In vitro ACTIVITY OF TOBRAMYCIN, AMILORIDES AND OTHER NON-ANTIBIOTICS AGAINST Pseudomonas aeruginosa AND Burkholderia cenocepacia

PUTHAYALAI TREERAT

2008

MASTER OF SCIENCE (RESEARCH)

Submitted in fulfilment of the requirements for the degree of Master of Science (research) at the University of Technology, Sydney

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree, nor has it been submitted as part of the requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student

Production Note: Signature removed prior to publication.

ACKNOWLEDGEMENTS

First of all, I am very grateful my supervisor, Dr Tony George, for all his endeavours in assisting and guiding me throughout the time of my study. Secondly, I would like to thank my co-supervisors, Associate Professor Peter Middleton, Associate Professor Jon Iredell, and Dr Fred Widmer, from the Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, for kindly giving the clinical strain of *Burkholderia cenocepacia*, verapamil, essential information, including journals, and generous support in relation to thesis publication by the *Journal of Antimicrobial Chemotherapy*. I would also like to thank my co-supervisor Dr. Rachel Shepherd for kindly assisting me on doing my thesis. Moreover, I would really like to thank Pat Skinner for thoughtfully helping me with my writing and for proofreading my thesis. Finally, I would like to thank my family, friends, and all the staff in Building 4, especially Rochelle Seneviratne, for all their support and encouragement.

TABLE OF CONTENTS

CH	APTER ON	NE: LITERATURE REVIEW	1
1.1	INTRODUC	ΓΙΟΝ AND OVERVIEW	1
1.2	CYSTIC FIB	ROSIS	2
1.3	COMPLICAT	FIONS OF CYSTIC FIBROSIS	4
	1.3.1	Chronic Bacterial Infection in Cystic Fibrosis	4
	1.3.2	Biofilm Formation and Quorum-sensing	6
		of Pseudomonas aeruginosa	
	1.3.3	Efflux Pump Systems of Pseudomonas aeruginosa	7
	1.3.4	Infection Caused by Burkholderia cepacia Complex	8
1.4	ANTIMICRO	DBIAL AGENTS	10
	1.4.1	β-lactams	10
	1.4.2	Quinolones	10
	1.4.3	Aminoglycosides	12
1.5	TREATMEN	T REGIMES FOR RESISTANT PATHOGENIC	14
	BACTERIA		
	1.5.1	The Amilorides and Analogues	15
	1.5.2	Other Adjunctive Non-antibiotic Compounds	16
	1.5.3	Combination (Adjunctive) Therapy	19
1.6	HYPOTHESI	S AND RATIONALE	20
1.7	PROJECT AI	MS	21

CH	APTE	CR TWO: MATERIALS AND METHODS	22
2.1	MAT	ERIALS	22
	2.1.1	Chemicals, Media, and Microtitre Plates	22
	2.1.2	Bacterial Strains	22
2.2	METI	HODS	23
	2.2.1	Preparation of Stock and Working Solutions of	23
		Antibiotics, other Drugs, and Salts	
	2.2.2	Preparation of Bacterial Cell Suspensions	24
	2.2.3	Minimum Inhibitory Concentration of Antibiotics	24
		against P. aeruginosa or B. cenocepacia by	
		the Broth Microdilution Method	
	2.2.4	Minimum Inhibitory Concentrations of Antibiotics	26
		in Dimethyl Sulfoxide	
CH	APTE	CR THREE: RESULTS	29
3.1	MIC	OF ANTIBIOTICS AND NON-ANTIBIOTICS	29
	3.1.1	Tobramycin and Amikacin	30
	3.1.2	Amiloride and Derivatives	32
	3.1.3	Salbutamol	34
	3.1.4	Verapamil and Amlodipine	35
3.2	COM	BINATION (ADJUNCTIVE) THERAPY	38
	3.2.1	Tobramycin with Amiloride, Benzamil, and Phenamil	39
	3.2.2	Tobramycin, Amlodipine, Verapamil	44
	3.2.3	Tobramycin and Salbutamol	47
	3.2.4	Combinations of Three Drugs	48
3.3	SODI	UM ANTAGONISM OF TOBRAMYCIN ACTIVITY	56
	3.3.1	Effect of Sodium Chloride	56

