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Abstract

Making choices is a fundamental part of life. Whether it be the food that we eat, how we get
from A to B, or the things that we do or do not purchase, choices are made all of the time. The
ability to understand and influence these choices is valuable in many areas such as marketing,
health economics, tourism, transportation research, and public policy. Choice experiments allow
researchers in these areas to show respondents sets of options, described by attributes, and use
the attributes of the chosen options to determine how important each of the attributes are to
the ‘attractiveness’ of any option. From this information market share or policy acceptability
can be predicted.

In this thesis we look at optimal designs for the multinomial logit (MNL) model, and for
two extensions of this model. The first extension incorporates tied preferences, and is based on
the extension of the Bradley—Terry model introduced by Davidson [1970]. The second extension
allows the researcher to estimate the effect that the position of an item in the set of alternatives
has on the perceived merit of the item. This extension is based on the extension of the Bradley—
Terry model introduced by Davidson and Beaver [1977]. We prove results that give optimal
designs, both for the extensions of the Bradley—Terry model and the extensions of the MNL
model, and conduct simulations of these models. Finally, we prove results that give optimal
designs for the MNL model when the starting design is an orthogonal array constructed using

the Rao-Hamming construction, rather than a complete factorial design.




Chapter 1

Introduction and Preliminary

Definitions

This thesis is about how best to design choice experiments for three specific models. In this
chapter we provide a compendium of relevant definitions and results.

In a choice experiment, we present respondents with a series of N choice sets. Each choice
set consists of two or more options. Let there be m > 2 options in a choice set. The task for
each respondent is to make a choice based only on the information provided about the options
presented in that choice set. This choice may be to indicate which option they find most appealing
or which option is least appealing, or sometimes to indicate simultaneously the ‘best’ and the
‘worst’.

In this thesis, we focus on forced choice experiments, where the respondents are compelled to
choose one or more of the options in each choice set. The alternative to this is to provide the
respondent with the opportunity not to select any of the options presented in the choice set. We
do this by adding a none of these option to each choice set.

We present the information about each option in the form of attributes, which take one of
several levels. Attributes describe certain features of an option. Let each option be described by
k attributes, which take one of ¢1, £5, ..., i levels respectively. The experimenter thinks that
these features make a contribution to the decision making process. Each option will then consist
of a combination of the attribute levels, with one level specified for each attribute. We call a

combination of attribute levels an item. This is best illustrated in an example.

B EXAMPLE 1.0.1.

Adapted from Phillips et al. [2002]

This experiment was conducted to examine preferences for HIV test methods. Some of the
attributes tested, and the levels the attributes may take, are shown in the Table 1.1. We see
that there are k = 4 attributes: Location, Price, Sample collection, and Timeliness/accuracy.
The levels for the Location attribute, for example, are Public clinic, Doctor’s office, and Home,
so £1 = 3. Table 1.2 shows a typical choice set with m = 2 options that could be presented to a

respondent. O

Once the choices have been collected from respondents we use the data to estimate a choice

model, such as the multinomial logit model (MNL model), formally introduced in Section 1.1.




Attributes Levels
Location Public clinic
Doctor’s office
Home
Price $0
$10
$50
Sample collection Draw blood

Timeliness/accuracy

Swab mouth/oral fluids

Urine sample

Results in 1-2 weeks, almost always accurate
Immediate results, almost always accurate

Immediate results, less accurate

Table 1.1: Attributes and levels for the HIV test experiment

Attribute Option 1 Option 2
Location Public clinic Home

Price $10 $50

Sample Collection Draw Blood Urine sample
Timeliness/Accuracy Results in 1-2 weeks, Immediate results,

almost always accurate less accurate

Imagine that you were about to undergo a HIV test.

Which testing method would you prefer? (tick one only)
Option 1 O Option 2 O

Table 1.2: A typical choice set for the HIV test experiment
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We then use this choice model to determine the relative contribution of each of the attributes to
the desirability of the items presented in the experiment.

To estimate the model accurately, the researcher needs to ensure that these experiments do
not place an undue burden on the respondents. This need to collect as much information as
possible in as few choice sets as possible means that the efficient design of the choice sets to be
included in the choice experiment is an important consideration.

The goal of this thesis is to extend the current theory on the efficient design of choice exper-
iments. This extension includes optimal design theory that allows for ties, or for the estimation
of position effects, or that have smaller starting designs.

In this chapter, we review the existing results that are relevant to the design and analysis of
choice experiments. We begin by introducing the basic models for analysing choice experiments.
We continue by introducing a method for constructing choice experiments from the standard
designs introduced in the appendix of this chapter. We conclude by reviewing the currently
known results that give optimal designs for these choice models. The appendices to this chapter
review some useful definitions and other results from discrete mathematics, and more specifically,

design theory.

1.1 Models for Choice Experiments

In this section, we look at the models that are commonly used to analyse choice experiments.
We begin by looking at paired comparisons experiments, in particular the Bradley—Terry model.
We then look at some extensions to the Bradley—Terry model, which will form the motivation
for later chapters. We conclude this section by looking at the multinomial logit model, which

allows for an arbitrary choice set size.

1.1.1 The Bradley—Terry Model

Paired comparisons modelling was made popular by Thurstone [1927] who conducted an exper-
iment to determine the relative seriousness of a set of 19 offences. Thurstone presented pairs
of offences to the respondent, and asked them to select the offence that they considered more
serious. For example, the author asked respondents the choose between bootlegging and arson,
or between homicide and vagrancy. He presented 171 pairs in total.

The model used in Thurstone [1927] was improved upon by Bradley and Terry [1952] by
changing the distribution of the error term in the model. This improved model is called the
Bradley—Terry paired comparison model, or simply the Bradley—Terry model.

The Bradley—Terry model was first used to analyse information obtained during taste testing
experiments. In these experiments, the respondent was presented with two food samples, and
was asked to indicate which tasted better. We estimate the relative merit of each item using
the preferences collected. We denote the merit of an item 7T; as m;, and impose the normalising

constraint
t
H T, = 1.
i

We use these merits to find the probability of selecting a particular item 7; when compared

to another item T;. When item T; appears with item T} in a choice set, then the probability
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that item T} is selected from the choice set is

Uy

P(GHT, T;}) =

T+ T ’

Bradley and Terry [1952] derive the likelihood function and maximum likelihood estimates for
the entries in m when testing particular hypotheses, and consider appropriate test statistics. The
likelihood function is the joint distribution function for the model parameters given a particular
sample. That is, if we let f(x|#) denote the joint probability density function (PDF) of the
independent sample X = (X1, ..., X,,), then if we observe x the likelihood function is given by

L0x) = f(x,0).

We can use this likelihood function to find the estimates for the parameters in € that fit the
data well. We call these values the mazimum likelihood estimators (MLEs). The MLEs 6 for the
parameters 0 are the values of # that maximise the likelihood function.

In practice, we maximise the log—likelihood function by differentiating with respect to each
parameter, and setting the derivative to 0. The resulting system of equations are called the
normal equations.

We find the MLEs by solving the normal equations simultaneously. We can also find the
variances and covariances of the MLEs. The Fisher information matriz I¢(0);; for a design & is
the inverse of the variance—covariance matrix, and has elements

e R T )

If we let ;5 be the rank given to item 7; in the b repetition of the comparison between

items T; and T, then the likelihood function is given in the next theorem.

B THEOREM 1.1.1.
(Bradley and Terry [1952]) The likelihood function for the Bradley—Terry model for s repetitions
of N pairs of items is given by

H W?S(N_l)_2j¢i 26 Tigb

(2

L(m|r) = —
[+ mj)ren
1<j
where ng; jy is the number of times the choice set {1}, T} is presented in the choice experiment.

O

Both Zermelo [1929] and Ford [1957] consider the convergence requirements for paired compar-
isons models. Zermelo [1929] examines the convergence requirements for the Thurstone paired
comparisons model, and Ford [1957] considers the convergence requirements for the Bradley—
Terry model. The assumption that guarantees the convergence of m estimates in the Bradley—
Terry Model is “if in every possible partition of the objects into two non—empty subsets, some
object in the second set has been preferred at least once to some object in the first set” Ford
[1957].

The Bradley—Terry model is further developed by [Bradley, 1954a,b, 1955]. In particular,

Bradley [1955] considers some large sample properties of the parameter estimates. In Bradley
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[1955], Bradley gives the expectation, variance and covariance of the number of times an item is
chosen. Bradley continues by giving asymptotic joint distributions for the maximum likelihood
estimates of the parameters in the 7 vector. We let w;c be a selection indicator which takes the
value 1 if item T; is selected from the choice set C' = {T},T;}, and zero otherwise. We also let

w; = Zcmec wi|c-

B THEOREM 1.1.2.
(Bradley [1955]) The selection indicator w;y; ;3 is a binomial random variable with expectation

mi(m + ;)" and variance mimwj(m; + m;) 2. Then

Ew(wi) = Z (7T17TTZ7'Q)7

C|T;eC
T
Varg (w;) = —
T (Wi Cszi;C (’]'('Z' + 7Tj)2
and
77’(1'71']'
Covg(w;,w;) = —-——.
( (3 J) (ﬂ-z + 7.‘-])2 D
H THEOREM 1.1.3.
(Bradley [1955]) If #1,...,7—1 are the maximum likelihood estimates of my,...,m_1 then the
joint limiting distribution of \/n(f1 —m1),...,\/n(Ft—1 — Te—1) is a normal distribution with
zero mean, subject to some regularity conditions. O

One of the original limitations of the Bradley—Terry model was “where observations do not
come from a single population but from distinct but related populations, related in the sense
that some populations reasonably may be assumed to have some parameters in common”. This
observation is made in Bradley and Gart [1962].

Bradley and Gart [1962] introduced some conditions that ensured that the estimators for the
parameters remained consistent, and that the asymptotic distributions were unaltered, despite

sampling from associated populations. These conditions are:
e Existence of the first three partial derivatives of the distribution function;

e The first three derivatives of the distribution function must be bounded and convergent

almost everywhere; and
e The information matrix for the parameter estimates is positive definite,

where we define associated populations to be a set of distinct, but related, populations.

Another restriction that was originally placed on the Bradley-Terry model was that each pair
needed to be replicated the same number of times. This restriction is relaxed in Dykstra [1960],
who derives likelihood estimates and sets up appropriate hypothesis tests when the number of
times each pair appears in the experiment is allowed to vary.

The Bradley-Terry model has some useful properties. The first is that the model is consistent
with a set of choice axioms proposed by Luce [1959]. Luce introduced a set of choice axioms
based on a probability measure P € [0,1] to describe and model the behaviour of a rational

individual.
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B AXIOM 1.1.4.

Luce [1959] (Luce’s Choice Axiom)

Let T be a finite subset of U (the set of all possible alternatives) such that for every S C T, Pg
is defined.

1. If P(x,y) # 0,1, then for allz,y € T, and all RC S C T, Pr(R) = Ps(R)Pr(S), and

2. If P(x,y) =0 for some x,y € T, then for every S C T, Pr(S) = Pr_;;1(S — {z}).

We demonstrate these ideas with an example.

B EXAMPLE 1.1.1.

Consider the choice of the mode of transport used to travel to work. Suppose that there are four
options, car, car pool, bus and train. The first two of these modes are private, and the other
two modes are public. Then according to the first part of Luce’s choice axiom, the probability

of choosing to drive a car is
P(car) = P(private) x P(car|private).
According to the second part of the axiom, if P(train) = 0 then
P(public) = P(public but not train). [

Luce discussed this model in terms of utility. Utility is the perceived benefit that the re-
spondent experiences by choosing a particular option. If an option 77 has a higher utility than
another option 75, then a rational respondent will choose T7. We can decompose utility into two
components, a deterministic component and a stochastic component. That is, the utility of an

item T; experienced by respondent a can be expressed as
Uai = Vai t+ €ais

where V,,; is the deterministic term based on observed attributes, and €,; is the stochastic term,
which captures any attributes that are relevant, but not specified in V;.
Utility is linked to the Bradley—Terry model by letting

T, = 6%.

The deterministic component of utility, V,;, can be further decomposed into a linear com-
bination of attribute levels, and interactions between attributes. In matrix form this would
be

U, = B,BXa + €q,

where X, is the design matrix for respondent «, and Bf is a matrix of estimable contrasts, with
contrast coefficients in B. The goal of a choice experiment is to produce good estimates for the
contrasts in BB, and thus make predictions about respondent behaviour.

Bradley and El-Helbawy [1976] discuss the estimation of contrasts when fitting a Bradley-
Terry model, and derive maximum likelihood estimators for the matrix of contrast effects, BS.
The following definition sets up the notation Bradley and El-Helbawy used to estimate contrasts

of the attribute effects, which we will use later.
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El-Helbawy and Bradley [1978] show that the information matrix for v sN@ can be expressed

B oln fgi, sy .a(W,m) oln fii, isya(W,m)
I(m)ij = Y Miria) B (< om; Om; ’

i1 <i2

as

where the summation is over all distinct choice sets in the design.
We define X(m,) to be the variance—covariance matrix for vsN+, where v = In(w). Then
El-Helbawy and Bradley [1978] show that the estimates for Bpy are statistically consistent, and

find the asymptotic distributions of these estimates.

B THEOREM 1.1.5.
(El-Helbawy and Bradley [1978]) Given that

1. In every partition of the indices 1,...,t into two non—empty subsets S1 and So there exists

i € S1 and j € Sy such that Ay; j3 > 0 where we define

- Y65y
Moy = Jim

fori#j,andi,j=1,...,t,

2. each element of the probability vector ™ is positive, and

PR B P
. Ba ¥ = a+1;

then \/N(¥ —~) has a limiting distribution function that is singular, t-variate normal in the

space of (t —a — 1) dimensions with zero mean vector and variance—covariance matriz
Sy (m) = BpX(m)By = (C(m)) ™" O

El-Helbawy and Bradley [1978] show that the entries of A(r) = (X(m))~! are given by

.
A()y = Z /\{i’i2}7zz7 and
ciTiec (m; + i)
T;T5
A(m)ij = —)\{m}mv

where the summation is over all choice sets, and A; j; was defined in Theorem 1.1.5. Under the

null hypothesis of equal merits, these entries become

1
A(ﬂ'o)” = Z Z )\{i,i2}7 and
C|T;eC

1
A(mo)ij = =7 Afig)-

1.1.2 Extensions of the Bradley—Terry Model

Researchers have made several extensions to the Bradley—Terry model to accommodate differ-
ent situations which arise in investigating choice behaviour. Amongst these are models that
incorporate ties and position effects, and loglinear forms for the Bradley—Terry model. We now
introduce these extensions. Chapters 2-5 look at these models in greater detail, as well as some

generalisations of these models.
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Incorporating Ties

As we have mentioned previously, in most discrete choice experiments we force the respondent
to choose one of the options presented, or in some cases we allow them to choose none of them.
There are some occasions where this is not ideal, and we would like to allow a respondent to find
sets of two or more options equally attractive.

Before we discuss how ties could be incorporated into utility theory, let us consider the
meaning of a tied preference. In the absence of tied preferences, if two options were equally
preferable we would expect that the respondent would choose each of the options with probability
0.5. In the presence of repeated choice sets, this may be interpreted as inconsistency, rather than
random selection, on the part of the respondent. It is important to note that even by adding the
option of tied preferences, there is still a random element in the choices made by respondents.
That is, a respondent may state a tied preference between two options on one occasion, but
choose one of the items when presented with the same pair on a different occasion.

A tied preference does not mean that the respondent is choosing both of the options, nor
does it mean that are they choosing neither of the options. While this might be the intention
when allowing the respondent to state equal preferences, it might not be reason the respondent
made that decision. The respondent might choose to tie because they do not want to accept (or
reject) either of the options, or perhaps even because they are unable to evaluate the options.
From this point on, we assume that a respondent declares a tie only when they find the options
equally preferable.

In terms of utility theory, we can interpret this indifference as a result of the utilities of the
two options being too close in value to be distinguishable by the respondent. This idea was
initially introduced by Glenn and David [1960], who extended the Thurstone—Mosteller model
to incorporate ties. Rao and Kupper [1967] were the first authors to incorporate ties into the

Bradley—Terry model.

B THEOREM 1.1.6.
(Rao and Kupper [1967]) Suppose that there exists a utility threshold n such that if the utility
differs by less than n then the respondent will declare a tie, and let @ = €. Then the preference

probabilities will be

i
P(THT, T4} = P
i j
o
P(T;{T:, T;}) T o
i T T
PUT TT 1)) = — D)
PRI (w4 O (O + ) O

We call this the Rao—Kupper ties model.

One failing of the Rao—Kupper model is that it is not consistent with Luce’s choice axiom
as shown by Davidson [1970]. That is, the Rao—Kupper ties model does not satisfy the criterion
that for P(T;|{T;,T;}) # 0, we require

PTUT.TY) _m

P(T{Ti, T;})  m;'

as is the case in the Bradley—Terry model. Davidson then derived a modification of the Bradley—

Terry model that incorporates ties and is consistent with this criterion. Davidson suggests
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that the probability of a tie between items should be proportional to the geometric mean of the
merits of the items that are found to have similar merit (i.e. 7, ;3 = v\/77;). As a consequence,
when the utilities of the items are similar, the probability of a respondent stating that they are
indifferent between the items will be greater. The Davidson ties model is introduced in the next

theorem.

B THEOREM 1.1.7.
Davidson [1970]) Assuming that v is independent of items T; and T;, then the preference prob-
J

abilities with ties incorporated into the Bradley—Terry model are

o
? J (2]
P(T{T:, T;}) = 7 and

)
7Ti+’/Tj+V\/m

V. /T;T;
P{T;, T;}{T3, T;}) ﬁ,HTT 2
? J \/W =

Davidson suggests that v > 0, or rather 1/v is a measure of how easily the respondent can

discriminate between items. If v = 0, then the respondent will never state a tied preference, since
_ 0

P(T, T|T, T;) = o

Terry model. Furthermore, Davidson assumes that if there are no tied preferences stated by any

In this situation, the Davidson ties model simplifies to the Bradley—

of the the respondents then the Bradley—Terry model should be used instead. We make the same
assumption in this thesis.

As v becomes infinitely large, the probability that the respondent states a tied preference
approaches 1. Suppose that 7; = m; = 1. If v = 0, then P(T;|T;,T;) = P(T;|T;,T;) = 0.5, and
P(T;,T;|T;,T;) = 0. If v = 1, then P(T;|T;,T;) = P(T;|T;,T;) = P(T;,T;|T;,T;) = 1/3. Finally
if v =4, then P(T;|T;,T;) = P(T;|T;,T;) = 1/6, and P(T;, T;|T;,T;) = 2/3. So we see that as v
increases, the probability that the respondent states a tied preference increases as well.

de Dios Ortuzar et al. [2000] presents a paired comparisons experiment with ties to determine
the demand for a cycle-way network in Santiago, Chile. While the authors do not elaborate on
how these tied preferences are incorporated into the modelling, the survey instrument that they
use does give the option of stating that the items presented are equally preferable.

Grutters et al. [2008] also give respondents the option of a tied preference in their paired
comparisons experiment to determine the willingness to pay for hearing aids. These authors
used a random effects ordered probit model to model the choice behaviour. Such an approach
is reasonable in a paired comparisons experiment, but there is no intuitive generalisation to an

arbitrary choice set size.

Incorporating Position Effects

Another extension to the Bradley—Terry model that has been considered in the literature is the
incorporation of position effects. A position effect models incorporates the effect that the position
the item takes within the choice set has on the probability that the item will be selected. Beaver
and Gokhale [1975] were the first authors to consider incorporating position effects, which they
assumed were additive, into the choice model.

Davidson and Beaver [1977] argue that it is be more natural to consider a multiplicative
order effect for choice sets of size 2. Suppose that there is a new parameter 1);; > 0 which, when

multiplied by the utility of the treatment presented second, inflates or deflates the merit of an
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item to reflect the effect of the item being presented in the second position of the choice set.
Then the value of 9;; determines how the position effect alters the merit of an item. If ¢;; < 1
then by presenting an item in the second position, it is less likely that the respondent will choose
the item than if it were presented in the first position, all other things being equal. Conversely, if
;5 > 1 then by presenting the item in the second position, it is more likely that the respondent
would choose the item than if it were in the first position, all other things being equal. If 9;; =1

then there is no position effect at all.

B THEOREM 1.1.8.
(Davidson and Beaver [1977]) Suppose that the items T; and T; are presented in that order.

Then the selection probabilities of the Davidson—Beaver position effects model are

T

PTNTT)) = oy and
2 YR
Vi T

PLITLT)) = o O
2 YR

We call this the Davidson—Beaver position effects model. For simplicity, we will assume that
the position effect is independent of the items in the choice set. That is, 1;; = 1 for all i # j.

Tharp and Marks [1990] undertook a study to determine whether such position effects were
present when comparing three different brands of either beer, cars, or furniture. In these experi-
ments the researchers performed an analysis of variance on the partworth utilities, and found no
significant position effect. Chrzan [1994] also tested the effect of position, but on the selection
of a mail order fashion accessory clubs. He found that position effects did exist when branded
alternatives were used.

van der Waerden et al. [2006] also considered the effect of the position of an item on the
perceived merit on the item when comparing modes of transport. Like Chrzan [1994], the alter-
natives were labelled, in this case the labels were bicycle, public transport and car. The authors
found a small but significant position effect, with respondents appearing to focus on the items

presented later in the choice set.

Incorporating Ties and Position Effects

Davidson and Beaver [1977] extend the Davidson-Beaver position effects model to incorporate
ties. The authors used the methods introduced by Rao and Kupper [1967] and Davidson [1970]

to incorporate ties. The next theorem gives the extended Davidson ties model.

B THEOREM 1.1.9.
(Davidson and Beaver [1977]) Suppose that the items T; and T; are presented in that order.
Then the selection probabilities of the Davidson—Beaver extension of the Davidson ties model to

incorporate position effects are

U
P 7‘; T“T = ’
(T31( i) 7Ti+1/)ij7rj—|—y\/7T'/Tj
PG, T)) = = wij:j Wil
Ti T YijTj T Vy/TiT;

V. /T;T,
PAT, TH(TTy) = W,er.;r/?,
i+ Yy v/ =
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Each of the models presented in this section can be expressed as a loglinear model. Fienberg
and Larntz [1976] show that the expected number of times that one option was selected over
another has the same maximum likelihood estimates as those for the loglinear model. The

loglinear model for the Bradley—Terry model is given by

ln(mijl) V; + Aij7 and

In(mije) = Vj+ Ay,

where m;;1 = n;;p;i;1 is the expected number of times item 7; will be selected when items 7; and
T; are presented in a pair, and V; is the deterministic component of the utility of item T;. A;j;
is a normalising constant, and is the effect of the choice set as a whole in the final model. The

loglinear form of the Davidson Ties model is given in Critchlow and Fligner [1991], and is

In(mj1) = Vi+ Ay,
ln(mijg) = ‘/] + Ai]‘, and
1
In(mijs) = @)+ (Vi + Vi) + Aij.

The loglinear form for the Davidson—Beaver position effects model, as introduced by Fienberg
[1979], is

In(mgj1) = Vi+In(r) + Ay,
In(mgjz) = Vj+In(y2) + Ay, and

1
In(mijs) = @)+ (Vi+Vj) + Aij.

Without ties, the position effects model becomes

In(mi1) = Vi+In(Yr) + A, and
ln(mijg) = V} —+ hl(wg) —+ Azg

One restriction on the Bradley—Terry model and on all of the models presented in this section
is that the respondent compares only two options at a time. It is sometimes more efficient to
compare more than two items at a time. To do this, a new model is required. We discuss this in

the next section.

1.1.3 The Multinomial Logit Model

One of the disadvantages of the Bradley-Terry model is that it restricts the experiment to paired
comparisons. This means that it is not possible to model the selection of one item from a set of
three or more items.

Luce [1959] extends the Bradley-Terry model to accommodate the comparison of more than
two items. Suppose that we present m items C = {T},,...,T;, } to the respondent. Then we can
estimate a merit, m;,, for each of these items. As in the Bradley—Terry model, we let V; = In(mx;)
be the deterministic part of the utility function. Then the probability that the item T; € C is

chosen is
U

Z;n=1 ﬂ-ia .
We call this model the multinomial logit model (MNL model). In this form, we notice that the
Bradley—Terry model is a special case of the MNL model with m = 2. The MNL assumes that

P(T3|C) =
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the unobserved components of the utilities, €,;, are independently and identically distributed
with a Type I extreme value distribution with a mean of 0. The probability density function for

this random variable is
. _e Caj
fleaj) =€ e ¢ ™, where — 0o < € < 0.

McFadden [1973] shows that this model is consistent with Luce’s choice axiom.
Burgess and Street [2003] show that the entries in the information matrix for the estimation

of the entries in v = In(w) are given by

A(m)y; = m; Z )‘C((Z;%l Ti,) — Ti) o

C|T;ec (a1 i)

Ac
Am)yy = —mm; Y

~m Vo
C|T;, T;eC (Za:l Tria)

where Ao = n¢ /N, and n¢ is the number of times the choice set C = {T;,,T},, ..., T;, } appears

in the experiment. Under the null hypothesis of equal merits, these entries become

A(‘Iro)”' = m= 1 Z /\C, and

mQ
C|T;eC
1
A(mo)ij = e} E Ac.
ClTi,T]‘EC

The MNL model assumes what is called Independence from Irrelevant Alternatives (ITA). This
means that the probability of choosing an option 7; over another option T} does not depend on
any of the other options in the choice set. This also means that when an option is added or
removed, that the change in selection probability is proportional across all options in the choice
set. This is called proportional substitution. That is, if we change an attribute of item 7},, and
denote the probability before the change with superscript 0, and after the change with superscript

1, we have

ni ni
1 = p0 -
P, j P J

While the ITA assumption is a very useful assumption in terms of modelling ease, it is occa-

Pl PO

sionally an inappropriate assumption. The next example show a case where ITA might reasonably

be violated.

B EXAMPLE 1.1.2.

Recall the AIDS test experiment in Example 1.0.1. Suppose that we present the choice set in
Table 1.3 to the respondents, and the options are selected in the proportions given in the last
row of the table. Notice that the proportion of respondents who selected Option 2 is four times
the proportion who selected Option 1.

Now suppose that we add a new option, identical to Option 1 except that the test is performed
by Doctor B. We would expect that the selection proportions for Options 1 and 3 would be equal.
From the ITA assumption, the proportion for respondents selecting Option 2 must still be four
times the proportion selecting Option 1. Then the choice set and selection proportions become
those in Table 1.4.

It is unreasonable to suggest that, by adding another generic doctor with identical attributes
to the first, half of the respondents who preferred the home test over a doctors appointment

would now prefer a doctors appointment over the home test. O
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Attribute Option 1 Option 2
Location Doctor A Home

Price $100 $10

Sample Collection Draw Blood Swab mouth
Timeliness/Accuracy Results in 1-2 weeks, Immediate results,

almost always accurate less accurate

Selection Proportion  20% 80%

Table 1.3: Choice set for AIDS test experiment with selection proportions

Attribute Option 1 Option 2 Option 3

Location Doctor A Home Doctor B

Price $100 $10 $100

Sample Collection Draw Blood Swab mouth Draw Blood

Timeliness Results in 1-2 weeks, Immediate results, Results in 1-2 weeks,
/Accuracy almost always accurate less accurate almost always accurate

Selection Proportion 16.7% 66.7% 16.7%

Table 1.4: Choice set for AIDS test experiment with additional option and selection proportions

1.2 Choice Designs from Fractional Factorial Designs

In this section, we look at a method for constructing of stated choice experiments from some
standard designs. Appendix 1.B provides a review of these standard designs. We will use the
designs constructed using this method to form the set of competing designs later in the thesis.

We begin with a starting design. The starting design is an N X k array, usually a factorial
design or an orthogonal array. The N rows in this starting design form the first options in each
of the IV choice sets.

B EXAMPLE 1.2.1.

Consider the experiment introduced in Example 1.0.1. This experiment has 4 3-level attributes.
A potential starting design is the OA[9,4, 3,2] in Table 1.5. This means that the first option in
the last choice set is (2210), which translates to the item described in Table 1.6. O

In order to obtain the other options in the choice set, Burgess and Street [2005] suggest the
use of generators, as reviewed in Appendix 1.A. If we have m options in each choice set, then we
need m — 1 further generators to obtain the remaining options from the starting design since we

may as well let g; = (00...0). In general, a choice set is generated using a set of m generators

G = (gl = 07927 s 7gm)
The next example illustrates this idea.

B EXAMPLE 1.2.2.

Suppose that we have an experiment with m = 3 and ¢; = {5 = {3 = {4 = 3, and that we add two
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N NN~ = = ©O O O
N = O N = O N = O
= O N O N = N = O
O N = = O NN = O

Table 1.5: An OAJ9,4,3, 2]

Attribute Option 1

Location Home

Price $50

Sample Collection Swab mouth/oral fluids

Timeliness/Accuracy Results in 1-2 weeks,
almost always accurate

Table 1.6: The option described by the last row of the OA in table 1.5

generators to the starting design, as shown in Table 1.7. Let the first of these be go = (0121).
Then the first attribute of each item remains unchanged, the second and fourth attributes of
each item increase by 1 modulo 3, and the third attribute increases by 2 modulo 3. This gives
the second option in each choice set, as given in the second set of columns in Table 1.7. Similarly,
we add g3 = (1220) to the starting design to obtain the third option of each choice set. Then

each row describes a choice set of size 3, which we would present in turn to the respondent. [

We can characterise a set of generators by looking at which options differ in which attributes.
For example, options 2 and 3 in Example 1.2.2 differ in the first, second and fourth attributes.
We define a difference d between two options a and b to be a vector of length k, there the ¢*" entry
is 1 if the ¢*® attribute takes different levels in these options, and 0 otherwise. So the difference
between options 2 and 3 in Example 1.2.2 is d = (1101). We can combine these differences into
a single vector containing all m(m — 1)/2 pairwise differences. We call this the difference vector,
which is denoted by

v=(di,da, ... dy3m-1)/2)

We now find the difference vector for the set of generators in our example.

B EXAMPLE 1.2.3.

Consider Example 1.2.2. There, we constructed a choice experiment using the set of generators
G = (g1 = (0000), g2 = (0121), g3 = (1220)).

The first and second options differ in attributes 2, 3, and 4, so we express the difference between

this pair of options as d = (0111). Similarly, the difference between options 1 and 3 is d = (1110),
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Option 1 Option 2 Option 3
0 0 0 O 0 1 2 1 1 2 2 0
0 1 1 1 0 2 0 2 1 0 0 1
0 2 2 2 0 0 1 0 1 1 1 2
1 0 1 2 1 1 0 O 2 2 0 2
1 1 2 0 1 2 1 1 2 0 1 0
1 2 0 1 1 0 2 2 2 1 2 1
2 0 2 1 2 1 1 2 0 2 1 1
2 1 0 2 2 2 2 0 0 0 2 2
2 2 1 0 2 0 0 1 0 1 0 O

Table 1.7: The 3* choice experiment from Example 1.2.2

and the difference between options 2 and 3 is d = (1101). Thus the difference vector for this set
of generators is
v =((0111), (1110), (1101)). 0

B EXAMPLE 1.2.4.
Consider a smaller version of the design in Example 1.2.2 with only two attributes which take
three levels each. Then we can use the 32 full factorial design as the starting design. Suppose

that we use the set of generators

G= (gl = (0())792 = (01),93 = (21>)'

Then we obtain the choice sets in Table 1.8. This set of generators has the difference vector

vy = ((01), (10), (11)),

where the differences are written in lexicographic order. This is acceptable since the order of
options within a choice set is immaterial at this point. Table 1.9 gives all of the other distinct
sets of generators that have this difference vector and contain 00. Table 1.10 shows all distinct
difference vectors that give rise to choice sets without repeated items when k = 2 and ¢; = ¢, = 3.

A sample set of generators for each difference vector is also given. O

When considering a choice experiment with m options in each choice set, and each option
described by k attributes, there are several possible difference vectors. We denote these difference
vectors by {vi,vs,...,v;}. For the set of competing designs, if we assume that there are no
repeated items in any single choice set, there are no repeated choice sets in an experiment, and
that all distinct choice sets characterised by a particular difference vector appear equally often
in the experiment, then we can define a series of constants that describe the choice experiment,
as did Burgess and Street [2005]. Let

e iy, be an indicator of whether all choice sets with difference vector v; appear in the exper-

iment,
® ¢y, be the number of choice sets containing the item 00...0 with the difference vector v;,

® 1.4 be the number of times the difference d appears in the difference vector v;,
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Option 1 Option 2 Option 3

0 0 0 1 2 1
0 1 0 2 2 2
0 2 0 O 2 0
1 0 1 1 0 1
1 1 1 2 0 2
1 2 1 0 0 0
2 0 2 1 1 1
2 1 2 2 1 2
2 2 2 0 1 0

Table 1.8: The 32 choice experiment from Example 1.2.4

00 01 10
00 01 20
00 02 10
00 02 20
00 01 12
00 02 11
00 01 22
00 02 21

Table 1.9: All sets of generators with difference vector v = ((01), (10), (11))

Difference Vector Sample Generator
01 01 01 00 01 02
01 10 11 00 01 10
01 11 11 00 01 12
10 10 10 00 10 20
10 11 11 00 10 22
11 11 11 00 11 22

Table 1.10: Difference vectors for an experiment with k =2 and ¢; = {5 =3
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and let yq be defined as
B 2
- k
Nm ][, (g —

We now see how these constants relate to our example.

Yd

. chjivjxvj;w
?
1)is

B EXAMPLE 1.2.5.

Consider the difference vector vy from Example 1.2.4. Since there are 8 sets of generators
characterised by difference vector v; with 00 in the first position of the choice set, one for each
distinct sets of generators in Table 1.9, we have ¢,, = 8. If all of the choice sets that are
characterised by this difference vector are included in the experiment, then i,, = 1, and if none
of the choice sets characterised by v; are included in the experiment, then 4,, = 0. Finally, we
have zy, (00) = 0, Ty, (01) = 1, Ty, (10) = 1, and @y, (11) = 1. Note that in our class of competing
designs either all choice sets characterised by a particular difference vector are included, or none

of them are. O

1.2.1 Contrasts

Next, we consider the construction of contrast matrices for choice designs when main effects are
of interest. These constructions were introduced in Burgess and Street [2005], and are discussed
in more detail in Street and Burgess [2007]. We begin with a matrix of orthogonal polynomial
contrast coefficients for an £, level attribute, denoted by By, . For example, a 2 level attribute

will have a contrast matrix

and a 3 level attribute will have a contrast matrix

-1 L
V2 V2
Bs =
1=z 1
V6 V6 V6

These form the building blocks for the contrast matrices when factorial starting designs are
used. We now consider the construction of contrast matrices for full factorial starting designs, or
subsets of attributes that form a full factorial design. In Chapter 6, we continue this discussion,
considering the construction of contrast matrices for fractional factorial starting designs. We will

begin with an example, and then look at the general case.

B EXAMPLE 1.2.6.

In this example, we will construct the contrast matrix for the estimation of main effects for the
first option in Table 1.8. The first option in this table gives the possible items in lexicographic
order. The items form the column labels of the contrast matrix.

Consider the first attribute. As this attribute can take levels 0, 1, or 2, (0, 1,2) is a row vector
that contains the possible levels of the first attribute. Notice that each entry of this levels vector
appears three times in a row in the first column of option 1. We can turn this into a vector of
levels by taking the Kronecker product of (0,1,2) and jZ, a row vector containing three 1s, to
give

0,1,2) ® j7 =(0,0,0,1,1,1,2,2,2).
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This gives the levels that the first attribute takes in each of the first options of the choice
experiment. Since the contrast matrix Bz has columns containing the contrast coefficients cor-
responding to levels 0, 1, and 2 respectively, the rows of the contrast matrix corresponding to

the main effect of the first attribute are given by

—1 1
Byo L= | Oﬁ®1[111}
Ve 1 -2 1 V3
VAR
o0 01 02 10 11 12 20 21 22
N A
= — 2 V2 V2 2 V2 V2
V3 ,
4+ 1 1 -2 -2 -2 1 1 1
AR R AR ARG

where we multiply 51 by % to satisfy the scale requirement for contrast coefficients.

Now consider the second attribute. The second attribute also takes levels 0, 1, or 2. The
sequence (0, 1,2) appears three times when reading down the second column of the first option.
Again, we use Kronecker products to obtain a row vector corresponding to the levels of the

second attribute. We have
j3 ©(0,1,2) = (0,1,2,0,1,2,0,1,2).

Then we can make the same transformation to B3 to obtain the contrast coefficients correspond-

ing to the main effect of the second attribute. After scaling, this gives

—1 1
Lirep—L11 1]el” G
ton-dli]
N V3 1 -2 1
V6 V6 V&
00 01 02 10 11 12 20 21 22
LTG0 530 %0 h
= —F= 2 2 2 2 2 2
V3
1 -2 1 -2 1 1 =2 1

1
V6 V6 V6 V6 V6 V6 V6 V6 V6

Then we see that the scaled contrast matrix for the estimation of main effects is

00 01 02 10 11 12 20 21 22
-1 -1 -1 1 1 1]
noweowe 000 B E A
1 4 1 1 =2 =2 =2 1 1 1
Br = ﬁ V6 V6 V6 V6 V6 V6 VB V6 V6
=1 9o XL = g X =L g L
V2 V2 V2 V2 V2 V2
1 =2 1 1 == 1 1 =2 1
L ve Vv6 V6 V6 V6 V6 V6 V6 V6
B3®%jg
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O

In general, we consider a complete factorial design F, with k attributes, which take
£1,0y, ..., 0 levels respectively. We can order the combinations of attribute levels in lexico-

graphic order, giving

0

0 b —1

1 0

bh—1 bo—1 ... b1 —1 ¥4 —1.

If we order the columns of the contrast matrix to correspond to the items in this order, we
obtain a neat structure for the contrast matrix. We use Kronecker products to describe this
structure.

Consider the first attribute. The first £ x f3 x ... x £}, columns of the contrast matrix will
correspond to attribute level 0. The next f5 X £3 X ... X £, columns of the contrast matrix will
correspond to level 1. This pattern continues until the final /5 x f3 X ... X £} columns of the
contrast matrix, which correspond to level £; — 1. then we can express the rows of the contrast
matrix corresponding to the main effect contrasts for the first attribute as

By, ®%jg®...®7%jg,
where j, is a vector containing £, 1s.

Now consider the second attribute. When written in lexicographic order, we see £3 x4 X. .. X0,
0s, followed by f3 x €4 X ... x £ 1s, and so on. this sequence is repeated ¢; times. As a result,
we may express the rows of the contrast matrix corresponding to the main effect contrasts for
the second attribute as

1 .T 1 .T 1 T
— ® By, ® — Q... —=Jy,-
\/Ejfl Lo \/gjﬁg \/EJZk

We can continue this process until we reach the final attribute which, when written in lexi-
cographic order, appear as £1 x fo X ... x £;_; repetitions of (0,1,2,...,¢, —1)T. Then we can
express the rows of the contrast matrix corresponding to the main effect contrasts for the final
attribute as

1 . 1 .
Ji, ®...0 ——j;  ®DBy,.

V ’gl \/ £k7 1
Finally we obtain the main effect contrast matrix

1 T 1.7 1 LT 1 .7
By, ® ﬁ]% ® ﬁj% ® ... ® \/szk_l ® ﬁjfk
1 T 1 ;T 1 -T 1 T
B B \/ngl & B[2 & ﬁ]ga & e ® \/Zki_]gk71 ® ﬁjék
1 T 1 T 1 T 1 =T
| vadn @ URde © URdn © - ® =i, @ Buo |

Now suppose that we would like to reorder the columns of B to reflect the addition of a
generator g; to the design F'. We find this technique is useful in Chapter 6 when we consider the

optimal selection of a set of generators when we use a fractional factorial starting design.
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The addition of a generator g; = (¢i,1,6:,2,- .-, 9ik) to a design F reorders the levels of each

attribute. The next example illustrates this idea.

B EXAMPLE 1.2.7.

Suppose that we would like the order of the columns of Br to be determined by the items in
the second position of the choice sets in the experiment in Table 1.8. We obtained the items in
the second position of the choice set by adding a generator to the items presented in the first
position. For the first attribute, we left the attribute levels unchanged, so there is no need to
change the contrast coeflicients in the first two rows of Br. For the second attribute, we added
1 modulo 3 to the level of that attribute. That is, the Os became 1s, the 1s became 2s, and the
2s became 0s. We can use a permutation matrix, as introduced in Section 1.A to permute the

entries in the levels vector accordingly. Let

0 0 1
P = 1 0 0|,
01 0
then
0 0 1
(0,1,2)- P, =(0,1,2)- | 1 0 0
0 1 0

= (1,2,0).
We then use Kronecker products to obtain
s ®((0,1,2)- P1) = (1,2,0,1,2,0,1,2,0),

the second column of the second option.
If we post—multiply B3 by P; then we permute the columns of B3 to reflect the addition of
1 to the column labels. That is,

—71 0% 0 0 1
2 2
B3P = 1 0 0
1 =2 1
L v6 v6 6 1|0 10
_ o
R
2 o 1
L v6 V6 V6 |

So the contrast coefficients for the main effect of the second attribute are given by

g L =1
1 .7 1 V2 V2
——@BP=—[11@®
Ve (BsF1) V3 2 1 1
76 V6 G
01 02 00 11 12 10 21 22 20
1 0 e § 0 1 =1 0 1 =1
= N N i V2
V3
—2 1 1 -2 1 1 -2 1 1
76 V6 V6 V6 V6 V6 V6 V6 Vo
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For consistency, when permuting the columns of Bs for the main effect of the first attribute, we

can post—multiply Bs by Py = I3, which corresponds to the addition of 0 in the generator. This

gives
(B3P92,1) by %Jg
BF+92 = .
%J? ® (B3P92,2)
01 02 00 11 12 10 21 22 20
[ -1 -1 -1 1 1 1]
2we e 000 5B 5%
4+ 1 1 =2 =2 =2 1 1 1
= V6 V6 VB V6 VB V6 V6 V6 VB
1 -1 1 -1 1 1 |
0O 2w Y w0 B
=2 1 1 =2 1 1 =2 1 1
L V6 V6 V6 V6 V6 V6 V6 V6 V6
where g1 =0, and g2 o = 1. ]

We can use permutation matrices to capture this reordering. We define the permutation
matrix Py, = by
1

0, otherwise.

(P o = { , ifz+giq=y mod/{,,

This permutation matrix will reorder the columns of B, to reflect the addition of g; 4 to the
column labels. This addition need not be modulo ¢, but could be within any finite group that
is closed under addition. In Chapter 6, we will also use permutation matrices that reflect the
action of addition within GF[¢].

This idea can be used to give the contrast matrix for F' + g;, Bpyg,. We define Bp_g,
such that if the contrast coeflicients for item 7} are in the 4t column of Bp, then the contrast

coefficients for the item 7} + g; will be in the j'' column of Bryg,. Then Bp.g4, is given by

I 1 ;T 1 T 1T 1 7 ]
B Py © i, © R © - © Nl ® =i
1T 1T 1T 1T
5 T de, ® BoPy, @ =i, © ... @ Vo b ® Tl
F+g; —
Fih ©  Jgih ® Jeif, ©® ... ® —Z=§l, ® BuPy,

1.3 Optimal Designs for Choice Experiments

We now turn our attention to the optimal design for the choice models presented in the previous
section. We begin this section by looking at a few criteria for design optimality. We then review
some of the results in the literature about the optimal design of choice experiments when the
Bradley—Terry model is used, and when the MNL model is used.

Up to this point we have been using I(m) and A(w) to denote the information matrices for
the estimation of the entries in  and 4 respectively. We now let C'(7) denote the information

matrix for the estimation of those contrasts of the entries in 4 that are of interest.

1.3.1 Optimal Design Theory

There are many criteria that may be used to define optimal designed experiments. Atkinson

et al. [2007] provide a comprehensive list of optimality criteria. In this section, we will consider
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three of these, D-optimality, F—optimality, and A-optimality. In the remainder of the thesis, we
will concentrate on the D—optimality criterion.

All three optimality criteria considered in this section depend on different properties of the
variance—covariance matrix. A design is D-optimal if it is the design that minimises the gener-
alised variance of the parameter estimates over the set of competing designs X. That is, it is the
design that minimises the determinant of the variance-covariance matrix. This is equivalent to
maximising the determinant of the information matrix. A design is F-optimal if it is the design
that minimises the largest eigenvalue of the variance—covariance matrix. This is equivalent to
maximising the smallest eigenvalue of the information matrix. A design is A-optimal if it is the
design which minimises the trace of the variance-covariance matrix, that is, minimising the sum
of the variances.

We can also define efficiencies of a design £ using these criteria. The D—efficiency of a design

& will be )
~(det(Co)\ "
Deff(f) - (det(Cgl)> )

when there are p parameters to estimate, and we define det(Copy) = max det(C¢). The A-
€
efficiency of a design £ will be

~tr(Copt)

Aerr(§) = m,
3

when there are p parameters to estimate, and we define tr(C,;plt) = rgmarel tr(C{l).
€

These criteria will not always lead to the same choice of design, as the next example shows.

B EXAMPLE 1.3.1.
Suppose that there are three possible designs in a particular class of competing designs X. These

designs are labelled &1, &, and &3 and have the following variance—covariance matrices.

[T00 L [ 60 10 50 2.0 0
S =507 0|, Se=15] 10 50 10 |,and Tg=|0 2 0
00 7 50 10 50 00 6

Then by taking the inverse of each of these variance—covariance matrices, the information

matrix for the three parameters to be estimated can be found. We get

200 X 312 0 —312 (300

Ce, = = Ce, = — - d Ce =-
a=-|020 [ Co=g55 0 65 13 |, an =50 30
00 2 —312 —13 377 00 1

The determinants, and largest eigenvalues of each of these information matrices, as well as
the traces of the variance—covariance matrices are given in Table 1.11.

So design & maximises det(C, ), design {3 minimises tr(C, 1), and design &; minimises the
largest eigenvalue of C’g 1. Since these designs were the only possible designs in X, design & is
the E—optimal design, and &3 is both the D—optimal and A-optimal design. We can also give

the relative efficiencies between designs.
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Design det(C¢,) tr(Cgl) Largest Eigenvalue of Cgl
& 0.02332 10.5 3.5
& 0.0115 12.31 8.358
& 0.0416 10.0 6.0

Table 1.11: The D—, A—, and E— values for the designs in Example 1.3.1

0.02332\ %
Def‘f(§17§3) = (m)g

= 82.5% )
Deg(&2,83) = (8811112)3
= 65.1%
Aerr(61,83) = %
= 65.0%
Ae(§2,83) = %
= 81.2% -

We see that if one design is optimal based on one criterion, it does not necessarily mean that
it will be optimal based on any other criteria. This is especially so in the presence of correla-
tion between parameter estimates, as each criterion treats correlation differently. D—optimality
incorporates correlation between the parameter estimates through the use of determinants. F—
optimality incorporates covariance by finding the largest eigenvalue of the variance—covariance
matrix, which is dependent on the covariances. A—optimality does not incorporate covariances
into the criterion at all.

While the selection of a set of contrasts to describe a main effect is a valid consideration,
we are able to separate this decision from the choice of design. The next example shows that a
change in the contrasts leaves the determinant of the information matrix C' unchanged, so long
as both sets of contrasts form a basis for the main effects contrast subspace for the corresponding

attribute.

H EXAMPLE 1.3.2.
Suppose that we have two sets of orthogonal contrasts, both forming a basis for the main effects

contrast subspace for a 4-level attribute. The first set will be the set of orthogonal polynomial

contrasts
3 __1_ 1 3
25 25 2v5  2V6
_ 1 1 1 1
By = : "z Tz 3 |

_ 1 3 __3 _1_
245 25 25 25

with the rows labelled a1, a2, and as. The second set will be a set of contrasts that treat the
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levels as a 22 design, with the third row being —bibs component—wise. This gives
1
B4(2) — 5 —]_ 1 —]. ]. 5

with the rows labelled by, bo, and b3.
We can find a linear transformation that maps the rows of By(1) to the rows of By(y), and

another linear transformation that is the inverse of the first. To do this, we set up the system of

equations
a; = hiiby + higby + hi3bs,
ay; = haiby + hooby + hasbs,
az = hziby + hoba + hasbs.

There are 9 parameters to find. We can use the orthogonality properties of the rows of each

of the matrices to find each. To find hy; we multiply both sides of the first equation by b?
al.b{ = hllbl-b? + hlgbg.b{ + hlgbg.b{.

We notice that since the rows of By(y) are orthogonal, as.b] = a3.b] =0, and as a result of the
scaling of the rows, by.b7 = 1. Thus

hi1 = al.blT.
Through multiplication, we obtain )

hi1 = —.
11 N

We can repeat this process for the other parameters, yielding a system of equations

o] [3 & 0] [w
ay | = 0 0 -1 ]| x| by
as % % 0 bg
B4(1) = RB4(2).

By matrix multiplication, we can show that R is an orthogonal matrix, that is R~!' = RT.

Orthogonal matrices have a determinant of 1.

Suppose that the information matrix when using the first contrast matrix is
C = 34(1)AB4T(1)7
and the information matrix when using the second contrast matrix is
Cy = By2)ABj )

We can use the orthogonal property of R, and the fact that R is square to show that C7 and Cs

have the same determinant
det(Cy) = det(B4(1)AB4 1)
= det(RB4(2)AB 2)R )
= det(R) det(By(2)ABj5)) det(R")
= det(R) det(Cy) det(RT)
= det(C2),

as required. O
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1.3.2 Optimal Designs for the Bradley—Terry Model

This section reviews the existing theory relating to the optimal design of paired comparison ex-
periments when the Bradley—Terry model is used. Since the Bradley—Terry model is nonlinear in
parameters, the optimal design depends on the values of the parameters 8. Two main approaches
are used in practice to overcome this problem. The first is to take the view that designs that are
optimal for 8 = 0 will behave well for other values of 8, and use these designs. Other researchers
take a Bayesian approach, and use designs that are optimal over a distribution of values of 8.
The prior distributions of the entries in 8 may come from managers expectations, or from pilot
testing. We will take the first approach in this thesis.

Quenouille and John [1971] introduce the idea of using a subset of the set of all pairs of
items in a choice experiment. The authors establish that by showing a well chosen subset of
the pairs of items to the respondents, these pairs can be used to estimate the effects that are of
interest. The authors continue by conducting a comparison to see which combination of one or
more subsets would be more efficient to estimate certain sets of effects. The authors conclude
that for symmetrical designs with binary attributes the set of all of the pairs which differ in all
of the attributes could be used to construct designs to estimate main effects.

El-Helbawy and Bradley [1978] build on the information matrix for a factorial paired com-
parison experiment, derived earlier in the paper, to look at designs for a 23 factorial experiment.
The authors discuss some optimal designs for the estimation of particular sets of effects. This
was achieved by constructing A(w) = (X(m))~! based on which pairs contribute to each effect,
and then choosing the set of pairs that minimise the determinant of ().

Littell and Boyett [1977] discuss the problem of designing an Rx C factorial paired comparison
experiment. The class of competing designs contained two designs, one with all pairs of items,
and another with only those items that differ in the level of one attribute. The authors find
that when testing a single main effect, the design including all pairs where only the attribute
of interest differs across the options performs better than a design with all pairs. When testing
interaction effects, the authors find that the design with all pairs is more efficient.

El-Helbawy [1984] considers the approaches to the construction of designed experiments that
Littell and Boyett [1977], El-Helbawy and Bradley [1978], and Quenouille and John [1971] intro-
duce. The author suggests that some of the approaches work well under some model situations
(e.g. 2F), while other designs work well for the estimation of some sets of effects (e.g. main
effects only).

El-Helbawy and Ahmed [1984] consider only 2" factorial paired comparison experiments.
The authors use different classes of competing designs for testing different sets of effects. For
example, when testing main effects, two competing designs are used. The first design is the set
of all pairs which differ in an even number of attributes, and the second design is the set of all
pairs that differ in an odd number of attributes. When testing all of the odd—factor interactions,
the author compares the design with all pairs which differ in all of the attributes, and the design
which includes pairs with some common attributes.

The authors find that the design consisting of all pairs which differ in all attributes is more
efficient in the estimation of main effects, whose contrast coefficients are contained in Bj;. The
authors also find that the class of designs where the pairs have all but one attribute the same
are more efficient in the estimation of higher—order interactions than the design with all pairs of

items. The theorem below establishes the former result, where ¢ is the number of distinct items.
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B THEOREM 1.3.1.

(El-Helbawy and Ahmed [1984]) Let & be the design for which A, jy equals % or 0 as T; and T}
differ in the levels of each of the k attributes or not fori # j and i,j =1,...,t. Then when the
rows of By correspond to the Zle(lj — 1) main effects we find that & will be the A, D-, and
E-optimal design. O

This is best explained by an example.

H EXAMPLE 1.3.3.
Let k = 3. Then the set of all distinct pairs which differ in all attributes is shown in Table 1.12.
Each of these pairs will be assigned weight A\ = i, and all other pairs will receive a weight of 0 in

the design. Then by Theorem 1.3.1, this design is optimal for the estimation of main effects. [

Option 1 Option 2

0 0 0 1 1 1
0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

Table 1.12: Optimal 23 design for the estimation of main effects, based on Theorem 1.3.1

Street et al. [2001] show that for a 2% design, A(mg) can be expressed as

k k

k

4A(mo) = (Z <Z>akz> Ik — Zak,ka,i»
=1 i=1

where Dy, ; is a (0, 1) matrix of order 2¥ with the rows and columns labelled by the items, with a

1 in position (z,y) if the items x and y have i attributes at different levels. The term ay; is the

weight given to each pair which differ in the levels of i attributes. The authors show that when

only main effects are of interest, the determinant of the information matrix is

. k
)

i=1
When main effects plus two—factor interactions are of interest, the determinant is

det(C'(mo)wrr) = [;Xk:ak (f:ll)r . [z:“’“ (5:12)

)
i=1

r(k—n/z

subject to the constraint k-1 ZZ (lz)ak’i =1.

Street et al. [2001] use these expressions to find optimal designs for the estimation of main
effects plus two— and threefactor interactions for 2* paired comparisons experiments. The
authors extend the set of competing designs to sets of pairs which differ in the levels of 7 attributes
and prove that the designs which satisfy the condition in Theorem 1.3.1 are still optimal over

this new class of competing designs.

