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Abstract

A Denial-of-Service (DoS) attack is an intrusive attempt, which aims to force a desig-

nated resource (e.g., network bandwidth, processor time or memory) to be unavailable

to its intended users. This attack is launched either by deliberately exploiting system

vulnerabilities of a victim (e.g., a host, a router, or an entire network) or by flooding

a victim with large volume of useless network traffic. Since 1990s, DoS attacks have

emerged as a type of the most severe network intrusive behaviours and have posed

serious threats to the infrastructures of computer networks and various network-based

services.

This thesis aims to provide an intelligent and effective solution for DoS attack

detection. Unlike the related works based on machine learning and statistical analysis,

this thesis suggests to treat network traffic records as images and to redefine the DoS

attack detection problem as a computer vision task.

To achieve the aforementioned objectives, this thesis first conducts a detailed lit-

erature review on the state of the art in DoS attack detection. Then, it analyses and

chooses the most appropriate mechanisms for DoS attack detection. Afterwards, it de-

signs a general system framework for DoS attack detection with respect to the chosen

mechanisms. Furthermore, two Multivariate Correlation Analysis (MCA) approaches

are proposed based on two techniques, namely Euclidean distance and triangle area.
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Abstract 2

These two proposed MCA approaches provide accurate description for network traffic

records and facilitate conversion of network traffic into the respective images.

In addition, this thesis proposes a DoS attack detection system, in which the im-

ages of network traffic are served as the observed objects and the task of DoS attack

detection is reformulated as a computer vision problem, namely image retrieval. This

proposed DoS attack detection system applies a widely used dissimilarity measure,

namely the Earth Mover’s Distance (EMD), to object classification. The EMD takes

cross-bin matching into account and provides a more accurate evaluation on the dis-

similarity between distributions than some other well-known dissimilarity measures,

such as Minkowski-form distance Lp and X2 statistics. The merits of the EMD facil-

itate the capability of our proposed system with effective detection.

Last but not least, our intelligent and effective solutions, including the two pro-

posed MCA approaches and the EMD-based DoS attack detection system, are eval-

uated using the KDD Cup 99 dataset. The evaluation results illustrate that our

proposed MCA approaches provide accurate characterisation for network traffic, and

the proposed detection system can detect unknown DoS attacks and outperforms two

state-of-the-art approaches.
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Chapter 1

Introduction

This thesis considers the application of statistical and computer vision techniques to

DoS attack detection, and attempts to reformulate the task of DoS attack detection

as a computer vision problem. Section 1.1 outlines the background and motivation for

the work presented in this thesis. The research objectives are discussed in Section 1.2.

The contributions and novelty of the work are discussed in Section 1.3, followed by

an outline of the structure of the remainder of the thesis in Section 1.4.

1.1 Background and Motivation

Computer networks have become a key component of the infrastructure of today’s

human society. They support our daily life in different aspects from governing, per-

sonal social networking to business. According to the recent statistics from Australian

Bureau of Statistics, 13.3 million people in Australia were reported accessing the In-

ternet at home in the period between 2010 and 2011 [70]. The top three activities

of Internet users were (1) emailing, (2) research, news and general browsing, and (3)

paying bills online or online banking. The Internet users performing these activities

accounted for 91%, 87% and 64% of the population respectively. Additionally, online

6
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shopping expenditure in Australia reached $13.6 billion in 2011, and it is predicted

to be worth $26.9 billion by 2016 [3].

Thus, as a growing popular communication platform, computer networks have

been targeted by cyber criminals, whose attacks to online business and transaction

systems are becoming widespread and more sophisticated. As such, network security

is becoming increasingly critical. DoS attacks have emerged as one of the most severe

network intrusive behaviours and have posed serious threats to the infrastructures of

computer networks and various network-based services. DoS was first documented

in [68] in 1986 as causing a series of congestion collapses on the Internet. Billions of

dollars loss was imputed to DoS attacks over the past few years [36].

1.1.1 Denial-of-Service Attack Mechanisms

DoS attacks can be launched by deliberately exploiting system vulnerabilities of a

victim (e.g., a host, a router or an entire network) or flooding a victim with a large

volume of useless network traffic to occupy the designated resources (e.g., network

bandwidth, processor time or memory).

DoS attacks result in a serious interruption to a victim. They not only violate

the availability of systems, but also have close relationships with the breaches of

confidentiality and integrity [106]. For example, some DoS attacks are launched from

compromised machines (breach of confidentiality) [19], and some use spoofed (forged)

source addresses (breach of integrity) [6].
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Exploitation of System Vulnerability

System vulnerability has been a common problem in computer software development,

since computer systems evolved to be more complex and required to deal with com-

plicated tasks. The collaboration between different components within an operating

system or between an application and an operating system needs thoughtful coordi-

nation. This causes serious challenges to the implementation of operating systems,

applications and protocols. For instance, system vulnerability (bugs) which is unin-

tentionally introduced into computer systems due to the carelessness in design. These

bugs leave loopholes that could be exploited to either compromise or deny service to

a computer system.

The defects in the implementation of the TCP/IP protocol suit have claimed as the

victims of many DoS attacks. The summarisation of some of the notorious instances

of such attacks are given as follows.

 

Figure 1.1: IP fragment structure [50]
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Teardrop is a DoS attack exploiting the vulnerability in IP fragmentation reassem-

bly [15], which often can be found on older operating systems such as Windows 3.1x,

Windows 95, Windows NT and versions of the Linux kernel prior to 2.1.63. Over-

lapping IP fragments are sent by an attacker to a target machine connecting to the

Internet or a network. As shown in Fig. 1.1, the fragment offset field in the header

of each IP fragment indicates the relative starting position of its data in the data

carried by the original unfragmented packet.

 

Figure 1.2: An example of overlapping IP fragments [50]

The overlapping IP fragments appear discrepancies in the field of fragment offset,

in which the sum of the offset and the length of an IP fragment is found different

from the offset of the next IP fragment as shown in Fig. 1.2. Due to the incapability

in properly reassembling the overlapping IP fragments, the target machine is trapped

into malfunction and required a simple reboot to restore itself to normal. This results

in a service denial.

Land attack [15] intends to cause denial-of-service on a target machine through

the exploitation of another vulnerability in the faulty implementations of TCP/IP
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protocol suit on some operating systems, such as Windows 95/NT and various flavors

of UNIX. This bug makes the target machine vulnerable to a crafted anomaly TCP

SYN packet, where the source IP address and the source port number are intentionally

set as identical to the destination IP address and the port number. Sending this

crafted anomaly TCP SYN packet could bring down the victim.

Ping of Death (PoD) is another DoS attack, which also takes advantage of the

careless implementation of IP fragmentation reassembly [14]. An oversize IP packet

with data larger than 65,535 bytes is sent to the target machine. The fragments of

this oversize IP packet reach the victim machine over networks and need reassembling.

However, the vulnerable machine cannot reassemble the packet and suffers from an

unwanted crash or reboot. The PoD attack can be easily achieved using the ping

application bundled with any operating system, such as ICMP ECHO request.

Although more new vulnerabilities have been discovered in software applications,

system level vulnerabilities are still the favours of the cyber attackers. They are keen

to gain privilege access to sensitive information, or to take control over the victims

by exploiting these system level vulnerabilities.

Network Flooding to Connected Systems

In comparison with exploitation of vulnerability which can be prevented by patching

the system vulnerability, flooding-based DoS attacks are difficult to be handled. This

issue is caused by the underlying mechanisms of computer networks, which spec-

ify that connected devices need to process any network traffic addressed to them.

These underlying mechanisms assure the functionality of computer networks but si-

multaneously expose the devices to flooding-based DoS attacks. Moreover, in today’s



Section 1.1. Background and Motivation 11

Internet, attack toolkits are readily available and easy to use. Any Internet user can

use these toolkits to launch attacks with minimum efforts. Sometimes, the users of

the attack toolkits may not even have any knowledge about network security. Some

of the common flooding-based DoS attacks are briefly introduced below.

UDP flood is a simple DoS attack, which needs not exploit any vulnerability

on a target machine and is achieved by purely sending a overwhelming number of

UDP packets with spoofed source IP addresses to random ports on the victim [12].

This, however, does not bring down the target machine straightforward but keeps it

busy with the following routine instead. This routine first checks for the application

listening at the port to which the UDP request addressed. If the port is not being

listened by any application, a reply with an ICMP Destination Unreachable packet

will be sent. The UDP flood ensures that the victim is fully occupied by the excessive

spoofed UDP requests and not reachable to other legitimate network participants.

ICMP flood adopts a similar attack mechanism and presents alike behaviour to the

UDP flood [49]. Basically, a flood of ICMP ECHO packets is generated and destined

to a victim machine. The amount of the ICMP ECHO packets significantly exceed

the resources (e.g., CPU and network resources) of the victim available to make full

responses. Smurf attack is one of the notorious instances of ICMP flood [16].

TCP flood is a kind of DoS attacks taking advantage of the imperfect implemen-

tation of TCP protocol. A famous instance of TCP flood, which is also known as

TCP SYN flood, exploits the vulnerability in the three-way handshake process [13].

To understand the TCP SYN flood, it is necessary to be clear about the normal

three-way handshake process. The process of the three-way handshake during the

initialisation of a TCP connection is detailed below.
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1) The client needs to send a TCP SYN packet to the server for requesting some

service.

2) Upon the receipt of the SYN packet, the server allocates a Transmission Control

Block (TCB) to hold all the information about this connection and acknowledges

the client with a SYN-ACK packet.

3) Then, the client finishes the establishment of the connection with a ACK packet

sent to the server and meanwhile a TCB is allocated to contain the information

of the connection.

Upon completion, the connection is fully open. The service-specific data can be

exchanged between the client and the server.

However, this process is vulnerable. It could be exploited by attackers to create

half-open connections, which refer to a state after a SYN-ACK packet has been sent

by the server but the ACK packet is not yet received, so that the allocated buffer is

on hold until one of the following conditions is satisfied.

1) The client sends a ACK packet;

2) Closing the connection by sending a RST packet;

3) A timeout occurs and the server automatically closes the connection.

To cause denial of service on the server by exploiting this vulnerability, an attacker

force a server to generate an excessive number of half-open connections, which results

in no more resource available for other legitimate TCP connection requests. Neptune

attack is one of well-known TCP SYN flood attacks [20]. Similarly, TCP RST attack
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and TCP ACK attack [2] are feasible and are easy to perpetrate as a UDP flooding

attack.

1.1.2 Denial-of-Service Attack Framework

Generally, any intrusive activities that cause denial of access by legitimate users to

shared services or resources can be defined as DoS attacks [34]. Frameworks used

to launch these attacks are categorised into single source DoS attack framework and

Distributed DoS (DDoS) attack framework in accordance with the number of attack

sources involved in a single attempt.

Attacker

Handler 1 Handler 2 Handler 3

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6 Agent 7 Agent 8 Agent 9

Victim

Control Messages

Attack Traffic

Figure 1.3: Typical architecture of a DDoS attack

An attack based on the former framework has all traffic generated from one single
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source. To ensure the success of this attack, the volume of attack traffic generated by

the source must exceed the range that a victim is capable of processing, especially in

the case of flooding-based DoS attacks.

The DDoS attack framework, by contrast, suggests a more sophisticated means

to amplify the impact of an attack on a victim. Instead of requiring a single high-

end machine, a collaborative attack network is recruited and used by an intruder to

launch an attack. In this scenario, the attack traffic coming from multiple sources is

directed to the same victim. This sophisticated attack scheme helps the real attacker

hide from being traced and makes defence become more complicated.

Attacker

Handler 1 Handler 2 Handler 3

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6

Ref 1 Ref 2 Ref 3

Victim

Control Messages

Attack Traffic

Ref 4 Ref 5 Ref 6 Ref 7 Ref 8 Ref 9

Reply:
Source = Reflector
Destination = Victim

Request:
Source = Reflector
Destination = Victim

Ref Reflector

Figure 1.4: Architecture of a DDoS attack using reflectors
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DDoS attacks can be coordinated in two different distributed fashions. The archi-

tecture shown in Fig. 1.3 illustrates the first method, where the attacker sends control

messages through handlers to instruct the previously compromised agents to generate

and send attack traffic to the victim [26]. The second architecture shown in Fig. 1.4

presents a more sophisticated method, namely a reflective DDoS attack. Similar to

a typical DDoS attack, a reflective DDoS attack also requires the involvement of a

number of handlers and agents. However, the agents in this architecture do not send

attack traffic to the victim directly. The agents are commanded to issue spoofing re-

quests to a number of reflectors instead. These requests fools the reflectors to believe

they were from the victim. The reflectors are some normal hosts on the Internet and

reply the victim with legitimate responses. The victim is then overwhelmed by this

flood of requests. The attack sources can even hide themselves better by using this

method because reflectors are in use [73].

1.1.3 Schemes of Defence

In recent years, a significant number of works have concentrated on building sys-

tems for defending DoS attacks. However, there are obvious imperfections within

the traditional network security paradigms, which rely on simple packet filtering or

alerting the system while the program is in execution [85]. Many new defence mech-

anisms have been proposed, such as detection, prevention, mitigation and response

[25]. Within the realm of a set of network security schemes, detection is playing an

increasingly important role and is the very first step to protect against DoS attacks

among the aforementioned defence mechanisms. Detection systems are required to

provide prompt reaction and high detection accuracy.
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In general, detection mechanisms can be divided into two major categories, namely

misuse-based detection and anomaly-based detection. Misuse-based detection mech-

anism employs signature or rule matching in its recognition of intrusive behaviours.

Misuse-based detection systems [4][9][47][72][76] can achieve high detection rates in

known attacks. However, they are incapable of detecting any unknown malicious

behaviours or even variants of existing attacks. Furthermore, generating signatures

for previously unseen attacks is an expensive and complicated labour intensive task,

which heavily involves network security expertise.

Research community, therefore, started to explore a way to achieve novelty-tolerant

detection systems and developed a more advanced concept, namely anomaly-based

detection. Anomaly-based detection uses a different detection methodology that mon-

itors and labels any network activities presenting significant deviation from the re-

spective legitimate traffic profiles as suspicious objects. Since these profiles are built

based on the knowledge of normal network behaviours, anomaly-based detection sys-

tems are able to identify zero-day intrusions that exploit previously unknown system

vulnerabilities [21]. Moreover, it is not constrained by the expertise in network se-

curity, due to the fact that the profiles of legitimate behaviours are developed using

techniques, such as machine learning [42][55][86][107] and statistical analysis [17][96].

Over the recent two decades, a variety of anomaly-based detection systems have

been proposed to defence DoS attacks. A significant number of anomaly-based detec-

tion systems have adopted the network-based detection mechanisms, which advocate

monitoring of network traffic transmitting over the protected networks. These mech-

anisms release the protected online servers from monitoring attacks and ensure that

the servers can dedicate themselves to provide quality services with minimum delay
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in response. Moreover, network-based detection systems are loosely coupled with op-

erating systems running on the host machines which they are protecting. As a result,

the configurations of network-based detection systems are less complicated than those

of host-based detection systems.

However, the existing systems [71] are usually ineffective in prompt detection

because of the nature of computationally expensive underlying techniques and the

overhead of data pre-processing. In addition, these systems also commonly suffer

from high false positive rates. This is partly because most of these systems only use

several simple network features of incoming traffic (e.g., IP header fields) in their

detection, and ignore the correlations between the network features [80].

Although there is a current research trend to make use of the correlations between

the features in intrusion detection, most of the proposed systems [48][97][98][108] are

based on traditional statistical correlation analysis techniques, such as covariance

coefficient and covariance matrix, which are only capable of studying the correlations

between the features (variables) in a given sample set. The properties inherited

from these traditional statistical correlation analysis techniques make these anomaly-

based detection systems incapable of recognising individual attack records hidden

in a sample set. Thus, to develop anomaly-based attack detection systems, which

overcome the aforementioned problems and withstand the previously discussed issues,

is one of the current research focuses.

1.2 Objectives

This thesis focuses on the research of network traffic characterisation and classifica-

tion, and aims to provide an innovative scheme for securing computer networks. The
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detailed objectives are shown as follows.

1) Propose approaches that contribute effective and accurate analysis to various

types of network traffic;

2) Provide means, which are independent to prior knowledge, to extract highly

discriminative features for network traffic classification;

3) Develop methods that can identify individual attack records in a set of mixed

network traffic;

4) Design a network intrusion detection system that achieves high detection accu-

racy and withstands zero-day attacks.

5) Suggest an innovative fusion between intrusion detection and computer vision

techniques

1.3 Contribution and Novelty

A more sophisticated security scheme for protecting computer networks from being

compromised by DoS attacks is proposed in this thesis. The proposed security scheme

is designed from the perspective of computer vision. The contributions and novelty

of the proposed scheme are given as follows.

