The role of oxidative, inflammatory and neuroendocrine systems during exercise stress in athletes

A thesis submitted for the degree

Doctor of Philosophy

March 2012

By

Katie May Slattery

Bachelor of Arts in Sports and Exercise Management
Bachelor of Arts (Honours) in Human Movement

Sport & Exercise Discipline Group
UTS: Health
University of Technology
Sydney, Australia
Certificate of Authorship and Originality of Thesis

I certify that the work contained in this thesis has not been previously submitted either in whole or in part for a degree at the University of Technology, Sydney or any other tertiary institution.

I also certify that the thesis has been written by me, Katie May Slattery. Any help that I have received in my research work and in the preparation of this thesis has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Katie Slattery

Date Submitted
Acknowledgements

‘A man [women] is not an island’, and PhD is not done alone. Many people have contributed to the completion of this thesis and I am sincerely thankful and appreciative to you all.

Associate Professor Aaron Coutts truly deserves the MVP award. Time is one of the most precious gifts you have, and you are always willing to give yours ... for the full 7 years it has taken me to finish this thesis. Thank you for your superb guidance and mentorship.

Honourable mention goes to Lee Wallace, who instilled my enthusiasm for sports science. Thank you for your encouragement, insight and feedback throughout my doctoral studies.

I would also like to thank Dr David Bentley my co-supervisor for his assistance and valuable advice.

Thank you to Dr Greg Peoples, Adam Zieba, Dr Ben Dascombe, Dr Dean Scully, Erin McCleave and Anna Ross for their assistance with data collection and analysis. The participants and coaches who readily volunteered to be part of the investigations. Moreover, thank you to editor extraordinaire, David Young.

I am grateful to the NSW Institute of Sport for their support and flexibility in allowing me to balance work commitments and study. Particularly, my manager, Robert Medlicott and Kenneth Graham in the Applied Research Department.

I would like to acknowledge the University of New South Wales, the University of Wollongong and the University of Newcastle for allowing access to facilities and equipment.

This research was supported by a UTS Faculty Grant, Australian Sport Commission General Collaborative funding, Douglas Hanly Moir Pathology and the NSW Institute of Sport.

Finally, to my family and friends, a huge thank you for all of your encouragement, well-wishes, patience and unwavering support.
Preface

This thesis for the degree of Doctor of Philosophy is in the format of published or submitted manuscripts and abides by the ‘Procedures for Presentation and Submission of Theses for Higher Degrees – University of Technology, Sydney; Policies and Directions of the University’. All manuscripts included in this thesis are closely related in subject matter and form a cohesive research narrative.

Based on the research design and data collected by the candidate, three manuscripts have been submitted for publication and one manuscript has been accepted, in peer-reviewed journals. These papers are initially brought together by an Introduction, which provides background information, defines the research problem and the aim of each study. A Literature Review then follows to provide an overview of previous knowledge regarding the effect of intensified training periods and antioxidant supplementation on the oxidative, inflammatory and neuroendocrinological response to exercise. The body of the research is presented in manuscript form (Chapter 3 to Chapter 6), in a logical sequence following the development of research ideas in this thesis. Each manuscript outlines and discusses the individual methodology and the findings of each study separately. The General Discussion chapter provides an interpretation of the collective findings and practical applications from the series of investigations conducted. Finally, a Summary and Recommendations chapter is a synopsis of the research hypothesis tested and conclusions from each project. Based on these findings, directions for future research are suggested. Author-date reference style has been used throughout the document and the reference list is at the end of the thesis.
List of Articles Submitted for Publication

Refereed Journal Publications

Conference Proceedings & Abstracts

Statement of Candidate Contribution

The contribution of each author to the investigations undertaken as part of the thesis is outlined in Table A below.

Table A: Percentage contribution (%) of each author to the investigations conducted during the candidature

<table>
<thead>
<tr>
<th>Author</th>
<th>Study 1</th>
<th>Study 2</th>
<th>Study 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Katie</td>
<td>Lee</td>
<td>Aaron</td>
</tr>
<tr>
<td></td>
<td>Slattery</td>
<td>Wallace</td>
<td>Coutts</td>
</tr>
<tr>
<td>Research design</td>
<td>80%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Ethics Application</td>
<td>80%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Grant Application</td>
<td></td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td>Therapeutic Goods Administration Approval Application</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject recruitment</td>
<td>100%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Data collection</td>
<td>50%</td>
<td>50%</td>
<td>70%</td>
</tr>
<tr>
<td>Data analysis</td>
<td>100%</td>
<td>90%</td>
<td>10%</td>
</tr>
<tr>
<td>Biochemical analysis</td>
<td></td>
<td>90%</td>
<td>10%</td>
</tr>
<tr>
<td>Statistical analysis</td>
<td>50%</td>
<td>50%</td>
<td>80%</td>
</tr>
<tr>
<td>Manuscript Preparation</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Manuscript Revision</td>
<td>25%</td>
<td>75%</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60%</td>
</tr>
</tbody>
</table>
Abstract