B THEOREM 1.3.2.
(Street et al. [2001]) The D-optimal design for the estimation of main effects and two—factor
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interactions for a 2% paired comparisons experiment when all other effects are assumed zero is

_ -1
g = (2* 1((k+]€1)/2)) i=
' 0 otherwise,

given by:

if k is odd, and
k—1( k\\~" ! . _k k
g = (2 1(k/2)) i=g,3+1
' 0 otherwise,

if k is even. O

H EXAMPLE 1.3.4.
This example will consider two different values of k, k = 2 and k = 3. First, let k = 2, then the
optimal design for the estimation of main effects plus two—factor interactions will consist of all
of the distinct pairs which differ in the levels of % =1or % + 1 = 2 attributes, then as ¢ = 0,
a1 = i, and as 2 = i. This design is shown in Table 1.13.

Now if we let k& = 3, then the optimal design for the estimation of main effects plus two—
factor interactions will consist of all of the pairs which differ in % = 2 attributes, then a3z ¢ = 0,

as1 =0, ag = 1—12, and az 3 = 0. The optimal design is shown in Table 1.14. O

Option 1 Option 2

0 0 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 O

Table 1.13: Optimal 22 design for the estimation of main effects and two—factor interactions
based on Theorem 1.3.2

Optimal designs for 2% paired comparisons designs are also discussed by Grahoff and Schwabe
[2008]. The authors focus on the optimal designs for experiments with either one or two at-
tributes.

El-Helbawy et al. [1994] consider the optimal design of asymmetric paired comparison ex-
periments when only main effects are of interest, and when all pairwise interactions involving
a single factor are of interest. When estimating main effects, the authors compare the design
with all distinct pairs of items to the design with all distinct pairs of items that differ in every
attribute. When estimating interactions involving a single factor, the authors compare the design
with all distinct pairs of items with the design with all distinct pairs of items that differ in only

the attribute involved in all of the interactions.

B THEOREM 1.3.3.

(El-Helbawy et al. [1994]) Consider a €1 X €y X ... X £y factorial paired comparison experiment.
Assuming that there are no interactions present, and that By, consists of the main effects, then
the design consisting of all distinct pairs where the options differ in all of the attributes will be

A-, D—, and E-optimal in the design space. O
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Option 1 Option 2

= = = = = = OO O O OO o O
== = OO == O O O O
— = = O R O~ O ~ O ©o ©
_ O O O +~H O B O R, =k = ©
S = O =0 O O RO
O O B O O K KB O O K

Table 1.14: Optimal 23 design for the estimation of main effects and two—factor interactions
based on Theorem 1.3.2

We illustrate this theorem with an example.

B EXAMPLE 1.3.5.
Consider a 2 x 3 factorial experiment. Then the optimal design will be the set of all distinct
pairs where the items differ in all attributes. For this experiment, the design in Table 1.15 will

be optimal. O

Option 1 Option 2

0 0 1 2
0 1 10
0 2 1 1
1 0 0 2
1 1 0 0
1 2 0 1

Table 1.15: Optimal 2 x 3 factorial design for for the estimation of main effects based on
Theorem 1.3.3

Other research into the optimal design of paired comparisons research focuses on continuous
designs. van Berkum [1987] proves results that give continuous optimal designs for the estimation
of main effects, main effects plus two—factor interactions, and for all quadratic effects. Graflhoff
et al. [2003] prove results that give D—optimal continuous designs in the presence of a so—called
profile constraint. That is, the authors consider designs where subsets of S < k attributes
appear in choice sets. Subsequently GraBhoff et al. [2007] proves results that give some small
exact D-optimal designs for the estimation of main effects plus two-factor interactions in 2F

experiments.
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1.3.3 Optimal Designs for the MNL Model

We now turn our attention to the optimal design of experiments that use the MNL model. Since
the MNL model is nonlinear in parameters, the optimal design depends on the values of the
parameters 3. Like the Bradley—Terry model, in this thesis we take the view that designs that
are optimal for 8 = 0 will behave well for other values of 8, and use these designs.

The optimal design results discussed here will be based on the constructions considered in
Section 1.2. The class of competing designs will include those designs that include all distinct
choice sets with a particular difference vector, or none of the distinct choice sets with a particular
difference vector, as stated in Section 1.2.

There are several results on the optimal design of 2¥ choice experiments when the MNL model
is used. The following theorem gives a method of finding the optimal design for the estimation
of main effects, assuming equal selection probabilities. For a 2* experiment, we define di; to be

the sum of the entries in the (i, j)'" difference.

B THEOREM 1.3.4.

(Burgess and Street [2003]) The D-optimal design for testing main effects only, when all other
effects are assumed to be zero, is given by choice sets in which, for each v; present,

m m?2—1)k
& — (m” —k I ko odd,
E' 17 m2k

5 m even,

and there is at least one v; with a non—zero ay,; that is, the choice experiment is nonempty. []

B EXAMPLE 1.3.6.

Consider a 23 experiment the estimation of main effects only, and with m = 3 options per choice
set. In this situation, the optimal design will have 37, Zj’:z 41 dij = 6. The difference vectors
v; that satisfy this are (011,101, 110), (001,110,111), (010,101,111), and (100,011,111). Then
the set of distinct choice sets which have some or all of these difference vectors will form an
optimal design. This means that there are 15 possible optimal designs. One such design is
shown in Table 1.16. O

Option 1 Option 2 Option 3

0 0 O 0 1 1 1 1 0
0 0 1 0 1 0 1 1 1
0 1 0 0 0 1 1 0 0
0 1 1 0 0 O 1 0 1
1 0 O 1 1 1 0 1 0
1 0 1 1 1 0 0 1 1
1 1 0 1 0 1 0 0 O
1 1 1 1 0 0 0 0 1

Table 1.16: Optimal 22 factorial design for the estimation of main effects based on Theorem
1.3.4

If in addition to the main effects, we also want to estimate interactions between pairs of

attributes, then the next theorem provides a method of finding optimal designs. We define y; to
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be the sum of the ygs where the difference d has i non—zero entries; that is, the proportion of

choice sets which contains each pair with i attributes different.

B THEOREM 1.3.5.
(Burgess and Street [2003]) The D-optimal design for testing main effects plus two—factor in-

teractions when all other effects are assumed to be zero, is given by

m(m—1) (k+1)’1 m even, and i = k/2,k/2+1

oF k)2 )
_ -1 koo~ .
Y = m(glk ) ((k+1)/2) m odd, and i = (k+1)/2
0 otherwise,
when this results in nonzero y;s that correspond to difference vectors that actually exist. O

B EXAMPLE 1.3.7.
Consider the 2% experiment with m = 3 presented in Example 1.3.6. In this situation, the optimal

design for the estimation of main effects plus two—factor interactions will be given by

m(m —1) k “o3x2/3\7! L k+1
=m0 _2xz =02 fi=l"T " 9
Yi oF ((k:+1)/2) 8 (2) 0.25 b=

The values of y; tell us which difference vectors can be used to obtain an optimal design. All
pairs of items in each choice set must differ in two of the attributes, since y; = 0 for ¢ # 2.
Each pair that differs in the levels of two attributes appears in y; = % of the choice sets. Then
all choice sets with the difference vector (011,101,110) will form an optimal design (since each

difference has two non—zero elements). This gives the design in Table 1.17. O

Option 1 Option 2 Option 3

0 0 O 0 1 1 1 0 1
0 0 1 0 1 0 1 0 0
0 1 0 0 0 1 1 1 1
0 1 1 0 0 O 1 1 0
1 0 O 1 1 1 0 0 1
1 0 1 1 1 0 0 0 O
1 1 0 1 0 1 0 1 1
1 1 1 1 0 0 0 1 0

Table 1.17: Optimal 22 factorial design for the estimation of main effects and twofactor inter-

actions based on Theorem 1.3.5

Although 2* designs are quite useful, especially in screening experiments, sometimes we need
attributes which have more levels. Results on the optimal asymmetric designs exist when only
main effects are of interest. To date, there are no results on the optimal design of asymmetric
experiments when main effects plus higher order interactions are of interest. Before we introduce
a result giving optimal designs for asymmetric experiments, we look at an example of such an

asymmetric design.

B EXAMPLE 1.3.8.

Consider a 2 x 4 factorial experiment with m = 4 options per choice set. Let g1 =0, g2 = (13),
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g3 = (02), and g4 = (11). Then the difference vector for this set of generators is
= (01,01,11,11,11,11).

The first attribute contains the difference 1 four times, and the difference 0 twice. For the
second attribute, g;,q — gi,q €quals =1 mod 4 four times, and 2 mod 4 twice, so each non-zero

difference modulo ¢, appears four times. This design is given in Table 1.18. O

Burgess and Street [2005] show that, for a choice experiment with & attributes, A(mg) becomes
m—1 1 D,

A(mo) = Z=2I;, — — %

m m? I (- 1)

where z =} ¢y;ay; and Dg is a (0, 1) matrix of order L with rows and columns labelled by the

)

items, with a 1 in position (z,y) if items x and y have difference d, and 0 otherwise. The authors

show that the determinant of the information matrix for the estimation of main effects only is

k 1 o
det(C(Wo)M):H 2Zyd< (1—4,)t )]

- ly—1

k
:H g_lzcvavjz%, 7

q=1 dlig=1

-1

subject to the constraint Hq 1 1= =1. Since Zd‘z _1 Ty:a is the number of non—zero differences
for the ¢'® attribute, we expect that this sum will be maximised when the number of zero
differences is as small as possible. Then the optimal designs for the estimation of main effects
should consist of choice sets where each pair of options in the choice set differ in as many of the
attributes as possible, for a given m, £, fo, ..., l.

Using the construction method and set of competing designs described in Section 1.2, Burgess
and Street [2005] find optimal designs for the estimation of main effects in an asymmetric exper-

iment.

B THEOREM 1.3.6.

(Burgess and Street [2005]) Let F' be the complete factorial for k attributes where the ¢*" attribute
has 1, levels. Suppose that a set of m generators G = {g1 = 0,g2,...,g9m} such that g; # g,
for i # j. Suppose that g; = (gi1, Gz, - -, ik) for i = 1,...m and suppose that the multiset of
differences for attribute ¢ {£(gi,q—9inq)|1 < i1,92 < m, i1 # ia} contains each non—zero difference
modulo {4 equally often. Then the choice sets given by the rows of F +g1,F +g2,..., F +gpm for
one or more sets of generators G, are optimal for the estimation of main effects only, provided

that there are as few zero differences as possible in each choice set. O

B EXAMPLE 1.3.9.
When the MNL model is used, the design considered in Example 1.3.8 is optimal for the estima-

tion of main effects only. O

Burgess and Street [2005] also show that the determinant of the information matrix for the

estimation of main effects plus two—factor interactions is given by

k o
det(C(mo)mT) H [,:LQ Zyd <1 B (1—1£)“1>]
=1 d ’
. ) 1 . (€qy
<11 11 [7”2 Xd:yd <1 (=L, (1= £g,) e )]

1=1gq2=q1+1

—1)(€gy 1)
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Option 1 Option 2 Option 3 Option 4

0 O 1 3 0 2 1 1
0 1 1 0 0 3 1 2
0 2 1 1 0 0 1 3
0 3 1 2 0 1 1 0
1 0 0 3 1 2 0 1
1 1 0 O 1 3 0 2
1 2 0 1 1 0 0 3
1 3 0 2 1 1 0 O

Table 1.18: Optimal 2 x 4 factorial design for the estimation of main effects based on Theorem
1.3.6

While being able to find optimal designs is desirable, researchers also need to take respondent
burden into account. That is, even if a design is D—optimal, a design with too many choice sets
will place a large burden on respondents. Therefore small, near—optimal designs are also useful
in practice. GraBhoff et al. [2004] provide a discussion of the optimality of designs that are
constructed from orthogonal arrays and from Hadamard matrices for m = 2.

Street et al. [2005] and Street and Burgess [2007] also investigate different methods of ob-
taining small near—optimal designs for choice experiments with arbitrary choice set size. The
authors found that by using a fractional factorial starting design they consistently obtained ef-
ficient designs that allowed for the independent estimation of main effects, or main effects plus
two—factor interactions. Street and Burgess [2007] found that the SAS macros introduced by
Kuhfeld [2005], and the so-called L»# method introduced by Louviere et al. [2000] also provide
near—optimal designs, but in general do not allow for the independent estimation of the effects

of interest.

1.4 Thesis Outline

Chapter 2 examines the Davidson ties model in more detail when m = 2. We find expressions for
the normal equations, and the information matrix when this model is used. We use this infor-
mation matrix to prove results that allow researchers to find optimal designs for the estimation
of main effects and v where attributes take any combination of levels. We also prove results for
finding optimal designs for the estimation of main effects plus two—factor interactions and v for
2% experiments. We then conduct simulations to determine the ability of the designs generated
from these results to estimate main effects and v. We also simulate the designs when main effects
plus two—factor interactions and v are of interest.

In Chapter 3, we introduce a generalisation of the Davidson ties model that allows an arbitrary
choice set size. This generalisation is analogous to the generalisation of the Bradley—Terry model
to obtain the MNL model. In this chapter, we derive the normal equations for the MLEs, and
the information matrix for the estimation of the contrasts in Bj7y. We then prove results that
give the optimal designs for the estimation of main effects and v where attributes take any

combination of levels. We also prove results that give the optimal design for the estimation of
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main effects plus two—factor interactions and v for 2¥ experiments. Again, we use simulations to
investigate the ability of the designs generated by these results to estimate main effects and v,
as well as to estimate main effects plus two—factor interactions and v.

In Chapter 4 we derive the information matrix for the estimation of the contrasts in Bp7y and
position effects when the Davidson—Beaver position effects is used and m = 2. We then prove
results that give optimal designs for the estimation of main effects and position effects where
attributes may have any number of levels. We also prove results that give optimal designs for the
estimation of main effects plus two—factor interactions and position effects for 2¥ experiments.
Once again, we use simulations to investigate the ability of the designs generated by these results
to estimate main effects and position effects, as well as to estimate main effects plus two—factor
interactions and position effects.

In Chapter 5 we introduce a generalisation of the Davidson—-Beaver position effects model
that allows for an arbitrary choice set size. We derive normal equations for the MLEs and derive
an expression for the information matrix for the estimation of main effects and position effects.
We then use this information matrix to prove a general result for finding optimal designs for the
estimation of main effects and position effects. We also find an expression for the information
matrix for the estimation of main effects, two—factor interactions and position effects. In addition,
we discuss designs that are generated by embedding an orthogonal array into a complete Latin
square. Once again, we use simulations to investigate the ability of the designs generated by
these results to estimate main effects and position effects, as well as to estimate main effects plus
two—factor interactions and position effects.

In Chapter 6, we consider designs generated from fractional factorial designs for an arbitrary
choice set size. Specifically, we consider symmetric designs with a prime power number of levels
and constructed using the Rao-Hamming method, introduced in Section 1.B.3. The benefit of
using a fractional factorial design as a starting design is that we present fewer choice sets to
the respondent, while maintaining design efficiency. We derive an expression for the information
matrix for the estimation of main effects, which will be used to prove optimality results for the
estimation of main effects.

In Chapter 7, we provide a summary of the results proved in this thesis, and discuss future

research directions arising from this work.

1.A Basic Algebraic Results

The optimal designs for choice experiments rely on the properties of a number of algebraic
structures. In this section, we review some results from set theory, group theory, and linear

algebra that we use to construct and describe choice designs, and to find optimal designs.

1.A.1 Set Theory

To describe both the choice sets that are presented to the respondent, and the transformation of
one set of items into another, we need to introduce some terminology from set theory. The first
notion is that of a set. We define a set {z1,...,2,} to be a collection of elements, which could
either be finite or infinite.

In Chapters 4 and 5, we consider experiments where the order of presentation is deemed to

be important. Thus we need to describe the choice sets in a way that emphasises the importance
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of order. An ordered set (x1,...,x,) is a sequence of elements that is distinguished both by the
identity of the elements and the order of those elements, that is (a,b) is not identical to (b, a),
unless b = a. We enclose unordered sets in braces {} and ordered sets in parentheses ().
Another common task in the construction of choice experiments is to make a new design
from an existing design by adding some number to each of the levels. We will use generators to

describe this transformation. A generator g is a 1 X n vector which, when added to an n—set

{x1,22,...,2,} modulo ¢ forms a new n-tuple, where the i*® entry is the sum of the i*® entry
in g and the i*" entry in the original set.
H EXAMPLE 1.A.1.
If we have £ = {1,2,4} and add the generator g = {2,2,1} modulo 5, then
z+g=1{1,2,4} +{2,2,1}
={14+22+24+1}
={3,4,0}. O

To describe the generators used to make new designs from old, we need to introduce the
concept of a multiset, which allows elements to appear more than once in the set. This is
necessary because generators do not necessarily have distinct entries. Bogart [2000] define an
r—element multiset chosen from a set S to be an ordered pair (S, f), where S is a set and f is a
function from S to the nonnegative integers such that the sum of the values of f(z) for all z in

S is m. The number f(z) is called the cardinality of x in S.

H EXAMPLE 1.A.2.
Suppose that we have the set S = {0,1,2,3,4}, and the function f(z) is given by

f0)=2 f3)=1
f1)=0 f(4)=0
f2) =1,
then the multiset defined by this set and function f(z) is
A=1{0,0,2,3}.
Notice that the sum of the cardinalities is m = 4, the number of items in the multiset. O]

Finally, we need to modify the definition of union to allow for multiple entries in the set. We
will call this type of union a strong union. The strong union between two multisets A = (51, f1)
and B = (Sy, f2) is the multiset A&B = (51U Sa, f1 + f2). That is, the cardinality of an item
in the strong union is the sum of the cardinalities of the item in the multisets A and B. We

illustrate this with an example.

B EXAMPLE 1.A.3.
Suppose that we have two multisets A = {a, a,b,b, b, c} and B = {b, ¢, c}. Then the strong union

between those multisets is
A&B = {a,a,b,b,b,b,c,c,c},

where there are 24+0 = 2 as, 3+1 = 4 bs, and 142 = 3 ¢s in the strong union of the multisets. [

We denote the strong union between the sets A, Ao, ..., A, by é@ A;.
i=1
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1.A.2 Group Theory

The construction of many of the common types of designed experiments depends on concepts in
group theory. Choice experiments are no exception. This section introduces the group theory
required to discuss the construction of choice designs.

We begin by introducing the concept of a group. Chouinard et al. [2007] defines a group

(P, x) as a set P, and a binary operation x on P, that satisfies the following conditions
o ifx,y € P, then z Xy € P;
e an identity element e € P exists: z x e=e x z =z for all x € P;

e X is associative: X (y X z) = (z X y) x z for all z,y,z € P;

e every element x € P has an inverse, an element ' for which z x 7! =27 ! x z = e.

Later, we will consider a group where the set P which contains all of the items that could
be presented to a respondent in a choice task. The binary operation allows us to transform one
item into another in a systematic way.

On occasion, we may not wish to consider every possible item in P, but would like to retain
the useful properties of a group. Then we may consider a subgroup S of a group P based on a
subset of the items in P. For S to be a subgroup, the elements of a subgroup S need to satisfy
the criteria for a group under the original group operation, x (Macdonald [1968]).

One example of a group is a vector space. A wvector space (V,+) consists of a set of vectors
such that if a,b € V then a +b € V. The + operation on V satisfies all of the properties given
by Chouinard et al. [2007]. In addition, we can define scalar multiplication in V' so that ifa € V/
then Aa € V, where ) is a scalar. We are also able to define subspaces for vector spaces.

In a vector space, we are also able to define a set of linearly independent vectors from V' (or
a subspace of V') such that any vector in V' (or a subspace of V) can be expressed as a linear
combination of this set of vectors. Such a set of vectors is said to be a basis of the vector space

V' (or a subspace of V).

B EXAMPLE 1.A 4.

Consider the vectors in R%. Then the vectors
(1,0,0),(0,1,0), and (0,0,1)

form a basis of R3. That is, any vector in R3 can be expressed as a linear combination of the
above three vectors. If we restrict the third entry in a vector to be equal to 0, then we generate

a subspace of R3. The first two vectors will then form a basis for this subspace. O

1.A.3 Finite Fields

Often it is useful to work with a set P and two operators, such as addition and multiplication. If
certain properties are satisfied then such a structure is known as a field. Street and Street [1986]
define a field {P,+, x} as a set, F, closed under two operations, addition (denoted by +) and
multiplication (denoted by x). Both of these field operations are associative and commutative,
and multiplication distributes over addition. Identity elements exist for both of these operations,

denoted by 0 for addition and by 1 for multiplication, where 0 # 1. In a field every element
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a € F has an additive inverse (—a) and every non—zero element a € F' has a multiplicative inverse
(a™).

For a prime power ¢ = s™, where s is a prime number, we call this field a Galois field of
order ¢, denoted by GF[{]. Street and Street [1986] define a Galois field of order ¢ as a field that
can be represented by the set of residue classes of polynomials over GF[s] modulo f(z). The
function f(x) is called the irreducible polynomial, and must have no factors of the form o™ — 1
for m < n. The non-zero elements of GF[¢] form a cyclic multiplicative group, with af~! = 1,
where « is a root of f(x). We use f(x) to construct the field. The elements of the Galois field
can be denoted by 0, 1, a, o2, ..., a" 2.

To find the irreducible polynomial, we look at all of the quadratic functions (since n = 2)

modulo s = 2, checking each to see if the quadratic function can be factorised. We have
o =axa, a2 +1=(a+1)3 & +a=ala+1),

and o? + o + 1, which cannot be factorised. Then f(a) = a? + a + 1 is the only irreducible

2 = a + 1, since the coefficients

polynomial for n = s = 2. Then we set f(a) = 0, and obtain «
are integers modulo s = 2.
If GF[{] exists, then we can express the field in terms of an n—tuple containing elements of

GF[s]. We use the irreducible polynomial to construct the n—tuple. Let (co,c1,...,c,—1) denote

2 n—1
co+ca+coa” + ...+ cpo1a”

where ¢, ¢1, . . ., ¢p—1 are integers modulo s. Then we generate n—tuples by substituting f(a) =0
into the expression for each element, and simplify modulo p, to obtain a polynomial of order n—1.
Then we can represent the levels as (0,0,...,0),(0,0,...,0,1),...,(s—1,s—1,...,s —1). The

next example demonstrates both of these representations, and field operations within GF[{].

B EXAMPLE 1.A.5.

Let ¢ = 4. Then, since n = 2 and s = 2, a Galois field of order 4 exists. The elements in this field
are 0, 1, o, and o?, where &® = o+ 1. This Galois field has the addition table and multiplication
tables shown Tables 1.19(a) and 1.19(b) respectively.

+]10 1 a o2 x |0 1 «a a
010 1 a o 0|0 0 0 O

1 1 0 o a 1/0 1 a o
ala o> 0 1 a0 a a® 1

a?la? a 1 0 20 o2 1 «

Table 1.19: Addition (a) and multiplication (b) tables for GF[4] - multiplicative notation

We now look at an alternative representation of the elements in GF'[4], by considering the
coefficients of « and 1 in the expression for each element. The element 0 could be represented
by 0 x a4 0 x 1, the element 1 could be represented by 0 x o + 1 x 1, the element « could be
represented by 1 x o + 0 x 1, and the element a? = o+ 1 could be represented be 1 x ar+1 x 1.
Then we obtain the mapping in Table 1.20, where the first entry in the pair is the coefficient of
«, and the second entry is the coefficient of 1. This gives the addition and multiplication tables
in Tables 1.21(a) and 1.21(b) respectively.
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Multiplicative Pairs

0 00
1 01
o 10
a?=a+1 11

Table 1.20: Relationship between two representations of a 4 level attribute

4+ 100 01 10 11 x 100 01 10 11
00|00 01 10 11 00 {00 00 00 00
01{01 00 11 10 01100 01 10 11
1010 11 00 O1 10 {00 10 11 oO1
1111 10 01 00 11100 11 01 10

Table 1.21: Addition (a) and multiplication (b) tables for GF'[4] - pairs notation

We now demonstrate how these two representations are useful when adding and multiplying
in GF[4]. When adding, the pairs representation becomes useful, as we can add each component
modulo s = 2. For example

01+10=11

or

11+ 01 = 10.

When multiplying, the multiplicative representation is useful, since o® = 1. Then we have

1.A.4 Special Matrices

We can represent field operations in matrix notation. This representation will become very useful
in Chapter 6 when we obtain new designs from existing designs. There are some special types
of matrices that are particularly useful in this regard. One of these is a circulant matriz. Horn

and Johnson [1985] define a circulant matrix to be an n x n matrix of the form

ay az az ... Qp-1 Qp
G a a2 ... Gp—2 0ap-1
A= p—1 A4pn @1 ... Gp—3 0aAp_2
L Qa2 az Qa4 ... Qp, a; |

The authors also state that circulant matrices are commutative under matrix multiplication.
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The other special matrix that will be used extensively is a permutation matriz. Horn and
Johnson [1985] define a permutation matrix to be an n x n matrix P, where exactly one entry
in each row and column is equal to 1, and all other entries are 0.

If we pre—multiply a matrix by a permutation matrix, we obtain a re—ordering of the rows of
the matrix. If we post—multiply a matrix by a permutation matrix, we obtain a re-ordering of
the columns of the matrix. Theorem 1.A.1 gives a useful property of permutation matrices that

we use later in the thesis.

B THEOREM 1.A.1.

For any n x n permutation matriz P, PT = P~1. O

We can combine these definitions to obtain a basic circulant permutation matrix. A basic circu-
lant permutation matriz is a matrix that is both a circulant matrix and a permutation matrix. Let
v = (v1,v2,...,V,). Then the circulant permutation matrix Pj, say, with first row (0,0,...,0,1)

acts on v to give vP; = (va, ..., Up,v1).

H EXAMPLE 1.A.6.
Consider the integers modulo 3. Suppose that we have a vector containing the elements of Zjs,
(0,1,2). Then we can post—multiply by permutation matrices to perform addition on this vector

modulo 3. Then post-multiplication by the matrix

P =

S = O
= o O

1
0
0
will add 1 to each element in the vector (0,1,2) modulo 3, that is,

0
(07172)P1:(07172) 1
0

= o O
(e R R

= (1,2,0).

Similarly, we can define a basic circulant permutation matrix that represents the addition of 2

to each entry in the levels vector

P, =

= o O
o O =

0

1| =r;

0

For completeness, we use I3 to represent the addition of 0 to the levels vector. O

1.B Standard Designs

In this section, we introduce the most common types of designed experiment. We will use many
of these standard designs to construct designs for choice experiments. We begin by considering

block designs.
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1.B.1 Block Designs

In order to obtain estimates efficiently when conducting a choice experiment, we need to consider
methods that will optimise the information obtained from each respondent. One way to do this
is to create an efficient designed experiment. Street and Street [1986] define a design to be a
finite set of items X, and a family of subsets B; of X, B = {B;|i = I'}. Here the finite set of
items is the set of all possible items defined by the level combinations of the attributes. For
choice experiments each subset is a choice set. The design of a choice experiment will dictate
which choice sets will be presented to the respondents.

If we consider every possible combination of m items in a choice experiment, then the number
of subsets used in the design, or in our case, the number of choice sets presented to the respondent,
can become very large, even for a modest subset size. For this reason, it is useful to consider a
design with only some of the combinations of items. Street and Street [1986] define an incomplete
design to be a design where at least one block does not contain every item in the set X.

While using an incomplete design makes an experiment smaller, care must be taken to ensure
that the same amount of information is collected about each item. It is also desirable to be able
to estimate the merit of each item independently of other items. One type of incomplete design
that achieves these two goals is a Balanced Incomplete Block Design (BIBD). Street and Street
[1986] define a BIBD as a design in which all the blocks contain the same number of items, all
items appear in the same number of blocks and each pair of items appear in the same number
of blocks. We define b to be the number of blocks in the design, each block containing m items.
There are L = H];:l {4 items in total, each of which appears in r blocks. The number of times
that each pair appears in the same block is denoted by A. We write this as BIBD(L,b,r,m, \).
Bailey [2008] gives a good discussion on the construction of BIBDs.

H EXAMPLE 1.B.1.
Suppose that we are conducting an experiment with 7 possible items. Table 1.22 gives a BIBD
that could be used for this experiment. We notice that each block has 3 items, each item appears

in three blocks, and each pair of items appears in the same block exactly once. This design is a
BIBD withb=7, m=3,L=7,r=3 and A = 1. O

=S~ S, TN NG U \C R
— O O Ol W N
W N = O O Tl

Table 1.22: A BIBD(7,7,3,3,1)
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1.B.2 Factorial Designs

In many experiments, including choice experiments, the items can be described by a number of
features, also known as factors or attributes. When running such experiments, we are usually
more interested in testing hypotheses about the attributes than testing hypotheses about the
items themselves. The appropriate design for doing this is called a factorial design.

Street [2007] defines a factor to be any feature of the experimental units which may affect
the response observed in the experiment. Each factor may take one of several values. These
values are called the levels of the factor. If there are k factors and the ¢*! factor has L4 levels,
for 1 < g <k, then we speak of an £1 x f5 X ... X £}, factorial design.

Notice that Street [2007] uses the term factor instead of attribute. These terms can be used
interchangeably, however the convention for choice experiments is to use attribute, whereas in
the theory of designed experiments the convention is to use factor. From here onwards we will
use attribute, but we will still speak of a factorial design.

We can distinguish between a factorial design that includes all possible combinations of
attribute levels, which is called a complete factorial design, and those that include a subset of
these, called a fractional factorial design. In the next example, we show one type of each design

for the same experiment.

B EXAMPLE 1.B.2.

Consider an experiment with three attributes, each of which has three levels. Table 1.23(a) gives
a full factorial design, and Table 1.23(b) gives a fractional factorial design for this experiment.
Notice that the first design consists of all triples of three level attributes, and the second design

contains only a third of these triples. O

(a) (b)

Complete Factorial Fractional Factorial
0 0 0 100 2 00 0 0 0
0 0 1 1 0 1 2 01 0 1 1
0 0 2 1 0 2 2 0 2 0 2 2
010 1 10 2 10 1 0 1
01 1 1 11 2 11 1 1 2
0 1 2 11 2 2 1 2 1 20
0 2 0 1 2 0 2 20 2 0 2
0 2 1 1 21 2 2 1 2 10
0 2 2 1 2 2 2 2 2 2 21

Table 1.23: A complete factorial design (a), and a fractional factorial design (b)

It is convenient to look at two different types of designs based on the number of levels each
attribute can take. The first of these are designs where all of the attributes have the same number
of levels. Such designs are called symmetric designs. The remaining designs have at least one

pair of attributes that differ in the number of levels. Such designs are called asymmetric designs.
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Contrasts

Now that we have designs for factorial experiments, we can look at how we can estimate the
contribution of each attribute, and combinations of attribute levels to the attractiveness of each
item, the goal of our experiment. We use main effects and interaction effects to do this.

In order to estimate main effects and interaction effects, we need to set up contrasts. Suppose

that we order the items lexicographically, that is
(00...00,00...01,...,(¢1 —1)(ly —1)...(Lr —1)).

Then a contrast is a linear function of the expected responses of the items such that the co-
efficients sum to 0. Consider a linear function ), w;y;, where y; is the response for item Tj,

then
T=E& (Z Wi?}i) = sz‘g(yi)~

Such a linear function is said to be a contrast if ) . w; = 0. If item T; appears n; times in the

design then two contrasts with coefficients (; and w; are said to be orthogonal if and only if
Z Giwi
- n;
?

Without loss of generality, we will scale the contrast coefficients so ), w?=1.

=0.

The main effect of an attribute is the effect of moving between levels of that attribute,
averaged over the levels of the other attributes. Street [2007] defines the main effect of an
attribute A in an ¢* factorial design as the comparison of responses among the /¢ sets Ty =
{(z1,72,...,71)|wq = 0}, 0 € {0,1,...,¢—1}. The sets Ty partition the ¢* items into ¢ sets each
of size £*=1. We denote this partition P(A). We then have ¢ — 1 contrasts that will form the
basis of the main effect contrast subspace. In the next example, we give the partitions for the

main effects for the full factorial design in Table 1.23.

B EXAMPLE 1.B.3.
Consider the full factorial design in Table 1.23. We will label the three attributes A, B, and C.
Then the main effect of attribute A will be constructed from the partitions based on the level of

the first attribute

P(A) = {{000,001,002,010,011,012,020,021,022}, {100,101, 102,110, 111,112,120, 121, 122},
{200, 201,202, 210, 211, 212, 220, 221, 222} }.

Then the contrasts corresponding to the main effect of the first attribute will assign the same
coefficient to each item in the same partition of P(A). The main effect of attribute B will be

constructed using the partitions the based on the level of the second attribute

P(B) = {{000,001, 002,100,101, 102, 200, 201, 202}, {010,011,012,110,111, 112,210,211, 212},
{020, 021, 022,120, 121, 122, 220, 221, 222} }.
Then the contrasts corresponding to the main effect of the second attribute will assign the same

coefficient to each item in the same partition of P(B). The main effect of attribute C' is defined

similarly. O
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While in many cases the estimation and testing of main effects are the primary consideration
in an experiment, the interaction between attributes may also be of interest. For example, there
may be little difference in preferences between a urine sample and a mouth swab when the sample
is to be taken at home, but there may be a large difference if the sample is to be taken at the
public clinic.

Street [2007] defines an interaction effect between attributes A and B, to be the comparison of
the responses among the sets within the £ — 1 partitions given by {(z1, 22, ..., Zx)|Ts + 025 = 7},
0,v € {0,1,....4p — 1}, & # 0. For fixed 0, denote the partitions by P(AB?). There will
be (¢1 — 1)(¢3 — 1) orthogonal contrasts that will form the basis of the two—factor interaction
contrast space. Higher order interactions are defined similarly. In the next example, we give the

partitions for two—factor interactions for the full factorial design in Table 1.23.

B EXAMPLE 1.B.4.

Once again, consider the full factorial design in Table 1.23, with three attributes A, B, and C.
The coefficient of the interaction effect between attributes A and B can be based on contrasts
between the sets of the partition, where such a contrast has the same coefficient for all items in
the set. The contrast coefficient assigned depends on which partition of P(AB) the item belongs
to, and which partition of P(AB?) the item belongs to.

P(AB)={{000, 001,002, 120, 121, 122,210,211, 212},{010, 011, 012, 100, 101, 102, 220, 221, 222}
{020,021, 022,110, 111, 112,200, 201, 202} }.

P(AB?)={{000,001,002, 110, 111, 112, 220, 221, 222},{020, 021, 022, 100, 101, 102, 210, 211, 212},
{010,011, 012,120, 121, 122, 200, 201, 202} }.

This gives the partition

{{000, 001,002}, {010,011, 012}, {020, 021,022}, {100, 101, 102}, {110, 111, 112}
{120,121, 122}, {200, 201, 202}, {210, 211, 212}, {220, 221, 222} }

Then the contrasts corresponding to the two—factor interactions between the first and second
attributes will assign the same coefficient to each item in the same partition in the above parti-
tioning so long as not all of the entries in the same partitions of P(A) have the same coeflicients,
and not all of the entries in the same partitions of P(B) have the same coefficients. The inter-

action between attributes A and C, and attributes B and C' are defined similarly. O

We now look at an example of constructing a set of orthogonal contrasts corresponding to

the main effects in a 2 x 3 factorial design.

B EXAMPLE 1.B.5.
Consider a 2 x 3 factorial experiment. There are 6 possible items that we could present to the
respondents. These are shown, in lexicographic order, in Table 1.24.

Suppose that we wish to compare the 0 and 1 levels of the first attribute. Then we could set
the coefficients of the items with a 0 for the first attribute to be —1, and the coefficients of the
items with a 1 for the first attribute to be 1. This gives

—Poo — o1 — Po2 + P10 + P11 + d12.
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_ == O O O
N o= O N = O

Table 1.24: The complete 2 x 3 factorial design

This satisfies the properties of a contrast, but not the additional scale requirement. If we divide
each coefficient by v/6, then 3" w? = 1. Then we have

LIRS I IR ORI IR I
\/6 \/6 \/6 \/6 \/611 \@12-

We have one contrast for the first attribute since the first attribute has 2 levels, and / — 1 =1

P00 — —=P01 — —=Po2 + —=P10 +

contrast will form a basis for the main effect subspace.

We can also define contrasts for the main effects of the second attribute. Since the second
attribute has 3 levels, /—1 = 2 orthogonal contrasts will form a basis for the main effect subspace.
If we define one of these contrasts to have a coefficient of —% for those items with the second
attribute at level 0, a coeflicient of 0 for those items with the second attribute at level 1, and a

coefficient of % for those items with the second attribute at level 2, then we obtain the contrast

1 1 1 1
*§¢00 —0 X ¢o1 + 5%2 - §¢10 +0X ¢11 + §¢12-

Another contrast based on the three level attribute is

1 1 1 1 1 1
———=¢00 + —=¢01 — —=¢02 — — =10 T —=011 — —=7P12-
2\/3%0 \/§¢01 2\/§¢02 2\/§<Z510 \/§¢11 2\/§¢12
We can demonstrate that the two contrasts for the three level attribute are orthogonal to each
other under equal replication (with n; = 1 without loss of generality).
Z%_jxiJrOXLJrlx;l Lt ST ORI Sl
~oni 20 2V3 V32 2v3 2 23 V32 2v3

= 0,
as required. O

We can write the coefficients for the contrasts as the rows of a matrix. We call such a matrix
a contrast matriz, which we denote B. In a contrast matrix we label the columns using the items
written in lexicographic order. The next example shows how a set of contrasts can be expressed

as a contrast matrix

B EXAMPLE 1.B.6.

We can place the contrast coefficients developed in Example 1.B.5 into a contrast matrix. This
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contrast matrix will be

00 01 02 10 11 12
= -1 1 1 1 1
6 V6 V6 6 V6 V6
B =
=1 0 1 =1 0 1
2 2 2 2
- 1 =1 =1 1 =1
2v3 V3 2v3 2v3 V3 2v3 0

In general, we assume that the contrasts in a contrast matrix have been chosen to be pairwise
orthogonal, that is BBT = I. When an attribute has ¢ levels, we need ¢ — 1 contrasts to be the
basis for the main effect subspace. There are many ways that these contrasts can be defined.
The method that we will use in this thesis is to use orthogonal polynomial contrasts. Orthogonal
polynomial contrasts are particularly useful when the attribute is continuous, since we are fitting
a polynomial function that describes the change in response for a change in attribute level. Tables
of these contrast coeflicients can be found in texts such as Kuehl [2000].

While we can define contrasts to represent all main effects and higher order effects, we often
do not wish to estimate them all. In this case, we partition the rows of B into two matrices, By,
and B,. The contrasts whose coefficients are in Bj, are those that we are interested in estimating,
and the coefficients for the remaining contrasts will be contained in B,. In general, we will be
finding designs that are optimal for the estimation of the contrasts in Bj, but may not be able

to estimate the contrasts in B, at all.

B EXAMPLE 1.B.7.
Consider again the 2 x 3 experiment in Example 1.B.5. The full set of orthogonal polynomial

contrast coefficients for the estimation of main effects plus the two—factor interaction is

00 01 02 10 11 12
(= S RS R DR SR S
V6 V6 V6 V6 V6 V6
—1 1 —1 1
= 0 5 5 0 3
B=11 4 0 4 4 1

2v3 V3 23 2v3 V3 2V3

1 —1 —1 1

; 0 5 5 0 3

-1 1 -1 =1 1 =1
L 23 V3 2v3 2v3 V3 2v3 |

The first row of the matrix contains the contrast coefficients for the main effect of the first
attribute. The next two rows contain the contrast coefficients for the main effect of the second
attribute. The final two rows contain the contrast coefficients for the two—factor interaction.
Suppose that only the main effects are of interest. Then By will contain the coeflicients
corresponding to the main effects, and B, will contain the coefficients corresponding to the

two—factor interactions. That is,

I L E T
V6 V6 V6 VB VB V6
— —1 1 —1 1
Bp=| %+ 0 5 5 0 3 |,
1 1 —1 —1

3
Sk
3
=
3
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and
1 -1 -1
3 0 F F 0 3
B, =
-1 1 =1 =1 1 =1
2V3 V3 2V3 23 V3 2V3 O

The set of contrasts that we can use to form a basis for the main effect contrast space of an

¢ level attribute is not unique for ¢ > 4. The next example illustrates this for ¢ = 4.

B EXAMPLE 1.B.8.

Consider a 4 level attribute. The orthogonal polynomial contrasts for a 4 level attribute are

N TS W B

V20 V20 V20 V20

— 1 1 1 1

Bi) = Tz Tz 3
R T O

V20 V20 V20 V20

Alteratively we could compare two pairs of levels, and then compare within each pair, giving the

contrast matrix

1 1 11
2 2 2 2
Bip=|-3 3 00
0 0 -3 3

Finally, we could compare between three different pairings of the levels, giving

[
NI= NI= N
\
N N N
|

N|= Nl= N

By =

NI= N= N=

These three contrast matrices contain different comparisons, but all form a basis for the main

effects contrast space. O

1.B.3 Orthogonal Arrays

We now consider a design structure that is related to factorial designs, an orthogonal array.
Street and Burgess [2007] define an orthogonal array OA[N, k,¢,t] to be an N x k array with
elements from a set of £ symbols such that any N x ¢ subarray has each t—tuple appearing as a
row N/t times. We say that t is the strength of the array, k is the number of constraints and ¢
is the number of levels.

Orthogonal arrays exist not only for symmetric designs, as in the definition above, but also
for any combination of levels. Street and Burgess [2007] define an asymmetric orthogonal array
OA[N; ly,0ls,...,0,;t] to be an N X k array with the elements in column ¢ from a set of ¢,
symbols such that any N x ¢ subarray has each t—tuple appearing as a row an equal number of
times.

Orthogonal arrays are useful in the design of choice experiments because they can be con-
structed in a number of ways, whilst retaining the properties that are important in designed
experiments. One such feature is equal replication of each level of an attribute, which is assured
when ¢ > 1.

In this thesis, we will focus our attention on linear orthogonal arrays. Hedayat et al. [1999]
defines an orthogonal array OA[N, k, ¢,t] with levels taken from GF[{] to be linear if all of its
runs are distinet and if, when considered as k—tuples from GF[{], its N runs form a vector space
over GF[{].
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Rao [1947] and Rao [1949] give a method for constructing linear symmetric orthogonal arrays
where the number of levels for each attribute is a prime power. This construction uses the

properties of GF[¢], which we know to exist when ¢ is a prime power.

B CONSTRUCTION 1.B.1.
(Rao-Hamming: Hedayat et al. [1999]) Form an ¢" x n array with all possible n—tuples from
GF{]. Let Cy,...,Cy denote the columns of this array. The columns of the full orthogonal

array then consist of all columns of the form

2101+2202—|—...+ch” = [01,02,...,Cn]z, (11)
where z = (21,...,2,)T is an n—tuple from GF[{], not all the z; are zero, and the first non—zero
z; 18 1. There are 62_7—11 such columns. O

In the next example, we illustrate this construction for a 3* experiment.

B EXAMPLE 1.B.9.
In this example, we develop a 9 run OA with four 3-level attributes. We begin with all of the
pairs of levels, as shown in the first two columns of Table 1.25. Then we need all pairs from

GF[3] where not all z; are 0 and the first non—zero z; is equal to 1. This gives the four pairs
(1,0),(1,1),(1,2), and (0,1).

The first and last of these pairs, when substituted for the zs in Equation 1.1, will form the ™ xn
array that we begin with. Then z = (1,1) gives the column Cy + Cs, and z = (1,2) gives the
column Cj + 2C5, where addition in both cases is in GF[3]. The resulting design is shown in
Table 1.25. Observe that any 2 columns of this array contain every ordered pair exactly once.
Thus t = 2. O

C, C; Ci+Cy Cq+2C,

o

N NN = = = O O O
N = O N = O N = O
= O N O N =N =

S~ N NDO = =N O

Table 1.25: The OA constructed in Example 1.B.9

This construction underlies the results obtained in Chapter 6.

1.B.4 Latin Squares

The last type of design that we consider in this section are Latin squares. Latin squares were

originally used when both the horizontal and vertical positions of a plot of land were considered
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to be important. Subsequently they have been adopted for use in any situation where there are
orthogonal blocking factors. Dénes and Keedwell [1974] define a Latin square to be an n X n
matrix containing n different elements, each appearing in exactly once in each row and each
column of the matrix. The integer n is called the order of the Latin square. An example of a

Latin square of order 3 is
01 2
1 2 0.
2 01

Dénes and Keedwell [1974] also show that the addition table for a finite group G is a Latin square
of order #.

We can sometimes impose an additional constraint on a Latin square to obtain a complete
Latin square. Dénes and Keedwell [1974] define a complete Latin square to be a Latin square
where for any ordered pair of distinct elements (a,b), with 1 < a,b < n, there exists a row of the
Latin square in which a appears to the right of b and a column of the Latin square in which a
immediately precedes b. We use complete Latin squares in Chapter 5 to ensure that each item
appears to the right of every other item exactly once in some choice set.

We conclude this section by looking at two constructions for complete Latin squares. The

first of these was given in Williams [1949]. We call this the Williams construction.

B THEOREM 1.B.1.
(Williams [1949]) Let n = 2m be any even positive integer and let an n x n Latin square L be
formed whose first row and column is 0,1,2m — 1,2,2m — 2,...,m + 1,m, where the integers 0O

to 2m — 1 are regarded as residues modulo n, and
LiJ‘ = Li71 + lej mod n,
then L is a complete Latin square. O

In the next example, we construct a complete Latin square of order 4 using this method.

H EXAMPLE 1.B.10.
Suppose that we wish to construct a complete Latin square of order 4. Thus n = 4, and m = 2.

Then by Theorem 1.B.1 the first row and column of the complete Latin square will be

o 1 3 2.
Using Theorem 1.B.1 we obtain the complete Latin square in Table 1.26. O
01 3 2
1 2 0 3
3 0 2 1
2 3 10

Table 1.26: The complete Latin square constructed in Example 1.B.10

The sequence 0,1,2m — 1,2,...,m — 1,m is not the only sequence that yields a complete

Latin square. Gordon [1961] shows that all partial orderings of a finite group yield a complete
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Latin square. We define the partial ordering of a sequence ay,as,...,a, in a group of order n to
be

aj,al - az,a1 -a2-0a3,...,a1 a2 ... Ap.
This is best illustrated by an example.

B EXAMPLE 1.B.11.
If n = 6 then
O 5 2 3 4 1]

is a sequencing of Zg with partial sums
O 5 1 4 2 3]

By developing the row of partial sums in Zg we obtain the complete Latin square in Table
1.27. O

W N s = Ot O
N = W O e Ut
=W ot o O =
O N Ot W
T = O W = N
S Ul =R NN W

Table 1.27: The complete Latin square constructed in Example 1.B.11

A list of partial sequencings of small order is given in Evans [2007].




Chapter 2

Choice Models that Incorporate

Ties

Section 1.1 introduced the Davidson ties model as an extension of the Bradley—Terry model. In
this chapter we look at optimal design theory for the Davidson ties model.

We start by looking at Davidson’s original model, including deriving an expression for the
determinant of the information matrix for a design, as defined in Section 1.3.1. We then find
that from the set of competing designs used in Burgess and Street [2003], those designs that are
optimal for the estimation of a set of attribute effects when the Bradley—Terry model is used are
also optimal when the Davidson ties model is used to estimate the same set of attribute effects
plus the ties parameter.

We will now consider an example to motivate our discussion of models incorporating ties.

B EXAMPLE 2.0.12.

Consider a smaller version of the experiment presented in Example 1.0.1. This experiment has
two attributes with two levels each. Table 2.1 gives the attributes and levels for this small
experiment, as well as a coding for the levels of each attribute. Then there are 4 possible

combinations of location and collection method:
e Draw blood at a public clinic (Coded 00),
e Draw blood at a doctor’s office (Coded 01),
e Swab mouth at a public clinic (Coded 10), and
e Swab mouth at a doctor’s office (Coded 11).

We wish to present choice sets to the respondent in such a way that if a respondent finds some of

the options equally attractive, they may say so. In that case, we say those options have tied. [

We will return to this example as we progress through the chapter.

2.1 Review of the Davidson Ties Model

We begin by reviewing the results of Davidson [1970]. In particular we will recap some of the

properties of the model that have already been developed in the literature, such as the distribution
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Attribute Levels Coding

Sample collection Draw blood
Swab mouth/oral fluids

Location Public clinic

= o = O

Doctor’s office

Table 2.1: Attributes and levels for the HIV experiment with k& = 2 and ¢1 = {5 = 2.

of the responses, the maximum likelihood estimates for the model, and the information matrix for
the model. The logic used here will be used when the model is generalised in Chapter 3. We will
use these results to show that the optimal designs presented in El-Helbawy and Ahmed [1984],
Street et al. [2001] and Burgess and Street [2003] are also optimal when using the Davidson ties
model.

Recall from Section 1.1 that the Davidson ties model is an extension to the Bradley—Terry
model for paired comparisons. By using the Davidson ties model instead of the Bradley—Terry
model we allow the respondent to state that they find the two items presented in the choice
set equally attractive. This model captures this information through an additional parameter,
v > 0, which measures how well the respondent can discriminate between the items in the choice
set.

We have the following probabilities associated with each possible decision when the choice

set C' = {T;,,T;,} is used.
P(T,|C) = —— Tt
Tiy + Moy + VT3 Ty
PT|0) = ———t e
Tiy + Ty + UV /T3 Ty
and

VT, T,
F)(T'l1 or T12|C) = 2 .
T, + Tio + I/‘/’/Tilﬂ'l‘2
We denote P(T;, or T;,|C) as P({T3;,,T;,}|C). Now we will see how these probabilities apply to

our example.

B EXAMPLE 2.1.1.
There are six possible choice sets of size 2 from the items listed in Example 2.0.12. If we consider
the choice set C' = {00,11} then the probability of choosing item 00 is

T00
P(00|C) = )
(00jc) Too + T11 + V4/T007T11

the probability of choosing item 11 is

11
P 110 == )
(1je) Too + 711 + V/To0T11

and the probability of stating that the items are equally attractive is

P({00,11}|C) = YV oot .
Too + T11 + V4/T00711 O
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In his 1970 paper, Davidson derived the log—likelihood function and information matrix for
this model. Because it will help us describe our generalisation, we provide a detailed derivation
here. We will use the method presented here to derive the information matrix for the generalised
Davidson ties model in Chapter 3.

Suppose that there are ¢ items in total and that these are shown to the respondent in pairs.
In each choice set the respondent may choose the item they prefer, or they can state that the
two items presented are equally attractive. We define indicator variables w for subject o and

task C = {T;,,T;,} to represent the respondent’s choice. We let

1 if respondent « selects item T;, when presented with the choice set C,
W{i}|Ca =

0 otherwise,

1 if respondent « selects item T;, when presented with the choice set C,
Wiz} Coa = .
ti2}|Ca 0 otherwise,

and
1 if respondent « finds items T}, and T;, equally

Wiy in}|Coa = attractive when presented with the choice set C,

0 otherwise,

where wi; 10,0 T Wiz} |Ca T Wiy is}|C,a = 1, since we do not allow repeated choice sets and do
not have an opt-out process. For simplicity, we will proceed to write wy;}c,a a8 Wijc,q, but it
useful to consider the outcome as the selection of a set with a single item. For a respondent «,
the probability density function for their response to the choice set C = {T;,,T;,} is
ﬂ_Zn\C,aﬂ_ZiQ\Cﬂ(Vm)w{il‘w}uliza

fC,O&(waﬂﬂj) = )

(ﬂ-il + Ty + Vy ﬂ’ilﬂ-iz)nc

where

W = (W, 0,00 Wiy | O Wiin in}[Crar) - »
and n¢ is an indicator that equals 1 if the choice set C appears in the experiment and 0 if it
does not. For consistency, if the choice set C' does not appear in the experiment then we define

Wi, |C,a = Wis|Cra = Wiy in}|Coa = 0

The derivatives of the log of the density function with respect to each of the parameters are

ne (1 n i)
On(fea(w, V) _ Wilca | Wli}Co N
oy, T, 2m;, iy + Moy + V/Ti, Ty
ne (1 ¥ Wiw)
On(foa(w,mv))  Wiica L WliislCo N
o, Ti, 27, Tiy + Wiy + U\ /Tiy iy
01 w, T
n(fC,Ot( ) 71/)) — 0 where i3 7§ i1, o,
87@-3
and
81n(fC,a(wa7r’ V)) _ W{iy,i2}|C o . NC\/Tiy Ty
By v iy + Wiy + Vi iy

We will use these derivatives later to derive the entries of the information matrix for this model.

We will now turn our attention to the maximum likelihood estimators for this model.
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Since the likelihood function is the product of the density functions over all distinct choice

sets and over all respondents, we have

S
Lw,m,v) = Hqua(wﬂr,v)
a=1 C
Wiy _Wiz|C

H m, R (v Ty ) el
C (7Ti1 + mi, + l/\/m)Snc ’

s s s .
where Wiy |c = Za:l Wiy |Car WiglC = Za:l Wiy|C,as and Wiy,iz}|C = Za:l W{iy,ia}|Crar Notice

that ne is not subscripted by respondent. This is because we will assume that all respondents

are presented with the same set of choice sets.
To maximise this likelihood function, we need to set up a Lagrangian function to incorporate
the restrictions placed on this model. For the purposes of convergence, we will enforce the

normalising constraint present in the Bradley—Terry model

Zln(m) =0

We will also constrain contrasts that we assume to be negligible to be equal to zero. If we let

B, be the matrix containing the coefficients of such contrasts, then we have

B,y =0,
where 7 is a vector containing v; = In(m;) for ¢ = 1,...,¢. This will give the Lagrangian
1
Gw,m,v) = Z <wi1|c In(7;, ) 4+ wi, o In(ms,) + iw{il,i2}|0<ln(ﬂil) + In(m;,) +2 ln(l/))

C

—sng In(m;, + m, + vy/T, T, ) + K1 Z In(7m;) + [Ka, ..., Kat1] Ba[ln(m;)],

where k1 and ko are Lagrange multipliers. If we differentiate G(m, v) with respect to m; we obtain

9G(w,m,v) _ Z (wilc+w{i,i2}|c S”C(1+2\/T?Ti2)

fi1
= 2.1
on; T 2m; T + iy + Uy /71'17@2 ) + Z a1 ( ( )

C|T;eC
and if we differentiate G(m,v) with respect to v, we obtain

IG(w,m,v) _ Z Weiy,in}|C SO/ Ty Ty
Ov v Ty + iy + V\/Tiy iy )

We obtain the maximum likelihood estimates by setting these derivatives to zero and solving

C

simultaneously. We can simplify this problem by using matrix notation. Suppose that we let

(1 /;D )
1 SNOT; + Forn
Ri = E W4 ¢ + §w{i,i2}\c - - ~

C|TieC 7TZ‘—|-7TZ‘2+V\/7T¢7T1'2

Then by multiplying Equation 2.1 by m;; we get

Zi+ K1+ Y Kag1(Ba)ai =0.

r=1

This gives the system

z+rjrL+Blk = 0, (2.2)
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where 2z = (21, 22,...,2)7 and k = (ka,...,kqy1)?. Similarly, if we let

b= Z (w{il,i2}|c B SN /Ty Ty >
- b
C v Ty + Ty + VT3, Ty

then we obtain p = 0 as the other constraint. If we pre-multiply Equation 2.2 by j%, we obtain

I€1:0,

since j7z is shown to be zero in Appendix 2.A, and j7 B! = 0 since the rows of B, are the
coeflicients of contrasts which are defined to add to zero.