1) This thesis propose two unique MCA approaches to effectively extract the corre-

lations between features within network traffic records with the following prop-

erties:
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• The proposed MCA approaches withstand the problem that features are

changed linearly,

• They do not require any prior knowledge of network traffic in the process

of analysis, and

• They supply with accurate characterisation to network traffic.

2) Individual attack records hidden in the crowd can be easily recognised by our

system. This is owing to one of the merits (i.e., the capability of analysing

correlation between features within individual records) of our MCA approaches

which equips the analysis of correlation being conducted on individual network

traffic records.

3) The task of DoS attack detection is innovatively reformulated as a computer

vision problem, such as image retrieval or object shape recognition. This is

motivated by the commonalities shared between the two problems. The refor-

mulation provides us a perceptual solution to achieve accurate detection on DoS

attacks.

4) The EMD [61] (a robust distance metric supporting full and partial matchings)

is used as a dissimilarity measure for intrusion detection. This may be the first

attempt to apply EMD in field of network DoS attack detection.

1.4 Structure

The rest of this thesis is organised as follows. A review of prior research works

on anomaly-based detection and EMD is conducted in Chapter 2. Chapter 3
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proposes a general system framework for DoS attack detection, and a mathematical

derivation is conducted in this chapter to prove that sample-by-sample detection

mechanism is advanced over group-based detection mechanism in terms of detection

accuracy. Chapter 4 proposes a novel MCA approach based on Euclidean Distance

Map (EDM) technique, and a network intrusion detection system is proposed using

the proposed EDM-based MCA approach. In Chapter 5, a different MCA approach

is suggested based on Triangle Area Map (TAM) technique, and it helps extract

multivariate correlations from a perspective that is different than the EDM. Then,

a network intrusion detection system based on the TAM-based MCA approach is

proposed in Chapter 5 as well. Chapter 6 presents an innovative DoS attack

detection system based on computer vision techniques, where the EMD is used for

measuring the dissimilarity between legitimate network traffic and DoS attack traffic.

Finally, summary and future work are drawn together with the thesis conclusion in

Chapter 7.



Chapter 2

Related Works

A literature review is conducted in this chapter to give an overview of the state-of-the-

art algorithms for DoS attack detection. Section 2.1 summarises the general detection

mechanisms for DoS attacks. The major related works on network anomaly-based

DoS attack detection are recapped in Section 2.2. Finally, EMD and its applications

in network security research area are introduced in Section 2.3.

2.1 DoS Attack Detection

This section aims to deliver an overview of the security schemes those are designed for

the detection of DoS attacks. These security schemes can be categorised in accordance

with the detection method used in a security scheme and the location of audit source,

as suggested by the taxonomy introduced in [54]. The characteristics of different

detection schemes with respective to the detection method, the location of audit

source and the defence framework are discussed in Section 2.1.1 Section 2.1.2 and

Section 2.1.3 respectively.

21
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2.1.1 Detection Method

Detection methods adopted in DoS attack detection systems are commonly classified

as misuse-based detection and anomaly-based detection [56][60].

Misuse-based Detection

Misuse-based detection attempts to detect attacks by monitoring network activities

and looking for matches with the existing attack signatures or rules [4][9][44][47][72].

According to Gollman [35], the applications of misuse-based detection in commercial

intrusion detection systems have received much success. In spite of having high

detection rates to known attacks and low false positive rates, systems using misuse-

based detection methods are easily evaded by any new attacks and even variants of

the existing attacks. Furthermore, it is a complicated and labour intensive task to

keep signature database updated because signature generation is a manual process

and heavily involves network security expertise.

Anomaly-based Detection

Anomaly-based detection, in contrast, attempts to study the feature patterns of nor-

mal behaviours, It monitors and flags observed events, whose feature patterns present-

ing significant deviation from the learnt profiles of normal behaviours, as suspicious

objects. Anomaly-based detection shows more promising performance in detecting

zero-day intrusions that exploit previous unknown system vulnerabilities [21]. More-

over, it is not constrained by the expertise in network security, due to the fact that the

profiles of legitimate behaviours are developed based on techniques, such as machine

learning [42][55][86][107] and statistical analysis [17][96]. However, these proposed
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systems are prone to issue false positives [54]. This defect is primarily caused by the

problem that all previously unseen behaviours including legitimate behaviours are

considered to be anomalies.

Despite these methods show limitations in different aspects, anomaly-based detec-

tion is more encouraging for the evolving network environment. This is because the

profiles equipped in an anomaly-based detection system are built on the knowledge

of normal behaviours, which facilitates the detection of previously unknown attacks.

This, in turn, helps reduce the costs of generating signatures for new emerging attacks

or variants.

2.1.2 Audit Source Location

Regardless of the use of detection method in an attack detection system, it can operate

either on host level or on network level [1].

Host-based Attack Detection Systems

A host-based attack detection approach monitors various system level behaviours

on a host machine. It investigates the system status and system logs to determine

occurrence of violations or unauthorised access to system files [1]. However, host-

based detection is not suitable for monitoring network activities that may be part of

an attack process on the host machine, and has to take different operating systems

into account.
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Network-based Attack Detection Systems

In terms of network-based detection, network traffic instead of system status and logs

are analysed during detection. Network-based detection has been a trend over the

recent decade [51], and releases the protected online servers from monitoring attacks

and ensures that the servers can dedicate themselves to provide quality services with

minimum delay in response. Moreover, network-based detection is loosely coupled

with operating systems running on the host machines which they are protecting. As

a result, the configurations of network-based detection systems are less complicated

than those of host-based detection systems.

Thus, network-based detection is a better choice than host-based scheme for the

task of DoS attack detection.

2.1.3 Detection Framework

A detection framework defines the deployment of a DoS attack detection system in

a network. In general, DoS detection frameworks can be divided into three cate-

gories, namely source-end detection framework, victim-end detection framework and

distributed detection framework. The characteristics of these frameworks and some

instances are introduced in the subsequent sections.

Source-end Detection

The source-end detection framework attempts to facilitate early response to attacks

before they cause interruptions to victims. This is achieved by deliberately deploy-

ing detection units as close to the attack sources as possible. In the meanwhile,

this detection mechanism brings a few benefits to network Quality-of-Service (QoS)
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control [65], such as enabling more effective congestion control and multiple-level

detection strategies.

D-WARD [65] is a typical source-end Distributed DoS (DDoS) defence system. It

handles DDoS attacks using TCP, UDP or ICMP protocol. D-WARD determines the

occurrence of attacks by comparing the statistics (gathered at the aggregate flow and

connection granularity within each observation interval) against the corresponding

legitimate traffic model (i.e., TCP, UDP or ICMP model) at source end. However,

UDP protocol provides best effort delivery, where no acknowledgement of receipt is

required. As a result, no response packet from the victim is available for D-WARD

to build an accurate UDP model.

Kim and Reddy [52] suggested a statistical-based approach to detect anomalies at

an egress router. This approach conducts time series analysis on various packet header

data in real-time and applies a discrete wavelet-based method to transform address

correlation data (i.e., the correlation of destination IP addresses, port numbers and

the number of flows). The evaluation results [52] show that it achieves higher efficiency

in detecting DDoS attacks than those schemes based on the analysis of traffic volume.

Although wavelet-based methods enable detection decisions to be made in relatively

short time, larger computational resources are needed to achieve this.

By way of conclusion, the source-end detection framework has made a good at-

tempt to provide quick responses to DoS attacks. However, it is not the most effective

means in comparison with the victim-end framework because more comprehensive in-

formation of attack traffic is available at the victim end [62].
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Victim-end Detection

As a conventional framework, the victim-end detection has been embraced in most

existing detection systems because more accurate attack information is available at

the victim end, and a victim receives more direct benefits from having a detection

system installed in comparison with a source [30][103]. However, under extremely

aggressive DDoS attacks, victim-end detection systems can hardly help administrators

make effective responses in time because the attacks have already been at doorstep.

Traffic Rate Analysis (TRA) system [69] is a typical victim-end DoS detection

system. In [69], three machine learning techniques, namely C4.5, CN2 and a Bayesian

classifier, were used by TRA to analyse network traffic. The relative occurrence rates

of various types of flags (i.e., SYN, FIN, RST, ACK, PSH and URG flags) in TCP

packet headers and the relative occurrence rates of different protocols (i.e., TCP, UDP

or ICMP) were computed for a given sampling period and studied to differentiate

legitimate network traffic from DoS attack traffic. The experimental results shown

in [69] illustrate that the combination of the SYN and ACK flag rates for inbound

traffic and the Bayesian Classifier provides the best performance for detecting SYN

flooding attacks.

Li [59] proposed a detection scheme based on the autocorrelation function of in-

bound network traffic. In this scheme, network traffic is modelled using Fractional

Gaussian Noise (FGN), which provides approximation for autocorrelation functions of

various types of traffic. The distance between an estimated autocorrelation function

and the template autocorrelation function is used to determine whether or not the

victim is under a DoS attack. However, existing research has cast doubt on FGN in

modelling traffic in real-time traffic [99].
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The schemes having been discussed above attempt to protect the victims against

intrusions by running detection on incoming traffic. The detection performance could

be further improved by introducing distributed or collaborative detection framework.

Distributed Detection

The distributed detection framework is discussed in this section. This framework

allows individual detection systems/sensors to collaborate together and attempts to

achieve better detection efficiency and accuracy.

A Global Defence Infrastructure (GDI) was proposed in [100]. Local Detection

Systems (LDSes) were deployed at intermediate network devices, where most cross-

domain traffic would transmit through. Packet counts of different types of traffic (i.e.,

TCP data, UDP data, ICMP data, TCP SYN segments and TCP RST segments) for

a given attack detection interval on a LDS were used to signal DoS attacks. An alert

would be raised in the LDS if the current packet count of a certain type of traffic for an

address slot (to which might have more than one destination IP address assigned) was

significantly greater than the all-time maximum packet count excluding the current

one. The suspicious traffic would be confirmed as a DoS attack only if same alerts

from other remote LDSes were received by the current LDS. However, the overhead of

attack detection at intermediate network devices reduce the throughput of legitimate

traffic. Furthermore, additional memory is needed at a LDS-enabled intermediate

device to store relevant data structures.

Chen et al. [18] proposed a distributed DDoS attack detection system at traffic-

flow level to detect abrupt traffic changes across multiple ISP domains. Internet
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routers or the gateways of edge networks were recruited to contribute to this dis-

tributed detection system. Each Internet Service Provider (ISP) domain had a Change

Aggregation Trees (CAT) server deployed and to be responsible for aggregating the

flooding alerts reported by the participant routers. These CAT servers in different

ISP domains collaborated together to draw a complete picture of the protected por-

tion of the Internet. The final detection decision was made based on this aggregated

information. To secure the communication channels between participants and to es-

tablish mutual trust, a Secure Infrastructure Protocol (SIP) was proposed in [18].

The success of this distributed DDoS attack detection system is based on the collab-

oration among the different ISPs. However, this involves privacy issues and business

interests of different ISPs.

Although the afore-discussed schemes have demonstrated the possibility of em-

ploying the distributed detection framework in DoS attack detection, many practical

issues (e.g., communication overhead and data privacy) need to be taken into serious

consideration.

2.2 Network Anomaly-based Detection

Anomaly-based detection shows promising results in detecting zero-day attacks [58]

that exploit previously unknown system vulnerability, and it has less dependency on

domain knowledge. Due to these unique merits, anomaly-based mechanism has been

widely adopted in recent work on DoS attack detection. Techniques commonly used

in these systems are machine learning and statistical analysis. To demonstrate how

these techniques have been applied in network anomaly-based DoS attack detection,

we conduct a review on some typical detection systems in this section.
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Machine Learning

Machine Learning (ML) techniques help in classification of observed objects us-

ing known properties learnt from training data. Some exiting ML-based detection

schemes are discussed in this section.

Clustering is one type of well-known ML techniques and features a unique capa-

bility of handling unlabelled data. Natural patterns in the data can be extracted

using clustering techniques. This property makes them become one of the favourite

types of techniques used in anomaly-based intrusion detection [28][38][75][83]. The

work presented in [55] demonstrates a typical application of clustering techniques in

DDoS attack detection. The authors proposed a detection approach based on hi-

erarchical clustering method. The approach can detect different phases of a DDoS

attack instance. However, the final detection accuracy of the approach is not revealed.

Moreover, it is not clear how to correlate the clusters with the specific phases.

Fuzzy rules allow us to quantify the probabilities of the data belonging to various

categories. Thus, IDS’s reasoning is based on the degree of belonging instead of

a crisp decision boundary [22][23]. Inspired by this merit, Tajbakhsh et al. [86]

proposed two classification approaches, called Association Based Classification (ABC)

and ABC extension. Models of different classes were described using fuzzy association

rules. The ABC and the ABC extension were applied for misuse-based detection

and anomaly-based detection respectively. Although results on known attacks are

encouraging, they do not perform well in detecting unseen attacks.

Support Vector Machines (SVMs) [10] are supervised learning algorithms. They

show promising in learning high-dimensional data [8]. Schölkopf et al. [81] proposed
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an unsupervised one-class SVM, which facilitates the application of SVM in anomaly-

based intrusion detection. In 2008, Yu et al. [107] suggested a two-tier hierarchical

detection system using SVM. The hierarchical structure and one-class SVM (i.e.,

Support Vector Data Description) equip it with the advantage in classifying various

flooding-based attacks into their appropriate classes. Whereas, its detection accu-

racy can be improved if the correlation of the selected Simple Network Management

Protocol (SNMP) Management Information Based (MIB) variables are taken into

account.

Näıve Bayes (NB) is a simplified version of Bayesian networks. NB has been

successfully applied to network based intrusion detection, such as the work presented

in [74]. The authors of [74] conducted a study on Näıve Bayes with Kernel Estimation

(NBKE). In comparison with the basic NB algorithm, NBKE has a better performance

on the detection of flooding attacks and port scans. With a further improvement using

the Hurst exponent [43] to measure traffic rate and port dispersion, a gentle rise in

detection accuracy on UDP flooding attacks is shown.

Apart from those popular ML techniques we have discussed by far, other ML

techniques have also been successfully applied to network intrusion detection. For

example, a DoS attack detection approach proposed in [33] adopts a Radial Basis

Function Neural Networks (RBFNN) detector in network traffic classification. The

evaluation results suggest that the choice of sampling interval, input features, the

number of hidden neurons and training data have a considerable impact on this ap-

proach. To ensure this detection approach can achieve a consistent performance, a

feature selection method was proposed in [24]. The most appropriate features were

chosen from the 44 initial statistical features using a genetic algorithm. It has been
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proven that the number of hidden neurons and the selection and mutation probabil-

ities are the critical factors needed to be taken into consideration in the process of

selection. Moreover, Mukkamala et al. [67] proposed an ensemble design of intrusion

detection system, where Artificial Neural Networks (ANN), Support Vector Machines

(SVM) and Multivariate Adaptive Regression Splines (MARS) techniques were used.

The experimental results show that this system outperforms any of the individual

techniques. However, the ensemble detection system involves time-consuming com-

putation and cannot work in real-time. In addition, Hu et al. [42] proposed to use the

AdaBoost algorithm [31] to build a strong classifier for network intrusion detection.

The AdaBoost-based detection approach is proven to be of light weight in terms of

computational complexity and to have low error rates.

However, the knowledge of normal traffic behaviour and the knowledge of attack

traffic behaviour are essential in the construction of a strong classifier.

Statistical Analysis

Statistical analysis techniques have been employed to conduct investigation into at-

tributes of network traffic packets and to determine a rationale threshold for discrim-

inating attacks from the legitimate traffic.

In [29], Feinstein et al. proposed a DoS attack detection system, in which ac-

tivity level and source address distribution were analysed at the victim end. This

system grouped all inbound traffic flows into six clusters according to the destination

addresses. Chi-square statistic was used to measure the dissimilarity between the

activity level of each cluster and the expectation (i.e., a normal profile). A significant

deviation from the expectation indicated the appearance of an intrusion.
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Wang et al. [101] proposed a sequential Change-Point Monitoring (CPM) ap-

proach for the detection of DoS attacks. CPM monitors the change of ratio between

the number of SYN packets and the number of SYN/ACK packets at the first-mile,

and the change of ratio between the number of SYN packets and the number of FIN

packets at the last-mile. A non-parametric Cumulative Sum (CUSUM) algorithm

was used in the CPM to evaluate the significance of the changes of traffic patterns

and to determine the appearance of DoS attacks. The CPM is more suitable for

analysing a complex network environment. Whereas in [101], CPM was only tested

using SYN flooding attacks. Moreover, its performance is possibly affected by network

indiscipline.

