi ≡ F , since the

addition of a generator to the principal fraction of a regular fractional factorial design is closed

under addition in GF [`]. On the other hand, if gggi /∈ F , then F + gggi 6= F , and the form of the

Λ(πππ0)1i matrix will be quite different to the case where gggi ∈ F . We consider these cases in turn.

6.3 Constructing the Information Matrix - Generator does

not Appear in the Starting Design

First, we consider the case where gggi /∈ F . In this case none of the items in F will appear in

F+gggi, since the principal fraction of a regular fractional factorial design is closed under addition.
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Therefore by rearranging the rows of the contrast matrix if necessary the matrix Λ(πππ0), for the

pairs of items in positions 1 and i of the choice set, is

m2NΛ(πππ0)1i =


I`k−p −I`k−p 000

−I`k−p I`k−p 000

000 000 000

 ,
and the contrast matrix B can be expressed as

1

`p/2

[
BF,1 BF+gggi,1 BĀ,1

BF,2 BF+gggi,2 BĀ,2

]
,

where BĀ contains the contrast matrix for those items that do not appear in either position of

the choice set. If m > 2 then the argument used in this section can be applied to any pair of

positions in the choice set, providing that gggj − gggi /∈ F .

We will now consider a small example using these expressions to derive the information matrix

for a design.

EXAMPLE 6.3.1.

In this example we have 4 3–level attributes and want to be able to estimate main effects using

choice sets of size 3. The contrast matrix for the items in Table 6.1, those that will appear in the

first position of each choice set, is given by Equation 6.2. If we add the generators ggg2 = (1111)

and ggg3 = (2222), neither of which appear in the starting design, we obtain the design in Table

6.5. Using the results in Section 6.2, the contrast matrices for BF+ggg2 and BF+ggg3 are given by

BF+ggg2 =



(B3 ×Q1)⊗ 1√
3
jjj3

1√
3
jjj3 ⊗ (B3 ×Q1)

1√
3

(
B3 ×Q1 ×Q0×a3,2 B3 ×Q1 ×Q1×a3,2 B3 ×Q1 ×Q2×a3,2

)
1√
3

(
B3 ×Q1 ×Q0×a4,2 B3 ×Q1 ×Q1×a4,2 B3 ×Q1 ×Q2×a4,2

)


,

and

BF+ggg3 =



(B3 ×Q2)⊗ 1√
3
jjj3

1√
3
jjj3 ⊗ (B3 ×Q2)

1√
3

(
B3 ×Q2 ×Q0×a3,2 B3 ×Q2 ×Q1×a3,2 B3 ×Q2 ×Q2×a3,2

)
1√
3

(
B3 ×Q2 ×Q0×a4,2 B3 ×Q2 ×Q1×a4,2 B3 ×Q2 ×Q2×a4,2

)


respectively. We can also calculate the Λ(πππ0) matrix for each set of pairs, and thus find the

information matrix for the estimation of main effects, C(πππ0)M , for each pair of options in the

same position. For the first two positions of the choice set,

Λ(πππ0)1,2 =
1

m2N


I9 −I9 000

−I9 I9 000

000 000 000



=
1

81


I9 −I9 000

−I9 I9 000

000 000 000

 .
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Since none of the items are repeated across the choice sets, we can arrange the items in F , F +ggg2

and F + ggg3 such that the Λ(πππ0) matrices for each pair of items can be rearranged to have the

same form as Λ(πππ0)1,2. Then by using the relationship C(πππ0)i,j = BΛ(πππ0)i,jB
T where B is

normalised to give BBT = I, the expression for C(πππ0)1,2 is

C(πππ0)1,2 =
1

32/2
[BF BF+ggg2 BĀ]× 1

81


I9 −I9 000

−I9 I9 000

000 000 000

× 1

32/2


BTF

BTF+ggg2

BT
Ā


=

1

36

[
(BF −BF+ggg2)×BTF + (−BF +BF+ggg2)×BTF+ggg2

]
=

1

36
× (3I8)

=
1

35
I8,

with p = 2. Similarly, C(πππ0)1,3 = 1
35 I8 and C(πππ0)2,3 = 1

35 I8. Then

C(πππ0) =
∑
i<j

C(πππ0)i,j

=
1

81
I8.

Option 1 Option 2 Option 3

0 0 0 0 1 1 1 1 2 2 2 2

1 0 1 1 2 1 2 2 0 2 0 0

2 0 2 2 0 1 0 0 1 2 1 1

0 1 1 2 1 2 2 0 2 1 0 1

1 1 2 0 2 2 0 1 0 1 1 2

2 1 0 1 0 2 1 2 1 1 2 0

0 2 2 1 1 0 0 2 2 0 1 0

1 2 0 2 2 0 1 0 0 0 2 1

2 2 1 0 0 0 2 1 1 0 0 2

Table 6.5: The choice sets used in Example 6.3.2

Instead of multiplying the contrast matrices numerically, we can take advantage of the struc-

ture that they have. This will result in an expression which is easier to generalise. We start by

returning to Example 6.3.1.

EXAMPLE 6.3.2.

In this example, we use the structure of the contrast matrices and Λ(πππ0) to derive C(πππ0) for the

design in Table 6.5.

First, notice that the inner product of any two rows of BF (or BF+gggi) that correspond to

different attributes will be equal to 0. Thus BFB
T
F and BF+gggiB

T
F+gggi

are block diagonal. Since

the addition of gggi can be thought of as a 1–1 mapping of the levels in an attribute of F to the

levels of the same attribute in F + gggi, this property also holds across the rows corresponding to

different attributes in BF and BF+gggi . Thus BFB
T
F+gggi

and BF+gggiB
T
F will also be block diagonal.
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We then use the expressions for the contrast matrices derived earlier to simplify each of these

products. Firstly, BFB
T
F becomes

BFB
T
F = BlkDiag

[(
B3 ⊗

1√
3
jjjT3
)(
BT3 ⊗

1√
3
jjj3

)
,
( 1√

3
jjjT3 ⊗B3

)( 1√
3
jjj3 ⊗BT3

)
,

1

3

(
B3Q0Q0B

T
3 +B3Q1Q−1B

T
3 +B3Q2Q−2B

T
3

)
,

1

3

(
B3Q0Q0B

T
3 +B3Q2Q−2B

T
3 +B3Q1Q−1B

T
3

)]
= BlkDiag

[
B3B

T
3 , B3B

T
3 , B3B

T
3 , B3B

T
3

]
.

We can find a similar expression for BFB
T
F+gggi

:

BFB
T
F+gggi = BlkDiag

[(
B3 ⊗

1√
3
jjjT3
)(
Q−g2,1B

T
3 ⊗

1√
3
jjj3

)
,
( 1√

3
jjjT3 ⊗B3

)( 1√
3
jjj3 ⊗Q−g2,2BT3

)
,

1

3

(
B3Q0Q0Q−g2,3B

T
3 +B3Q1Q−1Q−g2,3B

T
3 +B3Q2Q−2Q−g2,3B

T
3

)
,

1

3

(
B3Q0Q0Q−g2,4B

T
3 +B3Q2Q−2Q−g2,4B

T
3 +B3Q1Q−1Q−g2,4B

T
3

)]
= BlkDiag

[
B3Q−g2,1B

T
3 , B3Q−g2,2B

T
3 , B3Q−g2,3B

T
3 , B3Q−g2,4B

T
3

]
.

Similarly, the remaining two products are

BF+gggiB
T
F = BlkDiag

[
B3Qg2,1B

T
3 , B3Qg2,2B

T
3 , B3Qg2,3B

T
3 , B3Qg2,4B

T
3

]
,

and

BF+gggiB
T
F+gggi

= BlkDiag
[
B3Qg2,1Q−g2,1B

T
3 , B3Qg2,2Q−g2,2B

T
3 , B3Qg2,3Q−g2,3B

T
3 , B3Qg2,4Q−g2,4B

T
3

]
= BlkDiag

[
B3B

T
3 , B3B

T
3 , B3B

T
3 , B3B

T
3

]
.

Then the information matrix for the estimation of main effects only for the first two options

across all of the choice sets is

C(πππ0)1,2 =
1

32 × 34
BlkDiag

[
B3(2I3 −Qg2,1 −Q−g2,1)BT3 , B3(2I3 −Qg2,2 −Q−g2,2)BT3 ,

B3(2I3 −Qg2,3 −Q−g2,3)BT3 , B3(2I3 −Qg2,4 −Q−g2,4)BT3
]

=
1

32 × 34
BlkDiag

[
B3(2I3 −Q1 −Q2)BT3 , B3(2I3 −Q1 −Q2)BT3 ,

B3(2I3 −Q1 −Q2)BT3 , B3(2I3 −Q1 −Q2)BT3
]

=
1

36
BlkDiag

[
B3(3I3 − J3)BT3 , B3(3I3 − J3)BT3 , B3(3I3 − J3)BT3 , B3(3I3 − J3)BT3

]
=

1

36
BlkDiag

[
3B3B

T
3 , 3B3B

T
3 , 3B3B

T
3 , 3B3B

T
3

]
=

1

243
I8,

since
∑2
i=0Qi = J3.