We can pre-multiply Equation 2.2 by B, to obtain
k= —B,z.
Substituting this back into Equation 2.2, we get
(I — B} Ba)z =0,

and
p=0
as the normal equations. These can be solved iteratively to find the MLEs.

B EXAMPLE 2.1.2.

Recall the experiment presented in Example 2.0.12. Suppose that we present the choice sets

{{00,11},{01,10}}

to 50 respondents. Table 2.2 gives possible responses summarised over all respondents for this

experiment. Then the likelihood function for this experiment is

oot (Vy/Toomi1) ™! 5 Ty 716 (Vy/Tormio)

Lw,m,v) = .
( ) (o0 + 11 + v/Toom11)%0 (o1 + 10 + Vy/T01710)°
Option 1 Option 2 Ty To {T1, T2}
0 0 1 1 w00|c =2 w11|c = 37 w{OO,ll}\C =11

10 werjc =6  wigc =28  wygo,11}jc = 16

Table 2.2: Responses for the experiment in Example 2.1.2.

Now suppose that we are interested in the estimation of main effects and v only. Then we

assume that the two—factor interaction is negligible. This gives
1
Ba=§[1 -1 =1 1]
Then we have the constraints

ln(ﬂ'o()) + 1n(7r01) + ln(mo) + 1n(7r11) =0,

and
In(moo) — In(mo1) — In(710) + In(711) = 0.
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This gives the Lagrangian

Gw,m,v)

11 11
= 2111(71'00) + 37111(71'11) + ? 111(71’00) + ? ln(ﬂn) + 11 ln(l/) — 50 111(7'('00 + 1 + V\/7T007T11)

16 16
+6 ln(7T01) + 28 1Il(7T10) + ? 111(’/T01) + 3 1H(7T10) + 16111(1/) — 50 1H(7T01 + 0 + V\/7T0171'10)
+K1 [ln(?‘roo) + ln(71'01) + 111(7'('10) + ln(ﬂ'u)] + Ko [ln(ﬂ'oo) — 111(71'01) — ln(ﬂ'lo) + 111(71'11)} .

We differentiate G(w,m,v) with respect to each 7; in turn to obtain

0Gwmy) _ 15 0D m m
00 2mo0 oo + M1 + V\/TooT11 Moo oo

oGwmy) 14 500+ ZRes) K1 k2
Omo1 To1  To1 + Mo + Vy/To1T10 o1 To1

0G(w,m,v) B ﬁ, 50(1 + \/%) K1 Ka
0710 o  To1 + Mo + V\/Toimo Mo Mo

and

0Gw,m,v) 8 B 50(1 + \/:;:;)7,211) ﬂ+ﬂ

om 2mi1 moo + T+ vy/MeoT1 M1 W1

Differentiating G(w, 7, v) with respect to v gives

aG(’w,’ll',l/) g _ 501/71'0071'11 50«/71‘0171‘10

ov v (moo+ 1 +rymoomn)? (mo1 + Tio + vy/To1m10)?

If we set each of these to 0 and solve iteratively we obtain the maximum likelihood estimates for

7 and v. If we denote 7y as the main effect of the first attribute and 75 the main effect of the

second attribute then we get

71 =111 To = 0.34 v =1.25. O

2.2 Properties of the Davidson ties model

In this section we complete the construction of the information matrix for the estimation of the
m;s and v. We begin by deriving expressions for the expectations, variances and covariances of
the selection indicators in w. We then use these expressions to simplify the information matrix
for ™ and v.

Recall that w;,|c,q, Wi,|0,a and Wi 4,})0,a are the selection indicators for the choice made
by respondent « when presented with the choice set C = {T;,,T;,}. These indicators have a

Bernoulli distribution with expectations

57r(wi |C a) T P
11~ T + Ty + l/\/m

T

gﬂ(wiz‘c,a) L

)
Ty + Ty + VT3, Ty
and

En(Wirin)|Ca) = YT T . (2.3)
R iy + Tiy + V/Tiy Tiy
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The variances of these indicators are
Ty (7Ti2 + V\/ 7Ti17ri2)
(ﬂ—il + Wiy, + Vy/ 7Ti17ri2)2 ’
T (7Ti1 + Vy/Tiq ﬂ-iz)
(ﬂ-il + i, + Vy/Tiy 7ri2)2 ’

Va‘rﬂ'(wil‘c,a) =

Var, (wi,|c,a)

and

V\/m<7ri1 + 7Ti2) (2 4)
(Tril + i, + Vy/ 7Ti177i2)2 . '

Next we derive the covariances between the selection indicators. First consider the covariance

Var: (Wi, iz} |0a)

of two selection indicators for the selection of T}, from the choice set C = {T},,T;, } and the item
T;, from the choice set C' = {T;,,T;,}, where i1 # iy. If the selections made in two distinct

choice sets are uncorrelated, then

En ((wi1|C,a - gTr(“’iﬂC,a)) (wi2|C’,a - gﬂ'(wi2|C’,a)))

571' ((wi1|C,a - 571’ (wi1|C,a)) (wiQ\C,oz - g‘/r(wi2|C,a)))7 if C = 0/7

0, otherwise.

COVTr(wi1|C',a7 wig\C’,a)

If we expand this expectation and notice that only one outcome is possible, we see that

gﬂ (wi1 |C,awi2|c,a) = 07

and hence we obtain

— iy Tiy . v . .
O ek if C =C’" and iy # is,
Covw(wi1|C,aa wiglC”,a) = Var,,(wil‘c)a), ifC=C"and i; = 12, (25)
0, otherwise.

Similarly, we obtain the covariance of the selection indicators for the selection of item 7;,

from C = {T;,,T;,} and stating that the items in C' = {T;,,T;, } are equally attractive.

— iy VT Tig. ifC =
. . - —)2 9 - 9

Covr (Wi |00 Wiin,is}|C"a) = (i i o ) ,
0, otherwise.

Finally, the covariance for the selection indicators for stating that the items are equally

attractive in both choice sets is given by

Var(wg;, isvica), ifC=C",
Covr (Wi, is} | Cra> Weig,ig}|CF o) { {iis}l

0, otherwise.

We can now find the expectations, variances and covariances for the selection indicators in our

example.

B EXAMPLE 2.2.1.
Consider the experiment in Example 2.1.2. In particular, consider the first choice set, C' =

{00,11}. The expected values for the selection indicators are given by

gﬂ' (wOO|C a) oo )
' Too + 711 + V4/To0T11
11
57r(w11|c,a)

b
Too + T11 + V4/T00T11
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and

b (w ) Vy/T00711
w\W{00,11}|C,a = :
Too + T11 + V4/T00T11

The variances of each choice are given by

Too(m11 + V/TooT11)
(moo + m11 + vy/moom11)?’
11 (oo + V/To0T11)
(mo0 + T11 + vy/Toom11)?’

Var:(woojc,a) =

Varq (wi1|c,a)

and

vy/Toom11(To0 + Too)
(mo0 + T11 + V/Toom11)?

The covariances for each pair of selection indicators are given by

Var, (w(00,11}¢,a)

—T00711
(mo0 + m11 4+ vy/moom11)?’
— MooV /M0 11
(o0 + m11 + v/Toom11)?’

COVw(woo\C,m w11|C,a)

Covr (Woo|Cas W{00,11}|C,ar)

and

—T11V4/T007T11
(mo0 + m11 + vy/Toom11)? 0

Covr(Wi1)c,as W100,11}|C,a)

Next we construct the information matrix for the Davidson ties model. This is easier if we

partition the information matrix into four blocks

I?Tﬂ' ) Il/ﬂ' )
I(n,v) = (m,v) (m,v)
v

Liy(m,v) L(m

I..(m,v) is a t X t matrix containing minus the expected value of the second derivatives with
respect to two of the entries in 7. I, (m,v) is a t x 1 vector that contains minus the expected
value of the second derivatives with respect to one entry in 7 and v, and I, (m,v) = I, (m,v)7T.
I, (m,v) contains minus the expected value of the second derivative with respect to v.
El-Helbawy and Bradley [1978] state that under some mild regularity conditions, as given in

Section 1.1, the (4,7)*™™ entry of the information matrix for a discrete choice experiment without

ties is
T S e ()]

We now use this expression, and the results in Equations 2.3, 2.4, and 2.5, to evaluate some
generic entries in each block matrix. To assist the generalisation in Chapter 3 we take the
sum over all choice sets rather than the pairs of items, and modify the notation for ng. and
fora(m,w) accordingly. We will begin with I (m,v). In this block matrix, we need to consider
the off-diagonal and diagonal entries separately.

We begin with the generic off-diagonal entry. Consider I (m,v);;, corresponding to product

of the derivatives with respect to m; and with respect to m;,

Lo(mv)y — Z nﬁcg7r (81n(fc’a(7r,w, v)) 81n(fc,a(7r,w,u))>.

n C 67TZ‘ aﬂ'j
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We recall that the derivative of the density function for a particular choice set is zero if we
differentiate with respect to an entry in w associated with an item that is not in the choice set.
Thus both T; and T; must be in the choice set for the product to be non—zero. Since order does
not matter when using this model, the choice sets {T;,T;} and {1}, T;} are equivalent. Then we

can simplify to give

n{’h.]} aln(f{i,j},a(ﬂ-7 w, V)) aln(f{i,j},ot(ﬂ-aw7 V))
Lin(m,v)iyy = En .
(ﬂ- V) J N ( 87@- 87’1']'
By observation, we obtain
Om(fira(w,mv))  Wilijha | Wiidhidde gw(wi\{iaj}va n w{iﬂ’}‘“vi}’“). (2.6)
aﬂ.i T 27Ti Uy 27Ti
It then follows that
n{ij} (wi\{i,j},a Wit {ig}e Willighe | W{ii}{ii}e
I7r7r sV)ig = —==C T ; .
(7r V) J N ov v + 27Ti Uy + 27Tj )

We can now substitute Equation 2.5 to get

_n{m-} 1 47Ti7rj+(7ri+7rj)1/,/7ri7rj
N 47Ti71'j <7T7;+71'j+l/,/7'ri71'j)2 '

Iﬂ"ﬂ'(ﬂ-ay)ij =

Next, we consider a generic diagonal entry of I, (m, ). This entry corresponds to the deriva-

tive with respect to m; squared. We have

2
Lon(m,v)ii = Zakcgw((mn(fc’gg’w’”))) )

C

Here, we notice that all choice sets which do not include 7; will have a derivative of 0, so we

Lix(m,v)y = Z 7]1\?‘%<<81n(fc,g7(r1ir,w,u))>2>'

C‘TLGC

obtain

Using Equation 2.6 this becomes

n W;|C, Wi 4 ey
Lig(m,v)y = Z AfVam( 7|TC + {’2;}4‘0’ )
C|T;eC g ¢

When we substitute Equations 2.4 and 2.5 we obtain

Lir(m,v)y = Z ne  [(Amimi, +v/TiTy (T + Tiy) |
7 (T, V)45 4Nn? (7 + iy + v\ /7iT35)2

C\TleC

We now turn our attention to I, (m,v), a t X 1 vector. We have

L(mv) = Z nﬁcgﬂ <5’1n(fc7a(1r,w7 v)) Oln(fo,o(m, w, 1/)))

S or; ov

Notice that only the choice sets that include T; will have a non—zero derivative. Then we obtain

Lo(m o) = Z wgﬂ(aln(fcya(ﬂ,w,y)) 8ln(fc7a(7r,'w,u))).

h or; ov
C|T;eC

If we take into account Equation 2.6 and that

On(foa(mw,v)) _ Winia)iCa o (w{z‘l,iz}\c,a)

ov v v
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then we obtain

nc Wi|C,a Wi, iz} Coa W{iyin}|Cx
Iiy(m,v); = E N Covﬂ< + , .
;i 2m; v
C|T;eC

We now substitute Equations 2.4 and 2.5 and simplify to obtain

1 ne(miy, — )V /Tifi,

2N v ciTiec (70 + Wiy + U /TiTiy)2

Iﬂy(ﬂ,y)i =

These expressions will give the entries in the I, (m,v) block matrix.

Finally, we look at the single element I, (m,v). We begin with

2
qu(ﬂay) = Z%gqr((aln(fc’g(:r’w?y))) >

C

If we use Equation 2.7, this simplifies to give
nc Wy ,in YO,
L,(mv) = anrﬂ (“”}j“‘)
c
We then substitute Equation 2.4 and simplify, giving

1 ne(m ) T,
vIN C (71'1'1 +7Ti2 + 1/,/7T1-17ri2)2

I,(m,v) =

Since our ultimate goal is to test for main effects and interaction effects, which are linear
combinations of the entries in v = In(m), we need to first construct the information matrix for
the estimation of the entries in 4 and v. This information matrix, introduced in Section 1.1, is
denoted by A(w,v). This takes the form

A(m,v) = PI(m,v)PT,

where
1 0

omy __

since 57t = and g—Z = 1. Again it is convenient to partition the A(w,v) matrix in the same

way as we partitioned I(mr,v), giving

Applying this to each of the generic entries in each block matrix and simplifying gives

AT, + VT, (T +
Apy(mv)y = Y nc<7r7r2 VT (T Wg)),

, , ——\2
oifiec AN (75 + Wiy + VT4,

gy Amimg + (T4 )y T

A i =
VW(W, V) J AN (7” +m v ,771'1'77]')2
Molmo = gy 3 Lo TOVET.
wAIL Y1 = o . , ——\2"
N oiTiec (i + Wiy + U\ /TiT5,)
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and

(ﬂ—il + Ty + Vy/ 7Ti17ri2)2 .

If we make the assumption of equal merits then these entries simplify. We will leave v

1 nc (7”1 + 7(%'2)\/ iy Tiy
Ap(mr) = + > ~ (2.8)
c

unspecified as was done in Davidson [1970]. That is, we assume
™= j = To,
and substitute into Equation 2.8 to obtain

1
A’y’y(ﬂ'my)ii = Z ng,

2N(2+v) oiTiec
6,4}

A g B V)

’Y’Y(ﬂ()ry)l] 2N(2+V)’
A'yu (71-07 V)li = 07

and
2
Ayu(ﬂ'o, I/) m

These entries are defined for all v > 0, the range of possible values of v for this model. If

v = 0 then this model reduces to the Bradley—Terry model, and the A(mp, ) matrix reduces to
Ay (mo,v).

B EXAMPLE 2.2.2.

Recall the experiment introduced in Example 2.0.12 and the design introduced in Example 2.1.2.

The information matrix for the estimation of the entries in 7 plus v under the null hypothesis of

equal merits is

w0 0 gm0
0w w00
A(mo,v) = 0 4oty 1@y O 0
w0 I 0

0 0 0 0 errl .

Now that we have a general expression for the information matrix for the estimation of
the entries in v plus v, we can look at constructing information matrices for the estimation of
contrasts of the entries in 4 plus v. We can then use these matrices to find designs that are

optimal for the estimation of a set of contrasts of the entries in 7 plus v.

2.3 Representing options using k attributes

In this section we consider the construction of the information matrix when contrasts of the

entries in 7y and the estimation of v are of interest. In particular, we are interested in contrasts

of the entries in v that represent the main effects of the attributes as introduced in Chapter 1.
Ideally, we would like to find the effect of level f, of attribute g, denoted by 3, f,, or combi-

nations of attribute levels on the merit of an item; that is, we want to estimate

T
B= (81,0, 81,15 Bres—1s- s Brtr—1, 812,00, - - -, B12.. ke fy —1...05—1, V)
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This is not possible however, because 8 is not estimable. It would be better to estimate contrasts
of the entries in B so that we have a set of estimable contrasts. Suppose that the matrix B contains
contrast coeflicients that correspond to the coefficients of the effects that are of interest. We can
choose the entries in B such that Bf is estimable.

We now construct a matrix B, that contains coefficients of the contrasts of the entries in 7.
These contrasts may be the main effects of the attributes, or two—factor interactions between
attributes, or perhaps subsets of these. We are not interested in the estimation of contrasts that
include both v and entries in 7, but we do want to estimate v itself. Then we assume that
any interactions between v and v are not of interest, and therefore we assume that contrasts
involving both entries in 7 and v are zero. Then we can construct a matrix B that contains both

the contrast matrix B, and the effect of v.

B, 0
0 B,

B, 0
0 1|

Then the information matrix for the estimation of the contrasts in B, and the ties parameter v

B =

is
C(ﬂ'o, V) = BA(ﬂ'o, U).BT7
which becomes

C(ﬂ'o,l/) =

By Ay (mo, I/)B:‘Z; 0 ]

0 ze N
where A (mo,v) was defined in Section 2.2. Appendix 2.B shows that this information matrix
does not violate the conditions given in El-Helbawy and Bradley [1978] that permit the transfor-
mation above. Since this information matrix is block diagonal, we are able to estimate the ties
parameter independently of the attribute effects.

Now let us apply this to our example when we wish to estimate main effects and v.

H EXAMPLE 2.3.1.
Consider the experiment introduced in Example 2.0.12 and the design introduced in Example
2.1.2 for the estimation of main effects plus v. The contrast matrix for the estimation of main
effects plus v is
-1 -1 110
B=—-| -1 1 -1 1 0|,
o 0 0 0 2

where B, is a 2 x 4 matrix of contrast coefficients and B, is the constant 1. Then the information

matrix for the estimation of main effects plus v is

1
2(24v) 0 0
O(ﬂ'o, V) = 0 ﬁ 0
2
0 0 v(2+v)2

We see that we can estimate the main effects and v independently when using this design, since

the information matrix is diagonal. O

Now that we have an expression for the estimation of a set of contrasts that are of interest
and the ties parameter we may now develop some results on the optimality of designs when using
this model.
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2.4 Optimal designs for the Davidson ties model

In this section we will compare the information matrices for the estimation of a set of effects
when using the Bradley—Terry model and when using the Davidson ties model. Throughout this
section, we assume that the same set of contrasts on the entries of v are of interest, those whose
coefficients are in B,. We will proceed to show that the optimal design for the estimation of a
set of effects when estimating the Bradley—Terry model is also optimal for the estimation of the
same set of effects plus ¥ when estimating the Davidson ties model.

Suppose that we assume ® = 7, then the information matrix for the estimation of the
entries in 4 when the Bradley—Terry model is used is denoted by A(mp)s_1. Also suppose that
Ay (mo, V)pav is the (1,1) block of the information matrix for the estimation of the entries in 7y
plus v when the Davidson ties model is used. Then if we compare the diagonal entries of both

matrices, we see that

1
2(2 4 v)(Ayy (o, V)pav)ii = A(A(To)B 1)ii = & > ne
ClT,‘EC

If we compare the off-diagonal entries in the two matrices, we see that

n ..
2(2+ v)(Ayy(mo, v)DAV)i; = 4(A(mo)B-T)ij = %
It follows that we can express the information matrix for the estimation of v and v using the
Davidson ties model in terms of the information matrix for the estimation of 7y using the Bradley—
Terry model. We get
=2 A(mo)p_ 0
A(mo,v)pay = | 2T (mo)e-r 9
0 v(2+v)?2
Since we can express these information matrices in terms of each other, we may now look at
comparing optimality results for these two designs. We will use the D—optimality criterion, as

defined in Section 1.3.1.

B THEOREM 2.4.1.

For a set of contrasts on the elements of 7, a constant but unknown v and for the same set of
competing designs X, the D—optimal design for the estimation of the set of contrasts when using
the Bradley—Terry model will also be D—optimal for the estimation of the same set of contrasts

and v when using the Davidson ties model under the null hypothesis of equal merits. O
Proof. We begin by letting B be the block diagonal matrix

B, 0
0 11|’

B =

where B, is a p x ¢ matrix containing the coefficients of the contrasts of interest among the
entries in . Then the information matrix for the estimation of B, plus v when the Davidson

ties model is used, C(mg, V)pav, 18

C(mo,v)pav = BA(mo,v)pavB”
. B»YAA/»Y(WO, Z/)DA\/B$ 0
o 0 _2 |
v(2+v)?
Since we have shown that
Ay (mo, V)DAV = A(mo)B-T,

2+v
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by substitution we obtain

C(mo,V)pay = 2y 0

2 B A(’ll'o)B,TBz; 0 ‘|
) .
v(2+v)?
The information matrix for the estimation of B,y when the Bradley-Terry model is used,

C(ﬂ'o)B T, is
C((ﬂ'O)BfT = B,YA(ﬂo)B,TB?,

Thus we may express C(mg, V)pav in terms of C(mg)p_T and v, giving

2 C 0
C(mo,v)pav = el ol 2 ] '
0 vEr)?
Then we see that
9 2
det(C(ﬂ‘o, V)DAV) = det mc(ﬂ'O)B*T X W
ort+l

= Wdet(C(ﬂ‘o)BfT)-

Since

det((C(mo)B-T)eopr) > det((C(mo)B-1)¢)

for all £ € X, the relative efficiency of a generic design £ compared to £opr, the design that is
optimal for the estimation of B,y when the Bradley-Terry model is used, when the Davidson

ties model is used is

Desr(€, orr) = det((C(mo, v)pav)e) ))p+1

det(( 7"0» DAV)EOPT

(@i
( 224:)1:)” det((C(mo)B 1)¢) =+
(awi
1

V(zf:1p+z det((C(mo)B-1)¢opr)

1
de 1l'0 B— T)&) >p+1
det( 7T0 B~ T)ﬁopT)

)

<

for all £ € X. Therefore, by the definition of D-optimality, £opr is the D—optimal design for the

estimation of the contrasts in By plus v when the Davidson ties model is used. O
We now consider an example of the relationship between these two models.

B EXAMPLE 2.4.1.

Recall the experiment and design introduced in Example 2.1.2. In Example 2.3.1 we found the
information matrix for the estimation of main effects plus ¥ when the Davidson ties model is
used. Now we will find the information matrix for the estimation of main effects only using

the same design and the Bradley—Terry model. The contrast matrix for the estimation of main

1] -1 -1 11
B=_ .
2] -1 1 -1 1

effects is
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From El-Helbawy and Bradley [1978] we know that, under the assumption of the null hypothesis
of equal merits, the information matrix for the estimation of the entries in 4 when the Bradley—

Terry model is used is

1 0 -1 0
A(mo,v)gr =<
0 - 1 0
-1 0 0
We observe that
A'y("foa’/)DA\/ = mA(ﬂ'o)B—T

It follows that the information matrix for the estimation of main effects only using the Bradley—

C(mo)p-1 = [ é ; ],

Terry model is

=

and we see that

C(mo,v)pav =

QJF%C(WO)B—T 0 1

2
0 v(2+v)?

Taking determinants of both C(mg,v)pav and C(mo)p-T gives

1
det(C(WO7V)DAV) m,
and
1
det(C(Tl'())B,T) = Tﬁ
We are estimating p = 2 contrasts on 7y, so
op+1 23 1
———— det(C _ = — X —
v(24v)pt2? et(Clmo)s-1) v(2+v)4 16
B 1
w2+ v)d
= det(C(rO,y)DA\/),
illustrating the results in Theorem 2.4.1. O

We now use this theorem to apply the known results for optimal designs when the Bradley—
Terry model is used to the case of the Davidson ties model. First, we consider an extension of

the theorem for a 2% factorial experiment presented in El-Helbawy and Ahmed [1984].

H COROLLARY 2.4.2.
Let £ be the design that contains all distinct pairs that differ in the levels of each attribute in a
2% paired comparisons experiment. Then when the rows of B, correspond to the k main effects,

the design will be D—optimal for the estimation of the Davidson ties model. O

Proof. By Theorem 1.3.1, the design described in the statement of the theorem is D—optimal for
the estimation of main effects when the Bradley—Terry model is used. It follows from Theorem
2.4.1 that this design must also be optimal for the estimation of the main effects plus the ties

parameter when the Davidson ties model is used. O

We can use this corollary to find an optimal design for the estimation of main effects and v

for the experiment in our examples.
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B EXAMPLE 2.4.2.

Consider the 22 experiment introduced in Example 2.0.12. In this experiment we have t = 4
possible items. There are two pairs of items, {00, 11} and {01, 10}, that differ in both attributes.
Then the design with these two pairs is optimal for the estimation of main effects plus v when

the Davidson ties model is used. O

We can also extend the result on the optimal design for a 2 factorial for the estimation of
main effects plus two—factor interaction effects, established by Street et al. [2001], to incorporate

ties.

B COROLLARY 2.4.3.
The D—optimal design for testing main effects plus two—factor interactions and the ties parameter
for a 2F paired comparisons experiment, when all other effects are assumed zero, and the Davidson

ties model is used is given by

k— k o k4l
D B Hpeye) o+ o=
7 0, otherwise,

-1

if k is odd, and
1 kT ek k
ag; = 2 1(k/2) , ifi=gorg+1,
’ 0, otherwise,

if k is even. O

Proof. By Theorem 1.3.2, the design described in the statement of the theorem is D—optimal
for the estimation of main effects plus two—factor interactions when the Bradley—Terry model is
used. It follows from Theorem 2.4.1 that this design must also be optimal for the estimation of
main effects plus two—factor interactions and the ties parameter when the Davidson ties model

is used. ]

We can use this corollary to find an optimal design for the estimation of main effects plus

two—factor interactions and v for the experiment in our examples.

B EXAMPLE 2.4.3.
Consider again the 22 experiment introduced in Example 2.0.12. We are now interested in the
estimation of main effects plus two—factor interactions and v. Since k = 2 is even the D—optimal

design for the estimation of these effects is given by

2x (37, ifi=1or?2
ag ; =
. 0, otherwise.

This is the design with all pairs of distinct items. O

Finally, we can extend the results of the general factorial as presented in El-Helbawy et al.

[1994] to incorporate ties.

B COROLLARY 2.4.4.

Consider an €1 X ... X £y factorial paired comparisons experiment. Assuming that there are no
interactions present, and By, consists of the main effects, then the design consisting of all pairs
where the options differ in all of the attributes will be D—optimal in the design space for the

estimation of main effects plus v when the Davidson ties model is used. O
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Proof. By Theorem 1.3.3, the design described in the statement of the theorem is D—optimal for
the estimation of main effects when the Bradley—Terry model is used. It follows from Theorem
2.4.1 that this design must also be optimal for the estimation of main effects plus the ties

parameter when the Davidson ties model is used. O

We now consider an example of how this result can be used to find optimal designs for the

Davidson ties model.

B EXAMPLE 2.4.4.

Let us consider the 32 experiment whose attributes and levels are given in Table 2.3. This
experiment has 9 possible items. The optimal design for the estimation of main effects plus v is
given in Table 2.4. O

Attributes Levels Coding

Sample collection Draw blood
Swab mouth/oral fluids
Urine sample

Location Public clinic

Doctor’s office

N o= O N = O

Home

Table 2.3: Attributes and levels for the HIV experiment with ¢; = {5 = 3.

Option 1 Option 2 Option 1 Option 2

o

_ R 2O O O O O

— O O N N = = O O
N NN — = e e
S N = = O N O N
NN NN ==
NN = OO N NN =
O O O O O O N NN
= O N O N = = O N

Table 2.4: Optimal design for the estimation of main effects and v when ¢; = ¢5 = 3.

2.5 Simulations of the Davidson ties model

In this section we consider the performance of the Davidson ties model under various model
assumptions by carrying out a number of simulation studies. The simulations we perform here,
and in later chapters, are based on a Type I extreme value error distribution. A comprehensive

discussion of the simulation methods that we utilise here is given in Train [2003] page 209-210.
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We assume that k = 2, {1 = 5 = 2 and m = 2 throughout. We consider two sets of values for
the parameters. In the first we assume that both main effects parameters, 7, and 7o, are equal
to 0 and the ties parameter v = 0.5, and in the second set we assume that m =1 and ™, = —1
but v = 0.5 still.

We find the locally optimal design for each set of values and compare the performance of each
design with both sets of parameter values. The design in Table 2.5 is optimal for the estimation
of the main effects of the attributes plus the ties parameter when 7, = 75 = 0, and v = 0.5, by
Corollary 2.4.2. By an exhaustive search of the 26 — 1 = 63 possible designs, we can show that
the design in Table 2.6 is one of the designs that is optimal for the estimation of the main effects
of the attributes plus the ties parameter when 71 = 1, 75 = —1, and v = 0.5. The other optimal
design consists of the choice sets in Table 2.5 plus the choice set {{1,0},{1,1}}. We will use the
design in Table 2.6 for the simulations. The exhaustive search is illustrated in Figure 2.1, where
the z—coordinate corresponds to the design index, and the y—coordinate is the determinant of
the information matrix for that design when 71 = 1, 7 = —1, and v = 0.5. The determinants of
the information matrix for the designs in Tables 2.5 and 2.6 are labelled in Figure 2.1.

We first assume that 7, = 79 = 0, and v = 0.5 and compare the simulated distributions of the
parameter estimates when the designs in Tables 2.5 and 2.6 are used in turn. Each simulation
is modelled using the simulated responses from 150 respondents, and each boxplot displays
the distribution of the estimates from 1000 such simulations. Figures 2.2(a) and (b) show the
distributions of the parameter estimates when the designs in Tables 2.5 and 2.6, respectively,
are used. Summary statistics for both simulations are provided in Table 2.7. We see that, for
both designs, the distribution of the parameter estimates seem to be unbiased and symmetric.
We see that, in this case, the additional choice set in the design in Table 2.6 does not seem to
reduce the variance of the 71 or v, but the variance of 75 is reduced. This is reasonable given
that the additional choice set requires the respondent to choose between the levels of the second
attribute, while fixing the first attribute at level 0.

We now consider the performance of these two designs when 7 = 1,75 = —1, and v = 0.5.
Figures 2.3(a) and (b) show the distributions of the parameter estimates when the designs in
Tables 2.5 and 2.6, respectively, are used. Summary statistics for both simulations are provided
in Table 2.8. We see that, for both designs, the distribution of the parameter estimates seem to
be unbiased and close to symmetric. For these parameter estimates, we see that the addition of
an extra choice set does seem to reduce the variance of the parameter estimates across the board,
but most markedly for 7. The selection probabilities when the design in Table 2.5 is used and
71 = 1,72 = —1, and v = 0.5 are given in Table 2.9.

Next, we simulate the effect of changing the magnitude of the ties parameter on the distri-

Option 1 Option 2

0 1
10

Table 2.5: Optimal design for the estimation of main effects and v when 7 = » = 0, and
v =0.5.
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Designs with two binary attributes and m=2

0.0120
Design in
E:;Eﬂzlg Table 2.6
0.01009 \J
_— . L ) . . L]
g
ﬁ 0.0060 .
a ¥ ..
a0 ' o .« " . ' L]
0.00207
0.0000 LT R I ] .
6 2‘0 4‘0 EID
Design Index
Figure 2.1: Exhaustive search for optimal design m = 1,75 = —1, and v = 0.5.
Option 1 Option 2
0 0 11
0 1 1 0
0 0 0 1
Table 2.6: Optimal design for the estimation of main effects and v when 73 =1, 7 = —1, and

v =10.5.

Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 2.5

I 0.00308(0.00208) 0.00417 0.00434 0.03812(0.07734)

Ty —0.00002(0.00212) 0.00417 0.00451 —0.05835(0.07734)

v 0.50383(0.00229) 0.00521 0.00525 0.24420(0.07734)
Design in Table 2.6

i51 —0.00101(0.00201) 0.00417 0.00404 —0.14353(0.07734)

T2 0.00056(0.00166) 0.00278 0.00274 —0.09451(0.07734)

v 0.50239(0.00184) 0.00347 0.00338 0.18347(0.07734)

Table 2.7: Summary statistics for 71 = 79 = 0, and v = 0.5.
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()

1000 Simulations: k= 2, m= 2, Effects = 0,0,0.5

(b)

1000 Simulations: k= 2, m = 2, Effects = 0,0,0.5
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Figure 2.2: Simulation of Davidson ties model 73 = 75 = 0, and v = 0.5.
(a) (b)
1000 Simulations: k= 2, m = 2, Effects = 1,-1,0.5 1000 Simulations: k= 2, m = 2, Effects = 1,-1,0.5
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Figure 2.3: Simulation of Davidson ties model 7y = 1, 79 = —1, and v = 0.5.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance  Variance (Standard Error)

Design in Table 2.5

i51 1.02064(0.00459) 0.00718 0.02103 0.48166(0.07734)
Ty —1.02260(0.00456) 0.00718 0.02077 —0.51109(0.07734)
v 0.50506(0.00296) 0.00565 0.00878 0.24441(0.07734)
Design in Table 2.6
Ty 1.00382(0.00364) 0.00479 0.01327 0.33741(0.07734)
Ty —1.00187(0.00300) 0.00479 0.00902 —0.17943(0.07734)
v 0.49988(0.00234) 0.00377 0.00550 0.22402(0.07734)
Table 2.8: Summary statistics for 74 = 1,75 = —1, and v = 0.5.

Choice Set P(T1|{T1,T2}) P(T2|{T1,T2}) P({T17T2}‘{T1,T2})

{00,11} 0.400 0.400 0.200
{01, 10} 0.017 0.921 0.062

Table 2.9: Selection probabilities when 74 =1, 72 = —1, and v = 0.5.

bution of the parameter estimates when we let 74 = 1 and 7o = —1, and use the design in Table
2.6. Figures 2.4 (a) and (b) give the simulated distributions of the parameter estimates when
v = 0.25, and when v = 1, respectively. Summary statistics for both simulations are provided
in Table 2.10. We see that the estimates are unbiased, and the variance of the estimates for 7
and 7o are similar for both simulations. The simulated variances of the parameter estimates for
v seem to be larger when v = 1. This is confirmed by looking at the theoretical variances of the
parameter estimates, which also increase. We also notice that the distribution of v is slightly
right skewed. This is consistent with the assumption made in Critchlow and Fligner [1991] that
In(v) is normally distributed.

We now compare the ability of four different designs to estimate the main effects plus the
two—factor interaction of the attributes and v. The first two designs are those in Tables 2.5 and
2.6. The third design is the set of all pairs of items, which is optimal for the estimation of the
main effects plus the two—factor interaction of the attributes and v when 7 = 75 = 75 = 0, and
v = 0.5, by Corollary 2.4.3. This design is shown in Table 2.11. The final design, shown in Table
2.12, is locally optimal for the estimation of the main effects plus two—factor interaction of the
attributes and v when 7, = 1,75 = —1, 72 = —0.25, and v = 0.5, by an exhaustive search.

We first consider the case where the interaction effect is assumed to be negligible. Suppose
that ;1 = 1,72 = —1,712 = 0, and v = 0.5. Then Figures 2.5(a), (b), (c), and (d) give the
simulated distributions of the parameter estimates when the designs in Table 2.5, Table 2.6,
Table 2.11, and Table 2.12 are used. Summary statistics for all four of the simulations are
provided in Table 2.13.

We see that the design in Table 2.5 can not be used to estimate the two—factor interaction
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(2) (b)
1000 Simulations: k= 2, m = 2, Effects = 1,-1,0.25 1000 Simulations: k= 2, m = 2, Effects = 1,-1,1
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Figure 2.4: Simulation of Davidson ties model 71 =1, 7o = —1, and (a) v =0.25 (b) v =1 .

Parameter Simulated Mean Theoretical Simulated Simulated Skewness

(Standard Error) Variance Variance (Standard Error)
(a) o 1.01526(0.00376) 0.00929 0.01410 0.29054(0.07734)
T2 —1.01345(0.00326) 0.00444 0.01065 —0.39184(0.07734)
v 0.25088(0.00151) 0.00223 0.00228 0.30937(0.07734)
(b) T 1.01229(0.00368) 0.01060 0.01358 0.32162(0.07734)
T2 —1.01078(0.00313) 0.00558 0.00980 —0.31087(0.07734)
v 1.01487(0.00434) 0.01594 0.01881 0.48877(0.07734)

Table 2.10: Summary statistics for 73 = 1,75 = —1, and (a) ¥ =0.25and (b) v =1 .

Option 1 Option 2

_ == O O O
_ o O = = O
S = O R = O
S = O O = =

Table 2.11: Optimal design for the estimation of main effects, two—factor interactions, and v

when 7 =19 =712 =0, and v = 0.5.
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Option 1 Option 2

0 0 0 1
0 1 1 1
1 0 0 0
1 0 1 1
11 0 0

Table 2.12: Optimal design for the estimation of main effects, two—factor interactions, and v

when 7 = 1,79 = —1, 175 = —0.25, and v = 0.5.

at all, and gives biased estimates for the remaining attribute effects. The design in Table 2.6
is able to estimate the two—factor interaction, but with a relatively large variance and skewness
toward the extremes. The designs in Tables 2.11 and 2.12 both give unbiased and symmetric
parameter estimates with relatively small variances. The variance of the parameter estimates
from the design in Table 2.11 is slightly lower than those from the design in Table 2.12.

Next, we consider the case where there is a non—zero interaction effect. Suppose that m =1,
Ty = —1, 712 = —0.25, and v = 0.5. Then Figures 2.6(a), (b), (¢), and (d) give the simulated
parameter estimates when the designs in Table 2.5, Table 2.6, Table 2.11, and Table 2.12 are
used. Summary statistics for all four of the simulations are provided in Table 2.14.

Again we notice that the designs in Tables 2.11 and 2.12 give unbiased and reasonably sym-
metric parameter estimates with a relatively small variance. We also see that the designs in
Tables 2.5 and 2.6 again give poorer estimates for these parameters. Once again, the design in

Table 2.5 can not be used to estimate the two—factor interaction.
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Figure 2.5: Simulation: estimating main effects and v, design in (a) Table 2.5, (b) Table 2.6,

(c) Table 2.11, and (d) Table 2.12.
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Figure 2.6: Simulation: estimating main effects, two—factor interactions, and v, design in (a)
Table 2.5, (b) Table 2.6, (c) Table 2.11, and (d) Table 2.12.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)
Design in Table 2.5
sl 1.02128(0.00449) 0.00718 0.02017 0.67056(0.07734)
Ty —1.01634(0.00448) 0.00718 0.02005 —0.54560(0.07734)
T12 Not Estimable
v 0.50828(0.00314) 0.00565 0.00984 0.38768(0.07734)
Design in Table 2.6
Ty 1.02945(0.00439) 0.00355 0.01926 0.68980(0.07734)
Ty —1.02916(0.00435) 0.00355 0.01895 —0.70955(0.07734)
Ti2 —0.01589(0.00589) 0.00638 0.03464 —0.18825(0.07734)
v 0.50870(0.00242) 0.00185 0.00586 0.27522(0.07734)
Design in Table 2.11
st 1.00271(0.00217) 0.00253 0.00471 0.05708(0.07734)
T —1.00320(0.00221) 0.00199 0.00487 —0.15041(0.07734)
Ti2 —0.00035(0.00198) 0.00173 0.00392 —0.13595(0.07734)
v 0.50460(0.00169) 0.00181 0.00285 0.23190(0.07734)
Design in Table 2.12
T 1.00910(0.00236) 0.00256 0.00557 0.18686(0.07734)
Ty —1.00539(0.00246) 0.00196 0.00608 —0.19718(0.07734)
T12 0.00025(0.00199) 0.00145 0.00397 0.06125(0.07734)
v 0.50319(0.00167) 0.00178 0.00280 0.19896(0.07734)

Table 2.13: Summary statistics for 11 = 1,75 = —1,72 =0, and v = 0.5.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)
Design in Table 2.5
sl 1.01915(0.00458) 0.00718 0.02102 0.56405(0.07734)
Ty —1.01681(0.00460) 0.00718 0.02112 —0.49041(0.07734)
T12 Not Estimable
v 0.50874(0.00297) 0.00565 0.00882 0.39822(0.07734)
Design in Table 2.6
Ty 1.02073(0.00448) 0.00355 0.02008 0.68262(0.07734)
Ty —1.02401(0.00437) 0.00355 0.01913 —0.49267(0.07734)
Ti2 —0.26706(0.00544) 0.00615 0.02964 —0.18378(0.07734)
v 0.50377(0.00222) 0.00186 0.00494 0.21732(0.07734)
Design in Table 2.11
st 1.00766(0.00237) 0.00266 0.00560 0.19277(0.07734)
T —1.00705(0.00227) 0.00199 0.00514 —0.16026(0.07734)
Ti2 —0.25287(0.00205) 0.00179 0.00419 —0.02871(0.07734)
v 0.50522(0.00172) 0.00181 0.00295 0.17568(0.07734)
Design in Table 2.12
T 1.00327(0.00250) 0.00272 0.00624 0.20013(0.07734)
Ty —1.00390(0.00252) 0.00196 0.00633 —0.21386(0.07734)
T12 —0.25104(0.00211) 0.00150 0.00445 —0.02041(0.07734)
v 0.50264(0.00175) 0.00178 0.00305 0.27551(0.07734)

Table 2.14: Summary statistics for ; = 1,75 = —1, 72 = —0.25, and v = 0.5.
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2.A  Proof that jiz = 0 for the Davidson Ties Model

We begin by recalling that

Tigh )
2\/71'171]2

T + Wiy + U/ TiTiy

STL“27/T\1(1 +

1
zp = Z Wiiy 5 Woliiy —
ini

Now, the vector z contains the values for z; for each possible item T;. Then

t

|
L

T
JL?
i=1

Eaﬁ )
24/ T4,

1
= E Wiliiy T 3W0(i,i0)|idy — X o e
11742 2 i+ Wiy + U/ Tz

sniiQﬂ(l +

7!‘7;17Ti2l/
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= § (Wiliiy + Wiy i, +w0(i,i2)\iiz)_§ P
C C T, +'/Ti2 +I/\/7Ti1’/Tl'2

an Z Snc(’ﬂ'il —+ Ty + 1/\/7T2'17T»L'2)
= [ PGS
C C Ty +7T1'2 +I/\/’/T1‘17TZ‘2
= E sng — E sngo

C C

= 07

sne(m, + T, +

as required.

2.B Proof that the Davidson Ties Model does not violate
El-Helbawy and Bradley [1978] Conditions

In order to apply the results relating to associated populations, we need to show that C(mg, )
is positive definite, as El-Helbawy and Bradley [1978] did.

B THEOREM 2.B.1.
The C matriz for the estimation of a set of contrasts Bpy and v, where

B, 0
0 1

B =

is positive definite.

Proof. El-Helbawy and Bradley [1978] show that C(mg)p_r is positive definite. Then the eigen-

values of C(mo)B-T, A1,...,Ap are all positive. If we consider the matrix
2
55,0 (mo)B-T 0
C(ﬂ-07 V)DAV = v ) 2 )
0 v(2+v)?2

Then

det(C o, V)pay — Lyer) = 5o det(Clmo)r — )  (— o 1)

e Ty, V — =——de To)B-T — _— —
0, V)DAV — Ipt1 510 0)B-T — Ip V21 0) )

will have roots at Aq,...,Ap, ﬁ We already know that Ay, ..., A, are positive, and ﬁ

is positive for all ¥ > 0. Since we assume that v > 0 anyway, all of the eigenvalues are positive.

Therefore the C' matrix for the Davidson ties model is positive definite. O




Chapter 3

The Generalised Davidson Ties
Model

In Chapter 2, we found optimal designs for experiments when the Davidson ties model is used
for choice sets of size 2. In Section 1.1, we introduced the MNL model as a generalisation of the
Bradley—Terry model, which allows for an arbitrary number of options in a choice set.

This chapter introduces a generalisation to the MNL model to accommodate ties. This
generalisation is analogous to the use of the Davidson ties model as a generalisation of the
Bradley—Terry model to accommodate ties. We will first set up the model, the probability and
likelihood functions and derive the information matrix for the estimation of a set of contrasts
and the ties parameter.

Once we have established the properties of this model, we will then use the information
matrix to show that the designs that are optimal when the MNL model is used are also optimal
when the generalised Davidson ties model is used. Finally, we will look at some simulations of

the generalised Davidson ties model.

3.1 Estimation of the generalised Davidson ties model
We begin this section by returning to the experiment in Example 2.0.12, looking at how we can

allow for ties when we have larger choice sets.

B EXAMPLE 3.1.1.

Consider the experiment introduced in Example 2.0.12. Suppose that we create choice sets with
three items each. One such choice set is {00,01,10}. Then if we allow respondents to state that
a subset of these items are equally attractive then there are 7 different outcomes arising from

the choice set
e To state a preference for a single item, 00, 01 or 10,
e To state that a pair of items are equally attractive, {00,01}, {00,10} or {01,10}, and

e To state that all three items are equally attractive, {00,01, 10}. O

Here we notice that the respondent is not only permitted to find pairs of items in the choice

set equally attractive, but is also permitted to state that larger subsets of the items in the choice
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set are equally attractive. In his paper, Davidson argues that the merit of finding a set of items
equally attractive is proportional to the geometric mean of the item merits. We will assume,
as Davidson did, that the proportionality is constant across choice sets, and is strictly positive.
If this constant is equal to zero then this means that no respondent has stated that any of the
items in any of the choice sets are equally preferable to another item in the choice set, and the
MNL model should be used instead.

B EXAMPLE 3.1.2.

Consider the experiment introduced in Example 3.1.1. If we assign merits mqg, mo1, and m1g to

the items in the choice set then we obtain merits v/moomo1, v+/ToomT10 and v4/mo1710 for finding

pairs of items equally preferable, and the merit of finding all three items in the choice set equally

attractive v ¥/moomo1m1g. Let

Dy00,01,101 = oo + To1 + 710 + V/TooTo1 + ¥/To0T10 + V/T017T10 + V/T00T01710-

Then the selection probabilities of each of the types of choices take the form

P(00/{00,01,10}) = - %0
D{oo,01,10}

P({00,01}{00,01,10}) = LYol
Dyo0,01,10}

and

3,
P({00,01, 10}{00,01,10}) — “Y/T00ToiTio

~ D{00,01,10}

If we set v = 0 then we are saying that respondents will always be able to choose a single item

as best. These probabilities then become

P(00[{00,01,10}) = — "%
oo + To1 + 710
P({00,01}/{00,01,10}) = 0,
and
P({00,01,10}|{00,01,10}) = o0,
that is, we are left with the MNL model. O

In general, let the merit of choosing item T; be 7;, the merit of finding the items 7;, and
T, equally attractive be v,/m;;m;,. Let the merit of finding the items T;,, T}, and Tj; equally
attractive be v g/m; m;,m;,. We continue this until we get to the respondent finding all of the
m items in the choice set equally attractive, which will have merit v /7 7, ... 7, . As in the
MNL model, to obtain the probability of making a particular decision, we divide the merit of
that decision by the sum of the merits of all possible decisions from the choice set. For a choice
set C ={T;,,T;,,...,T;, }, we denote the sum of the merits for each of the possible decisions by
D¢. That is,

m m

Dc = > m, +>, VT T
a=1

2=2{T},,....Tj, }CC
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We can then express the probabilities for each decision as

T4
P(TMIC) = Dizc’
V. /T;, T
P({T217E2}|C> - D; 27
V3T, i, TG
P({E17Ti27Ti3}|C) = ﬁ7

P({Ti17Ti27"'7j-’im}|C) ID; :

As before, we can define indicator variables w to represent whether a particular decision was

made by a particular respondent, «, or not. We let

1, if respondent « selected item T,
Wiy |Coao = when presented with choice set C,

0, otherwise,

1, if respondent o found items 73, and 7;, equally

Wiy in}|Ca = attractive when presented with choice set C,

0, otherwise,

1, if respondent « found all items in the

Wiy oim}Cra = choice set C' = {T;,,...,T;, } equally attractive,

0, otherwise,

where for a given choice set and respondent «, we let only one of the ws be equal to 1, depending
on the respondent’s choice. This implies that there will be no repeated choice sets for any
respondent, and no opt—out process. Then, for respondent «, the probability density function

for the response to choice set C = {T;,,...,T;, } is

1 Wi|C,a 1
fcya(ﬂ',w, V) = Di?)c X H ™ e, X H
=2

i|T€C Ty, Ty, YO

where n¢ is an indicator variable which equals 1 if the choice set C' is included in the experiment
and 0 if it is not. For consistency, we will also let wy;, . j yjc.a = 0, where {ji,...,j.} € C,
if the choice set C' does not appear in the experiment. The derivative of In(fc o (7, w,v)) with
respect to m; is

oln(foo(m w,v))
am

m m
Wi|C,a i Z Z Wiga,da}lCa _ NC (4 +Z Z VTjy -« - Ty,
T X7y Dc T YTy« o - T,

=2 {T},,....Tj, }CC *=2{T;,Tj,,...,Tj, }CC
0 it T; ¢ C,

PREED

and the derivative of In(f¢ o (7, w,v)) with respect to v is

dn(fo,0(mw, - Wi, o} Cra .-

v
=2 {Ty, ,...,Tj, }CC =2{Tj,,....Tj, }CC

Jioee
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We will use these derivatives later to derive an expression for the information matrix for this
model. Before we derive the information matrix however, we will consider the MLEs for this
model.

Since the likelihood function is the product of the density function for a respondent and

choice set over all possible choice sets and over all of the respondents, we have

L(m,w,v) = Hch,a(ﬂ,w,u)
a=1 C
m

wijc z /7 —\W{ie,..., iz}lC
, X E H (v/mj, . my, ) el )

i|T;eC =2 {Tj,,....Tj, }CC

I
ol
q
—

Notice that n¢ is not subscripted by respondent. This is because we will assume that all respon-

dents are presented with the same set of choice sets. Once again, we let

w{ﬁlvv]r}lc = : :w{]hv]r}‘cva

a=1

To maximise the likelihood function subject to the constraints of the model, we need to set
up a Lagrangian function to incorporate the constraints. For purposes of convergence, we enforce

the normalising constraint typically present in the MNL model

t

Zln(m) =0.

i=1
We also constrain the contrasts that we assume to be negligible to be equal to 0. Suppose that

the matrix B, contains the coefficients of these contrasts. Then

Ba'Y =0,

where once again 7 is a vector containing v; = In(m;) for ¢ = 1,2,...,¢t. This gives the Lagrangian

m 1 x
G(mw,v)= ) ( Yoowicaln@m)+Y Y Whis)Ca <1H(V) + len(m))

¢ \iT;eC =2 (T}, ,...,Tj, }CC q=1
¢
—sng In DC> + K1 Z In(m;) + [K2, - - -, Kat1)Ba In(mr),

i=1

where K1, ..., Kqt1 are Lagrange multipliers. If we differentiate G(m,w, v) with respect to 7;, we

obtain

oCG(m,w,v) wie Wi js,...je}IC 9D¢
T om Z( D3 2o T ams ™o,

i|TeC w=2 {T},T},,....T;, }CC

K
- 1+ ZKqul a)ui-
b u=1

If we differentiate G(m,w, v) with respect to v, we obtain

aG( » @y ) w 11550z 8D
orwy) Z(Z > Ul af)'

2=2{T}, ... T;, }CC

As usual, we obtain the MLEs by setting these equations equal to 0 and solving simultaneously.
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This problem can be simplified by using matrix notation. Suppose that we let
m
1 __0D¢
SIEED ¥ 5 SRD ol T
Z‘TiGC z=2 {Ti7Tj27“‘vij}gC
. . G (w,w,v) .
Then by multiplying =5 by each m; in turn, we get

Zi+f€1+zf€u+1(3a)m=0, fori=1,2,...,t.

u=1

This gives the system of equations
z+rjr+Bls = 0, (3.1)

where z = (21,22,...,2)7 and &k = (K2, K3, ..., Kar1)?. Similarly, if we let

m
p = Z (Z Z Wj1,ennda}IC VS”CaaDVC)
¢ \x=2{Ty,,..T;,}CC
then we obtain p = 0 as the other equation to solve.
If we pre-multiply Equation 3.1 by 57 we obtain x; = 0, since j7z is shown to be equal to 0
in Appendix 3.A, and the rows of B, are the coefficients of contrasts so jT Bl = (B,j.)T = 0.

Pre-multiplying Equation 3.1 by B,, we obtain

Buz+ k1Bujr + BsBf's = 0
B,z+k = 0
kK = —Bgz.

Substituting this into Equation 3.1, we get

(I — BT'B,)z =0,
and

p=0

as the normal equations. We obtain the MLEs by solving these equations iteratively.
B EXAMPLE 3.1.3.
Recall the experiment introduced in Example 3.1.1. Suppose that we present four choice sets to
each respondent, {00, 01,10}, {01,00,11}, {10,11,00} and {11,10,01} and that we are interested

in the estimation of main effects and v. Suppose that we present these choice sets to 150

respondents and obtain the summarised responses in Table 3.1. Then the Lagrangian for this
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OptiOIl 1 Option 2 Option 3 T1 T2 T3 {T17 Tz} {Tl, T3} {Tz, Tg} All

0 0 0 1 1 0 5 19 54 10 21 20 21
0 1 0 0 11 4 4 73 5 25 22 17
1 0 11 0 0 26 61 0 27 9 15 12
11 1 0 0 1 47 23 8 28 15 10 19

Table 3.1: Responses for the experiment in Example 3.1.3.

estimation of the generalised Davidson ties model for this experiment is

Gw,m,v) =

5In(mg) + 191In(mp1) + 54 In(m10) + (10 + 21 + 20 + 21) In(v) + %(ln(ﬂoo) + In(7p1))

2 (1n(moo) +In(m)) + 5 (1n(or) +1n(m10)) + = (1a(mo0) + In(ron )+ In(m10)) ~ 150 (Do 1,10)
+41n(mo1) + 41n(meo) + 73In(m1) + (5+ 25+ 22+ 17) In(v) + g(ln(wm) + In(mgo))
+2?5(1n(7r01) +1In(m1))+ %(h’l(ﬂ'oo) +1In(m1))+ g(ln(ﬂm) +In(mpo) +1n(m1)) —1501In(Do1,00,11)
+26In(m10) + 61 1n(m11) + 0ln(mo) + (27 +9 + 15+ 12) In(v) + %(ln(woo) + In(m1))

+g (In(moo) +1n(mo1)) + 1; (In(moo) +1n(mo1)) + 132 (In(moo) +1n(me1) +1n(m10)) — 150 In(D1o,11,00)

28
+471n(m1) + 23 1n(m0) + 81n(mor) + (28 + 15+ 10 + 19) In(v) + ?(ln(woo) + In(m1))

+§(1H(’/T()o) +ln(7r01)) + %(111(71’00) +1n(7r01) + ?(hl(ﬂ'go) +1I’1(7T01) +1n(7r10)) —150 IH(D11710701)
—H’il(ln(ﬂ'oo) + ln(7r01) —|— ln(ﬂlo) + ln(ﬂ'n)) —|— Iig(ln(ﬂ'oo) — 111(71'01) — 111(71'10) —|— 111(7'('11)).