Thatte et al. [96] developed a bivariate Parametric Detection Mechanism (bPDM)

operating on aggregate traffic. bPDM applies the Sequential Probability Ratio Test

(SPRT) on two aggregate traffic statistics (i.e., packet rate and packet size), and it

alleges an anomaly only when a rise in the traffic volume is associated with a change

in the distribution of packet-size. Whereas, bPDM may not capture smart attacks,

which manage to vary both bit-rate and packet-size distribution.

Although the afore-discussed systems and approaches show innovative and promis-

ing in different aspects of attack detection, they still suffer from relatively high false

positive rates. This is partly because they either neglect the dependency and corre-

lation between features/attributes or do not manage to fully exploit the correlation

[80]. Some recent studies attempt to cope with this problem by taking full advantage

of the correlation in their designs.

Thottan and Ji [97] developed an abrupt change detection approach which employs

statistical signal processing technique based on the Auto-Regression (AR) process. An
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operation matrix (A), which retains “the ensemble average of the two point spatial

cross-correlation of the abnormality vectors estimated over a time interval T” [97],

participated in the computation of the value of abnormality indicator. Although this

detection approach has shown to be effective in detecting several network anomalies,

it has significant delay in detection. In addition, it is still an open topic on how to

manage features with various time granularities.

Jin et al. [48] proposed a statistical detection approach using covariance matrix to

represent the multivariate correlation for sequential samples. Although the approach

achieves good detection rates, it is vulnerable to attacks that linearly change all

monitored features. Moreover, it can only label a group of observed samples as

legitimate or attack traffic without distinguishing individual attack traffic records

from the crowd.

Tsai and Lin [98] designed a new detection approach based on the nearest neigh-

bours technique. The approach applied a triangle area based method to discover the

correlation between observed objects and the cluster centroids pre-identified using the

K-means algorithm. The extracted correlation was then used in the nearest neigh-

bours algorithm for classification. Although this detection approach was carefully

designed to be immune to the problem of linear changing features, the dependency

on prior knowledge of anomalous behaviours dilutes its accuracy and reliability on

correlation discovery.

In our previous works [45][90][93], mechanisms to overcome the above weaknesses

were studied and the corresponding solutions were proposed. A multi-tier Real-time



Section 2.3. Earth Mover’s Distance 34

Payload-based IDS (RePIDS) was proposed in [45], where a novel geometrical struc-

ture based analysis technique was deliberately designed for feature correlation extrac-

tion. Mahalanobis Distance Map (MDM) was used to reveal the correlation between

packet payload features. In [90] and [93], we attempted to further extend RePIDS to

be suitable for non-payload-based attacks and eliminate the restriction of the use of

IDS on encrypted network traffic. Two MCA approaches proposed in [90] and [93] em-

brace two techniques (i.e., spatial Euclidean distance and triangle area respectively)

in estimating the correlation between features. These two MCA approaches equip

our proposed DoS attack detection systems with encouraging detection accuracy and

higher efficiency.

Chapters 4 and 5 of this thesis are developed based on the works published in

[90] and [93] respectively. However, the DoS attack detection systems proposed in

these two works are based on Mahalanobis distance, which does not support partial

matching. A more sophisticated distance metric, such as EMD, can enhance the

performance of detection.

2.3 Earth Mover’s Distance

EMD was originally proposed by Rubner et al. [77] as a cross-bin dissimilarity mea-

sure to evaluate the perceptual difference between two distributions. It was defined

as the minimal cost of the transformation from one distribution to another. EMD

supports partial matching and outperforms bin-by-bin distances in matching percep-

tual dissimilarity. This benefits from the extension of the concept of a distance from

between corresponding elements to between the entire distributions, in which the
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ground distance reflects the notion of nearness between the elements in the distribu-

tions. Quantisation and other binning problems of histograms can be further avoided

by taking the above ideas.

2.3.1 Earth Mover’s Distance Approaches

A considerable amount of research interest on EMD has been raised by the early work

[77][78] from Rubner et al., who adopted transportation problem [40] in modelling

distribution comparison and suggested to compare the signatures of distributions

rather than histograms. Due to the fact that signatures are usually compressed

(clustered) versions of histograms, the computation time of the EMD can be reduced.

However, simplex algorithm [39], applied to solve the EMD, has a supercubic

empirical time complexity in Ω(N3)∩O(N4) for a signature with N elements, which

mostly limits the applications of EMD to non-time-sensitive tasks. Grauman and

Darrell [37] proposed a fast contour matching algorithm using an approximate EMD,

which utilised embedding technique to accelerate the computational speed. Thus, the

EMD between two sets of descriptive local features can be quickly computed in the

complexity of O(Nd log(�)), where N is the number of features, d is their dimension,

and � is the diameter of the feature space.

Moreover, Ling and Okada [61] suggested an alternative and fast version for the

EMD in which L1 distance was used as ground distance to compute the dissimilarity

between histograms. An efficient tree-based algorithm was developed replacing the

original simplex algorithm to solve the proposed EMD-L1 in a more efficient fashion.

It is shown in [61] that the EMD-L1 has an average empirical complexity of O(N2)

that is much less expensive in computation than the original EMD. The EMD-L1 was
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applied to shape recognition and interest point matching.

Based on the same motivation that was to speed up the original EMD, the Differ-

ential Earth Mover’s Distance (DEMD) was recently presented in [109]. The authors

proposed to apply sensitivity analysis of the simplex algorithm to solve the EMD.

The signatures of distributions were used to represent the interested objects in visual

tracking.

Considering the efficiency and the scenarios for which the above approaches were

proposed, the EMD-L1 is believed to be the best candidate for our task.

2.3.2 Applications of Earth Mover’s Distance in Network Se-

curity

EMD has been widely used to solve many problems in computer vision, such as image

retrieval [77][78], contour matching [37], object shape recognition [61], interest point

matching [61] and visual tracking [109] etc. It is still a new technique to computer

and network security, and only a small amount of work based on EMD has been found

in the literature.

In this part, some of the most closely related works on intrusive behaviour detec-

tion are introduced. For instance, an approach for phishing web page detection was

presented in [32], where web pages were first converted into normalised images and

then were described using signatures (i.e., features consisting of dominant colour cat-

egory and the respective centroid coordinates). Visual similarities between a test web

page and protected web pages were assessed using the EMD [78] between their image

signatures. If the similarity between the tested web page and a particular protected

web page exceeds the pre-defined threshold, the tested page is deemed as a phishing
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web page.

In [104], Yen and Reiter developed a test method to differentiate between Plotters

(i.e., bots) and Traders (i.e., normal peers) on a Peer-to-Peer (P2P) network. The

EMD [78] helped evaluate the similarity between the per-destination interstitial time

distributions of hosts. Plotters normally showed similar patterns in distribution, but

those of Traders tended to be far apart from each other. The hosts were then grouped

into the clusters with respect to the similarity of their timing patterns.

Micarelli and Sansonetti proposed a case-based anomaly intrusion detection ap-

proach in [64]. This approach monitored the output parameters and the arguments

of system calls (i.e., execve(), chmod(), chown(), exit(), open() and setuid()) revoked

by instances of applications on a host. A signature (consisting of the centroids of

the clusters of system calls and the corresponding weights) was used to represent an

instance of an application. Then, the signature was compared with the case (rep-

resented by the signature of the generic instance of the same application) stored in

the profile database using the EMD [78]. Behaviours of the system call sequences

performing significantly non-compliant with the corresponding profiles inferred that

attacks were underway.

Although the above studies have made contributions to the integration of the EMD

and the respective detection approaches, none of the approaches has been designed

particularly for DoS attack detection. Additionally, these studies employ the original

EMD rather than any other enhanced versions. Thus, heavy computational com-

plexity of the original EMD prevents them from being applied to prompt detection

tasks.

Therefore, we innovatively employed the EMD in our work [89] submitted to



Section 2.4. Summary 38

IEEE/ACM Transactions on Networking and provided a reliable solution for DoS

attack detection. This solution takes the advantages of the EMD and reformulates

the task of DoS attack detection as an image retrieval problem. Chapter 6 of this

thesis is developed based on the work in [89].

2.4 Summary

This chapter has summarised the general detection mechanisms for DoS attacks,

and has recapped the major related works on network anomaly-based DoS attack

detection. EMD and its applications in network security tasks have been introduced

in this chapter as well.

This chapter has also pointed out that network anomaly-based detection shows

unique merits as follows.

• The protected online servers can be free from monitoring attacks and dedicate

themselves to provide quality services with minimum delay in response.

• Network-based scheme is loosely coupled with operating systems running on the

host machines which they are protecting, and

• Anomaly-based detection mechanism enables any detection system recognise

previously unseen intrusions.

There merits make network anomaly-based detection and more suitable to be em-

ployed in future solutions for DoS attack detection. The review of EMD has revealed

that the advanced version EMD (i.e., EMD-L1) is the best candidate among the other

variants of EMD introduced in Section 2.3.1 to be used for our task.



Chapter 3

A System Framework for
Denial-of-Service Attack Detection

A general system framework for DoS attack detection is proposed and discussed in

this chapter. This general system framework is developed based on one of our works

published in [93]. This framework intends to address the problems and to achieve the

objectives highlighted in Chapter 1 by employing various mechanisms to the design.

These mechanisms are introduced in Section 3.1, and the general system framework

is proposed in Section 3.2.

3.1 Detection Mechanisms

This section introduces the detection mechanisms (i.e., network traffic monitoring at

destination network, attack detection based on individual traffic records, multivariate

correlation analysis, anomaly-based intrusion detection and traffic classification based

on computer vision techniques) involved in our proposed general system framework.

The motivations and contributions of using these mechanisms in this general system

framework are also highlighted.

39
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3.1.1 Network Traffic Monitoring at Destination Network

Any detection systems based on our proposed framework are positioned at the pe-

ripheral of the networks where the protected servers reside. Moreover, these systems

monitor ingress traffic to the network. This allows the detection systems to concen-

trate on relevant inbound traffic only and helps reduce data processing overheads.

Monitoring and analysing ingress traffic at the destination networks also enable de-

tectors to provide protection which is the best fit for the target networks because

legitimate traffic profiles used by the detectors are developed for a smaller number of

network services.

3.1.2 Attack Detection Based on Individual Traffic Records

The literature review shows that the sample-by-sample detection and the group-

based detection are two common mechanisms used in intrusion detection systems.

These two detection mechanisms conduct investigation for individual traffic records

and for individual groups of the records respectively. Given an assumption that

the samples in a test set are all from the same distribution (class), the group-based

detection mechanism maintains a higher probability in classifying a set of sequential

traffic records than the sample-by-sample detection mechanism [48]. However, this

assumption does not hold in general scenarios, where attacks occur unpredictably and

sequential samples hardly come from the same distributions.

Thus, the group-based detection mechanism is merely suitable to apply to limited

scenarios. Comparatively, the sample-by-sample detection mechanism is believed

to be advantageous over the group-based detection mechanism in general scenarios,

because it is not bonded with the above assumption. To demonstrate the advantage
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of the sample-by-sample detection mechanism, mathematical analysis is conducted

on both of these two detection mechanisms and a comparison between the expected

detection precisions of the two mechanisms is made in the following sections.

Sample-by-sample Detection

The sample-by-sample detection suggests performing investigation on each single traf-

fic record. This equips an attack detector with the capability of flagging attack traffic

records individually. The precision of classification achieved by the sample-by-sample

detection mechanism is analysed systematically in this section. The analysis is in

compliance with a known assumption that traffic samples are independent and iden-

tically distributed [11, 48, 66].

Given legitimate traffic and illegitimate traffic are normally distributed, they fol-

low distributions X1 ∼ N(μ1, σ
2
1) and X2 ∼ N(μ2, σ

2
2) respectively. The distributions

of legitimate traffic and illegitimate traffic are depicted statistically using the proba-

bility density functions (3.1.1) and (3.1.2) respectively.

⎧⎨
⎩f(x;μ1, σ

2
1) = (1/(σ1

√
2π))e−(x−μ1)2/2σ2

1 ,

f(x;μ2, σ
2
2) = (1/(σ2

√
2π))e−(x−μ2)2/2σ2

2 ,

(3.1.1)

(3.1.2)

where x ∈ (−∞,+∞). Then, assume that there is a group of k independent samples

{x1, x2, · · · , xk}, the probabilities of correctly classifying a sample into its distribu-

tion using the sample-by-sample detection mechanism are defined as the cumulative

distribution functions shown in (3.1.3) and (3.1.4) respectively.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
P1 =

∫ μ

−∞

1

σ1

√
2π

e−(x−μ1)2/2σ2
1dx,

P2 =

∫ +∞

μ

1

σ2

√
2π

e−(x−μ2)2/2σ2
2dx,

(3.1.3)

(3.1.4)
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where

μ = μ1 × σ2

σ1 + σ2

+ μ2 × σ1

σ1 + σ2

(3.1.5)

is the threshold to determine which distribution (i.e., N(μ1, σ
2
1) or N(μ2, σ

2
2)) that

a sample should be classified into. Correspondingly, the probability that a sample

coming from the distribution N(μ1, σ
2
1) is not correctly classified into X1 is denoted

by (3.1.6)

P ′1 = 1− P1, (3.1.6)

and the probability that a sample coming from the distribution N(μ2, σ
2
2) is not

correctly classified into X2 is defined by (3.1.7)

P ′2 = 1− P2. (3.1.7)

As shown in (3.1.5), μ is the weighted/normalised mean of the two normal dis-

tributions N(μ1, σ
2
1) and N(μ2, σ

2
2). Thus, the proportional distances between the

means (i.e., μ1 and μ2) of the distributions and the weighted/normalised mean μ of

the two normal distributions are equal. This results in the equivalent of the two

probabilities P1 and P2. For the clarity of presentation, we define a common notation

P to denote the probabilities P1 and P2. They maintain a correlation as presented in

(3.1.8). {
P1 = P2 = P

P ′1 = P ′2 = 1− P
. (3.1.8)

Moreover, due to these samples distributed independently and the results of classi-

fication following the binomial distribution, the probability of correctly classifying j

samples is defined by (3.1.9)

Pr(j) = Cj
kP

j(1− P )k−j, (3.1.9)
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where j = 1, 2, · · · , k. Thus, the probability of correctly classifying all k samples is

shown in (3.1.10).

Pr(k) = P k. (3.1.10)

Group-based Detection

In comparison with the sample-by-sample detection mechanism, the group-based de-

tection mechanism monitors traffic records as groups such that any attack detectors

designed based on this mechanism can only label the traffic records within a group

as attack records or normal traffic records entirely.

To classify the same group of independent samples {x1, x2, · · · , xk} using the

group-based detection mechanism, a new random variable z, which is the mean of k

random samples from the distribution N(μl, σ
2
l ), is defined as shown in (3.1.11).

z =
1

k

k∑
t=1

xt, (3.1.11)

where xt ∈ Xl and l = 1, 2. Clearly, the new random variable z follows the distribution

Zl ∼ N(μl,
1
k
σ2
l ) in which l = 1, 2. The threshold to determine which distribution

(i.e., N(μ1, σ
2
1) or N(μ2σ

2
2)) a group of samples should be classified into is defined by

(3.1.12).

u = μ1 × σ2

σ1 + σ2

+ μ2 × σ1

σ1 + σ2

. (3.1.12)

Since the random variable z is generated using k random samples xt from the

distribution N(μl, σ
2
l ), the detection precision rate of assigning the z correctly into

the respective distribution N(μ1, σ
2
1) or N(μ2, σ

2
2) is thus as given in (3.1.13) and
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(3.1.14) respectively.⎧⎪⎪⎪⎨
⎪⎪⎪⎩
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∫ u

−∞
(1/(

1√
k
σ1

√
2π))e−(z−μ1)2/

2
k
σ2
1dz,

q2 =

∫ +∞

u

(1/(
1√
k
σ2

√
2π))e−(z−μ2)2/

2
k
σ2
2dz.

(3.1.13)

(3.1.14)

Given the elaboration presented in Section 3.1.2, the two probabilities q1 and q2 show

the following correlation {
q1 = q2 = q,

q′1 = q′2 = 1− q.

(3.1.15)

(3.1.16)

The z defined in (3.1.11) represents a group of samples completely coming from the

same distribution N(μ1, σ
2
1) or N(μ2, σ

2
2). However, in practice, samples may come

from either distribution independently so that the probability of having a group of

samples which come only from a single distribution N(μ1, σ
2
1) or N(μ2, σ

2
2) is 1/2k.