Of course this approach gives the same value for C(πππ0)1,2 as the numerical calculation. Sim-

ilarly, the application of this result will give C(πππ0)1,3 = 1
243I8 and C(πππ0)2,3 = 1

243I8, once again

resulting in C(πππ0)M = 1
81I8.
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This strategy generalises. In general, the information matrix for the pair of items in the first

and ith positions is

m2NC(πππ0)1i

=
1

`p/2

BF,1 BF+gggi,1 BĀ,1

BF,2 BF+gggi,2 BĀ,2

× 1

m2`k−p


I`k−p −I`k−p 000

−I`k−p I`k−p 000

000 000 000

× 1

`p/2


BTF,1 BTF,2

BTF+gggi,1
BTF+gggi,2

BT
Ā,1

BT
Ā,2



=
1

m2`k



BF,1B
T
F,1 −BF+gggi,1B

T
F,1 −BF,1BTF+gggi,1

+BF+gggi,1B
T
F+gggi,1

,

BF,1B
T
F,2 −BF+gggi,1B

T
F,2 −BF,1BTF+gggi,2

+BF+gggi,1B
T
F+gggi,2

BF,2B
T
F,1 −BF+gggi,2B

T
F,1 −BF,2BTF+gggi,1

+BF+gggi,2, B
T
F+gggi,1

,

BF,2B
T
F,2 −BF+gggi,2B

T
F,2 −BF,2BTF+gggi,2

+BF+gggi,2B
T
F+gggi,2


,

where BF,1 and BF+gggi,1 contain the rows of the contrast matrices BF and BF+gggi respectively

corresponding to the first k−p attributes, and BF,2 and BF+gggi,2 contain the rows of the contrast

matrices BF and BF+gggi respectively corresponding to the remaining p attributes.

By considering each of these matrices individually we simplify this expression form2NC(πππ0)i,j

greatly. First, recall from Section 1.B that two contrasts with coefficients λi and µi are orthogonal

if and only if ∑̀
i=1

λiµi
ni

= 0.

By construction, each pair of attributes contains all possible pairs of levels equally often. There-

fore the product

BF,(q1)B
T
F,(q2),

where BF,(q1) and BTF,(q2) are the rows of BF corresponding to the levels of distinct attributes q1

and q2, will contain each combination of λi and µi equally often and thus

BF,(q1)B
T
F,(q2) = 000.

If we add the generator gggi to a starting design, we provide a 1–1 mapping of levels of the

attributes in F to the same set of levels in each of the attributes. This preserves the property

that within each pair of attributes all of the possible pairs of levels occur equally often. Then

BF+gggi,(q1)B
T
F+gggi,(q2) = 000

for q1 6= q2. Hence we have

BF,1B
T
F,2 = 000, BF+gggi,1B

T
F+gggi,2 = 000, and

BF,2B
T
F,1 = 000, BF+gggi,2B

T
F+gggi,1 = 000.

In fact, since the generator forms a 1–1 mapping of the set of attribute levels onto itself, all of

the pairs of levels in attribute q1 of F and attribute q2 of F + gggi will also occur equally often,

for q1 6= q2. Then for any generator gggi

BF,1B
T
F+gggi,2 = 000, BF+gggi,1B

T
F,2 = 000, and

BF,2B
T
F+gggi,1 = 000, BF+gggi,2B

T
F,1 = 000.
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The same reasoning shows that the matrices

BF,1B
T
F,1, BF,1B

T
F+gggi,1, BF+gggi,1B

T
F,1, BF+gggi,1B

T
F+gggi,1,

BF,2B
T
F,2, BF,2B

T
F+gggi,2, BF+gggi,2B

T
F,2, BF+gggi,2B

T
F+gggi,2

are block diagonal. For example,

BF,1B
T
F+ggg1,1 =


BF,(1)

BF,(2)

...

BF,(k−p)

×
[
BTF+gggi,(1) BTF+gggi,(2) . . . BTF+gggi,(k−p)

]

=


BF,(1)B

T
F+gggi,(1) BF,(1)B

T
F+gggi,(2) . . . BF,(1)B

T
F+gggi,(k−p)

BF,(2)B
T
F+gggi,(1) BF,(2)B

T
F+gggi,(2) . . . BF,(2)B

T
F+gggi,(k−p)

...
...

. . .
...

BF,(k−p)B
T
F+gggi,(1) BF,(k−p)B

T
F+gggi,(2) . . . BF,(k−p)B

T
F+gggi,(k−p)



=


BF,(1)B

T
F+gggi,(1) 000 . . . 000

000 BF,(2)B
T
F+gggi,(2) . . . 000

...
...

. . .
...

000 000 . . . BF,(k−p)B
T
F+gggi,(k−p)

 .

Using this, we can now find BF,1B
T
F+gggi,1

. Since we know that this matrix is block diagonal,

we only need to consider the (q, q)th block, where 1 ≤ q ≤ k − p. So the row of block matrices

of the contrast matrix BF+gggi,1 corresponding to the qth attribute will be

BF+gggi,(q) =

[
1√
`
jjjT` ⊗ . . .⊗

1√
`
jjjT` ⊗ (B`Qgi,q )⊗

1√
`
jjjT` ⊗ . . .⊗

1√
`
jjjT`

]
and the transpose of this row of block matrices will be

BTF+gggi,(q)
=

[
1√
`
jjj` ⊗ . . .⊗

1√
`
jjj` ⊗ (Q−gi,qB

T
` )⊗ 1√

`
jjj` ⊗ . . .⊗

1√
`
jjj`

]
.

Then the (q, q)th block of BF,1B
T
F+gggi,1

will be

BF,(q)B
T
F+gggi,(q)

=
1

`
jjjT` jjj` ⊗ . . .⊗

1

`
jjjT` jjj` ⊗ (B`Q−gggi,qB

T
` )⊗ 1

`
jjjT` jjj` ⊗ . . .⊗

1

`
jjjT` jjj`

= 1⊗ . . .⊗ 1⊗ (B`Q−gi,qB
T
` )⊗ 1⊗ . . .⊗ 1

= B`Q−gi,qB
T
` .

Notice that if i = 1 then Qg1,q−gi,q = I`, which gives

BF (q)B
T
F (q) = B`B

T
` .

Then the (1, 1) block of m2NC(πππ0)1i can be simplified to

1

`p
BlkDiag

[
B`(2I`−1 −Qgi,1 −Q−gi,1)BT` , B`(2I`−1 −Qgi,2 −Q−gi,2)BT` , . . . ,

B`(2I`−1 −Qgi,k−p −Q−gi,k−p)BT`
]
.
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Now consider the terms involving BF+gggi,2. Recall that the qth row of block matrices in

BF+gggi,2 will be

BF+gggi,(q) =
1

`(h−1)/2
×

(B`Qgi,qQ(0×aq,1+...+0×aq,h−1))⊗ 1√
`
jjjT` ⊗ . . .⊗ 1√

`
jjjT` ,

(B`Qgi,qQ(0×aq,1+...+0×aq,h−2+1×aq,h−1))⊗ 1√
`
jjjT` ⊗ . . .⊗ 1√

`
jjjT` , . . . ,

(B`Qgi,qQ(0×aq,1+...+0×aq,k−2+α`−2×aq,h−1))⊗ 1√
`
jjjT` ⊗ . . .⊗ 1√

`
jjjT` , . . . ,

(B`Qgi,qQ(α`−2×aq,1+...+α`−2×aq,h−1))⊗ 1√
`
jjjT` ⊗ . . .⊗ 1√

`
jjjT`


where 1 ≤ h ≤ k − p and there will be (h − 1) jjjT` s in each block matrix. Then we may express

BF+gggi,2 as

BF+gggi,2 =



BF+gggi,(k−p+1)

BF+gggi,(k−p+2)

...

BF+gggi,(k−1)

BF+gggi,(k)


and the transpose of BF+gi,2 as

BTF+gggi,2 =
[
BTF+gggi,(k−p+1) BTF+gggi,(k−p+2) . . . BTF+gggi,(k−1) BTF+gggi,(k)

]
,

where

BTF+gi,(q)
=

1

`(h−1)/2
×



(
Q−(0×aq,h−1+...+0×aq,1)Q−gi,qB

T
`

)
⊗ 1√

`
jjj` ⊗ . . .⊗ 1√

`
jjj`(

Q−(1×aq,h−1+0×aq,h−2+...+0×aq,1)Q−gi,qB
T
`

)
⊗ 1√

`
jjj` ⊗ . . .⊗ 1√

`
jjj`

...(
Q−(α`−2×aq,h−1+...+α`−2×aq,1)Q−gi,qB

T
`

)
⊗ 1√

`
jjj` ⊗ . . .⊗ 1√

`
jjj`


,

for k − p+ 1 ≤ q ≤ k.