Introduction: Exercise induces a stress reaction that initiates adaptive processes, which can be modified by intensive physical training and/or exogenous antioxidant supplementation. However, the optimal exercise training strategy and corresponding level of antioxidant support for positive adaptation remains unclear. Therefore, the overall aim of this thesis was to investigate the interactions between exercise-induced changes within the oxidative, inflammatory and neuroendocrinological systems and antioxidant supplementation on athletic performance during intensive physical training. Three separate studies were undertaken and reported in four manuscripts. Study 1: In Study 1, well-trained athletes (n = 23) completed a 4 day food record during a period of intensified physical training. Collectively, the participants consumed a sufficient dietary intake of antioxidants (vitamin A, C and E) according to the Australian recommendations. Study 2: Study 2 used a crossover experimental design to examine the effect of intensive physical training on oxidative damage, inflammation, hormonal disturbances and performance capacity. Participants (n = 7) completed a high-intensity intermittent running protocol following both a reduced (LOW) and intensive (HIGH) 4 day physical training period. The results demonstrated that HIGH physical training led to an increased amount of muscle damage, decreases in sprint velocity (P < 0.001) and a reduction in total distance covered (P < 0.05) during the high-intensity intermittent running protocol. HIGH physical training also induced a greater increase in oxidative damage (xanthine oxidase) markers 2 h post-exercise (paper 1). Neuroendocrinological measures (growth and thyroid hormones) were not altered by training-induced fatigue (paper 2). These findings suggest that 4 day HIGH training can impair high-intensity running performance and exacerbate oxidative damage. Study 3: Study 3 used a double blind randomised placebo-controlled crossover design to investigate the effect of 9 d oral N-acetylcysteine (NAC) supplementation (1200 mg/day) in eight well-trained triathletes. Changes in performance (cycle ergometer race simulation) and pre- to post-exercise biochemistry measures were taken to determine the ergogenic effect of NAC and associated reaction within the oxidative and inflammatory systems. It was demonstrated that oral NAC supplementation enhanced repeat sprint cycling performance via an improved redox balance and promoted adaptive processes in well-trained triathletes undergoing intensive physical training. NAC supplementation was also effective at blunting the inflammatory response to exercise. Conclusion: Collectively, this thesis provides novel information regarding the dose-response relationship between training-induced fatigue, antioxidant supplementation and athletic performance.
Keywords

Antioxidant
Fatigue
Inflammation
Intensified physical training
Muscle Damage
N-acetylcysteine
Nuclear factor – kappaB
Oxidative damage
Performance
Hormone
List of Abbreviations