	3.3.2 Effect of Sodium Gluconate	58	
	3.3.3 Effect of Potassium Chloride	60	
	3.3.4 Effect of D-Mannitol	62	
	3.3.5 Effect of N-methyl-D-glucamine	64	
3.4	SODIUM ANTAGONISM OF TOBRAMYCIN	IS 68	
	PARTIALLY REVERSED BY AMILORIDE		
	3.4.1 Tobramycin, Amiloride and Sodium Chlo	oride 68	
	3.4.2 Tobramycin, Amiloride and Sodium Gluc	conate 70	
	3.4.3 Tobramycin, Amiloride and Potassium Cl	hloride 72	
	3.4.4 Tobramycin, Amiloride and D-Mannitol	74	
	3.4.5 Tobramycin, Amiloride and N-methyl-D-	glucamine 76	
3.5	EFFECT OF ADJUNCTIVE COMPOUNDS ON	79	
	AMIKACIN MICs		
	3.5.1 Two or Three Drug Combinations	79	
3.6	ADJUNCTIVE AGENT COMBINATIONS AGA	AINST 82	
	CYSTIC FIBROSIS ISOLATES OF Pseudomon	as aeruginosa	
	RESISTANT TO TOBRAMYCIN		
	3.6.1 Tobramycin MICs	82	
	3.6.2 Tobramycin-non-antibiotic combinations	82	
	against PSM1, PSM2, PSS1 and PSS2		
	P. aeruginosa clinical cystic fibrosis isola	ites	
СН	APTER FOUR: DISCUSSION	89	
4.1	HIGH POTENCY OF AMIKACIN COMPARED	D TO 90	
	TOBRAMYCIN		
4.2	SYNERGISTIC EFFECT OF TOBRAMYCIN W	VITH 91	
	THE AMILORIDES		

4.3	SYNERGISTIC EFFECTS OF OTHER ADJUNCTIVE	93
	NON-ANTIBIOTICS WITH TOBRAMYCIN	
4.4	ANTAGONISTIC EFFECT OF SODIUM ON	96
	ACTIVITY OF TOBRAMYCIN	
4.5	SYNERGISTIC EFFECTS OF TOBRAMYCIN	99
	AND NON-ANTIBIOTICS AGAINST CLINICAL	
	ISOLATES FROM CYSTIC FIBROSIS PATIENTS	
4.6	CONCLUSION	101

BIBLIOGRAPHY

102

FIGURE LEGENDS

Figure 1.2.1	Incidence of cystic fibrosis around the world.	2
Figure 1.4.1	Chemical structures of tobramycin and amikacin.	13
Figure 1.5.1	Chemical structures of unprotonated and protonated forms of amiloride.	16
Figure 1.5.2	Chemical structures of benzamil and phenamil.	16
Figure 1.5.3	Chemical structure of salbutamol.	17
Figure 1.5.4	Chemical structure of verapamil, a calcium channel blocker.	18
Figure 1.5.5	Structure of amlodipine.	18
Figure 2.1	Pattern of filling wells of a microtiter plate for the MIC assays.	26
Figure 2.2	Evaluation of the effect of 0.1% of dimethyl sulfoxide (DMSO) in MHB without two aminoglycoside antibiotics against <i>Pseudomonas aeruginosa</i> NCTC 10662 and <i>Burkholderia cenocepacia</i> .	27
Figure 2.3	Evaluation of tobramycin or amikacin dihydrate activity under 0.1% of dimethyl sulfoxide (DMSO) in MHB against <i>Pseudomonas aeruginosa</i> NCTC 10662 and <i>Burkholderia cenocepacia</i> .	28
Figure 3.1.1	Comparison between tobramycin and amikacin MICs against <i>Pseudomonas aeruginosa</i> and <i>Burkholderia cenocepacia</i> .	31

Figure 3.1.2	Comparison of benzamil and phenamil MICs against <i>Pseudomonas aeruginosa</i> and <i>Burkholderia cenocepacia</i> .	33
Figure 3.1.3	MICs of salbutamol against <i>Pseudomonas aeruginosa</i> and <i>Burkholderia cenocepacia</i> .	35
Figure 3.1.4	Verapamil MICs against <i>Pseudomonas aeruginosa</i> and <i>Burkholderia cenocepacia</i> .	37
Figure 3.1.5	Amlodipine MICs against <i>Pseudomonas aeruginosa</i> and <i>Burkholderia cenocepacia</i> .	38
Figure 3.2.1	Comparison of tobramycin combining with 0.1 mM or 1 mM of amiloride against <i>Pseudomonas aeruginosa</i> and <i>Burkholderia cenocepacia</i> .	41
Figure 3.2.2	Tobramycin with different concentrations of benzamil.	42
Figure 3.2.3	Tobramycin with different concentrations of phenamil against both microorganisms.	43
Figure 3.2.4	Combination between tobramycin and 0.03 or 0.06 mM of amlodipine against <i>Pseudomonas aeruginosa</i> and <i>Burkholderia cenocepacia</i> .	45
Figure 3.2.5	Tobramycin MICs for <i>Pseudomonas aeruginosa</i> and <i>Burkholderia cenocepacia</i> in combination with 2 mM verapamil.	46
Figure 3.2.6	Combination between tobramycin and salbutamol against <i>Pseudomonas aeruginosa</i> and <i>Burkholderia cenocepacia</i> .	48