We differentiate the Lagrangian with respect to each ; in turn. For instance,

OG(w,m,v) 200

]/71'0] l/TrlO V77017T10
o + K1 + K2 — 150 L+ V/To0To1 + V00710 + ImooTo1 10
Omoo 3Too Moo Moo Dqo,01,10
VTo1 Vi1 VTo17T11 V1o Vi1 V10711
_1 + V0001 + V00711 + YToomo1 11 . L+ V0010 + TO0T11 + YToom10711
b)
Do1,00,11 D10,11,00
and
OG(w,m,v) 263  150(y/Toomo1 + /T00T10 + /01710 + ¢/T00T01710)
ov v Dyp 01,10

~ 150(y/To0To1 + /o711 + /01711 + §/TooTo1711)
Do1,00,11

B 150(\/To0m10 + +/Toom11 + +/T10711 + /To0T10711)
D1o,11,00

150(y/To1710 + /To1711 + /710711 + /To110711)
D11,10,01

If we set each of these equal to 0 and solve iteratively then we obtain the MLEs for m and v. If
we let 71 be the main effect of the first attribute and 7 the main effect of the second attribute

then we get

71 =1.01 T2 = 0.39 7 =0.93. O
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3.2 Properties of the generalised Davidson ties model

In this section, we complete the construction of the information matrix for the estimation of
the entries in m# and v. We begin by deriving expressions for the variances and covariances of
the selection indicators, w, introduced previously. We then use these expressions to simplify the
information matrix.

Recall that the entries in w are selection indicators for the choice made by a respondent when
presented with the choice set C = {T;,,T;,,...,T;, }. These w; have a Bernoulli distribution

with expectations

7Ti1
g7r (wil \C,a) = DC P
< (w ) . V)T Ty
(Wiiin}Ca) = — >
1,02 D¢
VT4, TigTig
Ex(Wiiy i iz} iCa) = ——F
{i1,i2,i3}|C, D¢
V=T Ty o e T
En(Wiiy iy, i Ca) = —,
{i1,i2,--s8m—1}1C, Do
and
VYT Ty -« - T
57r(w{i i i }|Ca) = - (3.2)
15825000 ) Do

The variances of these selection indicators are given by

T4, DC — Ty
Varw(“’iﬂ(),a) = X ;

D¢ D¢
Va ( ) Vy/Tq, Ty » DC_Vw/’/Tilﬂ—ig
I \Wg;, 4 C =
T\ W{i1,i2}|C, DC’ DC )
VT4, Ty Ty DC — VT Ty Ty
Varq (Wi, iy is}|Cra) = - X =,
{i1,12,i3}|C, Do Do

Vot | v myfTn iy Do — v ey,
ar-(Wg;, i YO = X
™ {1, im—1}|C, DC DC ’

and

Vare (Wi, i} Ca) = ! W ( Dov W (3.3)
Next we derive covariances for the selection indicators. We assume that the selections made
in two distinct choice sets are uncorrelated, and thus the selection indicators between choice sets
have zero correlation.
We begin with the correlation between two selection indicators that both represent selections
of a single item. We notice that it would not be possible to select both T;, alone and T;, alone,

and therefore & (w;,|c,aWi,|c,o) = 0. This yields

Covr (Wi, |Crar Wis|Ca) = Eﬂ((wil\c,a — Ex(wiyicna)) (Wiyicr0 — 5w(w¢2\c,a)))

= 0-— Ew(wi1|C,a)57r(wi2|C7a)
—7Ti17'('7;2

(DC,a)2.
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Then
P i C = and iy # iy,
COVﬂ(wil‘C,aawill‘C/,Oé) = Vaumr(wl-ﬂc’ak)7 i C=C and iy =iy,
0, otherwise,

where C' = {T;,,,T;
This gives

s> 1, }. We repeat this procedure for different selection indicators.

—7rjl/1z/7rj1,><...><7ri$/ T¥ol= Cl
- )

(Do)? )

Cova (Wj|0,00 Wijy ...} O ) = ,
0, otherwise,

and

—? Vﬂjlx~~‘X”im Vﬂ'il,x...xwiu, . ™

C . . . . )_ (DC)Q 5 lf C = C y
V(Wi ju}ICoos Wiy oo IO ) = ,

0, otherwise,

(3.4)

for 2 <z, y <m.
Next we construct the information matrix for this model. As with the Davidson ties model,

the construction will be easier if we partition the information matrix into four blocks. Thus let

I(m,v) = Lin(m,v)  Lyr(m,v)
’ Iﬂy(ﬂ-ﬂ/) Iuy(ﬂ,l/) ’

where I (m,v) contains minus the expected value of second derivatives of the density function
with respect to two of the entries in 7. I, (m, ) contains minus the expected value of the second
derivative of the density function with respect to v twice. I, (m,v) and I,.(m,v) contains
minus the expected value of the second derivatives with respect to one entry in w and v, where
Liy(m,v) = L (m,v)T.

El-Helbawy and Bradley [1978] state that, under some mild regularity conditions, as given in

Section 1.1, the (4,7)™ entry of the information matrix for a discrete choice experiment without

ties is
I(m)y; = ;T:qul 7;:;»577 ((aln(fg;fﬂ,w))> (mn(fg;;ﬂ’w)))).

We now use this expression, and the results in Equations 3.2, 3.3, and 3.4, to evaluate some
generic cells in each block matrix. Since m > 2 in this case, we sum over the choice sets of size m
rather than pairs of items, and modify the notation for n,. and fy.o (7, w) accordingly. We will
begin with I (m,v). In this block matrix, we need to consider the off-diagonal and diagonal
entries separately.

Let us begin with the off-diagonal entries of I, (m,v). Suppose that we consider a generic
entry I (m,v);;, containing the product of the derivatives with respect to m; and with respect

to m;. We begin with

Lon(m, )y = Z nﬁ(;&r (8ln(fcva(7r,'w, v)) 0ln(fo o(m, w, 1/))>

o C 87@- (97Tj

The derivative of f(m,w,v) with respect to m; will be 0 unless T; appears in the choice set C.

Then we can restrict our summation to those choice sets that contain both T; and T);. This gives

Lo(mv)y; — Z nﬁgﬂ <8ln(fc,a(7r,'w, v)) On(feo(m w,v)) )

- Bm- 87Tj
ClTi,Tj eC
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By observation, we obtain

On(foa(w,m,v))  Wica Eﬂ(wilc’“>. (3.5)
on; Uy T
Then it follows that
nc Wi|C,a e W{4,4g,....50 Y Crou
N G T
C|T;, T eC =2 {T},Tj,,....,Tj, }CC ¢

m
JICa W{j,55,....3,}1C.a
+ el )
i ’U,T('j

2{T5,Tyy o0, Ty }CO

If we expand this covariance, we get

Iﬂw(wvy)ij
m
no 1
= > N Covr (W0 Wyl a) + D > - Cova (WilC,00 W5 33.....31}1C )
clr,ryec Y u=2{T;,T},,....Tj, }CC

- 1
+> Z S COVr (Wi o, . a}IC s WiICa)

=2 {1, Tjy -, Tj, JCO

1
+ Z > —3 Varn (Wi gs,....12}C0)

=2 {T, T}, Ty ..., Ty, }CCO

m

1
+Z 2 2 20 SOV (Wiga g} Coas WG g el } Co)

z=2u=2{T; Ty Ty
A1, d, L, yee

If we then substitute the Equations 3.3 and 3.4 and simplify, we obtain

_ne m TV /Ty, - T
Iﬂ-ﬂ-(ﬂ',l/)ij = E N7T — T — E E w

7;D?
oy, r;ec” TITC u=2{T;,T;,...,T; }CC
JISRC TS
m
Z Z TGV YT TGy o v T,
X

= 2{ sz 7ij}gc
m
VTR, T (Do — V/Mmny, - 7y,)
DY pz

=2 {T;,T5,Tjg,--,Tj, }

m.om 2 o/ — TS -
ZZ Z Ve YTy - Ty, TGy T
T
e=2u=2{T;,Tj,,....Tj, } Y
?’5{ Tév 7Tj;"}

Now let us consider a generic diagonal term in I (m, ). Again, if we notice that the derivative

of In(f(m,w,v)) with respect to m; is 0 when T; does not appear in the choice set, we obtain

Z Cgﬂ(aln(fc,a(ﬂzwvy))aln(fC,a(ﬂ-vway))).

(971'2' 87@-
C\TIEC

I7r7r(7r; V)ii

Using Equation 3.5, this simplifies to

T
Cc|T;eC ¢ *=2{T;T},,....Tj, }CC
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We can expand this variance to get

I7r7r(7r; V)ii
m
ne Covr (Wi|c,a, Wi g4, }IC,0)
=y N7 | Ve (wica) + > > P
clriec ™ ¢ w=2{T,Ty; ..., Ty, }CC
m m
Covar (Wi gy, ... 0} Cras Wi Crar) Varr (Wi js,....j.}Ca)
+ 3 J25 0 ,Q ,Q + L3925 ] s
Z Z . 2. 2 22
z=2{T;,Tj,,...,Tj, }CC z=2{T;,Tj,,...,Tj, }CC
m m
CoVar (Wi o, i Oy Wijihoennidl }C )
3J25 9]z s Q) ) 27...,ju}‘c,0t
DD u
r=2u=2{T; T}, ,...,Tj, }
#{T]7Tjé! ) j’u}gc
Substituting Equations 3.3 and 3.4 and simplifying gives
I7r7r(7r7 V)ii
ne i V/TiTty, -7y, (Do — v /Tl - - 75,)
I R S S
ClTiGC v ¢ r= 2{ ]2’ Jz}gc

m

VT YT Ty« o« TG,
2,2
x

= 2{T77T727 jm}gc

2,
ZZ Z v \ﬁ/ﬂiﬂjz...ﬂjw{t/ﬂiﬁjé...7Tj;>
U '
r=2u=2{T;,Tj,,....Tj, }
{TlvT’v :T]&} C

We can repeat this process for a generic entry of I, (m,v), a 1 x t vector. In the same way
as before we exclude the choice sets that do not include T;, which will give a zero summand, and

obtain

Lo(m,v); = Z nigﬂ <8ln(fc,a(7r,’w)) 31n(fc7a(7r’w))).

o on; ov
C|T;eC

If we take into account Equation 3.5 and that

aln(fCa W, V) Z Z w{jl,..;jz}lm _E. Em: Z w{jl,..;jm}\Ca ’

e=2{T}, ..., Tj, }SC @=2{T}, ... T;, }CC
(3.6)
then
ITK'V(ﬂ-’l/)i
e 0 | w{m, ;]m}\C@ Wi du}ICa
=% o (MY % > % )
oimec v o=2 (T,T;,. .T;,}CC w=2 {1y, . T, )0 v
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Again, we expand these covariances to obtain

Iﬂ'u(ﬂ-ay)i = Z Z Z Covﬂ(wﬂc,omw{ji,...,ji’t}\C,(x)

Nm;v (
C|T;eC u=2 {T“Tjé’“"T]‘,c}gC

- 1
+> > o Vare (Wi ... . }C00)

= 2{T17T727 .7w}gc
1
+ZZ Z COVw(w{m‘m---,jm}O,a,w{ji,.._,j,;}Cva))
z=2u=2{T; Tjy - 1}
#{T” }g

Substituting Equations 3.3 and 3.4 and simplifying gives

Inv(mv)i = ) NTr,VD2< Z ) iV T - T

i|T;eC u= Z{TiTé, T{L}QC

i VT, T, (Do — V/Milty, - T5,)
2 Z

T
=2 {T;,Tjy,....Tj, }CC
—ZZ Z v {/ﬂ'lﬂ'jz...ﬂ'jw {J/Wjiﬂjé...ﬂja>
- .
r=2u= 2{ J27 T

.
ATy Ty Ty YO

Finally, we look at the single element I,,,(mw, ). We begin with

Lu(m,v) = Zfﬁgﬂ((@ln(fcéayw,w)))?).

c
In this case, there are no derivatives with respect to any m;, so no choice sets are excluded from

the summation. Thus we obtain

Ly(mv) = 3 5C ((Z by Hhogelle > Z ﬁf)
C

©=2 {Ty;,....Tj, } =2 {T},,....,Tj, }CC

x

Using Equation 3.6, this simplifies to
i) = Sl (3 p  Hece)
c z=2{Tyj,, jo JEC v

As in the other cases, we will expand the variance and substitute this expression and covariances

of the single ws. After simplification, we obtain

L, v) ZNu2D2 <Z Y. vy T (Do — vy )

=2 {Tjy - T, }CC

m m
2 x . . " . .
—g E g v \/ﬂjl...WhVTr]i...ﬂ']L .
r=2u=2{Ty,,....Tj, }
ATy 0Ty ECO

As with the Davidson ties model in Chapter 2, our ultimate goal will be to estimate contrasts
of the v; = In(m;), and not the ;s themselves. In order to achieve this, we will need to find the
information matrix for the estimation of the entries in 4 plus v. This information matrix was
introduced for the MNL model in Section 1.1, and was derived for the Davidson ties model in

Chapter 2. We partition this information matrix in the same way as I(m,v), giving

A(m,v) = Ay (m,v) Ay (m,v)
) Ay (m,v) Ay (m,v) )
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where A, (m,v) = A, (m,v)T. As in the case of the Davidson ties models,

A(m,v) = PI(m,v)PT

where ) )
m 0
0 m
P =
m 0
L 0 i
If we look at each of the generic entries, we get
Ayy(m,v)ij = mimjlnn (M, v)ij
Ay (m,v)ii = ToLen(m,v)y
Ao(mv) = milg(m,v)
A (mv) = Ly(mv).

If we assume, as did Davidson [1970], the null hypothesis of equal merits for each of the items and
that v is left unspecified, then the expression for A(m,v) simplifies greatly. That is, we assume
that

W:j:ﬂo,

and get

Ay (o, V)i

romE oy R E

c|r,rec ¢ u=2 {1, T ..., Tj; }CC @=2{T;T},,....Tj, }CC
m m m
v(De —v) v?
DD D D) DD D
x Ty
=2 {T;,T5,Tjz,-,Tjp } w=2u=2{T:,Tj; ..., Ty, }

AT Ty Ty

- 3 N”;Q<—1—u(

C|T;,T;eC c

If we use the identity

(2)-(2)

and simplify, then we obtain

Ay (o, V)i nc.

I

=
S

+

R
]
13
3

(]

C|T;, T;eC
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Next we look at the diagonal entries of A, (m,v). We have

Ay (mo, V)i

SO RS SIS SR DD VN
jz }EC

NDZ
C|T;eC *=2{T;,Tjy,.-,Tj, }SC =2 {T;,Tjy -, Tjy
m m
D) DD D

r=2u=2{T;T}j,,....,Tj, }
AT Ty Ty YO

. A%((Dcl)+u(DcV)éxl2 @_11) QVii@_f)

C|T;eC

Ay (mo,v)i = i
7 (0, V) N(m-i-VZz:z () C|T;eC

Next observe that

A'yu(7r07 V)i

Il
™
5
%
M
M

N

M

M

L
- ¥ ]\752<ui< ) Cyii-(x—1>

C|TieC ¢ z=2
m 1 /m-1
(S0 -LH00)))
and we use Equation 3.7 and simplify to give
m m v m m 2 m m v m m 2
nc _Zw:2 (w)_ﬁ<zw:2(w)) +Eaj:2(1)+ﬁ(zx:2(m)>
A'yu("r()a]/)i = Z N D2 )
C|T;eC g

which is clearly 0. Thus A, (7o, ) = 0. Recall that these off-diagonal blocks were also zero for

the Davidson ties model.
Finally, we have

bt = St (3% we-n-$E oy 2
C C =2 u=2 {T) ie}

e=2{T;, .. T;,}CC a=2u=2{Ty, .7 .
ATy 00Ty, }EC

bl

e (Do =) S (7) — 2 (S S (7)) - S (7))

B Z Nv2D2,
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which, using Equation 3.7, simplifies to give

s,
Malmo) = o s 3 e

Noting that N = > n¢, this will simplify further to give

m Z;n:2 (T) .
v(im+v3 3, (7))

This is a function of m and v only and hence we refer to this entry as A,, (m,v).

Auu('”Ov V) =

Now let us return to our example and derive the A(mrg, ) matrix.

B EXAMPLE 3.2.1.
Recall the experiment introduced in Example 3.1.1. The information matrix for the estimation

of 4 and v under the null hypothesis of equal merits is

3 -1 -1 -1 0
4 ) -1 3 -1 -1 0
+v
A = 7 | 1 - _
(o, V) 24(3 + 40) 1 1 3 1 0
-1 -1 -1 3 0
288
L 0 0 0 0 v(3+av)(4+v) | O]

Now that we have an information matrix for the entries in v and for v we are able to construct
an information matrix for the estimation of v and contrasts of the entries in 4. This matrix will
then be used to develop some results about the optimal design for sets of contrasts when this

model is appropriate.

3.3 Representing options using k attributes

In this section we consider the construction of the information matrix for the estimation of v and
contrasts of the entries in 4. In particular, we are interested in the estimation of the contrasts
of the entries in - that relate to the main effects and interaction effects of the attributes, as
introduced in Section 1.B.

We begin by constructing a matrix B that contains coefficients of linear combinations of the
entries in v and v. We assume that any interaction between the entries in y and v are not of
interest. This allows us to partition B into two non—zero blocks. The first block is B, which
contains contrasts of the entries in 7. The other block will equal 1. Appendix 3.B shows that
this will not violate any of the assumptions forced on the information matrix by El-Helbawy and
Bradley [1978]. The partitioned B matrix can be expressed as

p—| B0 1 .
0 1

Then the information matrix for the estimation of v and the contrasts in B,7y, under the null

hypothesis of equal merits, is

C(mo,v) = BA(mo,v)BT
B B, 0 Ay (mo,v) 0 BT 0
0 1 0 Ay, (m,v) 0 1

By Ay, (o, v)BY 0
0 Ay (m,v) ‘
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Now let us reconsider the experiment introduced in Example 3.1.1, calculating the information

matrix for the estimation of v and the main effects.

B EXAMPLE 3.3.1.
Consider the experiment introduced in Example 3.1.1 and the design introduced in Example

3.1.3 to estimate main effects and v. The B for the estimation of v and the main effects is

s_| B 0O
0 1
-1 -1 11
=~ -1 1 -1 1 :
0 0 00

where B, is a 2 x4 matrix of contrast coefficients. Then the information matrix for the estimation

of v and the main effects is

44v
6(3141}) 0 0
C(mo,v) = 0 sathy 0 )
12
0 0 v(3+4v)?

Since the information matrix is diagonal, we can estimate v and the main effects independently

when using this design. O

Now that we have the information matrix for the effects that are of interest, we can determine

the optimal designs for the estimation of these effects.

3.4 Optimal designs for the estimation of effects in the

generalised Davidson ties model

In this section we compare the information matrices for the estimation of a given set of contrasts
when the generalised Davidson ties model is used to that obtained when the MNL model is
used. We then show that designs that are optimal for the MNL model are also optimal for the
estimation of v and the same set of contrasts for the generalised Davidson ties model.
Recall from Section 1.1 that the generic entries for A(mp) when the MNL model is used,
denoted here as A(mo)mNL, are
(A(mo)mnL)ij = L Z ne,

m2N
C‘Ti,TjEC

and

m—1
Amownn)is =~ > ne
C|T;eC

If we compare this to the first block of A(mg, ) when the generalised Davidson ties model is

used, denoted here as (A~ (7o, V)pav), then we obtain
1

il e m ey, ()
I s S (= e iy

(Ayy(mo, V) DAV )ij)
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which simplifies to give

(A (m0, VDAV )i5 = Q(m,v) x (A(mo)MNL)ij

where

m+v 3 iy (7))

Qlem,v) = m+vy i, (7)

Similarly, we find that

1 m? m+vy ", ("
C%;C ne = 1(A(7FO)MNL)ii = mTA +(y g;"_i:(m;; E 332)(7;)) (A (0, V) DAV )iy

which simplifies to give
(Ayy(mo, v)pAv)ij = Q(m, v) X (A(mo)MNL)ij-

Thus we see that
Ay (T, V) DAV = Q(m, v) X A(To)mMNL,

which gives
Q(m,u) X A(’IT())MNL 0
A(mo, v)pav = :
0 Ay (m,v)

Since we can express the information matrix for the estimation of v and contrasts of the
entries in y when the generalised Davidson ties model is used in terms of the information matrix
for the estimation of the entries in 7y when the MNL model is used, we may now look at comparing
optimality criteria for designs using these two models. We will use the D—optimality criterion as

defined in Section 1.3.1.

B THEOREM 3.4.1.

For a set of contrasts of the entries in vy and a constant but unknown v, the D—optimal design
for the estimation of the contrasts of v over a set of competing designs X when the MNL model
is used will also be D—optimal for the estimation of the same contrasts and v over the same set

of competing designs for the estimation of the generalised Davidson ties model. O

Proof. We begin by letting B be a block diagonal matrix

s_| B0
0 1|’

where B, is a p x ¢t matrix containing the coefficients of the contrasts of 4 = In(m) that are of
interest. The contrasts in B,y are to be estimated in both models. Then the information matrix
for the estimation of the contrasts in B,y as well as v when the generalised Davidson model is

used is

C(mo,V)pav =

ByAyy (o, v)BY 0
0 Ay (m,v) .
However, we have shown that
Ay (T, V) DAV = Q(m, V) X A(To)mNL,
so by substituting this into the expression for C(mg, V)pay we obtain

T
C(mo, V)DAV = [ Q(m’y)BvA(ﬂ'o)MNLB,Y 0 1 |

0 Ay (m,v)
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We notice that the information matrix for the estimation of the set of effects in B,y when
the MNL model is used is

C(mo)MNL = BryA(ﬂ'0>MNLB$-

That is,
B Q(m, Z/)C(ﬂ‘o)MNL 0
C(mo, v)pav = ( 0 Ay (m,v) ) '
Then
det(C(mo, V)pav) = (Q(m,v))P x A,,(m,v) x det(C(mo)mnL)-
Since

det((C(mo)MNL)eopr) = det((C(mo) ML )e)

for all £ € X, the relative efficiency of a generic design compared to the design £opr, which is
optimal for the estimation of the set of contrasts using the MNL model, when the generalised

Davidson ties model is used, is

det(C Ga
Deg(€,éopT) = et Ceav ))

det(cfop'r DAV

(@t

— ( (m, v))P x A, (m,v) x det(Ce mnr) )pil
(awees
1

p x A (mv V) X det(CfOPT‘MNL)

det Cg MNL ) ”%
det(cﬁopT MNL)

)

<

for all £ € X. Therefore, by the definition of D-optimality, the design £opr is also optimal for
the estimation of v and the set of contrasts in B,y when the generalised Davidson ties model is
used. O

We now consider an example of the relationship between the two models, and also compare

some designs.

B EXAMPLE 3.4.1.

Recall the experiment and design introduced in Example 3.1.3. In Example 3.3.1 we found the
information matrix for the estimation of v and the main effects when the generalised Davidson
ties model is used. Now we will find the information matrix for the estimation of main effects

only for the same design where the MNL model is used. The contrast matrix for the estimation

1/ -1 =1 1 1
B=- )
21 -1 1 -1 1

From Burgess and Street [2003] we know that the information matrix for the estimation of the

of main effects is

entries in v using the MNL model under the assumption of the null hypothesis of equal merits is

3 -1 -1 -1

1l -1 3 -1 -1
A(mo, v ==
mo.vhase =5 | | 4

-1 -1 -1 3
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Notice that

34+v)
A =~ A .
'y(ﬂ-()aV)DAV 4(3+4y) (W(J)MNL
It follows that the information matrix for the estimation of main effects only using the MNL
model is
2.0
Clmount = | ]7
0 2
9
so we see that (140
3(44+v
5 C(mo)MNL 0
C(mo, v)pav = [ HEta) 19
0 v(3+4v)?

Taking determinants of both C(mg, v)pay and C(mo)mnr, gives

4+v)2
det(C(mo, v)pav) = ?’V((g_i_él)yyj;
and
4
det(C(ﬂ'o)MNL) = 871

We are estimating p = 2 contrasts on 7, so

12 x (34 3v)? N
v(3+ 4v)8 81
(4 + v)?

33+ 4v)0

det(C(mo, v)pav),

(Q(m, V))p X A,,(m, V) X det(C(ﬂ'o)MNL)

which is consistent with the findings in Theorem 3.4.1. O

We can use this theorem to apply some of the known results for the MNL model to the
generalised Davidson ties model. First, we consider an extension of the theorem for the estimation

of main effects in a 2* model presented in Burgess and Street [2003] .

B COROLLARY 3.4.2.
The D-optimal design for the estimation of v and the main effects, when all other effects are
assumed to be zero, using the generalised Davidson ties model is given by the choice sets in which,

for each v; present,

-1 2_
m m (m - l)k’ m Odd,
DD di=g
i=1 j=i+1 T m even,
and there is at least one v; with a non-zero a;; that is, the choice set is non-empty. O

Proof. By Theorem 1.3.4, the design described in the statement of the theorem is optimal for the
estimation of main effects only when the MNL model is used. Then it follows from Theorem 3.4.1
that this design is also optimal for the estimation of v and the main effects when the generalised

Davidson ties model is used for a 2% factorial experiment. O
Now let us use this theorem to find an optimal design for the estimation of v and the main
effects for our example.

B EXAMPLE 3.4.2.

Consider the 22 experiment introduced in Example 3.1.1. In this experiment m24*1 =4, so the

D-optimal design is given by the choice sets with difference vectors whose entries sum to 4. The
only distinct difference vector that doesn’t force repeated items in a choice set is v = (01,10, 11),

giving the design in Table 3.2. O
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Option 1 Option 2 Option 3

_— = O O
_ O = O
_= = O O

1 0
0 1
1 0
0 1

O O = =

Table 3.2: The 22 design that is optimal for estimating v and the main effects.

Now we consider an extension to the theorem for the estimation of main effects plus two—factor

interactions in a 2* factorial presented in Burgess and Street [2003].

B COROLLARY 3.4.3.
The D-optimal design for the estimation of v and the main effects plus two—factor interactions,

using the generalised Davidson ties model, when all other effects are assumed to be zero, is given

by

W(’Zﬁ)_l, k even and i = k/2,k/2 + 1,
m — -1 .
yi=1 25 he) o koddandi=(k+1)/2,
0, otherwise,
when this results in non—zero y;s that correspond to difference vectors that actually exist. O

Proof. By Theorem 1.3.5, the design described in the statement of the theorem is optimal for
the estimation of main effects plus two—factor interactions when the MNL model is used. Then
it follows from Theorem 3.4.1 that this design is also optimal for the estimation of v and the
main effects plus two—factor interactions when the generalised Davidson ties model is used for a

2% factorial experiment. O]

Now let us use this theorem to find an optimal design for the estimation of main effects plus

two—factor interactions and v for the experiment in our example.

B EXAMPLE 3.4.3.
Consider the 22 experiment introduced in Example 3.1.1. To obtain the D-optimal design for

the estimation of v and the main effects, two—factor interactions using the generalised Davidson

i, ifi=1or2,
Yi = 0,

ties model we need

otherwise.

This gives the design in Table 3.3. O

Finally, we look at an extension for the theorem for the estimation of main effects in an
experiment with asymmetric attributes presented in Burgess and Street [2005] to include the

estimation of v as well.

B COROLLARY 3.4.4.

Let F be the complete factorial for k attributes where the ¢'* attribute has £y levels. Suppose
that we choose a set of m generators G = {g1 = 0,92,...,9m} such that g; # g; for i # j.
Suppose that g; = (g1, gio, - - -, gik) for i =1,...,m, and suppose that the multiset of differences

for attribute q, {£(gi,q — Girq)|1 < 1,92 < m, i1 # iz}, contains each non-zero difference modulo
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Option 1 Option 2 Option 3

_— = O O
_ O = O
_= = O O

0
1
0
1

O O = =

1
0
1
0

Table 3.3: The optimal 22 design for estimating v and the main effects plus two—factor inter-

actions.

4, equally often. Then the choice sets given by the rows of F'+ g1, F + g2,..., F + g for one
or more sets of generators, are optimal for the estimation of v and the main effects using the

generalised Davidson ties model, provided that there are as few zero differences as possible. [

Proof. By Theorem 1.3.6, the design described in the statement of the theorem is optimal for
the estimation of main effects when the MNL model is used. Then it follows from Theorem 3.4.1
that this design is also optimal for the estimation of v and the main effects when the generalised

Davidson ties model is used. O
Let us consider an example of how this theorem can be used to find optimal designs.

B EXAMPLE 3.4.4.

Consider the 3% experiment introduced in Example 2.4.4. Now we present triples to the respon-
dent. If we choose the set of generators g = (00,11,22) then there are no zero differences and
each difference modulo 3 appears equally often. Then the design in Table 3.4, produced from
this set of generators and removing any repeated choice sets, is D—optimal for the estimation of

v and the main effects when the generalised Davidson ties model is used. O

Option 1 Option 2 Option 3

0
1
2

—= N O

11 2 2
2 0 01
0 2 10

Table 3.4: The 32 design that is optimal for estimating main effects and v.

3.5 Simulations of the generalised Davidson ties model

In this section we consider the performance of the generalised Davidson ties model under various
model assumptions by carrying out a number of simulation studies. We assume that k = 2,
{1 =l = 2 and m = 3 throughout. We consider two sets of values for the parameters. In
the first we assume that both main effects parameters, 7 and 75, are equal to 0 and the ties

parameter v = 0.5, and in the second set we assume that 7y = 1 and 7 = —1 but v = 0.5 still.
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We find the locally optimal design for each set of values and compare the performance of each
design with both sets of parameter values. The design in Table 3.5 is optimal for the estimation
of the main effects of the attributes plus the ties parameter when 7 = 75 = 0, and v = 0.5, by
Corollary 3.4.2. By an exhaustive search of the 2 — 1 = 15 possible designs, the design in Table
3.6 is optimal for the estimation of the main effects of the attributes plus the ties parameter
when 71 = 1, 79 = —1, and v = 0.5. This exhaustive search is illustrated in Figure 3.1, where
the z—coordinate corresponds to the design index, and the y—coordinate is the determinant of
the information matrix for that design when m = 1,79 = —1, and v = 0.5. The determinants of
the information matrix for the designs in Tables 3.5 and 3.6 are labelled in Figure 3.1.

We first assume that 71 = 75 = 0, and v = 0.5 and compare the simulated distributions of the
parameter estimates when the designs in Tables 3.5 and 3.6 are used in turn. Each simulation
is modelled using the simulated responses from 150 respondents, and each boxplot displays
the distribution of the estimates from 1000 such simulations. Figures 3.2(a) and (b) show the
distributions of the parameter estimates when the designs in Tables 3.5 and 3.6, respectively, are
used. Summary statistics for both simulations are provided in Table 3.7. We see from each of
the figures that the distributions of the parameter estimates are symmetrically distributed. As
expected, the variance of the parameter estimates for the design in Table 3.5 is smaller than that
of the design in Table 3.6, illustrating the efficiency of the former design.

We now consider the performance of these two designs when 71 = 1,75 = —1, and v = 0.5.
Figures 3.3(a) and (b) show the distributions of the parameter estimates when the designs in
Tables 3.5 and 3.6, respectively, are used. Summary statistics for both simulations are provided
in Table 3.8. We see that, for both designs, the distribution of the parameter estimates seem
to be unbiased and close to symmetric. The difference between the variances arising from the
two designs is smaller in this case than when 71 = 75 = 0. The selection probabilities when
71 =1,72 = —1, and v = 0.5 for the design in Table 3.5 are given in Table 3.9.

Next, we simulate the effect of changing the magnitude of the ties parameter on the dis-
tribution of the parameter estimates when we let 71 = 1 and 75 = —1, and use the design in
Table 3.6. Figures 3.4(a) and (b) give the simulated distributions of the parameter estimates
when v = 0.25, and v = 1, respectively. Summary statistics for both simulations are provided
in Table 3.10. Again, we see that the 7 estimates are unbiased and symmetrically distributed.
The variance of the estimate of v increases as the magnitude of v increases, while there is little
difference between the variances of 7 and 5.

We now compare the ability of four different designs to estimate the main effects plus the

two—factor interaction of the attributes and v. The first two designs are those in Tables 3.5

Option 1 Option 2 Option 3

= = O O

0 1 0
0 0 1
11 0
1 0 1

= O = O
S O = =

Table 3.5: Optimal design for estimating main effects and v when 7 = 7 =0, and v = 0.5.
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Option 1 Option 2 Option 3

0 1 11
1 0 11
Table 3.6: Optimal design for estimating main effects and ¥ when 7y = 1,5 = —1, and v = 0.5.
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Figure 3.1: Exhaustive search for optimal design = 1,72 = —1, and v = 0.5.
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Figure 3.2:

Simulation of Davidson ties

model 7y =7 =0, and v = 0.5.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 3.5

T —0.00088(0.00165) 0.00278 0.00271 0.02920(0.07734)

T2 —0.00244(0.00165) 0.00278 0.00273 0.13122(0.07734)

v 0.50130(0.00134) 0.00694 0.00180 0.39140(0.07734)
Design in Table 3.6

Ti —0.00445(0.00237) 0.00556 0.00564 —0.04829(0.07734)

To —0.00303(0.00232) 0.00556 0.00536 —0.10379(0.07734)

v 0.50164(0.00184) 0.01389 0.00339 0.29694(0.07734)

Table 3.7: Summary statistics for 71 = 79 = 0, and v = 0.5.

(a) (b)
1000 Simulations: k= 2, m= 3, Effects = 1,-1,0.5 1000 Simulations: K= 2, m = 3, Effects = 1,-1,0.5
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Figure 3.3: Simulation of Davidson ties model 71 =1, 72 = —1, and v = 0.5.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 3.5

T1 1.00248(0.00216) 0.00320 0.00465 0.20895(0.07734)

T2 —0.99894(0.00226) 0.00320 0.00510 —0.21943(0.07734)

v 0.50071(0.00156) 0.00702 0.00244 0.19319(0.07734)
Design in Table 3.6

T 1.01053(0.00417) 0.00545 0.01736 0.36056(0.07734)

T2 —0.99980(0.00307) 0.00544 0.00941 —0.18175(0.07734)

v 0.48061(0.00229) 0.01406 0.00527 0.51062(0.07734)

Table 3.8: Summary statistics for 71 = 1, 79 = —1, and v = 0.5.

Choice Set T1 T2 T3 {Tl, Tz} {T]_, T3} {Tz7 T3} {Tl, Tz, T3}

{00,01,10} 0.090 0.012 0.668 0.017 0.123 0.045 0.045
{01,00,11} 0.042 0.307 0.307 0.056 0.056 0.153 0.079
{10,11,00} 0.544 0.074 0.074 0.100 0.100 0.037 0.072
{11,10,01} 0.090 0.668 0.012 0.123 0.017 0.045 0.045

Table 3.9: Selection probabilities when 71 = 1, 79 = —1, and v = 0.5.
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Figure 3.4: Simulation of Davidson ties model 73 = 1, 72 = 0.5, and (a) v = 0.25 and (b) v = 1.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness

(Standard Error) Variance  Variance (Standard Error)
(@ 1.01026(0.00415) 0.00468 0.01724 0.36999(0.07734)
T2 —1.00014(0.00299) 0.00468 0.00895 —0.18975(0.07734)
v 0.23830(0.00138) 0.01822 0.00191 0.41760(0.07734)
(b) I 0.99918(0.00443) 0.00680 0.01962 0.28574(0.07734)
Ty —0.99508(0.00319) 0.00678 0.01018 —0.20531(0.07734)
v 0.95654(0.00436) 0.01358 0.01905 0.49900(0.07734)

Table 3.10: Summary statistics for 7 =1, 7 = —1, and (a) ¥ = 0.25 and (b) v = 1.

and 3.6. The third design is shown in Table 3.11, and is optimal for the estimation of the
main effects plus the two—factor interaction of the attributes and v when 71 = 79 = 795 = 0,
and v = 0.5, by Corollary 3.4.3. The final design, shown in Table 3.12, is locally optimal
for the estimation of the main effects plus two—factor interaction of the attributes and v when
7 =1, =—1,72 = —0.25, and v = 0.5 by an exhaustive search.

We first consider the case where there is no significant interaction effect. We let 7 = 1,
75 = =1, 712 = 0, and v = 0.5. Then Figures 3.5(a), (b), (c), and (d) give the simulated
distributions of the parameter estimates when the designs in Table 3.5, 3.6, 3.11, and 3.12 are
used. Summary statistics for all four of the simulations are provided in Table 3.13.

The design in Table 3.11 gives parameter estimates with the smallest variance, and are also
unbiased and symmetrically distributed. The designs in Tables 3.5 and 3.12 also give unbiased
and symmetric parameter estimates, but with a larger variance than those form the design in
Table 3.11. This is expected, since there are three times as many choice sets in the design in
Table 3.11. The design in Table 3.6 gives parameter estimates that are slightly biased towards
0, skewed, and with the largest variance of the four designs.

Now we consider the case where there is a significant interaction effect. Suppose that 7 =1,
79 = —1, 119 = —0.25, and v = 0.5. Then Figures 3.6(a), (b), (c¢), and (d) give the simulated
distributions of the parameter estimates when the designs in Table 3.5, Table 3.6, Table 3.11,
and Table 3.12 are used. Summary statistics for all four of the simulations are provided in Table
3.14.

Again we see that the design in Table 3.11 gives parameter estimates with the smallest
variance, and are also unbiased and symmetrically distributed. The designs in Tables 3.5 and
3.12 once again give unbiased and symmetric parameter estimates, but with a larger variance
than those form the design in Table 3.11. The design in Table 3.6 once again gives parameter
estimates that are slightly biased towards 0, skewed, and with the largest variance of the four

designs.
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Parameter Estimates

Parameter Estimates
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Figure 3.5: Simulation: estimating main effects and v, designs in (a) Table 3.5, (b) Table 3.6,

(c) Table 3.11, and (d) Table 3.12.
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Figure 3.6: Simulation: estimating main effects, two—factor interactions, and v, designs in (a)
Table 3.5, (b) Table 3.6, (c) Table 3.11, and (d) Table 3.12.
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Option 1 Option 2 Option 3

= = O O = = O O = = O O
—_ O = O = O = O = O = O
= = O O O O = = = = O O
S = O = = O = O O = O =

O O = = O O = = O O = =

SO = O = O = O = = O = O

Table 3.11: Optimal design for estimating main effects, two—factor interactions and v when

1 =79 =712 =0, and v = 0.5.

Option 1 Option 2 Option 3

0
0
0
1

_= o O O
= o= O O
O = =

(e

0
1
0
1

Table 3.12: Optimal design for estimating main effects, two—factor interactions and v when

T =1,17=—-1,72=—-0.25 and v = 0.5.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 3.5

sl 0.98950(0.00240) 0.00320 0.00574 0.14233(0.07734)
Ty —0.99129(0.00240) 0.00322 0.00578 —0.18005(0.07734)
Tio —0.02435(0.00233) 0.00321 0.00543 0.17092(0.07734)
v 0.49902(0.00168) 0.00702 0.00282 0.31447(0.07734)
Design in Table 3.6
i1 0.99104(0.00482) 0.00549 0.02319 0.60368(0.07734)
Ty —0.96591(0.00446) 0.00729 0.01985 —0.28153(0.07734)
Ti2 —0.03756(0.00438) 0.00729 0.01919 0.30541(0.07734)
v 0.47858(0.00231) 0.01408 0.00533 0.45193(0.07734)
Design in Table 3.11
st 0.98549(0.00141) 0.00107 0.00198 0.08501(0.07734)
T —0.98395(0.00134) 0.00107 0.00180 —0.02499(0.07734)
Ti2 —0.02720(0.00133) 0.00107 0.00176 0.05257(0.07734)
v 0.49884(0.00093) 0.00234 0.00086 0.05704(0.07734)
Design in Table 3.12
T 0.98751(0.00282) 0.00400 0.00793 0.18660(0.07734)
Ty —0.98777(0.00272) 0.00411 0.00738 —0.10613(0.07734)
T12 —0.03117(0.00257) 0.00404 0.00661 0.17683(0.07734)
v 0.49696(0.00179) 0.00936 0.00322 0.12208(0.07734)

Table 3.13: Summary statistics for 11 = 1,75 = —1,72 =0, and v = 0.5.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 3.5

sl 0.99699(0.00236) 0.00329 0.00559 0.10950(0.07734)
Ty —0.99738(0.00239) 0.00331 0.00574 —0.22312(0.07734)
Tio —0.27001(0.00233) 0.00330 0.00541 0.10207(0.07734)
v 0.50699(0.00175) 0.00702 0.00307 0.31468(0.07734)
Design in Table 3.6
Ty 1.01073(0.00513) 0.00575 0.02628 0.57665(0.07734)
Ty —0.98728(0.00462) 0.00764 0.02132 —0.31215(0.07734)
Ti2 —0.28134(0.00442) 0.00764 0.01950 0.29241(0.07734)
v 0.49149(0.00271) 0.01407 0.00732 0.60662(0.07734)
Design in Table 3.11
st 0.99521(0.00137) 0.00110 0.00189 0.13158(0.07734)
T —0.99530(0.00138) 0.00110 0.00191 —0.07656(0.07734)
Ti2 —0.27166(0.00133) 0.00110 0.00176 0.08612(0.07734)
v 0.50342(0.00098) 0.00234 0.00095 0.14545(0.07734)
Design in Table 3.12
i51 1.00344(0.00302) 0.00418 0.00912 0.23760(0.07734)
Ty —0.99695(0.00260) 0.00431 0.00677 —0.11871(0.07734)
T12 —0.27676(0.00253) 0.00422 0.00640 0.00381(0.07734)
v 0.50901(0.00207) 0.00936 0.00429 0.42764(0.07734)

Table 3.14: Summary statistics for m; = 1,75 = —1, 72 = —0.25, and v = 0.5.
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3.A Proof that jfz =0 for the generalised Davidson Ties
Model

We begin by recalling that

1 _OD¢
Zi = Z (wz‘c + Z 200G g2, )|C Sncmaﬂ)

i€C {i,j2,-.,jz }CC !
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for 2 < x < m. Now, the vector z contains the values for z; for each possible item T;. Then
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as required.

3.B Proof that the generalised Davidson Ties Model does
not violate El-Helbawy and Bradley [1978] Conditions

In order to apply the results relating to associated populations, we need to show that C(mwg, V)
is positive definite, as El-Helbawy and Bradley [1978] did.

B THEOREM 3.B.1.

The C matrixz for the estimation of a set of contrasts Bpy and v, where

B, 0
0 1

B=

is positive definite.

Proof. McFadden [1973] show that C(mo)mnr is positive definite. Then the eigenvalues of

C(mo)mnL, A1,. .., Ap are all positive. If we consider the matrix

Q(m,v)C(mo)mNL 0 1

C(mo, V)pAv = [ 0 Ao )
vv m?”
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where
m.v) — md s (3)
BN TR S )

Then
det(C(ﬂ'o, V)DAV — Ip+1) = Q(m, V)p det(C(ﬂ'())B,T — Ip) X (Aw(m, V) — 1)7

will have roots at A1,...,Ap, Ay (m,v). We already know that A\q,...,\, are positive, and
A, (m,v) is positive for all ¥ > 0. Since we assume that v > 0 anyway, all of the eigenvalues are

positive. Therefore the C' matrix for the generalised Davidson ties model is positive definite. [




Chapter 4

Choice Models that Incorporate
Position Effects

The idea that the order of presentation of information can influence responses is well established
in questionnaire design. A good discussion of this influence is given in Kalton et al. [1978]. The
authors suggest that options presented earlier in a set of alternatives will be selected more often
than those appearing later in the set, all other things remaining equal. This is reminiscent of the
donkey vote in elections. These ideas also appear in the design of tournaments where the home
team is expected to have an advantage.

A choice experiment is similar to a questionnaire in this regard since in a choice experiment
we present a set of m alternatives to choose from on each occasion. Given this similarity, it
may be useful to incorporate position effects into the choice model. So far, we have assumed the
position that an item occupies within the choice set is immaterial. This chapter develops optimal
design theory for the Davidson—Beaver position effects model, a model which incorporates the
effect of the position of an item within a choice set.

We start by deriving an expression for the determinant of the information matrix when the
Davidson—Beaver position effects model is used, where m = 2. We then show that, under a mild
restriction, the designs that are optimal for the estimation of a set of attribute effects when the
Bradley—Terry model is used are optimal for the estimation of the same set of attribute effects
and the position main effect over the same set of competing designs when the Davidson-Beaver
position effects model is used.

Throughout this chapter, we continue to use the experiment introduced in Example 2.0.12 to

illustrate the results.

4.1 Review of the Davidson—Beaver Position Effects Model

We begin by reviewing the results of Davidson and Beaver [1977]. This section will recap some
of the properties of the model that have already been developed in the literature, such as the
distribution of the responses, the maximum likelihood estimates, and the information matrix
for the estimation of this model. The methods presented here will be used when the model is
generalised in Chapter 5. We will also use these results to show that the optimal designs for

the estimation of the Bradley—Terry model, as presented in Street et al. [2001] and Burgess and
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Street [2003], are also optimal when the Davidson—Beaver position effects model is used.

Recall from Section 1.1 that Davidson and Beaver [1977] proposed a model that extended
the Bradley—Terry model to incorporate position effects. Position effects are incorporated by
introducing two additional parameters 17 and ¥s. When multiplying the merit of an item, m;,
these parameters measure the effect of an item being presented in the first position of the choice
set and in the second position of the choice set respectively. While the model in Davidson and
Beaver [1977] scaled ¢; — 1 and ¢y — 9/1); without loss of generality, we will not make this
restriction here. Instead, we estimate orthogonal polynomial contrasts of the position effects,
which will be easier to generalise to an arbitrary choice set size.

We have the following probabilities associated with the possible decisions when the ordered

choice set C = (T;,,T;,) is used.

‘ _ Y1,
PITLIC) = Y17y, + o,
PT,jC) =

Y17y + Yo,

We will now see how these probabilities apply to our example.

B EXAMPLE 4.1.1.

There are 12 possible ordered choice sets from the ordered pairs of items listed in Example 2.0.12.
If we consider the ordered choice set (00,11), for instance, then the probability of choosing item
00 is

PO000.11) = S

and the probability of choosing item 11 is

Pam11

P(L1](00, 11)) = Y170 + Y1 O

In their 1977 paper, Davidson and Beaver derived the log—likelihood function and information
matrix for their position effects model. For the benefit of the reader, we provide a detailed
derivation here. We will use this method to derive the information matrix for the generalised
Davidson—Beaver position effects model in Chapter 5.

Suppose that there are ¢ items in total and that these are shown to the respondent in pairs.
In each choice set, we ask the respondent to choose the item that they prefer. We define indicator

variables w; ¢ o for subject o and ordered choice set C' = (T;,,T;,) to represent the respondent’s

1

choice. Thus we let

{ 1 if respondent « selects item T3, from the ordered choice set C,

Wy, .
nlGa 0 otherwise,
1 if respondent « selects item T;, from the ordered choice set C,
Wiz, .
|G 0 otherwise,

where w;,|0,a + Wiyjc, = 1, since there are no repeated choice sets and we do not have an
opt—out process. For respondent «, the probability density function for their response to the
ordered choice set C = (T;,,T;,) is

(a7, )19 X (o, ) i21C0

fC,a(wﬂrv/‘/)) = (wlﬂ-il + ,(/)27.‘-1.2)"0 ’
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where w = [w;, ¢, Wis|Cral, T = (71,2, . .. )T, = (¥1,v2)T, and ne is an indicator that
equals 1 if the ordered choice set C' appears in the experiment and 0 if it does not. We assume
that nc are the same for all respondents. For consistency, if the ordered choice set C' does not

appear in the experiment then we define

willc,()( = wig\C,a = 0'

The derivatives of In(fc, o (w,m, %)) with respect to each of the parameters are

aln(fC,a(wa”ra"p)) _ Wiy |C,ax + 7’LC’¢1

omi, Ty (Y17, + thami,)’
81n(f0,04(w77r7¢)) _ w’i2|C,o¢ + Tlcd)g

Omi, iy (17, + tamiy)’
Ohlfeawm¥) _ g, ¢,

67Tij 7
aln(fc,a(w77r7¢)) _ Wi, |C,« nemi,

I Y1 (Y17, + thami,)’

and

8111(‘]“010((’[1),71',1/))) _ Wiy |C,a NCTi,

Py 2 (Yr17mi, + homiy)

We will use these derivatives later to derive the entries of the information matrix for the estima-
tion of this model. We now turn our attention to the MLESs for this model.
Since the likelihood function is the product of the density functions over all distinct choice

sets and over all respondents, we have

S

L(’w,’ll','lp) = H HfC,a(w77T7¢)

a=1 C
(Prms, )" 01€ (o, )iz 1€
H (Y173, + Yoy, )51e

)

c
where the product is over the the set of distinct choice sets, and w;,|c = 22:1 Wi, |0, and
Wiyl = 22:1 Wiy |Ca

To maximise the likelihood function, we need to set up a Lagrangian function to incorporate
the restrictions placed on this model. For the purposes of convergence, we impose the constraint

present in the Bradley—Terry model. Thus

Zln(ﬂ'i) =0.

Similarly, we place the constraint

In(41) +In(yhe) =0
on the position effects to ensure convergence. We also constrain the contrasts that are assumed to
be negligible to equal 0. If we let B, be the matrix containing the coefficients of these contrasts,

then we have

B.y =0,
where 7 is a vector containing v; = In(m;) for ¢ = 1,2,...,¢t. This gives the Lagrangian
Gw,my) = > [wyc(n(m,)+ (Y1) + wi,c(n(m,) + In(y))

C

t m
— sne In(Yrm;, +1m,)] + ke Z% + Ko Z In(v,) + [K3 - - - Kht2|Ba?,

i=1 a=1
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where there are h contrasts in By, and k1, ..., Kkp+2 are Lagrange multipliers. If we differentiate

G(w, ) with respect to m;, we obtain

WCwrd) {wiw sncta, }+m+inm+2<Ba>m
i =1 i ’

on; oirec U i (Y17, + Parmiy)

where 1), is the position effect corresponding to the position of item 7; in choice set C, and m;,
is the merit of the item in the a'® position of choice set C. If we differentiate G(w,m, %) with

respect to 1,, we obtain

0G(w, ) _ {wiac B snem;, } Ko
O ZC: Y (Y174, + Paiy) * Yo

We obtain the MLEs by setting these derivatives equal to zero and solving simultaneously.

We can simplify this problem by using matrix notation. Suppose that we let
snet T
Z; = Z wi|C — %.
C|T;eC ’(/}1771'1 + ¢27Ti2
Then, by multiplying Equation 4.1 by 7;,, we obtain

h
zi+ K1+ Z HI-&-Q(Ba)wi =0.

z=1
This gives the system
z+rijr +B'k = 0, (4.1)
as a subset of the normal equations, where z = (z1,...,2/)7 and k = (k3,...,kp42)T. Similarly,
if we let .
SncPati,
Pa = Wi |~ 77 7 . v
zc: ' (Y173, + Yatriy)

then we obtain

P+ kojl =0,

as the remaining normal equations, where p = (p1,p2)”. Appendix 4.A proves that jZz = 0, and
it is obvious that 7 BT = 0 since the rows of B, are contrast coefficients. It follows that x; = 0.

We pre-multiply Equation 4.1 by B, to obtain
k= —BT.
Substituting this back into Equation 4.1, we get
(I -BI'B,)z =0y,

and

P+ kojl =0,

as the normal equations. These can be solved simultaneously to find the MLEs.
We now look at how this can be applied to our example to obtain maximum likelihood

estimates.
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B EXAMPLE 4.1.2.
Recall the experiment presented in Example 2.0.12. Suppose that we present the ordered choice
sets given in Table 4.1 to 50 respondents. The final two columns of Table 4.1 gives a possible set

of summarised responses for this experiment and the corresponding likelihood function is

L(w,,1)
(¥1700)%® (Yam11) 12 y (Y17m01) M (P2rm10)®? o (¥1710)*® (201 )* o (P1711)3* (2700 ) 16
(Y100 + Pami1)?° (1701 + 2m10)%0 (1m0 + Yamo1)?0 T (Y1min + Yamoo)?0

Now suppose that we are interested in the estimation of main effects of the attributes and the

position main effect only, then
1
Ba:§[1 -1 -1 1],

and we have the constraints

11’1(7’(’00) + 1H(7T01) + 11’1(7'(10) + ln(ml) = 0,
111(7'(‘00) — 111(’/T01) - ln(mo) + 1H(7T11) = 0,
In(¢1) +In(y2) = 0.

This gives the Lagrangian

G(w,m¥) = 38(In(moo) + In(¢1)) + 12(In(m11) + In(vp2)) — 50 In((¢1mo0 + th2m11)
+11(In(mo1) + In(eh1)) + 39(In(m10) + In(ev2)) — 50 In(p1 701 + Pa710)

46(In(710) + In(¢01)) + 4(In(mo1) + In(¢2)) — 50 (Y1710 + P2701)
+34(In(m11) + In(¢1)) + 16(In(meo) + In(tp2)) — 50 In(y17m11 + 12m00)
(In(7g0) + In(o1)

(In(70) — In(mo1) —

+

+r1(In(moo) + In(mo1) + In(710) + In(m11)) + K2(In(epr) + In(ep2))

+K3 In 700 In o1 (7‘1’10) + 111(71'11)).