We derive the block diagonal entries of BF+gggi,2B
T
F+gggi,2

, by finding the product of the row of

block matrices corresponding to the main effects of attribute q and the transpose of same, giving

BF,(q)B
T
F+gggi,(q)

=
1

`h−1

`−1∑
b1=0

. . .
`−1∑

bh−1=0

(
B`Q∑h−1

r=1 braq,r
×Q∑h−1

r=1 −braq,r
×Q−gi,qBT`

)

=
1

`h−1

`−1∑
b1=0

. . .
`−1∑

bh−1=0

(
B`Q∑h−1

r=1 (braq,r−braq,r) ×Q−gi,qB
T
`

)

=
1

`h−1

`−1∑
b1=0

. . .
`−1∑

bh−1=0

B`Q0Q−gi,qB
T
`

=
`h−1

`h−1
B`Q−gi,qB

T
`

= B`Q−gi,qB
T
` ,

and

BF+gggi,(q)B
T
F,(q) = B`Qgi,qB

T
` .
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The same argument gives

BF,(q)B
T
F,(q) = B`B

T
` , and

BF+gggi,(q)B
T
F+gggi,(q)

= B`Q0B
T
`

= B`B
T
` .

for k − p+ 1 ≤ q ≤ k. Putting these results together, we obtain

m2NC(πππ0)1i =
1

`p
BlkDiag

[
BFB

T
F +BF+gggi,1B

T
F+gggi,1 −BFB

T
F+gggi,1 −BF+gggi,1B

T
F , . . . ,

BFB
T
F +BF+gggi,kB

T
F+gggi,k

−BFBTF+gggi,k
−BF+gggi,kB

T
F

]
=

1

`p
BlkDiag

[
B`(2I` −Qgi,1 −Q−gi,1)BT` , B`(2I` −Qgi,2 −Q−gi,2)BT` , . . . ,

B`(2I` −Qgi,k−p −Q−gi,k−p)BT` , B`(2I` −Qgi,k−p+1
−Q−gi,k−p+1

)BT` ,

B`(2I` −Qgi,k−p+2
−Q−gi,k−p+2

)BT` , . . . , B`(2I` −Qgi,k −Q−gi,k)BT`
]
.

Then by dividing by m2N , where N = `k−p, we obtain the information matrix for the

estimation of the main effects of each attribute.

C(πππ0)1i =
1

m2`k
BlkDiag

[
B`(2I` −Qgi,1 −Q−gi,1)BT` , . . . , B`(2I` −Qgi,k −Q−gi,k)BT`

]
.

We can use a similar argument to show that this is true for any pair of positions, i and j, where

gggj − gggi /∈ F . This expression will be used in Theorem 6.4.1 to obtain optimal designs when all

gggi /∈ F . Now we turn out attention to the case where gggi ∈ F .

6.4 Constructing the Information Matrix - Generator Ap-

pears in the Starting Design

When gggi ∈ F , the Λ(πππ0) matrix does not take the same form as when gggi /∈ F . However, we can

consider a different partitioning of the contrast matrix and obtain a useful form for the Λ(πππ0)

matrix. We use some of the properties of GF [`], where ` is a prime power, to do so. We now

consider an example of how this will be done.

EXAMPLE 6.4.1.

Consider a 55−3 experiment with the defining equations

bbb3 = bbb1 + bbb2

bbb4 = 2bbb1 + bbb2

bbb5 = 3bbb1 + bbb2.

This gives the fractional factorial design shown as the starting design in the first column of Table

6.6. Using the results from Section 6.1, we can express the contrast matrix for the starting design
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BF as

BF =



B5 ⊗ 1√
5
jjjT5

1√
5
jjjT5 ⊗B5

B5 B5Q1×1 B5Q2×1 B5Q3×1 B5Q4×1

B5 B5Q1×2 B5Q2×2 B5Q3×2 B5Q4×2

B5 B5Q1×3 B5Q2×3 B5Q3×3 B5Q4×3



=



B5 ⊗ 1√
5
jjjT5

1√
5
jjjT5 ⊗B5

B5 B5Q1 B5Q2 B5Q3 B5Q4

B5 B5Q2 B5Q4 B5Q1 B5Q3

B5 B5Q3 B5Q1 B5Q4 B5Q2


.

To construct the remaining options of each choice set in the choice experiment, we add a set

of generators to the starting design. In this example, we will let m = 3 and use the generators

ggg2 = (11234) and ggg3 = (33313), noticing that ggg2 ∈ F , ggg3 /∈ F , and ggg3 − ggg2 = (22134) /∈ F . The

design formed by this set of generators is shown in Table 6.6.

In order to calculate the information matrix for the first two options from all of the choice sets,

we partition the items in F into five sets of items {F1, F1 +ggg2, F1 +2ggg2, F1 +3ggg2, F1 +4ggg2}, where

F1 is chosen to make these five sets a partitioning of F . This partitioning is possible because

the principal fraction of a fractional factorial design is closed under component–wise addition in

GF [`]. Suppose that we let F1 consist of those items in F that have the first attribute at the 0

level. Then

F1 =



0 0 0 0 0

0 1 1 1 1

0 2 2 2 2

0 3 3 3 3

0 4 4 4 4


,

and the remaining sets, shown in Table 6.7, form a partitioning of F . The BF matrix can then

be expressed as

BF =
[
BF1 BF1+ggg2 BF1+2ggg2 BF1+3ggg2 BF1+4ggg2

]
.

Notice that if ggg ∈ F then ggg and ggg + ggg2 appear in the same choice set. Also if ggg + 4ggg2 ∈ F then

ggg + 4ggg2 and ggg + 4ggg2 + ggg2 = ggg appear together in another choice set. So as written in Table 6.7,

each item appears in a choice set with the entry in the column to the left of it and in a choice

set with the entry in the column to the right of it, where columns 1 and 5 are viewed as being

adjacent. Then Λ(πππ0)1,2 is equal to

Λ(πππ0)1,2 =
1

m2N



2I5 −I5 000 000 −I5 000

−I5 2I5 −I5 000 000 000

000 −I5 2I5 −I5 000 000

000 000 −I5 2I5 −I5 000

−I5 000 000 −I5 2I5 000

000 000 000 000 000 000


.
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Option 1 Option 2 Option 3

0 0 0 0 0 1 1 2 3 4 3 3 3 1 3

0 1 1 1 1 1 2 3 4 0 3 4 4 2 4

0 2 2 2 2 1 3 4 0 1 3 0 0 3 0

0 3 3 3 3 1 4 0 1 2 3 1 1 4 1

0 4 4 4 4 1 0 1 2 3 3 2 2 0 2

1 0 1 2 3 2 1 3 0 2 4 3 4 3 1

1 1 2 3 4 2 2 4 1 3 4 4 0 4 2

1 2 3 4 0 2 3 0 2 4 4 0 1 0 3

1 3 4 0 1 2 4 1 3 0 4 1 2 1 4

1 4 0 1 2 2 0 2 4 1 4 2 3 2 0

2 0 2 4 1 3 1 4 2 0 0 3 0 0 4

2 1 3 0 2 3 2 0 3 1 0 4 1 1 0

2 2 4 1 3 3 3 1 4 2 0 0 2 2 1

2 3 0 2 4 3 4 2 0 3 0 1 3 3 2

2 4 1 3 0 3 0 3 1 4 0 2 4 4 3

3 0 3 1 4 4 1 0 4 3 1 3 1 2 2

3 1 4 2 0 4 2 1 0 4 1 4 2 3 3

3 2 0 3 1 4 3 2 1 0 1 0 3 4 4

3 3 1 4 2 4 4 3 2 1 1 1 4 0 0

3 4 2 0 3 4 0 4 3 2 1 2 0 1 1

4 0 4 3 2 0 1 1 1 1 2 3 2 4 0

4 1 0 4 3 0 2 2 2 2 2 4 3 0 1

4 2 1 0 4 0 3 3 3 3 2 0 4 1 2

4 3 2 1 0 0 4 4 4 4 2 1 0 2 3

4 4 3 2 1 0 0 0 0 0 2 2 1 3 4

Table 6.6: The choice sets used in Example 6.4.1

Then the information matrix for the first two options in the choice sets is

C(πππ0)1,2 =
1

53/2

[
BF1

BF1+ggg2 BF1+2ggg2 BF1+3ggg2 BF1+4ggg2 BĀ

]

× 1

225



2I5 −I5 000 000 −I5 000

−I5 2I5 −I5 000 000 000

000 −I5 2I5 −I5 000 000

000 000 −I5 2I5 −I5 000

−I5 000 000 −I5 2I5 000

000 000 000 000 000 000


× 1

53/2



BTF1

BTF1+ggg2

BTF1+2ggg2

BTF1+3ggg2

BTF1+4ggg2

BT
Ā


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F1 F1 + g2 F1 + 2g2 F1 + 3g2 F1 + 4g2

