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Abstract

Volatility refers to the measure for price uctuation of specic nancial in-

strument over time. It is a very important factor that can greatly inuence

investor’s decisions and concerns every other participant in the stock mar-

ket. High volatility implies great insatiability and will denitely increase

liquidity whereas low volatility indicates poor activeness. Hence the research

on volatility draws great attention and interest of researchers from dierent

backgrounds. Including the methods from data mining and machine learning

is essential to improve the quality of volatility analysis.

There are two main types of models on volatility analysis: the determin-

istic models and stochastic models. The deterministic models assume the

volatility at particular time is a deterministic function of the past. The gen-

eralized autoregressive conditional heteroskedasticity (GARCH) model and

its variations are in such category. The stochastic volatility (SV) models take

the assumption that the volatility follows certain random process. Recent lit-

erature has shows that the stochastic models outperform the deterministic

models to some extent. Among them, the Wishart process is a hot tool for

modeling multivariate volatility.

However, the stock market is closely connected with the society and hu-

man behavior, which makes it dicult to model. Almost all the existing

models assume independence between our target objects: prices or the hid-

den covariance matrices behind them. These assumption works well for rough

research or when the relationship between objects is weak. For a more solid

research, the coupling relationship must be taken into account.
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ABSTRACT

In this thesis, we present two kinds of coupled Wishart process to model

volatility: the homogenous coupled Wishart process and heterogenous cou-

pled Wishart process. And corresponding algorithms are developed based

on the models. The homogenous coupled Wishart process refers to model

that our target objects belong to the same category. A two-chain coupled

Wishart process is introduced in this thesis. Within such a model, the matrix

in one chain is not only related with the past one from its own chain but also

from its neighbors. After the derivation of its learning procedures, synthetic

data are tested. Then, experiments are implemented with real data from two

markets: U.S. and Hong Kong. In the two-chain coupled Wishart process,

one chain indicates the volatility from U.S. stock market and the other the

volatility indicates Hong Kong stock market.

The latter one is the heterogenous coupled Wishart process. Unlike the

homogenous one, in such a model, the covariance matrices are coupled with

vectors, scalars or even a system. We aim to model how the outside inuence

from other kinds of data aect the evolving of covariance matrices. For time

limitation, we make a simplied setup to illustrate how the heterogeneous

coupling works. Then we construct the learning algorithm based on the

setups and test it on synthetic data.

To conclude, we include the thought of coupling into the analysis of

volatility via Wishart process, with machine learning techniques. Sucient

experiments have proved the eectiveness of coupling in volatility analysis.

xiv



Chapter 1

Introduction

1.1 Preliminaries

In nance, volatility is the measure for price uctuation of specic nancial

instrument over time (Roll 1984). It is a very important factor that can

greatly inuence investor’s decisions: investors react emotionally to swings

in market prices; when certain cash ows from selling a security are needed at

a specic future date, higher volatility means a greater chance of a shortfall;

higher volatility of returns while saving for retirement results in a wider

distribution of possible nal portfolio values; higher volatility of return when

retired gives withdrawals a larger permanent impact on the portfolio’s value;

price volatility presents opportunities to buy assets cheaply and sell when

overpriced.

As volatility is such an important indicator that the research on volatility

is an issue that concerns every participant in the markets, not only the in-

vestors: government policy makers, market analysts and economists. Besides,

given the rapid growth of nancial markets and the continual developmen-

t of new and increasingly complex nancial instruments, the need for high

quality volatility modeling methods is in great demand. Modeling and pre-

dicting volatility are of vital importance in various applications, such as asset

pricing, portfolio selection, option pricing, hedging and risk management.

1



CHAPTER 1. INTRODUCTION

Besides, the burst of several bubbles aggravates the uncertainty of world

market and economy. Especially after the economic crisis in 2008, modeling

volatility is becoming a more and more critical task. Practitioners and aca-

demics are reassessing the adequacy of eective models to capture and pre-

dict nancial volatility. As indicated in Figure. 1.1, every strike in volatility

indicates a violate change in return prices: the great depression, the 1945

recession, and the 2008 nancial crisis etc.

Figure 1.1: An example volatility of S&P 500 over decades.

Wishart process (Bru 1991, Gourieroux, Jasiak & Sufana 2009, Jacquier,

Polson & Rossi 2002, Philipov & Glickman 2006) are a time series model

that focuses on positive-denite matrix. It follows a Markov rule, at each

time point t, the matrix variable Σt is only related to its previous one Σt−1.

The transaction of covariance matrix follows a Wishart distribution. Due to

its properties, Wishart process is adjusted and servers well as multivariate

volatility model.

1.2 Background

Due to the importance of the study on volatility, there has been numerous

research and various approaches on it. Among them, the two main approach-

2



CHAPTER 1. INTRODUCTION

es are deterministic models and stochastic models. For deterministic models,

the GARCH model family are the most popular ones. The GARCH family

models were largely extended after Engle’s innovative work (Engle 1982),

autoregressive conditional heteroscedasticity models (ARCH) are now com-

monly used to describe and forecast changes. Engle has won the Noble prize

in economics for his innovative work on volatility. However, all these mod-

els are univariate models and focused on just one variable. It is intuitively

acceptable that the volatilities of dierent assets and even markets are cor-

related in such aspects: the volatility of an asset could be transmitted to

others, the correlations may change over time. Then, multivariate GARCH

models are largely developed to capture such qualities.

In a GARCH model, a time series of continuously compounded returns

(including dividends) is denoted {rt}Tt=1, and Ft denotes the information set

available at t. The unobserved variance of returns conditional on Ft is dened

as follows.

σ2
t+i|Ft

= V AR(rt+i|Ft) (1.2.1)

Variance predictions are obtained from a set of volatility models, formal-

ized as M = {m1,m2, · · · ,mM}. Model m can generically be represented as

rt+1 = t+1

√
h
(m)
t+1, (1.2.2)

where h
(m)
t+1 is an function and t+1 is an i.i.d zero mean/unit variance innova-

tion. The specication of h
(m)
t+1 determines the conditional variance evolution

and is typically a function of the history of returns as well as a vector of un-

known parameters to be estimated from the data. The i-step ahead volatility

forecast obtained by model m conditional on Ft is denoted h
(m)
t+i|t.

It is widely recognized that volatility of stock returns responds dierent-

ly to bad news and good news. In particular, bad news tends to increase

the future volatility while same-sized good news will only increase the future

volatility by a smaller amount, or even cause decrease in the future volatility.

The news impact function (NIF) (Engle & Ng 2012) has been developed as a

powerful tool for analyzing the volatility asymmetry for GARCH-type mod-

3



CHAPTER 1. INTRODUCTION

els. The idea of the NIF is to examine the relationship between conditional

volatility in period t+1 and the standardized shock to returns in period t in

isolation.

The asymmetric eect in volatility is that the eects of positive returns

on volatility are dierent from those of negative returns of a similar magni-

tude. On the other hand, leverage refers to the negative correlation between

the current return and future volatility. Therefore leverage denotes asymme-

try, but not all asymmetric eects display leverage. In the class of ARCH

specications that have been developed to capture asymmetric eects, the

exponential GARCH (EGARCH) model of Nelson (Nelson 1991) and the

GJR model of Glosten et al. (Glosten, Jagannathan & Runkle 2012) are

widely used. Using the terminology given above, the EGARCH model can

describe leverage, whereas the GJR model can capture asymmetric eects

but not leverage (for further details, see (Asai & McAleer 2009)).

As stated above, a popular explanation for asymmetry is the leverage

eect proposed by Christie (Christie 1982) . Other forms of asymmetry,

such as the asymmetric V-shape, have to be explained by reasons other than

the leverage eect. Alternative reasons for the volatility asymmetry that

have been suggested in the literature include the volatility feedback eect

(Campbell & Hentschel 1992).

The SV models family were proposed by several dierent dierent re-

searchers via various models (Ahn & Wilmott 2003, Shephard 2005, Javaheri

2011, Kilin 2011). Among all these stochastic models, one kind of distribu-

tion and its process, the Wishart process with dierent construction has been

proposed by several independent researchers, see (Gourieroux et al. 2009,

Philipov & Glickman 2006, Asai & McAleer 2009). The basic assumption of

Wishart process to capture is that returns follow a multivariate distribution,

while the covariance matrix obey a one order autoregressive Markov chain.

The notation is as follows.

4



CHAPTER 1. INTRODUCTION

yt|Σt ∼ Nk(0,Σt), (1.2.3)

Σ−1
t |ν,Σ−1

t−1 ∼ Wishartk(ν, St−1), (1.2.4)

where St−1 is dened as follows:

St−1 =
1

ν
(A1/2)(Σ−1

t−1)
d(A1/2), (1.2.5)

where yt is the return vector of k dierent assets at time t, and is set to

obey a zero-mean multivariate Gaussian distribution. So it can be regarded

as the return that “surprises” the expected. The actual returns are indicated

by yt together with the expected returns. Accordingly, during the experiment

procedure, the raw return data will be ltered to be zero-mean. Σt is the

latent covariance matrix of returns at time t. All the Σt and St are dened on

Mk
+ ⊂ Rk×k, which is the set of all the real-valued symmetric and positive-

denite matrices of dimension k. ν is the degree of freedom of this process

and set to be invariant during the whole process. t = 1, 2, · · · , T is the

indicator of time.

A ∈ Mk
+ is a positive-denite symmetric matrix of parameters and A is

decomposed through a Cholesky decomposition, denoted as A = (A1/2)(A1/2).

This parameter matrix reveals how each element σij(t) of covariance matrix

Σt at time t depends on the elements of covariance matrix Σt−1 at time t−1.

So A can be interpreted as a measure of intertemporal sensitivity (Philipov &

Glickman 2006), (Casarin & Sartore 2008) . d is a scalar parameter to mea-

sure the overall strength of relationship between previous period and current

period. As discussed in (Philipov & Glickman 2006), we set d ∈ (0, 1).

1.3 Limitation and Motivation

However, our stock market have been in such a circumstance: with develop-

ment of modern communication technology and computing power, informa-

tion has been spreading with unprecedented speed. All the markets around

5



CHAPTER 1. INTRODUCTION

the world are connected closely and asset prices uctuations are also cou-

pled. The prices of dierent assets, dierent portfolios, the dierent market

performance will interact with each other denitely.

Nevertheless, under the circumstance of globalization, only considering

the inuences from other assets is not enough. Outside inuences often play

an important role than one system itself. Like the world-wide economic crises

in history, all of them start from one market and then spread to the rest of

whole world. Imagine that a professional investor is managing a portfolio

in Hong Kong stock market. He needs a good estimation on the covariance

matrix of this portfolio. As the Hong Kong stock market is highly correlated

with the U.S. market, taking into account the U.S. market will denitely

help him make better estimation of the covariance matrix, see Figure 1.2.

However, no work has explicitly and systematically address the coupling

relationship across systems or markets for volatility due to its complexity

with great challenges. The incomplete or local analysis of volatility will

inevitably lead to tentative and less eective learning performance. Hence,

modeling and analyzing volatility while considering the coupling relationship

is a promising research topic.

1.4 Research Contribution

The contribution of this research is listed below:

1. We propose a framework for coupled volatility analysis. In this frame-

work, we consider both the coupling relationships between assets and

the coupling relationships among dierent systems.

2. We include the matrix variable Wishart process into our coupled volatil-

ity analysis framework. Besides, we applied our model in two main

situations: homogenous coupling and heterogenous coupling. The for-

mer model focuses on parallel coupling between homogenous assets or

portfolios, the later one models the outside heterogenous inuence to

target asset or portfolio.

6



CHAPTER 1. INTRODUCTION

h^

,ŽŶŐ <ŽŶŐ

Figure 1.2: Coupling between markets.

3. Learning algorithms are developed based on MCMC, i.e. Gibbs sam-

pling and Metropolis-Hasting sampling, to learn the coupled Wishart

process. Detailed likelihood and conditional probability distribution-

s are derived and presented. The parameters and hidden states are

simultaneously learned via these algorithms.

1.5 Structure

This thesis focuses on the coupling relationship in the volatility modeling

and tries to implement the relationship via coupled Wishart process. The

main research issues can be found in Figure. 1.3.

In Chapter 1, we introduce the concepts of volatility and how the research

on volatility analysis goes. The motivation and background of this research

are presented.

Chapter 2 presents the review on current research available of volatility

analysis, coupling methods, and Markov chain Monte Carlo methods respec-

7
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Figure 1.3: Research Issues.

tively.

In Chapter 3, the Wishart process is presented with details and the whole

learning process is well presented. The Wishart process follows the Markov

rule: the variable at certain time point only relates to its previous ones.

And all the matrices are regarded as latent variables and they control the

observations. As the model is a probabilistic one with clear graphic model,

the learning procedures are based on statistical methods. Among those, a

method based on sampling is proposed. Detailed procedures and setups are

illustrated in this chapter.

Inspired by the thought that most of the nancial activities are relat-

ed with each other, a homogenous coupling Wishart process is proposed in

Chapter 4 to make more precise prediction of the volatility.

To consider the outside inuence, a heterogenous coupled Wishart process

is proposed in Chapter 5. Unlike the homogenous coupling, heterogenous

coupling models focus on the inuences from dierent kinds of data.

Chapter 6 concludes the whole thesis and makes a comment of this re-

search work.

8



Chapter 2

Literature Review

The literature review of this thesis are conducted in three aspects: volatility

analysis, coupling methods, and Markov chain Monte Carlo methods.

2.1 Volatility Analysis

In this section, the related work on volatility modeling is presented. There

are two main types of such models: the stochastic models and deterministic

models.

2.1.1 GARCH Models

The GARCH family models were largely extended after Engle’s innova-

tive work (Engle 1982), autoregressive conditional heteroscedasticity models

(ARCH) are now commonly used to describe and forecast changes. Engle

has won the Noble prize in economics for his innovative work on volatility.

However, all these models are univariate models and focused on just one

variable. It is intuitively acceptable that the volatilities of dierent assets

and even markets are correlated in such aspects: the volatility of an asset

could be transmitted to others, the correlations may change over time. Then,

multivariate GARCH models are largely developed to capture such qualities.