Thus, the probability of correctly classifying all k samples by using the group-based

detection mechanism is {
k = 1, Q(k) = q1 = q2

k > 1, Q(k) = 1
2k
q1 =

1
2k
q2

. (3.1.17)

Comparison

The detailed comparison between the sample-by-sample detection mechanism and the

detection precision of the group-detection mechanism is given in this section. The

analytical results in the section of sample-by-sample detection and the section of

group-based detection show clearly that the sample-by-sample detection mechanism

and the group-based detection mechanism perform differently in detection precision.

The relationship between the detection probabilities of the two detection mechanisms

can be found by analysing (3.1.10) and (3.1.17).
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As shown in (3.1.18) and (3.1.19), when k equals to 1, the probability of correctly

classifying all k samples using the sample-by-sample detection mechanism is same

as the one achieved using the group-based detection mechanism. If k is greater

than 1, both the probabilities Pr(k) and Q(k) decrease gradually, but the one of

the group-based detection mechanism drops faster in comparison with that of the

sample-by-sample detection mechanism, namely,

{
k = 1, P r(k) = Q(k),

k > 1, P r(k) > Q(k).

(3.1.18)

(3.1.19)

Apparently, the sample-by-sample detection mechanism always achieves equal or bet-

ter detection probability than the group-based detection mechanism.

Given an example that there are two normally distributed populations Xex
1 ∼

N(0, 122) and Xex
2 ∼ N(10, 182), the thresholds μ = 4 and u = 4 are computed ac-

cording to (3.1.5) and (3.1.12). On one hand, the detection precision of the sample-by-

sample detection mechanism on a single sample is computed using (3.1.3) and (3.1.4),

and whose value is P1 = P2 = P = 0.63. Thus, if the number of samples is set to

k = 16, the overall detection precision of the sample-by-sample detection mechanism

is Pr(k) = 0.6316 = 6.1581e–04 in accordance with (3.1.10). On the other hand, the

detection precision of the group-based detection mechanism is obtained for a group of

16 samples using (3.1.17), in which q1 and q2 are computed using (3.1.13) and (3.1.14).

Due to q1 = q2 = 0.90824, the detection precision of the group-based detection mech-

anism for 16 samples is Q(16) = 1
216

q1 = 1
216

q2 = 1
216

× 0.90824 = 1.3859e–05. It

is clear that the sample-by-sample detection mechanism achieves higher detection

precision than the group-based detection mechanism in the above example.
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The afore-analysis shows that the sample-by-sample detection mechanism per-

forms better than the group-based detection mechanism in detection precision. More-

over, the sample-by-sample detection mechanism offers benefits that are not found in

the group-based detection mechanism. For example, intrusive traffic samples can be

labelled individually, and the probability of correctly classifying a sample into its pop-

ulation is higher than the one achieved using the group-based detection mechanism

in a general network scenario. Therefore, we decide to employ the sample-by-sample

detection mechanism in this study.

3.1.3 Multivariate Correlation Analysis

The multivariate correlation analysis is motivated by the fact that the occurrence

of network intrusions causes changes of these correlations. The correlations between

the features of an attack traffic record appear different in quantity in comparison

with the ones of the legitimate network traffic. Raw network traffic features, such as

the ones in KDD Cup 99 dataset [84], maintain plain or hidden correlations among

themselves. However, these correlations are often ignored in the decision making

methods that relies only on the plain information coming from the raw features.

This leads to a disadvantage in detection accuracy. Thus, it is suggested to use the

changes as indicators to reveal any intrusive activities. The correlations between any

two distinct features within each single network traffic record are extracted through

this analysis.
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3.1.4 Anomaly-based Intrusion Detection

Anomaly-based detection mechanism [21] facilitates the detection of zero-day DoS

attacks. Furthermore, the labour-intensive attack analysis and the frequent update

of the attack signature database in the case of misuse-based detection are avoided.

Meanwhile, the mechanism enhances the robustness of the proposed detection systems

and makes them harder to be evaded because attackers need to generate attacks

that match the normal traffic profiles built by a specific detection algorithm. This

is, however, a labour-intensive task and requires expertise in the target detection

algorithm. Thus, the defence can hardly be penetrated.

3.1.5 Traffic Classification Based on Computer Vision Tech-

niques

Anomaly-based network intrusion detection approaches have been proven to be promis-

ing in detecting zero-day attacks. They, however, commonly suffer from high false

positive rates, which results in an unacceptable number of false alerts to be gener-

ated. An administrator of a production network that employed this type of detection

approaches would be seriously confused by the overwhelming inaccurate information.

This hampers anomaly-based network intrusion detection approaches from being ap-

plied in commercial detection systems.

To solve the aforementioned problem, more sophisticated modelling and classifica-

tion techniques are desired. These techniques help develop accurate representations

for legitimate network behaviours and provide precise classification for legitimate and

attack traffic. The commonalities shared between the DoS attack detection task and

computer vision tasks (e.g., image retrieval and object shape recognition) motivate
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us to adopt the techniques used in computer vision into this mission.

According to the principal assumption of anomaly-based intrusion detection, cyber

attack traffic behaves significantly different from legitimate network traffic. Thus, we

can consider each network traffic record as an image in a data warehouse. Legitimate

network traffic records are the ones showing a particular theme. Whereas, attack

traffic records are those depicting themes other than that described in the legitimate

network traffic records. A profile representing legitimate network traffic behaviours

is taken as a query to an image retrieval system, which retrieves the matched images

(i.e., the legitimate network traffic records) from the data warehouse. Such that the

legitimate traffic records and attack traffic records are differentiated. If there are more

than one category of themes, each category will be stored in a distinct section of a

data warehouse. Retrieval is proceeded to a particular section of the data warehouse

according to the category to which a query belongs.

Given that three categories of network traffic themes are studied in this thesis,

namely TCP, UDP and ICMP traffic. These three categories of network traffic carry-

ing data from different user applications. Network traffic records belonging to different

categories are stored in the respective sections of a data warehouse. Given a query

about legitimate TCP traffic, the retrieval system proceeds the query to the section

of TCP traffic and retrieves the relevant records from there. Those unmatched traffic

records in the same section are determined as attacks.

Through the aforementioned reformulation, an intrusion detection task is con-

verted into a computer vision problem. Any appropriate techniques successfully used

in computer vision tasks are able to be applied to this intrusion detection task.
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Among a variety of state-of-the-art techniques, EMD [77] is a well-suited candi-

date. EMD supplies effective measures to differentiate observed objects by taking

cross-bin correlation and partial matching into account. The detailed discussion on

the merits of EMD and its application in DoS attack detection will be presented in

Chapter 6.

3.2 Detection System Framework

In this section, the general system framework for DoS attach detection is presented

and shown in Fig. 3.1. The framework consists of three major steps, namely basic

feature generation, multivariate correlation analysis and decision marking.

The attack detection mechanism based on individual traffic records, discussed in

Section 3.1.2 is involved in the whole detection phase (i.e., Steps 1, 2 and 3). The

detailed discussion of each step is given below.

Step 2:
Multivariate

Correlation Analysis
for Individual Records

Normal Profile
Generation

Tested Profile
Generation for

Individual Records

Attack Detection
for Individual

Records

Normal Profiles

Training
Phase

Test
Phase

Step 3: Decision Making

Network
Traffic

Step 1:
Basic Feature
Generation for

Individual Records

Figure 3.1: A general system framework for denial-of-service attack detection

Step 1: Basic Feature Generation for Individual Records

The detection mechanism discussed in Section 3.1.1 is adopted in Step 1 of the frame-

work to monitor only the ingress network traffic to the target network. This enables
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our detectors to provide the best-fit protection because legitimate traffic profiles used

by the detectors are developed for a smaller number of network services. The mon-

itored and collected ingress network traffic is characterised in the current step and

used to generate basic features of traffic records for a well-defined time interval. The

detailed process can be found in [84]. The generated basic features are then handed

over the next step of the framework for further process.

Step 2: Multivariate Correlation Analysis

In Step 2 of the system framework, the multivariate correlation analysis mechanism

introduced in Section 3.1.3 is conducted on individual records from Step 1. All of

the extracted correlations are later applied to replace the original basic features of

the observed network traffic records and to represent the traffic records. To meet the

requirement of Step 2 that is to extract high discriminative information (i.e., corre-

lations between features) from network traffic records, two multivariate correlation

analysis approaches are proposed and discussed in Chapters 4 and 5.

Step 3: Decision Marking

In Step 3, the anomaly-based detection mechanism discussed in Section 3.1.4 is em-

ployed in the Decision Making. Specifically, two phases are involved in the Decision

Marking, namely the Training Phase and the Test Phase. In the Training Phase, the

Normal Profile Generation module is operated to generate profiles for various types

of legitimate traffic records. The generated normal profiles are stored in a database

for future detection. In the Test Phase, the Tested Profile Generation module is used

to build profiles for individual observed traffic records. Then, the tested profiles are
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handed over to the Attack Detection module, which compares the individual tested

profiles with the respective stored normal profiles. A threshold-based classifier, which

is based on computer vision techniques as suggested in Section 3.1.5, is employed in

the Attack Detection module to distinguish DoS attacks from legitimate traffic.

3.3 Summary

The general system framework for DoS attack detection has been proposed in this

chapter. It employs various detection mechanisms, including network traffic moni-

toring at destination network, attack detection based on individual traffic records,

multivariate correlation analysis, anomaly-based intrusion detection and traffic clas-

sification based on computer vision techniques. These relevant detection mechanisms

equip the proposed system framework with the following desirable properties.

1. It facilitates detection systems to provide best-fit protections to the targeted

networks,

2. Detection can achieve a higher probability of correctly classifying a sample in a

prompt manner into its population than the one achieved using the group-based

detection mechanism in a general network scenario, and

3. It enables detection systems with the capability of labelling intrusive network

traffic samples individually.

Therefore, the proposed general detection system framework will be applied into

the following chapters.



Chapter 4

Multivariate Correlation Analysis
Based on Euclidean Distance Map

Multivariate correlation coefficient is a statistic estimating the relationship between

two random variables. It is playing an increasingly important role in network in-

trusion detection, especially DoS attack detection. The correlations extracted from

the features of the given network traffic data provide critical discriminative power for

accurate classification. The changes of these correlations are effective indicators of

the variance of network traffic pattern. Any significant deviation from the patterns

of the correlations extracted from the features of legitimate network traffic infers the

appearance of abnormal traffic, such as DoS traffic.

The most recent studies on IDSs have employed the principle of MCA. For ex-

ample, the detection systems, proposed in [48], [95] and [105], employed covariance

matrix technique to analyse the multivariate correlations between the features from

network packet header fields. A geometrical correlation extraction approach based on

Mahalanobis Distance (MD) [46] and its enhancement [45] were proposed by Jamdagni

et al. to measure the weighted distance between each pair of features. In addition,

a MCA approach based on the estimation of triangle areas among an observed data

52
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sample and any pairs of distinct centroids of the clusters (i.e., different types of net-

work traffic) was suggested in [98].

Although these MCA approaches adopted the key idea of applying multivariate

correlation analysis in discriminative feature extraction, the imperfection of these

techniques restricts their applications in limited scenarios. These detection systems

in [48], [95] and [105] can be evaded by any attacks managing to make all monitored

features change linearly and are vulnerable to mix-traffic containing both normal

and attack traffic. The two approaches presented in [45] and [46] withstand the

above problem, but they were typically designed for network traffic packet payload.

Although the approach proposed in [98] is deemed to be the most general among the

discussed MCA approaches, it has a strong dependency on the knowledge of historic

network traffic.

To address the aforementioned problems, a novel MCA approach based on EDM

is proposed in this chapter to analyse the basic features and to extract the multi-

variate correlations. This MCA approach is designed based on our works published

in [90], [91] and [92]. Owing to the computational simplicity of Euclidean distance

and the valuable discriminative information extracted from the basic features, our

MCA equips IDSs with the capability of effective detection. Moreover, our MCA

conducts analysis on individual network traffic records, avoiding the dependency on

prior knowledge of network traffic.

The rest of this chapter is organised as follows. The novel MCA based on Euclidean

distance map is proposed in Section 4.1. Section 4.2 proposes a DoS attack detection

system using MCA based on Euclidean distance map. The evaluation on the proposed

MCA approach is presented in Section 4.3, and the evaluation of the proposed DoS
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attack detection system is given in Section 4.3.4. Section 4.5 draws a summary to the

chapter.

4.1 Multivariate Correlation Analysis Approach

A novel MCA approach is proposed in this section to analyse the correlations within

network traffic data. The statistical properties (e.g., the number of data bytes from

source to destination, the length of a connection and the number of connections to the

same host in the past two seconds etc.), providing rough descriptions to the network

traffic flows, are studied using the proposed MCA approach to discover their relations.

The feature vectors, formed using the extracted correlations, supply with accurate

depictions to the patterns of network traffic behaviours. An abrupt change would

appear on the pattern of the network traffic behaviour when network intrusions were

being launched, especially DoS attacks. This is due to the fact that DoS attacks

attempt to degrade the availability of a victim, such as host, router or even entire

network, by imposing floods with a huge amount of useless packets. This makes the

flooding network traffic behave differently from the legitimate network traffic.

The proposed MCA approach employs Euclidean distance in the extraction of

correlative information from the basic feature space of network traffic data. The

details are shown in the following section.

4.1.1 Multivariate Correlation Extraction

Given an arbitrary dataset X = [x1 x2 · · · xn], where
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xi =

⎡
⎢⎢⎢⎢⎢⎣
f i
1

f i
2

...

f i
m

⎤
⎥⎥⎥⎥⎥⎦

represents the ith m-dimensional traffic record, and i is ranged from 1 to n. By

substituting xi into the X, the dataset can be represented in detail as (4.1.1).

X =

⎡
⎢⎢⎢⎢⎢⎣
f 1
1 f 2

1 · · · fn
1

f 1
2 f 2

2 · · · fn
2

...
...

. . .
...

f 1
m f 2

m · · · fn
m

⎤
⎥⎥⎥⎥⎥⎦ , (4.1.1)

where f i
l is the value of the l

th feature in the ith traffic record, and l and i are varying

from 1 to m and from 1 to n respectively.

In order to explore the correlations reserved in the ith traffic record on a multi-

dimensional space, the record xi is transformed into a new m-by-m feature matrix x′i.

The transformation is done by simply multiplying xT
i (i.e., the transpose of xi) with

an m-by-m identity matrix I as shown in (4.1.2).

x′i = xT
i I =

[
f i
1 f i

2 · · · f i
m

]
⎡
⎢⎢⎢⎢⎢⎣
1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦
m×m

=

⎡
⎢⎢⎢⎢⎢⎣
f i
1 0 · · · 0

0 f i
2 · · · 0

...
...

. . .
...

0 0 · · · f i
m

⎤
⎥⎥⎥⎥⎥⎦ . (4.1.2)

The elements along the diagonal of the matrix x′i are the features of the record xi.

Each single column of the matrix x′i is defined as a new m-dimensional feature vector
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F i
j given in (4.1.3).

F i
j =

⎡
⎢⎢⎢⎢⎢⎣
ηij,1

ηij,2
...

ηij,m

⎤
⎥⎥⎥⎥⎥⎦ , (4.1.3)

where ηij,p = 0 if j 	= p and ηij,p = f i
j if j = p . The superscript i and the subscripts

j and p satisfy the constrains 1 ≤ i ≤ n, 1 ≤ j ≤ m and 1 ≤ p ≤ m respectively. As

such, the m-by-m feature matrix x′i can be rewritten as (4.1.4).

x′i = [F i
1 F

i
2 · · · F i

m]. (4.1.4)

Correlation analysis commences upon the completion of the above transformation.

The correlation between the feature vectors j and k of the feature matrix x′i is analysed

and extracted using Euclidean distance, and it is defined in (4.1.5).

EDi
j,k =

⎧⎪⎨
⎪⎩
√

(F i
j − F i

k)
T (F i

j − F i
k) , if j 	= k,

0 , if j = k,
(4.1.5)

where 1 ≤ i ≤ n, 1 ≤ j ≤ m and 1 ≤ k ≤ m. In the case of j = k, F i
j and F i

k

refer to the same feature vector in the feature matrix x′i so that the correlation (i.e.,

the distance) between F i
j and F i

k is zero. The complete overview of the correlations

reserved within the original traffic record xi is denoted by a Euclidean Distance Map

(EDM) and shown in (4.1.6).

EDMxi
=

⎡
⎢⎢⎢⎢⎢⎣
EDi

1,1 EDi
1,2 · · · EDi

1,m

EDi
2,1 EDi

2,2 · · · EDi
2,m

...
...

. . .
...

EDi
m,1 EDi

m,2 · · · EDi
m,m

⎤
⎥⎥⎥⎥⎥⎦ . (4.1.6)
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Since Euclidean distance is a direction insensitive distance measure and the distance

between a node and itself is zero, a EDM, such as EDMxi
shown in (4.1.6), is a

symmetric matrix with elements of zeros along its diagonal.