0 0 0 0 0 1 1 2 3 4 2 2 4 1 3 3 3 1 4 2 4 4 3 2 1

0 1 1 1 1 1 2 3 4 0 2 3 0 2 4 3 4 2 0 3 4 0 4 3 2

0 2 2 2 2 1 3 4 0 1 2 4 1 3 0 3 0 3 1 4 4 1 0 4 3

0 3 3 3 3 1 4 0 1 2 2 0 2 4 1 3 1 4 2 0 4 2 1 0 4

0 4 4 4 4 1 0 1 2 3 2 1 3 0 2 3 2 0 3 1 4 3 2 1 0

Table 6.7: The partitions of BF in Example 6.4.1

C(πππ0)1,2

=
1

225× 53
×
[
BF1

BF1+ggg2 BF1+2ggg2 BF1+3ggg2 BF1+4ggg2

]

×


2



BTF1

BTF1+ggg2

BTF1+2ggg2

BTF1+3ggg2

BTF1+4ggg2


−



BTF1+ggg2

BTF1+2ggg2

BTF1+3ggg2

BTF1+4ggg2

BTF1


−



BTF1+4ggg2

BTF1

BTF1+ggg2

BTF1+2ggg2

BTF1+3ggg2




=

1

225× 53
(2BFB

T
F −BFBTF+ggg2 −BFB

T
F−ggg2)

=
1

225× 53
BlkDiag

[
B5(2I5−Qg2,1−Q−g2,1)BT5 , B5(2I5−Qg2,2−Q−g2,2)BT5 ,

B5(2I5 −Qg2,3 −Q−g2,3)BT5 , B5(2I5 −Qg2,4 −Q−g2,4)BT5 ,

B5(2I5 −Qg2,5 −Q−g2,5)BT5
]

=
1

225× 53
BlkDiag

[
B5(2I5 −Q3 −Q2)BT5 , B5(2I5 −Q3 −Q2)BT5 , B5(2I5 −Q3 −Q2)BT5 ,

B5(2I5 −Q1 −Q4)BT5 , B5(2I5 −Q3 −Q2)BT5
]
.

We can find C(πππ0)1,3 and C(πππ0)2,3 using the method that was shown in Example 6.3.2, which

gives

C(πππ0)1,3 =
1

225× 53
BlkDiag[B5(2I5 −Q3 −Q2)BT5 , B5(2I5 −Q3 −Q2)BT5 ,

B5(2I5 −Q3 −Q2)BT5 , B5(2I5 −Q1 −Q4)BT5 ,

B5(2I5 −Q3 −Q2)BT5 ],

and

C(πππ0)2,3 =
1

225× 53
BlkDiag[B5(2I5 −Q2 −Q3)BT5 , B5(2I5 −Q2 −Q3)BT5 ,

B5(2I5 −Q1 −Q4)BT5 , B5(2I5 −Q3 −Q2)BT5 ,

B5(2I5 −Q4 −Q1)BT5 ].

By adding these matrices and substituting the Qi, B5 and I5 matrices, we obtain the information

matrix shown in Table 6.8.

We now use some of the properties of Galois fields to generalise this example. Since the

principal fraction of a regular fractional factorial design is closed under component–wise addition
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196875



56 0 −7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 60 0 −
√

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−7 0 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −
√

5 0 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 56 0 −7 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 60 0 −
√

5 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −7 0 49 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −
√

5 0 45 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 56 0 −7 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 60 0 −
√

5 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −7 0 49 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −
√

5 0 45 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 56 0 −7 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 60 0 −
√

5 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −7 0 49 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −
√

5 0 45 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 0 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 0
√

5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 56 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

5 0 60


Table 6.8: The C(πππ0)M matrix for the design in Example 6.4.1
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in GF [`], by adding a generator that is an item within the fractional factorial design to each

row of the fractional factorial design, we will yield a rearrangement of the rows of the fractional

factorial design.

Since the entries in the generator are elements of GF [`], for a non–zero element of gggi, say

gi,q, the set

{0× gi,q, 1× gi,q, . . . , α`−2 × gi,q}

contains each element of GF [`] exactly once. Then for any generator gggi ∈ F , or difference in

generators gggj − gggi, where each of the entries in the generator are non–zero, the set of generators

G = {0× gggi, 1× gggi, . . . , α`−2 × gggi}

will contain each element of GF [`] exactly once in each position, and therefore the set of gener-

ators will form a subgroup of F .

With a suitable selection of F1, we partition the items in F to form ` distinct sets F1, F1 +gggi,

F1 + 2×gggi, . . ., F1 +α`−2×gggi. We partition the columns in the contrast matrix BF in a similar

way; that is,

BF =
[
BF1

BF1+gggi BF1+2×gggi . . . BF1+α`−2×gggi

]
.

Then if gggi ∈ F is used as a generator, the Λ(πππ0)1i matrix can be written as

m2NΛ(πππ0)1i

=



2I`k−p−1 −I`k−p−1 000 000 . . . 000 000 000 −I`k−p−1 000

−I`k−p−1 2I`k−p−1 −I`k−p−1 000 . . . 000 000 000 000 000
...

...
...

...
. . .

...
...

...
...

...

000 000 000 000 . . . 000 −I`k−p−1 2I`k−p−1 −I`k−p−1 000

−I`k−p−1 000 000 000 . . . 000 000 −I`k−p−1 2I`k−p−1 000

000 000 000 000 . . . 000 000 000 000 000


,

since each item in F will appear as an option in the same choice set as two other items, one

belonging to the partition to the left of it, and one belonging the partition to the right of it

when BF is written in this way. Then by substituting the expression for Λ(πππ0)1i into the identity

C(πππ0)1i = BΛ(πππ0)1iB
T , and taking note that items that are not in F will not appear as options

in positions 1 and i of the choice sets, we obtain

m2NBΛ(πππ0)1iB
T

=
1

`p/2
[
BF1

, BF1+gggi , BF1+α×gggi , . . . , BF1+α`−2×gggi , BĀ
]

×



2I`k−p−1 −I`k−p−1 000 000 . . . 000 000 000 −I`k−p−1 000

−I`k−p−1 2I`k−p−1 −I`k−p−1 000 . . . 000 000 000 000 000
...

...
...

...
. . .

...
...

...
...

...

000 000 000 000 . . . 000 −I`k−p−1 2I`k−p−1 −I`k−p−1 000

−I`k−p−1 000 000 000 . . . 000 000 −I`k−p−1 2I`k−p−1 000

000 000 000 000 . . . 000 000 000 000 000


× 1

`p/2
[
BF1 , BF1+gggi , BF1+α×gggi , . . . , BF1+α`−2×gggi , BĀ

]T
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m2NBΛ(πππ0)1iB
T

=
1

`p

α`−2∑
j=0

[
BF1+j×gggi

(
−BTF1+(j−1)×gggi + 2BTF1+j×gggi −B

T
F1+(j+1)×gggi

)]

=
1

`p

α`−2∑
j=0

[
2BF1+j×gggiB

T
F1+j×gggi −BF1+j×gggiB

T
F1+(j−1)×gggi −BF1+j×gggiB

T
F1+(j+1)×gggi

]
.

Since the set {F1 + x×gggi|0 ≤ x ≤ α`−2} is a partition of F , we can simplify the components

of m2NC(πππ0)1i above to obtain BFB
T
F , BF+gggiB

T
F , and BFB

T
F+gggi

respectively. Thus, we can use

some of the results from Section 6.3 to obtain

C(πππ0)1i = m2NBΛ(πππ0)1iB
T

=
1

`p
(
−BFBTF+gggi + 2BFB

T
F −BF+gggiB

T
F

)
=

1

`p
BlkDiag

[
B`(2I` −Qgi,1 +Q−gi,1)BT` , . . . , B`(2I` −Qgi,k +Q−gi,k)BT`

]
.

This is identical to the form of C(πππ0)1i when gggi /∈ F , as derived in Section 6.4. A similar

argument can be used to show that this result holds for an arbitrary i and j, where gggj −gggi ∈ F .

If there is a mix of generators, some gggi ∈ F and some gggi /∈ F , then we can treat the information

matrices for each pair of attributes identically.

If, however, we choose m = ` generators such that the generators form a subgroup of F ,

then we obtain a special case of the above construction that allows us to reduce the number of

choice sets while maintaining the efficiency of the design. This property is explored in the next

example.

EXAMPLE 6.4.2.

Let us consider a set of generators that form a subgroup of F . We may modify the fractional

factorial design from Example 6.1.1 to ensure that a suitable set of generators can be found. To

do this, we must enforce the restriction

ai,1 + ai,2 6= 0,

thus allowing at least one item in F to have non–zero entries for each attribute. Table 6.9 gives

one such starting design, with (112) and (221) as items with non–zero entries for each attribute.

F

0 0 0 0 1 1 0 2 2

1 0 1 1 1 2 1 2 0

2 0 2 2 1 0 2 2 1

Table 6.9: The 33−1 fractional factorial design used in Example 6.4.2

We then choose a subgroup of the fractional factorial design F to form the set of generators.