9
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A time series of continuously compounded returns (including dividends)

is denoted {rt}Tt=1, and Ft denotes the information set available at t. The

unobserved variance of returns conditional on Ft is dened as follows.

σ2
t+i|Ft

= V AR(rt+i|Ft) (2.1.1)

Variance predictions are obtained from a set of volatility models, formal-

ized as M = {m1,m2, · · · ,mM}. Model m can generically be represented as

rt+1 = t+1

√
h
(m)
t+1 (2.1.2)

where h
(m)
t+1 is an function and t+1 is an iid zero mean/unit variance

innovation. The specication of h
(m)
t+1 determines the conditional variance

evolution and is typically a function of the history of returns as well as a

vector of unknown parameters to be estimated from the data. The i-step

ahead volatility forecast obtained by model m conditional on Ft is denoted

h
(m)
t+i|t.

Here I introduce ve models chosen from the vast literature on GARCH,

due to their simplicity and demonstrated ability to forecast volatility over al-

ternatives. The rst, GARCH(1,1) (Engle 1982), is a natural starting point

for model comparison due to its ubiquity and progenesis of alternative mod-

els. GARCH describes the volatility process as

ht+1 = ω + αr2t + βht (2.1.3)

Key features of this process are its mean reversion (imposed by the re-

striction α + β < 1) and its symmetry (the magnitude of past returns, and

not their sign, inuences future volatility). I also include two asymmetric

GARCH models, which are designed to capture the tendency for volatili-

ties to increase more when past returns are negative. Threshold ARCH, or

TARCH, appends a linear asymmetry adjustment. Specically, we have

ht+1 = ω + (α + γIrt<c)r
2
t + βht (2.1.4)

10
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where I is an indicator equaling one when the previous period’s return is

below some threshold c. The inclination of equity volatilities to rise more

when past returns are negative leads to γ > 0.

Exponential GARCH, or EGARCH, models the log of variance,

ln (ht+1) = ω + α(|t|− E[|t|]) + γt + β ln (ht) (2.1.5)

where t = rt/
√
ht. The leverage eect is manifested in EGARCH as γ < 0.

The Nonlinear GARCH, or NGARCH, models asymmetry in the spirit of

previous specications using a dierent functional device. When γ < 0 the

impact of negative news is amplied relative to positive news,

ht+1 = ω + α(γ + rt)
2 + βht (2.1.6)

Finally, asymmetric power ARCH (APARCH), devised by Ding et al.

(Ding, Granger & Engle 1993), evolves according to

h
δ/2
t+1 = ω + α(|rt|− γrt)

δ + βh
δ/2
t (2.1.7)

Raising the left hand side to 2/δ delivers the variance series. Ding et

al. (Ding et al. 1993) show that serial correlation of absolute returns is

stronger than squared returns. Hence, the free parameter δ can capture

volatility dynamics more exibly than other specications, while asymmetries

are incorporated via γ.

2.1.2 Stochastic Models

The SV models family were proposed by several dierent dierent researchers

via various models (Ahn & Wilmott 2003, Shephard 2005, Javaheri 2011,

Kilin 2011).

It is widely recognized that volatility of stock returns responds dierently

to bad news and good news. In particular, bad news tends to increase the

future volatility while same-sized good news will only increase the future

volatility by a smaller amount, or even cause decrease in the future volatility.

11
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The news impact function (NIF) (Engle & Ng 2012) of is a powerful tool for

analyzing the volatility asymmetry for GARCH-type models. The idea of the

NIF is to examine the relationship between conditional volatility in period

t+ 1 and the standardized shock to returns in period t in isolation.

In both the conditional and the stochastic volatility literature, there has

been some confusion regarding the denitions of asymmetry and leverage.

The asymmetric eect in volatility is that the eects of positive returns on

volatility are dierent from those of negative returns of a similar magnitude.

On the other hand, leverage refers to the negative correlation between the

current return and future volatility. Therefore leverage denotes asymme-

try, but not all asymmetric eects display leverage. In the class of ARCH

specications that have been developed to capture asymmetric eects, the

exponential GARCH (EGARCH) model of Nelson (Nelson 1991) and the

GJR model of Glosten et al. (Glosten et al. 2012) are widely used. Using the

terminology given above, the EGARCH model can describe leverage, whereas

the GJR model can capture asymmetric eects but not leverage (for further

details, see (Asai & McAleer 2009)).

As stated above, a popular explanation for asymmetry is the leverage

eect proposed by Christie (Christie 1982) . Other forms of asymmetry,

such as the asymmetric V-shape, have to be explained by reasons other than

the leverage eect. Alternative reasons for the volatility asymmetry that

have been suggested in the literature include the volatility feedback eect

(Campbell & Hentschel 1992). Most asymmetric MSV models are based

on the basic SV specications and hence the positive deniteness of Ht is

ensured.

Among all these stochastic models, one kind of distribution and its pro-

cess, the Wishart process with dierent construction has been proposed by

several independent researchers, see (Gourieroux et al. 2009, Philipov &

Glickman 2006, Asai & McAleer 2009). The basic assumption of Wishart

process to capture is that returns follow a multivariate distribution, while

the covariance matrix obey a one order autoregressive Markov chain. The

12
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notation is as follows.

yt|Σt ∼ Nk(0,Σt), (2.1.8)

Σ−1
t |ν,Σ−1

t−1 ∼ Wishartk(ν, St−1), (2.1.9)

where St−1 is dened as follows:

St−1 =
1

ν
(A1/2)(Σ−1

t−1)
d(A1/2), (2.1.10)

where yt is the return vector of k dierent assets at time t, and is set to

obey a zero-mean multivariate Gaussian distribution. So it can be regarded

as the return that “surprises” the expected. The actual returns are indicated

by yt together with the expected returns. Accordingly, during the experiment

procedure, the raw return data will be ltered to be zero-mean. Σt is the

latent covariance matrix of returns at time t. All the Σt and St are dened on

Mk
+ ⊂ Rk×k, which is the set of all the real-valued symmetric and positive-

denite matrices of dimension k. ν is the degree of freedom of this process

and set to be invariant during the whole process. t = 1, 2, · · · , T is the

indicator of time.

A ∈ Mk
+ is a positive-denite symmetric matrix of parameters and A is

decomposed through a Cholesky decomposition, denoted as A = (A1/2)(A1/2).

This parameter matrix reveals how each element σij(t) of covariance matrix

Σt at time t depends on the elements of covariance matrix Σt−1 at time t−1.

So A can be interpreted as a measure of intertemporal sensitivity (Philipov &

Glickman 2006), (Casarin & Sartore 2008) . d is a scalar parameter to mea-

sure the overall strength of relationship between previous period and current

period. As discussed in (Philipov & Glickman 2006), we set d ∈ (0, 1).

13
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2.2 Coupling Methods

2.2.1 Coupling

In mechanic engineering, a coupling is a device used to connect two shafts

together at their ends for the purpose of transmitting power. Here this term

refers to the close relationship of two or several objects: the objects can

be scalar, vectors, time series or systems. The introducing of the concept

of coupling has its roots in the complex real world (Cao 2013). In various

sceneries, especially the ones related with human activity, the complexity

of our research target has reached such a level that the usual assumption

of independency can not lead to a satisfactory solution. Behavioral and

social applications are two main elds that such situation emerges as a huge

challenge.

However most of the existing theories, tools and applications in statistics,

data mining and machine learning are built on the assumption independence

or conditional independence, which assumes the uncorrelation in the under-

lying objects, values or attributes. Based on a high level abstraction, it is

assumed that objects are independent and identically distributed, with many

corresponding algorithms proposed. This works well in simple business ap-

plications and abstract problems with weakened relations and heterogeneity,

and serves as the foundation of classic theoretical systems and applied tools.

Thus, the introducing of coupling is intuitive from real world application

and drawbacks from current research, and will denitely improve the learn-

ing of such complex models. There have been several researchers thinking

about such a challenging issue and more and more work are being published.

These works are from dierent aspects, theoretical exploration or application

driven and they provide interesting and provoking thinking to the rest of us

(Steinwart & Christmann 2009).

14
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2.2.2 Coupling Analysis

Coupling in Categorical Data

Figure 2.1 (Topchy, Jain & Punch 2005) shows four possible base clusterings

of 12 data objects into two clusters. Dierent partitions use dierent sets of

labels. The target of clustering ensemble is to obtain a nal clustering based

on these four base clusterings.

Base Clustering 1 Base Clustering 2 

Base Clustering 3 Base Clustering 4 

Figure 2.1: Coupled behaviors: clustering ensemble.

Here, we regard each object or observation as an entity of the quantitative

behavior. Each base clustering is treated as a property of the quantitative

behavior, and the clustering result of each base clustering is the corresponding

property value or attribute value of the quantitative behavior. The base

clusterings are expected to have interactions with one another, such as the co-

occurrence of their cluster labels over the same set of objects, since they are

all conducted on the same data objects. This kind of interactions embodies

the coupling relationships between the properties of behaviors, which is one

coupling aspect of the quantitative coupled behaviors.
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In addition, each object has the neighborhood records as its environment.

Thus, how this neighborhood impacts the clustering performance reects

another coupling aspect of the quantitative coupled behaviors in terms of

the interactions among objects. Both these aspects deliver an example of

the quantitative coupled behaviors. In particular, this example illustrates an

application of the categorical coupled behaviors, since the associated property

of base clustering is in essence a categorical attribute with cluster labels to

be its values.

For this clustering ensemble problem, Wang et. al (Wang, She & Cao

2013b) introduce a coupled framework of clustering ensemble to formalize

and learn both the coupling relationships between base clusterings (i.e, prop-

erties) and between data objects (i.e. entities), which are based on non-i.i.d.

assumption.

Coupling in Numerical Data

Real-world data sets predominantly consist of quantitative attributes in di-

verse domains (Saria, Duchi & Koller 2011), such as nance and bioinfor-

matics. The usual recommendation of numerical data is to deliver it as an

information table (Kaytoue, Kuznetsov & Napoli 2011), which is a basic

knowledge representation framework comprising a table with columns desig-

nating “attributes” and rows designating “objects”. Each table cell therefore

stands for the value of a particular attribute for a particular object. This

traditional representation scheme only describes each object by associated

variables and assumes the independent and identical distribution of them.

The fragment data of Iris (Table 2.1) is an example that six plant ob-

jects are characterized by four numerical attributes (i.e. “Sepal Length”,

“Sepal Width”, “Petal Length”, and “Petal Width”), and divided into three

classes. For instance, the petal width of plant object u1 is 0.2cm, which

does not reect any interaction with other attributes. Based on this classi-

cal representation, many data mining techniques and machine learning tasks

(Plant 2012, Li & Liu 2012) including clustering and classication have been
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Table 2.1: A Fragment Example of Iris Data Set

Iris
Sepal.L Sepal.W Petal.L Petal.W

Class
(a1) (a2) (a3) (a4)

u1 5.5 cm 4.2 cm 1.4 cm 0.2 cm Setosa

u2 5.0 cm 3.4 cm 1.5 cm 0.2 cm Setosa

u3 6.1 cm 2.9 cm 4.7 cm 1.4 cm Versicolor

u4 6.2 cm 2.2 cm 4.5 cm 1.5 cm Versicolor

u5 6.3 cm 2.7 cm 4.9 cm 1.8 cm Virginica

u6 6.0 cm 2.2 cm 5.0 cm 1.5 cm Virginica

performed. One of the critical parts in such applications is to study the

pairwise distance between plant objects. A variety of distance metrics have

been developed for numerical data, such as Euclidean and Minkowski metrics

(Gan, Ma & Wu 2007). Since plant objects u4 and u6 have identical values of

“Sepal.W” and “Petal.W”, the normalized Euclidean distance between them

is only 0.493, which is much smaller than that between u4, u3 (i.e. 0.950) and

nearly half of that between u6, u5 (i.e. 0.982). It indicates that u4 and u6

stand a good chance to be clustered into the same group. However, in fact, u4

and u3 belong to “Versicolor”, u6 and u5 are labeled as “Virginica”. Similar

cases can also be observed by the normalized Euclidean distance between u3

and u5 (i.e. 0.75), which is smaller than both the distances between u3, u4

and between u5, u6.

Both instances show that it is often problematic to analyze the numerical

data by assuming all the continuous attributes are independent, while the

traditional data representation schemes fail to capture the genuine couplings

of attributes. In the real world, business and social applications such as in-

vestors in capital markets and members in social networking almost always

see quantitative attributes coupled with each other (Cao, Ou & Yu 2012).

It is very in demand from both practical and theoretical perspectives to de-

velop eective representation method for analyzing continuous variables by

considering the relationships among attributes (i.e. non-IIDness of numeri-
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cal properties). A conventional way to explore the interaction of continuous

attributes is to measure the agreement of shapes between variables via Pear-

son’s correlation coecient (Gan et al. 2007). Nevertheless, it only caters

for the linear relationship between two variables. More often, numerical

variables are associated with each other via nonlinear relationships, such as

exponential and logarithmic functions. Our motivation is to consider both

linear and nonlinear relationship functions, such couplings among variables

are called global interactions or global dependency. In contrast, any method

to study either the linear relationship or some specic nonlinear function

only captures a local picture of the coupling relationships among variables,

such as the Pearson’s correlation. For Table 2.1, if we adopt the method in

(Kalogeratos & Likas 2012) by treating each correlation as the pairwise sim-

ilarity entry, we then obtain the normalized Euclidean distance between u4

and u6 as 0.223, which is still smaller than that between u4 and u3 (i.e. 0.329)

but only a little larger than that between u6 and u5 (i.e. 0.218). It means the

coupling relationships are only partially revealed with limited improvement

on the distance.

A detailed review of the related work on numerical behavior analysis can

be found in (Wang, She & Cao 2013a). Though most of the current strate-

gies are based on the hypothesis of IIDness, great eorts have been made

to reveal the implicit interactions between properties, such as Pearson’s cor-

relation (Gan et al. 2007), rank-correlated measure (Calders, Goethals &

Jaroszewicz 2006), dependency clustering (Plant 2012). Nevertheless, no

work that systematically and explicitly considers the global coupling rela-

tionships among continuous attributes has been reported .