Using the above proposed MCA approach, EDMs are generated for individual

traffic records in the given arbitrary dataset X. The entire set of EDMs is given in

(4.1.7) .

XEDM = [EDMx1 EDMx2 · · · EDMxn ]m×m×n. (4.1.7)

4.1.2 Example and Discussion

To give some insights into the afore-discussed MCA, an example is presented in the

section. Assume a three-dimensional data record xexample = [1 2 4]T , its inner corre-

lations are studied and extracted using (4.1.2) of the proposed analysis approach as

shown in x′example below.

x′example = xT
exampleI = [1 2 4]

⎡
⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 0

0 2 0

0 0 4

⎤
⎥⎥⎦ .

The columns (i.e., the feature vectors F example
1 , F example

2 and F example
3 ) of the 3-by-3

transformation matrix x′example are denoted by

F example
1 =

⎡
⎢⎢⎣
1

0

0

⎤
⎥⎥⎦ , F example

2 =

⎡
⎢⎢⎣
0

2

0

⎤
⎥⎥⎦ , F example

3 =

⎡
⎢⎢⎣
0

0

4

⎤
⎥⎥⎦ .

Then, the matrix x′example is redefined using (4.1.4) and the notions F example
1 , F example

2

and F example
3 .

x′example = [F example
1 F example

2 F example
3 ].
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The correlations between any two feature vectors (i.e., EDexample
1,1 , EDexample

1,2 , EDexample
1,3 ,

EDexample
2,1 , EDexample

2,2 , EDexample
2,3 , EDexample

3,1 , EDexample
3,2 and EDexample

3,3 ) are com-

puted using (4.1.5), and their respective values are shown as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

EDexample
1,1 = EDexample

2,2 = EDexample
3,3 = 0,

EDexample
1,2 = EDexample

2,1 =
√

(F example
1 − F example

2 )T (F example
1 − F example

2 ) =
√
5,

EDexample
1,3 = EDexample

3,1 =
√

(F example
1 − F example

3 )T (F example
1 − F example

3 ) =
√
17,

EDexample
2,3 = EDexample

3,2 =
√

(F example
2 − F example

3 )T (F example
2 − F example

3 ) =
√
20.

Finally, the complete multivariate correlations retained in the xexample is presented

using (4.1.6), and the Euclidean distance map (i.e., EDMxexample
) is determined by

the above correlations and shown below.

EDMxexample
=

⎡
⎢⎢⎣
EDexample

1,1 EDexample
1,2 EDexample

1,3

EDexample
2,1 EDexample

2,2 EDexample
2,3

EDexample
3,1 EDexample

3,2 EDexample
3,3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
√
5

√
17√

5 0
√
20√

17
√
20 0

⎤
⎥⎥⎦ .

The above example illustrates how the proposed MCA is applied to conduct anal-

ysis on a sample data record. It shows clearly that a Euclidean distance map is a

symmetric matrix along its main diagonal.

Furthermore, the proposed MCA approach presents unique characteristics. The

use of Euclidean distance on the original multi-dimensional distance helps eliminate

the dilemmas of other multivariate correlation analysis approaches [45][46][48][95][98][105].

Firstly, our proposed MCA approach is only based on the current network traffic

record. This releases the analysis of correlations from the dependency on prior knowl-

edge of historic network traffic (neither legitimate traffic nor attack traffic). Secondly,

our MCA approach solves the issue of linear change of all observed features.

Assume that an intruder launched an attack which managed to change all features

of the previous example linearly and the attack is shown as xattack = [2 4 8]T . It
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contributes a different Euclidean distance map (i.e., EDMattack) from EDMexample.

EDMxattack
=

⎡
⎢⎢⎣

0
√
20

√
68√

20 0
√
80√

68
√
80 0

⎤
⎥⎥⎦ .

Thus, the change can be revealed by using our proposed MCA approach. By making

use of the multivariate correlations, various types of network traffic can be clearly

characterised. This is evaluated in Section 4.3.

4.2 Network Intrusion Detection Using Multivari-

ate Correlation Analysis Based on Euclidean

Distance Map

To appropriately evaluate the effectiveness of the proposed EDM-based MCA ap-

proach, we decide to apply it to a real intrusion detection problem, namely DoS

attack detection, which is one of the core objectives of this thesis. Following the

system framework suggested in Chapter 3, the EDM-based MCA approach to be

evaluated is plugged into Step 2 of Fig. 3.1.

4.2.1 Framework

A new system framework based on our MCA approach is presented in Fig. 4.1. This

new system framework embraces the anomaly-based detection mechanism and the

other mechanisms discussed in Sections 3.1.1-3.1.3. This enables IDSs based on this

system framework to effectively recognise known and unknown network intrusions.

In the following of this section, we give an overview of how our proposed MCA

approach is applied to a DoS attack detection system, which is designed based on
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Step 1:
Basic Feature
Generation for

Individual
Records

Normal Profile
Generation

Tested Profile
Generation for

Individual Records

Attack Detection
for Individual

Records

Normal Profiles

Training
Phase

Test Phase

Step 3: Decision Making

Network Traffic

Step 2: Multivariate Correlation Analysis

Euclidean
Distance Map
Generation for

Individual Records
Feature

Normalisation

Raw/Original Features

Normalised Features

Figure 4.1: A system framework for denial-of-service attack detection using multi-
variate correlation analysis based on Euclidean distance map

the system framework shown in Fig. 4.1. The Training Phase and the Test Phase are

focused. The normal profiles of the IDSs are generated using only legitimate network

traffic during the Training Phase in Step 3 of the framework, which provides the best

fit solution for protecting the targeted networks.

Additionally, the Euclidean distance maps of network traffic records are eventually

symmetric matrices. EDMs can be deemed as images that are symmetric along their

main diagonals. Any differences, identified on the upper triangles of the images, can

be found on their lower triangles as well. Therefore, to perform a quick comparison

of the two EDMs, we can choose to investigate either the upper triangles or the

lower triangles of the EDMs only. This produces the same result as comparing using

the entire EDMs. The correlations residing in a traffic record can be represented

effectively and correctly by the upper triangle or the lower triangle of the respective

EDM. For consistency, we consider the lower triangles of EDMs when training and

testing the proposed DoS attack detection system.

Now, assume that there is a set of g m-dimensional normal training network traffic

records (i.e., Xnormal = [xnormal
1 xnormal

2 · · · xnormal
g ]), which are denoted by the lower

triangles of the EDMs extracted using our proposed EDM-based MCA approach,
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namely

Xnormal
EDM = [EDM lower

xnormal
1

EDM lower
xnormal
2

· · · EDM lower
xnormal
g

],

where

EDM lower
xnormal
i

=

⎡
⎢⎢⎢⎢⎢⎣
ED

xnormal
i

2,1

ED
xnormal
i

3,1

...

ED
xnormal
i

m,m−1

⎤
⎥⎥⎥⎥⎥⎦

m×(m−1)
2

and 1 ≤ i ≤ g. An observed network traffic record (i.e., xobserved) is denoted by the

lower triangle of its EDM extracted by the EDM-based MCA approach, namely

EDM lower
xobserved =

⎡
⎢⎢⎢⎢⎢⎣
EDxobserved

2,1

EDxobserved

3,1

...

EDxobserved

m,m−1

⎤
⎥⎥⎥⎥⎥⎦

m×(m−1)
2

.

The training and the testing of the proposed DoS attack detection system are pre-

sented in Sections 4.2.2 and 4.2.3 based on the given training and test samples.

4.2.2 Training Phase

In the Training Phase, the main task is to build profiles for various types of legitimate

network traffic. This is proposed to be done through the density estimation of the

MDs between the given legitimate traffic records and the expectation of the legitimate

traffic. The probability distribution of the MDs is described by two parameters,

namely the mean Dis and the standard deviation Std of the distances.

The two parameters are determined using the algorithm proposed in Fig. 4.2,

in which the training dataset Xnormal
EDM is to be analysed. As shown in line 2 of the

algorithm, the expectation (i.e., EDM lower
Xnormal) of the data objects (e.g., EDM lower

xnormal
i

)
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Require: A dataset Xnormal
EDM {It contains the lower triangles of the

EDMs of the g normal training records, and each of which has
m×(m−1)

2 features.}
1: Initialise DIS {It is an array with g elements denoted by Disi(1 ≤

i ≤ g).}
2: EDM lower

Xnormal ← 1
g

∑g
i=1EDM lower

xnormal
i

3: Generate covariance matrix Cov for Xnormal
EDM using (5.2.3)

4: for i = 1 to g do
5: Disi ← MD(EDM lower

xnormal
i

, EDM lower
Xnormal) {Mahalanobis distance

between EDM lower
xnormal
i

and EDM lower
Xnormal}

6: end for
7: Dis ← 1

g−1

∑g
i=1Disi

8: Std =
√

1
g

∑g
i=1(Disi −Dis)2

9: Pro ← (N(Dis, Std2), EDM lower
Xnormal, Cov)

10: return Pro

Figure 4.2: An algorithm for normal profile generation based on EDM-based MCA
approach.

is computed over all the data objects within the dataset. Then, the Mahalanobis

distances between the expectation and the individual data objects are measured using

(4.2.1) over the whole dataset.

Disi =

√
(EDM lower

xnormal
i

− EDM lower
Xnormal)T (EDM lower

xnormal
i

− EDM lower
Xnormal)

Cov
, (4.2.1)

where Cov is the covariance matrix of the given dataset Xnormal
EDM and is denoted by

(4.2.2).

Cov =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ
EDXnormal

2,1 EDXnormal
2,1

σ
EDXnormal

2,1 EDXnormal
3,1

· · · σ
EDXnormal

2,1 EDXnormal
m,m−1

σ
EDXnormal

3,1 EDXnormal
2,1

σ
EDXnormal

3,1 EDXnormal
3,1

· · · σ
EDXnormal

3,1 EDXnormal
m,m−1

...
...

. . .
...

σ
EDXnormal

m,m−1 EDXnormal
2,1

σ
EDXnormal

m,m−1 EDXnormal
3,1

· · · σ
EDXnormal

m,m−1 EDXnormal
m,m−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.2.2)
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and the covariance/variance between EDXnormal

j,k and EDXnormal

l,v in the lower triangle

of the normal EDM is defined by (4.2.3).

σ
EDXnormal

j,k EDXnormal
l,v

=
1

g − 1

g∑
i=1

(ED
xnormal
i

j,k − μ
EDXnormal

j,k
)

(ED
xnormal
i

l,v − μ
EDXnormal

l,v
) ,

(4.2.3)

where j and k are ranged from 2 to m, and l and v are ranged from 1 to m− 1. The

μ
EDXnormal

j,k
and μ

EDXnormal
l,v

in (4.2.3) are computed using (4.2.4) and (4.2.5).

μ
EDXnormal

j,k
=

1

g

g∑
i=1

ED
xnormal
i

j,k , (4.2.4)

and

μ
EDXnormal

l,v
=

1

g

g∑
i=1

ED
xnormal
i

l,v . (4.2.5)

Afterwards, these obtained Mahalanobis distances are kept in the respective Disi,

where i is varying from 1 to g, for normal profile generation at the later stage. Finally,

the mean Dis and the standard deviation Std of the distances are computed as

presented in lines 7 and 8 of Fig. 4.2. The obtained parameters (i.e., Dis and Std),

the EDM lower
Xnormal and the Cov are stored in the normal profile Pro.

4.2.3 Test Phase

In the Test Phase, observed (tested) network traffic records are examined individually

against the normal profiles that are generated in the training phase. According to

the definition of normal distribution, roughly 99.7% of the values are within three

standard deviations from the mean (i.e., Dis) of the Mahalanobis distances. There-

fore, the decision can be made by comparing the distance (i.e., Disobserved) of an

observed data object (i.e., EDM lower
xobserved) to the expectation (i.e., EDM lower

Xnormal) of the
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training data objects against the pre-defined thresholds (i.e., (Dis − α × Std) and

(Dis+α× Std)), where α is a parameter to determine the range of acceptance of an

observed network traffic record to be normal traffic. The detailed procedure for the

detection of DoS intrusions is defined in the algorithm shown in Fig. 4.3.

Require: The EDM lower
xobserved of a tested sample xobserved, normal traffic

profile Pro and parameter α
1: Disobserved ← MD(EDM lower

xobserved, EDM lower
Xnormal)

2: if (Dis− α× Std) ≤ Disobserved ≤ (Dis+ α× Std) then
3: return Normal
4: else
5: return Attack
6: end if

Figure 4.3: An algorithm for attack detection based on EDM-based MCA approach.

As shown between lines 2 and 6 in Fig. 4.3, if the distance (i.e, Disobserved) exceeds

the pre-defined thresholds (i.e., (Dis− α× Std) and (Dis+ α× Std)), the observed

network traffic record is flagged as an attack otherwise it is normal. For a normal

distribution, α is usually ranged from 1 to 3. This means that we would like to make

a detection decision with a certain level of confidence varying from 68% to 99.7% in

associate with the selection of different values of α.

4.3 Evaluation on the Multivariate Correlation Anal-

ysis Based on Euclidean Distance Map

The proposed Multivariate Correlation Analysis based on Euclidean Distance Map

(EDM-based MCA) approach is evaluated for its accuracy on characterisation of net-

work traffic and its contribution to the DoS attack detection system in this section.
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The evaluation is carried out on both the original network traffic data and the nor-

malised network traffic data. The final results are compared with two state-of-the-art

approaches.

4.3.1 Evaluation Datasets

As a well-known benchmark, the KDD Cup 99 dataset [84] has contributed sub-

stantially to the evaluation of the advances in network intrusion detection and has

remained active in many recent cutting-edge research [48][57][93][98]. In addition, this

dataset has been recommended for evaluating the performance of an anomaly-based

IDS in detecting new intrusions. Due to the reason that the primary concern to an

anomaly-based IDS is its accuracy in modelling normal traffic behaviour of a network,

the age of data does not prevent a fair evaluation on the system [27]. Moreover, test-

ing our approach using KDD Cup 99 dataset contributes convincing evaluations and

comparisons with other related state-of-the-art techniques [48][98].

However, the dataset has been criticised for redundant records that prevent al-

gorithms from learning infrequent harmful records [94]. Thus, the selection of non-

redundant data may apply to avoid this negative impact, but it is a labour-intensive

task. Alternatively, algorithms innately withstand the problem are more desirable.

As one of this kind, the underlying algorithms of our proposed DoS attack detection

system are immune to the problem because its profiles are built purely based on le-

gitimate network traffic. Therefore, the aforementioned problem introduced by the

redundant data can be avoided in our evaluations.

Although some other evaluation datasets are available, these datasets all have

some drawbacks. For example, CDX datasets [79] were poorly documented, and Uni-

versity of New Brunswick (UNB) ISCX Intrusion Detection Evaluation dataset [82]
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contains data collected from a simulation run in a control environment, in which com-

puter programs simulated users’ behaviours to generate network traffic. Therefore,

these drawbacks prevent these datasets from being used in our evaluations.

4.3.2 Experimental Data for Evaluation

In this evaluation, the 10 percent labelled data of the KDD Cup 99 dataset are

applied, which include five types of DoS attacks (i.e., Teardrop, Smurf, Pod, Neptune

and Land attacks) and three types of legitimate network traffic (i.e., legitimate TCP,

UDP and ICMP traffic).

The DoS attacks were launched using different types of network traffic, such as

TCP, UDP and ICMP traffic. Among the aforementioned five types of attacks, Nep-

tune and Land attacks were carried by TCP traffic, whereas, Teardrop was launched

via UDP traffic. Finally, Smurf and Pod attacks were using ICMP packets.

4.3.3 Evaluation on Network Traffic Characterisation

An effective multivariate correlation analysis approach must provide accurate char-

acterisation to various types of network traffic. Since DoS attack traffic behaves

anomalously in comparison with legitimate network traffic, the EDMs of DoS attack

records must be different from those of normal traffic records. If significant differ-

ences are identified from these maps (i.e., EDMs), the proposed EDM-based MCA

approach can be demonstrated as promising in characterisation of network traffic and

extraction of discriminative power from various types of network traffic.

To show how the correlations between the features of a network traffic record are

presented in Euclidean distance map, the EDMs of normal traffic records and those

of various types of attack traffic records are exhibited in this section. These EDMs
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are generated using 32 numerical features of the network traffic records available in

the aforementioned 10 percent labelled data.
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Figure 4.4: The EDM of a normal TCP traffic record.
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As shown in Fig. 4.4, the EDM of normal TCP traffic record is a symmetric matrix

and the values of the elements along its main diagonal from the top left hand side

to the bottom right hand side are all zeros. This is because the Euclidean distance

measure is insensitive to the orientation of a straight line formed by any two objects

in the Cartesian coordinate system, and the distance between a feature vector (i.e.,

F i
j ) and itself is always zero. In other words, assume that there are two objects D

and E. The distance from object D to object E is equivalent to the distance from

object E to object D, and if object D and object E are the same object, then their

distance is zero.