- Figure 3.2.7 Combinations of tobramycin, 2 mM salbutamol, and 2 mM 50 of verapamil; and of tobramycin, 2 mM salbutamol, and 1 mM amiloride against *Pseudomonas aeruginosa* and *Burkholderia cenocepacia*.
- Figure 3.2.8Combinations of tobramycin, 2 mM salbutamol, and 0.12551or 0.25 mM benzamil against Pseudomonas aeruginosaand Burkholderia cenocepacia.
- Figure 3.2.9Tobramycin, 2 mM salbutamol, and 0.03 mM amlodipine;52and tobramycin, 2 mM salbutamol, and 0.06 mM amlodipineagainst Pseudomonas aeruginosa and Burkholderia cenocepacia.
- Figure 3.3.1
 Effect of different sodium chloride concentrations on
 57

 tobramycin MICs for *Pseudomonas aeruginosa* and
 57

 Burkholderia cenocepacia.
 57
- **Figure 3.3.2** Effect of different concentrations of sodium gluconate on increasing tobramycin MICs for *Pseudomonas aeruginosa* and *Burkholderia cenocepacia*.
- Figure 3.3.3
 Effect of different concentrations of potassium chloride
 61

 on increasing the tobramycin MICs for *Pseudomonas aeruginosa* 61

 and *Burkholderia cenocepacia*.
- Figure 3.3.4
 Effect of different concentrations of D-mannitol
 63

 on tobramycin MICs for Pseudomonas aeruginosa
 63

 and Burkholderia cenocepacia.
- Figure 3.3.5Comparison between adjusted pH at 7.2 and unadjusted65pH of N-methyl-D-glucamine (NMDG) concentrationsby measuring the growth of *Pseudomonas aeruginosa*and *Burkholderia cenocepacia*.

59

Figure 3.3.6	Effect of different N-methyl-D-glucamine concentrations	66-67
	from 0.125 mM to 1 mM on tobramycin MICs for	
	Pseudomonas aeruginosa and Burkholderia cenocepacia,	
	and from 3.125 mM to 50 mM on tobramycin MICs for	
	P. aeruginosa and B. cenocepacia.	
Figure 3.4.1	Combination of tobramycin and 1 mM amiloride in	69
	different concentrations of sodium chloride against	
	Pseudomonas aeruginosa and Burkholderia cenocepacia.	
Figure 3.4.2	Combination of tobramycin and 1 mM amiloride in	71
	different concentrations of sodium gluconate against	
	Pseudomonas aeruginosa and Burkholderia cenocepacia.	
Figure 3.4.3	Combination of tobramycin and 1 mM amiloride in	73
	different concentrations of potassium chloride against	
	Pseudomonas aeruginosa and Burkholderia cenocepacia.	
Figure 3.4.4	Combination of tobramycin and 1 mM amiloride in	75
	different concentrations of D-mannitol against	
	Pseudomonas aeruginosa and Burkholderia cenocepacia.	
Figure 3.4.5	Combination of tobramycin and 1 mM amiloride in	77-78
	different N-methyl-D-glucamine (NMDG) concentrations	
	from 0.125 mM to 1 mM and from 3.125 mM to 50 mM	
	against Pseudomonas aeruginosa and Burkholderia cenocepacia.	
Figure 3.5.1	Combination of amikacin with 1 mM amiloride against	80
	Pseudomonas aeruginosa and Burkholderia cenocepacia.	
Figure 3.5.2	Comparison between three drug combinations: amikacin	81
	serial dilutions, 2 mM salbutamol and 1 mM amiloride;	
	and amikacin, 2 mM salbutamol and 2 mM verapamil	
	against Pseudomonas aeruginosa and Burkholderia cenocepacia.	