Accordingly, (Wang et al. 2013a) proposes a framework of the coupled

attribute analysis on numerical data to address the aforementioned research

issues, based on the non-IIDness assumption. It considers both the intra-

coupled interaction within an attribute, captured by the correlations between

every attribute and its own powers; and the inter-coupled interaction among

dierent attributes, quantied by the correlations between each attribute and
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the powers of others. A coupled representation scheme is then introduced

for quantitative objects to integrate the intra-coupled and inter-coupled in-

teractions with the original information table representation via Taylor-like

expansion in a global way.

Coupling in Time Series

The coupling between two or more time series is an interesting research topic

and has been proved to be powerful model in some situations. Coupled

hidden Markov models (CHMM) have been implemented in the application of

speech recognition (Zhong & Ghosh 2002), fraud detection (Cao et al. 2012)

and behavior analysis (Song & Cao 2012). The works of Ma (Ma 2007)

and Jafari et. al (Jafari, Shirazi, Namaki & Raei 2011) on coupled time

series focus on the behavior of nancial markets. In these works, during the

evolving of time series, the variables at certain time t are not only determined

by the past of its own series but also by the neighbor series.

These research works do not take granted that these two time series e-

volve independently, but build some connections between the nodes based on

particular setups. The coupling on time series, unlike the coupling in cate-

gorical data and numerical data, focus on the coupling between two systems

and build the relationship on the higher level.

2.3 Markov Chain Monte Carlo

2.3.1 Monte Carlo Methods

Monte Carlo methods are a broad class of computational algorithms that rely

on repeated random sampling to obtain numerical results. By running sim-

ulations many times according to same probability, just like actually playing

and recording your results in a real casino situation, we can get large num-

ber of samples of target distribution. With these samples, many problems

like optimization and integration can be conducted where ordinary analytic
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solution is intractable.

One classic application of Monte Carlo methods is the calculation of π.

Suppose we want to estimate π. We know that the area of a circle with radius

r is πr2, but it is also equal to the following denite integral:

I =

 r

−r

 r

−r

I(x2 + y2 ≤ r2)dxdy (2.3.1)

Hence π = I/(r2). Let us approximate this by Monte Carlo integration.

Let f(x, y) = I(x2 + y2 ≤ r2) be an indicator function that is 1 for points

inside the circle, and 0 outside, and let p(x) and p(y) be uniform distributions

on [−r, r], so p(x) = p(y) = 1/(2r). Then

I = (2r)(2r)

 
f(x, y)p(x)p(y)dxdy (2.3.2)

= 4r2
 

f(x, y)p(x)p(y)dxdy (2.3.3)

≈ 4r2
1

S

S

s=1

f(xs, ys) (2.3.4)

With enough samples, we can plot the points that are accepted/ rejected

as in Figure 2.2, with codes from (Murphy 2012).

2.3.2 Correlated Samples

There is one assumption that all these samples mentioned in Section 2.3.1 are

i.i.d samples: identical, independent distribution. However, for most of the

practical problems, the distributions of interest are usually not the standard

ones we are familiar with. Mixture models are such kind of distributions

that have wide practical applications. It is usually quite hard to get samples

from mixture models directly. To address this issue, Markov chain Monte

Carlo (MCMC) methods have been proposed to generated samples from i-

dentical distribution but correlated. The Metropolis algorithm, an instance

of MCMC, is placed among the then algorithms that have had the greatest

inuence on the development and practice of science and engineering in the

20th century (Beichl & Sullivan 2000). The MCMC methods have played
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Figure 2.2: Estimating π by Monte Carlo integration, blue points are inside

the circle, red crosses are outside.

a signicant role in statistics, econometrics, physics, and computing science

over the last two decades.

Bayesian inference (e.g., prediction or computation of posterior param-

eter estimates) relies on integration with respect to some potentially high-

dimensional probability distribution. We will generically denote this distri-

bution by π. Except in the simplest cases, such integrals cannot be computed

in closed form.

Markov chain Monte Carlo (MCMC) methods provide a class of algo-

rithms that produce estimates of the desired integral based on iterative sam-

pling, combining Monte Carlo integration with samples from a specially con-

structed Markov chain. The key feature of these methods is that the sam-

pling procedure does not rely on sampling from the distribution π, which is

assumed to have an arbitrarily complex form.

The rst step in understanding Monte Carlo integration involves formu-

lating the desired integral as an expectation under the distribution π:


f(x)π(x)dx = Eπ[f(x)] (2.3.5)

The Strong Law of Large Numbers (Gallager & Gallager 1996) informs us

that the sample average based on a set of independent samples xi ∼ π, i =
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1, ..., n, converges almost surely to the true expectation under π. Thus, we

may consider the following approximation, which becomes arbitrarily precise

for n suciently large:

Eπ[f(x)] ≈
n

i=1

1

n
f(xi). (2.3.6)

The assumption of having i.i.d. samples xi can be relaxed by examination

of ergodic theory. The focus of MCMC methods is to develop an ergodic

Markov chain with stationary distribution π, which we refer to as the target

distribution, such that a sample path from this chain can be used to form

the above estimate.

2.3.3 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm provides a generic method for construct-

ing an ergodic Markov chain, relying solely on dening a valid proposal distri-

bution q(·|·) and evaluation of the target distribution π up to a normalization

constant. It is assumed evaluating π(x) is easy, but sampling from this dis-

tribution is challenging. The Metropolis-Hastings algorithm is outlined in

Algorithm 1.

Algorithm 1: Metropolis-Hastings algorithm

Initialize x(0);

for i = 0 to N − 1;

do Sample u ∼ U[0,1];

Sample x∗ ∼ q(x∗|x(i));

if u ∼ A(x∗, x(i)) = min{1, p(x∗)q(x(i)|x∗)
p(x(i))q(x∗|x(i))

} then

x(i+1) = x∗;

else

x(i+1) = x(i);

end

The acceptance probability ρ(y|x) is dened only when π(x) > 0. Howev-
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er, as long as π(x0) > 0, the chain dened in Algorithm 1 will have π(xt) > 0

for all t. We use the convention that π(y|x) is 0 if both π(x) and π(y)

are zero. To analyze the properties of the Markov chain dened by the

Metropolis-Hastings algorithm, it is useful to examine a condition known as

detailed balance.

Let K(y|x) = p(xn+1 = y|xn = x) be the transition distribution or tran-

sition kernel for a given Markov chain. If K(y|x) satises detailed balance:

K(y|x)π(x) = K(x|y)π(y), (2.3.7)

then the chain dened by this transition kernel has stationary distribution

π. A Markov chain satisfying detailed balance is said to be reversible with

respect to π.

Given a chain satisfying detailed balance,


K(y|x)π(x)dx =


K(x|y)π(y)dx = π(y)


K(x|y)dx = π(y), (2.3.8)

implying that π is indeed a stationary distribution of the Markov chain.

It is straightforward to show that the transition kernel dened by Algorithm

1 satises detailed balance. With probability π(y|x), the chain transitions

from x to a sample y ∼ q(y|x); otherwise, the chain transitions back to x.

To prove that the Markov chain indeed converges to π (i.e., π is the

unique invariant distribution for this chain and this distribution is reached

from all initial states), we invoke some mild conditions under which the chain

is both aperiodic and Harris recurrent (Robert & Casella 2004). Jointly, these

conditions imply ergodicity.

Discussion on the rate of convergence to the stationary distribution can

be found in (Gilks, Richardson & Spiegelhalter 1996, Robert & Casella 2004).

In general, this burn-in period is challenging to quantify, except by conser-

vative bounds, and is especially challenging to assess in high-dimensional s-

paces. Convergence can be greatly aected by the initialization of the Markov

chain, and in practice, it is common to run multiple chains from dierent ini-

tializations (Gelman & Rubin 1992). Multimodal target distributions with
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low valleys between the modes can lead to poorly mixing chains that stay in

one region of the state space for long periods of time. Cleverly engineered

proposal distributions, such as through tempering (Gelman & Rubin 1992),

can play a signicant role in the success of a sampling algorithm.

2.3.4 Gibbs Sampling

The Gibbs sampler (Gilks et al. 1996, Robert & Casella 2004) is a spe-

cial case of the Metropolis-Hastings algorithm in which the proposed sample

is always accepted. The Gibbs sampler for n-dimension random variables

(x1, x2, · · · , xn) is summarized in Algorithm 2, from which we see that in

order to sample from the full joint distribution on n random variables, it is

sucient to iteratively sample from each of the possibly univariate condi-

tional distributions. As discussed, a node in a directed graph is conditionally

independent of all other nodes given its Markov property. Therefore, in the

case of sparse graphs, the conditional density from which we are sampling is

dependent only on a small subset of the other sampled nodes. We note that,

as opposed to Metropolis-Hastings, the Gibbs sampler requires knowledge of

the full conditional distributions and an ability to sample from them. Addi-

tionally, this algorithm is only applicable to models with at least two random

variables.

Algorithm 2: Gibbs sampler

Initialize x
(1:n)
0 ;

for i = 0 to N − 1;

do Sample xi+1
1 ∼ p(x1|x(i)

2 , x
(i)
3 , · · · , x(i)

n );

Sample xi+1
2 ∼ p(x1|x(i+1)

1 , x
(i)
3 , · · · , x(i)

n );

· · · ;
Sample xi+1

j ∼ p(xj|x(i+1)
1 , x

(i+1)
j−1 , · · · , x(i)

j+1, x
(i)
n );

· · · ;
Sample xi+1

n ∼ p(xn|x(i+1)
1 , x

(i+1)
2 , · · · , x(i)

n−1);
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To ensure a reversible chain, which leads to a Central Limit Theorem

result for the estimator of (Gilks et al. 1996, Robert & Casella 2004), the

reversible Gibbs sampler performs a sweep at every iteration from x1 to xn

followed by a sweep in the reverse ordering back to x1. Another variant on the

standard Gibbs sampler, as proposed by Liu et al (Liu, Wong & Kong 1995),

is to choose a random ordering for a single sweep, such an algorithm can lead

to improved rates of convergence.
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Wishart Process and Its

Learning

In this chapter, we present the Wishart process in detail, then show how

to learn the hidden matrices and the parameters together with sampling

methods.

3.1 Wishart Process

A Wishart process is a matrix valued continuous time stochastic process with

a marginal Wishart distribution. The Wishart distribution is a matrix variate

generalization of the chi-squared distribution. Since Wishart processes are

dened as a solution to a stochastic dierential equation, the existence and

uniqueness of strong solutions will be discussed comprehensively. Wishart

processes have the property of being symmetric positive denite and are

therefore heavily used for modeling interest rates or the covariance matrix in

stochastic volatility models.

3.1.1 Wishart Distribution

In statistics, the Wishart distribution is a generalization to multiple dimen-

sions of the chi-squared distribution (Wishart 1928). The random variable
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of this distribution is dened on the space Mk
+ ⊂ Rk×k, which is the set

of all k × k positive denite matrix. These distributions are of great im-

portance in the estimation of covariance matrices in multivariate statistics.

In Bayesian statistics, the Wishart distribution is the conjugate prior of the

inverse covariance-matrix of a multivariate-normal random-vector.

Suppose X is an n× p matrix, each row of which is independently drawn

from a p-variate normal distribution with zero mean:

X(i)=(x1
i , . . . , x

p
i ) ∼ Np(0, V ). (3.1.1)

Then the Wishart distribution is the probability distribution of the p× p

random matrix

S = XTX (3.1.2)

known as the scatter matrix. One indicates that S has that probability

distribution by writing

S ∼ Wp(V, n). (3.1.3)

The positive integer n is the number of degrees of freedom. Sometimes

this is written W (V, p, n). If p = 1 and V = 1 then this distribution is a chi-

squared distribution with n degrees of freedom. S−1 has the inverse Wishart

distribution, W−1
p (V −1, n) , which is a conjugate prior for covariance matrices

of zero-mean Gaussian distributions. This means that for data D if a prior

p(R) is Gaussian with zero mean, then the posterior p(R|D) is also inverse

Wishart.

3.1.2 Transition of Wishart Process

There have been several research from the led of statistics and machine

learning working on Wishart Process, see (Fox & West 2011, Wilson &

Ghahramani 2011, Philipov & Glickman 2006). They dened dierent tran-

sition functions or distributions between time points. However, to model

volatility we choose the transition from (Philipov & Glickman 2006) as this
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model is designed specially to model volatility: every parameter has its u-

nique eect in controlling the level of variance of asset prices.

Below is a graphic model indicating the transition, see Figure 3.1.

Figure 3.1: Graphic model of matrix transition.

In details, the transition relationship in (Philipov & Glickman 2006) is

dened as follows:

yt|Σt ∼ Nk(0,Σt), (3.1.4)

Σ−1
t |ν,Σ−1

t−1 ∼ Wk(ν, St−1), (3.1.5)

where St−1 is dened as follows,

St−1 =
1

ν
(A1/2)(Σ−1

t−1)
d(A1/2). (3.1.6)

The parameter A can be interpreted as a measure of sensitivity on tran-

sition of time. This matrix reveals how each element of the current period

covariances matrix depends on elements of the previous one. It is the param-

eter that in part determines mean reversion characteristics on a multivariate

level. For example, without restrictions on this matrix parameter, each asset

variance, σ2
ii will depend on the previous period variance of this asset’s re-

turn as well as on its covariances with all other assets. Thus a change in the

volatility of one asset will aect other assets’ volatilities. The specication of

the intertemporal variance relationship is actually presented in terms of A−1,

this can be explained in the conditional expectation of covariance matrix.
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The scalar parameter d indicates the overall inuence of these relation-

ships. This parameter accounts for the presence of long memory or persis-

tence. Such a phenomenon is quite universal when modeling nancial data:

today’s return has a large eect on the forecast variance many periods in

the future. Enormous evidence of long memory of volatility in univariate

stochastic volatility models has been documented, see (Jacquier et al. 2002).