The set G = (000, 112, 221) forms such a subgroup, which gives the design in Table 6.10. We may

also partition the items into three groups {F1, F1 +ggg2, F1 + 2ggg2}, the three blocks of columns on
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Table 6.9. Since ggg3 = 2ggg2, we may write the Λ(πππ0) matrix as

Λ(πππ0) =
∑
i<j

Λ(πππ0)i,j

= 3× 1

32 × 9


2I3 −I3 −I3
−I3 2I3 −I3
−I3 −I3 2I3



=
1

27


2I3 −I3 −I3
−I3 2I3 −I3
−I3 −I3 2I3

 ,
where the contrast matrix can be partitioned into the contrast matrix for F1, and the contrast

matrix for F1 plus multiples of the generator. This gives

B =
1√
3

[
BF1 BF1+ggg2 BF1+2ggg2

]
.

It follows that the information matrix for the estimation of main effects is

C(πππ0)M =
1

27
I8.

We notice that the Λ(πππ0)i,j matrices are identical for each pair of options. This suggests that

there is some scope to decrease the number of choice sets used to obtain this information. We

could use F1 as the starting design and then let each subgroup form a separate option within

the choice set, thereby reducing the number of choice sets to the 3 shown in Table 6.11. Then

the Λ(πππ0)i,j matrices for each of the pairs of options will become

Λ(πππ0)1,2 =
1

32 × 3


I3 −I3 000

−I3 I3 000

000 000 000

 , Λ(πππ0)1,3 =
1

32 × 3


I3 000 −I3
000 000 000

−I3 000 I3

 ,

and Λ(πππ0)2,3 =
1

32 × 3


000 000 000

000 I3 −I3
000 −I3 I3

 .
Since Λ(πππ0) is the sum of these Λ(πππ0)i,j matrices, we have

Λ(πππ0) =
∑
i<j

Λ(πππ0)i,j

=
1

32 × 3


2I3 −I3 −I3
−I3 2I3 −I3
−I3 −I3 2I3

 .
It follows that the information matrix for the estimation of main effects will be

C(πππ0)M =
1

27
I8,

as before. This demonstrates that if the set of generators forms a subgroup of F , there is scope

to reduce the number of choice sets without changing the D–efficiency of the design.

We can generalise the example to other cases where the set of generators form a subgroup of

F . That is, the choice sets formed where multiples of gggi are used to generate the m = ` options
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Option 1 Option 2 Option 3

0 0 0 1 1 2 2 2 1

1 0 1 2 1 0 0 2 2

2 0 2 0 1 1 1 2 0

0 1 1 1 2 0 2 0 2

1 1 2 2 2 1 0 0 0

2 1 0 0 2 2 1 0 1

0 2 2 1 0 1 2 1 0

1 2 0 2 0 2 0 1 1

2 2 1 0 0 0 1 1 2

Table 6.10: The 33−1 choice experiment used in Example 6.4.2 - 9 choice sets

Option 1 Option 2 Option 3

0 0 0 1 1 2 2 2 1

0 1 1 1 2 0 2 0 2

0 2 2 1 0 1 2 1 0

Table 6.11: The 33−1 choice experiment used in Example 6.4.2 - 3 choice sets

of the choice set. If we begin by using F1 as the starting design then within each pair of options,

each partition will appear with every other partition in each pair of options. Then the Λ(πππ0)i,j

matrix is

Λ(πππ0)i,j =
1

m2N



(`− 1)I`k−p−1 −I`k−p−1 −I`k−p−1 . . . −I`k−p−1 000

−I`k−p−1 (`− 1)I`k−p−1 −I`k−p−1 . . . −I`k−p−1 000
...

...
...

. . .
...

...

−I`k−p−1 −I`k−p−1 −I`k−p−1 . . . (`− 1)I`k−p−1 000

000 000 000 . . . 000 000


.

We now proceed to derive the information matrix C(πππ0) for the estimation of main effects

when using this design. Recall that

C(πππ0)M = BΛ(πππ0)BT .

The product of the first two matrices is

BΛ(πππ0) =
1

m2N

[
BF1

BF1+gggi BF1+α×gggi . . . BF1+α`−2×gggi BĀ

]

×`×



(`− 1)I`k−p−1 −I`k−p−1 −I`k−p−1 . . . −I`k−p−1 000

−I`k−p−1 (`− 1)I`k−p−1 −I`k−p−1 . . . −I`k−p−1 000
...

...
...

. . .
...

...

−I`k−p−1 −I`k−p−1 −I`k−p−1 . . . (`− 1)I`k−p−1 000

000 000 000 . . . 000 000


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BΛ(πππ0) =
`

m2N

`BF1
−
α`−2∑
j=0

BF1+j×gggi , `BF1+gggi −
α`−2∑
j=0

BF1+j×gggi ,

`BF1+α×gggi −
α`−2∑
j=0

BF1+j×gggi , . . . , `BF1+α`−2×gggi −
α`−2∑
j=0

BF1+j×gggi ,000

 .
However, since each element of gggi is non-zero and the addition and multiplication is performed

within GF [`], then 0× gggi, 1× gggi, . . . , α`−2 × gggi, will contain each element of GF [`] exactly once

in each position. Then each entry in
∑α`−2

j=0 BF1+j×gggi will be the sum of the corresponding row

of B`, giving
α`−2∑
j=0

BF1+j×gggi = 000,

and therefore BΛ(πππ0) can be simplified to

BΛ(πππ0) =
`

m2N

[
`BF1

`BF1+gggi `BF1+α×gggi . . . `BF1+α`−2×gggi 000
]
.

Then by post–multiplying BΛ(πππ0) by BT , we obtain

BΛ(πππ0)BT =
`

m2N

[
`BF1

`BF1+gggi `BF1+α×gggi . . . `BF1+α`−2×gggi 000
]

×
[
BF1 BF1+gggi BF1+α×gggi . . . BF1+α`−2×gggi BT

Ā

]T
=

1

m2N
`2BF ×BTF

=
1

m2N
`2Ik(`−1).

Then the information matrix for the estimation of main effects will be

C(πππ0)M =
1

`p
BΛ(πππ0)BT

=
1

m2N

1

`p
`2Ik(`−1)

=
1

`k
Ik(`−1).

The determinant of this information matrix is

det(C(πππ0)M ) =

(
1

`k

)k(`−1)

.

While this would yield an efficient design based on the determinant of the information matrix

C(πππ0)M , we can improve on this design as we did in Example 6.4.2. If, instead of using F as the

starting design we use F1, then we find that the choice sets will be[
F1 F1 + gggi F1 + α× gggi . . . F1 + α`−2 × gggi

]
.

We notice that each subgroup of F still appears with every other subgroup of F , but in this

design each pair appears only once, and not in each pair of options as was the case in the

previous design. Therefore

Λ(πππ0) =
1

m2N



(`− 1)I`k−p−1 −I`k−p−1 −I`k−p−1 . . . −I`k−p−1 000

−I`k−p−1 (`− 1)I`k−p−1 −I`k−p−1 . . . −I`k−p−1 000
...

...
...

. . .
...

...

−I`k−p−1 −I`k−p−1 −I`k−p−1 . . . (`− 1)I`k−p−1 000

000 000 000 . . . 000 000


,
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and it follows that

BΛ(πππ0)BT =
1

m2N

[
`BF1 `BF1+gggi `BF1+α×gggi . . . `BF1+α`−2×gggi 000

]
×
[
`BF1

`BF1+gggi `BF1+α×gggi . . . `BF1+α`−2×gggi BT
Ā

]T
=

1

m2N
`BF ×BTF

=
1

m2N
`Ik(`−1).

This design will contain only N = `k−p−1 choice sets since the subset F1 was used as the starting

design. Then the information matrix will be

C(πππ0)M =
1

m2N

1

`p
`Ik(`−1)

=
1

`k
Ik(`−1),

which gives the same D–efficiency as the previous design, but uses fewer choice sets to do so.

The expressions for C(πππ0)M derived in the last two sections can be used to find optimal

designs for choice experiments where only main effects are of interest. Theorem 6.4.1 establishes

the conditions under which the design will be optimal.

THEOREM 6.4.1.

Let F be the principal block of a regular fractional factorial design for k attributes with ` lev-

els each, where ` is a prime power. Suppose that we choose a collection of sets of genera-

tors Gα = {gggα,1 = 000, gggα,2, . . . , gggα,m}, α = 1, . . . , ζ, such that gggα,i 6= gggα,j for all i 6= j. Let

gggα,i = (gα,i,1, gα,i,2, . . . , gα,i,k) for i = 1, 2, . . . ,m and also suppose that the multiset of differ-

ences for each attribute over all sets in the collection

ζ

&
α=1

&
q1 6=q2

(gα,q1,i − gα,q2,i)

contains each non–zero difference in GF [`] equally often. Then the choice sets given by the rows

of F + gggα,1, F + gggα,2, . . . , F + gggα,m, for α = 1, . . . , ζ, are optimal for the estimation of main

effects only, provided that there are as few zero differences as possible.

Proof. Suppose that there are ζ sets of generators. Then there will be ζ×`k−p choice sets in total.

Since information matrices are additive we may consider each set of generators Gα separately,

and add the information matrices.