We differentiate G(w, %) with respect to each ; to give

OGwmy) _ 3+16  S0u S0 m kg
Omoo 700 Y1moo + Yo Primin +Yameo Moo oo
0Gw,m,9p)  11+4 501 501 K1 K3
Omo1 T o1 Yimor +4emo im0 + Yoo | o1 Mot
0G (w, ., %) 30 + 46 500, 500, ki ks
Omio B To  Yimor +emo  Yimio + Yoo | Mo Mio)
and
OG(w, 1) _ 12+34 5011 B 5019 K1 n K3
omi1 11 Y11+ Pemoo Ym0 +Yomn M1 T
Option 1 Option 2 Ty To
0 0 11 woo|c = 38 wyyc = 12
01 10 woe =11 wipjc = 39
10 0 1 woe =46 wipc =4
1 1 0 0 woojc = 34 wiyc = 16

Table 4.1: A set of responses for the experiment in Example 4.1.2.
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Differentiating G(w, %) with respect to each ¢; gives

8G(w,7r,¢) 38+ 11+ 46+ 34 5070 50701
oY1 1 1m0 + Y2min Yamor + Yamio
507‘(‘10 507T11 K9

im0 + amor  Ynmin + amo | 1

and
6(;(’!0,71‘,1,0) . 12+39+4+ 16 507T11 5071’10
02 P2 Y1moo + Y211 YP1mo1 + YaTio
507T01 507T00 K9

S Yimio +Yamor Yamin +Yamoo Y2
If we set each of these to 0 and solve iteratively we obtain the MLEs for the entries in w and .
If we let 7y be the main effect of the first attribute and 75 the main effect of the second attribute,

and ¢, be the main effect of position, then we find

7 = 0.446 7 = —0.541 i, = —0.419. 0

4.2 Properties of the Davidson—Beaver Position Effects Model

In this section, we complete the construction of the information matrix for the estimation of the
entries in w and 1. We begin by deriving expressions for the expectations, variances and covari-
ances of the selection indicators w. We then use these expressions to simplify the information
matrix for the estimation of the entries in 7 and .

Recall that w;,|c,o and w;,|c,« are the selection indicators for the choice made by respondent
a when presented with the ordered choice set C = (T;,,T;,). These selection indicators each

have a Bernoulli distribution with expectations

P
571' wi1|C,oc) 717
N ;
( 1#17% +¢27T‘z
and
Pam;
Er(wisic.a _— 4.2
(Wizic.a) Y1y + am, “2)
respectively. The variances of these selection indicators are
1T, T,
Var,(w;, 1c.a) = )
(waic.o) (Y17iy + Pomiy)?
and
N i (13)

(1iy + amiy)?
Next we derive the covariances between the selection indicators. Consider the covariance of
the two selection indicators for the selection of item T}, from the ordered choice set C' = (T3, , T3,),
and the item 7}, from the ordered choice set C’ = (T3,,T;,). If the selections made in two distinct

choice sets are independent, then

COVTr(wi1|C,a7 wiz\C’,a) = & ((wi1|C,a - gﬂ(wil\c,a)) (wi2|C’,a - 571'(wi2|C’,oz)))

Ex (w100 = Exlwijo.n)) (Wiica — Ex(wiioa)), if C=C

0, otherwise.
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We expand this expectation and notice that only one outcome is possible. Therefore we have

Er (Wi, 51350 Wig|iyiza) = 0 once again, and hence

et T i O = C' and iy # i,

(Y17iq +ib2miy )2
Cova (Wi, |C 0 Wiscra) = Varq(w;,|c,a), if C=C"and iy = iy, (4.4)
0, otherwise.

We now find the expectations, variances and covariances for the selection indicators in our

example.

H EXAMPLE 4.2.1.
Consider the experiment in Example 4.1.2. In particular, consider the first choice set, C' =

(00,11). The expected values for the selection indicators for each choice are

& (w ) Y100
mE00Ca Y1700 + Y1y’
and
™
Er(winca) Yo

Y170 + P21y
The variances of the selection indicators for each choice are

P1)amooT11
(Y100 + omi1)?’

Var, (woo|c,a)

and

P1hamooT1
(11700 + Pami1)?

Varg (wi1)c,a)

The covariance of these selection indicators is

— 1m0l
(1m0 + om11)?’ O

Covr(woo|Cas Wi1]Cra)

Next we construct the information matrix for the Davidson—-Beaver position effects model.
This construction is easier if we partition the information matrix into four blocks. I, (m,) is
a t X t matrix that contains minus the expected value of the second derivatives of the density
function with respect to two of the entries in 7. Iy (m,%) is a 2 x 2 matrix that contains minus
the expected value of the second derivatives of the density function with respect to two entries
in 9. Iy(m, %) and Ly, (m,19) contain minus the expected value of the second derivatives with

respect to one entry in w and one entry in 9. The partitioned matrix is

I = [ Lin(m, ) Lry(m,9) ] |

Lyr(m, ) Lyy(m,9p)

where I, (m,9) is a 2 X ¢ matrix, and I, (m,9%) = (I (m,9))7T.
El-Helbawy and Bradley [1978] state that, under some mild regularity conditions, as given in
Section 1.1, the (4,5)™ entry of the information matrix for a discrete choice experiment without

position effects is

t—1

o (O TE[Es )}

g=1r=q+1
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We now use this expression, and the results given in Equations 4.2, 4.3, and 4.4, to evaluate
some generic cells in each block matrix of I(m,%). To assist the generalisation in Chapter 5 we
take the sum over all choice sets rather than the pairs of items, and modify the notation for ng,.
and fyrq (T, w) accordingly.

We begin with the Ir(m,1). In this block matrix we need to consider the diagonal and
off-diagonal entries separately. We begin with the generic off-diagonal entry. Consider

Lon(m ) = ; %Eﬂ ((5‘ln(fc,g7(::),7r,1/)))) (3111(fcg7(r’l;l,71',1/’))))'

We recall that the derivative of the density function is zero if we differentiate with respect to a
m; that is associated with an item that is not in the choice set. Then, unless both items T; and
T; appear in the choice set, the product of the derivatives will be equal to zero. Using this, we

have

Ln(m )i = ”W)gﬂ((31n<f<i,j>,a<wm,¢>>)(81n<f<i,j>,a<w,w>>))

N 87@- 87rj
n(j.i) OIn(f(j,0),0(w,m))N\ 0In(f(j.0),0(w,m,9))
* N gﬂ-(( 87'('7; )( 87Tj ) ’
We observe that
Oln(fo,a(w,m,9)) Wi|C,a Wi| ¢,
; = — — ™ : . 4.
67@» T & ( T ) ( 5)
Then it follows that
LI CN)) Wi(i,5), Wj|(i,),x n(4,i) Wj|(5,5),0 Wi (5,9),
Iwﬂ(ﬂaw)zj = N COVﬂ—( oy y ; )+ N COVW< 7 s - )

We now substitute the covariance given by Equation 4.4, giving

—NG,5) Y192 —N(j0) Y12
N(p1mi +pom;)2  N(P1mj + thom;)2

Next we consider a generic diagonal entry of L. (m, ). We have

n On(foo(w,m 1))\ 2
Lin(m,)i = EC:A?&T(( m C87(::J ))) )

Iﬂrr("ra"p)ij

Again, we observe that the derivative in this expression will be 0 unless the ordered choice set

includes the item T;. So we obtain

Lon(m, )i = Z TJL\(;&T((8ln(f0’a(w’ﬂ’¢)))2).

87@
C|T;eC

Using Equation 4.5, this becomes

Lix(m,9)y = Z %Varﬂ(wi‘ca)

e
C|T;eC

When we substitute Equation 4.3, we obtain

Iﬂw(ﬂaw)ii = Z Nﬂ_ncwleﬂ-il i

C|T;ec 2 (rmi, + Pamiy)?

Now we turn our attention to the I, (m,%). We begin with

Lip(m )i = ZC: %C&r ((81n(fc,g7(::i,7r,¢))) (aln(fcg;z:,w,¢))>)7
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and notice that the product of the derivatives will only be non—zero if the item T; is in the

ordered choice set. Thus we have

Lop(m,¥)ia = Z 7;\5*5#(<81n(f0,a(w,7r,1/)))> (8ln(fc,a(w,7r,1/)))))'

clTiec om; a"/}a

If we take into account Equation 4.5, and that

81n(fC,a(w77r7¢)) _ Wi, |C,«a _gW(’wiﬂC,oz)7

M T Y Ya

where T;, is the item in the a'" position of the ordered choice set, then

n Wi|C,a Wi, |Cx
I‘n'w(ﬂ-v'l/))ia = Z WCCOV‘N( | I )

9
T
citiec i Ya

We substitute in Equations 4.3 and 4.4 to obtain
N(iig) P2 M(iq i) P2 . -
Diati N(orm Famg)? — 2oinsti NOrs Tar?e 10 =1,

Doisti Nimoy +am® ~ Dviai N(nmdamgy®> 10=2.

I‘n’d)(ﬂ-v’lp)ia =

These expressions give the entries in Iy (m,9). Ly (m,1) is the transpose of Iy (m, ).
Finally, we look at Iy (m,%). Again, it is convenient to consider the generic diagonal and

off-diagonal entries separately. We have

Lpy(m ) = zcjTEVCgW((al“(faa(wv“/’)))(aln(fc,awnr,«/})))).

(9’(/J1 (91#2

If we use Equation 4.6, then this simplifies to

nc Wiy |C,a Wiy|Ca
Lyp(map)ia = Y —=Covg ,elge ),
—~ N ( 1 o

When we substitute in Equation 4.4 and simplify, we obtain

—NCT;, Ty

[1/,1/,(71',"/))1,2 = XC:N(qplml-i-d)QWiz)Q.

We now look at the diagonal entries of the Iy (m, 1) block matrix. We begin with

Ty (T, 9)aa = zC:7;\?5ﬂ((61n(fc§1(;:,7r,¢)))2>.

If we observe the property in Equation 4.6, then this entry simplifies to

wia|C,a)

n
L/J?l)(ﬂ'v"/))aa = cha’rﬂ'< w
C a

Use Equation 4.3, and simplify, to obtain

B noY1emi, mi,
Lyy(m,$)aa = zc: N3 (1, + o)

Since our ultimate goal is the estimation of main effects and interaction effects, which are
linear combinations of the 4 = In(7r), as well as position effects, we first need to construct the

information matrix for the estimation of the entries in 4 and 9. The equivalent information
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matrix for the estimation of the MNL model was introduced in Section 1.1, and is denoted by

A(m). For the Davidson—Beaver position effects model we use the same notation, giving

T 0
O )
P= ,
¢ 0
L O -
since g’;? = m; and gz“ = 1. It is convenient to partition the A(m,4) matrix in the same way as
I(m,9), so

A(ﬂ' '(,b) _ A"/’Y(ﬂ-’w) Aw(”ﬁ’)
’ Ay (m,9p)  Ayy(m,9h)

where Ay, (m,9) = (Ayy(m,9))".
If we apply this transformation to each of the generic entries in each block and simplify, we

obtain

Ay (m,9)i; = NV G Y1

e N(prm; +bem;)? Ny + o)’

no1am;, T

A (ﬂ' ¢) 5 — 1 2

e C%»:ec N (171 + o1y )2’

(i ig) Y2 TiT N(iy i) Y2 . B
Dinti N(GimFama? — 2oirti N(pwm Fam?r Lo =1,

A"ﬂ[’(/’r,'w)ia -

Mg, ) PITiTey N(i,i0) P1TiTiy . _
Zil?fi N(P1miy +pami)? Eiﬂéi N(1mi+pams, )2 ifa=2,

—NCT;, T,

Agy(m ) = ;N(wmﬁrlﬂ?mz)y

and

noY1Yam, T,

Aww(ﬂ',"p)aa = ; Nq)[}?l(wlﬂ'il +1Z)27T1'2)2.

If we make the assumption of equal merits, that is
T =j = o,

then these expressions simplify further. We leave 17 and 5 unspecified and substitute into the

generic entries in each block, to obtain

e
Aw(ﬂoa"/))w (wl + w2)2 C|T;,T;€C AC’
Y11P2

A W= )2 ,

oy (o, %) (Y1 + 12)? C%éc e

‘ _ % i a |
Ayzp(ﬂ'()?’w)w (wl ¥ 1/)2)2 C%C()\Ti in pos a )\Ti not in pos a)a
1

Aww(ﬂoﬂp)m = m,
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and

Y1)

Aww(ﬂwﬁ)aa W’
where A\c = n¢/N, b # a,

nc

)\Ti in pos a — Z W7

C|T; in pos a of C

> (58) = A pesa

C|TleC

and

/\Ti not in pos a —

Now we will construct this information matrix for our example.

H EXAMPLE 4.2.2.
Recall the experiment introduced in Example 2.0.12 and the design introduced in Example 4.1.2.
The information matrix for the estimation of the entries in 4 and %, under the null hypothesis

of equal merits, is given by

_ % 0 0 % 0 0 -
0 lhr w0 0 .
A(mo, ) = 0 2(@:&52)2 2(¢1€1¢$2)2 0 0 0
e N 0 0
0 | ’ 0 o e
_ O ' ! 0 wljrzlbz)l’ wz(wﬁwﬂ J

4.3 Representing Options using k£ Attributes

In this section we consider the construction of the information matrix when contrasts of the
entries in 4y = In(w) and contrasts of the entries in % are of interest. In particular, we are
interested in contrasts of the entries in 7y that represent the main effects and interaction effects
of the attributes as introduced in Chapter 1.

Ideally, we would like to find the effect of level f, of attribute ¢, denoted by 3, s, , or combi-

nations of attribute levels, on the merit of an item. That is, we want to estimate

:B = (61,03 61,17 cee 751,61—17 cee aﬂk,lk—la 612,007 tey 512...k721—1...6k—17w17 s 7wm)T~

This is not possible however, because B is not estimable. It would be better to estimate contrasts
of the entries in B so that we have a set of estimable contrasts. Suppose that the matrix B contains
contrast coefficients that correspond to the coefficients of the effects that are of interest. We can
choose the entries in B such that BB is estimable.

In general, we are not interested in the interaction between the attribute effects and the
position effects, and we assume that contrasts involving entries in both 4 and ¥ will be 0. Thus

we can express the matrix of contrast coefficients as the partitioned matrix

B, 0
0 B,

B:

)
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where B, contains the contrast coefficients relating to the attribute effects, and B, contains
contrast coeflicients relating to the position main effect.

The information matrix for the estimation of the contrasts in B is
C(m, %) = BA(m,9)B",

which becomes
Clmo, ) = B’YA’Y’Y(ﬂ-OJp)B'? BvAw(ﬂoﬂP)Bi
By Ay (m0,9)BL ByAyy(mo,¥) By,
The terms of the A(mp, %) matrix were given in Section 4.2.
Now we find the information matrices in the case where we wish to estimate main effects of

the attributes and the position main effect for our example.

B EXAMPLE 4.3.1.
Consider the experiment introduced in Example 2.0.12 and the design introduced in Example
4.1.2 to estimate the main effects of the attributes and the position main effect. The contrast

matrix for the estimation of these effects is

1—1 -1 1 1 0 0
B:5 -1 1 -1 1 0o 0|,
0 0 0 0 —V2 V2

where B, is a 2 x 4 matrix of contrast coefficients and By a 1 x 2 matrix of contrast coefficients.
Then the information matrix for the estimation of the main effects and the position main effect

is

Y1y
@ tusz O 0
C(mo, ) =1 0 % 0
1
0 0 2912

Since the information matrix is diagonal, we are able to estimate the main effects of the attributes

and the position main effect independently when using this design . O

Now that we have an expression for the information matrix for the estimation of a set of
attribute effects that are of interest and the position main effect, we will develop some results

on the optimality of designs when using this model.

4.4 Optimal Designs for the Davidson—Beaver Position Ef-
fects Model

In this section we compare the information matrix for the estimation of a set of attribute effects
when the Bradley—Terry model is used to the information matrix when the Davidson—Beaver
position effects model is used. Throughout this section we will assume that the same set of
contrasts on the entries in 7y are of interest in both models, those in B,. We will proceed to show
that, with a mild restriction, the optimal designs for the estimation of a set of attribute effects
when the Bradley—Terry model is used are also optional for the estimation of the same set of
attribute effects independently of the contrasts on the entries in 9 when the Davidson-Beaver

position effects model is used.
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If we compare the generic diagonal entry of the A(my) matrix when the Bradley—Terry model
is used, denoted by A(mg)s_T, to the generic diagonal entries of A, (g, %) when the Davidson—

Beaver model is used, denoted by A, (mo,%)p B, we notice that

’ 1
W(AW(W()W)DBM = 4(A(mo)B-1)ii = N 27; (i,13) + Nini)) » (4.7)

where order is considered important. Similarly, if we compare the off-diagonal entries of the A

matrices for the two models, we find that

W(AWW(WO»w)DB)ij = 4(A(mo)p-1)ij =

where order is considered important.

NG5 NG

- (4.8)

We also need to look at conditions that allow the attribute effects and the position main
effect to be estimated independently. This will require the (1,2) block, and therefore the (2,1)
block, of the information matrix for, C.y (mo,%), to be 0. Before we can find the conditions for
which these blocks are equal to 0, we need to find the expression for the entries in these blocks.

Recall that the (1,2) block of C(mp,%) is equal to

CV’AD(”Oa 1)0) = B’YA’Yw(ﬂ())"p)BZZ;

A generic entry in the matrix obtained when multiplying the first two of these matrices together
is
T
(ByAyy(mo,%))ja = ; Bj; x (%fw()\ﬂ in position a — AT} in position b)
T
= (1#1—%7:/12)2 ; Bji (AT, in position @ — AT} in position b)s
where b # a.

While it is obvious that C.(mo,%) = 0 if all items that appear in the experiment appear
equally often in both positions, this condition proves to be too restrictive. This constraint allows
us to estimate all higher order effects independently of the contrasts of the ,. Usually we
are only interested in the estimation of the main effects of the attributes, and perhaps also the
two—factor interactions between attributes, independently of the position main effect.

We now prove two lemmas which give conditions for C.(mo,%) = 0, one when the attribute
main effects and the position main effect are of interest, and the other when the main effects

plus two—factor interactions of the attributes and the position main effect are of interest.

B LEMMA 4.4.1.

The information matriz for the estimation of the main effects of the attributes and the position
main effect is block diagonal if each of the levels for each attribute appears in each position equally
often.

Proof. For an attribute main effect, every item with the same level for the corresponding attribute
will have the same contrast coefficient. Then, for the j* contrast corresponding to a component

of the main effect of attribute ¢,

4
Py .
(B'\/A'yw(ﬂ-Oa"p))ja = m Z ij(Aatt g=z in pos a — )\att g=x in pos b)7
=1
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where b # a. Then (ByAyy(T0,%))ja = 0 if Aatt g=2 in pos a — Aatt g=2 in pos » = 0 for all attribute
levels 0 < 2 < ¢, — 1 and b # a. It follows that B A,y (mo,9) = 0 if, for each attribute, each
attribute level appears in both positions equally often. If this is the case, then the information

matrix for the estimation of main effects and the position main effect is block diagonal. O

B LEMMA 4.4.2.
The information matriz for the estimation of the main effects plus two—factor interactions of the
attributes and the position main effect is block diagonal if, for each pair of attributes, each pair

of attribute levels appears equally often in both positions of the choice set.

Proof. This proof follows the same lines as the proof of Lemma 4.4.1. The contrast coefficients
corresponding to items with the same pair of levels will be the same. Then for the j** contrast,
corresponding to a component of the two—factor interaction between attributes ¢; and ¢o,

,(/)b Z’-I1 Z‘ZQ

(BvAvw(WOv"»[)))ja = m Z Z Bj(:rlmz)()‘m:a:l,qz:wz in pos @ — Agi=a1,q2=w5 in pos b);

Ilil I2:1

where Ay, —a1 ,go=22 in pos @ = Aatt g1==1, att ga=z in pos a- LN (ByAyy(T0,19)) 0 = 0 if, for all a4
and xg,

)‘Lh:ﬂn,qz:ﬂﬂz in pos a — )‘LI1:931,Q2:902 in pos b = 0

for b # a. This will also result in (ByAy(m0,%))jo = 0, where contrast j corresponds to a main
effect of either attribute ¢; or attribute ¢o, as each level of the attribute must appear in both
positions equally often if each pair of attribute levels appears in each position equally often. It
follows that ByA.y(mo,%) = 0 if, for each pair of attributes, each pair of attribute levels appears
equally often in both of the positions in the choice set. Then the information matrix for the
estimation of the main effects plus two—factor interactions and the position main effect is block

diagonal. ]

Now that we have compared the information matrices for the estimation of the Bradley—Terry
model and the estimation of the Davidson—Beaver position effects model, as well as the conditions
that make the estimation of position effects independent of the estimation of contrasts of the
entries in 7, we can compare optimality results for designs for these two models. We will use the

D-optimality criterion as defined in Section 1.3.1.

B THEOREM 4.4.3.

Consider a particular set of contrasts of the elements in v and some constant, but unknown,
values for the elements in . Let Eopr be the D—optimal design for the estimation of a set of
contrasts of the entries in vy using the Bradley—Terry model over the set of competing designs X.
Then Eopr is also D—optimal over X for the estimation of the same set of contrasts of the entries
on vy and a contrast of the elements in 1 that is constant across the designs in X, provided that

the (1,2) and (2,1) blocks of the partitioned information matriz are 0. O
Proof. We begin by letting B be the block diagonal matrix

B, 0
0 B,

i

containing the contrasts of the entries in <y that are of interest, and the position main effect. All

of these contrasts will be constant over the class of competing designs. Then the information
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matrix for the estimation of the contrasts in B, and B, assuming that the conditions of either

Lemma 4.4.1 or Lemma 4.4.2 are satisfied, is

BA(mo,%)p sB"
By Ay (o, %)p B BY 0
0 ByAyy(mo,9)p BB,

C(mo,%)p B

Equations 4.7 and 4.8 show that

Aon®0.8)p 0 = 7 E 2 A,

(12 + 1h2)?

so by substitution we obtain

417 T
C(Wo,lb)D,B = (1b2+11/)§)23 A(’”O)B TBW 0
0 By Ayy(mo,¥)p BBy,

The information matrix for the estimation of the set of contrasts in B, when the Bradley—
Terry model is used is
C(WO)BfT = BWA(ﬂo)B,TB,?.

Then we may express C(mg,%)p_p in terms of C(mo)p_r and ¥, which gives

41119 . C( ) BT 0
— (Y2+1p2)
C(mo,%)p-B [ 0 Coh) ] ; (4.9)

where
Cy () = ByAyy(mo, ) By,
and is a function of the entries in 9 only.

Since {opr is the D—optimal design for the estimation of the set of contrasts in B, when the

Bradley—Terry model is used, we have

det((C(mo)B-T)¢) < det((C(mo)B-T)eopr)

for all £ € X, by the definition of D—optimality, as given in Section 1.3.1. Using Equation 4.9 we

see that

det(C(mp,¥)p-B) = det (mC(WO)BT) x det(Cy (¥))
(4919p2)P

= W X det(C(ﬂo)B,T) X det(Cw('l/)))

Since p and 1 are constant across the set of competing designs, so is det Cy(4), and thus the
efficiency of an arbitrary design & when compared to the design éop1 when using the Davidson—

Beaver position effects model is

B det((C(mo,¥)pn)e) \ /¥
Deff(f’gopT) - (det 7|'0,'¢')D B)EOPT))

( gfﬁ:ﬁj);) det((C(mo)B 1)) x det(Cy () >1/(p+1)
)
1.

m;;; det((C(mo)B T)eopr) X det(Cly (¥

det( 7T0 B T)E) )1/(P+1)
det( 71'0 B- T)EOPT)

IN
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Therefore, by the definition of D—optimality, £opr is also a D—optimal design for the estimation
of the contrasts in B, and B, when the Davidson-Beaver position effects model is used, assuming

the conditions in the statement of Lemmas 4.4.1 and 4.4.2 are satisfied. O

We now consider an example of the relationship between these two models, and compare

some designs.

B EXAMPLE 4.4.1.

Recall the experiment introduced in Example 2.0.12 and design introduced in Example 4.1.2.
In Example 4.3.1 we found the information matrix for the estimation of main effects and the
position main effect when the Davidson—Beaver position effects model is used. Now we will find
the information matrix for the estimation of the main effects only using the same design when

the Bradley—Terry model is used. The contrast matrix for the estimation of main effects is

1{-1 -1 11
B=- .
21 -1 1 -1 1
From El-Helbawy and Bradley [1978] we know that the information matrix for the estimation of

v when the Bradley—Terry model is used, under the assumption of the null hypothesis of equal

merits, is

A(mo, ¥)p-1 = 2 1 1 0
-1 0 0
From Example 4.2.2, it is clear that
4192
AWV('”O7¢)D B = WA(WO)B T-

It follows that the information matrix for the estimation of main effects only when the Bradley—

|

L%C B 0
C(mo,¥)p-B = l (WP2+2) . (mo)B-T : ] |

PIVERT

Terry model is used is

C(mo)s T = [

O =
= O

and we see that

Taking determinants of both C(mg,%)p- and C(mwo)p-T gives

det(C(mo,¥)p-B) = %
det(C(mo)p-1) = T16

We are estimating p = 2 contrasts on the entries in v, which gives

(4p1¢)? G 1
(r + gy < AHCMo)mr) X deMCu ) = oo o > 16 T
_ P12
2(11 + 2)4

det(C(mo,%)pav),

which is consistent with the findings in Theorem 4.4.3. O
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We can use this theorem to apply the results that we know about optimal designs for the
Bradley—Terry model to the Davidson—Beaver position effects model. First, we apply Theorem

4.4.3 for a 2% factorial experiment presented in Theorem 1.3.1.

B COROLLARY 4.4.4.

Let £ be the design that contains all distinct pairs that differ in the levels of each attribute in a
2% paired comparisons experiment. Then when the rows of B., correspond to the k main effects,
and each attribute level appears in both positions equally often, the design will be D—optimal
for the estimation of the main effects of the attributes and the position main effect when the

Davidson—Beaver position effects model is used. O

Proof. By Theorem 1.3.1, the design in the statement of the theorem is D—optimal for the
estimation of the attribute main effects when the Bradley—Terry model is used. By Lemma
4.4.1, the design will have a block diagonal information matrix. It follows from Theorem 4.4.3
that this design is D—optimal for the estimation of the attribute main effects and the position

main effect when the Davidson—Beaver position effects model is used. O

We can use this corollary to find an optimal design for the estimation of the main effects and

the position main effect for the experiment in our example.

B EXAMPLE 4.4.2.

Consider the 22 experiment introduced in Example 2.0.12. In this experiment we have t = 4
possible items. There are four ordered pairs of items, shown in Table 4.2, that differ in all £k = 2
attributes, and give each attribute level appearing in each position twice. Then the design with
these four ordered pairs is optimal for the estimation of main effects and the position main effect

when the Davidson—Beaver position effects model is used. O

Option 1 Option 2

0 1
0 0
1 1
1 0

= o = O
S O = =

Table 4.2: Optimal design for main effects and the position main effect.

We can also use Theorem 4.4.3 to extend the result on the optimal design for a 2* factorial
for the estimation of the main effects plus two—factor interactions and the position main effect

given in Theorem 1.3.2 .

B COROLLARY 4.4.5.

The D-optimal design for the estimation of the main effects plus two—factor interactions of the
attributes and the position main effect for a 2% paired comparisons experiment, when all other
effects are assumed zero and the Davidson—Beaver potion effects model is used, is given by

ok—1( Kk ifi= kL
Qi = { ((k+1)/2) ifi 2

-1

0, otherwise.
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if k is odd and
k-1 k1 .k k
s = 2 1(k/2) , ifi=g5 org+1,
’ 0, otherwise.

if k is even, provided that, for each pair of attributes, each pair of attribute levels appear equally

often in both positions. O

Proof. By Theorem 1.3.2, the design in the statement of the theorem is D—optimal for the
estimation of the main effects plus two—factor interactions of the attributes when the Bradley—
Terry model is used. By Lemma 4.4.2, this design will also have a block diagonal information
matrix. It follows from Theorem 4.4.3 that this design is D-optimal for the estimation of the
main effects plus two—factor interactions of the attributes and the position main effect when the

Davidson—Beaver position effects model is used. O

We can use this corollary to find an optimal design for the estimation of the main effects plus

two—factor interactions and the position main effect for the experiment in our examples.

B EXAMPLE 4.4.3.
Consider again the 22 experiment introduced in Example 2.0.12. We are now interested in the
estimation of the main effects plus two—factor interactions of the attributes and the position main

effect. Since k = 2 is even the D—optimal design for the estimation of these effects is given by

-1 op .
aZi:{;x(?) , ifi=1or2,

0, otherwise.
This is the design with all ordered pairs of distinct items, as shown in Table 4.3. O
Option 1 Option 2 Option 1 Option 2
0 0 0 1 1 0 0 0
0 1 0 0 11 0 1
1 0 11 0 0 11
11 10 0 1 10
0 0 1 0 10 0 1
0 1 11 11 0 0

Table 4.3: Optimal design for main effects, two—factor interactions, and the position main effect.

Finally, we can use Theorem 4.4.3 to extend the results relating to the optimal design for the

general factorial as given in Theorem 1.3.3.

B COROLLARY 4.4.6.

Consider an £y x ... x £, factorial paired comparisons experiment. Assuming that there are no
interactions present, and By, contains the contrast coefficients for the attribute main effects, then
the design consisting of all pairs where the options differ in all of the attributes, and where each
attribute level appears equally often in both positions, will be D—optimal for the estimation of the
main effects of the attributes and the position main effect when the Davidson—Beaver position
effects model is used. O
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Proof. By Theorem 1.3.3, the design in the statement of the theorem is D-optimal for the
estimation of the attribute main effects in Bj, when the Bradley—Terry model is used. By Lemma
4.4.1, the design will also have a block diagonal information matrix. It follows from Theorem
4.4.3 that this design is D-optimal for the estimation of the main effects of the attributes and

the position main effect when the Davidson—Beaver position effects model is used. O

We now consider an example of how this result can be used to find optimal designs for the

estimation of main effects when using the Davidson—Beaver model.

B EXAMPLE 4.4.4.

Let us consider the 32 experiment introduced in Example 2.4.4. An optimal design for the
estimation of the main effects of the attributes and the position main effect is given in Table 4.4.
Notice that each pair of items that differs in each of the attributes appears, and that each level

in each of the attributes appears 6 times in each position of the choice set, satisfying the criteria

for Corollary 4.4.6. O
Option 1 Option 2 Option 1 Option 2
0 0 11 0 0 2 2
0 1 1 2 0 1 2 0
0 2 1 0 0 2 2 1
10 2 1 1 0 0 2
11 2 2 11 0 0
1 2 2 0 1 2 0 1
2 0 0 1 2 0 1 2
2 1 0 2 2 1 10
2 2 0 0 2 2 11

Table 4.4: Optimal design for main effects and the position main effect, {; = ¢35 = 3.

4.5 Simulations of the Davidson—Beaver Model

In this section we consider the performance of the Davidson—Beaver position effects model under
various model assumptions by carrying out a number of simulation studies. We assume that
k=2,4; =¥ =2 and m = 2 throughout. We consider two sets of values for the parameters. In
the first we assume that both main effects parameters, 7, and 73, are equal to 0 and the position
main effect parameter v, = —0.2, and in the second set we assume that ; =1 and 7 = —1 but
Y, = —0.2 still.

We find the locally optimal design for each set of values and compare the performance of each
design with both sets of parameter values. The design in Table 4.2 is optimal for the estimation of
the main effects of the attributes plus the position main effect when 7 = 75 = 0 and ¥y, = —0.2,
as shown in Example 4.4.2. By an exhaustive search of the 2!2 — 1 = 4095 possible designs, the
design in Table 4.5 is optimal for the estimation of the main effects of the attributes plus the

position main effect when 71 = 1, 70 = —1, and ¢;, = —0.2. This exhaustive search is illustrated
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in Figure 4.1, where the x—coordinate corresponds to the design index, and the y—coordinate is
the determinant of the information matrix for that design when 71 = 1, 7 = —1, and ¢, = —0.2.
The determinants of the information matrix for the designs in Tables 4.2 and 4.5 are labelled in
Figure 4.1.

We first assume that 71 = 75 = 0, and ¢, = —0.2 and compare the simulated distributions
of the parameter estimates when the designs in Tables 4.2 and 4.5 are used in turn. Each
simulation is modelled using the simulated responses from 150 respondents, and each boxplot
displays the distribution of the estimates from 1000 such simulations. Figures 4.2(a) and (b) show
the distributions of the parameter estimates when the designs in Tables 4.2 and 4.5, respectively,
are used. Summary statistics for both simulations are provided in Table 4.6. We see that,
in each of the simulations, the simulated parameter estimates are unbiased and symmetrically
distributed. We see that, in this case, the variances of the parameter estimates for the design in
Table 2.6 is larger, illustrating the optimality of the design in Table 4.2.

We now consider the performance of these two designs when 7 = 1,75 = —1, and ¢, = —0.2.
Figures 4.3(a) and (b) show the distributions of the parameter estimates when the designs in
Tables 4.2 and 4.5, respectively, are used. Summary statistics for both simulations are provided
in Table 4.7. We see that, for both designs, the distribution of the parameter estimates seem to
be unbiased. In this case, we see that the variance of the parameter estimates for the design in
Table 4.5 is now smaller, illustrating the optimality of this design. The selection probabilities
for the design in Table 4.2 when 71 = 1, 70 = —1, and ¢, = —0.2 are given in Table 4.8.

Next, we simulate the effect of changing the coefficient of the position main effect on the
distributions of the parameter estimates when we let 74 = 1 and 75 = —1, and the design in
Table 4.5 is used. Figures 4.4(a) and (b) give the simulated distributions of the parameter
estimates when the coefficient of the position main effect is 0 and —0.4, respectively. Summary
statistics for both simulations are provided in Table 4.9. We see that in each of the simulations
that the parameter estimates are unbiased, fairly symmetrically distributed and have similar
variances.

We now compare the ability of four different designs to estimate the main effects plus the
two—factor interaction of the attributes and the position main effect. The first two designs are
those in Tables 4.2 and 4.5. The third design is the set of all ordered pairs of items, which is
optimal for the estimation of the main effects plus the two—factor interaction of the attributes
and the position main effect when 71 = 79 = 72 = 0, and ¢, = —0.2, as shown in Example 4.4.3.

This design is shown in Table 4.3. The final design, shown in Table 3.12, is locally optimal for

Option 1 Option 2

0 0 0 1
0 0 1 0
0 0 1 1
11 0 0
Table 4.5: Optimal design for main effects and the position main effect when 7 =1, 75 = —1,

and ¢, = —0.2.
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Figure 4.1: Exhaustive search for optimal design m = 1,75 = —1, and ¢, = —0.2.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)
Design in Table 4.2
T 0.00266(0.00138) 0.00168 0.00192 —0.05424(0.07734)
Ty 0.00004(0.00133) 0.00168 0.00176 0.14714(0.07734)
UL —0.20150(0.00132) 0.00167 0.00173 —0.10012(0.07734)
Design in Table 4.5
T 0.00247(0.00202) 0.00411 0.00409 —0.15819(0.07734)
To —0.00167(0.00207) 0.00411 0.00428 —0.02982(0.07734)
UYL —0.20152(0.00143) 0.00185 0.00205 —0.00819(0.07734)

Table 4.6: Summary statistics for 73 = 0, 75 = 0, and ¢, = —0.2.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 4.2

sl 1.02515(0.00417) 0.00191 0.01735 0.86034(0.07734)

T —1.025238(0.00417) 0.00191 0.01739 —1.03217(0.07734)

Yy, —0.19870(0.00179) 0.00187 0.00320 —0.10202(0.07734)
Design in Table 4.5

sl 1.00814(0.00294) 0.00429 0.00863 0.14050(0.07734)

T2 —1.00626(0.00307) 0.00437 0.00943 —0.15397(0.07734)

Y, —0.20048(0.00157) 0.00189 0.00245 —0.09339(0.07734)

Table 4.7: Summary statistics for 71 = 1, 72 = —1, and ¢, = —0.2.

Choice Set P(T1|(T1,T2)) P(T2|(T1,T2))
(00,11) 0.599 0.401
(01, 10) 0.168 0.832
(10,01) 0.919 0.083
(11,00) 0.599 0.401
Table 4.8: Selection probabilities for the design in Table 4.2, where 4, = 1, » = —1, and
YL = —0.2.
(a) (b)
1000 Simulations: k= 2, m= 2 Effects = 1,-1,0 1000 Simulations: k= 2, m= 2, Effects = 1,-1,-0.4
g = 84 ==
£ g g g =
=i @ | 5 T
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Figure 4.4: Simulation: 71 = 0.5, 72 = —0.5, and ¢, = 0 (a), and —0.4 (b).
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness

(Standard Error) Variance  Variance (Standard Error)
(a) i 1.00998(0.00299) 0.00429 0.00895 0.13724(0.07734)
T2 —1.01125(0.00324) 0.00429 0.01050 —0.15104(0.07734)
YL —0.40587(0.00174) 0.00189 0.00301 —0.19620(0.07734)
(b) I 1.00953(0.00300) 0.00437 0.00903 0.31702(0.07734)
Ty —1.01020(0.00300) 0.00453 0.00902 —0.31558(0.07734)
Y, 0.00129(0.00158) 0.00189 0.00248 —0.00143(0.07734)

Table 4.9: Summary statistics for 74 =1, 7 = —1, and (a) ¥, = 0 and (b) ¢, = —0.4 .

the estimation of the main effects plus the two—factor interaction of the attributes and position
the main effect when 71 = 1,75 = —1, 715 = —0.25, and ¢, = —0.2, found by using an exhaustive
search.

We first consider the case where the two—factor interaction is negligible. We let the coefficients
of the main effects be 7y = 1 and 75 = —1, and the coefficient of the position main effect be —0.2.
Then Figures 4.5(a), (b), (c), and (d) give the distributions of the parameter estimates when the
designs in Table 4.2, Table 4.5, Table 4.3, and Table 4.10 are used. Summary statistics for all
four of the simulations are provided in Table 4.11.

We see that the designs in Tables 4.3 and 4.10 give unbiased and close to symmetric dis-
tributions with similar variances. The design in Table 4.5 gives slightly biased but reasonably
symmetrically distributed parameter estimates with a larger variance than the designs in Table
4.3 and 4.10. The design in Table 4.2 can not estimate the two—factor interaction at all.

Finally, we consider the estimation of a non-zero interaction effect. If we let the coefficients
of the main effects be 71 = 1 and 75 = —1, the coefficient of the position main effect be —0.2
as before, and we let the coefficient of the interaction effect be 710 = —0.25, then the selection
probabilities for the design in Table 4.3 are given in Table 4.12. Figures 4.6(a), (b), (c), and (d)
give the simulated distributions of the parameter estimates when the designs in Table 4.2, Table

4.5, Table 4.3, and Table 4.10 are used. Summary statistics for all four of the simulations are

Option 1 Option 2 Option 1 Option 2
0 1 0 0 1 1 0 1
1 0 1 1 0 0 11
11 1 0 0 1 10
0 0 1 0 1 0 0 1
0 1 1 1 1 1 0 0
1 0 0 0

Table 4.10: Optimal design for main effects plus two—factor interactions of the attributes and

the position main effect when 71 =1, o, = —1, 710 = —0.25, and ¢y, = —0.2.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance  Variance (Standard Error)

Design in Table 4.2

T 1.02367(0.00385) 0.00191 0.01481 0.82857(0.07734)

Ty —1.02281(0.00389) 0.00191 0.01509 —0.73502(0.07734)

T192 Not Estimable

YL —0.20072(0.00186) 0.00187 0.00343 —0.08013(0.07734)
Design in Table 4.5

T 1.00942(0.00310) 0.00428 0.00963 0.19616(0.07734)

T —1.01090(0.00325) 0.00428 0.01059 —0.20917(0.07734)

Ti2 0.00054(0.00364) 0.00755 0.01328 —0.00248(0.07734)

YL —0.20118(0.00180) 0.00335 0.00325 —0.30448(0.07734)
Design in Table 4.3

T 1.00121(0.00153) 0.00087 0.00233 0.29920(0.07734)

Ty —1.00138(0.00157) 0.00086 0.00245 —0.25802(0.07734)

T12 0.00323(0.00139) 0.00086 0.00193 0.03527(0.07734)

YL —0.19889(0.00113) 0.00057 0.00128 —0.21674(0.07734)
Design in Table 4.10

T 1.00914(0.00159) 0.00103 0.00254 0.18692(0.07734)

Ty —1.00492(0.00156) 0.00101 0.00243 —0.12623(0.07734)

Ti2 —0.00131(0.00137) 0.00086 0.00189 0.00943(0.07734)

YL —0.20199(0.00118) 0.00064 0.00140 —0.20892(0.07734)

Table 4.11: Summary statistics for 7y = 1,75 = —1, 712 = 0, and ¢, = —0.2.

provided in Table 4.13.

Once again, we see that the designs in Tables 4.3 and 4.10 give unbiased and close to sym-
metric distributions with similar variances. The design in Table 4.5 again gives slightly biased
but reasonably symmetrically distributed parameter estimates with a larger variance than the
designs in Table 4.3 and 4.10. The design in Table 4.2 still can not be used to estimate the

two—factor interaction at all.
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Figure 4.6: Simulation: Estimating main effects, two—factor interactions and the position main
effect, designs in (a) Table 4.2, (b) Table 4.5, (c) Table 4.3, and (d) Table 4.10.
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Choice Set P(T1|(T17T2)) P(T2|(T1,T2))

(00,01) 0.948 0.052
(01, 00) 0.109 0.891
(10,11) 0.870 0.130
(11,10) 0.250 0.750
(00, 10) 0.250 0.750
(01,11) 0.109 0.891
(10, 00) 0.870 0.130
(11,01) 0.948 0.052
(00,11) 0.599 0.401
(01, 10) 0.027 0.973
(10,01) 0.988 0.012
(11,00) 0.599 0.401

Table 4.12: Selection probabilities for the design in Table 4.2 when 7 = 1, ; = —1, 72 =
—0.25, and ¢, = —0.2.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)
Design in Table 4.2
sl 1.02376(0.00382) 0.00191 0.01457 0.92721(0.07734)
Ty —1.02326(0.00384) 0.00191 0.01471 —0.88053(0.07734)
T12 Not Estimable
YL —0.20173(0.00185) 0.00187 0.00340 —0.13214(0.07734)
Design in Table 4.5
Ty 1.01627(0.00372) 0.00449 0.01382 0.65400(0.07734)
Ty —1.01545(0.00380) 0.00449 0.01441 —0.61478(0.07734)
Ti2 —0.26113(0.00412) 0.00779 0.01700 —0.44014(0.07734)
YL —0.20197(0.00184) 0.00330 0.00340 —0.06620(0.07734)
Design in Table 4.3
st 1.00329(0.00164) 0.00092 0.00269 0.02212(0.07734)
T —1.00288(0.00159) 0.00092 0.00254 —0.10721(0.07734)
Ti2 —0.25200(0.00144) 0.00090 0.00207 —0.13281(0.07734)
UL —0.20179(0.00112) 0.00060 0.00126 0.10934(0.07734)
Design in Table 4.10
T 1.00539(0.00165) 0.00107 0.00271 0.01579(0.07734)
Ty —1.00556(0.00163) 0.00107 0.00266 —0.16227(0.07734)
T12 —0.25139(0.00141) 0.00090 0.00200 0.03671(0.07734)
YL —0.20090(0.00112) 0.00067 0.00125 0.06408(0.07734)

Table 4.13: Summary statistics for 1 = 1,75 = —1, 715 = —0.25, and ¥, = —0.2.
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4.A  Proof that jiz =0 for the Davidson—Beaver Position

Effects Model

We begin by recalling that

Zi = E Wiliip —

iai

8N, V17T

YT + Yo,

+ Wiliyi —

8N, P2 T

Y1 Ty + Vo7

Now, the vector z contains the values for z; for each possible item 7;. Then

t

T

Jrz = E Zi
i=1

= § : Wiy |iyin + Wi )igin —

11742

= Z(wh\illé + wiQ‘ili2) - Z
C

N S
C C

= 07

as required.

SNy ip V175,

SNyi, Yo,

C

V17, + YT,

sSneYr T,

V1T, + Yoy,
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V170, + Yo,
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Chapter 5

The Generalised Davidson—Beaver
Position Effects Model

In Chapter 4, we found optimal designs for experiments using the Davidson—Beaver position
effects model for choice sets of size 2. In Section 1.1, we introduced the MNL model as a
generalisation of the Bradley—Terry model thus allowing for an arbitrary number of options in
each choice set.

In this chapter we consider a generalisation of the MNL model to accommodate position
effects. This generalisation is analogous to the generalisation of the Bradley—Terry model to
obtain the Davidson—Beaver model. We will first set up the model, looking at probability density
and likelihood functions and derive the information matrix for the estimation of a set of contrasts
on the entries in 4 and the position effects.

Once we have established some properties of this model, we will then use the information
matrix to develop theory relating to the optimal design of experiments for this model. We

conclude by looking at some relevant simulations.

5.1 Estimation of the generalised Davidson—Beaver posi-

tion effects model

In this section we introduce a model that generalises the MNL model to incorporate position
effects. We also derive the maximum likelihood estimates for this generalised model.

In order to estimate position effects for any choice set size, we need to introduce some addi-
tional parameters. The Davidson—Beaver position effects model incorporates position effects by
multiplying the merit of item 7T;, 7;, by a parameter 1, to reflect the effect of the item being

presented in position a of the ordered choice set.

In general, we define 11, ¥s, . . ., ¥, to be the parameters that measure the effect of an item be-
ing presented in positions 1, 2, ..., m of the choice set respectively. Then the probability of choos-
ing an item T}, which is presented in position a of the ordered choice set C' = (T3, T3y, - - -, T3,,),
that is T; =1T;_, is

Yo
P(T; |IC) = =——.
' | Zl:nzl /l/)bﬂ-ib

To ensure identifiability, we assume that HZL:l 1, = 1. We now consider an example that applies
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these probabilities to the experiment considered in Example 3.1.1, where m = 3.

B EXAMPLE 5.1.1.

Consider the experiment introduced in Example 3.1.1. If we assign merits myg, mo1, and g to
the items in the ordered choice set C' = (00,01, 10) , then

Y1700
P OOC - )
(0016 P10 + YPamo1 + YP3mig
1/127T01
P 01 C - ’
(o1ie) P17 + Pamor + Y3710
and
Y310
P(10|C) = .
(1016 Y170 + Yamor + Pamig 0O

The next example looks at some of the values that v1,...,1,, may take, and the types of
position effect that they describe.

B EXAMPLE 5.1.2.

Consider an experiment with m = 5 items in each choice set, and m; = ... = mp = 1. Then
P(T;,|C) = % Table 5.1 gives four different sets of values that % may take, and the
probability of selection when all entries in @ are equal to 1. The first two rows describe linear
position effects, the first of which has the probability of selection increasing as the position moves
from left to right, and the second has the probability of selection decreasing as the position moves
from left to right. The final two rows describe a quadratic position effect. In the first of these, the
probability of selection at the extremes of the choice set is higher that the probability of selection

for the items in the middle positions. The second of these describes the opposite effect. O
¥ P(T;,|C) P(Ty|C) P(T|C) P(Ty|C) P(T|C)
(0.64,0.84,1.04,1.24,1.44) 0.123 0.162 0.200 0.238 0.277
(1.44,1.24,1.04,0.84,0.64)  0.277 0.238 0.200 0.162 0.123
(1.31,0.88,0.74,0.88,1.31) 0.256 0.172 0.145 0.172 0.256
(0.74,1.17,1.32,1.17,0.74) 0.144 0.228 0.257 0.228 0.144

Table 5.1: Selection probabilities for the experiment in Example 5.1.2.

Once again, we define indicator variables w to represent whether a particular decision was

made by a particular respondent, «, or not. We let

1 if respondent « selects item T; from
WilCa = the ordered choice set C = (T}, Ts,, ..., T5,,),
0 otherwise,
where for a given choice set and respondent, only one of the w;s is equal to 1, depending on the
respondent’s choice. This is because there are no repeated ordered choice sets for any respondent,
and no opt—out process. Then, for respondent «, the probability density function for the response
to the ordered choice set C' = (T;,,T; T;,,) is
HZL:1 (Yo, ) ialoe
(b oy, )

19 25

fCa(wv"r,'w)
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where n¢ is an indicator variable which equals 1 if the ordered choice set C' appears in the
experiment, and 0 if it does not. For consistency we also let w;c, = 0, for all items T; € C, if

the ordered choice set C' does not appear in the experiment. Given fo,(w,m, 1),

In(foa(w, m,9)) = > wi,jcalln(@a) + In(m;,)) = nen (Z wmb>

and the derivative of In(foq(w,m, %)) with respect to 7; is

81n(fca('w,7f,’l,[))) Wi Ca nc?l}a

om; Uy (> ey Yomi,)’

where item T; appears in position a of the ordered choice set. This derivative will be equal to 0

if item 7T; does not appear in the ordered choice set C' at all. The derivative of In(fcq (w, T, %))
with respect to 1, is

Oln(foa(w,m ) Wi, ca nem;,

81/}a B Ya (22;1 wbﬂib)’

where, once again, item 7;, is the item that appears in position a of the ordered choice set C.

We will use these derivatives later to derive an expression for the information matrix for this
model. Before we derive the information matrix, we will find an expression for the MLEs for this
model.

Since the likelihood function is the product of the density function for a respondent and an

ordered choice set over all possible ordered choice sets and over all respondents, we have

L('w77r,'(/)) = H HfC'a(wﬂrv"/))

a=1 C
H Ha 1 ’(/}aﬂ-z ) falC
Zb 1wb7r7.b)snc ’

where w;,|c = > 01 Wi |Ca-
To maximise the likelihood function subject to the constraints of the model, we need to set
up a Lagrangian function to incorporate the constraints. For the purposes of convergence, we

enforce the normalising constraint present in the MNL model

t
Z In(m;) = 0.
i=1

Similarly, we place the constraint

> In(ihy) =
b=1

on the position effects to ensure convergence. We will also constrain the contrasts that are

assumed to be negligible. If we let B, be the matrix containing h such contrasts, then we have

Ba’Y = 07

where, once again, 4 is the vector containing +; = In(m;). This gives the Lagrangian

Gw,m,v) Z Z (wz jcIn(m;, ) + w;, o In(Pa) — sncln (Zwbﬂ-lb)>

C a=1

+Kq Z In(m;) + Ko Z In(¢p) + [k3 - - - Kht2]Ba?,
i=1 b=1
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where, once again, there are h contrasts in B,, and k1, ..., kp+2 are Lagrange multipliers. When

we differentiate G(w, %) with respect to m;, we obtain

h
M — Z (wz|C - S’flc'l/)a )) + ﬂ + Z HI—O—Q(Ba)mi%a
x=1 v

m
om; N (e Ve, uy

where item T; appears in position a of the ordered choice set C'. When we differentiate G(w, 7, 1)

with respect to v,, we obtain

OG(w,m, ) _ <wia|c __ sncm, ) Ko
8¢a ZC: Ya (Z?:l wbﬂ'ib) * 7/111.

As usual, we obtain maximum likelihood estimates by setting these equations equal to 0 and
solving simultaneously. This problem can be simplified using matrix notation. Suppose that we
let —

SNcPaTi
Fi = Z Wile — = ey
icC (et Yo7,

where T; appears in position a of the ordered choice set. By multiplying Gwmy)

Dn: ) by each m; in

turn, we get

zi+ K1+ i Kot2(Ba)zi = 0,
z=1
for ¢ = 1,...,t. This gives the system of equations
2+t + BTk =0y, (5.1)
where 2 = (21,...,2)7 and k = (k3,...,Kps2)T. Similarly, if we let

Dy = Z w Snc¢a7?i\a

a = i0lC T TSm0
c (2opmy Yo7, )

then we obtain

p+ﬁ2j£ :Om

as the other set of normal equations.
If we pre-multiply Equation 5.1 by 57 we obtain x; = 0, since 57z is shown to be equal to 0
in Appendix 5.A, and the rows of B, are the coefficients of contrasts so jL BT = (B,j.)T = 0.

Pre-multiplying Equation 5.1 by B,, we obtain
k=-BT.
Substituting this into Equation 5.1, we get
(I - By Ba)z =0y,
and

P"‘@Jﬁ :Om

as the normal equations. We obtain the maximum likelihood estimates by solving these equations
iteratively.
Now let us look at the estimation of the parameters in the generalised Davidson—Beaver

position effects model for our example.
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B EXAMPLE 5.1.3.
Recall the experiment considered in Example 5.1.1. Suppose that we present four ordered choice
sets to the respondent, as shown in Table 5.2, and are interested in the estimation of the main

effects of the attributes and contrasts of the position effects. This means that

1
Ba:7|: - - ;
5 1 1 11

and we are assuming that the contrast for the two—factor interaction
ln(ﬂ'oo) — 111(71'01) — 111(7'('10) + 111(71'11)

is zero. Suppose that we present these choice sets to 150 respondents and obtain the set of
summarised responses in Table 5.2. Then the Lagrangian for the estimation of the generalised

Davidson—Beaver position effects model for this experiment is

Gw,m¢) = 54(In(moo) + In(¢1)) + 10(In(mo1) + In(t2)) + 86(In(m10) + In(43))
—1501n(¢h1m00 + Wamor + 3m0) + 44(In(mor) + In(ehy)) + 48(In(ro0) + In(¢a))
+58(In(m11) + In(¢)3)) — 150 In(h1mo1 + Yamoo + 3m11) + 102(In(m10) + In(¢)1))
+24(In(m11) + In(¢2)) + 24(In(moo) + In(vp3)) — 150 In(¢17m10 + a1 + Y3moo)
+55(In(m11) + In(4h)) + 82(In(m10) + In(tha)) + 13(In(mor) + In(ebs))
—1501n(p1m11 + Yoo + W3mo1) + k1 (In(meo) + In(mo1) + In(m10) + In(711))
+ro(In(e1) + In(va) + In(3)) + k3(ln(me) — In(mo1) — In(mio) + In(m11)).