The persistence parameter d is the theoretically bound between −1 and

1. For practical nancial data, the value for d is between 0 and 1. A value

of d close to 0 indicates a weak overall eect of current volatility on future

ones within a few subsequent periods. While a value close to 1 means high

persistence, which implies that current volatility has a relatively strong eect

on its future ones. The special case when d = 0 implies a constant volatil-

ity, which means the conditional expectation of the volatility in time t is a

constant,

E(Σt) = (ν − k − 1)−1S−1
t−1 (3.1.7)

=
ν

ν − k − 1
(A−1/2)(Σt−1)

0(A−1/2) (3.1.8)

=
ν

ν − k − 1
(A−1) (3.1.9)

The other special case when d = 1 and A = I, I is the k-dimension

identity matrix, corresponds to a simple matrix-variate random walk,

E(Σt) = νSt−1 = Σt−1 (3.1.10)

As long as the parameter A is symmetric positive denite, the parameter

d is bounded between 0 and 1, and the Wishart degrees of freedom, ν is

greater than the dimension of the multi-variable in the model, then we have

a autoregressive stochastic matrix model especially designed for volatility

modeling.
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3.2 Learning Procedures

In this section, we shall present how the simulation and learning procedures

go for such a autoregressive model for matrix variable model. As we can see,

it is a Bayesian model with hidden states: the observations are regarded to

follow certain distributions.

First, we have to derive the full likelihood for such a model. Refer to the

graphic model with parameters, easily, we have:

p(Y1:T |θ,Σ−1
1:T ) =

T

t=1

p(Σ−1
t |Σ−1

t−1, θ) · p(Yt|Σt), (3.2.1)

where θ = {A−1, d, ν}.
Here, we haveM independent observations for each Σt: Yt = {yt1, yt2, · · · , ytM}.

When M = 1, it is the original model with only one observation.

In this model, the hidden covariance matrices and parameters are learnt

together. Following Bayes rule:

posterior ∝ prior × likelihood, (3.2.2)

the posterior of hidden variables and parameters can be derived.

First, we set all our priors. A−1 follows a Wishart distribution W (Q0, γ0),

d is in a uniform distribution at the interval [0,1], ν follows a noninformative

uniform distribution, we have:

p(A−1) ∼ W(Q0, γ0) ∝ |A−1|(γ0−k−1)/2 · |Q0|γ0/2 (3.2.3)

Besides, we have:

St−1 =
1

ν
(A1/2)(Σ−1

t−1)
d(A1/2), (3.2.4)
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Then the posterior can be written as:

p(θ,Σ−1
1:T |Y1:T ) ∝ prior(θ) ·

T

t=1

p(Σ−1
t |Σ−1

t−1, θ) · p(Yt|Σt)

∝ p(A−1) · p(d) · p(ν) ·
T

t=1

p(Σ−1
t |Σ−1

t−1, A
−1, d, ν) · p(Yt|Σt)

∝ |Q0|γ0/2 · |A−1|(γ0−k−1)/2 ·
T

t=1

W (Σ−1
t |St−1, ν) ·

T

t=1

M

m=1

N (Ytm|Σt)

∝ |A−1|(γ0−k−1)/2 ·
T

t=1

[
1

2νk/2
k

i=1 Γ(
ν+1−i

2
)
·

|St−1|−ν/2 · |Σ−1
t |ν−k−1 · exp


−1

2
tr(S−1

t−1Σ
−1
t )


]·

T

t=1


|Σ−1

t |M/2 · exp(−1

2

M

m=1

ytmΣ
−1
t ytm)



(3.2.5)

Now, we can deduce conditional probabilities of all the elements, by e-

liminating the irrelevant items.

For Σ−1
t , whent = 1 : T − 1, we only preserve the items contains Σ−1

t ,

including St, from Equation 5.5.5. (From step 2 to step 3, we use Tr(ABC) =

Tr(BCA) = Tr(CAB). And, for a scalar, x = Tr(x).)

p(Σ−1
t |·) ∝ Wish(Σ−1

t |ν, St−1) ·Wish(Σ−1
t+1|ν, St) · N (Yt|Σt)·

∝ |Σ−1
t |(ν−k−1)/2 · exp(−1

2
tr(S−1

t−1Σ
−1
t ))·

|S−1
t |−ν/2exp(−1

2
tr(S−1

t Σ−1
t+1)) · |Σ−1

t |M/2 · exp(−1

2

M

m=1

ytmΣ
−1
t ytm)

∝ |Σ−1
t |(ν−k−1)/2 · exp(−1

2
tr((S−1

t−1 +
M

m=1

ytmytm)Σ
−1
t )) · |Σ−1

t |(M−νd)/2

· exp(−1

2
tr(S−1

t Σ−1
t+1))

∝ Wish(Σ−1
t |ν, St−1) · |Σ−1

t |(M−νd)/2 · exp(−1

2
tr(S−1

t Σ−1
t+1)),

(3.2.6)
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where St−1 = (S−1
t−1 +

M
m=1 y


tmytm)

−1.

When t = T ,

p(Σ−1
T |·) ∝Wish(Σ−1

T |ν, S−1
T−1) · N (YT |ΣT )

∝|Σ−1
T |(ν−k−1)/2 · exp(−1

2
tr(S−1

T−1Σ
−1
T ))·

|Σ−1
T |M/2 · exp(−1

2

M

m=1

yTmΣ
−1
T yTm)

∝ Wish(Σ−1
t |ν +M, ST−1),

(3.2.7)

where, ST−1 = (S−1
T−1 +

M
m=1 y


tmytm)

−1.

For d, we nd all the items with d are the St, so we only keep them in d’s

conditional posterior.

p(d|·) ∝
T

t=1


|St−1|−ν/2exp(−1

2
tr(S−1

t−1Σ
−1
t ))



∝
T

t=1


|Σ−1

t−1|−νd/2exp(−1

2
tr(S−1

t−1Σ
−1
t ))

 (3.2.8)

For ν, it is a bit more complicated than d,

p(ν|·) ∝ p(ν) ·
T

t=1

Wish(Σt|ν, St−1)

∝
T

t=1


1

2νk/2
k

i=1 Γ(
ν+1−i

2
)
· |St−1|−ν/2 · |Σ−1

t |(ν−k−1)/2·

exp


−1

2

T

t=1

tr(S−1
t−1Σ

−1
t )



∝ (
|νA−1|ν/2

2νk/2
k

i=1 Γ(
ν+1−i

2
)
)T

T

t=1

|Σ−1
t−1|−νd/2 · |Σ−1

t |(ν−k−1)/2·

exp


−1

2

T

t=1

tr(S−1
t−1Σ

−1
t )



(3.2.9)
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For A−1, we keep the prior and all the St,

p(A−1|·) ∝ p(A−1) ·
T

t=1

Wish(Σt|ν, St−1)

∝ Wish(A−1|γ0, Q0) ·
T

t=1

Wish(Σ−1
t |ν, St−1)

∝ |A−1| γ0−k−1
2 · exp(−1

2
· tr(Q−1

0 A−1))·
T

t=1

|S−1
t−1|ν/2exp(−

1

2
· tr(S−1

t−1Σ
−1
t ))

∝ |A−1| γ0−k−1
2 · exp(−1

2
· tr(Q−1

0 A−1))·
T

t=1

|A−1|ν/2exp(−1

2
· tr(S−1

t−1Σ
−1
t ))

∝ |A−1|Tν+γ0−k−1
2 · exp(−1

2
· tr(Q−1

0 A−1))·
T

t=1

exp(−1

2
· tr(S−1

t−1Σ
−1
t ))

∝ |A−1|Tν+γ0−k−1
2 · exp(−1

2
· tr((Q−1

0 + ν
T

t=1

Σ
d/2
t−1Σ

−1
t Σ

d/2
t−1)A

−1))

∝ Wish(A−1|Tν + γ0, (Q
−1
0 + ν

T

t=1

Σ
d/2
t−1Σ

−1
t Σ

d/2
t−1)

−1)

(3.2.10)

With above posteriors, the procedures of learning hidden states and pa-

rameters are as follows, based on Gibbs sampling.

1. Initialize θ = {A, d, ν} and {Σt}.
2. Sample Σt from Σt|Σ\t, A, d, ν for t = 1, · · · , T .
3. Sample A from A|{Σt}, d, ν.
4. Sample d from d|{Σt}, A, ν.
5. Go to Step 2 until enough iteration times.

Please note that for every step, the new samples must be updated in next

step. For t = 1, · · · , T − 1, the posterior of Σt is not a standard distribution
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that we can directly sample from. We can adopt the Metropolis Hastings

(MH) sampling method, and use a Wishart distribution as the proposal den-

sity. When t = T , we can sample ΣT directly from a Wishart distribution

with specic parameters. For ν and d, their posteriors are not common

distributions either, we can get it by a discrediting method.

3.3 Results Analysis

We set the time series length T = 100, and ν = 20, d = 0.7, A = [130, 50; 50, 130].

Besides, at each time t, M independent observations are generated from Σt

and we have M = 20. Then, we ran 25,000 times of iterations with a Gibbs

sampler. The rst 5,000 samples are discarded and the rest are recorded. In

this section, an analysis is conducted on the obtained samples.

3.3.1 Parameters

In Figure 3.2, the red line indicates the real value, the blue lines are samples.

We can see that A and ν are biased estimated, while d suers less.

In related literature, within the synthetic experiment of Philipov et. al

(Philipov & Glickman 2006), there also exists severe bias in parameter es-

timation. In Wolfgang et. al’s report (Rinnergschwentner, Tappeiner &

Walde 2011) on the same topic, which has corrected many errors of Philipov

et al’s original paper, the authors present a very beautiful results in Table 1,

however, it is not so convincing, as it is one result from one data sample. In

Table 2 of this paper, the mean results of 100 data sets are shown, we can

also see strong bias from this.

3.3.2 Determinant Diagnose

Despite the bias, we do not focus on the parameters much. What we want

to know is the quality of estimation of covariance matrices. Below in Figure
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Figure 3.2: Samples of the parameters: d, ν, A.

3.3, we plot the determinant of the true covariance matrices, E(Σ−1
t |·), and

E(Σ−1
t |·), where,

E(Σ−1
t |·) = ( A1/2)(Σ−1

t−1)
d( A1/2) (3.3.1)

E(Σ−1
t |·) = ( A1/2)(Σ−1

t−1)
d( A1/2) (3.3.2)

The red line indicates true value, while blue indicates E(Σ−1
t |·), and green

indicates
E(Σ−1

t |·).

We can see from the gure that there exists some bias in the estimation of

the parameters. However, the parameters are not our focus, but the hidden

matrices.
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Figure 3.3: Plot of determinant.

3.3.3 Element Diagnose

In this subsection, we plot each element of the covariance matrices, from true

value, E(Σ−1
t |·), and E(Σ−1

t |·) respectively, see Figure 3.4.

3.3.4 Some Issues in Implementing with Singularity

In the Gibbs sampling framework of this project, one important task is to get

matrix samples for Σ−1
t and A−1. To produce such matrices, we use a Wishart

distribution sampler (for A−1 and ΣT ) or use Wishart distribution sampler to

get a sample candidate in a Metropolis-Hastings algorithm. In Matlab, this

procedure is implemented by a function wishrnd(sigma,df). This function

requires one matrix parameter ‘sigma’ to be positive-denite. However, due

to some properties of the model and computing inaccuracy, the intermediate

variable S (to be in wishrnd as sigma) easily fall into errors. There are two

types of errors:
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Figure 3.4: Plot of each element.
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1. The S is not so “well” positive-denite, we add a small enough identity

matrix to make sure all its eigenvalues larger than 0.

2. The S is NaN or with negative eigenvalues. This is because the St−1

‘close to singular or badly scaled’.

How does such errors come from? According to the denition of St, when

Σ−1
t−1 is positive-denite, St should also be positive-denite out of question.

However, when Σ−1
t−1 is close to singular, S−1

t−1 is close to singular. Then St−1

will be quite ’sick’ and leads to error when calling wishrnd.

As to the bad Σ
(−1)
t , one way is to add a small enough identity matrix

to it as not to change its property. However, this solution works for some

matrices but not for some another matrices, make it not a reliable method

in large number of iterations.

Another solution is to make a lter when doing the sampling. Here we

use the indicator rcond (reciprocal conditional number). When the rcond

of sampled matrix less than a very small number: eps, we just drop it and

resample a new one. If we consider the space of matrix (rcond < eps) is

small (rcond(eye(k)) = 1), it is acceptable to do such a dropping. And the

results of sampling are not aected after dropping those whose rcond < eps.

3.3.5 Summary

Through the analysis of this sampling results of this data set, and from

both previous experience and results from other literature. There commonly

exists bias on parameters. However, diagnose on covariance matrices is more

soothing, at least from gures: Figure 3.3 and Figure 3.4. Of course, this

analysis is supercial, further quantity analysis is needed after more results

are obtained.
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Homogenous Coupling Wishart

Process

In this chapter, we construct the rst type of coupling Wishart process:

the homogenous coupling Wishart process. To begin with, we present the

background and motivation, then the framework and concrete implement

are demonstrated, the following part are the leaning process and evaluation

results.

4.1 Background

Volatility indicates the price variations of a specic nancial instrument

(Engle 1982). The research on volatility concerns every participant in the

nancial markets: government policy makers, market analysts, fund man-

agers, and economists. Along with the rapid growth of nancial markets

and the continual development of new and increasingly complex nancial in-

struments, the need for high-quality volatility modeling methods is in great

demand. Modeling and predicting volatility is also of vital importance in

various applications (de Mattos Neto, Ferreira & Cavalcanti 2011, Philipov

& Glickman 2006, Abdullah & Zeng 2010), such as asset pricing, portfolio

selection, hedging and risk management. In addition, the burst of several

39



CHAPTER 4. HOMOGENOUS COUPLING WISHART PROCESS

bubbles aggravates the uncertainty of world market and economy. Espe-

cially after the economic crisis in 2008, modeling and analyzing volatility is

becoming a more and more critical task.

There has been a great number of research (Jacquier et al. 2002) on the

univariate volatility models, which consider the volatility of just one vari-

able. However, studies on the volatility of a certain nancial instrument

should also include the inuences from other assets to capture the dependen-

cy and spill-over eect. For this purpose, multivariate volatility models (Asai

& McAleer 2009) have been proposed based on the univariate ones. Multi-

variate volatility models focus on the covariance matrix of a portfolio, and

regard that the volatilities evolve together over time, according to specic

model setups.