Also let m = `x+ y, where there are y entries that are repeated x+ 1 times in the choice set

and ` − y entries repeated x times in the choice set. Then if we use the assumption that each

difference will appear equally often, there will be

ζ (m(m− 1)− (x+ 1)xy − x(x− 1)(`− 1)) = 2Sq

non–zero differences, 2
`−1Sq of each type of non–zero difference. The remaining

ζ ((x+ 1)xy + x(x− 1)(`− 1)) = ζm(m− 1)− 2Sq

differences in the difference vector will be zero differences. Then, by using the assumption that

the multiset of differences for each attribute i,

ζ

&
α=1

&
q1 6=q2

(gα,q1,i − gα,q2,i),
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contains each non–zero difference in GF [`] equally often, and that Q0 = I` and
∑α`−2

i=0 Qi = J`,

the sum of the permutation matrices can be expressed as∑
i6=j

Qgj,r−gi,r =
2

`− 1
Sq(J` − I`) + (ζm(m− 1)− 2Sq)I`

=
2

`− 1
SqJ` +

(
ζm(m− 1)− 2`Sq

`− 1

)
I`.

Substituting this into the expression for C(πππ0)i,j derived earlier, we obtain

ζ∑
α=1

∑
i<j

(C(πππ0)α)i,j

=
1

m2ζ`k
BlkDiag

B`(ζm(m− 1)

2
× 2I` −

∑
i<j

Qgi,1−gj,1 −
∑
i<j

Qgj,1−gi,1

)
BT` ,

B`

(
ζm(m− 1)

2
× 2I` −

∑
i<j

Qgi,2−gj,2 −
∑
i<j

Qgj,2−gi,2

)
BT` ,

. . . , B`

(
ζm(m− 1)

2
× 2I` −

∑
i<j

Qgi,k−gj,k −
∑
i<j

Qgj,k−gi,k

)
BT`


=

1

m2ζ`k
BlkDiag

[
B`

(
ζm(m− 1)I`−

2

`− 1
SqJ` +

(
ζm(m− 1)− 2`Sq

`− 1

)
I`

)
BT` ,

B`

(
ζm(m− 1)I` −

2

`− 1
SqJ` +

(
ζm(m− 1)− 2`Sq

`− 1

)
I`

)
BT` ,

. . . , B`

(
ζm(m− 1)I` −

2

`− 1
SqJ` +

(
ζm(m− 1)− 2`Sq

`− 1

)
I`

)
BT`

]
=

1

m2ζ`k
BlkDiag

[
B`

(
2`Sq
`− 1

I` −
2Sq
`− 1

J`

)
BT` , B`

(
2`Sq
`− 1

I` −
2Sq
`− 1

J`

)
BT` ,

. . . , B`

(
2`Sq
`− 1

I` −
2Sq
`− 1

J`

)
BT`

]
.

However, B`J`B
T
` = 000 and B`I`B

T
` = I`−1, so this simplifies to

ζ∑
α=1

∑
i<j

(C(πππ0)α)i,j =
1

m2ζ`k
BlkDiag

[
2`Sq
`− 1

I`−1,
2`Sq
`− 1

I`−1, . . . ,
2`Sq
`− 1

I`−1

]
.

Since C(πππ0)M =
∑ζ
α=1

∑
i<j(C(πππ0)α)i,j , we have

C(πππ0)M =
1

m2ζ`k
BlkDiag

[
2`Sq
`− 1

I`−1,
2`Sq
`− 1

I`−1, . . . ,
2`Sq
`− 1

I`−1

]
=

2`Sq
m2ζ`k(`− 1)

Ik(`−1).

Note that when the design parameters are fixed (i.e. m, k, and `) there are two variables in

the above equation, S and ζ. Therefore the determinant of the information matrix is maximised

when
Sq
ζ is maximised.

If we recall that
Sq
ζ

=
1

2
((x+ 1)xy + x(x− 1)(`− 1)) ,

then we can see that the determinant of the information matrix is maximised when the number

of non–zero differences in each generator is maximised. Equivalently, the D–optimal design will

be that which minimises the number of zero differences.
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From the proof of Theorem 6.4.1 we can see that the determinant of the information matrix

is

det(C(πππ0)M ) =

(
2`Sq

m2ζ`k(`− 1)

)k(`−1)

.

We can determine the optimal value for this determinant by finding the least upper bound

for
Sq
ζ . Notice that within each set of generators, the maximum number of differences for a given

m, k, and ` is equal to 2Sq, and is independent of the other sets of generators. This is the case

since the designs obtained by each set of generators are adjoined as extra runs of the design, thus

acting independently. Then for an arbitrary ζ, Theorem 1 of Burgess and Street [2005] showed

that

Sq =


ζ(m2 − 1)/4, ` = 2, m odd;

ζm2/4, ` = 2, m even;

ζ(m2 − (`x2 + 2xy + y))/2, 2 < ` < m;

ζm(m− 1)/2, ` ≥ m.

Using this, we can find the optimal value for the determinant of the information matrix.

THEOREM 6.4.2.

The maximum value for the determinant of the information matrix when only main effects are

of interest and the design is symmetric where ` is prime is

det(C(πππ0)M,opt) =



(
m2−1
2km2

)k
, ` = 2, m odd;(

1
2k

)k
, ` = 2, m even;(

1
`k−1(`−1)

− `x2+2xy+y
m2`k−1(`−1)

)k(`−1)

, 2 < ` < m;(
m−1

m`k−1(`−1)

)k(`−1)

, ` ≥ m,

for a given m, k, and `.

Proof. Theorem 1 of Burgess and Street [2005] show that the least upper bound for
Sq
ζ will be

Sq
ζ

=


(m2 − 1)/4, ` = 2, m odd;

m2/4, ` = 2, m even;

(m2 − (`x2 + 2xy + y))/2, 2 < ` < m;

m(m− 1)/2, ` ≥ m.

Then if we substitute this upper bound into det(C(πππ0)M ), we obtain

det(C(πππ0)M,opt) =

(
2`

m2`k(`− 1)

(
Sq
ζ

)
opt

)k(`−1)

=



(
2`(m2−1)/4
m2`k(`−1)

)k(`−1)

, ` = 2, m odd;(
2`m2/4

m2`k(`−1)

)k(`−1)

, ` = 2, m even;(
2`(m2−(`x2+2xy+y))/2

m2`k(`−1)

)k(`−1)

, 2 < ` < m;(
2`m(m−1)/2
m2`k(`−1)

)k(`−1)

, ` ≥ m,
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det(C(πππ0)M,opt) =



(
m2−1
2km2

)k
, ` = 2, m odd;(

1
2k

)k
, ` = 2, m even;(

1
`k−1(`−1)

− `x2+2xy+y
m2`k−1(`−1)

)k(`−1)

, 2 < ` < m;(
m−1

m`k−1(`−1)

)k(`−1)

, ` ≥ m.

This result is the same as that obtained in Burgess and Street [2005] when a complete factorial

starting design was used, and ζ was assumed to be equal to 1.

This theorem is best illustrated in an example.

EXAMPLE 6.4.3.

In Example 6.1.1 we introduced a 34−2 fractional factorial design. We can use this as a starting

design for a design of a stated choice experiment. The starting design, which will form the first

option in each choice set, is shown as the first column of Table 6.4.

To obtain the other options, we add generators to the starting design. In this case, let the

experiment have m = 3 options in each choice set. Then we will need two generators to form

the remaining options. According to Theorem 6.4.1, we would like to maximise the number

of non–zero differences conditional on having each non–zero difference in GF [3] appear equally

often. The set of generators used in Example 6.3.2,

G = (ggg1 = (0000), ggg2 = (1111), ggg3 = (2222)),

yielding the design in Table 6.5, satisfy these criteria. We can confirm this by looking at each of

the differences between the options. For each attribute r with 1 ≤ r ≤ 4

g2,r − g1,r = 1− 0 = 1 g1,r − g2,r = 0− 1 = 2

g3,r − g1,r = 2− 0 = 2 g1,r − g3,r = 0− 2 = 1

g3,r − g2,r = 2− 1 = 1 g2,r − g3,r = 1− 2 = 2.

For each attribute, there are 6 non–zero differences and no zero differences. Thus 2S = 6 and

S = 3. Hence the information matrix for this design will be

C(πππ0)M =
2`S

m2`k(`− 1)
Ik(`−1)

=
2× 3× 3

3234(3− 1)
I4×3

=
1

81
I12,

with determinant det(C(πππ0)M ) = ( 1
81 )12.

We can check whether this design is optimal by calculating det(C(πππ0)M,opt) and comparing

it to the value calculated above. Using Theorem 6.4.2, the optimum value of det(C(πππ0)M ) for

k = 4, ` = 3, and m = 3 is

det(C(πππ0)M,opt) =

(
m− 1

m`k−1(`− 1)

)k(`−1)

=

(
2

3× 33 × 2

)4×3

=

(
1

81

)12

.

Therefore this design is optimal for the estimation of main effects.