8-OHdG 8-hydroxy-deoxyguanosine
AMP adenosine monophosphate
AP-1 activating protein-1
AU arbitrary units
CAT catalase
Cdmax maximum amount of conjugated dienes
CI confidence interval
COX-2 cyclooxygenase
CR-10 category ratio 10
CV coefficient of variation
d Cohen’s d effect size
DAG diacylglycerol
DALDA Daily Analysis of Life Demands for Athletes
F2-isoprostane 15-isoprostane F2 concentration
FRAP ferric reducing ability of plasma
FT3 free triiodothyronine
FT4 free thyroxine
g Hedge’s g effect size
GH growth hormone
Gr glutathione reductase
GPX glutathione peroxidise
GSH reduced glutathione
GSH:GSSG reduced glutathione to glutathione ratio
GSSG glutathione
HIGH intensified training period
H2O2 hydrogen peroxide;
HSF heat shock factor
HSP heat shock protein
ICC intra-class correlation
IκB inhibitor -kappaB
IκK inhibitor - kappaB kinase
IL-6 interlukin-6
iNOS inducible nitric oxide synthase
ISAK International Society for the Advancement of Kinanthropometry
JNK c-Jun N-terminal kinases
LDH lactate dehydrogenase
lipid-ox lag time in lipid peroxidation
LOH redox inert alcohol
LOOH lipid hydroperoxide
LOW low training load
Lp length of lag phase
MAPK mitogen-activated protein kinase
MCP-1 monocyte chemoattractant protein-1
MDA malondialdehyde
MKK MAP kinase kinase
MnSOD manganese superoxide dismutase
mRNA messengerRNA
η2p partial eta squared
NAC N-acetylcysteine
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADPH</td>
<td>nicotinamide-adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NF-κB</td>
<td>nuclear factor-kappaB</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>NMT</td>
<td>non-motorised treadmill</td>
</tr>
<tr>
<td>O₂</td>
<td>oxygen</td>
</tr>
<tr>
<td>ORAC</td>
<td>oxygen radical absorbance capacity</td>
</tr>
<tr>
<td>Oxhem</td>
<td>oxidatively modified heme</td>
</tr>
<tr>
<td>P</td>
<td>phosphorus</td>
</tr>
<tr>
<td>p50/65</td>
<td>subunits of NF-κB</td>
</tr>
<tr>
<td>PC</td>
<td>Protein carbonyls</td>
</tr>
<tr>
<td>Pcr</td>
<td>phosphocreatine</td>
</tr>
<tr>
<td>PKC</td>
<td>protein C kinase</td>
</tr>
<tr>
<td>PKR</td>
<td>double-stranded RNA protein kinase</td>
</tr>
<tr>
<td>PLC</td>
<td>phospholipase</td>
</tr>
<tr>
<td>PPARγ</td>
<td>peroxisome-proliferators-activated receptor gamma</td>
</tr>
<tr>
<td>PPAR</td>
<td>peroxisome-proliferator-activated receptor</td>
</tr>
<tr>
<td>PUFA</td>
<td>poly unsaturated fatty acid</td>
</tr>
<tr>
<td>RDI</td>
<td>recommended daily intake</td>
</tr>
<tr>
<td>Redox</td>
<td>reduction-oxidation</td>
</tr>
<tr>
<td>R_max</td>
<td>maximum rate of oxidation</td>
</tr>
<tr>
<td>RPE</td>
<td>rating of perceived exertion</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>Se</td>
<td>selenium</td>
</tr>
<tr>
<td>SOD</td>
<td>superoxide dismutase</td>
</tr>
<tr>
<td>SRM</td>
<td>Schoberer Rad Meßtechnik</td>
</tr>
<tr>
<td>T</td>
<td>training load period</td>
</tr>
<tr>
<td>TAC</td>
<td>total antioxidant capacity</td>
</tr>
<tr>
<td>TBARS</td>
<td>thiobarbituric acid-reactive substances</td>
</tr>
<tr>
<td>TE</td>
<td>typical error</td>
</tr>
<tr>
<td>TEAC</td>
<td>trolox-equivalent antioxidant capacity</td>
</tr>
<tr>
<td>TEM</td>
<td>technical error of measure</td>
</tr>
<tr>
<td>TEM%</td>
<td>percentage technical error of measure</td>
</tr>
<tr>
<td>TNF-α</td>
<td>tumor necrosis factor-α</td>
</tr>
<tr>
<td>TSH</td>
<td>thyroid stimulating hormone</td>
</tr>
<tr>
<td>TL</td>
<td>training load</td>
</tr>
<tr>
<td>UA</td>
<td>uric acid</td>
</tr>
<tr>
<td>XO</td>
<td>xanthine oxidase</td>
</tr>
</tbody>
</table>
Table of Contents

Certificate of Authorship and Originality of Thesis ... i
Preface... iii
List of Articles Submitted for Publication.. iv
 Refereed Journal Publications... iv
 Conference Proceedings & Abstracts.. iv
Statement of Candidate Contribution... i
Abstract ... i
Keywords .. ii
List of Abbreviations .. iii
Table of Contents ... v
List of Figures ... viii
List of Tables ... x

CHAPTER ONE .. 1
Introduction.. 1
 1. Background... 2
 2. Research Problem... 4
 3. Study Objectives... 4

CHAPTER TWO ... 7
Literature Review ... 7
 Abstract.. 8
 The Stress-Response to Exercise... 9
 Free Radical Biochemistry and Exercise.. 10
 Affect of Antioxidant Supplementation on Performance.. 20
 Interplay between Inflammatory, Hormonal and Oxidative Response during Exercise ... 25
 Limitations and Directions for Future Research ... 33
 Summary and Conclusions ... 33

CHAPTER THREE ... 35
Antioxidant intake of well-trained athletes during intensified physical training................. 35
 Abstract.. 36
 Introduction... 37
 Methods.. 38
 Results.. 39
 Discussion... 41
List of Figures

Figure 2.1: A schematic diagram illustrating the redox signalling pathways for skeletal muscle adaptation. ... 12