To model the dynamic covariance matrix evolvement in multivariate volatil-

ity analysis, Wishart process has been adopted in several literatures (Philipov

& Glickman 2006, Gourieroux et al. 2009). As a probabilistic model, Wishart

process demonstrates its exibility and simplicity in modeling the covariance

matrix (Asai & McAleer 2009). In a Wishart process, the return of one asset

is regarded as an observation of the latent covariance matrix, and conditional

independent with others. The latent covariance matrix evolves in a one-order

Markov way: only related to the state of its last time.

Nevertheless, under the circumstance of globalization, only considering

the inuences from other assets is not enough. Outside inuences often play

an important role than one system itself. Like the world-wide economic crises

in history, all of them start from one market and then spread to the rest of

whole world. Imagine that a professional investor is managing a portfolio

in Hong Kong stock market. He needs a good estimation on the covariance

matrix of this portfolio. As the Hong Kong stock market is highly correlated

with the U.S. market, taking into account the U.S. market will denitely help

him make better estimation of the covariance matrix. However, no work has

explicitly and systematically address the coupling relationship across systems

or markets for volatility due to its complexity with great challenges. The
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U.S. Stock Market 

Hong Kong Stock Market 

Time 

Time 

Figure 4.1: The coupling relationship of volatility.

incomplete or local analysis of volatility will inevitably lead to tentative and

less eective learning performance.

Here, we introduce the thought of coupling and include the outside inu-

ences from other markets. Both in nature and society, there exist some kinds

of coupling relationships between individuals and systems. The research on

such couplings and interactions is of great signicance in diverse elds, like

the coupled behavior analysis (Cao et al. 2012), the coupled anomaly de-

tection (Song, Cao, Wu, Wei, Ye & Ding 2012), and the coupled attribute

analysis (Wang, Cao, Wang, Li, Wei & Ou 2011). In the example of the Hong

Kong investor, a coupled volatility analysis framework can be constructed as

in Figure. 4.1. Within this framework, at each time point, the covariance

matrix of a portfolio from Hong Kong market is evolving with that of a

similar portfolio from U.S. market.

In this chapter, we propose the coupled volatility analysis with linear

coupling relationship between the covariance matrices. This relationship is

dynamic with time, providing much more exibility and better accuracy for

models. In summary, the key contributions are listed as follows:
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– We propose a coupled Wishart process by considering the interactions

between dierent systems, in which we construct linear coupling rela-

tionship with properly designed weights.

– An estimation method based on MCMC, i.e. Gibbs sampling and

Metropolis-Hasting sampling, is adopted to learn all the parameters

and hidden covariance matrices.

– Rigorous experiments have been conducted to show the superiority of

our proposed coupled model.

In Section 4.2, we briey review the related work. Basic knowledge on

Wishart distribution and Wishart process is presented in Section 4.3. Section

4.4 proposes the coupled volatility analysis model, a linear coupling approach

is introduced in Section 4.5. The estimation method for this model is then

specied in Section 4.7. Experiment results are shown in Section 4.9, which

prove the eectiveness of our proposed model in capturing the coupling re-

lationship. Finally, the conclusion and future work are presented in Section

4.10.

4.2 Related Work

Volatility analysis is an important research issue that has been broadly stud-

ied in econometrics and other communities (Bollerslev 1986). The univari-

ate volatility models deal with the volatility of just one variable (Jacquier

et al. 2002). However, such methods lack the consideration of the inu-

ences from other variables. Thus, univariate volatility analysis has been

extended to the multivariate cases by several researchers (Harvey, Ruiz &

Shephard 1994). Two main approaches for volatility analysis are GARCH

models and stochastic models. The GARCH models assume that the volatil-

ity is a deterministic function of the past (Engle 1982, Bollerslev 1986),

while the stochastic models suppose the volatility follows a random pro-

cess (Harvey et al. 1994). In addition, considering the properties of stock
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market, the leverage eect, the asymmetric inuence between dierent s-

tocks and markets, numerous research works have been carried out (Harvey

& Shephard 1996). The stochastic models have gained increasing popularity

for their exibility and capturing power (Philipov & Glickman 2006, Asai &

McAleer 2009, Gourieroux et al. 2009). Among the methods via stochastic

models, several researchers adopt the Wishart process to simulate the uc-

tuations of a portfolio or the whole market (Asai & McAleer 2009), which

provides a probabilistic model and is easy to simulate. The approaches based

on the Wishart process regard the volatility as hidden variables and the obser-

vations following a normal distribution (Philipov & Glickman 2006). Unlike

our focus, these models all deal with the variables within only one system.

Coupling is another aspect of this research, the thought of coupling has

been included in a variety of areas and to dierent levels, as the coupling

relationship exists everywhere in real world. Several works have been done

on the coupling of discrete data and its applications (Wang et al. 2011),

while the coupling between sequences and time series is also studied (Cao

et al. 2012, Boronowski & Frangakis 1998). During the evolving of time se-

ries, the variables at certain time t are not only determined by the past of

its own series but also by the neighbor series. Coupled hidden Markov mod-

els (CHMM) are such approaches with extensive studies and applications

(Zhong & Ghosh 2002). These research works, in particular for the coupling

of time series, however, do not take into account the interactions between d-

ierent systems. No work has been reported to explicitly and systematically

consider the coupling relationship between systems or markets for the volatil-

ity analysis, whereas our proposed model addresses this promising research

issue.

4.3 Preliminary Knowledge

In this section, we briey review the Wishart distribution and Wishart pro-

cess, which have been included to model multivariate volatilities in sever-
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al works (Philipov & Glickman 2006, Asai & McAleer 2009, Gourieroux

et al. 2009).

4.3.1 Wishart Distribution

The Wishart distribution (Bishop & Nasrabadi 2006) is dened on the space

Mk
+ ⊂ Rk×k, which is the set of k × k symmetric positive denite matrices.

The probability density function of a Wishart distribution is formalized as

follows,

W(Σ|ν,W) =
1

2
νk
2 |W| ν2 Γk(

ν
2
)
|Σ| ν−k−1

2 e−
1
2
tr(W−1Σ), (4.3.1)

where Σ is the matrix random variable, ν is a scalar parameter larger than

k, W is a k × k symmetric positive denite matrix parameter, and Γk(·) is
the multivariate gamma function dened as

Γk(ν/2) = πk(k−1)/4

k

j=1

Γ [(ν + 1− j)/2] . (4.3.2)

4.3.2 Wishart Process

The Wishart process (Philipov & Glickman 2006, Gourieroux et al. 2009, Fox

& West 2011) is proposed to model the dynamic time series of covariance

matrices. The approach introduced by Philipov and Glickman (Philipov &

Glickman 2006) is adopted in this paper. The graphic model for a Wishart

process is presented in Figure. 4.2. The dynamic covariance structure is

modeled on Wishart distribution:

yt|Σt ∼ Nk(0,Σt), (4.3.3)

Σ−1
t |ν,Σ−1

t−1 ∼ Wk(ν, St−1), (4.3.4)

where St−1 is dened as follows,

St−1 =
1

ν
(A1/2)(Σ−1

t−1)
d(A1/2). (4.3.5)
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Figure 4.2: A single Wishart process.

The variables and parameters in the above equations are explained here.

yt is the return vector of k dierent assets at time t, and is set to obey

a zero-mean multivariate Gaussian distribution (denoted as Nk). So it can

be regarded as the return that “surprises” the expected. Σt is the laten-

t covariance matrix of returns at time t, and treated as the volatility for

a portfolio. Σt and St are symmetric positive denite matrices, dened on

Mk
+ ⊂ Rk×k. ν is the degree of freedom and set to be invariant during the

whole process. A ∈ Mk
+ is also a symmetric positive denite matrix param-

eter, and can be decomposed through a Cholesky decomposition, denoted as

A = (A1/2)(A1/2). This parameter matrix reveals how each entry of covari-

ance matrix Σt at time t depends on the entries of covariance matrix Σt−1

at time t − 1. So A can be interpreted as a measure of intertemporal sensi-

tivity (Philipov & Glickman 2006). d is a scalar parameter to measure the

overall strength of relationship between previous period and current period.

As discussed in (Philipov & Glickman 2006), we set d ∈ (0, 1). Besides,

t = 1, 2, · · · , T is the time indicator.

4.4 Coupled Volatility Analysis

Considering the interaction of world nancial markets, the volatility of one

market is greatly inuenced by that of other markets. Therefore, constructing

a coupled volatility model to analyze the volatility between several dierent

markets is quite essential. Inspired by the research (Cao et al. 2012) based
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on the Hidden Markov Model (HMM) and some works on the coupled time

series (Qiu, Lu, Cao & He 2011), a coupled model on volatility analysis is

proposed.

Below, we present a coupled Wishart process to capture the interactive

volatilities upon multiple Wishart processes. Within a coupled framework,

it is assumed that the covariance matrix is conditioned with not only the

previous state of its own Wishart process, but also its “neighbor” covariance

matrix at last step from other Wishart processes.

Figure 4.3: An example of the coupled Wishart process.

Take a two-chain coupled Wishart process for example, the graphic model

is exhibited in Figure. 4.3. The two Wishart processes (i.e. W and W ) are

coupled during the procedure of evolving. As can be observed from Figure.

4.3, at each time t, the covariance matrix Σt is not only determined by

its previous one Σt−1, but also depends on Σ
t−1. Formally, we have the

46



CHAPTER 4. HOMOGENOUS COUPLING WISHART PROCESS

formalization as below,

yt|Σt ∼ Nk(0,Σt) (4.4.1)

Σ−1
t |ν,Σ−1

t−1, (Σ

t−1)

−1 ∼ Wk(ν, g(Σt−1,Σ

t−1)) (4.4.2)

yt
|Σ

t ∼ Nk(0,Σ

t) (4.4.3)

Σ
t
−1|ν ,Σ−1

t−1, (Σ

t−1)

−1 ∼ Wk(ν
, g(Σt−1,Σ


t−1)) (4.4.4)

As well presented in Equation (4.4.2) and Equation (4.4.4), at a new time

t, the coupled evolvement is passed from last stage t − 1 by a coupling of

covariance matrices, i.e. g(Σt−1,Σ

t−1) and g(Σt−1,Σ


t−1). Here, g(·) and

g(·) are the coupling functions of covariance matrices. How to specically

construct g(·) and g(·) is another issue, which will be addressed in the next

section.

4.5 A Linear Coupling Approach

In this section, we present a linear coupling model for the coupled volatility

analysis and its weights setting, together with their theoretical supports.

4.5.1 Linear Model

Based on several coupled frameworks on HMM (Zhong & Ghosh 2002) and

linear dynamic systems (Qiu et al. 2011), which consider both inter-coupling

and intra-coupling in a linear way, a similar coupled model is constructed

accordingly. Below is a coupled system with Q Wishart processes, for each

process Wq (q = 1, 2, · · · , Q) at every time point t, the evolution of the

corresponding covariance matrix is coupled with the other Q− 1 covariance
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matrices.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W (1) : Σ
(1)
t ∼ Wk(ν

(1), g
(1)
t−1)

W (2) : Σ
(2)
t ∼ Wk(ν

(2), g
(2)
t−1)

· · ·
W (q) : Σ

(q)
t ∼ Wk(ν

(q), g
(q)
t−1)

· · ·
W (Q) : ΣQ

t ∼ Wk(ν
(Q), g

(Q)
t−1)

(4.5.1)

In detail, for the qth Wishart process W (q) at time t, the evolution of

covariance is determined by two parameters: ν(q) and g
(q)
t−1. ν(q) is the pa-

rameter that indicates its own property, and set to be invariant for each

process. g
(q)
t−1 is a function of the linear combination of all the covariance

matrices at time t−1, note that it is a linear specication of g(·) in Equation

(4.4.2) and Equation (4.4.4).

The linear combination function g
(q)
t−1 is dened as follows. Equation

(4.5.2) is based on the property of Wishart process, and its structure is

similar to Equation (4.3.5). Equation (4.5.3) illustrates how exactly the cou-

pling goes. The weights {ω(j)
t−1} represents the extent of inuences at time t

from the jth Wishart process. α is a weight that indicates the self-inuence

and set to be invariant at our current stage.

g
(q)
t−1 =

1

ν(q)
(A1/2

q )

Σ

(q)
t−1

−d(q)

(A1/2
q ) (4.5.2)


Σ

(q)
t−1 = α · Σ(q)

t−1 + (1− α) ·
Q

j=1

ω
(j)
t−1 · Σ(j)

t−1 (4.5.3)

The linear structure of coupling relationship on covariance matrices has

several advantages. First, linear relationship leads to a clear and easy-to-

inference structure, the coupling inuences from other systems are modeled

with weights. Second, under the linear structure, the self-evolution can be

easily modeled, which is an very important part in the evolvement (Qiu

et al. 2011).
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Here we take the example from Section 4.1 to demonstrate how linear

coupling of matrices makes sense. Assume Σt and Σ
t are the covariance

matrices of two identical assets portfolio (i.e. manufacturing and consum-

ing) from U.S. and Hong Kong stock markets respectively, we make a linear

combination C of them. The linear combination of these two matrices with

weights, corresponds to the linear combination of every entry in the matrices.

Any element of the combined matrix, like C(1, 1) indicates the corresponding

linear combination of element Σt(1, 1) from covariance matrix Σt and Σ
t(1, 1)

from covariance matrix Σ
t.

Here naturally arises another problem: how to acquire a set of reasonable

weights? As the coupling objects are not ordinary variables, but positive

denite matrices, some related issues are addressed in the next part.

4.5.2 Weights Setting

How to dene proper weights for those covariance matrices is an important

issue. We dene the weights as follows

ω
(j)
t−1 =

||y(j)t − y
(j)
t−1||2Q

j=1 ||y
(j)
t − y

(j)
t−1||2

(4.5.4)

This selection of weights is based on the thought that the violent system

tends to exert a greater inuence on the quieter ones (Asai & McAleer 2009).

So the extent of changes in observations at time t− 1 determines the weight

of evolvement to next time stage.

4.5.3 Theoretical Support

First, we easily prove that a linear combination of covariance matrices is still

a symmetric positive denite matrix, which means that the linear structure

is a reasonable candidate to capture the coupling relationship.

Theorem 4.5.1 Suppose A and B are two symmetric positive denite ma-

trices, ω1,ω2 ∈ (0, 1) are two weights. A linear combination of A and B is
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still a symmetric positive denite matrix.