We then differentiate the Lagrangian with respect to each m; and v, in turn. For example,

0G(w,m,9)  54+48+24 1500, B 15045
Omoo 00 1m0 + Y2mo1 + Ym0 Yimor + Yamoo + P3Tin
_ 150y LN
Y1710 + Yoy + P3mo0  Too Moo
and
OG(w,m,%)  BA+44+102+55 150700 150701
01 1 Y1moo + Yamo1 +PY3mo Y1mor + Yamoo + Y311
150719 150711 K2

Y110 + Yamin + P3mo0 YT+ Yemio + Y3Tor Y
If we set each of these to 0 and solve iteratively then we obtain the maximum likelihood
estimates of the entries in m and %. Since these entries are not estimable without additional

constraints, we find contrasts of the entries in 7 and ¥. If we let 7 be the main effect of the first

Option 1 Option 2 Option 3 T, To T3
0 0 01 1 0 54 10 86
0 1 0 0 1 1 44 48 58
10 1 1 0 0 102 24 24
1 1 1 0 0 1 55 82 13

Table 5.2: The design and set of responses for the experiment in Example 5.1.3.
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attribute, 7o the main effect of the second attribute, 1y, be the linear component of the position

effect, and ¢ be the quadratic component of the position effect, then we get

7 =0480 7 =-0458 1, =—0259 ¢ =0.121. 0

5.2 Properties of the generalised Davidson—Beaver posi-

tion effects model

In this section, we complete the construction of the information matrix for the estimation of the
entries in 4y and the entries in 9. In practice, not all of these parameters are estimable at the same
time so, in the next section, we will transform this information matrix to obtain an information
matrix for an estimable set of contrasts of these parameters. Once again, we begin by deriving
expressions for the expectations, variances and covariances of the selection indicators, w, which
were introduced previously. We then use these expressions to simplify the information matrix.
Recall that the entries in w are selection indicators for the choice made by respondent «
T,

when presented with an ordered choice set C' = (T;,,T; i ). These w; have a Bernoulli

gy

distribution with expectation

_ YaTi,
Zgnzl wbﬂib

The variance of these selection indicators is given by

YaTi, y >opey YT, — YT,
m m *
Zb:l T/Jbﬂ'ib Eb:l wbﬂib

Next we derive covariances for these selection indicators. As usual, we assume that the selections

g‘n'(wia|c',a)

Var, (w;,|c,q) (5.2)

made in two distinct ordered choice sets are uncorrelated, and thus the w;s of different ordered
choice sets have zero correlation. As usual, we also note that for any ordered choice set and any

respondent, only one w can be equal to 1, therefore Ex(w;,|c,a X Wi, |0,a) = 0 for a # b. Then

En ((wia|C,a - gﬂ'(wia|C,a)) (wia/\c,a - g‘fr(wia/|C,a)))
= 0-— 57r<wia\c,a)€7r(wia/\c,o¢)
. d)aﬂ'ia % q/ja’ﬂ-ia/

Z;)n:l wbﬂ'ib 2271:1 d}bﬂ-ib .

Covy (wia |Cyas Wi, |C,a)

Then in general,

7%&:@’ ifC=C"and a # d,
b=1 ip
COV‘n’(wia|C,a7 wia/\C’,a) — YaTig (P pey YoTiy —PaTiy) O =0 and a = a/’ (53)

(Oohry Yoy )2 ’
0, otherwise.
We now find the expectations, variances and covariances for the selection indicators in our
b)

example.

B EXAMPLE 5.2.1.
Consider the experiment in Example 5.1.1. In particular, consider the first ordered choice set

C = (00,01, 10). The expectation of each of the selection indicators are

£x(w ) Y100
TAH00|Cse Y1mo0 + Yamor + Y31’
Pamo1
gfr(wOHC,a)

Y1mo0 + Yamor + Y3’
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and

P30
Y10 + Pamor + P3mio

En(wiojc,a)

The variances of the selection indicators are

1m0 (Y21 + P3Ti0)
(Y1700 + Pamor + 3m10)?’

Yamo1 (Y1700 + P3T10)
(Y1700 + Pamor + 3mi0)?’

Var(woojc,a) =

Var, (wo1)c,a) =

and

W3mi0(Y1mo0 + Yamor)
(Y100 + Yamo1 + P3mi0)?

Var, (wig|c,a) =

The covariances of pairs of these selection indicators are

—p1¥amooTo1

(Y1700 + Y201 + Y3m10)?’
—193m00T10

(Y1700 + Yomor + Pami0)?’

Covy (woo\c,m wOl\C,a)

Covr(woo|Cyas Wi0]Cra)

and

—1/121#37T017Tlo
(Y1700 + Yamor + Y3m10)? O

Covr (wor|c,a Wio0|Ca)

We now construct the information matrix for the estimation of the generalised Davidson—
Beaver position effects model. As with the Davidson—Beaver position effects model, the con-
struction will be easier if we partition the information matrix into four blocks. I, (m,%) contains
minus the expected values of the second derivatives of the density function with respect to two
of the entries in m. Iy (m,19) contains minus the expected values of the second derivatives of
the density function with respect to two entries in 9. Iy (m,%) and I, (7,%) contain minus the
expected value of the second derivatives with respect to one entry in w and one entry in . The

partitioned matrix is denoted by

L) = [ Lin(m.9)  Tny(m. ) ] |

Lyr(m, ) Lyy(m,9p)

where Iy (m,%) = Ly (m,9))T.
El-Helbawy and Bradley [1978] states that, under some mild regularity conditions, as given in
Section 1.1, the (4, j)** entry of the information matrix for a discrete choice experiment without

position effects is

t—1 t
I(m)s; = z:‘;rzl %rgﬂ((aln(f(g;fﬂ,w))) (aln(f(gijﬂ,w)))).

Then we can use the derivatives found earlier, as well as the variance and covariance expres-
sions given above, to simplify the information matrix. Since m > 2 in this case, we sum over the
choice sets of size m rather than pairs of items, and modify the notation for ng, and fgro(mw, w)
accordingly. Again, it is convenient to look at one block matrix at a time, and the diagonal

entries of a block matrix separately to the off-diagonal entries.
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We begin with a generic off-diagonal entry of Inx(m, %), Inx(m,9);;. We have

Lo (. 90)1; = zc: %gﬂ ((8ln(fcggzj,7r,¢))) (81n(fcg§:j,7n¢)))>.

Since the derivative of In(foq (w,m, 1)) with respect to m; will be 0 unless the item T; appears
in choice set C', we can restrict our summation to those ordered choice sets that include both T;

and Tj. This gives

Lon(m,9)i; = Z %SW((aln(fca(w,ﬂ,gb))) (Oln(fca(w,ﬂ,@[))))).

671'1‘ aﬂj
C‘Ti,T]‘GC

Straight—forward differentiation gives

aln(fCa(wv"rv"p)) _ Wi|C,a _£ <wi|C,a) (5 4)
67@ Uy T T ' ’
Thus we get
Lig(m, )y = Z N Covw( o )
CITi,T]‘GC

If we then substitute the covariance, given in Equation 5.3, we obtain

Iﬂﬁ(ﬂaw)ij == Z nc _,(/Jaiwaj

N7 a2
C|T;, TjeC N (X pei YoTmi,)

where item T, appears in position a, of the ordered choice set, for all x.
Now let us consider a generic diagonal term in I, (m,%). Again, noting that the derivative

of In(feoa(w,m,4)) with respect to m; is 0 when item T; is not in the ordered choice set C, we

Lelmi = Y Goe((PRUegmm )

87'('7;
C‘TIEC

have

Using the result in Equation 5.4, this becomes

Lix(m,9)y = Z %Varﬂ(wi‘c’o‘).

T
C‘Tlec

When we substitute the variance, given in Equation 5.2, we obtain

ne Ya, (O peq YT, — a, )
N, (> i, )? '

Im(ﬂ'ytb)n' = Z

C|T;eC

We now repeat this process to evaluate a generic entry in I, (m,%). Once again, we exclude

choice sets that do not include the item 7;, and so

Lo )ia= 3 @geﬂ((alnﬁc&wmw)))(aln<f0a<w,w,«p>>)).

clTec on; a"/}a

Straight—forward differentiation of the density function for a choice set and respondent with

respect to ¥, gives

(5.5)

aln(fca('QU,’ll',’l/))) _ wia|07a _5 <wia|C,a)'

M Y Ya
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This result, together with Equation 5.4, gives

nc Wi|c,a Wi, |C,«a
Loy (m,9)ia = Z WCOVw(+7w7‘)

ClT,,EC

_ Z nc (5T1 is in pos a X Varﬂ(wi\c,a) + (1 - 5Ti is in pos a)COVW(wi\C,aa wia|C,a))

N7 ’
citiec Yo

where 07, is in pos o 1S an indicator that equals 1 if T; appears in position a of the ordered choice
set C', and 0 otherwise. We can then substitute the variance and covariance expressions, given

in Equations 5.2 and 5.3, to obtain

. B nic 5Ti is in pos a(zznzl ’(/)bﬂ'ib — ’l/)aﬂ'j,) (].— 5Ti is in pos a)"/}aiﬂia )
Im’b (’”71/)) B Z < (Zznzl wbﬂ—ib)2 (Z:ll qpbmb)2 .

C|T;eC

Finally, we look at Iy (m,1). We begin with the off-diagonal entries in each block,

Ly (M) arar = ; ”W%ﬁ ((3 1n<f0a<wm/)>>) (31H(f0a(w,1r,1/))))>7

a"/}al a¢a2

where a; # as.
In this case, there are no derivatives with respect to any of the ;s, therefore no choice sets

need to be excluded from the summation. We can use Equation 5.5 to obtain

Wi, |Ca Wiy, |Chox )

Lpy (M) aya, = ECOVﬂ ,
v ;N ( Vo, | Vs

Since ay # as, we substitute the covariance of the two selection indicators, giving

_ﬂ-iu'l 7-‘-i“2

— no
Ly () aran = ;N%waz (Er o)

Finally, we consider the diagonal entries of Iy (m, ). We begin with

n Oln(foo(w,m,1))\2
Ty (T, 9) a0 = ;;&(( Cawa ) )

Using Equation 5.5, this can be simplified to give

n Wi, |C,a
Iww(ﬂ/‘ﬁ)aa = cha’rﬂ'(wil)7
C a

which, when we substitute the variance given in Equation 5.2, becomes

Z nc 7Tla Eb 11/)b7rzb)_waﬂ-i@)

Ly (T,%) N, 5 Gy ,

where the summation is over all choice sets C.

Once again, our ultimate goal is to estimate contrasts of the entries in 4 = In(w) and contrasts
of the entries in %, and not the entries in w and % themselves, since they are not estimable
without additional constraints. One way to do this is to first find the information matrix for the
estimation of the entries in 4y and 9. The equivalent matrix for the MNL model was introduced

in Section 1.1. We partition this matrix in the same way as in Section 4.2 to give

Ay (m,p)  Ayy(m,9p)

A, ) =
¥ Ay (m,9) Ay (m, )
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As was the case when estimating the Davidson—Beaver position effects model for m = 2, we have

A(ﬂ-"l/)) = Pl(ﬂ-vdj)PT)

where ) )
1 O 0
0 T2 0 0
P=
O 0 ... m O
10 0 ... 0 I,]

If we apply this transformation to each of the generic entries, we get

A’Y’Y(Tra"/))ij = 7ri7TjI7r7T(7r71/))ija
A"/'Y(ﬂ'a'l/))ii = 7ri2[7r7r(7r31/))1’i7
A"ﬂ/z’(”?"/))ia = Wijﬂw(ﬂ.y"b)iaa

and

Ayy(m, ) = Lypy(m, o).

If we assume, as did Davidson and Beaver [1977], the null hypothesis of equal merits for each
of the items, and that the entries of 9 are left unspecified, then the expressions for the entries
of A(m, ) simplify greatly. If we let

ﬂ-:jt:ﬂ-Ov

then we obtain

Arer (0, )5 3 ”WCM

Uy
ClTi,TJ‘ eC
1 m
= _\Iji E § wawb)\Ti in pos a,T; in pos b
L a=1ba
where
m 2
vy = E Uy
b=1
and
nc
)\Ti in pos a,T; in pos b — E 76’1} is in pos a X 6Tj is in pos b-
C‘Ti,Tj eC
A similar argument gives
m
A (ﬂ'o 'lp) o _ ni ¢a¢ (Zb:l ¢b - wai)
Yy yW)ia =
> N v,

C|T;eC

%i@[,a(i@[;b —1/},1))\1} in pos a»
L b=1

where

nc
)\Ti in pos a — 6Ti is in pos a-*
N
C‘T,LGC
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The generic term in Ay (o, ) becomes

nc Dby b — Ya,Ti,
A’yd)(ﬂ'O»w)ia = Z W ((sTI is in pos a X % - (1 - 5Ti is in pos a) X T
C|T;eC 1 1

1
= \I}i Z wb(ATi in pos a — >\T13 in pos b)-
L yta

The off-diagonal entries of Ay, (mo,%) become

Aww(ﬂo7,¢>ala2 = Z N\II

since Y nc = N. Finally, the diagonal entries of Ay (m0,%) become

A7/’7/1(7r071/))aa = Z ]:;’z (Zb:1§f) - ¢a
C a
Coher ¥n) — ¥
¢a\111 ’

We notice that the entries in Ay (79,%) depend only on the entries in 9 under the null hypothesis.

Therefore this block matrix is independent of the design, given a fixed choice set size.

Now let us find the A(mg,%) matrix in our example.

B EXAMPLE 5.2.2.
Recall the experiment introduced in Example 5.1.1. The information matrix for the estimation

of the 7 and ¥ under the null hypothesis of equal merits is shown in Table 5.3. O

5.3 Representing options using k attributes

In this section we consider the construction of the information matrix for the estimation of
contrasts of the entries in 4 and contrasts of the entries in %. In particular, we are interested in
the estimation of the contrasts of the entries in y that relate to the main effects and interaction
effects of the attributes as introduced in Chapter 1.

We begin by constructing a matrix B that contains the coefficients of the contrasts of the
entries in 4 and the contrasts of the entries in 9. We will assume that any interactions between
the attributes in the experiment and position are not of interest. We can then partition the B
matrix to give
B, 0
0 By

B =

Then the information matrix for the estimation of the contrasts B,y and By under the
null hypothesis of equal merits and making no assumption about the magnitude of the position

effects is given by

C(WO7I¢) = BA(ﬂ-07¢)BT
By Ayy (mo, "ﬁ)B? By Ay (o, ¢)B£

Let us apply these results to the experiment in Example 5.1.1.




1
Ao, ) =
o, ¥) 2 (1 + o + ¥3)° .

Yotz + 1 (V2 +13) =11 —193 —haip3 0 0 0
—112 Poths + Y1 (Y2 +3)  —1hatds —193 0 0 0
—113 —1a1)3 otbs + 1 (Y2 +3)  —iehe 0 0 0
—h3 — 193 —112 Yoths + 1 (Yo +1b3) 0 0 0

0 0 0 0 20Watvs) g -2

0 0 0 0 -2 R

0 0 0 0 —9 9 2drtva)

Table 5.3: The information matrix for the estimation of 4 and % in Example 5.2.2

soInquijje y Suisn suorjpdo Surjueseaday g'g

0ST



5.4 Optimal designs for the generalised Davidson—Beaver position effects model 151

B EXAMPLE 5.3.1.

Consider the experiment introduced in Example 5.1.1 and the design introduced in Example 5.1.3
for the estimation of the main effects of the attributes and the linear and quadratic components
of the position effect. The contrast matrix for the estimation of the main effects of the attributes

and contrasts of the position effects is

R
4 b hd 0 0

B= 1 1
OOOO—WOE

1 2 1

L0 0 00 —-F% = -]

We see that B, is a 2 x 4 matrix of contrast coefficients and By, a 2 x 3 matrix of contrast
coefficients. Then the information matrix for the estimation of the main effects of the attributes

and contrasts of the position effects is

(P1+2)vs T
(h1+2+1)3)? 0 0 0
Y2 (1 +v3)
Clro) 0 @rtdatgs)® O 0
Tm =
O’ 0 0 1+ w11
29193 (Y1 +P2+3) 2v/3¢193 (Y1 +ha+1p3)
0 0 Y1 =13 avp3+1p1 (2 +413)
L 2V3¢ 193 (Y1 +patips) U123 (Pr+vatips)

We are able to estimate the main effects of the attributes and the position effect contrasts

independently when using this design, since the information matrix is block diagonal. O

Now that we have the information matrix for the estimation of the effects that are of interest,

we will next find results about the optimal designs for the estimation of these effects.

5.4 Optimal designs for the generalised Davidson—Beaver

position effects model

In this section, we determine the optimal designs for the estimation of the main effects of the
attributes and contrasts of the position effects when the generalised Davidson—Beaver position
effects model is used. We will begin by finding design constraints that allow the information
matrix to be block diagonal, and then determine optimal designs for the estimation of the main
effects of the attributes and contrasts of the position effects. We do this by showing that, when
the information matrix for the estimation of the main effects of the attributes and contrasts of the
position effects is block diagonal with respect to the attributes, we can consider each attribute
separately when finding the optimal set of generators used to construct the choice design from
the starting design. We conclude by looking at the form of the determinant of the information
matrix when the main effects plus two—factor interactions of the attributes and specific contrasts
of position effects are of interest.

We begin with the estimation of the main effects of the attributes and contrasts of the position

effects.
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5.4.1 Main Effects plus Position Effects

In this subsection, we consider optimal designs for the estimation of the main effects of the
attributes and contrasts of the position effects. In the next section, we extend this to the
estimation of the main effects plus two—factor interactions of the attributes and contrasts of the
position effects.

It is desirable to be able to estimate the attribute effects independently of the position effects.
This requires C,y(mo,%) = 0, and therefore Cy.(mo,%) = 0, since Cy(mo,¥) = Cyyy(mo, ¥)T
Once again, we need an expression for the entries in this block matrix before we can find the
conditions for a block diagonal information matrix.

Recall that the (1,2) block of C(mp,%) is equal to

C’Yw(ﬂ.()a’l/)) = B’YA’Y’L/J(ﬂOa"/;)B;Z;

A generic entry of the matrix obtained by multiplying the first two of these matrices together is

1
(B’YA’YTZ’ (7r0a1)[)))i0« = Z Bljl:[li1 Z wb()‘Ti in posa — )\Ti in pos b)
j=1 b#a

<

t
\I% Z Yy Z Bij (AT, in pos @ — AT} in pos b)-
b#ta  j=1

While it is obvious that C.(mg, %) = 0 if all of the items that appear in the experiment ap-
pear in each position of the choice set equally often, this constraint on the design is far more
restrictive than necessary. This constraint would allow us to estimate all of the higher order
effects independently of the contrasts of the position effects. Usually, we are only interested in
the estimation of the main effects of attributes, or perhaps the estimation of the main effects
plus two—factor interactions of the attributes, and not all estimable contrasts of the entries in
7. Therefore we only need the main effects of the attributes to be independent of the position
effects.

We now prove a lemma that gives conditions for C.,(mg,%) = 0 when only the main effects

of the attributes and contrasts of the position effects are of interest.

B LEMMA 5.4.1.

The information matriz for the estimation of the main effects of the attributes and contrasts of
the position effects is block diagonal with respect to the main effects of the attributes and the
contrasts of the position effects if each of the levels for each attribute appear in each position

equally often.

Proof. Ttems that have the attribute of interest at the same level will have the same contrast

coefficient. Then for the j'" contrast, corresponding to a component of the main effect of attribute

q,

¢
1 q
(B’YA’Yzl)(ﬂOvQ/’))ja = \Iji Z wb Z ij(/\att g=x in pos a — )\att g==x in pos b)-
L bta  w=1
Then (ByAyy(m0,%))ja = 0 if Xatt =z in pos @ — Aatt g=z in pos b = 0 for all attribute levels,
0 <z </{;—1, and all positions, 1 < b < m where a # b. It follows that B, A (m,%) = 0 if, for
each attribute, each attribute level appears in each position in the choice set equally often. If this

is the case, then the information matrix for the estimation of the main effects of the attributes
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and contrasts of the position effects will be block diagonal, with one block corresponding to the

main effects of the attributes and one block corresponding to the position effects. O

We now develop theory on the structure of the optimal design of choice experiments when
the generalised Davidson—Beaver position effects model is used. In order to prove a result similar
to that in Theorem 1.3.6 for the estimation of the main effects of the attributes and contrasts
of the position effects, we need to modify some of the definitions introduced in Section 1.1 to

accommodate the importance of order. Let

® Cy; o be the number of choice sets with ordered difference vector v; that contain the item

00...0 in position a of the choice set,

® Ty,.d.4,p De the number of times that the difference d appears as the difference between

positions a and b in ordered difference vector v; (i.e. T;, +d = Tj,). Note that }_; 2y .d.a,p =
1 and Za;sb > od Tvjidab = (7;)’

® iy, be an indicator variable that equals 1 if all of the choice sets with an ordered difference
vector v; appear in the choice experiment, and 0 if none of the choice sets with ordered

difference vector v; appear in the experiment.
We now illustrate these constants with an example.

B EXAMPLE 5.4.1.

Recall the experiment considered in Example 5.1.1 with two 2-level attributes presented in choice
sets of size 3. There are 6 possible ordered difference vectors, which are shown in Table 5.4. The
first entry in each difference vector is the difference between the first and second items in the
choice set, the second entry is the difference between the first and third items in the choice set,

and the third entry is the difference between the second and third items in the choice set.

v, (01,10,11)
vy (01,11,10)
vy (10,01,11)
vy (10,11,01)
( )
( )

vs  (11,01,10

ve (11,10,01

Table 5.4: Possible ordered difference vectors for the experiment in Example 5.4.1.

The experiment in Table 5.2 contains all of the choice sets with ordered difference vector v;.
Therefore iy, = 1, and i, = 0 for all of the other difference vectors. The item 00 appears in
each position once, thus

Cy;,1 = Cyy 2 = Cyy 3= 1.
Within v, we have
Tyy3(01),1,2 = Tuy3(10),1,3 = Tuy3(11),2,3 = L,

and all other y,.4,4,5 = 0. O]
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Using these definitions, we can give a general form for A,.,(m,%) when the generalised

Davidson—Beaver position effects model is used.

B THEOREM 5.4.2.

Under the usual null hypothesis of equal merits

1
Ayy(mo,9) = 7ZIL \ITzd:

m
D Yatsya.apDa,
=1b7#a

a=

where

1
Yd,a,b = NHq 1(€ _1 chj,llvjl"l)]7d7(l7b7

Uy = Zdjawln and z = Nzc'vj,aivj'
a#b J

The summations over j and d are over all possible difference vectorsv; and all distinct difference

vector entries d respectively. O

Proof. We showed earlier that under the null hypothesis of equal merits, the diagonal elements

of Ay, (mo, ) are given by

Ay (mo, %)

7 Z lATI in pos @ x%(Zwb w)]

b=1

o 1 5T1 in pos a
- \111 pemr l ! (Z% wa>‘| .

In the class of competing designs discussed in Section 1.1 we assume that all choice sets with

ordered difference vector v; will appear in the experiment if 4,, = 1. It follows that
Cv;1 = Cy; 2 = ... = Cy;m = Coy,y

and that A7, in pos o = o Yomey 2 Co, ;- Therefore

Ay (mo,¥)ii = ]\[{I}lzzcvjivjwa<z¢b_wa)
Jj a=1 b=1

Under the null hypotheses of equal merits, the off-diagonal elements of the A, (m,%) matrix

are

A’Y’Y(ﬂ-(% = 3 Z Z ¢awb>\T in pos a,T; in pos b-

a=1ba
We need to find an expression for the proportion of choice sets with item 7; in position a of
the choice set and item 7} in position b of the choice set in terms of which difference vectors are
used in the experiment. To do this, we enumerate the number of choice sets that have this pair
of items in this pair of positions.
There are Ly, possible choice sets with difference vector v;. By the definition of the class

of competing designs, there are Lcy iy, choice sets with difference vector v; in the experiment.

Zchjivj
J

Then there are
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choice sets in the experiment in total. It follows that the number of these choice sets with
difference d between positions a and b of the choice set is
Z Ley,in; Ty d,ab-
J
If the pair T; and T; have a difference d, then we find that only one pair of items with d will be
the pair T; and T;. Then we need to enumerate the number of pairs of items with difference d.
The number of pairs with difference d depends on which entries in the difference are 0, and
which are 1. If ¢, = 0 for an attribute g, then the level of the ¢*™® attribute must be the same. If
4 = 1, then there are £, — 1 possible levels for the ¢*" attribute that would allow a difference of

d from T;. Then the number of items with difference d from T; is
k

Iy = H(eq - 1)1‘4

q=1
If items T; and T} have a difference d, the proportion of choice sets in the experiment that

contain 7T; in position a and 7T} in position b is

1 .
Ydab = N7Fd chﬂvjxvj;d,a,b-
J

The off-diagonal elements of A~ (m,1) can then be expressed as

Ary (0, ) :-fZZ%mem%

a=1 b#a
where Dg is a t X £ matrix with entries either 0 or 1 such that there is a 1 in position (3, j) if and

only if items T; and T; have a difference d. It follows that

Ay (mo,9) = 1ZIt -3 Zzzwawbyda D,

d a=1b#a

as required. O

We continue by showing that C.,~(mo,%) when the main effects of the attributes and contrasts
of the position effects are of interest is block diagonal when using the designs introduced in Section
1.1.

B THEOREM 5.4.3.
The (1,1) block of C(mg,%) when using the generalised Davidson—Beaver position effects model,
and the main effects of the attributes and contrasts of the position effects are of interest,

Coyy (o, %) mp, is block diagonal. O

Proof. Let Py, ., be an £, x £, matrix with entries either 0 or 1 such that there is a 1 in position

(t1,t2) if the difference between the two items is ty — ¢y = eq. Then Py, o, ® Py e, ®...® Py

a-,€q 7:€q
will give the pairs that have a difference to —t1 = (e1,e2,...,€x). Let @e,qp be the number of
times e = (e1,ea,...,ex) appears as a difference between the items in positions a and b of the
choice set, and o; =3, ... > . | Do, - 2o, Qe Then
MWW)=i% @ZMZ%me
d a#b
- [(z S ewstiutis) (Peao ® P ® ... Piyo)

er a#b

_Z Zzaeabwawb(ljﬁhel ®P€2,ez®'-'®Pfk>€k)]'

er a#b
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Then the information matrix for the contrasts in B,v is given by

ByAyy(mo,9)B] = B, N\IJ [( Z DY tea bwawb) (Pe1 0®@Ppno®...® P@,o)

ex a#b
—Z 3D enstaths(Poe @ Praes ®...®Pek,ek)]33
ex a#b
= [(Z ZZaeabT/fal/Jb) (le,o®Peg,o®...®ng,0>Bff
Nq/l ey er a#b
—Z I3 eastatnBy (P, @ P, 52®...®Pe,€,ek)B$]
ex a#b

However, Burgess and Street [2005] and Street and Burgess [2007] showed that both
B, (Pgho ®PLo®...0 ng,o)BVT and B, (sz ® Py ®...® PW,C)BVT

are block diagonal matrices, so Cy (o, ¥)mp = By Ay (o, 't/))Bff is also a block diagonal matrix.
O

This theorem allows us to consider only the block diagonal entries of C..(mo,%)mp, that is,
those which correspond to the main effects for a single attribute. In addition, Lemma 4.4.1 states
that if each level of each attribute appears in each position of the choice set equally often then
C.yy(mo,¥)mp = 0, and therefore C(mg,9)mp is block diagonal.

The next theorem gives an expression for the block diagonal entry on C..(mo,%)mp that

corresponds to the main effects of attribute q.

B THEOREM 5.4.4.
Under the null hypothesis of equal merits, the block diagonal entry of the information matriz

corresponding to the main effect of attribute q is

Uy Zz¢a¢bydab La((, 1)%_.(_1)%)1&1—1,

d a#b (gq - 1)’Lq

where as before

k
Fa= H(Eq - 1)1‘1 O
q=1
Proof. By using '
Lg(—1)"

B,DyzBT

! ! (g — 1)t fml
as shown in Burgess and Street [2005], the ¢ block of the block diagonal matrix C. (o, %)mp

is given by

BQA’Y’Y(ﬂ-O/‘/))Bz? = B [WQZIt_ZDdzydabwawb}

d a#b

- 52”@ Ty, Zzydab¢a¢b( al= 1); Iy, 1,

d a#b

where B, is the matrix containing the contrast coefficients for the main effects of the ¢*" attribute.
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By substituting in the expression for z, C.y~ (T, %)mp can be expressed as

By (mo,9) By = Z ch v, To;id,able,—1 — T, Zzydabwawb ( )) Lo,

d a#b
= ZHZ%%WWQ 1T Zzydab¢a¢b La(~ )) -1
d a#b d a#b
Pa((t — 1) = (1))
= \If Zzwawbydab ‘ (gq — ]_)iq Iéq—la
d a#b
as required. O

We can use this theorem to give an expression for the determinant of the information matrix
when the generalised Davidson—Beaver position effects model is used and both the main effects

of the attributes and contrasts of the position effects are of interest.

B THEOREM 5.4.5.
When each level of each attribute appears equally often across each of the positions, the deter-
minant of the information matrix for the estimation of the main effects of the attributes and
contrasts of the position effects under the null hypothesis of equal merits, when the Davidson—
Beaver position effects model is used, is given by
. Ly—1

det(C(mo, ¥)mp) = [ NT, g my ch iv, Y Paths Y Tujdad x det(Cyy(mo, %))

q=1 ab dlig=1
where det(Cyy (o, %)) is the determinant of the (2,2) block of the information matriz, and is

independent of the design chosen for a given choice set size. O

Proof. Since the (1, 1) block of the information matrix for the estimation of the main effects of
the attributes and contrasts of the position effects is block diagonal, as shown in Theorem 5.4.4,
the determinant of the information matrix will be the product of the determinants of each block

of the information matrix. This gives

£y—1
k e {1V
det(C., (o, 1)) = H 0 S S e ((q(lfl)— 1)iq( 1))
q=1 d a#b q
b i ; ly—1
= La((lg —1)' — (=1)%)]™
= (];[1 \I/ %:;#wawb Zc'u Z'vJ v;;d,a,b (ﬁq— l)iq

Il
,’:]w

N% S S S s (= 1) = (1))

q=1 d a#b j
T 0,1
= H N, f — 1 Z Co; 7fv] Zwawb Z Ly ,;id,a,b
q=1 a#b dlig=1

So when each level in each attribute appears in each position equally often, the determinant of
the information matrix for the estimation of the main effects of the attributes and contrasts of
the position effects is

£y—1

k
det(C(ﬂo, H N, € — 1 Zc'v Z'vJ Z¢awb Z Ly ,;id,a,b X dEt(wa("rOa'l/)))'

q=1 a#b dlig=1
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Since Ayy(mo, %) depends only on the value of m and the entries in 9, Cyy(mo, %) is also a
function of m and the entries in 9 only. That is, Cyy (70,%) is independent of the design chosen,

for a fixed value of m under the null hypothesis of equal merits. O

We can use this expression to extend the result in Burgess and Street [2005], to find the
optimum value of the determinant of the information matrix for the estimation of the main
effects of the attributes and contrasts of the position effects when the generalised Davidson—

Beaver position effects model is used.

B THEOREM 5.4.6.
The D-optimal design for the estimation of the main effects of the attributes and contrasts of the
position effects will be given by the set of choice sets where at least one difference vector v; has

a non-zero ay,, and for each v; present, and for each atiribute g,

m[l, Ly =2 and m is odd;
2 .
> ly =2 and m is even;
Sq - mz—(f z2+21y+y)
%7 2 < gq < m;
-1
m(m1) by >m,

where positive integers x and y satisfy the equation m = Loz +y for0 <y < £,—1. The mazimum

possible value for the determinant of the information matriz will be

25,6,V b=l
) (Zq - 1)

det((C(mo,¥)mp)opPT) = H{Lm(

x det(Cyy (T0,1)),

given that each pair of positions contains equally many non—zero differences. O

Proof. In order to maximise the information matrix, Za;ﬁb Yy Zdh‘q:l Ty, d,ab Will need to
be maximised. Under the condition that each pair of positions contains equally many non-zero

differences, we obtain

D et Y Tydab = ey p— D ya x U,

a#b dlig=1 d\zq_1

where U5 is independent of the design used. Theorem 1 in Burgess and Street [2005] shows that
Zduq:l Ty,;a 18 maximised when it is equal to S;, where S, is defined in the statement of the
theorem. In this case, the determinant of the (1,1) block of the information matrix, C, (o, %)

relating to the information provided about the main effects of the attributes, will be

le—1

28,0,
2 ZC'U Z'v]

det(Cyy (mo, P)opT) = m—1)¥ LZ Cy;ln; (bg — 1)

k
B ﬁ 25,0,V5 ta=t
B o Lm(m = 1)W1 L(l; — 1) '
Since all of the ordered choice sets with a particular difference vector are assumed to be in-

cluded equally often, each attribute level will appear in each position equally often, and therefore

C.yy(mo, %) = 0. For a given m, Cyy (o, %) is fixed across all designs, and then for all 41, (o, ... (g,




5.4 Optimal designs for the generalised Davidson—Beaver position effects model 159

and k, the optimal information matrix for the estimation of the main effects of the attributes
will be

det((C(mo,¥)mp)orr) = ]

q=1

v -1
{ P x det(Cyy (mo, %)),

Lm(m —1)¥(¢;, — 1)
as required. O

We now look at an example where we compare the determinant of the information matrix for
the estimation of the main effects of the attributes plus contrasts of the position effects to the

optimal determinant given in the previous theorem.

B EXAMPLE 5.4.2.

Consider an experiment with two 3-level attributes presented in choice sets of size 3. Suppose
that the choice experiment consists of all choice sets with the difference vector (11,11, 11). This
gives the design in Table 5.5. The first two items in each choice set differ in both attributes, as
do the first and third items in each choice set, and the second and third items in each choice set.

Then each pair of positions have 2 non—zero differences.

Optionl Option2 Option3 Optionl Option2 Option3
0 0 11 2 2 0 0 2 2 11
0 1 1 2 2 0 0 1 2 0 1 2
0 2 10 2 1 0 2 2 1 10
1 0 2 1 0 2 1 0 0 2 2 1
11 2 2 0 0 11 0 0 2 2
1 2 2 0 0 1 1 2 0 1 2 0
2 0 0 1 1 2 2 0 1 2 0 1
21 0 2 1 0 2 1 1 0 0 2
2 2 00 1 1 2 2 1 1 0 0
0 0 1 2 2 1 0 0 2 1 1 2
0 1 10 2 2 0 1 2 2 10
0 2 1 1 2 0 0 2 2 0 1 1
1 0 2 2 0 1 10 0 1 2 2
11 2 0 0 2 11 0 2 2 0
1 2 2 1 0 0 1 2 0 0 2 1
2 0 0 2 1 1 2 0 1 1 0 2
2 1 00 1 2 2 1 1 2 0 0
2 2 0 1 10 2 2 1 0 0 1

Table 5.5: The design for the choice experiment in Example 5.4.2

The information matrix for the estimation of the main effects of the attributes plus contrasts

of the position effects is shown in Figure 5.1, and has determinant

(Y1t + Prihs 4 aths)
det(Cmo, Y)np) = 3335 ovin (1 + o+ Uh3) 9




C(mo,¥)mp =
[ atbz+ip1 (Pa+3)
S tvatva® O 0 0 0 0
patbs b1 (Ya+1hbs)
0 22%(1214‘1;24-21!13)23 0 0 0 0
Yapa3+ip1 (Y2 +3)
0 0 §(121+¢1’2+213)23 0 0 0
Patp3+1p1 (P2 +1P3)
0 0 0 §(7;1+$2+3Ps)23 0 0
Y1+s Y1—p3

0 0 0 0 213 (Y1+92+ibs) 23413 (Y1 +p2+1b3)

0 0 0 0 Y1 —3 Yarpz+i1 (Yo +41h3)
- 2v3Y1 s (Prtipatips)  OP1dava(Pr+iatibs)

Figure 5.1: The information matrix for the design in Example 5.4.2

[epow sjoeye uorjisod JeAeag—UOSpIAR(] posielsuss ayj} 10y suSisop rewrydQ ¥'Q

09T
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We now compare the determinant above to the optimal determinant as given by Theorem

5.4.6. Since {1 = £5 = m = 3, we have

S1 =8 = w =3,
and 1
det(C’W(ﬂ'oﬂ/J)) = 3w1w2w3<¢11/}2w3).
Then

H< 25,0,V >‘q‘1ﬁ< 4% 3 x 30, )2
e Lm(m —1)¥(¢, — 1) e 9x3x2x Wy x2
Az 2 Ty \ 2
v3
12960F

Then the optimum value of the determinant of the information matrix for the estimation of the
main effects of the attributes and contrasts of the position effects is
3 1
120607~ 3untats(1tzs)
_ (v + ts + Pots) :
2430190213 (11 + 9o + 1h3) O

Since this is equal to the optimal value of the determinant of the information matrix for the

det((C(mo,¥)mp)opT) =

estimation of the main effects of the attributes and contrasts of the position effects, this design
is optimal for the estimation of the main effects of the attributes and contrasts of the position

effects when using the Davidson—Beaver position effects model. O

The expression in Theorem 5.4.6 allows us to confirm the optimal designs for the estimation of
the main effects of the attributes and contrasts of the position effects when using the generalised

Davidson—Beaver position effects model.

B THEOREM 5.4.7.
Let F' be the complete factorial for k attributes where the ¢*" attribute has Ly levels. Suppose that
we choose a set of m generators G = {g1 = 0,92,...,gm} such that g; # g; for i # j. Suppose
that g; = (gi1, gi2s - - - gik) for i =1,...,m and also that the multiset of differences for attribute
q,

{£(girg = 9izg) |1 inyiz <myiy #in},

contains each non-zero difference modulo £, equally often. Then the ordered choice sets given by
the rows of F+¢g1,F 4+ g2, ..., F ~+gm, for one or more sets of generators G, are optimal for the
estimation of the main effects of the attributes and contrasts of the position effects, provided that
there are as few zero differences as possible in each choice set, each pair of positions contains
equally many non—zero differences, and that each level of an attribute is equally replicated across

each position of the set of ordered choice sets. O
Proof. Theorem 5.4.4 showed that the (1,1) block of C(mg,%)mp can be written as

La((lg —1)" — (=1)%)
(g — 1)t

1
Bqu(ﬂ'm@b)Bg = \1171 Zzwawbyd,a,b

d a#b

I, 1.
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Substituting the expression for 44 4, given earlier, and simplifying, gives

BqA’Y’Y(”rOaw)Bg — N\Ijl Z Zwawbzcvjzvjmvwdabrdlé B
d|l =1 a#b
- WD Dewia 32 37 bt gasley
1 aFbdlig=1

Using the assumption that the differences between any two positions contains all of the non—zero

differences equally often, we obtain

Z mvj;d,a,bwawb =
a#b

2
—0; Vs,
m(m—1) ¢ 2
where «, is the number of non—zero differences occurring in the ¢*" position of the differences in

the difference vectors. Substituting this into ByA+ (o, 9)BY gives

2[ Oéq\llg

BQA’Y’Y(W(%I(/))B(? = N\:[Jlm( )(‘g - 1 Zc'v Z’UJIA@ —1-

However, ¢y iv; = £q — 1, hence

2 v
Bquyy (7r07¢)BT Eqaq 2

= - I — .
¢ NUym(m—1) “ !

Now that we have shown that the ¢*" diagonal block for the matrix C. (o, %) is equal to

2&10[(1\:[/2

e S
NUym(m—1) "

we can see that the determinant of this block matrix will be maximised if a, is maximised.
Since we have the condition that each non—zero difference must occur equally often, there are

(¢4 — 1)ag generators with non—zero differences in attribute g. Also, since the complete factorial

has been used as the initial block, there will be L(¢, — 1)a, non-zero differences for attribute g

in the experiment. So,

L{lg—1ag = S
(Eq - 1)% _ &
N L
Wag¥y 20,5,
NUym(m—1)  LUym(m—1)(¢, — 1)

This is the same as the entry for attribute ¢ in the expression in Theorem 5.4.6, and therefore
this design is optimal for the estimation of the main effects of the attributes and contrasts of the

position effects. O

Example 5.4.2 illustrates these results.

5.4.2 Main Effects plus Two—Factor Interactions and Position Effects

In this subsection, we extend the results developed for the estimation of the main effects of the
attributes and contrasts of the position effects when the generalised Davidson-Beaver position
effects model is used to the case where we are interested in the estimation of two—factor interac-
tions between the attributes in addition to the main effects of the attributes and contrasts of the

position effects. In this subsection, we will consider criteria for independence of attribute main
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effects and two—factor interactions from position effects. We then prove a theorem that gives
an expression for the information matrix when attribute main effects plus two—factor interac-
tions and contrasts of the position effects are all of interest and the generalised Davidson—Beaver
position effects model is used.

We now prove a lemma that gives conditions for C. (o, %) = 0, when attribute main effects

plus two—factor interactions and contrasts of the position effects are of interest.

B LEMMA 5.4.8.

The information matriz for the estimation of the main effects plus two—factor interactions of
the attributes and contrasts of the position effects is block diagonal with respect to the attribute
effects and the position effect if, for each pair of attributes, each pair of attribute levels appears

equally often in each position of the choice set.

Proof. Suppose that Byrr contains the contrast coefficients corresponding to the main effects
plus two—factor interactions of the attributes. The contrast coeflicients corresponding to items
with the same levels in the pair of attributes that are of interest will be the same. Then for the
4t contrast, corresponding to a component of the two-factor interaction between attributes ¢

and ga,

lgy Loy
1
(BurAyy (0, %)) jo = U, Z (& Z Z Bj(xlzz)()‘lh:whqz:aiz in pos a — Aqi=z1,q2=2 in pos b);
1 b#a r1=1x2=1
where )\ql:xl,q2:$2 in pos a — Aatt q1=x1, att ggo=x2 in pos a- Then (BMTA’yw (7r07/‘/)))ja =0 1f7 for all

z1 and xo,

)‘Q1:w1>qzzﬂiz in pos a — )‘Q1:$1,42:$2 in pos b = 0,

for all b # a. If this is the case, then it follows that (ByrAyy (To, %)) e = 0, where contrast j now
corresponds to a main effect of either attribute ¢; or attribute ¢o, as each level of the attribute
must appear in each position of the choice set equally often if each pair of attribute levels appears
in each position equally often. It follows that ByrAyy(mo, %) = 0 if, for each pair of attributes,
each pair of attribute levels appears equally often in each of the positions in the choice set. Then
the information matrix for the estimation of the main effects plus two—factor interactions of the
attributes and contrasts of the position effects is block diagonal, with one block corresponding

to the attribute effects and one block corresponding to the position effects. O

B EXAMPLE 5.4.3.

Consider the experiment discussed in Example 5.4.2, and the design in Table 5.5. In this choice
experiment, each item appears in each position of the choice set four times. Thus this design
satisfies the criteria for Lemma 5.4.8. By A(7o,%) = 0 when this design is used as can be seen

in Figure 5.2. Notice that this matrix is block diagonal. O

We can use this lemma to prove a theorem that gives the determinant of the information
matrix for the estimation of the main effects plus two—factor interactions of the attributes and
contrasts of the position effects when the generalised Davidson—Beaver position effects model is

used.

B THEOREM 5.4.9.

Under the null hypothesis of equal merits, the determinant of the information matrixz for the




BMTA(ﬂ-Oa "/)) =

[ Yy Wy Wy 0 0 0 Wy WUy Wy
660 660, 660, 660, 660, 6v6W,

o Wy Wy 20, V20, V20, Wy Wy Wy
1820, 1820, 18120, 18V, 18w, 18V, 1820,  18V2T; 1820,

Yy 0 Wy Yy 0 Wy __ Yy 0 Wy
667, 6v60, 6v67, 6v67, 6v6W; 6V60,

Vo V20, Wy Vo V20, Wo Wy V20, Wo
920, 18V, 1820, 1827, 18V, 1827, 1820, 18V, 1827,
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Figure 5.2: ByrA(mo,9) for the design in Table 5.5
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0 0 0
0 0 0
_ 1 0 1
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estimation of the main effects plus two—factor interactions of the attributes, and contrasts of the

position effects, when the generalised Davidson—Beaver position effects model is used, is given by

det(C(mo, %) mTP)
0,1

J mz%% Z Ly;id,a,b

q=1 a#b dlig=1

- k
XH I1 {WQZzzwai//vaavjxv]dab

1=1g2=q1+1 d a#b j

1 (g; =1)(£qy
)iqz :| I(e‘lll)(e‘lzl):l X det(wa(ﬂ-a'l/;))v

X [1— .
|: (1 - gql)lql (1 - &Iz

when each pair of attribute levels appears equally often in each position in the set of ordered

choice sets. ]

Proof. The first step in the proof is to show that the (1,1) block of the information matrix
C(mo,¥)mTp is block diagonal. We begin with

Cyy(mo,) = BurAy,(mo, 1/))BJ:CJT

U,
= BMT|:\IJ 2l — — T ZDdZ¢a¢bydab]BMT

d a#b

Wy
= \IIiZBMTILB]MT \If ZzwawbydabBMTDdB]\JT7

d a#b
where Bysr contains the contrast coefficients for the main effects and the two factor interactions
of the attributes. Burgess and Street [2005] have shown that

B DgBY, 0

BurDaBr = | BrDyBZ
TdDT

where the (£, — 1) x (¢, — 1) block matrix of By DgBY; for attribute ¢ is

La(—1)"

WIK -1,

and for the two—factor interactions, the (¢4, — 1)(€g, — 1) X (€4, — 1)(¢g, — 1) block matrix of
BrDgBY for attributes ¢; and go is

La(=1)in (<1
(qu - l)iql (éqz - 1)i42 (b =1) (g, = 1)

(5.6)

By using this result, and the orthogonality property of the contrast matrix, we obtain

v B
C’Y’Y(ﬂ-ov"/}) = \I/ij \I/ Zzwawbydab M

d a#b

D4BY, 0
0 BrDgBY

Hence

. v
Cw(ﬂoafl’):Blleag(\I,?ZIn (6D T g, Zzwawbyd,a,bBMDdBMa
d a#b

Wy
\Ililzll—[h#q?‘(éqlfl)(fm T, ZzwawbydabBTDdBT)

d a#b
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So clearly the (1, 1) block of C(mg,%)mrp is block diagonal.

Next, we find an expression for the (¢g, — 1)(4g, — 1) X (¢g, — 1)(¢g, — 1) block matrix cor-
responding to the two—factor interactions between attributes ¢; and ¢o. Let Br,, ,, contain
the contrast coefficients for the two—factor interactions involving attributes ¢; and g». Then we

substitute Equation 5.6, and simplify, to obtain
v

2 T
. A -1, - -7 Z > Ya¥v¥aasBr,, ,, DaBT, .
1 d a#b
Wo Fd(—l)i41+lqz
221, o Vbld.a, 4 I
7, 0,0~ g7 Zd:azﬂiﬁ VoY, Pl = 1y (0, — Ty =Dt =1)

1 1 1
= Tatobp— By Ly . - 1-— - - I, _ _
N, g Z dw wb Ty X ZC”J tv;Tyjid,ab [ (1 _ gql)lrn (1 — £q2)1q2 :| (£qy —1)(£gy—1)

1
N\I/ ZZZ%%% i, Ty ;:d,ab [1 A=t )m (= ng)%} T, —1) (04, -1)

d a#b j

Lemma 5.4.8 showed that the main effects and two—factor interactions of the attributes will be
independent of position effects. Using this, and the result in Theorem 5.4.5, the determinant for

the information matrix of the estimation for main effects, two—factor interactions, and position

effects is
X £,—1
det(C(mo, ¥)urp) = H N\I! ch %JZ%% Z T ;3d,a,b
=1 i atb djig=1
k— k
I 1 [W 30 it oy o
q1=1q2=q1+1 d a#b j
1 (étn_l)(eqz_l)
1- ; — | Lo, —1)(0y, 1)
(1 - gfh)qu (1 - E(I’z)i” “ ®
X det(c¢w(ﬂ01¢))7
as required. O

We now demonstrate this theorem with an example.

B EXAMPLE 5.4.4.
Consider again the experiment in Example 5.4.2 and the design in Table 5.5. A generic block

in the block diagonal matrix C(mg, ¥ )mTp corresponding to the two—factor interactions of the

attributes is

1
N\I} Z Z Zwawbcu Z'UJx” idya,b |:1 (1 _ qu)iql (1 _ qu)iq2:| I(eqlfl)(gtmfl)

d a#b j
1
= Wpd x1x1|1— — ]
36\1’ ;w ¥o [ (1—3)1(1—3)1} ‘
U,
= I.
129, *

Then we get the C(mp, %) mrp matrix in Figure 5.3, which has determinant

(V102 + h1tpg + Parps) 8
314928119913 (1 + o + 13) 17 O

det(C(’ll’(),’l/))MTp)




C(mo,¥)mTp =

SO O O O O O O O Oo

Y
(e

3l
]
o O

S

‘ &
(]
(@)

S
—
o O O O

o O © o O

12v,

12W,

o O O o o o o

o

S

1N
o O O O O o o o
o O O O o o o o

1

0 12W,

0 0 P1+1p3 1 —3
0

29193 (P12 +¢s) 2v/3¢13 (Y1 +v2+13)
P1—=3 Patps+1p1 (P2 +41h3)

S O O O O O O Oo
S O O O O O Oo
o O o O

o O O

jan)

2V3 13 (Y1 +patips)  6¥1vavs(Pitipatibs)

Figure 5.3: The information matrix for the design in Example 5.4.4
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5.5 A design approach based on complete Latin squares

In this section, we look at a different method of constructing designs for the estimation of
contrasts of the entries in 4 and contrasts of the position effects. The designs that result are
not in the class of competing designs of the previous section, since in this section we do not
require that all choice sets with difference vector v; need be in the design if one such choice
set is included. This construction method uses the columns of a complete Latin square to give
the options in each choice set. An orthogonal array is then used to determine the items that
correspond with each of the elements in the complete Latin square. We give some examples of
this design, and compare the efficiency of a design constructed in this manner to those discussed
in Section 5.4.

Throughout this section we consider only binary experiments, that is
b=ty =...=L =2.
We will begin with an example of a design constructed using this method.

B EXAMPLE 5.5.1.
Suppose that £k = 3 and ¢, = 2 for 1 < ¢ < 3. Then Table 5.6(a) gives a 4 run orthogonal
array of strength 2. We also need a 4 x 4 complete Latin square into which we can embed the

orthogonal array. One such complete Latin square is given in the Table 5.6(b).

(a) (b)

= = O O
=R W N
N = R W

4
1
2
3

= o = O
O = = O
I N

Table 5.6: A 4 run orthogonal array of strength 2 (a) and a 4 x 4 complete Latin square (b).

Then if we replace the 1s in the complete Latin square by the first row of the orthogonal

array, the 2s by the second row, and so on, we obtain the design in Table 5.7. O

Option 1 Option 2 Option 3 Option 4

= o= O O
= = O O

0 1
10
0 0
11

S = O
S O = o=

1
0
0
1

S O ==

1
0
1
0

= o = O
(= =)
SO R o~ O

Table 5.7: The 4 choice sets used in Example 5.5.1.

The next theorem shows that this design will lead to a block diagonal information matrix for

the estimation of contrasts of the entries in vy and contrasts of the position effects.
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B THEOREM 5.5.1.
The C(mo,¥) matriz for the estimation of any set of contrasts of the entries in vy and any set
of contrasts of the entries in ¥ will be block diagonal when using a complete Latin square based

choice design and the generalised Davidson—Beaver position effects model. O

Proof. Since this design provides a 1-1 mapping of items and distinct entries in the complete
Latin square, each item will appear in each position of the ordered choice set exactly once.

Therefore A7, in pos o is % for all a if T; appears in the experiment, and 0 if it does not. Then

i

1
A'yw(ﬂ-m"p)ia \Ili Z ()\TI in pos a — )\Ti in pos b)

L bta
! Z ( L1 ) if T, in th iment

— — — — |, 1 1; appears in the experiment;
B U \N N
- X |

— —0), otherwise.

7 > (0-0) th

1 b#a

Then A,y (mo,%) =0, and it follows that

Clmop) = (B”AW(“O"”BWT 0 )

0 B¢A¢¢(7ro,’l/))B£
Therefore C(mg,) is block diagonal. O

The next example compares the information matrices for the design with 4 choice sets con-

structed in this manner to a design constructed using the method of Section 5.4.

B EXAMPLE 5.5.2.
The A(mp,%) matrix for the design in Table 5.7 is

Ay (mo,%) 0

A(mo, ) = 0 Ay (10, )

where A, (o, %) and Ayy(mo,1) are given in Table 5.8. It follows that the information matrix

for the estimation of attribute main effects and contrasts of the position effects is

1 x Diag |Yoths + 1tha + Y vathy,

C(m, = BIkDi
(C(mo,¥)mp)cLs 1ag 4(¢1+¢2+¢3+¢4)2 port

2 (2 +s) (1 + ¥a) , atbs + ¥1ha + 3 tathy | , Cuppp(mo, %) |
a#b

where Cyy(mo, %) is shown in Table 5.9. Then the determinant of this information matrix is

(V2 4+ 3) (Y1 + ta) (W3tha + o (293 + Ya) + U1 (Yo + b3 + 2404)) 2
12891 2th3)s (11 + 2 + 3 + 14) 8 .