With the accurate characterisation of various types of network traffic, the dif-

ferences between these types of network traffic could be recognised by investigating

into and comparing their raw EDMs straight-away. However, this is a manual labour

intensive task. In contrast, visual comparison might give a better solution in terms of

efficiency. Therefore, we suggest to convert these EDMs into colour images. As such,

the comparison can be made on the images of the EDMs rather than the raw EDMs.

The images of normal TCP traffic record, Neptune attack record and Land attack

record are given in Fig. 4.5. The images of normal UDP traffic record and Teardrop

attack record are shown in Fig. 4.6. Finally, Fig. 4.7 presents the images of normal

ICMP traffic record and Smurf attack record and Pod attack record.

As can be seen from Fig. 4.5a, the image represents the visual pattern of the EDM

of normal TCP traffic record. The colour of an image point stands for the value of

an element on the EDM. The lighter and warmer the colour is, the greater value the

element has. In other words, the darkest cold blue colour areas on the image are the

lowest value areas on the EDM, and conversely the lightest warm red colour areas
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on the image are the highest value areas on the EDM. Figs. 4.5b and 4.5c visualise

the EDMs of Land attack record and Neptune attack record in the same manner

respectively.
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(c) Neptune attack traffic record

Figure 4.5: Images of the EDMs of normal TCP traffic record, Land attack record
and Neptune attack record.

The images of the EDMs of the attacks show clear different visual patterns from

that of the EDM of the normal TCP traffic record. Similarly, the images of the EDMs

of the normal UDP traffic record and Teardrop attack record are exhibited in Fig. 4.6.
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(a) Normal UDP traffic record
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(b) Teardrop attack traffic record

Figure 4.6: Images of EDMs of UDP traffic record and Teardrop attack record.

The image of the EDM of the Teardrop attack record shows apparent dissimilarity

to the image of the EDM of the normal UDP traffic. In addition, the images of the

EDMs shown in Fig. 4.7 reveal that the behaviours of ICMP-based attacks, namely

the Pod attack and the Smurf attack, are away from the normal ICMP traffic record

as well.

The above evaluation results demonstrate that our proposed EDM-based MCA ap-

proach achieves promising performance in characterisation of various types of network

traffic. Our results also suggest that, by taking advantage of the retained significant

discriminative power, utilisation of the extracted multivariate correlations could im-

prove the performance of DoS attack detection system. Moreover, by looking into the

images, we can easily identify the visual patterns of the different traffic records.
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(a) Normal UDP traffic record
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(c) Smurf attack traffic record

Figure 4.7: Images of EDMs of ICMP traffic record, Pod attack record and Smurf
attack record.

Therefore, the proposed EDM-based MCA approach could be further applied to

creating the statistical signatures of network intrusions. However, this is out of the

scope of this thesis. To further inspect the above suggestions, we conduct evaluations

on the detection of DoS attacks using the discriminative power provided by the EDM

in Section 4.3.4.
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4.3.4 Evaluation on DoS Attack Detection

In this section, 10 percent labelled data from the KDD Cup 99 dataset [84] is involved

in the evaluation, in which three types of legitimate network traffic (i.e., TCP, UDP

and ICMP traffic) and five types of DoS attack traffic (i.e., Teardrop, Smurf, Pod,

Neptune and Land attacks) are chosen from the 10 percent labelled data. These

selected data samples are then grouped into six different clusters with respect to

their labels (i.e., Normal, Teardrop, Smurf, Pod, Neptune and Land). The detailed

description of the clusters is found in Table 4.1.

Table 4.1: The Number of Records of Normal Traffic and Various of DoS Attack
Traffic

Normal Teardrop Smurf Pod Neptune Land

97,260 9,790 2,807,900 2,640 1,072,010 210

To give a comprehensive evaluation on the proposed DoS attack detection sys-

tem based on the proposed EDM-based MCA approach, 10-fold cross-validations are

conducted using both the original data and the data normalised using statistical nor-

malisation technique [102]. This aims to investigate an assumption that classification

is biased by the features with larger values in non-normalised data. Knowing the im-

pact of the original data and the normalised data on the detection accuracy is critical

to the proposed DoS attack detection system.

The results of the experimentations are shown and analysed in Section 4.3.4. The

performance of the proposed detection system is compared with two state-of-the-art

approaches to illustrate its effectiveness at the end of the section.
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Evaluation Metrics

Five metrics are used to evaluate the proposed DoS attack detection system based on

EDM-based MCA approach. They are True Negative Rate (TNR), Detection Rate

(DR), False Positive Rate (FPR), False Negative Rate (FNR) and Accuracy. These

metrics are defined as follows.

TNR =
TN

FP + TN
, (4.3.1)

DR =
TP

TP + FN
, (4.3.2)

FPR = 1− TNR, (4.3.3)

FNR = 1−DR, (4.3.4)

Accuracy =
TP + TN

TP + TN + FP + FN
, (4.3.5)

where TP, FP, TN and FN have the following meanings:

• True Positive (TP): the number of attacks correctly classified as attacks,

• False Positive (FP): the number of legitimate records incorrectly classified as

attacks,

• True Negative (TN): the number of legitimate records correctly classified as

legitimate records, and

• False Negative (FN): the number of attacks incorrectly classified as legitimate

records.

A system which can achieve a high DR while retaining a low FPR is highly appre-

ciated. In other words, a high detection accuracy rate is desired. To visually reveal
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the performance of our DoS attack detection system, Receiver Operating Character-

istic (ROC) curve [63] is employed to show the relation between these two metrics,

DR and FPR.

Process of Evaluation

In the evaluation, the 32 continuous features in each data record within the 10 percent

labelled data coming form Step 1 of the system framework shown in Fig. 4.1 are

chosen. These features are analysed by the proposed EDM-based MCA approach in

Step 2 of framework to extract the hidden correlations retaining in a data record and

to provide high accurate characterisation for the respective network traffic.

Particularly, both the original data and the normalised data participate in Step

2 during different sets of experimentations. The statistical technique [102] used in

the normalisation of the original data takes both the mean scale of attribute values

and their statistical distribution into account. It converts data derived from any

normal distribution into standard normal distribution, in which 99.9% samples of the

attribute are scaled into [-3, 3]. In addition, it has been proven that statistical normal-

isation improves detection performance of distance-based classifiers and outperforms

other normalisation methods, such as mean range [0, 1], ordinal normalisation etc.

[102]. The details of the statistical normalisation technique are shown as follows.

Considering the same arbitrary dataset X = {x1, x2, · · · , xn} given in Sec-

tion 4.1.1, the normalised value of feature f i
j is given by (4.3.6).

fij =
(f i

j − fj)

σf i
j

, (4.3.6)

where

f̄j =
1

n

n∑
i=1

f i
j (4.3.7)
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is the mean of feature f i
j , and

σf i
j
=

√√√√ 1

n

n∑
i=1

(f i
j − f̄j)2 (4.3.8)

is the standard deviation of feature f i
j . The normalised traffic record xi is represented

by (4.3.9). ⎡
⎢⎢⎢⎢⎢⎣
fi1

fi2
...

fim

⎤
⎥⎥⎥⎥⎥⎦ , (4.3.9)

in which 1 ≤ i ≤ n. In the following evaluation, the data is normalised in a batch

manner. However, real-time normalisation can be achieved through the incremental

learning [53] when our detection system is put on-line. The mean f̄i can be updated

as f̄i = f̄i +
xn+1−f̄i

n+1
.

In Step 3, normal profiles are built with respect to the types of legitimate traffic

(i.e., TCP, UDP and ICMP traffic) during the training phase. All the generated

normal profiles are stored in the detection system for later use. During the test

phase, the corresponding thresholds (i.e., (Dis−α×Std) and (Dis+α×Std)) of the

different normal profiles are determined by given the parameter α varying from 1 to

3 with an increment of 0.5. An observed sample is examined against the respective

normal profile, which is built based on the normal traffic records transmitted using the

same type of protocol. If the observed sample has a distance (i.e., Disobserved) which

exceeds the pre-determined thresholds, it is classified as a DoS attack. Otherwise, it

is classified as normal traffic.
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Results and Analysis

To illustrate the performance of our DoS attack detection system along with the

change of the thresholds, the average TNRs for normal traffic records and the average

DRs for individual types of DoS attack traffic records are shown in this section.

Results for Original Data The average detection performance of the proposed

DoS attack detection system based on the EDM-based MCA approach on the original

data against different thresholds is shown in Table 4.2.

Table 4.2: Average Detection Performance of the Proposed Attack Detection System
on Original Data against Different Thresholds

Type of Threshold
records 1σ 1.5σ 2σ 2.5σ 3σ

Normal 97.92% 98.47% 98.75% 98.99% 99.13%
Teardrop 100.00% 100.00% 100.00% 99.99% 99.98%
Smurf 100.00% 100.00% 100.00% 100.00% 100.00%
Pod 100.00% 100.00% 100.00% 100.00% 100.00%
Neptune 100.00% 100.00% 100.00% 99.99% 99.99%
Land 100.00% 100.00% 96.19% 87.62% 74.76%

The results in Table 4.2 demonstrate that our proposed attack detection system

achieves encouraging performance in most of the cases throughout the experimenta-

tion. The rate of correct classification of Normal records rises from 97.92% to 99.13%

along the increase of the threshold. Meanwhile, the Smurf attack records and the Pod

attack records are completely detected without being affected by the change of the

threshold. Moreover, the detection system achieves approximately 100% detection

rate for the Teardrop attack records and the Neptune attack records in almost all

cases. However, the detection system suffers serious degeneration in the Land attack
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when the threshold is set greater than 2σ, and the detection rate drops sharply down

to 74.76% while the threshold is set equal to 3σ.

In Fig. 4.8, the relationship (i.e., the tradeoff) between the DRs and FPRs,

achieved by our proposed attack detection system on original data, is revealed using

ROC curves of various types of DoS attack traffic. The trends of the ROC curves of

the attacks (i.e., Teardrop, Smurf, Pod and Neptune) are nearly flat and their ROC

curves maintain a high level of DRs. However, the ROC curve of Land attack shows

a sharp downslope.
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Figure 4.8: The ROC curves of various types of original DoS attack traffic data

To provide a better overview of the performance of our DoS attack detection

system, the detection accuracy is highlighted in Table 4.3. It is clearly seen that the

detection system achieves the highest accuracy (i.e., 99.91%) when the threshold is set

to 1σ. Then, the accuracy rises gradually and slightly to 99.95% when the threshold

increases to 3σ.
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Table 4.3: Accuracy Achieved by the Proposed Detection System on Original Data
against Different Thresholds

Threshold
1σ 1.5σ 2σ 2.5σ 3σ

Accuracy 99.91% 99.93% 99.94% 99.95% 99.95%

Results for Normalised Data Although the DoS attack detection system per-

forms well on the original data as shown in Tables 4.2 and 4.3, the detection perfor-

mance can be further improved by normalising the original data using the statistical

normalisation technique presented in Section 4.3.4 before putting it into analysis and

detection. The performance of the proposed DoS attack detection system achieving

on the normalised data is shown in Table 4.4, and the detection accuracy is presented

in Table 4.5.

As shown in Table 4.4, the proposed detection system can detect almost all attacks

with 100% DRs. The detection rate of Land attack is also improved to 100% regardless

of the change of the threshold. Although the detection system experiences a little

degradation in detecting Pod attack, it is still able to achieve 98.11% DR in the worst

case. In comparison with the TNR achieved on original data, the system gains a TNR

(for legitimate traffic) that declined a bit to maximum 98.38% when the threshold is

set to 3σ but it still manages to remain in the reasonable range.

Comparatively, the ROC curves of the attacks (such as Teardrop, Smurf, Pod, and

Neptune) in Fig. 4.9 look closely similar to the ones shown in Fig. 4.8 except Land

attack. Working with the normalised data enable our DoS attack detection system

to reach a higher level of DR. The ROC curve of Land attack remains stable beyond

the threshold of 2σ.
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Table 4.4: Average Detection Performance of the Proposed Attack Detection System
Based on Normalised Data against Different Thresholds

Type of Threshold
records 1σ 1.5σ 2σ 2.5σ 3σ

Normal 96.49% 97.34% 97.82% 98.16% 98.38%
Teardrop 100.00% 100.00% 100.00% 100.00% 100.00%
Smurf 100.00% 100.00% 100.00% 100.00% 100.00%
Pod 99.77% 98.37% 98.30% 98.30% 98.11%
Neptune 100.00% 100.00% 100.00% 100.00% 100.00%
Land 100.00% 100.00% 100.00% 100.00% 100.00%
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Figure 4.9: The ROC curves of various types of normalised DoS attack traffic data

Moreover, Table 4.5 shows that the normalised data boosts the accuracy of the

proposed detection system slightly by 0.01% at the thresholds of 2σ and 3σ. In other

words, the detection system achieves 99.95% accuracy in the case of 2σ threshold and

99.96% accuracy at threshold of 3σ when working with the normalised data.

Clearly, data do have positive influence on the proposed attack detection sys-

tem, whose overall performance increases slightly when taking normalised data as

the inputs. Although the results in Tables 4.4 and 4.5 show little improvements in
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Table 4.5: Accuracy Achieved by the Proposed Detection System on Normalised Data
against Different Thresholds

Threshold
1σ 1.5σ 2σ 2.5σ 3σ

Accuracy 99.91% 99.93% 99.95% 99.95% 99.96%

comparison with the ones (presented in Tables 4.2 and 4.3) achieved with the original

data, the improvements are important to the proposed DoS attack detection system.

Comparing Tables 4.2 and 4.4, our detection system achieves more promising DRs

with the normalised data in Teardrop attack, Neptune attack and Land attack than

the ones with the original data. Meanwhile, it underperforms in Normal traffic and

Pod attack while working with the normalised data in comparison with the original

data. However, the increase in the detection of Teardrop attack, Neptune attack

and Land attack has a more significant impact on the detection accuracy than the

decrease in the detection of Normal traffic and Pod attack. Especially, when the num-

ber of Land attack traffic increases, the detection accuracy decreases dramatically in

the case of working with the original data. The difference between the detection

accuracies using the two different data is 25.24% (= 100.00% - 74.76%).

Discussion and Comparison

Our analysis confirms that some original features with comparatively large values bias

the detection system. This makes that the changes appearing in some other more

important features with much smaller values can hardly take effect in distinguishing

DoS attack traffic from legitimate traffic. This vitally degrades the discriminative

power of the new feature set (i.e., EDM lower
xnormal
i

), which is not supposed to happen.

To illustrate the effectiveness of our proposed DoS attack detection system using



Section 4.4. Computational Complexity 81

EDM-based MCA approach, comparisons are made against two state-of-the-art de-

tection systems (i.e., the intrusion detection system based on covariance feature space

[48] and the intrusion detection using nearest neighbour based on triangle area [98]).

The best results of the individual detection systems are compared in this section.

The results of the comparisons shown in Table 4.6 reveal that our system outper-

forms theses two state-of-the-art systems.

Table 4.6: Performance Comparisons with Different Detection Systems

Threshold
Our detection sys-
tem based on EDM-
based MCA (with
the original data and
Threshold = 3σ)

Our detection system
based on EDM-based
MCA (with the nor-
malised data and
Threshold = 3σ)

The intrusion detec-
tion system based
on covariance fea-
ture space (with
4D principle and
Cov len3 150) [48]

The intrusion
detection using
nearest neighbour
based on triangle
area [98]

DR 99.99% 100.00% 99.95% 99.53%
FPR 0.87% 1.62% 10.33% 2.99%

In terms of the performance of our proposed DoS attack detection system, it

achieves around 99.99% DR when working with the original data and approximately

100.00% DR when working the normalised data. The FPR of our detection system

with the original data is approximately 0.87%, and the one of our detection system

with the normalised data is around 1.62%. On one hand, although it suffers a higher

FPR with the normalised data, it provides better protection. Especially, when the

number of Land attack traffic increases, the protection is more outstanding. On the

other hand, the FPR can be reduced by using false positive reduction techniques [7].

4.4 Computational Complexity

In this section, we conduct an analysis on the computational complexity of our pro-

posed DoS attack detection system using EDM-based MCA approach in two folds,
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namely the complexity of the proposed EDM-based MCA approach and the complex-

ity of the detection process in our proposed attack detection system.