In fact, for any non-zero vector x, we have

x(ω1A+ ω2B)x = ω1 · xAx + ω2 · xBx > 0 (4.5.5)

According to the denition of symmetric positive denite matrix, the linear

combination of them is still a symmetric positive denite matrix.

Next, we demosntrate that a linear combination of covariance matrices

A and B, denoted as C, is still between A and B on the space of covariance

matrices Mk
+ ⊂ Rk×k. The reason is that we accordingly have d(A,C) ≤

d(A,B) and d(B,C) ≤ d(A,B), detailed proof is available by request. As

our target objects are not a vector or a scalar, we apply a distance metric on

covariance matrix (Förstner & Moonen 1999).

d(A,B) =


n

i=1

ln2 λi(A,B), (4.5.6)

where λi(A,B) is the eigenvalue from |λA−B| = 0. Positivity, symmetry, and

triangle inequality of this metric can be found in (Förstner & Moonen 1999).

4.6 Matrix Metric of Linear coupling

As our target objects are covariances matrices, and we try to come to a linear

coupling of them, one metric on the distance between is needed. W. Förstner

proposed a metric for covariance matrices in one of his technic report.

The distance measure between covariance matrix A and B is dened as

follows,

d(A,B) =


n

i=1

ln2 λi(A,B) (4.6.1)

where λi(A,B) are the eigenvalues from |λA − B| = 0. The authors have

clarify their properties of positivity, symmetry, and triangle inequality.

As to the linear coupling, we take a simple example, C = f(A,B,ω) =

(1− ω)A+ ωB. We can prove that it satises the followings:
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1. When ω = 1, the distance between C and one of the border B is 0.

That is d(C,B) = 0.

2. When ω = 0, the distance between C and another border A is 0. That

is d(C,A) = 0.

3. When 0 < ω < 1, the distance between C and B, and the distance

between C and A, are within the distance between A and B. That is,

max{d(C,B), d(C,A)} < d(A,B) (4.6.2)

We prove it to be true. If we can prove d(C,A) < d(A,B) and d(C,B) <

d(A,B) to be true respectively. Next, we try to prove d2(C,A) < d2(A,B).

For the n eigenvalues of |λ0A−B| = 0, we denote them as λ0
1,λ

0
2, · · · ,λ0

n.

For the n eigenvalues of |λ1A − C| = 0, we denote them as λ1
1,λ

1
2, · · · ,λ1

n.

According to the denition, d2(C,A) =
n

i=1 ln
2 λ1

i (C,A), and d2(A,B) =
n

i=1 ln
2 λ0

i (A,B).

|λ1A− C| = |λ1A− [(1− ω)A+ ωB]| = |(λ1 + ω − 1)A− ωB| (4.6.3)

From above equation, we can nd

λ0
i =

λ1
i + ω − 1

ω
(4.6.4)

then,

n

i=1

ln2 λ0
i −

n

i=1

ln2 λ1
i =

n

i=1

[ln2 λ0
i − ln2 λ1

i ] (4.6.5)

then,

ln2 λ0
i − ln2 λ1

i = ln
λ0
i

ωλ0
i − ω + 1

lnλ0
i (ωλ

0
i − ω + 1) (4.6.6)

We can further prove Eq. (4.6.6) is larger than 0, on matter λi is larger

or small than 1.

1. When λi = 1, we can get ln2 λ0
i − ln2 λ1

i = 0.

2. When λi < 1, we can get ln2 λ0
i − ln2 λ1

i > 0

51



CHAPTER 4. HOMOGENOUS COUPLING WISHART PROCESS

3. When λi > 1, we can get ln2 λ0
i − ln2 λ1

i > 0

Thus, we have d2(C,A) < d2(A,B). Similarly, we can have d2(C,B) <

d2(A,B). Then, Eq. (4.6.2) holds.

4.7 Estimation Methods

For such a probabilistic framework with a clear graphic model, Markov chain

Monte Carlo (MCMC) (Andrieu, De Freitas, Doucet & Jordan 2003) methods

are promising ways to simulate the time series, as the parameters and latent

variables can be estimated together. In this section, we propose an MCMC

technique to estimate the coupled Wishart process.

As a Bayesian approach, the idea behind MCMC methods is to produce

values for specic variables from a known distribution of interest (usual-

ly multivariate distribution) by sampling a Markov chain, whose invariant

transition distribution is just the target distribution. Unlike the usual prob-

lem of acquiring the maximum likelihood of parameter Θ, in this model, the

parameter space is augmented to include all the latent variables. After the

Markov chain converges to the target distribution, these draws are treated as

the samples from marginal posterior densities. Therefore, several statistics

such as mean and moment can be approximately calculated.

From the construction of our model, we nd that our target posterior

distribution has a high-dimension density (see Equation (4.7.1)), with both

scalar and matrix variables. For such a high-dimension posterior, Gibbs sam-

pling (Andrieu et al. 2003) is a good choice, which produces samples of every

element from its conditional probability with all others, then repeats this

process while updating the samples according to the conditional probability

density function. The most advantage of adopting Gibbs sampling is that it

produces high-dimension samples via its own procedures. Besides, a Gibbs

sampler accepts all the candidate draws (Andrieu et al. 2003), which avoids

the trouble of choosing a proper proposal distribution in practice.

To implement the Gibbs sampling, we deduce the joint posterior of pa-
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rameters and hidden variables rst. The joint posterior function in a coupled

Wishart process is proportional to the priors multiplied by the likelihood.

Take a two-chain coupled Wishart process as an example, below is the pos-

terior distribution:

p(ν(1), ν(2), A(1), A(2), d(1), d(2),Σ
(1)
1:T ,Σ

(2)
1:T |y

(1)
1:T ,y

(2)
1:T )

∝ p(ν(1)) · p(ν(2)) · p(A(1)) · p(A(2)) · p(d(1)) · p(d(2))·
T

i=1

p(Σ
(1)
t |·)

T

i=1

p(Σ
(2)
t |·)

T

i=1

p(y
(1)
t |·)

T

i=1

p(y
(2)
t |·)

(4.7.1)

For the space limit, we do not give a completely detailed result here.

Based on the above posterior function, we derive the distribution density of

every item conditioned with the rest and conduct Gibbs sampling. After the

parameters have been estimated, predictions can be made. The conditional

posterior density of each element is specied in Appendix.

The structure of the Gibbs sampler on the estimation of parameters and

hidden variables is as follows:

(1) Initialize parameters A(1), d(1), A(2), d(2) and latent variables {Σ(1)
t },

{Σ(2)
t }.
(2) Sample Σ

(1)
t from Σ

(1)
t |{Σ(1)

\t , A
(1), d(1), A(2), d(2)}, for t = 1, · · · , T .

(3) Sequentially, sample each parameter or latent matrix from its condi-

tional posterior distribution density. Before every drawing within one cycle,

we update the known samples when producing draws for other elements.

(4) Go to Step (2) until predened interations.

Cycling through steps (2)-(6) is a complete ow path of MCMC sampler

for the coupled Wishart process. Actually, in each step of sampling, other

techniques like Metropolis sampling is also applied (Andrieu et al. 2003), as

most of the posterior densities are not the common distributions that we can

directly make samples from.
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4.8 Likelihood and Conditional Posteriors

For a single Wishart process proposed by (Philipov & Glickman 2006), Gibbs

sampling has been proposed for its simulation. However, for the coupled

Wishart process, the Gibbs sampler is much more complicated than the single

one. Here we deduce all the conditional probabilities in the Gibbs sampling

framework.

We can refer to the graphic model in Figure 4.3. There are two chains

W (1) andW (2), the parameters of each chain is denoted as θ(1) = A(1), d(1), ν(1)

and θ(2) = A(2), d(2), ν(2). If they are coupled with each other, the joint

posterior can be written as follows,

p(Σ
(1)
1:T ,Σ

(2)
1:T , θ

(1), θ(2)|y(1)1:T , y
(2)
1:T ) = p(θ(1)) · p(θ(2))· (4.8.1)

T

t=1

p(Σ
(1)
t |Σ(1)

t−1,Σ
(2)
t−1) · p(y(1)t |·)· (4.8.2)

T

t=1

p(Σ
(2)
t |Σ(1)

t−1,Σ
(2)
t−1) · p(y(2)t |·) (4.8.3)

= p(A(1)) · p(d(1)) · p(ν(1)) · p(A(2)) · p(d(2)) · p(ν(2))· (4.8.4)

T

t=1

Wish(Σ
(1)
t |ν(1), S

(1)
t−1) ·N(y

(1)
t |Σ(1)

t )· (4.8.5)

T

t=1

Wish(Σ
(2)
t |ν(2), S

(2)
t−1) ·N(y

(2)
t |Σ(2)

t ) (4.8.6)

where S
(1)
t−1 and S

(2)
t−1 are functions of the combination of the covariance ma-

trices.

S
(1)
t−1 =

1

ν(1)
· A(1)1/2(Σ−1

t−1(c1))
d(1)(A(1)1/2) (4.8.7)

S
(2)
t−1 =

1

ν(2)
· A(2)1/2(Σ−1

t−1(c2))
d(2)(A(2)1/2) (4.8.8)

54



CHAPTER 4. HOMOGENOUS COUPLING WISHART PROCESS

and,

Σ−1
t−1(c1) = ω

(1)
t Σ−1

t−1(1) + (1− ω
(1)
t )Σ−1

t−1(2) (4.8.9)

Σ−1
t−1(c2) = ω

(2)
t Σ−1

t−1(1) + (1− ω
(2)
t )Σ−1

t−1(2) (4.8.10)

the ω are weights of the covariance matrices.

From the joint posterior distribution above, we can deduce all the condi-

tional distribution of each element sequentially.

Conditional posterior for Σ

p(Σ−1
t (1)|·) ∝ Wish(Σ−1

t (1)|ν(1), S
(1)
t−1)·

Wish(Σ−1
t+1(1)|ν(1), S

(1)
t )·

Wish(Σ−1
t+1(2)|ν(2), S

(2)
t ) ·N(y

(1)
t |Σ(1)

t )

∝ |Σ−1
t (1)|(ν(1)−k−1)/2) · exp(−1

2
tr(S

(1)
t−1Σ

−1
t (1)))·

|S(1)
t |−ν(1)/2exp(−1

2
tr(S

(1)
t Σ−1

t+1(1)))·

|S(2)
t |−ν(2)/2exp(−1

2
tr(S

(2)
t Σ−1

t+1(2)))·

|Σt(1)|−1/2exp(−1

2
(y

(1)
t )Σ−1

t (1)y
(1)
t )

(4.8.11)

And,

p(Σ−1
t (2)|·) ∝ Wish(Σ−1

t (2)|ν(2), S
(2)
t−1)·

Wish(Σ−1
t+1(2)|ν(2), S

(2)
t )·

Wish(Σ−1
t+1(1)|ν(1), S

(1)
t ) ·N(y

(2)
t |Σ(2)

t )

∝ |Σ−1
t (2)|(ν(2)−k−1)/2) · exp(−1

2
tr(S

(2)
t−1Σ

−1
t (2)))·

|S(2)
t |−ν(1)/2exp(−1

2
tr(S

(2)
t Σ−1

t+1(2)))·

|S(1)
t |−ν(1)/2exp(−1

2
tr(S

(1)
t Σ−1

t+1(1)))·

|Σt(2)|−1/2)exp(−1

2
(y

(2)
t )Σ−1

t (2)y
(2)
t )

(4.8.12)
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when t = T ,

p(Σ−1
T (1)|·) ∝Wish(Σ−1

T (1)|ν(1), S
(1)
T−1) ·N(y

(1)
T |Σ(1)

T )

∝|Σ−1
t (1)|(ν(1)−k−1)/2) · exp(−1

2
tr(S

(1)
t−1Σ

−1
t (1)))·

|Σt(1)|−1/2exp(−1

2
(y

(1)
t )Σ−1

t (1)y
(1)
t )

(4.8.13)

and,

p(Σ−1
T (2)|·) ∝Wish(Σ−1

T (2)|ν(2), S
(2)
T−1) ·N(y

(2)
T |Σ(2)

T )

∝|Σ−1
t (2)|(ν(2)−k−1)/2) · exp(−1

2
tr(S

(2)
t−1Σ

−1
t (2)))·

|Σt(2)|−1/2exp(−1

2
(y

(2)
t )Σ−1

t (2)y
(2)
t )

(4.8.14)

Conditional posterior for d

p(d(1)|·) ∝
T

t=1


|S(1)

t−1|−ν(1)/2exp(−1

2
tr(S

(1)
t−1Σ

−1
t (1)))



∝
T

t=1


|Σ−1

t−1(1)|−ν(1)d(1)/2exp(−1

2
tr(S

(1)
t−1Σ

−1
t (1)))

 (4.8.15)

And,

p(d(2)|·) ∝
T

t=1


|S(1)

t−1|−ν(1)/2exp(−1

2
tr(S

(1)
t−1Σ

−1
t (1)))



∝
T

t=1


|Σ−1

t−1(1)|−ν(1)d(1)/2exp(−1

2
tr(S

(1)
t−1Σ

−1
t (1)))

 (4.8.16)

Conditional posterior for ν

p(ν(1)|·) ∝ p(ν(1)) ·
T

t=1

Wish(Σ
(1)
t |ν(1), S

(1)
t−1)

∝ (
|ν(1)A(1)−1|ν(1)/2

2ν(1)k/2
k

i=1 Γ(
ν(1)+1−i

2
)
)T

T

t=1

|Σt−1(1)|ν
(1)d(1)/2·

|Σ−1
t (1)|ν(1)/2 · exp


−1

2

T

t=1

tr(S−1
t−1(1)Σ

−1
t (1))


(4.8.17)
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And,

p(ν(2)|·) ∝ p(ν(2)) ·
T

t=1

Wish(Σ
(2)
t |ν(2), S

(2)
t−1)

∝ (
|ν(2)A(2)−1|ν(2)/2

2ν(2)k/2
k

i=1 Γ(
ν(1)+1−i

2
)
)T

T

t=1

|Σt−1(2)|ν
(2)d(2)/2·

|Σ−1
t (2)|ν(2)/2 · exp


−1

2

T

t=1

tr(S−1
t−1(2)Σ

−1
t (2))


(4.8.18)

Conditional posterior for A

p(A−1(1)|·) ∝ p(A−1(1)) ·
T

t=1

Wish(Σ
(1)
t |ν(1), S

(1)
t−1)

∝ Wish(A−1(1)|γ0, Q0) ·
T

t=1

Wish(Σ
(1)
t |ν(1), S

(1)
t−1)

∝ |A−1(1)| γ0−k−1
2 · exp(−1/2 · tr(Q−1

0 A−1(1)))·
T

t=1

|Σ−1
t−1(1)|ν

(1)/2exp(−1/2 · tr(S−1
t−1(1)Σ

−1
t (1)))
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And,

p(A−1(2)|·) ∝ p(A−1(2)) ·
T

t=1

Wish(Σ
(2)
t |ν(2), S

(2)
t−1)

∝ Wish(A−1(2)|γ0, Q0) ·
T

t=1

Wish(Σ
(2)
t |ν(2), S

(2)
t−1)

∝ |A−1(2)| γ0−k−1
2 · exp(−1/2 · tr(Q−1

0 A−1(2)))·
T

t=1

|Σ−1
t−1(2)|ν

(1)/2exp(−1/2 · tr(S−1
t−1(1)Σ

−1
t (1)))

(4.8.20)

4.9 Experiment and Evaluation

Several experiments are performed on synthetic and real-life data sets to show

the eectiveness of our proposed coupled Wishart process. The experiments
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for this research are designed into two stages. The rst part is the simulation

conducted on two sets of coupled synthetic data to test the capacity of our

proposed model in capturing the coupling relationship. In the second stage,

we implement this model and corresponding learning methods to a real-life

data set.