If we compare this to the determinant of the information matrix for an optimal Street—Burgess

det((C(mo,¥)mp)cLs) =

design as used in Section 5.4, shown in Table 5.10, which is

(1 b2) (Y1 + Y3) (D2 + 03) (Y1 + a) (D2 + a) (Y3 + 1a)
det((Clmo, ¥)up)s-) = 32901p23thy (1 4 1ha + P3 +1P4) 8 ’




— (Y2 +1b3) (Y1 +a)

— (2 + ¥3) (1 + ta)

—2 (haths + Y11y)

1
Ay (mo, ) = L1 + 0o + U5 + 02)2 X
[ 2Za7éb 1/)a1/1b
- (1/J2 + w3) (¢1 + ¢4) 2 Ea;ﬁb wawb
—2 (¢ath3 + Y1104)
| — (2 +93) (V1 + a)
1
Ay (o, 1)
PY2+1p3+1a
Y1
1
~1
-1

-1

Y1t+¥3tia

P2

-1
-1

(1 + Yo + 13 + 1Py) 2 *

—2 (ath3 + P11s) — (12 4 3) (1 +a)
— (V2 +3) (1 + 1) —2(av3 + h1¢ha)

2 oz Yate — (Y2 + 3) (V1 + ¢a)
— (2 4+ vs) (b1 +%1) 23,z Vaths

-1 -1
-1 -1
Y1+PotiPy 1
P3
1 Dot
Pa

Table 5.8: The block diagonal components of A(mg,) for the complete Latin square based design of Example 5.5.2

sarenbs uijer] o1a[duwod uo paseq yoeoadde ulisep Yy g°'g

0LT



923 atb1 (Yahat1p2 (93 +4))

U1 (Y2 (893 —1pa)+b3ha) —31athsiba

3(2tp3hatipr (a2 (Y3 —1pa) —3tpa))

201 92tp3vpa (Y1 +1p2+aba+iba)

AV5Y1atpaha (Y1 +a+ibs+iba)
pap3patibr (Ya3patepa (P3+a))

20%1921p3pa (1 +eh2+iba+iba)
1 (Y2 (Y3+31a) —33pa) —Path3ta

_ Y1 (Y2 (33 —1a)+P31Pa) —3h2vp3a
Cyp(mo,p) = 4V/B192 3 (Y1 +ba+ s +4a)

3(2p3hatip1 (o (Y3 —1ha) —th3tpa))

drp1vpathatpa (1 +ipa+iba+iba)
1 (Y2 (Y3+3%4) —3931pa) —hath3a

4VBip1pathstpa (Y1 +patipstiba)
Y234 +1 (9%sYattbe (Y3 +994))

201 92tp3tpa (1 +ip2+iha+iba)

4VBip1hahatpa (b1 +ha+iha+iba)

201 92tp3a (1 +1h2+eba+iba)

Table 5.9: The Cyy(mo, 1) matrix for the complete Latin square based design of Example 5.5.2

sarenbs uijer] o1a[duwod uo paseq yoeoadde ulisep Yy g°'g
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we find that the ratio of the determinants of the information matrices for the two designs can be

expressed as

det((C(mo,%)mp)cLs) (b2 — 3) % (1h1 — t4) ?

det((C(mo,¥)mp)s-B) ! (3tha + o (2003 + ) + Y1 (Y2 + 3 + 2¢4)) 2

which is less than or equal to 1 for all values of ¥; # 0. In this case, the design generated using

the complete Latin square construction method is at least as efficient as the design in Table 5.10
for the estimation of attribute main effects and contrasts of the position effects when using the

Davidson—Beaver position effects model. O

If we construct designs of order 8 using complete Latin squares, we find that the main effects
of the attributes cannot always be estimated independently of each other. The following example

shows such a situation.

B EXAMPLE 5.5.3.
Suppose that we have an experiment with £ = 5 and ¢; = 2. We can find an 8 run orthogonal
array of strength 2, shown in Table 5.11(a). The defining contrasts for this orthogonal array
are D = AB,E = AC. We then use the complete Latin square in Table 5.11(b), replacing each
entry in the Latin square by the corresponding row of the orthogonal array, to obtain the choice
experiment in Table 5.12.

Suppose that we would like to be able to estimate the main effects of the attributes and
contrasts of the position effects. Then we can calculate the information matrix, which we find

has the form

a 00 0 O 0
0 b 0 0O 0
00 c¢c 0O 0
C m ) = )
(o) 000 d e 0
000 e f 0
L0 0 0 0 0 Cyy(mo,¥) |
where the terms a—f are non—zero. In particular,
e = =192+ Paths — Ysthy + hsta + Pr1ibs + Ystha — P3s — Yrths — ats

+Us5Y6 + V17 — Yathr + Ysthr — PsiPs + PerPs — Prips # 0.

This means that the main effects of the fourth and fifth attributes cannot be estimated indepen-
dently. O

Option 1 Option 2 Option 3 Option 4

0 0 0 01 1 1 10 1 01
0 11 0 0 0 1 0 1 1 1 0
1 01 1 10 0 11 0 0 0
1 10 1 01 0 0 0 01 1

Table 5.10: The Street—Burgess design used in Example 5.5.2.
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—
&
~
—~
=
~

00 0 00O 1 2 8 3 7 4 6 5
0 01 01 231 485 76
01 010 8 1.7 2 6 3 5 4
01 111 3425 16 87
1 0 0 1 1 78 6 1 5 2 4 3
101 10 4 5 3 6 2 7 1 8
110 0 1 6 7 5 8 4 1 3 2
11100 5 6 4 7 3 8 2 1

Table 5.11: An 8 run orthogonal array of strength 2 (a) and a complete Latin square of order
8 (b).

If we use the 8 x 8 complete Latin square that has been constructed using the Williams
construction, as shown in Table 5.11(b), then we can see which orthogonal arrays of order 8 can
be used to estimate the main effects of the attributes independently. Table 5.13 gives the defining
relations for each orthogonal array and, where confounds exist, the groups of attributes that are
confounded. As stated in Section 1.B, we can construct different complete Latin squares by using
different sequencings of groups. Evans [2007] gives a list of such sequencings for groups of small
order. When repeating the above analysis with complete Latin squares constructed from each of
these different sequencings, we find that the same orthogonal arrays give the same confounded
attributes, those shown in Table 5.13.

We finish this section with a discussion about why these confounds occur. Suppose that we
let Ayy(mo,9p) = [ay], such that a;; = —3 ., a;;. Then we can investigate which contrast
matrices, B, give a diagonal BA.,~ (o, )BT matrix. Let By be the main effects contrast matrix
for attribute U, By be the main effects contrast matrix for attribute V' and so on. Now let B =
[BuBv Bw Bx By Bz|", where By = j1 ®@j3 @ B, By = j3 @ Bo®33, and By = Bo®j3 ®33.
Given By, By and By, what can we say about Bx, By and Bz?

The orthogonality of the contrast matrix imposes the constraints

ByB% = 0,

ByBY = 0,
and

BwBL = 0,

on the entries of Bx. Since the entries in Bx are contrast coefficients, we also require
Bxjl =o0.

In this example, we would like C, (10, ) to be diagonal, which places further constraints on the

entries in Bx. These constraints are

BUA’Y’Y(ﬂ07’¢)Bg; = Oa
BVA’Y’Y(WOa'l/))Bg; = Oa




Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 Option 8
ooooo0o 00101 11100 01010 11001 01111 10110 10011
0oo101 01010 0O0O0OOO0O 01111 11100 10011 11001 10110
11100 0000O0O 11001 00101 10110 01010 10011 01111
01010 01111 00101 10011 00000 10110 11100 11001
11001 11100 10110 00000 10011 00101 01111 01010
01111 10011 01010 10110 00101 11001 00000 11100
10110 11001 10011 11100 01111 00000 01010 00101
10011 10110 01111 11001 01010 11100 00101 000O00O

Table 5.12: Complete Latin square based design used in Example 5.5.3.

sarenbs uijer] o1a[duwod uo paseq yoeoadde ulisep Yy g°'g

VLT
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k Defining Relation Confounded Attributes
3 None None

4 D=ABC (1,4)

4 D=AB None

5 D=AB, E=AC None

5 D=AB, E=BC (4,5)

5 D=AC. E=BC None

6 D=AB, E=AC, F=BC (4,5)

7 D=AB, E=AC, F=BC, G=ABC (1,7) and (4,5)

Table 5.13: Confounded attributes when a complete Latin square based design of order 8 is

used

and

Bw Ay (mo, ) By

0.

It should be noted at this point that By, By, and By have been constructed in such a way that

they are orthogonal to each other, and produce 0 entries in the relevant off-diagonal entries in

C,~(mo,%). Suppose that By is given by

BX = []"17 L2, X3, L4, L5, L6, x?anS]y

and A, (mo, 1) is given by

D a1 ay a3 a4 a3 oy
a1 D a1 as a3 ag a3 s
o o1 D a1 ay az ag o3
az ay a1 D oy as a3 oy
ay az az a; D oo ay ag
a3 g4 a3 oay o1 Do oap as
ay a3 a4 a3 a o Doy
| 1 a2 a3 a4 a3 oy o D
where
a = ¢1¢2+1/)1¢3+¢2¢4+¢3¢584\I;¢4¢6+¢5¢7+1/J61/)8+1/J71/)8’
1
o 7/111#6+1/111/J7+1/121/)5+?/12T/)88'\£1/131/)4+¢31/18+¢41/J7+1/151/16’
1
0y = 1/111/J4+77/111/)5+¢21/)3+1,/121/16+¢3¢7+¢4¢8+¢5¢8+¢6¢7’
80,
and
o = ¢1¢8+¢2¢1$¢3¢6+¢4¢5'
1

Then we can expand By A (mo,¥)B% to obtain

BUA,W('IrO,'z/))B)T( = 201(—x1 — x4 + x5 + x5) + 200(—21 — T2 — T3 — T4 + T5 + 6 + T7 + T3)

+2a3(—x1 — 209 — 203 — x4 + x5 + 226 + 227 + T8)

+2044(—331 — X2 — X3 — g+ X5+ g+ a7+ 1‘8),
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which we require to be equal to 0 for all values of o;. By equating coefficients of «;, we find

-z —z4+z5+x3 = 0,
—x1 —Xo— X3 — T4+ x5 +x5+T7+28 = O,
and
—x1 — 2wy — 203 — x4 + T5 + 226 + 227 +x3 = 0.
We also have the constraints
—xX1 —Xo— X3 — g+ x5 +x5+x7+23 = O,
—x1 — X2+ x3+ x4 — x5 —x6+2x7+283 = O,
and
—T1+ 22 —x3+ x4 — 25+ —27+x83 = 0,

that make the contrasts orthogonal to each other, and
T1+ 22+ 23+ T4+ 25 +x6+27+as = 0,

to make Bx a set of contrast coefficients. These reduce to give the following 5 linearly indepen-

dent equations

r1t+xot+ax3+as+as+ret+arr+28 = 0,
—T1— Ty — 23— Ta+T5+T6+T7+283 = 0,
—r1— T2+ 23+ x4 — x5 — T +r7+28 = 0,
21+ x2—x3t+wg—w5taws—rrtas = 0,
and
—x1— x4 +x5+x8 = O.
The general solution to these equations is given by
T = Tsg, T2 =27, T3 = Tg, Ty = Ts5, Ty = —Tg — L7 — Tg-

One possible solution is

By [—1,-1,1,1,1,1,—1, —1].

1
2v/2
If we use this contrast, we can construct a fifth contrast to be estimated in the same manner as

Bx. Suppose that this new contrast has coefficients

By = [y1,Y2, Y3, Y4, Y5, Y6, Y7, Ys]-

The constraints on the y; will include all of those that were imposed on the z;, plus some
more to ensure that Bx and By are orthogonal, and have a 0 in the corresponding entry of

Cyy(mo,%). By repeating the process that we used to derive Bx, we have the following seven
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linearly independent constraints on the y;:

Y +Y2+ys+tya+ys+ys+yr+ys =

Y1 — Yo —Y3s—Yat+Ys+tyst+yrtys =

Y1 —Y2+Ys+ys—Ys —Ys tyYr+ys =

Y1+ Y2 —Ys+Ys—Ys+Ys —Yr t+yYs =

—Y1—Ysat+yYs+tys =

o O O o o o

“Y1—Y2tystystystY —Yr —yYs =
and
“y1+ystys—ys = 0.
This gives the general solution
Y1 =Y1=Ys =1Ys, Y2=Y3="Ye6 = Yr-

One possible solution is
1
By = —
YT o2

If we continue this process, we will have one additional constraint on Bz that is independent

[-1,1,1,-1,-1,1,1,—1].

of the existing constraints. This constraint is
—21+ 22+ 23— 24— 25+ 26+ 27 — 28 =0.

The only consistent set of solutions to these constraints is z; = 0 for 1 < ¢ < 8. Therefore, no
additional contrasts can be estimated independently without forming a non-diagonal C..(mo, %)
matrix.

Thus, we can see that while designs constructed using complete Latin squares can be more
efficient than those designs used in Section 5.4 in some cases, there are restrictions on the number

of attributes that we can use in designs.

5.6 Simulations of the generalised Davidson—Beaver posi-

tion effects model

In this section we consider the performance of the generalised Davidson—Beaver position effects
model under various model assumptions by carrying out a number of simulation studies. We
assume that k = 2, {1 = {5 = 2 and m = 3 throughout. We consider two sets of values for the
parameters. In the first we assume that both main effects parameters, 71 and 75, are equal to 0
and the position main effect parameters are equal to 91, = —0.3 and ¥q = 0.1, and in the second
set we assume that 71 =1 and 75 = —1 but ¥, = —0.3 and ¢q = 0.1 still.

We find efficient designs for each set of values and compare the performance of each design
with both sets of parameter values. The design in Table 5.14 is optimal for the estimation of
the main effects of the attributes plus the position main effects when 74 = 7 = 0,9, = —0.3,
and 9q = 0.1, by Theorem 5.4.7. An alternative design is shown in Table 5.15, which is more
efficient than the design in Table 5.14 when 71 = 1,79 = —1,%1, = —0.3, and ¥q = 0.1.
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Option 1 Option 2 Option 3 P(T;) P(T2) P(Ts)

0 0 0 1 10 0.195 0.014 0.791
0 1 0 0 11 0.110 0.445 0.445
1 0 11 0 0 0.871  0.065  0.065
1 1 1 0 0 1 0.195 0.791 0.014

Table 5.14: Optimal design for the estimation of attribute main effects and contrasts of the
position effects when 7 = 7 = 0,91, = —0.3, and g = 0.1, with selection

probabilities when 71 = 1,7 = —1,9r, = —0.3, and ¥q = 0.1.

Option 1 Option 2 Option 3

0
1
0
1
1

=== O O
_ o O = O
= = = O O
S == O
oS O O = o=

Table 5.15: A design more efficient than the design in Table 5.14 when 7, = 1,75 = —1,%¢, =
—0.3, and g = 0.1.

We first assume that 7 = 7 = 0,91, = —0.3, and ¥q = 0.1 and compare the simulated
distributions of the parameter estimates when the designs in Tables 5.14 and 5.15 are used in
turn. Each simulation is modelled using the simulated responses from 150 respondents, and each
boxplot displays the distribution of the estimates from 1000 such simulations. Figures 5.4(a) and
(b) show the distributions of the parameter estimates when the designs in Tables 5.14 and 5.15,
respectively, are used. Summary statistics for both simulations are provided in Table 5.16. We
see that, for both designs, the distribution of the parameter estimates seem to be unbiased and
symmetric. We see that, in this case, the additional choice set in the design in Table 5.15 does
not seem to reduce the variance of the parameter estimates.

We now consider the performance of these two designs when 71 = 1,75 = —1,v¢y, = —0.3, and
1q = 0.1. Figures 5.5(a) and (b) show the distributions of the parameter estimates when the
designs in Tables 5.14 and 5.15, respectively, are used. Summary statistics for both simulations
are provided in Table 5.17. We see that, for both designs, the distribution of the parameter
estimates seem to be unbiased and close to symmetric. For these parameter estimates, we see
that the addition of an extra choice set does seem to reduce the variance of the parameter
estimates. The selection probabilities when 7, = 1,75 = —1,91, = —0.3, and ¥q = 0.1 for the
design in Table 5.14 are given in the last three columns of Table 5.14.

Next, we compare the distributions of the parameter estimates for different values of v, and
1q when the design in Table 5.15 is used. Suppose that 73 = 0.5, and 7 = —1. Then Figures
5.6(a) and (b) show the distributions of the parameter estimates when the coefficient of the linear

component of the position effect is —0.2 and —0.4, respectively, with a zero quadratic component
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Parameter Estimates
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Figure 5.4: Simulations: 7 =7 =0, ¢, = —0.3, and ¥q = 0.1.

Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)
Design in Table 5.14
sl 0.00065(0.00145) 0.00203 0.00209 0.09595(0.07734)
T2 —0.00244(0.00147) 0.00191 0.00217 —0.03946(0.07734)
iy —0.30190(0.00159) 0.00748 0.00251 —0.14780(0.07734)
Pq 0.10039(0.00099) 0.00254 0.00098 0.08010(0.07734)
Design in Table 5.15
st 0.00074(0.00138) 0.00184 0.00191 —0.01432(0.07734)
Ty 0.00060(0.00134) 0.00172 0.00178 —0.03239(0.07734)
Uy, —0.30178(0.00144) 0.00719 0.00206 0.07623(0.07734)
Pq 0.10125(0.00090) 0.00218 0.00080 0.08965(0.07734)

Table 5.16: Summary statistics for 71 = 70 =0, 9. = —0.3, and g = 0.1.
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Figure 5.5: Simulations: 7 =1, m» = —1, ¢, = —0.3, and ¥q = 0.1.

Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 5.14

i51 1.01674(0.00274) 0.00245 0.00749 0.46021(0.07734)
Ty —1.01164(0.00275) 0.00221 0.00758 —0.39469(0.07734)
Y, —0.31189(0.00283) 0.00970 0.00800 —0.40517(0.07734)
Pq 0.10227(0.00188) 0.00292 0.00354 0.23414(0.07734)
Design in Table 5.15
st 1.00935(0.00263) 0.00184 0.00693 0.51804(0.07734)
Ty —1.00761(0.00212) 0.00173 0.00450 —0.18823(0.07734)
YL —0.30817(0.00273) 0.00751 0.00748 —0.52933(0.07734)
Pq 0.10126(0.00159) 0.00209 0.00254 0.00055(0.07734)

Table 5.17: Summary statistics for 71 =1, 7o = —1, ¥, = —0.3, and ¢¥q = 0.1.
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in both cases. Figures 5.7 (a) and (b) show the distributions of the parameter effects when
the coefficient of the linear component of the position effect is assumed to be —0.2 and —0.4,
respectively, and the coefficient of the quadratic component of the position effect is 0.2 in both
cases. Summary statistics for all four simulations are provided in Table 5.18. For each of the
sets of parameter values, this design gives unbiased and close to symmetric parameter estimates.
The variance of these parameter estimates remains relatively constant across the values of v,
and 1q, demonstrating the robustness of this design.

We now look at the ability of a range of designs to estimate the main effects plus two—factor
interactions of the attributes and the position main effects. The first two designs we consider are
those in Tables 5.14 and 5.15. The third design is that in Table 5.19, which is optimal for the
estimation of the main effects plus the two—factor interaction when the MNL model is used and
71 = T9 = 712 = 0, by Theorem 1.3.5. The final design is shown in Table 5.20, and is more efficient
than the design in Table 5.19 for estimating the main effects plus the two—factor interaction of
the attributes and the position main effects when 7 = 1,79 = —1, 72 = —0.25,¢, = —0.3, and
g =0.1.

First, we consider the case where the interaction is assumed to be negligible. We let the
coefficients of the attribute main effects be 7, = 1, and 75 = —1 as before, with the coefficient
of the linear component of the main effect fixed to be —0.3 and the coefficient of the quadratic
component fixed to be 0.1. Then Figures 5.8(a), (b), (c), and (d) give simulated distributions
when the designs in Table 5.14, Table 5.15, Table 5.19, and Table 5.20 are used. Summary
statistics for all four of the simulations are provided in Table 5.21.

Both the design in Table 5.19 and the design in Table 5.20 give unbiased and symmetric
parameter estimates with relatively small variances. Slightly more bias and skewness can be
seen in the estimates from the designs in Tables 5.14 and 5.15, as well as larger variances. The
larger variances are not surprising, since the designs in Tables 5.19 and 5.20 contain about three
times as many choice sets as the designs in Tables 5.14 and 5.15.

Now suppose that we have a non—zero interaction between the attributes. We let the co-
efficients of the attribute main effects and the contrasts of the position effects be the same as
the zero-interaction case, and fix 75 = —0.25. Figures 5.9(a), (b), (¢), and (d) give simulated
distributions when the designs in Table 5.14, Table 5.15, Table 5.19, and Table 5.20 are used.
Summary statistics for all four of the simulations are provided in Table 5.22.

Again, both the design in Table 5.19 and the design in Table 5.20 give unbiased and symmetric
parameter estimates with relatively small variances. Once again, we see slightly more bias and

skewness in the estimates from the designs in Tables 5.14 and 5.15, as well as larger variances.
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Figure 5.6: Simulations: 7 =1, /» = —1, (a) ¢r, = —0.2 and (b) ¢, = —0.4, and ¥q = 0.
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Figure 5.7: Simulations: 7 =1, 7 = —1, (a) ¢, = —0.2 and (b) ¢, = —0.4, and g = 0.2.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

T1 = ].7 T2 = —].,’l/JL = —0.2, and wQ =0

T 1.00573(0.00259) 0.00179 0.00671 1.15483(0.07734)
Ty —1.00355(0.00190) 0.00172 0.00359 —0.27256(0.07734)
UL —0.20135(0.00264) 0.00766 0.00696 —0.67568(0.07734)
Pq 0.00031(0.00138) 0.00206 0.00190 —0.09086(0.07734)
=11 =-1y,=-04,and g =0
T 1.01584(0.00287) 0.00194 0.00825 0.45435(0.07734)
Ty —1.00950(0.00199) 0.00170 0.00394 —0.21212(0.07734)
UL —0.41253(0.00298) 0.00768 0.00887 —0.34218(0.07734)
»Q —0.00264(0.00149) 0.00204 0.00222 0.00867(0.07734)
T1=1,17=—-14¢, =-0.2, and ¢qg = 0.2
sl 1.01168(0.00243) 0.00176 0.00592 0.38612(0.07734)
To —1.00968(0.00224) 0.00176 0.00504 —0.34004(0.07734)
iy —0.21025(0.00250) 0.00739 0.00623 —0.44861(0.07734)
YQ 0.20143(0.00167) 0.00214 0.00280 0.15214(0.07734)
=1, 1m=-14Y, =—-04, and g = 0.2
T 1.01265(0.00273) 0.00189 0.00744 0.63841(0.07734)
T —1.01266(0.00237) 0.00174 0.00564 —0.63725(0.07734)
UL —0.40498(0.00277) 0.00741 0.00768 —0.55272(0.07734)
Pq 0.20355(0.00170) 0.00212 0.00290 0.20674(0.07734)
Table 5.18: Summary statistics for 73 = 1,75 = —1 and various values for 1, and 9q.
Option 1 Option 2 Option 3 Option 1 Option 2 Option 3
0 0 0 1 10 10 0 0 0 1
0 1 0 0 11 11 0 1 0 0
10 11 0 0 0 0 0 1 11
11 10 0 1 0 1 0 0 10
0 0 1 0 1 1 1 0 1 1 0 1
0 1 11 10 11 10 0 0

Table 5.19: Optimal design for the estimation of attribute main effects and two—factor inter-

actions when 71 = 75 = 712 = 0,91, = —0.3, and ¥q = 0.1.




5.6 Simulations of the generalised Davidson—Beaver position effects model 184

Option 1 Option 2 Option 3 Option 1 Option 2 Option 3
0 0 0 1 11 1 0 0 0 0 1
0 1 0 0 1 1 11 0 1 0 0
1 0 11 0 0 0 1 0 0 1 0
1 1 1 0 0 1 10 11 0 1
0 0 1 0 1 1 11 10 0 0
0 1 1 1 1 0

Table 5.20: Optimal design for the estimation of attribute main effects and two—factor inter-

actions when 71 = 1,7 = —1, 72 = —0.25, 91, = —0.3, and ¥q = 0.1.

Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 5.14

Ty 1.01505(0.00301) 0.00251 0.00907 0.41817(0.07734)
Ty —1.01785(0.00306) 0.00226 0.00934 —0.45840(0.07734)
Ti2 —0.00464(0.00224) 0.00192 0.00503 —0.21515(0.07734)
YL —0.31117(0.00281) 0.00970 0.00789 —0.57501(0.07734)
Uq 0.10462(0.00192) 0.00292 0.00369 0.37087(0.07734)
Design in Table 5.15
sl 1.01857(0.00294) 0.00184 0.00865 0.55270(0.07734)
T2 —1.01279(0.00247) 0.00185 0.00609 —0.26282(0.07734)
Ti2 —0.00673(0.00220) 0.00180 0.00486 —0.18801(0.07734)
YL —0.30781(0.00275) 0.00752 0.00756 —0.47014(0.07734)
Pq 0.09889(0.00157) 0.00233 0.00245 —0.01713(0.07734)
Design in Table 5.19
T 1.00307(0.00146) 0.00073 0.00215 0.13036(0.07734)
T —1.00299(0.00140) 0.00069 0.00195 —0.03680(0.07734)
Ti2 —0.00155(0.00142) 0.00068 0.00202 —0.07224(0.07734)
YL —0.30201(0.00130) 0.00288 0.00170 —0.04205(0.07734)
Uq 0.10111(0.00077) 0.00090 0.00059 0.07402(0.07734)
Design in Table 5.20
Ty 1.00217(0.00157) 0.00077 0.00246 0.12641(0.07734)
To —1.00306(0.00142) 0.00076 0.00203 —0.13142(0.07734)
Tio —0.00169(0.00140) 0.00077 0.00196 —0.11987(0.07734)
YL —0.29905(0.00139) 0.00308 0.00194 —0.00880(0.07734)
Pq 0.10002(0.00077) 0.00101 0.00059 —0.03074(0.07734)

Table 5.21: Summary statistics for 7y = 1,79 = —1,712 = 0,9, = —0.3 and ¢¥q = 0.1.
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Figure 5.8: Simulations: Estimating attribute main effects and contrasts of the position effects,

designs in (a) Table 5.14, (b) Table 5.15, (c) Table 5.19, and (d) Table 5.20.
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Figure 5.9: Simulations: Estimating attribute main effects, two—factor interactions and con-
trasts of the position effects, designs in (a) Table 5.14, (b) Table 5.15, (c¢) Table

5.19, and (d) Table 5.20.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 5.14

T 1.01295(0.00298) 0.00250 0.00887 0.33390(0.07734)
Ty —1.01650(0.00301) 0.00225 0.00906 —0.44446(0.07734)
Ti2 —0.25309(0.00252) 0.00193 0.00633 —0.31484(0.07734)
YL —0.30672(0.00244) 0.00999 0.00597 —0.32199(0.07734)
Pq 0.10299(0.00171) 0.00286 0.00291 0.52240(0.07734)
Design in Table 5.15
T 1.02163(0.00288) 0.00184 0.00829 0.34026(0.07734)
T2 —1.01232(0.00250) 0.00186 0.00624 —0.45037(0.07734)
T12 —0.26029(0.00247) 0.00179 0.00613 —0.58993(0.07734)
YL —0.30944(0.00239) 0.00762 0.00574 —0.28540(0.07734)
Pq 0.09738(0.00135) 0.00229 0.00182 0.02016(0.07734)
Design in Table 5.20
st 1.00222(0.00162) 0.00073 0.00263 0.36760(0.07734)
T —1.00286(0.00161) 0.00069 0.00259 —0.29557(0.07734)
Ti2 —0.24988(0.00155) 0.00068 0.00240 —0.27733(0.07734)
UL —0.30057(0.00122) 0.00287 0.00150 —0.14386(0.07734)
YqQ 0.09990(0.00070) 0.00090 0.00049 0.02138(0.07734)
Design in Table 5.19
Ty 1.00448(0.00168) 0.00078 0.00283 0.27812(0.07734)
Ty —1.00390(0.00167) 0.00077 0.00280 —0.22667(0.07734)
Ti2 —1.00390(0.00167) 0.00077 0.00280 —0.22667(0.07734)
YL —0.30149(0.00132) 0.00305 0.00174 —0.08309(0.07734)
Pq 0.10114(0.00069) 0.00101 0.00048 0.02933(0.07734)

Table 5.22: Summary statistics for 13 = 1,7 = —1, 72 = —0.25, 9, = —0.3 and g = 0.1.
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5.A  Proof that jiz = 0 for the generalised Davidson—Beaver
Position Effects Model

We begin by recalling that
SNCYT;
a= Y wo — i

m o~
ieC > b1 Yo,

Now, the vector z contains the values for z; for each possible item T;. Then
t
itz = )=
i=1
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as required.




Chapter 6

Optimal Designs when using
Fractional Factorial Starting

Designs

In Section 1.3 we gave results about the construction of optimal choice experiments which were
obtained from a starting design to which we added a suitable set of generators. In all of the
results so far, the starting design has been a full factorial design. In this chapter, we will give
some results about the construction of choice experiments where the starting design is a fractional
factorial design. We will restrict our discussion to symmetric designs with a prime power number
of levels.

We begin this chapter by looking at the construction of contrast matrices that contain the
contrast coefficients of only the items in that fraction, when main effects are of interest. We then
consider the construction of contrast matrices when a generator is added to the starting design,
where the addition is performed component—wise in GF'[¢]. We work in GF'[{] to take advantage
of the field properties, in particular the fact that xy = 0 implies that at least one of z and y is 0
(so 2 x 3 =0 mod 6 but neither 2 nor 3 is 0). Finally, we prove a theorem that gives rules for
the optimal design for the estimation of main effects by using the properties of these contrast

matrices and of the associated choice sets.

6.1 Constructing a Contrast Matrix for Regular Designs

Consider an ¢*~P regular fractional factorial starting design, where ¢ is a prime or a prime
power. We can reorder the rows and columns of the design so the first & — p columns form a
complete 7P factorial with the rows in lexicographic order. Then, the rows of the contrast

matrix corresponding to the first k — p attributes are given by
Be® 2537 © 2ii ®...® 247 © 247

1T 1T 1 2T o 1 2T
=31 OB ® =3 @...0 ==1; @ —£]
Br(1,2,. k-p) = Vet Vidt . VO

Z31 ® 531 © 01 © ... ® i ® B
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where By is an (—1) x £ matrix of orthogonal polynomial contrast coefficients with Bng =1,
and j, is an £ x 1 column vector of 1s, as defined in Section 1.2.

We use a slightly altered version of the Rao—-Hamming construction to obtain the remaining
attributes. Instead of the usual constraint, that the first non—zero coefficient to be equal to 1,
we constrain the last non—zero coefficient to be equal to 1. This alteration will simplify the
description of the contrast matrices later on. In this chapter we will restrict our scope to designs
constructed in this way.

If we recall Construction 1.B.1, we note that the construction begins with an /=7 full factorial
design in the columns C to Cj_, of the starting design and we obtain the remaining p columns of
the starting design from linear combinations of the first k — p columns, with addition conducted
component—wise in GF[f]. Thus we let by be a row vector that contains the levels for the first
attribute, by be a row vector that contains the levels for the second attribute, and so forth up
to by be a row vector that contains the levels for the k' attribute, and we define by_p41, ..., by
as linear combinations of by,...,by—,. Note that by our assumption, the last non-zero b; will
have a coefficient of 1. This ensures that we produce a set of attributes that form a fractional

factorial design. We now consider two examples of this construction.

B EXAMPLE 6.1.1.

In this example, we construct a 3*~2 regular fractional factorial starting design in 9 runs. We
begin with two attributes that form a 32 complete factorial design. We define two further
attributes as linear combinations of the first two attributes. We define these linear combinations
by considering all linear combinations of b; and by where the coefficient of by is equal to 1. The

additions carried out in this construction use the addition rules of GF[3]. This gives

bl = (070707171a1727272)a
b2 = (0a172707172a07172)7
bs = by +bs

= (0,0,0,1,1,1,2,2,2) +(0,1,2,0,1,2,0,1,2)
= (O’ 1727172’0’2707 1)’

and

b4 = 2X b1 + b2
= (0,0,0,2,2,2,1,1,1) +(0,1,2,0,1,2,0,1,2)
= (0,1,2,2,0,1,1,2,0).

We can represent this resolution 3 fractional factorial design as a matrix F', shown in Table 6.1.
We will use each row of F' to correspond to an item that will be presented to the respondent in

the first position of a choice set. O

B EXAMPLE 6.1.2.
In this example, we construct a 27~% starting design in 8 runs. We construct this design start-

ing with the 23 complete factorial design, and adjoin four attributes which we define as linear
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Table 6.1: The 3*~2 regular fractional factorial design constructed in Example 6.1.1

combinations of the first three attributes.

by =0xb; +1xby+1xbs
=(0,0,1,1,0,0,1,1) +(0,1,0,1,0,1,0,1)
=(0,1,1,0,0,1,1,0)

bs =1xb;y +0xby+1xbs
= (0,0,0,0,1,1,1,1) +(0,1,0,1,0,1,0,1)
=(0,1,0,1,1,0,1,0)

b =1xby +1xby+1xbs

=(0,0,0,0,1,1,1,1) +(0,0,1,1,0,0,1,1) +(0,1,0,1,0,1,0,1)

=(0,1,1,0,1,0,0,1)

b;=1xb; +1xby+0xbs
= (0,0,0,0,1,1,1,1) 4+ (0,0,1,1,0,0,1,1)
=(0,0,1,1,1,1,0,0)

The first three of these additional attributes have the constraint on the coefficient of b3, and the

final attribute has 0 as the coefficient of b3 and thus the constraint is placed on the coefficient

of by. All of the additions will be carried out component—wise using the addition rules of GF[2].

This gives the design in Table 6.2.

We can generalise the construction method presented in Examples 6.1.1 and 6.1.2.

O

The

defining equations for a fractional factorial design using the Rao—-Hamming construction, as
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F
0000 O0O0TO0
001 1110
01 01 0 11
0110101
100 01 11
101 1001
1101 1 00
1110 010

Table 6.2: The 27~* starting design constructed in Example 6.1.2

introduced in Section 1.B.3, will be

bk—p+1 = bk—p—&,*’bk—p
bipre-1 = oV xb 1 4+b,
brpie = bppotbiy
br_pioy1 = bp_po+bp_p_1+bry
bk—p—&—([—l)k*l = ot x by +...+ al=1 bk,p,1 + bk,p
bi—pre—1)r-141 = brpo2+bpp1
bk_p_;’_(g_l)k—l_;'_(g_l)k—Q = ot x bi+...+ al=1 bk_p_g +bk_p_1
by = o'V b +by,

with addition and multiplication performed component—wise using the rules of GF[¢], whose root
is denoted by a. An arbitrary entry in the vector by, b, which corresponds to the level of the

g™ attribute in the i*" item is given by

k—p
bgi = E aq,j % bj,
7j=1

subject to the constraint that the last non-zero a4 ; be equal to 1. As was the case in the
examples, let F' be the set of items generated from this construction.

We can describe by_p41,...,bx in terms of permutation matrices. Suppose that for the ¢*®
attribute, attribute h, 2 < h < k — p, has the last non—zero coefficient in the defining equation

thl

for b,. Then we begin the construction of b, with by, which has repetitions of

0,1,2,....0 - @jle...0jF, (6.1)
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where there are (k —p —h — 1) j7s. We then add

h—1
E aq,;bj,i
=1

component—wise in GF[¢]. Within each repetition of the expression in Equation 6.1, the value
of this sum will be the same, since there are more j;;rs following the (0,1,...¢£ — 1) in the
expressions for by, bs,...,b,_1 than in the expression for b;. Therefore we can post—-multiply
(0,1,...,¢-1) in each repetition of Equation 6.1 by a permutation matrix that reflects the
addition of Z 1 agq,;bji.

Since these additions are being carried out in GF[¢], we define Q; to be an £ x £ permutation

matrix where

(@) = { 1, ifz+i=yin GF[l,

0, otherwise.

We note that @; is a permutation matrix that reflects addition in GF[¢], whereas P;, as introduced
in Section 1.2, is a permutation matrix that reflects addition modulo ¢. These matrices are the
same only if ¢ is prime.

In the next two examples, we illustrate the construction of a fractional factorial design using

the permutation matrices @;.

H EXAMPLE 6.1.3.
Consider the 3*~2 choice experiment introduced in Example 6.1.1. In this example we constructed

a resolution 3 fractional factorial design using

by = (0,0,0,1,1,1,2,2,2),

by = (0,1,2,0,1,2,0,1,2),

b; = (0,1,2,1,2,0,2,0,1), and
( )

by 0,1,2,2,0,1,1,2,0).

Notice that the third and fourth attributes do not contain three repetitions of (0, 1,2), but
instead three permutations of (0,1,2). We can use 3 x 3 permutation matrices to permute the

columns of (0,1,2) to form b3 and by, giving

by = ((0, 1,2) - Qubrrs (0,1,2) - Quopr o, (0,1,2) - lebm)
((0.:1,2)- Qux0,(0.1,2)- Qux1, (0,1.2) - Qi)
(0,1,2 Qo,(0,1,2) - Ql,(0,1,2)-Q2)
((0,1,2),(1,2,0),(2,0,1))

1= ((01,2)- Qa1 (0.1,2) - Qs 0, (0.1,2) - Qan )
((

((

(0,1,2) - Q2x0, (0,1,2) - @21, (0,1,2) - Qa2
0,1,2) Qo (0,1,2) - Q2. (0.1,2)- Q1)
((0:1,2),(2,0,1),(1,2,0)) -

B EXAMPLE 6.1.4.
In this example, we use permutation matrices to construct the last four attributes of the 274

fractional factorial design in Example 6.1.2 from the first three attributes.
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For the fourth, fifth and sixth attributes, we can see that the corresponding columns of Table
6.2 contain four copies of (0, 1), each permuted based on the values of the first two attributes, and
their contribution in the defining equations for these attributes. We can define 2 x 2 permutation

matrices to permute each (0,1) to obtain

b1 = ((0,1) Qo 1t (0,1) * Qo s txbaer (0,1) * Qo w1t as (0,1) * Qo 10 )
(10.1) - Qoxor1x0, (0.1) - Qoxorix1s (0.1) - Qoxreixos (0.1) - Qoxreixa)

(0.1 Qo (0.1) - @1.(0.1) - Q0. (0,1)- Q1)

((0,1). (1,0), (0,1), (1,0)),

b5 = ((0.1) Quety s 40xb21s (0,1) - Q05 (0. 1) Qo bt as (0,1) - Qo 0t )
= ((0.1) Quxo40x0, 0,1)  Quxosox1, 0,1) - Quxrsoxos (0,1) - Quersoxt)
= (0.1 Q0. (0.1)- Qo (0.1) - Q. (0,1) - @1 )
= ((0.1).(0.1).(1,0),(1.0)),

and

(
(0,1) - Qixo+1x05 (0,1) - Q1x0+1x15 (0, 1) - Q1x1+1x0, (0,1) - Q1><1+1><1)
(07 1) X QOa (07 1) X Qh (07 1) X Q17 (Oa 1) X QO)

= ((O’ 1)) (170)7 (17())7 (0, 1))7

where the first entry in each permutation matrix accounts for the effect of the addition of a
multiple of by to (0, 1) and the second entry in each permutation matrix accounts for the addition
of a multiple of by to (0,1).

For the final attribute, we notice that the coefficient of b3 in the defining equation is 0, and
the attribute with the last non—zero coefficient is the second attribute, that is h = 2. We can

then break the entries for this attribute into

= ((0,0,1,1),(1,1,0,0)),
where the permutation matrices account for the addition of a multiple of b;. O
This procedure also works if £ is a prime power as the next example illustrates.

B EXAMPLE 6.1.5.
We now use permutation matrices to construct a 45~3 starting design. Since 4 is a prime power,

GF[4] exists with elements 0, 1, a, and a? = a+ 1. We can represent addition in GF[4] in terms
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of the permutation matrices

1000 01 0 0
01 0 0 1000
Qo = Q=
0010 00 0 1
00 0 1| 00 1 0|
[0 0 1 0] [0 0 0 1]
00 0 1 001 0
Qo = Qo2 =
1000 01 0 0
010 0| 1.0 0 0

Notice that these permutation matrices are different from permutation matrices that reflect
addition modulo 4, which would be cyclic. These permutation matrices are in fact the Kronecker
product of two 2 X 2 cyclic permutation matrices.

Using the modified Rao-Hamming construction, we have the following defining equations,

which we will use to construct the starting design.

b3 = 1><b1+1><b2,

by, = Oé><b1—|—1><b2,
and

b5 = a2><b1+1><b2,
where

bl = (0a1a047042)®jf
= (0,0,0,0,1,1,1,1,a,a, 0, 0, 0%, 0%, &%, o),

and

b

i1 ® (0,1, 0, 0%)

0,1, a, a?,0,1,a,02,0,1,a,02,0,1, a, a2).

Then, in the same way as Examples 6.1.3 and 6.1.4, we use the defining equations to permute

the entries of by to obtain the remaining attributes. So we have

-

<
-
(

(07 ]-7 «, a2) : lebl,lv (07 17 Q, 042) ! Qle1,27 (07 ]-vav 0[2) : lebl,ga (07 ]-7 Q, a2) ' leb1,4>
(07 17 a, a2) : Q1X07 (Oa 15 avaz) ' lela (07 17 a, a2) : leav (03 1,0&,0[2) ' lea2)
(

07 17 «, a2) : Q07 (07 17 «, a2) : Qla (07 17 «, az) : Qou (07 1a «, OKQ) : Q(MQ)

= ((07 17 «, Oé2> : Ql)é)(O? (Oa 1) Oé,CK2) . QaXla (07 1a «, a2) : anaa (05 1,(1,0[2) : ana2)
= ((07 ]-7 «, 0[2) : QOa (07 ]-7 «, 0[2) : Qou (07 ]-7 «, a2) : ro27 (07 1u «, 042) ' Ql)

= ((0,1, a, a2), (a,ag, 0,1), (a27 a,1,0),(1,0, a?, a)),
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where the permutation matrices account for the addition of b;. This gives the fractional factorial

design in Table 6.3. O
F

0 0 0 0 O a 0 a «o

0 1 1 1 1 a 1 o2 a 0

0 a o o « a a 0 1 o?

0 o®> o? o? o? a o? 1 0

1 0 a ao? a? 0 o 1 «

1 1 0 o? a? 1 a 0 ao?

1 a a®> 0 > a 1 o> 0

1 o2 a 1 0 a®> o> 0 a 1

Table 6.3: The 453 fractional factorial design constructed in Example 6.1.5

Recall that in Section 1.2 we used these vectors of attribute levels as the column labels for
contrast matrices. In particular, we repeated the operations that we performed on the vectors
of attribute levels on Bp to obtain Bryg,. The next two examples show how this idea can be
used to define the rows of a contrast matrix for new attributes constructed using the modified

Rao-Hamming construction.

B EXAMPLE 6.1.6.

In this example, we use the permutation matrices introduced in Example 6.1.3 to rearrange the

columns in the contrast matrix corresponding to the second attribute to obtain the rows of the

contrast matrix corresponding to the third and fourth attributes of the fractional factorial design.
Recall from Example 1.B.5 that the normalised contrast matrix corresponding to the main

effects of the first two attributes is given by

Bs ® %J?;T
Bra2 = L
ﬁ]3 ® Bs
00 01 02 10 11 12 20 21 22
=1 =1 =1 0 0 o L L L7
V2 V2 V2 V2 V2 V2
1 101 1 -2 -2 -2 1 1 1
= ﬁ V6 VB V6 V6 VB V6 V6 VB V6
=1 0o L =L 0 L =L 0 L
V2 V2 V2 V2 V2 V2
1 =2 1 1 =2 1 1 =2 1
LVv6e V6 V6 V6 V6 V6 V6 V6 VG -
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The columns of the contrast matrix can be labelled by the items in the fraction. In particular,
if we consider the rows of the contrast matrix corresponding to the main effect of the ¢*" attribute,
then we can labels the columns by the level that that attribute takes in the corresponding item.
So we can permute the rows of the contrast matrix corresponding to the second attribute to
obtain the rows of the contrast matrix corresponding to the third and fourth attributes in the
same way as we permuted the levels vectors in Example 6.1.3. The rows of the contrast matrix
corresponding to the last attribute in b, with a non-zero coefficient, which in this case the second
attribute, can be expressed as

BF(Z):ﬁ Bs By Bs |,

with each Bs corresponding to the contrast coefficients for the levels of one replication of (0,1, 2).
Then, in the same way that we used permutation matrices to change the order of (0,1, 2), we can
post—multiply each B3 by a permutation matrix to permute the columns of B3 to be consistent

with the entries in b3 and by, giving the contrast matrix Bp, (3 4)-

B3Qixb,, B3Qixt,, B3Qixbp, s
B3Qaxp,, B3Qaxb,, B3Qaxp, .,
B3Qo B3Q1 B3Q:

| BsQo BsQ2 B3

Br 4 =

Sl

Sl

00 11 22 12 20 01 21 02 10
[ =1 0 L 0 L = L =1 0]
V2 V2 V2oV2 V2 V2
1 1 0-2 1 -2 1 1 1 1 =2
= ﬁ V6 VB V6 V6 V6 V6 VB V6 V6
=1 o L L1 =1 0 0o L =L
V2 V2 V2 V2 V2 V2
1 =2 1 1 1 =2 =2 1 1
L VvVe V6 V6 V6 V6 V6 V6 V6 V6 -

The full contrast matrix for Br will be a matrix containing the rows of the contrast matrix

corresponding to each of the attributes, giving

0000 0111 0222 1012 1120 1201 2021 2102 2210
[ =1 =1 -1 0 0 o L L 17
2R 2 2 3
1 1 1 =2 =2 =2 1 1 1
V6 V6 & V6 V6 V6 o 6 G
-1 1 —1 1 —1 1
2z Y 7w o2 O B oz 05
1 1 0-2 1 1 =2 1 1 =2 1
Br = BB 6 V6 V6 V6 &6 6 Vo
-1 0o L o0 L =L 1 -1 0
2 V2 2R V22
1 =2 1 =2 1 1 1 1 =2
V6 V6 V6 V6 V6 V6 V6 Ve 6
—1 1 1 —1 1 —1
n Y wm o o2 00 5 5
1 =2 1 1 1 =2 =2 1 1
L V6 V6 & V6 V6 V6 6 V6 Vo 0

In the next example we use the same procedure to construct By for the 27* design introduced

in Example 6.1.2.
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B EXAMPLE 6.1.7.
Consider the 27~* fractional factorial design introduced in Example 6.1.2. The contrast matrix

for the main effects of the first three attributes will form the contrast matrix Bp; is
By ® %J‘ 7 ® %J‘ 5
Brap23 = %Jg ® Ba ® %Jg

%JQT ® %JQT ® By

000 001 010 011 100 101 110 111
-1 -1 -1 -1 1 1 1 1
2v2  2v2  2v2  2V2  2v2 2v2  2v2 22

= -1 -1 1 1 1 1 1 1
2v2  2v2  2vV2  2v2 2V2

-3
3
3

|
—

|
—

1 e | 1
V2 2v2 2v2 2V2 V2 2V2 2v2 2V2

S

We can use the relationships developed in Example 6.1.4 to adapt the row of the contrast
matrix corresponding to the third attribute to obtain the rows corresponding to the fourth, fifth
and sixth attributes. First we note that the row of the contrast matrix corresponding to the

third attribute can be expressed as
1
Br,3) = 3 By By By By } )

where each Bs corresponding to the contrast coefficients for one replication of (0,1) in bs. Then
we can permute the columns of Bs in the same way as the (0, 1)s, giving the rows of the contrast

matrix corresponding to the fourth, fifth and sixth attributes Bpg;

BQQOXb1,1+1Xb1,2 BQQOXb211+1Xb2,2 B2Q0Xb1,3+1><6273 BQQOXb1,4+1Xb2,4
Br (456 = 3 BaQ1xpy140xb1.2  B2Qixby+0xbss B2Qixby 510xbes  B2Q1xby 4+0xbs.4

BQQlelyl—‘rlel’Q B2Q1Xb2y1+1xb2)2 B2Q1Xb113+1><b2,3 BQQle1‘4+1Xb2,4

ByQoxo+1x0 BoQoxo+1x1  B2Qoxi+ixo BaQoxi+ixi
= 5 BaQixotox0 B2Qixo+0x1 Ba@Qixi+oxo B2Qixi+ox1
BoQixo+1x0 BaQixot+ix1i B2Qixitixo BaQixitixi

ByQo B2 B2Qo Ba@q
ByQo B2Qo B2Q1 BaQ:
i ByQo Ba@Q1 B2Q1 B2Qo

| =

000 111 101 010 011 100 110 001
=1 1 1 =1 =1 1 1 =1
2v2  2v2  2v2  2v2  2V2 2v2 2v2 22
= 1 1 1 1 1 1 1 1
2v2  2vV2  2v2 2v2  2v2 2vV2  2vV2  2V2
=t 1 1 1= 1 =1 =1 _1
2v2  2v2  2v2  2v2  2vV2 2vV2  2v2 22

We also notice that the row of the contrast matrix corresponding to the second attribute can

be expressed as )
Bro =3 | B0if B ]

Then we can permute the columns of By in the same way as the ((0,1) ® j2)s in Example 6.1.4,
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giving the rows of the contrast matrix corresponding to the final attribute B, (7).
Bra = [ (B2Qixby) ® 7533 (B2Qixby ) ® 503 }
{ (B2Q1x0) ® %y% (B2Q1x1) ® %ﬁ }

N %[ (e (& He ]

V)

0 0 1 1 1 1 0 0
- [ -1 -1 1 1 _1_ 1 =1 =1 ]
2v2  2v2 2v2 2v2 2vV2 2v2 2v2 2V2
Putting all of this together, we obtain the contrast matrix for this fractional factorial design. [

The constructions in these two examples can be generalised for any ¢~P regular fractional
factorial design where ¢ is a prime or a prime power. For each ¢ level attribute there will be
¢ — 1 associated contrasts to describe the components of the main effect. Then the contrast for
a particular attribute can be represented as a row of block matrices. We construct this row of
block matrices based on the defining equation for the attribute. The form of this row will depend
on the value of h, where the A" attribute is the last attribute in the defining equation with a
non—zero coefficient.

For the first (£—1)*=P~1 attributes, by, will have the last non—zero coefficient in the defining
equation. Thus the row of block matrices of the contrast matrix corresponding to one of these
(¢ — 1)k=P=1 attributes is given by

1
m [BZQ(Oxaq,1+...+0xaq1k,p,1)7 BZQ(OXaq,1+...+0><aq,k,p,2+1xaq,k,p,l)7 R

BZQ(O><aq,1+...+0><aqyk,p,2+o/*2Xaq,k,p,l)a BRRE) BZQ(O/*ZXaq)1+...+aZ*2Xaq,k,p,l)] .

For the next (¢ —1)*=P=2 attributes, the last non—zero coefficient in the defining equation will be
the coefficient of by_,—1. Then the row of block matrices of the contrast matrix corresponding

to one of these (¢ — 1)¥~P~2 attributes is given by

1 e
=78 |(BrRxas . 40xa0s ) © 7581
1 7
(BZQ(OXaq,1+~~»+0><aq,k—p73+1Xaq1k7p72)) X W’” et
1 .7
(BZQ(O><aq,1+..v+0><aq7k7pis+ae*2Xaq1k7p72)) by W“ e

1 7
(BZQ(QE_2Xaq,1+-~+a‘—2xaq,k—p—z)) ® WJK .

This construction can be continued until the final £ —1 attributes, whose last non—zero coefficient
in their defining equation will be bs. Then the row of block matrices of the contrast matrix
corresponding to one of these £ — 1 attributes is given by
1 1 1
7z (BeQoxay 1)) ® /i i

1 1 1 1
BiQaxa. 1)) ® —iF @... 0 —3F, ..., (BeQat-25a. 1) @ —=jL ®...Q —ji | .
( ZQ( X q,1)) \/ZJE \/ZJZ ( ZQ( =2 % q,l)) \/ZJZ \/EJZ

Putting the complete and fractional components together, the contrast matrix for the first

1 1

.T -T 2T
®...0 X...R0 s
Je \/ZJZ \/z]f

31+ (BeQ(ixay 1)) ®

fractional factorial design which gives rise to the options in each of the choice sets in the exper-
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iment can be expressed as
Br)

Br 2
Bp — '()

Br,x)
Now that we have constructed a contrast matrix for the items that appear in the first position
of each choice set, we use this to construct the contrast matrices for the items that appear in the

remaining positions of the choice set.

6.2 Adding Generators to a Starting Design

In this section, we consider how to transform the contrast matrix of a fractional factorial design
to incorporate the consequences of changing the items in the fraction caused by the addition of
a generator to each row of that design. The method that will be used to do this is the same as
the method we used in Section 1.2 when a full factorial starting design was used. That is, we
can define a permutation matrix Qg, . that will, when B is post-multiplied by the permutation
matrix, permute the columns of Br in such a way that it will reflect the change in items caused
by the addition of a generator g; = [g; 4] in GF[{] to the starting design.

Suppose that m — 1 generators are added to the rows of F' to obtain m fractional factorial
designs. We form the choice sets by presenting items described by the same row of each of the m
fractional factorial designs. There are N = ¢¥=P such choice sets. Let G = (g1 = 0,92,...,9m),

and for each of these g;, let g; = (g:.1,9i,2,-.,9i,k). Then the choice sets become the rows of
[FaF+927F+g?n .. '7F+g’m]-

We now consider a small example of how we can modify the contrast matrix to incorporate the
addition of a generator. We will use the permutation matrices introduced in Section 6.1 to do
this.

B EXAMPLE 6.2.1.

Suppose that we begin with the design developed in Example 6.1.1. In Example 6.1.6 we found
the contrast matrix for the items that appear in the first positions of each choice set. Now
suppose that we add the generator go = (1212) to obtain a second design, as shown by the
second set of columns of the design in Table 6.4.

To obtain the contrast matrix for the second design, F'4 g5, we post—multiply each occurrence
of B3 by a permutation matrix to reorder the columns of B3, as we did in Example 1.2.7. The
choice of the permutation matrix will depend on which attribute the row of blocks containing
Bs corresponds to.

Bs is post-multiplied by the chosen permutation matrix. This will permute the columns of
B3 in a way that reflects the changed order caused by the addition of the generator go. Then

each occurrence of Bs in the row of blocks corresponding to attribute ¢ will be post—multiplied




6.2 Adding Generators to a

Starting Design

201

by the permutation matrix

BF+92 =
3

sk s

3

8-

3
1

&

3

3

3

1

B

3

Sl

Qg - Thus we obtain

(B3Q.(]2,1) ® %Jg

%Jg ® (B3Q92,2)

(B3Qy2,3Q0 B3Qy2,3Q1 B3Qg2,3Q2)
(B3Q92,4Q0 B3Q92,4Q2 B3ng,4Ql) |
(B3Q1) © I35 ]
%Jg ® (B3Q2)
(B3Q1Qo B3Q1Q1 B3Q:1Q2)
(B3Q2Qo B3Q2Q2 B3Q:2Q1) |
(B3Q1) ® %J?
%Jg ® (B3Q2)
(BsQ1 Bs3Q2 DBsQo)
(BsQ2 B3Q1 BzQo) |
1212 1020 1101 2221 2002 2110
[0 0 0 11 1
V2 V2 V2
—2 -2 -2 1 1 1
NG NG V6 V6 V6 NG
1 -1 1 —1
n o Y w0
1 1 =2 1 1 =2
V6 V6 V6 V6 V6 V6
1 —1 1 —1
0 »w v wun 0
=2 1 1 1 1 =2
NG V6 V6 V6 V6 NG
1 -1 1 —1
o w2 Y VY 7 oA
T T S e D
NG V6 V6 V6 V6 NG

0200

B S N N L N R ol i

0011

o S SiL sk Sk

S

-2

V6

0122

= §k Sl

R S

(6.2)

O

This method can be generalised to allow any regular fractional factorial design to be used as

the starting design. We begin by considering the attributes that were chosen in Section 6.1 to

form an £*~P complete factorial when the columns and rows of the starting design were reordered.

