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Abstract

Volatility refers to the measure for price fluctuation of specific financial in-
strument over time. It is a very important factor that can greatly influence
investor’s decisions and concerns every other participant in the stock mar-
ket. High volatility implies great insatiability and will definitely increase
liquidity whereas low volatility indicates poor activeness. Hence the research
on volatility draws great attention and interest of researchers from different
backgrounds. Including the methods from data mining and machine learning

is essential to improve the quality of volatility analysis.

There are two main types of models on volatility analysis: the determin-
istic models and stochastic models. The deterministic models assume the
volatility at particular time is a deterministic function of the past. The gen-
eralized autoregressive conditional heteroskedasticity (GARCH) model and
its variations are in such category. The stochastic volatility (SV) models take
the assumption that the volatility follows certain random process. Recent lit-
erature has shows that the stochastic models outperform the deterministic
models to some extent. Among them, the Wishart process is a hot tool for

modeling multivariate volatility.

However, the stock market is closely connected with the society and hu-
man behavior, which makes it difficult to model. Almost all the existing
models assume independence between our target objects: prices or the hid-
den covariance matrices behind them. These assumption works well for rough
research or when the relationship between objects is weak. For a more solid

research, the coupling relationship must be taken into account.
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ABSTRACT

In this thesis, we present two kinds of coupled Wishart process to model
volatility: the homogenous coupled Wishart process and heterogenous cou-
pled Wishart process. And corresponding algorithms are developed based
on the models. The homogenous coupled Wishart process refers to model
that our target objects belong to the same category. A two-chain coupled
Wishart process is introduced in this thesis. Within such a model, the matrix
in one chain is not only related with the past one from its own chain but also
from its neighbors. After the derivation of its learning procedures, synthetic
data are tested. Then, experiments are implemented with real data from two
markets: U.S. and Hong Kong. In the two-chain coupled Wishart process,
one chain indicates the volatility from U.S. stock market and the other the
volatility indicates Hong Kong stock market.

The latter one is the heterogenous coupled Wishart process. Unlike the
homogenous one, in such a model, the covariance matrices are coupled with
vectors, scalars or even a system. We aim to model how the outside influence
from other kinds of data affect the evolving of covariance matrices. For time
limitation, we make a simplified setup to illustrate how the heterogeneous
coupling works. Then we construct the learning algorithm based on the
setups and test it on synthetic data.

To conclude, we include the thought of coupling into the analysis of
volatility via Wishart process, with machine learning techniques. Sufficient

experiments have proved the effectiveness of coupling in volatility analysis.
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