4.9.1 Evaluation Measures

In the following experiments, three evaluation measures, mean absolute per-

centage error (MAPE) (Philipov & Glickman 2006), mean squared error

(MSE) (Wilson & Ghahramani 2011), and determinant error (Det error)

(Philipov & Glickman 2006) are included to assess the quality of our method.

Mean Absolute Percentage Error

To evaluate the prediction quality, we use the MAPE between the predicted

and true covariance matrices. The MAPE for the (i, j) element is calculated

as

MAPEij =
1

T

T

t=1

|Σ−1
t (i, j)− E(Σ−1

t |·)|(i, j)
|Σ−1

t (i, j)| , (4.9.1)

where Σ−1
t is the inverse of covariance matrix at time t. E(Σ−1

t |·) is the esti-
mated inverse covariance matrix mean, dened as E(Σ−1

t |·) = ( A1/2)(Σ−1
t−1)

d( A1/2).

Mean Squared Error

Another evaluation metric is the MSE, usually adopted to measure the tted

time series values in statistics. With simulated data, we can directly calculate

the MSE as the true value is known, see Equation (4.9.2). Here, we do not

use the inverse of covariance matrices, but themselves.

MSEij =
1

T

T

t=1

(Σt(i, j)− Σt(i, j))
2, (4.9.2)

where Σt is the estimated covariance matrix mean.
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However, in real applications, we never observe the true covariance ma-

trix Σt. When the ground truth is not known, we alternatively use the proxy

St(i, j) = yt(i)yt(j) where yi is the ith component of the multivariate obser-

vation yt. This is because E[yt(i)yt(j)] = Σt(i, j), assuming y(t) has a zero

mean, and a brief proof is provided in Equation (4.9.3).

Σt(i, j) = Cov(yt(i), yt(j))

= E(yt(i)− E(yt(i)))(yt(j)− E(yt(j)))

= E(yt(i)yt(j))

(4.9.3)

In a thorough empirical study, Brownlees et al. (Brownlees, Engle &

Kelly n.d.) use the univariate analogue of this proxy. The MSE error then

can be calculated by

MSEij =
1

T

T

t=1

(Σt(i, j)− yt(i)yt(j))
2 (4.9.4)

Determinant Error

Besides, we compute the logarithmic determinants of the estimated covari-

ance matrix and the true value, and calculate the Det error as

Det error =
1

T

T

t=1

(log |Σt|− log |E(Σt)|)2, (4.9.5)

where Σ(t) is the estimated covariance matrix mean.

For all these three measures, the smaller ones indicate closer estimated

values with the ground truth, corresponding to better models.

4.9.2 Synthetic Data Analysis

In the rst part, we set all the parameters as follows to generate two time

series {Y (1)
t } and {Y (2)

t }:

– Process 1: ν(1) = 30, d(1) = 0.7, A(1) = (130 50; 50 130), and Σ
(1)
0 =

(3 0.8; 0.8 3).
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– Process 2: ν(2) = 20, d(2) = 0.3, A(2) = (13 5; 5 13), and Σ
(2)
0 =

(3 0.8; 0.8 3).

The coupling setup is: α = 0.5, w1 = 0.7 and w2 = 0.3, which means the

coupling relationship in this simulation is not symmetric.

Based on the above settings, we produce two sets of the coupled time

series: {Y (1)
t } and {Y (2)

t }. In order to estimate these parameters, the MCMC

simulation is conducted with 100000 iterations. The rst 20000 draws are

discarded and the remains are kept. By averaging the selected samples, we

obtain the estimation of both parameters and latent covariance matrices.

Then we conduct this group of experiments for ten times and analyze the

statistical property of the results.

Firstly, we present the estimation of parameters in box plots. As shown

in Figure. 4.4 and Figure. 4.5, some of the parameters are well estimated

like d(1) and d(2) (i.e., the estimated values for d(1) and d(2) are 0.68 and 0.23

respectively, while the true values are 0.7 and 0.3). However, some other

parameters, like ν(1), ν(2) are underestimated due to its sensitivity to the

appropriation of covariance matrix (Philipov & Glickman 2006). Just like

the learning of original Wishart process in (Asai & McAleer 2009), some

parameters are estimated with bias. As our ultimate goal is to model the

covariance matrices, not the parameters, now we want to know whether this

underestimation would aect the learning for covariance matrices.
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Figure 4.4: Box plots of the samples of parameters in chain 1.
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Figure 4.5: Box plots of the samples of parameters in chain 2.

Figure. 4.6 exhibits the estimation of covariance matrices with statistical

property. The blue lines denote the true values, the red lines indicate the

expectation of learnt values, with 95% highest posterior density interval (HP-

DI) in dotted lines. All the estimated values and true values fall into the 95%

HPDI, which indicates the quality of estimation is quite good, also supported

by the evaluation values in Table 4.1. Here, we conclude that the slight bias

of parameters do not eect the learning quality of covariance matrices, which

is also consistent with the conclusion in (Philipov & Glickman 2006).

In Figure 4.7, we present the estimated results from the coupled Wishart

process and single Wishart process, compared with true values. We observe

that the red lines (i.e. coupled results) mostly t the ground truth (i.e. true

values in blue) better than the uncoupled values (in green), indicating that

our proposed coupled Wishart process simulates the truth more eectively.

The above conclusion is also supported by Table 4.1, in which the bold refers

to better results under the three evaluation metrics: MAPE, MSE and De-

t error. In Table 4.1, we compute the MAPE and MSE of every element of

the two-dimension covariance matrices from both chains, and Det errors of

each chain. All these evaluation values demonstrate that our proposed model

outperforms the single Wishart process.
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Figure 4.6: Learnt expectations and true values: the subscripts indicate the

corresponding elements of matrices, (1) and (2) refer to the chains.
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Figure 4.7: Coupled learnt v.s. uncoupled learnt: the subscripts indicate the

corresponding elements of matrices, (1) and (2) refer to the chains.
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Table 4.1: Evaluations of Estimated Variables for Synthetic Data

MAPE MSE Det error

Uncoupled

Chain 1

Σ−1
11 (1) 0.54 104.84

13.43Σ−1
12 (1) 35.17 99.95

Σ−1
22 (1) 0.64 129.45

Chain 2

Σ−1
11 (2) 0.62 18.18

9.11Σ−1
12 (2) 14.80 31.29

Σ−1
22 (2) 0.54 12.96

Coupled

Chain 1

Σ−1
11 (1) 0.27 32.61

13.22Σ−1
12 (1) 1.04 3.36

Σ−1
22 (1) 0.25 33.44

Chain 2

Σ−1
11 (2) 0.27 3.96

1.34Σ−1
12 (2) 12.05 22.03

Σ−1
22 (2) 0.29 5.02

Table 4.2: Descriptive Statistics of Real-life Data

US Hong Kong

Manu Consm Manu Consm

Mean 1.174 1.0495 0.8506 0.6434

SD 6.6842 6.5721 5.3678 4.3881

Median 1.255 1.21 1.355 1.135

Minimum -25.02 -24.43 -20.8 -15.16

Maximum 23.95 33.33 17.51 12.13
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4.9.3 Real-life Data Analysis

For the experiments on real data, we collect the monthly returns of two in-

dustries: manufacturing (Manu for short) and consuming (Consm for short)

from US stock market and Hong Kong stock market. The return series in-

clude 132 months, from January 2002 to December 2012. The descriptive

statistics are provided in Table 4.2. Our research goal is to nd the volatil-

ity of these two asset portfolios, considering the interaction between these

markets under the circumstance of globalization.

Before implementation with our proposed model, we rst prelter the

data with an AR(1) model (Jacquier et al. 2002), which makes the data con-

sistent with the model assumption: yt|Σt ∼ Nk(0,Σt), or more specically,

E(yt) = 0. After such a preprocess, we implement the coupled Wishart pro-

cess on these two data sets, under the linear coupling setup in Section 4.5.

After 20000 times of sampling, we discard the rst 2000 samples, and record

the rest. By averaging them, we get the estimation of all parameters and

hidden covariance matrices.

Just like the synthetic data, we concern the hidden covariance matrices

most. After averaging the selected samples, we compare the three evaluation

metrics from both the coupled Wishart process and single Wishart process,

see Figure. 4.8, Figure. 4.9, and Figure. 4.10. Note that for the real-life

data, as we do not know the true covariance matrix, a proxy proposed in

Equation (4.9.4) is used in the calculation of MSE, while for the synthetic

data, we refer to Equation (4.9.2).

We can see that under such three evaluation metrics, the results of coupled

Wishart process are always better than those of the single Wishart process.

In summary, in the rst stage of experiments, we simulate two sets of

coupled time series and then conduct the experiments, results show that our

proposed learning method can properly capture the coupling relationship and

learn the hidden covariance matrices. Based on the conclusion obtained from

stage 1, we continue to implement our proposed model on the real-life data.

With comparisons, the coupled Wishart process is again demonstrated to

65



CHAPTER 4. HOMOGENOUS COUPLING WISHART PROCESS

0

0.5

1

1.5

2

2.5

3

3.5

4

Σ−1
11 (1) Σ−1

12 (1) Σ−1
22 (1) Σ−1

11 (2) Σ−1
12 (2) Σ−1

22 (2)

M
A
P
E

Uncoupled Results
Coupled Results

Figure 4.8: Comparison of MAPE results: the subscripts indicate the corre-

sponding elements of matrices, (1) and (2) refer to the chains.

0

20

40

60

80

100

120

140

Σ−1
11 (1) Σ−1

12 (1) Σ−1
22 (1) Σ−1

11 (2) Σ−1
12 (2) Σ−1

22 (2)

M
S
E

Uncoupled Results
Coupled Results

Figure 4.9: Comparison of MSE results: the subscripts indicate the corre-

sponding elements of matrices, (1) and (2) refer to the chains.

66



CHAPTER 4. HOMOGENOUS COUPLING WISHART PROCESS

Chain 1 Chain 2
0

2

4

6

8

10

12

14

16
D
et
_e
rr
o
r

Uncoupled Results Coupled Results

Figure 4.10: Comparison of Det error results.

outperform the single Wishart process.

4.10 Summary

Wishart process has been proposed to model the volatility as one eective

approach with great exibility and capturing power. In this paper, we pro-

pose a coupled volatility analysis model to capture the interaction between

dierent systems. Based on several synchronous Wishart processes, a linear

coupled Wishart process is put forward. At time t, the covariance matrices

exert their inuences according to a learnt weight. After the model has been

set up, based on the observations, we can deduce the posterior distribution

of both parameters and latent variables. After that, we develop an algorithm

to learn the parameters and latent covariance matrices, mainly with Gibbs

sampling and and Metropolis-Hasting sampling. Experiments on synthetic

data and real data show that our proposed coupled Wishart process performs

better than the single Wishart process.

Although our model can eectively capture the coupling relationship

when modeling the volatility of several synchronic markets, the complexi-

ty of models and simulation methods put high demand on the computation

ability. When the dimension of observations or the number of Wishart pro-
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cesses grows, we need to re-deduce the posterior distribution and the compu-

tation cost highly increases. There is great demand for the simplication of

models and more ecient learning methods. In the future, we will improve

our proposed model on such directions. In addition, this coupled model is

currently used on nancial data, we can also apply it to other elds, such as

neurological science (Fox & West 2011).
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Chapter 5

Heterogeneous Coupling

Wishart Process

In last Chapter, a coupled model focusing on two parallel matrix sequences,

as the target of these two sequences are both matrices, it can be categorized as

homogenous coupling Wishart process. However in this Chapter, another as-

pect of coupled Wishart process is explored: heterogenous coupling Wishart

process.

5.1 Background

We have presented the coupling between two Wishart processes, together

with learning procedures and applications. The homogenous coupled Wishart

processes focus on the interactions between time series of matrices. However,

the real world is so complex that coupling relationships may exist in dierent

kinds of data or data with various structures. Homogenous coupling models

can not handle such data sets. Hence we introduce the heterogenous coupling

Wishart process. Think of the situation that our target is to model the aect

from other kinds data, but not parallel covariance matrices. In such cases,

the time series are heterogenous, which means their interactions are not so

obvious and we have to build the latent connections.
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In this chapter, we aim to model the volatilities considering the heteroge-

nous inuences. First, a general framework is proposed for such heterogenous

coupled time series. Then, a specic model is setup with details with the do-

main knowledge from nance. Next, we implement the models on synthetic

and real-life data set.

5.2 Heterogenous Coupling Framework

In this part, a general coupling framework is proposed for parallel time series

presented. In real life, there more or less exists coupling relationship between

two or several time series.

These latent aects between variables or time series is of vital importance

if we want to build a concise and reliable model.