On one hand, as discussed in Section 4.1, Euclidean distances between any

two distinct features in a traffic record need to be computed when processing our

proposed EDM-based MCA approach. Since each traffic record has m features (or

dimensions), m(m−1)
2

Euclidean distances are calculated and are used to construct a

EDM lower
xi

. Thus, the proposed MCA approach has a computational complexity of

O(m2). On the other hand, as explained in Section 4.2, the MD between the ob-

served feature vector (i.e., the EDM lower
xi

) and the expectation (i.e., EDM lower
Xnormal) of

the respective normal profile needs to be computed in the detection process of our

proposed detection system to evaluate the level of the dissimilarity between them.

Thus, this computation incurs a complexity of O(M2), in which M = m(m−1)
2

is the

dimensions of EDM lower
xi

. O(M2) can be written as O(m4). By taking the computa-

tional complexities of the proposed MCA and the detection process of our proposed

detection system into account, the overall computational complexity of the proposed

detection system is O(m2)+O(m4) = O(m4). However, m is a fixed number which is

32 in our case, so that the overall computational complexity is indeed equal to O(1).

The computational complexities of the other two state-of-the-art detection systems

compared in Section 4.3.4 are analysed in the following. Network intrusion detection

system based on covariance feature space [48] incurs a computational complexity of

O(2n×m×(m+1)
2

) = O(nm2) in data preprocessing, where n is the number of sequential

samples in a group and m is the number of physical features of a sample. In attack

detection, the observed covariance matrix of a group of sequential samples needs

to be compared with all l known classes/clusters. Therefore, it has a computational
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complexity of O(lm2). The overall computational complexity of the network intrusion

detection system based on covariance feature space is O(nm2) +O(lm2) = O(lm2).

The intrusion detection system using nearest neighbour based on triangle area

[98] suffers a heavier overall computational complexity. In data processing and attack

detection phases, the computational complexities are O(ml2) andO(l2n2) respectively,

where m is the number of features (or dimensions) in a traffic record, l is the number

of clusters used in generating triangle areas and n is the number of training samples.

The overall complexity is O(ml2)+O(l2n2) = O(l2n2). In real network environments,

the types of attacks and the number of available training samples are often varying.

Thus, the computational complexities of these two state-of-the-art detection systems

cannot be constants.

In general, our proposed DoS detection system can achieve better computational

complexity than the above two other systems. Table 4.7 is provided to summarize

the computational complexities of the above discussed approaches.

Table 4.7: Computational Complexities of Different State-of-the-art Detection Ap-
proaches

The proposed attack detec-
tion system based on EDM-
based MCA approach

Network intrusion detection
system based on covariance
feature space [48]

Intrusion detection system
using nearest neighbour
based on triangle area [98]

O(1) O(lm2) O(l2n2)

4.5 Summary

This chapter has proposed a MCA approach based on EDM to extract the multivariate

correlations between two distinct features of a network traffic record. This proposed

MCA approach can better exhibit the network traffic behaviours. We have evaluated
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the effectiveness of the proposed MCA approach in network traffic characterisation on

the records of Normal traffic and various types of DoS attack traffic from the KDD

Cup 99 dataset. The results illustrate that the extracted information can clearly

reveal the correlations between features and accurately characterise the various types

of traffic, and the information can clearly reveal the changes of network behaviour

caused by DoS attacks.

Moreover, this chapter has also proposed a DoS attack detection system using

EDM-based MCA approach. We have evaluated the proposed attack detection system

on the KDD Cup 99 dataset as well. The detection system has achieved encouraging

detection accuracy on both the original data and the normalised data. It outperforms

the other two state-of-the-art systems (i.e., the network intrusion detection system

based on covariance feature space and the intrusion detection system using nearest

neighbour based on triangle area) completely.

However, the false positive rate of our detection system needs to be further reduced

in order to release network administrators from being disrupted by frequent shown

false alarms. Thus, we will employ more sophisticated classification techniques in our

future work to alleviate the false positive rate.



Chapter 5

Multivariate Correlation Analysis
Based on Triangle Area Map

Multivariate correlation analysis has been a rising trend in the research areas of net-

work intrusion detection. Recent studies on feature correlation analysis have gained

progresses and helped improve the accuracy of attack detection. Various kinds of

analysis techniques were introduced by these early research works to the task of mul-

tivariate correlation extraction. These analysis techniques are systematically classi-

fied into two different categories (i.e., the payload-based analysis techniques and the

flow-based analysis techniques) with respective to the types of objects, which they

are intended to study.

In terms of payload-based analysis, the analysis techniques, such as the Ge-

ometrical Structure Anomaly Model (GSAD) [46], feature correlation analysis ap-

proach based on Linear Discriminant Analysis (LDA) [87], RePIDS [45] and so on,

were developed to study the multivariate correlations that reside in network traffic

packet payloads. This type of MCA techniques/approaches enables the discovery of

the patterns of the analysed network traffic packet payloads. However, these tech-

niques are ineligible to extract the patterns of the flow-based information of network

85
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traffic.

In terms of flow-based analysis, the MCA techniques, such as the covariance-

matrix-based approach [48], the triangle-area-based approach [98], correlation-coefficient-

based approach [108] and so on, were proposed to analyse the multivariate correlations

retained by network traffic flows. While these MCA techniques/approaches show en-

couraging performance in extracting the correlation between the features/statistics of

network traffic flows during the experimentation, they have dependency on the prior

knowledge of the behaviours of network traffic during the process of analysis.

Adopting this idea, we have proposed the EDM-based MCA approach in Chap-

ter 4, which not only provides efficient and accurate characterisation to various types

of network traffic, but also is free from the aforementioned problems. However, it

would be even more appreciated if the computational cost of the process of multivari-

ate correlation analysis could be further reduced. As such, in this chapter, we suggest

another MCA approach that employs Triangle Area Map (TAM) in extracting mul-

tivariate correlations between the features. This new MCA approach is developed

based on one of our works published in [88].

In order to evaluate the effectiveness of the TAM-based MCA approach on the

detection of DoS attacks, we design an anomaly-based IDS using the proposed TAM-

based MCA approach for the task. This anomaly-based IDS is designed based on

one of our works published in [93]. Its performance is tested using the KDD 99 CUP

dataset [84].

The rest of this chapter is organised as follows. Section 5.1 proposes a novel

MCA approach in which TAM is used for multivariate correlation extraction. A

DoS attack detection system based on the TAM-based MCA approach is proposed
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in Section 5.2. The evaluations on the efficiency of the proposed TAM-based MCA

approach in characterising various types of network traffic and on the developed DoS

attack detection system are presented in Section 5.3. The computational complexity

and the time cost of the proposed DoS attack detection system are then evaluated

and shown in Section 5.4. Finally, the summary is drawn in Section 5.5.

5.1 Multivariate Correlation Analysis Approach

A new approach is proposed in this section to enhance and speed up the multivariate

correlation analysis approach proposed in Chapter 4. This new MCA approach is

developed based on triangle area map technique, which is used to present the corre-

lations within network traffic data. The occurrence of DoS attacks causes the change

of the network traffic behaviour, which in turn affects the correlations. Thus, the

correlations can help indicate the suspicious change of the network traffic behaviour.

These correlations are extracted from the basic statistical properties (e.g., the

number of data bytes from source to destination, the length of a connection and

the number of connections to the same host as the current connection in the past

two seconds etc.) of the network traffic flows in a prompt fashion. The extracted

correlations give accurate descriptions to the behaviours of various types of network

traffic. The description vectors representing network traffic records are constructed

using these newly extracted correlations of the respective traffic records. The details

are shown in the following section.
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5.1.1 Multivariate Correlation Extraction

Considering the same arbitrary dataset X = [x1 x2 · · · xn] given in Chapter 4, where

xi =

⎡
⎢⎢⎢⎢⎢⎣
f i
1

f i
2

...

f i
m

⎤
⎥⎥⎥⎥⎥⎦

represents the ith m-dimensional traffic record, and i is ranged from 1 to n. The

dataset X can now be represented explicitly in (5.1.7).

X =

⎡
⎢⎢⎢⎢⎢⎣
f 1
1 f 2

1 · · · fn
1

f 1
2 f 2

2 · · · fn
2

...
...

. . .
...

f 1
m f 2

m · · · fn
m

⎤
⎥⎥⎥⎥⎥⎦ , (5.1.1)

where f i
l is the value of the l

th feature in the ith traffic record, and l and i are varying

from 1 to m and from 1 to n respectively.

In this scheme, the concept of triangle area rather than Euclidean distance is

applied to extract the geometrical correlation between the features f i
j and f i

k, where

j and k are varying from 1 to m, in the vector xi. In order to obtain the triangle

formed by these two features (i.e., f i
j and f i

k), data transformation is involved, where

the vector xi is first projected onto the (j, k)-th two-dimensional Euclidean subspace

as defined in (5.1.2).

yi,j,k = [εj εk]
Txi =

[
f i
j

f i
k

]
, (5.1.2)

where j 	= k, and the vectors εj and εk are two unit vectors given in (5.1.3) and
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(5.1.4).

εj =

⎡
⎢⎢⎢⎢⎢⎣
ej,1

ej,2
...

ej,m

⎤
⎥⎥⎥⎥⎥⎦ , (5.1.3)

and

εk =

⎡
⎢⎢⎢⎢⎢⎣
ek,1

ek,2
...

ek,m

⎤
⎥⎥⎥⎥⎥⎦ , (5.1.4)

in which all the elements are with values of zero, except the (j, j)-th element and the

(k, k)-th element whose values are ones in εj and εk respectively.

The yi,j,k shown in (5.1.2) can be interpreted as a two-dimensional column vector,

which can also be defined as a point on the Cartesian coordinate system in the (j, k)-

th two-dimensional Euclidean subspace with a coordinate (f i
j , f i

k). Then, on the

Cartesian coordinate system, a triangle Δf i
jOf i

k, formed by the origin (i.e., O) and

the projected points of the coordinate (f i
j , f

i
k) on the j-axis and k-axis, is found. Its

area Trij,k is defined as (5.1.5).

Trij,k = (‖ (f i
j , 0)− (0, 0) ‖ × ‖ (0, f i

k)− (0, 0) ‖)/2, (5.1.5)

where 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ m and j 	= k.

To make a complete analysis, all possible permutations of any two distinct features

in the vector xi are extracted, and the respective triangle areas are computed. A TAM

is constructed and all the triangle areas are arranged on the map with respect to their

indexes. For example, the Trij,k is positioned on the jth row and the kth column of
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the map TAMxi given in (5.1.6).

TAMxi
=

⎡
⎢⎢⎢⎢⎢⎣

0 Tri1,2 · · · Tri1,m

Tri2,1 0 · · · Tri2,m
...

...
. . .

...

Trim,1 Trim,2 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

m×m

. (5.1.6)

The values of the elements on the diagonal of the map are set to zeros (Trij,k = 0,

if j = k) because we only care about the correlation between each pair of distinct

features. For the non-diagonal elements Trij,k and Trik,j where j 	= k, they indeed

represent the areas of the same triangle. This infers that the values of Trij,k and Trik,j

are actually equal. Hence, the TAMxi is a symmetric matrix having the elements

with the values of zero on the main diagonal.

For the aforementioned arbitrary dataset X, its geometrical multivariate correla-

tions can be extracted using the proposed TAM-based MCA approach and is repre-

sented by (5.1.7).

XTAM = [TAMx1 , TAMx2 , · · · , TAMxn ]m×m×n. (5.1.7)

5.1.2 Example and Discussion

To provide a clear picture of how the proposed TAM-based MCA approach works, an

example is used for illustration as follows. Given a feature vector

xex =

⎡
⎢⎢⎣
1

3

5

⎤
⎥⎥⎦ ,

whose triangle area map TAMex is obtained by first placing the vector xex into a

3-Dimensional (3D) feature space formed by three orthogonal unit vectors ε1, ε2 and
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ε3.

ε1 ε2 ε3⎛
⎜⎝

⎞
⎟⎠

1 0 0

0 1 0

0 0 1

The xex is now a point in the 3D space as shown in Fig. 5.1a. The projected points

on three distinct subspaces Sε1ε2 , Sε1ε3 and Sε2ε3 within the 3D space are denoted as

A(1, 3, 0), B(1, 0, 5) and C(0.3.5) shown in Fig. 5.1b respectively.

When we analyse these projected points of xex in 2D spaces rather than a 3D space,

the projected points on the subspaces Sε1ε2 , Sε1ε3 and Sε2ε3 are then redefined as yex,1,2,

yex,1,3 and yex,2,3 and shown in Figs. 5.1c, 5.1d and 5.1e respectively. The correspond-

ing values of the projected points are yex,1,2 = [ε1 ε2]
Txex = [f ex

1 f ex
2 ]T = [1 3]T ,

yex,1,3 = [ε1 ε3]
Txex = [f ex

1 f ex
3 ]T = [1 5]T and yex,2,3 = [ε2 ε3]

Txex = [f ex
2 f ex

3 ]T =

[3 5]T .

Then, the points yex,1,2, yex,1,3 and yex,2,3 are further projected on the axes of

the respective subspaces. Triangles on the three subspaces Sε1ε2 , Sε1ε3 and Sε2ε3 are

constructed by connecting any two of the points (i.e., f ex
1 , f ex

2 and f ex
3 ) and the origin

O. These triangles are denoted by Δf ex
2 Of ex

1 , Δf ex
3 Of ex

1 and Δf ex
3 Of ex

2 and shown

in Figs. 5.1c, 5.1d and 5.1e respectively. The areas (i.e., Trex2,1, Tr
ex
3,1 and Trex3,2) of the

triangles (i.e., Δf ex
2 Of ex

1 , Δf ex
3 Of ex

1 and Δf ex
3 Of ex

2 ) are computed using (5.1.5), and

the values are shown as follows.
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ε2

ε3

ε1

xex=(1, 3, 5)

O

(a) xex in an orthogonal 3D feature space

ε1

ε2

ε3

xex=(1, 3, 5)

(1, 3, 0)

(1, 0, 5)

(0, 3, 5)
O

(b) xex projected on feature subspaces

ε1

ε2

O

yex,1,2=(1, 3)

f1ex

f2ex

∆f2exOf1ex

(c) Projected point yex,1,2 on subspace Sε1ε2

ε1

ε3

O

yex,1,3=(1,5)

f1ex

f3ex

∆f3exOf1ex

(d) Projected point yex,1,3 on subspace Sε1ε3

ε2

ε3

O

yex,2,3=(3,5)
f3ex

f2ex

∆f3exOf2ex

(e) Projected point yex,2,3 on subspace Sε2ε3

Figure 5.1: Geometrical structure of features

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Trex2,1 = (‖ (3, 0)− (0, 0) ‖ × ‖ (0, 1)− (0, 0) ‖)/2 = 1.5,

T rex3,1 = (‖ (5, 0)− (0, 0) ‖ × ‖ (0, 1)− (0, 0) ‖)/2 = 2.5,

T rex3,2 = (‖ (5, 0)− (0, 0) ‖ × ‖ (0, 3)− (0, 0) ‖)/2 = 7.5.

Due to the fact that Trexj,k and Trexk,j refer to the area of the same triangle Δf ex
j Of ex

k ,

where 1 ≤ j ≤ 3, 1 ≤ k ≤ 3 and j 	= k, the corresponding triangle area map TAMex
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is defined using the above triangle areas (i.e., Trex2,1, Tr
ex
3,1 and Trex3,2) and given as

follows.

TAMex =

⎡
⎢⎢⎣

0 Trex1,2 Trex1,3

Trex2,1 0 Trex2,3

Trex3,1 Trex3,2 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1.5 2.5

1.5 0 7.5

2.5 7.5 0

⎤
⎥⎥⎦ .

It is worth notice that when our proposed TAM-based MCA approach is put into

practice, the computation of the Trij,k defined in (5.1.5) can be simplified as given in

(5.1.8).

Trij,k = (|f i
j | × |f i

k|)/2. (5.1.8)

This is because the value of the Trij,k is eventually equal to half of the product of

the absolute values of the features f i
j and f i

k. Thus, the transformation shown in

(5.1.2) can be eliminated and the process of multivariate correlation extraction can

be speeded up by more than one-third.

Besides, this example also shows four unique merits of our TAM-based MCA

approach in data analysis in comparison with other state-of-the-art MCA approaches,

and the merits are shown as follows.

• First, it does not require the knowledge of historic traffic (i.e., both legitimate

and illegitimate traffic) in performing analysis.

• Second, unlike the Covariance matrix approaches proposed in [48] which is vul-

nerable to linear change of all features, our proposed TAM-based MCA with-

stands the problem.

• Third, it provides accurate characterisation for individual network traffic records

rather than model network traffic behaviour of a group of network traffic records.
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This results in lower latency in decision making and enable sample-by-sample

detection. Thus, prompt response to attacks can be taken.