Chapter 7

Conclusions and Research

Directions

In this chapter, we provide a summary of our results, and discuss some possible future research

directions arising from this thesis. This thesis aimed to increase the body of results on opti-

mal designs by considering models and design approaches that provide more realistic, and less

burdensome choice experiments.

In Chapter 1 we presented a summary of previously known results. Specifically we introduced

the Bradley–Terry model for paired comparisons, and the MNL model for multiple comparisons.

We presented results that allow researchers to find optimal designs for the estimation of main

effects for both symmetric and asymmetric designs, as well as results that gave optimal designs

for the estimation of main effects plus two–factor interactions for 2k experiments when using

these models. Chapter 1 also introduced paired comparison models that incorporated ties and

position effects.

In Chapter 2, we derived the information matrix for the estimation of the contrasts Bhγγγ

when the Davidson ties model is used. There had been no previous work on the optimal design

of experiments that incorporated ties. We used this information matrix to show that the designs

that are optimal for the estimation of the contrasts Bhγγγ when using the Bradley–Terry model are

also optimal for the estimation of the contrasts Bhγγγ and the ties parameter when the Davidson

ties model is used.

We used the equivalence result found in Chapter 2 to find optimal designs for specific sets of

contrasts when the Davidson ties model is used. We gave results that allow researchers to find

optimal designs for the estimation of the main effects of the attributes and ν where attributes may

have any number of levels. We also established rules for finding optimal designs for the estimation

of the main effects plus two–factor interactions of the attributes and ν for 2k experiments. We

used simulations to show that these designs led to parameter estimates that were unbiased and

symmetrically distributed.

In Chapter 3, we introduced a generalisation of the Davidson ties model that allows an

arbitrary choice set size. This generalisation was analogous to the generalisation of the Bradley–

Terry model to the MNL model. In this chapter, we derived the normal equations for the

maximum likelihood estimators, and the information matrix for the estimation of the contrasts

in Bhγγγ. Once again, we used the information matrix to show that the optimal design for the
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estimation of the contrasts in Bhγγγ when the MNL model is used is also optimal for the estimation

of the contrasts in Bhγγγ and ν then the generalised Davidson ties model is used.

The result showing that the optimal designs for both models are the same was applied to

specific sets of effects. We used the equivalence result to find rules giving the optimal designs

for the estimation of the main effects of the attributes and ν where attributes may have any

number of levels. We also used the equivalence result to generate rules to find the optimal design

for the estimation of the main effects plus two–factor interactions of the attributes and ν for 2k

experiments. Again, we used simulations to show that these designs led to parameter estimates

that were unbiased and symmetrically distributed.

One sensible extension to the work on ties in this thesis is to investigate what happens when

the ties parameter depends on the number of items considered indistinguishable. That is, we

may want ν2, ν3, . . . , νm to reflect the fact that there are i items in the choice set that the

respondent finds equally attractive, for 2 ≤ i ≤ m. If this is the case, we would need to revisit

the convergence criteria, as well as optimal design results.

Another research direction would be to consider different methods of incorporating ties into

choice models. For example, we may wish to define a separate π parameter for finding each

subset of the choice set equally attractive. Comparisons between ties models will require some

sort of goodness–of–fit test to determine which approach captures preference behaviour most

effectively and most parsimoniously. If we find that a different approach yields more effective

models, then we will need to consider convergence criteria for the model, maximum likelihood

estimators and optimal designs for the new model form.

In Chapter 4 we derived the information matrix for the estimation of the contrasts in Bhγγγ

and the position main effect when the Davidson–Beaver position effects is used, allowing us to

incorporate the position of the item in a choice set into the selection probability of the item. We

found that the optimal designs for the estimation of the contrasts in Bhγγγ when the Bradley–Terry

model is used were also optimal for the estimation of the contrasts in Bhγγγ and the position main

effects when the Davidson–Beaver position effects model is used.

We used this equivalence result above to find rules to give optimal designs for the estimation

of the main effects of the attributes and the position main effect where attributes may have any

number of levels. We also used the result to find rules that give optimal designs for the estimation

of the main effects plus two–factor interactions of the attributes and the position main effect for

2k experiments. Once again, we used simulations to show that the parameter estimates obtained

from these designs were unbiased and symmetrically distributed.

In Chapter 5 we introduced a generalisation of the Davidson–Beaver position effects model

that allows for an arbitrary choice set size. We derived normal equations for the maximum

likelihood estimators and found an expression for the information matrix for the estimation of

the main effects of the attributes and contrasts of the position effects. We used this information

matrix to prove a general result for finding optimal designs for the estimation of the main effects

of the attributes and contrasts of the position effects. This optimality result was over the set of

competing designs that included all choice sets characterised by a particular ordered difference

vector if that difference vector was said to be included in the design. We also found an expression

for the information matrix for the estimation of the main effects plus two–factor interactions of

the attributes and contrasts of the position effects.

Chapter 5 also discussed designs obtained by embedding an orthogonal array into a complete
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Latin square. This type of design does not belong to the class of competing designs that were

considered earlier in the chapter, since the inclusion of one choice set characterised by a particular

difference vector did not mean that all choice sets characterised by that difference vector are

included in these designs. We found that, on some occasions, this type of design was more

efficient than the optimal design from the class of designs considered earlier. We did find,

however, that in order to maintain a diagonal C matrix for a 2k design using this approach, we

needed to place restrictions on the number of attributes that we could include in the design, and

how they are defined. Once again, we used simulations to show that the parameter estimates

obtained from these designs were unbiased and symmetrically distributed.

Further research could consider the properties of the orthogonal arrays that can be embedded

into a complete Latin square to obtain a diagonal C matrix. We could also look at the properties

of designs constructed in this way that have more than two levels in each attribute.

Chapter 5 did not include any results on the optimal design of choice experiments for the

estimation of the main effects plus two–factor interactions of the attributes and contrasts of

the position effects when the generalised Davidson–Beaver model is used. Future research could

consider this problem, first for 2k experiments, and then for a general asymmetric design. The

latter of these research directions would depend on the establishment of a similar result when

the MNL model is used, a result that has not been proven to date.

We could also consider variations of the position effects model. One such variation would be

to consider the influence of an adjacent item in the choice set on the perceived attractiveness of

the item. For example in a taste testing task, the presentation of a sample with a strong flavour

could reasonably have an effect on the taste of subsequent items. We anticipate that the model

form in this case will be different, as which items are adjacent to each other is now important,

and not just the position in the choice set. Research into modelling this situation would involve

the development of an appropriate utility function, deriving normal equations and the C matrix,

and finding results that give optimal designs.

Burgess and Street [2005] have a result that uses a complete factorial as a starting design.

In Chapter 6 we extended this result so that a fractional factorial design could be used as the

starting design. Specifically, we consider symmetric designs with a prime power number of levels

and are constructed using the Rao–Hamming method. We used permutation matrices to express

the contrast matrix for the items in the first position of each choice set. Additional permutation

matrices were then used to obtain the contrast matrices for the remaining options in each choice

set. These contrast matrices were then used to derive an expression for the information matrix

for the estimation of main effects. We then used the information matrix to prove a result that

gives optimal designs for the estimation of main effects in `k experiments, where ` is a prime

power when an orthogonal array is used as a starting design.

The results in Chapter 6 allow us to present choice experiments with fewer choice sets to

the respondents, without sacrificing design efficiency. This reduces the burden placed on the

respondent, and should lead to more considered and more consistent choices made by respondents

due to reduced fatigue.

The designs that are considered in Chapter 6 are quite restrictive in the number of levels

each attribute may take. The design optimality results only apply to symmetric experiments

with a prime power number of levels. We can construct orthogonal arrays that have non-prime

power numbers of levels, or are asymmetric. Future research could adapt the methods used here
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to extend the design optimality result to designs that use these other orthogonal arrays as a

starting design.

There are constructions other than the Rao–Hamming construction that yield orthogonal

arrays, linear or otherwise. For example, orthogonal arrays can be constructed from difference

schemes, Hadamard matrices, and codes. Future research could look at how to find similar design

optimality results when these orthogonal arrays are used as the starting design.

In this thesis, we made several assumptions such as the an independently and identically

distributed Extreme Value type I error distribution. In Chapter 1 we linked this assumption

to the assumption of independence from irrelevant attributes. We also presented an example

where independence from irrelevant attributes was not a sensible assumption. Further research

could be devoted to looking at the robustness of the optimal designs presented here when such

assumptions are violated. For example, we could look at optimal designs in cases where the error

distribution is correlated with the error distributions of other items in the choice set. We could

also look at correlation structures between choice sets. The other aspect of this assumption that

we may wish to test is the error distribution itself. We could test the effect of different error

distributions, including skewed distributions, on the efficiency of the optimal designs.

There are also some more complex choice models that have not been considered in this thesis.

These models go some way to accommodating the violations in assumptions mentioned earlier.

Such models include the mixed logit model, the nested logit model, and models with alternative

specific constants. There may be some scope to incorporate ties and position effects into these

models. In addition, there is still a lot of scope for developing theory relating to optimal designs

for these models.