Figure 3.6.1	MICs of tobramycin alone or in the combinations with	84
	non-antibiotic compounds against P. aeruginosa PSM1.	
Figure 3.6.2	MICs of tobramycin alone or in the combinations with	85
	non-antibiotic compounds against P. aeruginosa PSM2.	
Figure 3.6.3	MICs of tobramycin alone or in the combinations with	85
	non-antibiotic compounds against P. aeruginosa PSS1.	
Figure 3.6.4	MICs of tobramycin alone or in the combinations with	86
	non-antibiotic compounds against P. aeruginosa PSS2.	

TABLES

Table 1.3.1	Nomenclature of Burkholderia cepacia complex.	9
Table 1.4.1	Antibiotics commonly used in the treatment of lung infection in cystic fibrosis patients.	11
Table 3.1	Minimum inhibitory concentration (MIC) for tobramycin, amikacin, and different non-antibiotic compounds used in this study against <i>Pseudomonas aeruginosa</i> and <i>Burkholderia cenocepacia</i> .	29
Table 3.2	Comparison of tobramycin MICs (µg/ml and µM) in various combinations with non-antibiotic compounds, amiloride, benzamil, phenamil, salbutamol, verapamil, or amlodipine, to tobramycin itself against <i>Pseudomonas aeruginosa</i> and <i>Burkholderia cenocepacia</i> .	53-55
Table 3.3	Minimum inhibitory concentrations for tobramycin and non-antibiotic compounds against four cystic fibrosis strains of <i>P. aeruginosa</i> (PSM1, PSM2, PSS1, PSS2).	87
Table 3.4	Comparison of tobramycin MICs in various combinations with non-antibiotic compounds, amiloride, benzamil, salbutamol, or amlodipine, four cystic fibrosis strains of <i>P. aeruginosa</i> (PSM1, PSM2, PSS1, PSS2).	88

ABBREVIATIONS

arr	aminoglycoside response regulator
BCESM	Burkholderia cepacia epidemic strain marker
CF	cystic fibrosis
CFTR	cystic fibrosis transmembrane regulator
cfu	colony forming unit
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
IL	interleukin
MHB	Mueller-Hinton broth
MIC	minimum inhibitory concentration
mRNA	messenger RNA
MRSA	methicillin-resistant Staphylococcus aureus
NMDG	N-methyl-D-glucamine
PBPs	penicillin-binding proteins
QS	quorum-sensing
RFLP	restriction fragment length polymorphism
RNA	ribonucleic acid
SD	standard deviation
SEM	standard error of the mean

ABSTRACT

Chronic respiratory infection, mainly caused by Pseudomonas aeruginosa and Burkholderia cepacia complex, is the major cause of complications and eventually of death in patients with cystic fibrosis. These problems are exacerbated by drug resistance mechanisms induced in the infectious microorganisms, and by persistence of the microorganisms by sequestration in viscous mucus or biofilms. The sequestration prevents effective antibiotic access to the bacteria. Such problems have led to the search for alternative treatments and therapies, but none of these alternative techniques have yet been tested rigorously or successfully in clinical patients. In this project, we used a standard strain of P. aeruginosa (NCTC 10662) and a B. cenocepacia isolate from cystic fibrosis sputum to appraise tobramycin/amikacin efficacy in combination with clinically relevant concentrations of the adjunctive agents amiloride, benzamil hydrochloride, phenamil, salbutamol, verapamil, and amlodipine. Altered conditions in the cystic fibrosis lung were simulated by using different concentrations of sodium chloride, potassium chloride, sodium gluconate, D-mannitol, and N-Methyl-Dglucamine. Benzamil hydrochloride was the most potent additive compound against the organisms tested; enhancing the antibacterial effect of tobramycin. A sub-inhibitory concentration of amlodipine was only marginally useful, even though its minimum inhibitory concentration (MIC) against both microbes was the lowest of all the nonantibiotic compounds tested. Conversely, salbutamol, verapamil, and amlodipine were antagonistic in some combinations with tobramycin. Amikacin was generally more potent than tobramycin. Sodium and potassium chlorides and sodium gluconate increased the tobramycin MIC up to 8-fold at salt concentrations from 50-400 mM. This antagonistic effect of cations appeared to be partially reversed by adding amiloride, verapamil, or salbutamol. This study needs to be extended by further assays with more clinical isolates, but it has shown that non-antibiotic adjunctive agents can be used with antibiotics to produce effective results in vitro; and potentially in vivo as an alternative regime for the treatment of chronic airway infections in cystic fibrosis patients.