Figure 2.2: The effect size of antioxidants to improve exercise performance. 22

Figure 2.3: The hormetic effect of exercise parameters on performance. 32

Figure 3.1: Actual mean intake of vitamin A, vitamin C and vitamin E during 4 d intensified physical training compared to the Australian RDI. ... 41

Figure 3.2: Mean 4 d training load and corresponding ‘worse than normal’ DALDA score for each participant. ... 41

Figure 4.1: Experimental design. ... 48

Figure 4.2: Training program for the LOW (a) and HIGH (b) experimental periods. 50

Figure 4.3: A. serum creatine kinase, B. serum lactate dehydrogenase and C. serum C-reactive protein concentration prior to each match simulation in the HIGH and LOW conditions. .. 53

Figure 4.4: Peak sprint velocities reached during sprint throughout the HIGH and LOW match. ... 54

Figure 4.5: Capillary blood lactate concentration during the match simulation following the HIGH and LOW training loads. ... 54

Figure 4.6: A. plasma xanthine oxidase, B. plasma hypoxanthine, and, C. plasma interleukin-6 concentration during the team sport match simulation in the HIGH and LOW conditions. .. 56

Figure 4.7: Pre- to post-match simulation changes in plasma monocyte chemoattractant protein-1 (MCP-1) following the HIGH and LOW training loads. .. 57

Figure 5.1: Training program for the LOW (a) and HIGH (b) experimental periods. 67

Figure 5.2: F₂-isoprostane during the high-intensity intermittent running protocol following the HIGH and LOW training conditions. ... 70

Figure 5.3: A. serum thyroid stimulating hormone (TSH), B. serum free triiodothyronine (FT₃) and C. serum free thyroxine (FT₄) during the high-intensity intermittent running protocol in the HIGH and LOW conditions. ... 71

Figure 6.1: Schematic diagram of the experimental design. Cycle ergometer race simulation, Venous blood and urinary samples. ... 83

Figure 6.2: Changes in A. 5 s, B. 10 s and C. 15 s mean power during the post-supplementation cycle ergometer race simulation. .. 88
Figure 6.3: Time course of changes in A. ferric reducing ability of plasma (FRAP) and B. plasma total antioxidant capacity (TAC). Pre (pre-supplementation and pre-exercise), Pre-ex (pre-exercise following supplementation with NAC and placebo), Post-ex (post-exercise), 2 h (2 h post-exercise) and 24 h (24 h post-exercise) (mean ± SD) ... 90

Figure 6.4: Time course of changes in A. plasma reduced glutathione to oxidised glutathione ratio (GSH:GSSG), B. plasma GSH and C. plasma GSSG. Pre (pre-supplementation), Pre-ex (pre-exercise following supplementation with NAC and placebo), Post-ex (post-exercise), 2 h (2 h post-exercise) and 24 h (24 h post-exercise) 92

Figure 6.5: Time course of changes in A. plasma thiobarbituric acid-reactive substances (TBARS) and B. urinary 15-isoprostane F_{2t}-concentration (F_{2t}-isoprostane). Pre (pre-supplementation), Pre-ex (pre-exercise following supplementation with NAC and placebo), Post-ex (post-exercise), 2 h (2 h post-exercise) and 24 h (24 h post-exercise) ... 92

Figure 6.6: Time course of changes in A. plasma interlukin-6 (IL-6) and B. plasma monocyte chemoattractant protein-1 (MCP-1). Pre (pre-supplementation), Pre-ex (pre-exercise following supplementation with NAC and placebo), Post-ex (post-exercise), 2 h (2 h post-exercise) and 24 h (24 h post-exercise) ... 93

Figure 6.7: Time course of changes in peripheral mononuclear cell extract nuclear factor-kappaB (NF-κB). Pre (pre-supplementation), Pre-ex (pre-exercise following supplementation with NAC and placebo), Post-ex (post-exercise), 2 h (2 h post-exercise) and 24 h (24 h post-exercise) ... 94

Figure 7.1: Effect of exogenous antioxidant supplementation dependent on an athlete’s level of fatigue ... 102
List of Tables

Table A: Percentage contribution (%) of each author to the investigations conducted during the candidature...i

Table 2.1: Summary of previous investigations on oxidative stress measures following intensified training. ..15

Table 3.1: Mean nutritional intake for well-trained athletes during a 4 d intensive training period. ..40

Table 6.1: Cycle ergometer race simulation protocol. ..84

Table 6.2: Time trial performance parameters before and after supplementation with both NAC and placebo...89

Table 8.1: Summary of the investigations conducted as part of the thesis.106