The final research direction we consider here is models that incorporate both ties and position

effects. Recall that Davidson and Beaver [1977] proposed a paired comparisons model that

incorporated both of these effects. One curious feature about this model is that the utility of

finding the two items in the choice set equally attractive was independent of the positions the

items take. For this reason, it is not obvious how this model might be generalised for an arbitrary

choice set size. Future research may be directed towards finding a model form that incorporated

the respective positions of the items within the choice set to the utility of finding the items

equally attractive. Such a model may have a more intuitive generalisation. Once we have these

models, we could consider which designs are most efficient for the estimation of the contrasts in

Bhγγγ, plus ties and position effects.
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J. de Dios Ortúzar, A. Iacobelli, and C. Valeze. Estimating Demand for a Cycle-Way Network.

Transportation Research Part A, 34:353–373, 2000.

J. Dénes and A.D. Keedwell. Latin Squares and their Applications. English Universities Press,

London, 1974.

O. Dykstra, Jr. Rank Analysis of Incomplete Block Designs: A Method of Paired Comparisons

Employing Unequal Repetitions on Pairs. Biometrics, 16(2):176–188, Jun 1960.

A.T. El-Helbawy. Asymptotic Relative Efficiency of Designs for Factorial Paired Comparison

Experiments. Journal of Statistical Planning and Inference, 10(1):105–113, Jul 1984.

A.T. El-Helbawy and E.A. Ahmed. Optimal Design Results for 2n Factorial Paired Comparison

Experiments. Communications in Statistics - Theory and Methods, 13(22):2827–2845, 1984.

A.T. El-Helbawy and R.A. Bradley. Treatment Contrasts in Paired Comparisons: Large-Sample

Results, Applications, and some Optimal Designs. Journal of the American Statistical Asso-

ciation, 73(364):831–839, Dec 1978.

A.T. El-Helbawy, E.A. Ahmed, and A.H. Alharbey. Optimal Designs for Asymmetrical Factorial

Paired Comparison Experiments. Communications in Statistics - Simulation and Computation,

23(3):663–681, 1994.

A.B. Evans. Complete Mappings and Sequencings of Finite Groups. In C.J. Colbourn and J.H.

Dinitz, editors, Handbook of Combinatorial Designs, pages 345–352. CRC Press, Boca Raton

FL, 2007.

S.E. Fienberg. Log Linear Representation for Paired and Multiple Comparisons Models with

Ties and Within-Pair Order Effects. Biometrics, 35(2):479–481, Jun 1979.

S.E. Fienberg and K. Larntz. Log Linear Representation for Paired and Multiple Comparisons

Models. Biometrika, 63(2):245–254, Aug 1976.

L.R. Ford, Jr. Solution of a Ranking Problem from Binary Comparisons. The American Math-

ematical Monthly, 64(8 Part 2):28–33, Oct 1957.

W.A. Glenn and H.A. David. Ties in Paired-Comparison Experiments using a Modified

Thurstone-Mosteller Model. Biometrics, 16(1):86–109, Mar 1960.

B. Gordon. Sequences in Groups with Distinct Partial Products. Pacific Journal of Mathematics,

11:1309–1313, 1961.



BIBLIOGRAPHY 229

U. Graßhoff and R. Schwabe. Optimal Designs for the Bradley-Terry Paired Comparison Model.

Statistical Methods and Applications, 17(3):275–289, Jul 2008.

U. Graßhoff, H. Großman, H. Holling, and R. Schwabe. Optimal paired comparison designs for

first-order interactions. Statistics, 37(5):373–386, Oct 2003.

U. Graßhoff, H. Großman, H. Holling, and R. Schwabe. Optimal Designs for Main Effects in

Linear Paired Comparison Models. Journal of Statistical Planning and Inference, 126(1):

361–376, Nov 2004.

U. Graßhoff, R. Schwabe, and S.G. Gilmour. Designs for first or-

der interactions in choice experiments with binary attributes. Otto-von-

Guericke-Universität Madgeburg Facultät fur Mathematik, 2007. URL

http://www.math.uni-magdeburg.de/∼schwabe/Preprints/2007 22.pdf.

J. P. C. Grutters, A. G. H. Kessels, C. D. Dirksen, D. van Helvoort-Postulart, L. J. C. Anteunis,

and M. A. Joore. Willingness to Accept versus Willingness to Pay in a Discrete Choice

Experiment. Value in Health, 11(7):1110–1119, 2008.

A.S. Hedayat, N.J.A. Sloane, and J. Stufken. Orthogonal Arrays: Theory and Applications.

Springer–Verlag, New York, 1999.

R.A. Horn and C.A. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985.

G. Kalton, M. Collins, and L. Brook. Experiments in Wording Opinion Questions. Applied

Statistics, 27(2):149–161, 1978.

R.O. Kuehl. Design of Experiments: Statistical Principles of Research Design and Analysis.

Duxbury Press, Pacific Grove CA, 2000.

W.F. Kuhfeld. Marketing Research Methods in SAS. SAS Institute, Cary NC, 2005.

R.C. Littell and J.M. Boyett. Designs for R × C Factorial Paired Comparison Experiments.

Biometrika, 64(1):73–77, Apr 1977.

J. J. Louviere, D. A. Hensher, and J. D. Swait. Stated Choice Methods: Analysis and Application.

Cambridge University Press, Cambridge, 2000.

R.D. Luce. Individual Choice Behaviour: A Theoretical Analysis. Wiley, New York, 1959.

I.D. Macdonald. The Theory of Groups. Oxford University Press, London, 1968.

D. McFadden. Conditional Logit Analysis of Qualitative Choice Behavior. In P. Zarembka,

editor, Frontiers in Econometrics, pages 105–142. Academic Press, New York, 1973.

K.A. Phillips, T. Maddala, and F. Reed-Johnson. Measuring Preferences for Health Care Inter-

ventions using Conjoint Analysis: An Application to HIV Testing. Health Services Research,

37(6):1681–1705, Dec 2002.

M.H. Quenouille and J.A. John. Paired Comparison Designs for 2n Factorials. Applied Statistics,

20(1):16–24, 1971.

C.R. Rao. Factorial Experiments Derivable from Combinatorial Arrangements of Arrays. Journal

of the Royal Statistical Society (Supp), 9:128–139, 1947.



BIBLIOGRAPHY 230

C.R. Rao. On a Class of Arrangements. Proceesings of the Edinburugh Mathematical Society, 8:

119–125, 1949.

P.V. Rao and L.L. Kupper. Ties in Paired–Comparison Experiments: A Generalization of the

Bradley-Terry model. Journal of the American Statistical Association, 62(317):194–204, Mar

1967.

A.P. Street and D.J. Street. Combinatorics of Experimental Design. Oxford University Press,

New York, 1986.

D.J. Street. Factorial Designs. In C.J. Colbourn and J.H. Dinitz, editors, Handbook of Combi-

natorial Designs, pages 445–465. CRC Press, Boca Raton FL, 2007.

D.J. Street and L. Burgess. The Construction of Optimal Stated Choice Experiments: Theory

and Methods. John Wiley & Sons, Hoboken NJ, 2007.

D.J. Street, D.S. Bunch, and B.J. Moore. Optimal Designs for 2k Paired Comparison Experi-

ments. Communications in Statistics – Theory and Methods, 30(10):2149–2171, Oct 2001.

D.J. Street, L.B. Burgess, and J.J. Louviere. Quick and Easy Choice Sets: Constructing Op-

timal and Nearly Optimal Stated Choice Experiments. International Journal of Research in

Marketing, 22(4):459–470, Dec 2005.

M. Tharp and L. Marks. An Examination of the Effects of Attribute Order and Product Order

Biases in Conjoint Analysis. Advances in Consumer Research, 17:563–570, 1990.

L. L. Thurstone. The Method of Paired Comparisons for Social Values. Journal of Abnormal

and Social Psychology, 21:384–400, 1927.

K.E. Train. Discrete Choice Methods with Simulation. Cambridge University Press, New York,

2003.

E.E.M van Berkum. Optimal Paired Comparison designs for factorial experiments. CWI Tract,

1987.

P. van der Waerden, A. Borgers, H. Timmermans, and M. Bérénos. Order Effects in Stated-

Choice Experiments: Study of Transport Mode Choice Decisions. Transportation Research

Record, 1985:12–18, 2006.

E.J. Williams. Experimental Designs Balanced for the Estimation of Residual Effects of Treat-

ments. Australian Journal of Scientific Research Series A, 2:149–168, 1949.

E. Zermelo. Die Berechnung der Turnier–Ergebnisse als ein Maximumproblem der Wahrschrein-

lichkeitsrechnung. Mathemalische Zeitchrift, 29:436–460, 1929.


	Title Page
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Notation
	Abstract
	1 Introduction and Preliminary Definitions
	2 Choice Models that Incorporate Ties
	3 The Generalised Davidson Ties Model
	4 Choice Models that Incorporate Position Effects
	5 The Generalised Davidson-Beaver Position Effects Model
	6 Optimal Designs when using Fractional Factorial Starting Designs
	7 Conclusions and Research Directions
	Bibliography