Considering the volatility models, though the stochastic models have

been introduced and developed for their exibility and capturing power

(Gourieroux et al. 2009), they lack the capability to capture outside inu-

ence. We have {Σt} as the covariance matrix at each time point t, and {Mt}
as the outside inuential source, Mt can be any kind of variable like matrix,

vector or scalar.

A brief graphic model of such heterogenous coupling is illustrated in Fig-

ure 5.1.

5.3 Problem Statement

In such a heterogenous coupling model, the observations still follow a Gaus-

sian distribution 5.3.1:

yt|Σt ∼ Nk(0,Σt) (5.3.1)

The coupling relationship lies in the latent part: at each time point t,

the outside inuential source Mt, will aect the covariance matrix transition.

While at the mean time, covariance matrix also aect outside inuential

source, at a low level. Such coupling relationship can be formalized in below
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Figure 5.1: Graphic model for a heterogeneous coupled Wishart process.

equations:

Σt+1 = f(Σt,Mt) (5.3.2)

Mt+1 = g(Σt,Mt) (5.3.3)

To formulate a full heterogenous coupled Wishart process, there are two

issues need to be addressed:

1. The motivation seems strong, however, nd such a sequence of certain

data is a challenging issue. Do the covariance matrices really correlated

with the sequence of vectors: {Mt} and {Σt}?

2. How do we transfer the information from a vector at time t to a matrix

at time t + 1, from Mt and Σt+1, and vice versa? As the our object-

s in front of us are vectors and covariance matrices respectively, the

information transferring is a challenging issue.

Let’s go back to the parameter settings of Wishart process in Chapter 3,

the matrix parameter A is interpreted as a measure of intertemporal sensi-

tivity while d denotes the overall inuence strength from previous time to

next. It is intuitive that we put the outside violence into A. To make such a

inuence distinct, we shall make specic setup in following sections.
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5.4 Model Setups

As the limit of time, for this topic: heterogenous Wishart process, we can

only develop a simplied version of it. Through a simplied version, we can

still present the value of this model and the motivation behind it. And also,

the learning procedures are given with details.

First, we set matrix A as a diagonal matrix A = diag{(a1, . . . , ak)}. This
setup can help model the inuence from outside to the Wishart process.

αt =
||Mt −Mt+1||−ΔM

ΔM
(5.4.1)

and,

At+1 = At(1 + αt) (5.4.2)

As to the matrix transition,

Σ−1
t |ν,Σ−1

t−1 ∼ Wk(ν, St−1), (5.4.3)

where

St−1 =
1

ν
(A

1/2
t−1)(Σ

−1
t−1)

d(A
1/2
t−1)

. (5.4.4)

We can see from the setup that the uctuation in Mt exert positive or

negative inuence on the transition of matrices. As Mt here is either scalar

or vector, then || · || refers to the norm of the changes. ΔM indicates the

average uctuation norm, when from time t to t+1, the uctuation is below

the average change, then the diagnose elements At will be less in next time

step, if higher than the average change, then opposite. The diagonal matrix

setting (Casarin & Sartore 2008) is to make such uctuations on outside

factors more direct to the matrices.

5.5 Learning Procedures

Based on the Bayesian structure of the above model, we also take the Gibbs

sampling as the learning method. First, we have to derive the full likelihood
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for such a model. Refer to the graphic model with parameters, easily, we

have:

p(Y1:T |M1:T , θ,Σ
−1
1:T ) =

T

t=1

p(Σ−1
t |Σ−1

t−1, θ) · p(Yt|Σt), (5.5.1)

where θ = {A−1, d, ν}.

Following Bayes rule:

posterior ∝ prior × likelihood, (5.5.2)

the posterior of hidden variables and parameters can be derived.

First, we set all our priors. A−1 follows a Wishart distribution W (Q0, γ0),

d is in a uniform distribution at the interval [0,1], ν follows a noninformative

uniform distribution, we have:

p(A−1) ∼ W(Q0, γ0) ∝ |A−1|(γ0−k−1)/2 · |Q0|γ0/2 (5.5.3)

Unlike the denition in Chapter 3, we have:

St−1 =
1

ν
(A

1/2
t−1)(Σ

−1
t−1)

d(A
1/2
t−1)

, (5.5.4)

the At−1 here uctuates according to the variation of {Mt}.
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Then the posterior can be written as:

p(θ,Σ−1
1:T |Y1:T ,M1:T ) ∝ prior(θ) ·

T

t=1

p(Σ−1
t |Σ−1

t−1, θ) · p(Yt|Σt)

∝ p(A−1) · p(d) · p(ν) ·
T

t=1

p(Σ−1
t |Σ−1

t−1, A
−1
t−1, d, ν) · p(Yt|Σt)

∝ |Q0|γ0/2 · |A−1|(γ0−k−1)/2 ·
T

t=1

W (Σ−1
t |St−1, ν) ·

T

t=1

N (Yt|Σt)

∝ |A−1|(γ0−k−1)/2 ·
T

t=1

[
1

2νk/2
k

i=1 Γ(
ν+1−i

2
)
·

|St−1|−ν/2 · |Σ−1
t |ν−k−1 · exp


−1

2
tr(S−1

t−1Σ
−1
t )


]·

T

t=1


|Σ−1

t |1/2 · exp(−1

2
ytΣ

−1
t yt)



(5.5.5)

Now, we can deduce conditional probabilities of all the elements, by e-

liminating the irrelevant items.

For Σ−1
t , when t = 1 : T − 1, we only preserve the items contains Σ−1

t ,

including St, from Equation (5.5.5). (From the second line to the third line,

we use Tr(ABC) = Tr(BCA) = Tr(CAB). And, for a scalar, x = Tr(x).)

p(Σ−1
t |·) ∝ Wish(Σ−1

t |ν, St−1) ·Wish(Σ−1
t+1|ν, St) · N (Yt|Σt)·

∝ |Σ−1
t |(ν−k−1)/2 · exp(−1

2
tr(S−1

t−1Σ
−1
t ))·

|S−1
t |−ν/2exp(−1

2
tr(S−1

t Σ−1
t+1)) · |Σ−1

t |1/2 · exp(−1

2
ytΣ

−1
t yt)

∝ |Σ−1
t |(ν−k−1)/2 · exp(−1

2
tr((S−1

t−1 + ytyt)Σ
−1
t )) · |Σ−1

t |(1−νd)/2·

exp(−1

2
tr(S−1

t Σ−1
t+1))

∝ Wish(Σ−1
t |ν, St−1) · |Σ−1

t |(1−νd)/2 · exp(−1

2
tr(S−1

t Σ−1
t+1)),

(5.5.6)

where St−1 = (S−1
t−1 + ytyt)

−1.
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When t = T ,

p(Σ−1
T |·) ∝Wish(Σ−1

T |ν, S−1
T−1) · N (YT |ΣT )

∝|Σ−1
T |(ν−k−1)/2 · exp(−1

2
tr(S−1

T−1Σ
−1
T ))·

|Σ−1
T |M/2 · exp(−1

2
yTΣ

−1
T yT )

∝ Wish(Σ−1
t |ν + 1, ST−1),

(5.5.7)

where, ST−1 = (S−1
T−1 + ytyt)

−1.

For d, we nd all the items with d are the St, so we only keep them in d’s

conditional probability.

p(d|·) ∝
T

t=1


|St−1|−ν/2exp(−1

2
tr(S−1

t−1Σ
−1
t ))



∝
T

t=1


|Σ−1

t−1|−νd/2exp(−1

2
tr(S−1

t−1Σ
−1
t ))

 (5.5.8)

For ν, it is a bit more complicated than d,

p(ν|·) ∝ p(ν) ·
T

t=1

Wish(Σt|ν, St−1)

∝
T

t=1


1

2νk/2
k

i=1 Γ(
ν+1−i

2
)
· |St−1|−ν/2 · |Σ−1

t |(ν−k−1)/2·

exp


−1

2
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t=1
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exp
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−1

2
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tr(S−1
t−1Σ

−1
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

(5.5.9)
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For A−1, we keep the prior and all the St,

p(A−1|·) ∝ p(A−1) ·
T

t=1

Wish(Σt|ν, St−1)

∝ Wish(A−1|γ0, Q0) ·
T

t=1

Wish(Σ−1
t |ν, St−1)

∝ |A−1| γ0−k−1
2 · exp(−1

2
· tr(Q−1

0 A−1))·
T

t=1

|S−1
t−1|ν/2exp(−

1

2
· tr(S−1

t−1Σ
−1
t ))

∝ |A−1| γ0−k−1
2 · exp(−1

2
· tr(Q−1

0 A−1))·
T

t=1

|A−1|ν/2(1 +
t−1

1

αt)exp(−
1

2
· tr(S−1

t−1Σ
−1
t ))

(5.5.10)

With above posteriors, the procedures of learning hidden states and pa-

rameters are as follows, according to Gibbs sampling.

1. Initialize θ = {A, d, ν} and {Σt}.

2. Sample Σt from Σt|Σ\t, A, d, ν for t = 1, · · · , T .

3. Sample A from A|{Σt}, d, ν.

4. Sample d from d|{Σt}, A, ν.

5. Go to 2 until enough iteration times.

Please note that for every step, the new samples must be updated in next

step. For t = 1, · · · , T − 1, the posterior of Σt is not a standard distribution

that we can directly sample from. We can adopt the Metropolis Hastings

(MH) sampling method, and use a Wishart distribution as the proposal den-

sity. When t = T , we can sample ΣT directly from a Wishart distribution

with specic parameters. For ν and d, their posteriors are not common

distributions either, we can get it by a discrediting method.
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5.6 Synthetic Data Experiment

Based on the above setups, we can generate a set of matrices (volatilities).

These matrices {Σt} are generated based on Wishart process, and importing

the inuences from {Mt}.
First, we set our simulation model parameters: k = 5, d = 0.3, ν = 19

and A−1 = 0.0125 · diag{1, · · · , 1}. Then Figure 5.2 and Figure 5.3 exhibits

the time evolution of the observation and latent volatilities. In Figure 5.2,

σiit denotes the volatility of the ith variable.
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Figure 5.2: Simulated latent volatilities.

Now, we include the outside inuence to the evolving of volatilities, ac-
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Figure 5.3: Simulated observations.
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cording to our model setup in Section 5.4. The daily S&P 500 index from

7/08/2001 to 12/07/2013 (Source: Yahoo Finance) are imported as {Mt}.
Then we want to see whether the uctuation of index can have inuence on

target volatilities.

Figure 5.4 shows the history record of S&P 500 index, and we can see

violent variations during the 2008 nancial crisis. After including it into our

model setup, the volatilities of the ve variables shows the great impact from

S&P data, as see in Figure 5.5.
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Figure 5.4: History daily S&P 500.
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Figure 5.5: Simulated latent volatilities with outside inuences.
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Chapter 6

Conclusions

6.1 Summarization

The analysis of volatility is a hot topic for people from dierent backgrounds

for its vital importance. However the complexity of a stock market and

the everywhere relationship between same or dierent objects. Hence comes

the need of coupling methods. In thesis, we make some explorations on

introducing the coupling methods into volatility analysis via Wishart process:

an autoregressive time series model. Two kinds of coupled Wishart processes

are presented: homogenous and heterogenous.

The homogenous coupled Wishart process focus on chains in which same

kinds of data interact with each other. Its structure makes it especially suit-

able for modeling the time-lag eect and the highly correlated international

markets. After model construction and test on synthetic data, the homoge-

nous coupled Wishart process has proved to model the volatility better when

coupling relationship is considered than that not considered. All the evalua-

tion indicators support this conclusion.

For the heterogenous coupled Wishart process, an interesting and sim-

plied setup is made to demonstrate the model clearly. This model mainly

depicts outside inuences’ eect on the evolving. As the outside indicator

often diers from our target data, the coupling relationship is no longer ho-
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mogenous but heterogenous. Based on the synthetic data, the heterogenous

coupling is learnt with strong evidence.

6.2 Future Work

One challenge for coupling relationship learning is that how to assure the

existence of coupling relationship. The previous models’ independent as-

sumption lacks the ability to capture explicit or latent coupling relationship

in complex real world data sets. But the overtting problem may arise when

the coupling relationship is not so strong and result in inaccuracy in model-

ing. So how to construct a coupling model that can adjust to the relationship

level is a challenging issue.

Another main challenge is how to connect the target objects, especially

the heterogenous situation. Despite a general framework in Chapter 5 , a

specic problem demands appropriate setups for an eective modeling. No

plausible suggestion has been given in current literature. In other words, a

lot of interesting can be done in this eld.
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Appendix: List of Publications

• Zhong She, Can Wang (2013). “Volatility Analysis via Coupled

Wishart Process”. The 2013 International Joint Conference on Neural

Networks (IJCNN 2013), full paper accepted.

• Zhong She, Can Wang, Longbing Cao (2012), “CCE: A Coupled

Framework of Clustering Ensembles”. The 26th Conference on Ar-

ticial Intelligence (AAAI 2012), pp. 2455-2456, (poster).

• Can Wang, Zhong She, Longbing Cao (2013), “Coupled Attribute

Analysis on Numerical Data”. The 23rd International Joint Conference

on Articial Intelligence (IJCAI 2013), full paper accepted.

• Can Wang, Zhong She, Longbing Cao (2013), “Coupled Clustering

Ensemble: Incorporating Coupling Relationships Both between Base

Clusterings and Objects”. The 29th IEEE International Conference on

Data Engineering (ICDE 2013), pp. 374-385.

• Can Wang, Mingchun Wang, Zhong She, Longbing Cao (2012), “CD:

A Coupled Discretization Algorithm”. The 16th Pacic-Asia Confer-

ence on Knowledge Discovery and Data Mining (PAKDD 2012), pp.

407-418.
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Appendix: List of Symbols

The following list is neither exhaustive nor exclusive, but may be helpful.

Σt Covariance at time t.

ν The degree of freedom in a Wishart process.

St An intermediate variable for covariance matrix transition.

θ The whole parameters.

Yt Observation at time t.

A Parameter that stands for intertemporal sensitivity.

Mt Outside indicators, can be vectors or scalars.

d Parameter, a scalar.

ω Weights.

St Intermediate variable.

Q0 One of the prior arguments.

Mk
+ Space of real-valued symmetric and positive-denite ma-

trices of dimension k.
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