Let the contrast matrix for these attributes form Bp . If a generator g; is added to F', then the

contrast matrix Br; becomes

Brigin =

BiQq., ® 731 ® 73t ® .- ® i ® it

720t ® BiQg,, ® 13} ® ... ® 2] ® di

237 ® il ® 2iT ®...® 5i7 ® BiQq,,,

We can do the same thing for the remaining p attributes. We do this by post—multiplying

each occurrence of the contrast matrix B, by a permutation matrix Qg ., permuting the entries
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=

=
4
09
%

N NN~ = = O O O
N R O N RO N RO
O N O N =N = O
O N R = O NN = O
S O O N NN =
—_ O N~ O N = O N
N = O = O N O N =
N = OO N == O N

Table 6.4: Adding the generator (1212) to the design in Example 6.1.1

of the contrast matrix to reflect the effect of adding a generator to the starting design. Again the
form of the row of block matrices corresponding to the ¢'" attribute, where k —p + 1 < ¢ < k,
depends on the value of h, the attribute in the defining equation for attribute ¢ with the last
non—zero coefficient.

For the rows of block matrices corresponding to the first (£ — 1)¥~P~1 of these attributes, the
4t block matrix in the row of block matrices corresponding to the ¢*" attribute is given by

1
(Brigi)a.i = T2 Bt X Qaiy X Qorjagatetbiopoixagn—pr)-

For the rows of block matrices corresponding to the next (¢ — 1)*~P=2 attributes, the j*" block
matrix in the row of block matrices corresponding to the contrasts of the ¢'* attribute is given
by

1 .
(Brigi)gi = W(Be X Qgiy X Qbr yaystotbeysjagnps) Ot -

This can be continued until the rows of block matrices corresponding to the final (/—1) attributes,
the j* block matrix in the row of block matrices corresponding to the contrasts of the ¢'"
attribute is given by
1 T T
(Brtg)a; = W(BZ X Qg g X Qor jag1)) ®Jr @ ... ®Fp -

In order to find an expression for the information matrix for the estimation of main effects,
we also need to derive the A(mg) matrix. The form of the A(my) matrix depends on whether the
generator g; forms a row of the starting design F' or not. If g; € F', then F' + g; = F, since the
addition of a generator to the principal fraction of a regular fractional factorial design is closed
under addition in GF[{]. On the other hand, if g; ¢ F', then F + g, # F, and the form of the

A(mg)1; matrix will be quite different to the case where g; € F. We consider these cases in turn.

6.3 Constructing the Information Matrix - Generator does

not Appear in the Starting Design

First, we consider the case where g; ¢ F. In this case none of the items in F will appear in

F+g;, since the principal fraction of a regular fractional factorial design is closed under addition.
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Therefore by rearranging the rows of the contrast matrix if necessary the matrix A(mg), for the

pairs of items in positions 1 and i of the choice set, is

I —Ip—p O
m2NA(7T0)1i = 7Iek7p Iekfp 0 5
0 0 0

and the contrast matrix B can be expressed as

1 |Br1 Brig.1 Ba

6?/2 BF,Q BF+gi72 BA,Q
where Bj contains the contrast matrix for those items that do not appear in either position of
the choice set. If m > 2 then the argument used in this section can be applied to any pair of
positions in the choice set, providing that g, — g, ¢ F'.
We will now consider a small example using these expressions to derive the information matrix

for a design.

B EXAMPLE 6.3.1.

In this example we have 4 3-level attributes and want to be able to estimate main effects using
choice sets of size 3. The contrast matrix for the items in Table 6.1, those that will appear in the
first position of each choice set, is given by Equation 6.2. If we add the generators go = (1111)
and g3 = (2222), neither of which appear in the starting design, we obtain the design in Table

6.5. Using the results in Section 6.2, the contrast matrices for Brg4, and Brg, are given by

(B3 x Q1) ® %js
%j:& ® (B3 x Q1)

BF+92 =
(33 X Q1 X Qoxas, B3 X Q1 X Qixas, B3xXQ1X Q2><a3,2)

B

(33 X Q1 X Qoxay, B3z X Q1 xQixay, BzxQ1X sza“)_

and

(B3 x Q2) ® %.7'3
%j:a ® (B3 x Q2)
%(33 X Q2 X Qoxas, Bz X Q2 X Qixas, Bz X QaXx Q2Xa3,2)

| 55 (Bs % Q2 % Qoxars By X Q2 X Quears By X Q2 X Qo) |

Bpig, =

respectively. We can also calculate the A(m) matrix for each set of pairs, and thus find the
information matrix for the estimation of main effects, C'(mo)as, for each pair of options in the

same position. For the first two positions of the choice set,

Iy —Iy O
1
A(7l'0)172 meN Ig Ig 0
0 00
. Iy Iy 0O
= ﬁ —Ig Ig 0
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Since none of the items are repeated across the choice sets, we can arrange the items in F'; F'4 g5
and F' + g3 such that the A(my) matrices for each pair of items can be rearranged to have the
same form as A(mg)12. Then by using the relationship C(mg);; = BA(mo); ;BT where B is

normalised to give BBT = I, the expression for C(mg)1 2 is

T
' A B
C(WO)1,2 = 732/2 [BF BF+g2 BA}XQ —Ig _[9 0 XW B£+g2
0 00 T
BA
1
= 376 [(BF - BF+g2) X B% + (—BF + BF+92) X B£+92]
1
= 376><(318)
1
= 375[8a
with p= 2. Slmllarly, 0(71'0)1,3 = 3%18 and 0(71'0)273 = %Ig Then
C(mo) = Y Clm)s;
1<j
1
= —Is.
81°® O
Option 1 Option 2 Option 3
00 00 1 1 1 1 2 2 2 2
1 0 1 1 2 1 2 2 0 2 0 0
2 0 2 2 01 0 0 1 2 1 1
01 1 2 1 2 2 0 21 01
1 1 2 0 2 2 01 01 1 2
2 1 01 0 2 1 2 11 2 0
0 2 2 1 1 0 0 2 2 010
1 2 0 2 2 010 0 0 2 1
2 210 0 0 2 1 1 0 0 2

Table 6.5: The choice sets used in Example 6.3.2

Instead of multiplying the contrast matrices numerically, we can take advantage of the struc-
ture that they have. This will result in an expression which is easier to generalise. We start by

returning to Example 6.3.1.

B EXAMPLE 6.3.2.
In this example, we use the structure of the contrast matrices and A(mg) to derive C(mg) for the
design in Table 6.5.

First, notice that the inner product of any two rows of Br (or Bp.g,) that correspond to
different attributes will be equal to 0. Thus BrBL and Bpg, BL +g, are block diagonal. Since
the addition of g; can be thought of as a 1-1 mapping of the levels in an attribute of F' to the
levels of the same attribute in F' + g;, this property also holds across the rows corresponding to

different attributes in Bp and Bpi4,. Thus BFBnggi and Bpg, BIT,: will also be block diagonal.
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We then use the expressions for the contrast matrices derived earlier to simplify each of these

products. Firstly, Br BL becomes

1 1.1 1
7 %13), (ﬁﬂs ®B3)(%

(B3QoQoB] + B3Q1Q_1B5 + B3Q2Q_2B7 ),

BrBY BlkDiag | (Bs ® —=47) (BY ® 3 © B3 ),

Wl Wl

(B3QoQoB3 + B3Q2Q_2B3 + B3Q1Q_1B3)

BlkDiag [BsBj , B3B3 , B3B3 , BsBj | .

We can find a similar expression for BpBL tgi

1 . sl 1 1
ﬁjS)(Q—gz,lBi’) ® ﬁ]i’))a (% 73

(B3QoQoQ-g, , B3 + B3Q1Q-1Q_g, ,Bf + B3Q2Q_2Q_, ,B] ),

BFB£+gi =BIlkDiag | (Bs ® 73 ® B3)(—=4s ® Q_g,,B3 ),

(B3Q0QoQ—g, . B3 + B3Q2Q_2Q_g, ,Bs + B3Q1Q_1Q_gy, ,B])

=BlkDiag [B3Q_,, B3 , BsQ—_g, , B3 , BsQ_g, ,B] , B3Q_g4, , B3 | .

Wl — Wl

Similarly, the remaining two products are
BF‘HL:B%‘-' = Bllea‘g [B3Qg2,1Bg’ B3Q92,2Bg’ B3Q92,3B§7B3Q92,4B§] )
and

T
BF+91‘BF+gz‘

= Blleag [B3Q92,1Q—92,1B§’ B3Q92,2Q—92‘2BST? B3Q92,3Q—92,3B§7 B3Q92,4Q—92,4B§}
= BlkDiag [B3Bj , B3B; , BsBj , B3Bj | .

Then the information matrix for the estimation of main effects only for the first two options

across all of the choice sets is

1 .
0(71'0)172 = mBlleag [33(213 - ng,l - Q—gz,l)Bg;’ B3(213 - ng,Q - Q—gz.z)Bg?
B3(2‘[3 - ng,s - Q—92,3)B§7 B3<2I3 - Qg2,4 - Q—92,4)BZ’T]
1 .
= ——— BlkDiag [B5(2]5 — Q1 — Q2)B] , B3(2I3 — Q1 — Q2)B],

32 x 34
B3(2I3 — Q1 — Q2) B3 , B3(2I3 — Q1 — Q2)B] |
1
= 35 BIkDiag [Bs (315 — J3) B, Bs(31s — Js) BY , B3(31s — J3) B3, By (313 — J) By |
1
= B—GBlkDiag [3B3 B3 ,3B3Bj ,3B3B3 , 3B3B; |
1
= ]
243°%

since Z?:o Qi = Js.
Of course this approach gives the same value for C(mg); 2 as the numerical calculation. Sim-
ilarly, the application of this result will give C(m¢)1,3 = Ti?)lg and C(mg)2,3 = ﬁ[g, once again

resulting in C(mo)n = g5 Is. O
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This strategy generalises. In general, the information matrix for the pair of items in the first

and 7*" positions is

’I’YLQNC(TI'Q)M
Biy B
1 |Bri Brig.1 Ba, 1 Lo ~Tpe-r 0 o o
NZE B B B. Ty — —Lpe—r Lpr 0O X o2 Brigi1 Brig.»
F.2 F+g:,2 A2 0 00

T T
Bi, B,

r T T T T
BF7IBF,1 - BF+gi7lBF,1 - BF,lBF+gi,1 + BF+gi7lBF+gi,17

T T T T
Bp1Bpy — Brigi 1By — BriBpig, o + Brig,1Bpig, o

3
[\v]

~
N

T T T T
Br2Bpy = Brigi2Bpi — Br2Brig, 1 + Brig.2: Brig, 1)

T T T T
Br2Bpo — Brig,2Bpo — Br2Bpig, o + Brig, 2Bpig, o]

where Br1 and Bpyg,1 contain the rows of the contrast matrices Br and Bpig4, respectively
corresponding to the first k —p attributes, and Br o and Brg, 2 contain the rows of the contrast
matrices Br and Bpyg, respectively corresponding to the remaining p attributes.

By considering each of these matrices individually we simplify this expression for m? NC'(m);, j
greatly. First, recall from Section 1.B that two contrasts with coefficients A; and u; are orthogonal

if and only if
y4

> =

i=1 "

By construction, each pair of attributes contains all possible pairs of levels equally often. There-
fore the product

BF,(ql)vaF,(qQ)»
where B (4,) and B}%((D) are the rows of Br corresponding to the levels of distinct attributes ¢

and gz, will contain each combination of A\; and u; equally often and thus

BFv(‘Il)Bg,( 0.

q2) =

If we add the generator g; to a starting design, we provide a 1-1 mapping of levels of the
attributes in F' to the same set of levels in each of the attributes. This preserves the property

that within each pair of attributes all of the possible pairs of levels occur equally often. Then

T
BF+9i7(q1)BF+gi,(qz) =0
for q1 # q2. Hence we have

BF7lB£72 = O, BF+gi7lB,117—'+gi,2 = 0, and
BpaBh, =0, Bruyg,2BF 4,1 =0.
In fact, since the generator forms a 1-1 mapping of the set of attribute levels onto itself, all of
the pairs of levels in attribute g; of F' and attribute g2 of F' + g; will also occur equally often,
for ¢1 # g2. Then for any generator g;
T _ T _
Bp1Bpig,2 =0, Brygi,1Bpy =0, and

T T
BF,QBF+gi,1 =0, BF+91:,ZBF,1 =0.
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The same reasoning shows that the matrices

T T T T
Br1Bp,, Br1Bpig, - Brig;1Bp 1, Brpig;1Bpyig, 1

T T T T
Br2Bp s, Bp2Bpg, 2 Brig,2BF 2, Brig: 2Bpig, 2

are block diagonal. For example,

Br,)
Br,(2)
. - ,
BrpiBryg, 1 = : X[B};+yq,7(1) B£+gm(2) Bgﬂ“(k_p)}

_BF,(lcfp)
BF,(l)B%:+giv(1) BFy(l)B£+gi1(2) BF’(l)Bgﬂi’(kip)

_ BF,(Q)B%:+91"(1) BF,(Q)B£+91‘1(2) BF’(Q)B;;H“(kip)
BF,(kfp)B%:wi,(l) BF,(k*P)B£+yia(2) BF’(kfp)Bgﬂi’(kip)
Br,1)BF g, 1) 0 S

|0 BrBrig -+ 0
o 0 BF,(k—p)Blzﬂzi,(k—P)

Using this, we can now find B 1B%L +g;,1- Since we know that this matrix is block diagonal,
we only need to consider the (g, q)*™" block, where 1 < ¢ < k — p. So the row of block matrices

of the contrast matrix Bp4g4, 1 corresponding to the g™ attribute will be

1 1 1
Briw ()= |—if®...0 —jF @ (B,Q,. ®‘T®...®'T}
F+gi,(q) [\/Z’“ \/Z.N ( éQgL,q) \/Z’“ \/Z“

and the transpose of this row of block matrices will be

1 1
T o .
Brigi( = [\/Z“ RN

Then the (g, q)t" block of BpaBf,,, , will be

1 1
ir ® _.BT®'®...®'}
Je® (Q-g,,By) i i

1., 1., 1., 1.
Br)Brig = 73030 ®. - ® 35050 ® (BiQ g, BI) @ 3570 ® ... ® 55 e
= 1®...91® (BiQ_y, B )®1®...®1
= BQ-, B

Notice that if i = 1 then Qg, .4, . = I¢, which gives
Br(q)Blg) = BeBi -

Then the (1,1) block of m? NC(mg)1; can be simplified to

1 .
EBlleag [BE(QIK—l - ng - Q—gm)BéTv 35(215—1 - Qgi,z - Q—gia)BlTv R

BZ<215*1 - Qgi,kfp - Q*Qi,kfp)BtT] .
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Now consider the terms involving Bpig4, 2. Recall that the ¢*™™ row of block matrices in

Brig,.2 will be

1
Brigi(q) = -2 %

[ (Bng'iqu(OXaq,1+-~-+0><aq,h—1)) ® %Jg ®...® ﬁ]?,
(BZQgi,qQ(OXaq,1+...+0><aq,h,,2+1Xath,l)) & %Jg ®...® %_]zﬂ, e

(BEQgi,qQ(Oxaq,1+...+0><aq,k,2+(y£*2Xaq,;L,l)) ® %Jg ®...® %J{a ceey

(BéQgi,qQ(a"'_z><aq,1+...+o/'_2Xaq’h,l)) ® %J{ Q...® %Jg

where 1 < h < k — p and there will be (h — 1) j7s in each block matrix. Then we may express
BF+91:72 as
Brigi(k—p+1)

BF+gi,(k*p+2)

Brigi2 =
Brig, (k-1
L BF"ngv(k) i
and the transpose of Bryg, 2 as
T _ | pT T T T
Brigi2 = [BF+gi,<kfp+1> Brigith-pt2) -+ Brigit-1) Brigiv]

where

Q(OXaq,h_1+...+OXaq,1)Qgi,qB}fF) ® ﬁje ®...0® ﬁje

BT _ ]_ « Q—(lxaq,h1+O><aq,h2+...+0Xaq,1)Q—gi,qu> & %J@ X...Q %j[
Ftgi(a) = p(h—1)/2 . ’

(Q(OLZ2Xath,1+...+a22><aq_’1)Qgi,qu—‘) ® %J@ ®X...Q %Jﬂ

fork—p+1<qg<k.
We derive the block diagonal entries of Bpg, o BEL +g;,2> by finding the product of the row of

block matrices corresponding to the main effects of attribute g and the transpose of same, giving

{—1 -1

1
T T
BrBlig@ = T2 D <B€Qz’:f brag, X @571 —bra,, XQ—gmBE>
b1:0 bh,_lzo
1 -1 -1
_ T
gkt e Z <B£Qzﬁ1l(braqm_braqm) x Qigi’de >
b1:O bh71:0
1 -1 -1
= s . Y BiQoQ-g, Bl
b]ZO b},,71:0
gh—l T
= 1B, B
= BfQ*Qi,quT7

and
BF+9i»(Q)Bl:£,(q) = B@Qgi,qu'
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The same argument gives

Br,(q)BF (g = BeB/ , and
BF+yi,(f1)B£+gi,(q) = BiQuBy
= B,B}.
for K — p+ 1 < ¢ < k. Putting these results together, we obtain
1 .
m2NC(mo)1; = 7 BlkDiag [BFBE + BpgiyBEig. . — BrBFig,, — Brigi,BEe...,
BFB?«: + BF+gi,kBg+gi,k - BFBIY«:-&-ng - BF'HM,I@B};

1 .
= ; BlkDiag [Be(2Is — Qg,y — Q—g,,)B; , Be(2Is — Q. , — Q—g,,)B] , ...,
(21@ ng k—p Q*gi,k—p)Bgv Bf(QIZ - Qgi,k—p+1 - Q*gi,k—p-m)BlT’
(21@ ng k—pt2 Q*Qi,k—m-z)Bt:Fv ) Bf(2lf - ng‘,,k - Q*QM)B,{] .

Then by dividing by m?N, where N = ¢*~P, we obtain the information matrix for the

estimation of the main effects of each attribute.

C("rO)li Blleag [BZ(ZIE - ng’,,l - Q_gt,l)BZ? ceey (21@ le k Q_gzk)BZ} .

1
m2(k
We can use a similar argument to show that this is true for any pair of positions, ¢ and j, where

g; — g; ¢ F. This expression will be used in Theorem 6.4.1 to obtain optimal designs when all

g: ¢ F. Now we turn out attention to the case where g; € F.

6.4 Constructing the Information Matrix - Generator Ap-

pears in the Starting Design

When g; € F, the A(mg) matrix does not take the same form as when g; ¢ F'. However, we can
consider a different partitioning of the contrast matrix and obtain a useful form for the A(mg)
matrix. We use some of the properties of GF[¢], where ¢ is a prime power, to do so. We now

consider an example of how this will be done.

B EXAMPLE 6.4.1.

Consider a 5°~3 experiment with the defining equations

bs = by +b
by = 2b;+by
bs = 3b; +bs.

This gives the fractional factorial design shown as the starting design in the first column of Table

6.6. Using the results from Section 6.1, we can express the contrast matrix for the starting design
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Bpr as

B5®%jg

%J})T@B5

Br = Bs BsQix1 BsQax1 BsQsx1 BsQaxi
Bs BsQix2 BsQax2 BsQsx2 BsQaxa
Bs  BsQixs BsQaxz BsQsxs BsQaxs

Bs ® %Jg

%Jg ® Bs
= Bs BsQ1 BsQ: BsQ3 DBsQu
Bs BsQ2 BsQs BsQ1 BsQ3

Bs BsQ3 Bs;Q1 BsQu BsQ2 |

To construct the remaining options of each choice set in the choice experiment, we add a set

of generators to the starting design. In this example, we will let m = 3 and use the generators
g2 = (11234) and g3 = (33313), noticing that g, € F, g3 ¢ F, and g5 — g2 = (22134) ¢ F. The
design formed by this set of generators is shown in Table 6.6.

In order to calculate the information matrix for the first two options from all of the choice sets,
we partition the items in F into five sets of items {F1, Fy +g2, F1 +2g2, F1 + 392, F1 +4g2}, where
Fy is chosen to make these five sets a partitioning of F'. This partitioning is possible because
the principal fraction of a fractional factorial design is closed under component-wise addition in
GF{]. Suppose that we let F} consist of those items in F' that have the first attribute at the 0
level. Then

0 00 0O

01 1 11
hn=10222 2],

03 3 3 3

0 4 4 4 4

and the remaining sets, shown in Table 6.7, form a partitioning of F'. The By matrix can then

be expressed as

Br = |: BF1 BF1+92 BF1+292 BF1+392 BF1+492 } :

Notice that if g € F then g and g + g> appear in the same choice set. Also if g + 4g> € F then
g +4g2 and g + 4g2 + g2 = g appear together in another choice set. So as written in Table 6.7,
each item appears in a choice set with the entry in the column to the left of it and in a choice
set with the entry in the column to the right of it, where columns 1 and 5 are viewed as being

adjacent. Then A(m); 2 is equal to

oy —Is 0 0 —Is
s 205 ~Is 0 0
1 0 -I; 2I; —I, 0

’ m:N | 0 0 —I; 2I, —Is
s 0 0 —Iy 2Is
0 0 0 0 0

=
3
[=)
SN~—
=
()
Il
o oo o o o
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Option 2 Option 3

Option 1

33 3 1 3
3 4 4 2 4
300 3 0
311 41
3 2 2 0 2
4 3 4 3 1
4 4 0 4 2
4 01 0 3

11 2 3 4
4 1 2

0 0 0 0O

2 3 40
1 3 4 0 1
1 4 0 1 2

1

0 2 2 2 2
03 3 3 3
0 4 4 4 4

101 2 3
21 3 0 2

2 2 4

1 01 2 3
11 2 3 4
1 2 3 40
1 3 4 01

3

1

2 3 0 2 4
241 30
2 0 2 41
31 4 20
3 2 0 31
3 3 1 4 2
34 2 0 3
30 3 1 4
41 0 4 3
4 2 1 0 4

4

1

4 2 3 2 0
0 3 0 0 4

1 4 0 1 2
2 0 2 41
21 3 0 2
2 2 41 3
2 3 0 2 4
2 4130
30 3 1 4
31 4 20
32 0 31
3 3 1 4 2
34 2 0 3
4 0 4 3 2
4 1 0 4 3

4 2

4
0 0 2 21
01 3 3 2
0 2 4 4 3

0

1 3 1 2 2
1 4 2 3 3
1 0 3 4 4

1 0
4 4 3 2 1
4 0 4 3 2

4 3 2

1 4 00

1

1
2 3 2 40
2 4 3 01
2 0 41 2
21 0 2 3
2 21 3 4

1 2 0

11
0 2 2 2 2
0 3 3 3 3
0 4 4 4 4
0 00 0O

0 1 1

4

0

1

43 2 10
4 4 3 2 1

Table 6.6: The choice sets used in Example 6.4.1

Then the information matrix for the first two options in the choice sets is

2 [ BF1 BFl-‘rgz BF1+292 BF1+392 BF1+492 B

1
53/

C(’”o)m

2 N~ B
a o & o>
o a4 o @+
+ + + +
BEEE B BE RE R
[Salsa s AR aa I A
L 1
™
— |
i)
X
r 1
o oo o oo
L e e e
| [
© o B Wwe
[
© o2 p o o
[
NI IRC I I
[
D oe o o e o
| |
L 1
0
— | N
[N}
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Fy Fi1+ g2 Fi + 2g2 Fi + 3g2 Fi +4g2

00000 11234 22413 33142 44321
01111 12340 23024 34203 40432
02222 13401 24130 30314 41043
03333 14012 202141 31420 421014
044414 10123 21302 32031 43210

Table 6.7: The partitions of Br in Example 6.4.1

0(71'0)172
1
= x5 S [ Br, Br, 19, BF, 29, Bri 139, BF 149, }
[ B%‘; [ Bl:gﬂrgg [ B§1+492 ]
B£1+gz B§1+2gz BI:‘C1
x |2 B§1+292 - B£1+3gz - Blj‘_:1+92
B£1+3g2 B£1+4gg BI€1+292
L B£1+492 - L BIJ*:l _ L BIIJ*:1+392 -
= m@BFB; — BpBf .y, — BrBh_g,)

_ ﬁBlkDiag [Bs(2Is— Qgy,— Q—gu )BT Bs(2Ls— Qyy s~ Q—g ) B
35(215 - Qg2,3 - Q_9273)B5T,B5(2I5 - Qg2,4 - Q—gu)Bgv
Bs(2I5 — Qg — Q—g, ) BY ]

= 5 BIKDing [B5 (215 — Qs — Q2)BY Bs(2l5 — Qs — Qa)BY By(2l5 — Qs — Qa)BY
Bs(2I5 — Q1 — Qu4) B3, Bs(2I; — Qs — Q2)Bi ] .

We can find C(mg)1,3 and C(mp)2,3 using the method that was shown in Example 6.3.2, which

gives
Clmo)is = gz BIKDIag[Bs (21 — Qs — Qa)BY, Bs(2ls — Qs — Q) B,
Bs(2I5 — Qs — Q2) B3, B5(2I; — Q1 — Q4) B3,
Bs(2I5 — Q3 — Q2)BY],
and
C(mo)2s = 2251>< 5 BlkDiag[Bs (215 — Q2 — Q3)BY, Bs(2I5 — Q2 — Q3)BY

Bs(2I5 — Q1 — Q1) B, B5(2I5 — Qs — Q2)BY
Bs (215 — Q4 — Q1)B7 .
By adding these matrices and substituting the @);, Bs and [5 matrices, we obtain the information

matrix shown in Table 6.8. O

We now use some of the properties of Galois fields to generalise this example. Since the

principal fraction of a regular fractional factorial design is closed under component—wise addition
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in GF[{], by adding a generator that is an item within the fractional factorial design to each
row of the fractional factorial design, we will yield a rearrangement of the rows of the fractional
factorial design.

Since the entries in the generator are elements of GF[{], for a non—zero element of g;, say

Ji,q, the set

{0 % gig, 1 X Gig, - - a2 x Gig}

contains each element of GF[{] exactly once. Then for any generator g; € F, or difference in

generators g; — g;, where each of the entries in the generator are non—zero, the set of generators

G={0xg;1xgi....,a""% xg;}
will contain each element of GF[{] exactly once in each position, and therefore the set of gener-
ators will form a subgroup of F.
With a suitable selection of F}, we partition the items in F' to form ¢ distinct sets Fy, F} +g;,
P +2xg; ..., 1+ af=2 x gi. We partition the columns in the contrast matrix Bp in a similar
way; that is,
Br = |Br, Br+g, Brit2xg;, --- Brjat xg,i] .

Then if g; € F is used as a generator, the A(mp)1; matrix can be written as

mQNA(wO)M
[T S S 0 0 ... 0 0 0 oy
~Tpe-pr 21 —Ipepr O 0 0 0 0 0
0 0 0 0 ... 0 Iy 20pos —Ipps O
—Ipe—pr 0 0 0 ... 0 0 —Ipepr 2Ipp1 0
0 0 0 0 ... 0 0 0 0 0 |

since each item in F' will appear as an option in the same choice set as two other items, one
belonging to the partition to the left of it, and one belonging the partition to the right of it
when Bp is written in this way. Then by substituting the expression for A(mg);,; into the identity
C(m)1; = BA(mg)1; BT, and taking note that items that are not in F will not appear as options

in positions 1 and i of the choice sets, we obtain

mzNBA(wo)uBT
1
= M [BFlvBFlJrgiaBFlJrania .. '7BF1+0/*2><gmB}ﬂ
[ 20 — Iy 0 0 ... 0 0 0 g1 O
—ng,p,1 2Ilk7p71 _ngfpfl 0 0 0 0 0 0
X
0 0 0 0 ... 0 —Ipvs 2L —Ipps O
Ipws O 0 0 0 0  —Ipps 20pps O
i 0 0 0 o ... 0 0 0 0 0 |

XTP/Q I:BFI,BF1+gi,BF1+a><gi, ey BF1+0/*2><givBA]
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mzNBA(ﬂ'o)liBT
-2
1 «
671) Z [BFlJ"ng’? (7B£1+(j—1)><91: + 2Bf7;1+j><91t B B£1+(j+1)><g7¢)}

Jj=0
aZ—Z

1 T T T
E, Z [QBF1+j><giBF1+j><gi - BF1+j><Q'iBF1+(j—1)Xg¢ - BF1+j><gz‘BF1+(j+l)><gJ .

§=0

Since the set {F] +z x g;|0 < z < a’~?} is a partition of F, we can simplify the components
of MQNC(WO)M above to obtain BFBEQ, BF+giB}';, and BFB%_W respectively. Thus, we can use

some of the results from Section 6.3 to obtain

C(’ll'o)li = mQNBA(‘Ko)liBT
1
= ZTD( — BpBf 4, +2BpBf — Brig,Bp.)

1 .
= ZDBlleag [BE(QIZ - Qgi,l + Q*gi,l)Bg7 SR BZ(2IE - lek + Q*gi,k)B;gT] :

This is identical to the form of C(mg)1; when g; ¢ F, as derived in Section 6.4. A similar
argument can be used to show that this result holds for an arbitrary ¢ and j, where g; —g; € F'.
If there is a mix of generators, some g; € F' and some g; ¢ F', then we can treat the information
matrices for each pair of attributes identically.

If, however, we choose m = £ generators such that the generators form a subgroup of F,
then we obtain a special case of the above construction that allows us to reduce the number of
choice sets while maintaining the efficiency of the design. This property is explored in the next

example.

B EXAMPLE 6.4.2.
Let us consider a set of generators that form a subgroup of F. We may modify the fractional
factorial design from Example 6.1.1 to ensure that a suitable set of generators can be found. To

do this, we must enforce the restriction
a1+ a;2#0,

thus allowing at least one item in F' to have non—zero entries for each attribute. Table 6.9 gives

one such starting design, with (112) and (221) as items with non—zero entries for each attribute.

F
0 0 O 0 1 0 2 2
1 01 1 1 20
2 0 2 2 1 2 21

Table 6.9: The 32! fractional factorial design used in Example 6.4.2

We then choose a subgroup of the fractional factorial design F' to form the set of generators.
The set G = (000, 112, 221) forms such a subgroup, which gives the design in Table 6.10. We may
also partition the items into three groups {Fy, Fy + g2, F1 + 292}, the three blocks of columns on
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Table 6.9. Since g3 = 2g2, we may write the A(mg) matrix as

A(mo) = Y Almo)iy

1<j
X 2y —I; —1I3
= 3xgr 5| L 2 Iy
—Is —Is 2I3
. 2y —I; —1I3
- ?7 —Ig 2.[3 —13 5
—Is —Is 213

where the contrast matrix can be partitioned into the contrast matrix for F}, and the contrast
matrix for F; plus multiples of the generator. This gives
1

B= 7 [BFl Br, 1g, BF1+292} :

It follows that the information matrix for the estimation of main effects is
Clroar = =T,
27
We notice that the A(mg); ; matrices are identical for each pair of options. This suggests that
there is some scope to decrease the number of choice sets used to obtain this information. We
could use F) as the starting design and then let each subgroup form a separate option within
the choice set, thereby reducing the number of choice sets to the 3 shown in Table 6.11. Then

the A(mg);,; matrices for each of the pairs of options will become

) I3 —I3 0 ) I3 0 —1I3
A(mo)1,2 2 x3 I3 I3 0|, A(mo)1,3 323 00 0|,
0 00 —I3 0 I3
) 0 0 0
and A(ﬂ'o)23 = 32 % 3 0 Is —1I3
0 —I3 I3

Since A(mg) is the sum of these A(m); ; matrices, we have

A(mo) = D Almo)iy
i<j
) Uy —I3 —Is
Fx3| B 2k
I —I; 2l

It follows that the information matrix for the estimation of main effects will be
1

C(mo)m = ?7[8,

as before. This demonstrates that if the set of generators forms a subgroup of F', there is scope

to reduce the number of choice sets without changing the D—efficiency of the design. O

We can generalise the example to other cases where the set of generators form a subgroup of

F. That is, the choice sets formed where multiples of g; are used to generate the m = ¢ options
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Option 1 Option 2 Option 3

0 00 1 1 2 2 21
1 01 2 10 0 2 2
2 0 2 01 1 1 20
0 1 1 1 20 2 0 2
1 1 2 2 21 0 00
2 10 0 2 2 1 01
0 2 2 1 01 210
1 20 2 0 2 0 1 1
2 21 0 0 O 11 2

Table 6.10: The 33~ choice experiment used in Example 6.4.2 - 9 choice sets

Option 1 Option 2 Option 3

0 00 1
0 1
0 1

[ R R

2 2 2
0 2 0
1 2 1

S NN =

11
2 2

Table 6.11: The 32~! choice experiment used in Example 6.4.2 - 3 choice sets

of the choice set. If we begin by using F} as the starting design then within each pair of options,

each partition will appear with every other partition in each pair of options. Then the A(mo); ;

matrix is
[ (0= 1) Ipr—pr —Ippr —Ipp-p1 ... —Iprp—1 0]
7ng7p71 (E — I)Iekfpfl 7ng7p71 e 7[@]{77;771 0
1 ) . ) )
A(mo)ij = N : : P P
B —Ipe-pr —Tpeapr ... (=1D)Ip—pr O
I 0 0 0 ... 0 0

We now proceed to derive the information matrix C(mg) for the estimation of main effects

when using this design. Recall that
C(ﬂ'o)M = BA(ﬂ‘o)BT.
The product of the first two matrices is

BA(my) = miN [Br Brise, Britaxe. - Briiai-ixg, Ba
[ (0= 1) ppr —Ipp1 —Ippp1 .. —Ipp—p-1 0]
PR VNS ) A S Tpps O
X x : : Do Do
Ly R O V2 ) PR
i 0 0 0 ... 0 0|
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) £—2
E [e%
BA('NO) = m2N {Bp, — Z BF1+jX9i7£BF1+9i - Z BF1+j><gi’
Jj=0 j=0

-2 £—2
{BF, +axg; — E BF, tjxg;r-+ - dBrp 1at-2xg; — § Br +jxg:,0
3=0 3=0

However, since each element of g; is non-zero and the addition and multiplication is performed

within GF[¢], then 0 x g;,1 X g;,...,a’ "2 x g;, will contain each element of G F[] exactly once
-2

in each position. Then each entry in Z?:o BF, +jxg, Will be the sum of the corresponding row

of By, giving

aZ—Z

Z Br 4jxg; =0,

=0
and therefore BA(mg) can be simplified to

BA(TFO) = m |:£BF1 EBF1+gi KBFIJrani - EBFlJrae—z Xgi 0:| .

Then by post—multiplying BA(mg) by BT, we obtain

4
BA(WQ)BT = m [EBFI feBFlJrgi éBFlJrani gBF1+aZ*2><g,; 0}
T
X |:BF1 BF1+9¢ BF1+ani BF1+0/‘_2><9i Bﬂ
1
= 5 "Br x Bp

1 2
= et e

Then the information matrix for the estimation of main effects will be
1

C(mo) 7

BA(mo) BT

11,

- 7722N€7’Z L=y
1

= k-

The determinant of this information matrix is
1\ k=D
det(C(mo) ) = <€k> .
While this would yield an efficient design based on the determinant of the information matrix
C (o), we can improve on this design as we did in Example 6.4.2. If; instead of using F' as the

starting design we use Fj, then we find that the choice sets will be
[Fl F1—|—gl F1—|—Oé><gi F1—|—Oée_2><gi .

We notice that each subgroup of F' still appears with every other subgroup of F', but in this
design each pair appears only once, and not in each pair of options as was the case in the

previous design. Therefore

[ (0= 1) In—pr —Ip—p—r —Ipp—p—1 ... —Ip—p—1 0]
—ng—p—l (f — 1)I€k—p—l —ng—p—l - —ng—p—1 0
1 ) )
A(ﬂ'o) - 2N . . . . . )
7[[’(77;771 7]6/071)71 7[[’(77;771 e (Z — 1)ng7p71 0
i 0 0 0 ... 0 0 |
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and it follows that

1
BA(mo) BT = m{eBpl (Briig, [Brisaxe, - (Bpiai-ixg, 0|
T
X|:£BF1 ZBF1+gi EBF1+04><91. EBF1+O/*2><gi B£:|
1 T
= mzNgBFXBF
1

= ey ke

This design will contain only N = ¢¥~P~! choice sets since the subset F; was used as the starting
design. Then the information matrix will be
1 1
———— Al
m2N pp k=D

1
= kak(efm

C(ﬂ'o)M =

which gives the same D—efficiency as the previous design, but uses fewer choice sets to do so.
The expressions for C(mg)ps derived in the last two sections can be used to find optimal
designs for choice experiments where only main effects are of interest. Theorem 6.4.1 establishes

the conditions under which the design will be optimal.

B THEOREM 6.4.1.

Let F be the principal block of a reqular fractional factorial design for k attributes with ¢ lev-
els each, where  is a prime power. Suppose that we choose a collection of sets of genera-
tors Go = {gag = 0,902, ,9am}, @ = 1,...,(, such that go,; # ga,; for all i # j. Let
9o,i = (Josi1:9a,i,2,-- -1 9aik) for i = 1,2,...,m and also suppose that the multiset of differ-

ences for each attribute over all sets in the collection

xi & ( )
a=1 q1;£q2 ga,ql,z ga,qQ,z

contains each non—zero difference in GF[{] equally often. Then the choice sets given by the rows
of F+901,F + 902, F + gam, for a =1,...,(, are optimal for the estimation of main

effects only, provided that there are as few zero differences as possible. O

Proof. Suppose that there are ( sets of generators. Then there will be ¢ x £~ choice sets in total.
Since information matrices are additive we may consider each set of generators G separately,
and add the information matrices.

Also let m = fx + y, where there are y entries that are repeated x + 1 times in the choice set
and £ — y entries repeated z times in the choice set. Then if we use the assumption that each

difference will appear equally often, there will be

(mim—1)— (z+ Dy —z(z—1)({ —1)) =25,

2

non-zero differences, ;=

Sy of each type of non-zero difference. The remaining
C((@+ Dy + (e — 1)(£ 1)) = Cm(m —1) - 25,

differences in the difference vector will be zero differences. Then, by using the assumption that

the multiset of differences for each attribute 7,

¢
& & (goz,ql,i - ga,qg,i)a
a=1q17#q2
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—
contains each non—zero difference in GF[{] equally often, and that Qo = I; and 2?202 Qi = Jy,

the sum of the permutation matrices can be expressed as

S Qo = g Salle— 1)+ (Gm(m — 1) 25T

i#J
2 28,

Substituting this into the expression for C(my); ; derived earlier, we obtain

¢
YD (C(mo)a)iy

a=11i<j

1 (m(m —1
— ZCékBlleag Bz( ( ; ) x 2I, — ZQQM*QM — Zng,lg“)Bﬁ

i<j i<j

Bé<cm( XQI@ ZQ%z gj.2 ZQ912 gi2 >B£Tv

i<j 1<j

¢m(m—1)
. By (2 x 21y — Z Q!]i,k—gj,k - Zng,k_!]i,k Bg

i<j i<j

1 2 205,
= Qé-gk Blleag I:Bé (Cm( - I)IE_ quJ( + (Cm(m — ) 7 1>Ig> BZ s

By <Cm(m — 1)[[ — K—LlSqu + ((m(m — 1) ZES )Ig) Bg R

., By <Cm(m -1, — %SqJZ + ((m(m —1) - ?55 )Ie) B! ]

1 208 25 208, 28
= ——BIkD B 71, — g BT B 17, g BF
m2C Ok 1ag{ Z(g 1 7 Jz) x e(g L= 7= Je> x

.,Bg(QeSng 25, J¢>BZ}

l—1 f—
However, B;J,B} =0 and BgIng = Iy_1, so this simplifies to
¢
208, 208, 28,
ZZ(C(”"O)a)m = QCZkBlleag {E 11, 7 1Iz—1,-~-amfe—1 .

a=1i<j

Since C(mo)pr = 361 oic; (C(mo)a)ij, we have

1 208 208, 208,
C(ﬂ-O)M = 2<£kBlkD1 g|:€ (]Z-IZ l7£ilf—17'-')mlf—1:|
208,
= m2COR(0 — )Ik(é 1)

Note that when the design parameters are fixed (i.e. m, k, and £) there are two variables in
the above equation, S and . Therefore the determinant of the information matrix is maximised

S, - ..
when T‘? is maximised.

If we recall that s
1
?q =3 ((x+Day+a(z—1)(£-1)),
then we can see that the determinant of the information matrix is maximised when the number
of non—zero differences in each generator is maximised. Equivalently, the D—optimal design will

be that which minimises the number of zero differences. O
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From the proof of Theorem 6.4.1 we can see that the determinant of the information matrix
is k(¢—1)

det(C(mo)ar) = (Trﬂ(?’i%—l))

We can determine the optimal value for this determinant by finding the least upper bound
for & - Notice that within each set of generators, the maximum number of differences for a given
m, k, and £ is equal to 25, and is independent of the other sets of generators. This is the case
since the designs obtained by each set of generators are adjoined as extra runs of the design, thus
acting independently. Then for an arbitrary ¢, Theorem 1 of Burgess and Street [2005] showed
that

¢(m? —1)/4, £ =2, m odd;

¢m?/4, =2, m even;
) cm® = (2 +2my +y))/2, 2<0<m;

¢m(m—1)/2, £>m.

Using this, we can find the optimal value for the determinant of the information matrix.

B THEOREM 6.4.2.
The mazimum value for the determinant of the information matriz when only main effects are

of interest and the design is symmetric where £ is prime is

<m2_1>k (=2, m odd;
2km2 ’ — 4 )
(2%)]“7 { =2, m even;

det(C(ﬂ'o)Myopt) =

m—1

mek—1((—1) ’ t= m,

2 k(£—-1)
<gk—1%g_1) - ﬁg@j—zlr(ztzj{)> ] 2< g < m;

)k(eq)

for a given m, k, and £. O

Proof. Theorem 1 of Burgess and Street [2005] show that the least upper bound for —q will be

(m? —1)/4, ¢ =2 m odd;
Sy m?/4, ¢ =2, m even;
< (m? — (bx? 4+ 2zy +y)) /2, 2<l<my
m(m —1)/2, £>m.

Then if we substitute this upper bound into det(C(mg)as), we obtain

2 S, keD)
iComen) = (G (2),,,)

(%)k(f—l) ; =2, m odd;
B (miiykn(z/ﬂ))k“il) ; ¢ =2, m even;

(2t 2) Ny

(%n;ezq(e 11/2>k(£_1) ) t>m,
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m2—1 k
(kaz ) ) ¢ =2, m odd;
(%)k, { =2, m even;
det(C(mo) moopt) = 2 k(€—1)
(prertery — it} 2 <t<m
1 k(£—1)
(mékfl(f—l)) 5 14 Z m.

This result is the same as that obtained in Burgess and Street [2005] when a complete factorial

starting design was used, and ¢ was assumed to be equal to 1. O

This theorem is best illustrated in an example.

B EXAMPLE 6.4.3.

In Example 6.1.1 we introduced a 3*~2 fractional factorial design. We can use this as a starting
design for a design of a stated choice experiment. The starting design, which will form the first
option in each choice set, is shown as the first column of Table 6.4.

To obtain the other options, we add generators to the starting design. In this case, let the
experiment have m = 3 options in each choice set. Then we will need two generators to form
the remaining options. According to Theorem 6.4.1, we would like to maximise the number
of non—zero differences conditional on having each non—zero difference in GF[3] appear equally

often. The set of generators used in Example 6.3.2,

yielding the design in Table 6.5, satisfy these criteria. We can confirm this by looking at each of
the differences between the options. For each attribute » with 1 <r <4

g2r =gy = 1-0 =1 Gir—G2y = 0-1 = 2
93,"” - gl,T = 2 - 0 = 2 g17T —_ 93,r = 0 — 2 — 1
93,r — 92, = 2-1 =1 92r —93r = 1-2 = 2.

For each attribute, there are 6 non—zero differences and no zero differences. Thus 25 = 6 and
S = 3. Hence the information matrix for this design will be

208
m20F (0 — 1)Ik(4*1)
2x3x3

T3z —1) ?

1
= —I
s1 12,

C(mo)m

with determinant det(C(mg)as) = (25 )12,

1
81

We can check whether this design is optimal by calculating det(C(mo)ar,0pt) and comparing
it to the value calculated above. Using Theorem 6.4.2, the optimum value of det(C(mg)ar) for

k=4,¢=3,and m =3 is

1 k(1)
det(C(mo)mopt) = <mgk—1(g_1)>

2 4x3
- <3><33><2>
1\12
(=) -

Therefore this design is optimal for the estimation of main effects. O




Chapter 7

Conclusions and Research

Directions

In this chapter, we provide a summary of our results, and discuss some possible future research
directions arising from this thesis. This thesis aimed to increase the body of results on opti-
mal designs by considering models and design approaches that provide more realistic, and less
burdensome choice experiments.

In Chapter 1 we presented a summary of previously known results. Specifically we introduced
the Bradley—Terry model for paired comparisons, and the MNL model for multiple comparisons.
We presented results that allow researchers to find optimal designs for the estimation of main
effects for both symmetric and asymmetric designs, as well as results that gave optimal designs
for the estimation of main effects plus two-factor interactions for 2* experiments when using
these models. Chapter 1 also introduced paired comparison models that incorporated ties and
position effects.

In Chapter 2, we derived the information matrix for the estimation of the contrasts Bpy
when the Davidson ties model is used. There had been no previous work on the optimal design
of experiments that incorporated ties. We used this information matrix to show that the designs
that are optimal for the estimation of the contrasts By when using the Bradley—Terry model are
also optimal for the estimation of the contrasts Bpy and the ties parameter when the Davidson
ties model is used.

We used the equivalence result found in Chapter 2 to find optimal designs for specific sets of
contrasts when the Davidson ties model is used. We gave results that allow researchers to find
optimal designs for the estimation of the main effects of the attributes and v where attributes may
have any number of levels. We also established rules for finding optimal designs for the estimation
of the main effects plus two-factor interactions of the attributes and v for 2* experiments. We
used simulations to show that these designs led to parameter estimates that were unbiased and
symmetrically distributed.

In Chapter 3, we introduced a generalisation of the Davidson ties model that allows an
arbitrary choice set size. This generalisation was analogous to the generalisation of the Bradley—
Terry model to the MNL model. In this chapter, we derived the normal equations for the
maximum likelihood estimators, and the information matrix for the estimation of the contrasts

in Bpy. Once again, we used the information matrix to show that the optimal design for the
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estimation of the contrasts in By when the MNL model is used is also optimal for the estimation
of the contrasts in Bpy and v then the generalised Davidson ties model is used.

The result showing that the optimal designs for both models are the same was applied to
specific sets of effects. We used the equivalence result to find rules giving the optimal designs
for the estimation of the main effects of the attributes and v where attributes may have any
number of levels. We also used the equivalence result to generate rules to find the optimal design
for the estimation of the main effects plus two—factor interactions of the attributes and v for 2%
experiments. Again, we used simulations to show that these designs led to parameter estimates
that were unbiased and symmetrically distributed.

One sensible extension to the work on ties in this thesis is to investigate what happens when
the ties parameter depends on the number of items considered indistinguishable. That is, we
may want vo,vs, ..., VU, to reflect the fact that there are ¢ items in the choice set that the
respondent finds equally attractive, for 2 < ¢ < m. If this is the case, we would need to revisit
the convergence criteria, as well as optimal design results.

Another research direction would be to consider different methods of incorporating ties into
choice models. For example, we may wish to define a separate m parameter for finding each
subset of the choice set equally attractive. Comparisons between ties models will require some
sort of goodness—of-fit test to determine which approach captures preference behaviour most
effectively and most parsimoniously. If we find that a different approach yields more effective
models, then we will need to consider convergence criteria for the model, maximum likelihood
estimators and optimal designs for the new model form.

In Chapter 4 we derived the information matrix for the estimation of the contrasts in Bpy
and the position main effect when the Davidson—Beaver position effects is used, allowing us to
incorporate the position of the item in a choice set into the selection probability of the item. We
found that the optimal designs for the estimation of the contrasts in By when the Bradley—Terry
model is used were also optimal for the estimation of the contrasts in B~y and the position main
effects when the Davidson—Beaver position effects model is used.

We used this equivalence result above to find rules to give optimal designs for the estimation
of the main effects of the attributes and the position main effect where attributes may have any
number of levels. We also used the result to find rules that give optimal designs for the estimation
of the main effects plus two—factor interactions of the attributes and the position main effect for
2% experiments. Once again, we used simulations to show that the parameter estimates obtained
from these designs were unbiased and symmetrically distributed.

In Chapter 5 we introduced a generalisation of the Davidson—Beaver position effects model
that allows for an arbitrary choice set size. We derived normal equations for the maximum
likelihood estimators and found an expression for the information matrix for the estimation of
the main effects of the attributes and contrasts of the position effects. We used this information
matrix to prove a general result for finding optimal designs for the estimation of the main effects
of the attributes and contrasts of the position effects. This optimality result was over the set of
competing designs that included all choice sets characterised by a particular ordered difference
vector if that difference vector was said to be included in the design. We also found an expression
for the information matrix for the estimation of the main effects plus two—factor interactions of
the attributes and contrasts of the position effects.

Chapter 5 also discussed designs obtained by embedding an orthogonal array into a complete
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Latin square. This type of design does not belong to the class of competing designs that were
considered earlier in the chapter, since the inclusion of one choice set characterised by a particular
difference vector did not mean that all choice sets characterised by that difference vector are
included in these designs. We found that, on some occasions, this type of design was more
efficient than the optimal design from the class of designs considered earlier. We did find,
however, that in order to maintain a diagonal C' matrix for a 2* design using this approach, we
needed to place restrictions on the number of attributes that we could include in the design, and
how they are defined. Once again, we used simulations to show that the parameter estimates
obtained from these designs were unbiased and symmetrically distributed.

Further research could consider the properties of the orthogonal arrays that can be embedded
into a complete Latin square to obtain a diagonal C' matrix. We could also look at the properties
of designs constructed in this way that have more than two levels in each attribute.

Chapter 5 did not include any results on the optimal design of choice experiments for the
estimation of the main effects plus two—factor interactions of the attributes and contrasts of
the position effects when the generalised Davidson—-Beaver model is used. Future research could
consider this problem, first for 2¥ experiments, and then for a general asymmetric design. The
latter of these research directions would depend on the establishment of a similar result when
the MNL model is used, a result that has not been proven to date.

We could also consider variations of the position effects model. One such variation would be
to consider the influence of an adjacent item in the choice set on the perceived attractiveness of
the item. For example in a taste testing task, the presentation of a sample with a strong flavour
could reasonably have an effect on the taste of subsequent items. We anticipate that the model
form in this case will be different, as which items are adjacent to each other is now important,
and not just the position in the choice set. Research into modelling this situation would involve
the development of an appropriate utility function, deriving normal equations and the C matrix,
and finding results that give optimal designs.

Burgess and Street [2005] have a result that uses a complete factorial as a starting design.
In Chapter 6 we extended this result so that a fractional factorial design could be used as the
starting design. Specifically, we consider symmetric designs with a prime power number of levels
and are constructed using the Rao-Hamming method. We used permutation matrices to express
the contrast matrix for the items in the first position of each choice set. Additional permutation
matrices were then used to obtain the contrast matrices for the remaining options in each choice
set. These contrast matrices were then used to derive an expression for the information matrix
for the estimation of main effects. We then used the information matrix to prove a result that
gives optimal designs for the estimation of main effects in ¢* experiments, where ¢ is a prime
power when an orthogonal array is used as a starting design.

The results in Chapter 6 allow us to present choice experiments with fewer choice sets to
the respondents, without sacrificing design efficiency. This reduces the burden placed on the
respondent, and should lead to more considered and more consistent choices made by respondents
due to reduced fatigue.

The designs that are considered in Chapter 6 are quite restrictive in the number of levels
each attribute may take. The design optimality results only apply to symmetric experiments
with a prime power number of levels. We can construct orthogonal arrays that have non-prime

power numbers of levels, or are asymmetric. Future research could adapt the methods used here
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to extend the design optimality result to designs that use these other orthogonal arrays as a
starting design.

There are constructions other than the Rao-Hamming construction that yield orthogonal
arrays, linear or otherwise. For example, orthogonal arrays can be constructed from difference
schemes, Hadamard matrices, and codes. Future research could look at how to find similar design
optimality results when these orthogonal arrays are used as the starting design.

In this thesis, we made several assumptions such as the an independently and identically
distributed Extreme Value type I error distribution. In Chapter 1 we linked this assumption
to the assumption of independence from irrelevant attributes. We also presented an example
where independence from irrelevant attributes was not a sensible assumption. Further research
could be devoted to looking at the robustness of the optimal designs presented here when such
assumptions are violated. For example, we could look at optimal designs in cases where the error
distribution is correlated with the error distributions of other items in the choice set. We could
also look at correlation structures between choice sets. The other aspect of this assumption that
we may wish to test is the error distribution itself. We could test the effect of different error
distributions, including skewed distributions, on the efficiency of the optimal designs.

There are also some more complex choice models that have not been considered in this thesis.
These models go some way to accommodating the violations in assumptions mentioned earlier.
Such models include the mixed logit model, the nested logit model, and models with alternative
specific constants. There may be some scope to incorporate ties and position effects into these
models. In addition, there is still a lot of scope for developing theory relating to optimal designs
for these models.

The final research direction we consider here is models that incorporate both ties and position
effects. Recall that Davidson and Beaver [1977] proposed a paired comparisons model that
incorporated both of these effects. One curious feature about this model is that the utility of
finding the two items in the choice set equally attractive was independent of the positions the
items take. For this reason, it is not obvious how this model might be generalised for an arbitrary
choice set size. Future research may be directed towards finding a model form that incorporated
the respective positions of the items within the choice set to the utility of finding the items
equally attractive. Such a model may have a more intuitive generalisation. Once we have these
models, we could consider which designs are most efficient for the estimation of the contrasts in

Bp7, plus ties and position effects.
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