• Fourth, the correlations between distinct pairs of features are revealed through

the geometrical structure analysis. Changes of these structures may occur when

anomaly behaviours appear in the network. This provides an important signal

to trigger an alert.

5.2 Network Intrusion Detection Using Multivari-

ate Correlation Analysis Based on Triangle Area

Map

Similar to Section 4.2, the contributions of our TAM-based MCA approach to DoS

attack detection are evaluated in this section. To do so, a new DoS attack detection

system is designed based on the general system framework proposed in Chapter 3.

The TAM-based MCA approach is applied in Step 2 of the architecture and plays a

key role in the analysis of the correlations within network traffic records.

The overview of the proposed DoS attack detection system is given in Section 5.2.1.

The details of the Training Phase and the Test Phase in Step 3 of the framework are

given in Sections 5.2.2 and 5.2.3.

5.2.1 Framework

The framework of our proposed DoS attack detection system is presented in this sec-

tion. This system framework coincides with the architecture of the general detection

system framework shown in Fig. 3.1. The anomaly-based detection mechanism and
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Step 1:
Basic Feature
Generation for

Individual
Records

Normal Profile
Generation

Tested Profile
Generation for

Individual Records

Attack Detection
for Individual

Records

Normal Profiles

Training
Phase

Test Phase

Step 3: Decision Making

Network Traffic

Step 2: Multivariate Correlation Analysis

Triangle Area Map
Generation for

Individual Records

Feature
Normalisation

Raw/Original Features

Normalised Features

Figure 5.2: A system framework for denial-of-service attack detection using multi-
variate correlation analysis based on triangle area map

the other mechanisms discussed in Sections 3.1.1-3.1.3 enable this newly proposed

detection system to effectively recognise known and unknown network intrusions.

This system framework deviates from the reference detection system framework

in Step 2, where the Triangle Area Map Generation module other than a general

conceptual MCA module is introduced to function as an traffic analyser in this new

detection system. Apart from that, the system framework shown in Fig. 5.2 includes

a Feature Normalisation module in Step 2, where the same normalising technique

[102] used in Chapter 4 is adopted.

The Triangle Area Map Generation module in Step 2 applies the TAM-based MCA

approach to extract the correlations between two distinct features within each traffic

record, which either comes from Step 1 or from the Feature Normalisation module

in the same step (i.e., Step 2). The occurrence of network intrusions causes changes

to these correlations so that the changes can be used as indicators to identify the

intrusive activities. All the extracted correlations, namely triangle areas stored in

TAMs, are then used to replace the original basic features or the normalised features

to represent the traffic records. This provides higher discriminative information to

differentiate between legitimate and illegitimate traffic records. These TAMs are then



Section 5.2. Network Intrusion Detection Using TAM-based MCA 96

used in the Training Phase and the Test Phase in Step 3. The relevant algorithms

are presented are detailed in Sections 5.2.2 and 5.2.3 respectively.

In order to maintain the efficiency of the system, we suggest to reduce the compu-

tation in the process of detection by examining only the upper triangle or the lower

triangle of the TAM of a tested network traffic record. This suggestion is based on the

fact that TAMs are symmetric matrices, in which any differences, identified on the

upper triangles of the images, can be found on their lower triangles as well. Therefore,

to perform a quick comparison of the two TAMs, we can choose to investigate either

the upper triangles or the lower triangles of the TAMs only. This produces the same

result as comparing using the entire TAMs. Therefore, the correlations residing in

a traffic record xi can be represented effectively and correctly by the upper triangle

or the lower triangle of the respective TAM (i.e., TAMxi
). For consistency, we con-

sider the lower triangles of TAMs in the following sections. The lower triangle of the

TAMxi
is converted into a new correlation vector TAM lower

xi
as denoted in (5.2.1).

TAM lower
xi

= [Trxi
2,1 Tr

xi
3,1 · · · Trxi

m,1 Tr
xi
3,2

Trxi
4,2 · · · Trxi

m,2 · · · Trxi
m,m−1]

T
m×(m−1)

2

.
(5.2.1)

Now, given the same set of g m-dimensional normal training network traffic records

(i.e., Xnormal = [xnormal
1 xnormal

2 · · · xnormal
g ]) considered in Section 4.2.1, these net-

work traffic records are denoted by the lower triangles of the TAMs extracted using

our proposed TAM-based MCA approach, namely

Xnormal
TAM = [TAM lower

xnormal
1

TAM lower
xnormal
2

· · · TAM lower
xnormal
g

],
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where

TAM lower
xnormal
i

=

⎡
⎢⎢⎢⎢⎢⎣
Tr

xnormal
i

2,1

Tr
xnormal
i

3,1

...

Tr
xnormal
i

m,m−1

⎤
⎥⎥⎥⎥⎥⎦

m×(m−1)
2

and 1 ≤ i ≤ g. Additionally, an observed network traffic record (i.e., xobserved)

is denoted by the lower triangle of its TAM extracted using the TAM-based MCA

approach, namely

TAM lower
xobserved =

⎡
⎢⎢⎢⎢⎢⎣
Trx

observed

2,1

Trx
observed

3,1

...

Trx
observed

m,m−1

⎤
⎥⎥⎥⎥⎥⎦

m×(m−1)
2

.

The training phase and the test phase of the proposed DoS attack detection system

are presented in Sections 5.2.2 and 5.2.3 based on the above given training and test

samples.

5.2.2 Training Phase

In this section, we provide a detailed discussion about the Training Phase and present

the relevant algorithm in Fig. 5.3. As the main task in the Training Phase, building

profiles for various types of legitimate network traffic is done through the density esti-

mation of the similarities between the given normal traffic records and the expectation

of the legitimate traffic.

MD is adopted to measure the similarity between network traffic records, due

to the fact that MD has been successfully and widely used in cluster analysis, clas-

sification and multivariate outlier detection techniques. Moreover, unlike Euclidean

distance and Manhattan distance, it evaluates distance between two multivariate data
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objects by taking the correlations between variables into account and removing the

dependency on the scale of measurement during the calculation.

Require: A dataset Xnormal
TAM {It contains the lower triangles of the TAMs of the g

normal training, and each of which has m×(m−1)
2

features.}
1: Initialise DIS {It is an array with g elements denoted by Disi(1 ≤ i ≤ g).}
2: TAM lower

Xnormal ← 1
g

∑g
i=1 TAM

lower
xnormal
i

3: Generate covariance matrix Cov for Xnormal
TAM using (5.2.3)

4: for i = 1 to g do
5: Disi ← MD(TAM lower

xnormal
i

, TAM lower
Xnormal) {Mahalanobis distance between

TAM lower
xnormal
i

and TAM lower
Xnormal computed using (5.2.2)}

6: end for
7: Dis ← 1

g

∑g
i=1 Disi

8: Std ←
√

1
g−1

∑g
i=1(Disi −Dis)2

9: Pro ← (N(Dis, Std2), TAM lower
Xnormal , Cov)

10: return Pro

Figure 5.3: An algorithm for normal profile generation based on TAM-based MCA
approach.

During the estimation of the density of the MDs (e.g., Disi) between the given

normal traffic records (e.g., TAM lower
xnormal
i

) and the expectation (i.e., TAM lower
Xnormal) of the

g legitimate training traffic records as shown between the lines 4 and 6 of Fig. 5.3. The

probability distribution of the MDs is determined by two parameters (i.e., the mean

Dis and the standard deviation Std of the distances) as described in the algorithm

shown in lines 7 and 8 of Fig. 5.3. The MD (i.e., Disi) between the TAM lower
xnormal
i

and the TAM lower
Xnormal is computed using (5.2.2), and the covariance matrix (i.e., Cov)

involved in (5.2.2) can be obtained using (5.2.3).

Disi =

√
(TAM lower

xnormal
i

− TAM lower
Xnormal)T (TAM

lower
xnormal
i

− TAM lower
Xnormal)

Cov
, (5.2.2)

and
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Cov =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ
TrX

normal
2,1 TrX

normal
2,1

σ
TrX

normal
2,1 TrX

normal
3,1

· · · σ
TrX

normal
2,1 TrX

normal
m,m−1

σ
TrX

normal
3,1 TrX

normal
2,1

σ
TrX

normal
3,1 TrX

normal
3,1

· · · σ
TrX

normal
3,1 TrX

normal
m,m−1

...
...

. . .
...

σ
TrX

normal
m,m−1 TrX

normal
2,1

σ
TrX

normal
m,m−1 TrX

normal
3,1

· · · σ
TrX

normal
m,m−1 TrX

normal
m,m−1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5.2.3)

The covariance (e.g., σ
TrX

normal
j,k TrX

normal
l,v

) between two arbitrary elements (e.g., TrX
normal

j,k

and TrX
normal

l,v ) in the lower triangle of the TAM of the i-th normal traffic record is

defined in (5.2.4).

σ
TrX

normal
j,k TrX

normal
l,v

=
1

g − 1

g∑
i=1

(Tr
xnormal
i

j,k − μ
TrX

normal
j,k

)

(Tr
xnormal
i

l,v − μ
TrX

normal
l,v

) ,

(5.2.4)

where 2 ≤ j ≤ m, 2 ≤ l ≤ m, 1 ≤ k ≤ (m− 1) and 1 ≤ v ≤ (m− 1). Moreover, the

mean (i.e., μ
TrX

normal
j,k

) of the (j, k)-th elements and the mean (i.e., μ
TrX

normal
l,v

) of the

(l, v)-th elements in the lower triangles of the TAMs over g legitimate training traffic

records are defined in (5.2.5) and (5.2.6) respectively.

μ
TrX

normal
j,k

=
1

g

g∑
i=1

Tr
xnormal
i

j,k , (5.2.5)

and

μ
TrX

normal
l,v

=
1

g

g∑
i=1

Tr
xnormal
i

l,v . (5.2.6)

As shown in Fig. 5.3, the distribution of the MDs is described by the two param-

eters, namely the mean Dis and the standard deviation Std of the MDs. Finally,

the obtained distribution N(Dis, Std2) of the normal training traffic records, the

TAM lower
Xnormal and the Cov are stored in the normal profile Pro, which is then kept in

the database of normal profiles as shown in Fig. 5.2, for attack detection.
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Require: The TAM lower
xobserved of a tested sample xobserved, normal traffic profile Pro :

(N(Dis, Std2), TAM lower
Xnormal , Cov) and parameter α

1: Disobserved ← MD(TAM lower
xobserved , TAM lower

Xnormal) {Mahalanobis distance between

TAM lower
xobserved and TAM lower

Xnormal computed using (5.2.7)}
2: if (Dis− α× Std) ≤ Disobserved ≤ (Dis+ α× Std) then
3: return Normal
4: else
5: return Attack
6: end if

Figure 5.4: An algorithm for attack detection based on TAM-based MCA approach.

5.2.3 Test Phase

In this section, an algorithm for attack detection is proposed to be used in the test

phase of Step 3 in Fig. 5.2, and it is given in Fig. 5.4. Tested (or observed) network

traffic records (e.g., xobserved) are examined individually against the respective normal

profiles (e.g., Pro : (N(Dis, Std2), TAM lower
Xnormal , Cov)), which are generated in the

training phase discussed in Section 5.2.2. The descriptor TAM lower
xobserved of an observed

network traffic xobserved, the respective normal profile Pro and the parameter α are the

required inputs of the detection algorithm shown in Fig. 5.4. The similarity between

the observed record xobserved and the expectation TAM lower
Xnormal of the respective type

of legitimate network traffic is evaluated as defined in line 1 of Fig. 5.4 using (5.2.7),

namely the Mahalanobis distance.

Disobserved =

√
(TAM lower

xobserved − TAM lower
Xnormal)T (TAM

lower
xobserved − TAM lower

Xnormal)

Cov
.

(5.2.7)

Given a common assumption that legitimate network traffic follows the Gaussian

distribution, the population of the Mahalanobis distances between individual legiti-

mate network traffic records and the expectation of these instances also coincide with
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the normal distribution. Thus, approximately 99.7% of the legitimate network traf-

fic have the similarities to the normal profile with the maximums of three standard

deviations from the average distance (i.e., Dis) to the expectation (i.e., TAM lower
Xnormal)

of legitimate traffic kept in the normal profile Pro. As such, the lower threshold (i.e.,

Dis − α × Std) and the upper threshold (i.e., Dis + α × Std) are given in line 2 of

Fig. 5.4. The observed network traffic, whose Disobserved falls into the range between

the lower threshold and the upper threshold, will be classified as a normal record,

otherwise it will be determined as an attack.

The thresholds are essential to the detection accuracy of our DoS attack detection

system, and three parameters in each threshold that need to be chosen with care

to assure the effectiveness of the detection system. Since the Dis and the Std are

determined in the training phase of Step 3, there is only one parameter remaining to

be designed. For a normal distribution, α is usually ranged from 1 to 3. This means

that detection decision can be made with a certain level of confidence varying from

68% to 99.7% in association with the selection of different values of α.

5.3 Evaluation on the Multivariate Correlation Anal-

ysis Based on Triangle Area Map

The MCA approach proposed in Section 5.1 is based on Triangle Area Map (TAM-

based MCA) technique and aims to provide accurate characterisation for various

types of network traffic. In order to evaluate the performance of TAM-based MCA

approach, we conduct a series of experiments in this section, where its accuracy on

characterisation of network traffic and its contribution to the DoS attack detection

system are evaluated using the KDD Cup 99 dataset [84].
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The experiments are carried out on both original network traffic data and nor-

malised network traffic data. The final experimental results are presented in Sec-

tions 5.3.1 and compared with two state-of-the-art approaches.

5.3.1 Experimental Data for Evaluation

In the evaluation, the 10 percent of labelled data of the KDD Cup 99 dataset are

applied, and they include five types of DoS attacks (i.e., Teardrop, Smurf, Pod,

Neptune and Land attacks) and three types of legitimate network traffic (i.e., TCP,

UPD and ICMP traffic).

All these traffic records are filtered and grouped into six clusters with respective

to their labels before the commencement of the evaluation. The selected DoS attacks

were carried using different transport layer protocols. For example, Neptune and

Land attacks were carried by TCP traffic. Teardrop was launched via UDP traffic.

Smurf and Pod attacks were using ICMP packets. The details of filtered traffic records

are available from Table 4.1 in Section 4.3.4.

5.3.2 Process of Evaluation

The overall evaluation process is detailed in this section.

• First, the proposed TAM-based MCA approach is assessed for its capability of

network traffic characterisation.

• Second, a 10-fold cross-validation is conducted to evaluate the detection per-

formance of the proposed DoS attack detection system based on TAM-based

MCA approach, and the entire filtered data subset is used in this task. During
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the 10-fold cross-validation, we employ only the Normal records in the training,

and normal profiles are built with respect to the different types of legitimate

traffic using the algorithm presented in Fig. 5.3. In the test phase, both the

Normal records and the attack records are taken into account. The respective

thresholds are determined as shown in line 2 of Fig. 5.4 given the parameter α

varying from 1 to 3 with an increment of 0.5. Moreover, as given in Fig. 5.4,

the observed samples are examined against the respective normal profiles which

are built based on the legitimate traffic records carried using the same type of

Transport layer protocol.

• Lastly, four metrics, namely TNR, DR, FPR and Accuracy (i.e. the proportion

of the overall samples which are classified correctly), are used to evaluate the

proposed DoS attack detection system. The definitions of these four metrics

can be found in Section 4.3.4. To be a good candidate, our proposed detection

system is required to achieve a high detection accuracy.

The evaluations conducted using the original data and the normalised data coin-

cide with this process and the results are shown in Sections 5.3.3 and 5.3.4 respectively.

5.3.3 Evaluation Using the Original Data

In this evaluation, the TAMs of the different types of traffic are generated using

the original network traffic records from the 10 percent labelled data, each of which

contains 32 continuous features. The results of characterisation and the performance

of the proposed DoS attack detection system are shown below.
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Network Traffic Characterisation

The results of the network traffic characterisation using the TAM-based MCA ap-

proach on the original network traffic data is presented in this section. The images of

the TAMs of the various types of filtered traffic are given in Figs. 5.5-5.7 respectively.

The images demonstrate that TAM is a symmetric matrix, whose upper triangle and

lower triangle are identical. The brightness of an element in an image represents its
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(c) Neptune attack traffic record

Figure 5.5: Images of the TAMs of normal TCP traffic record, Land attack record
and Neptune attack record generated using original data.
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value in the corresponding TAM. The greater the value is, the brighter the element is.

As shown in Fig. 5.5, the images of the full TAMs of the Land attack record and the

Neptune attack record exhibit clear deviation from the image of the TAM of normal

TCP traffic record. The completely different patterns are also revealed in the TAMs

of these two attack records.
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(a) Normal UDP traffic record
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(b) Teardrop attack traffic record

Figure 5.6: Images of TAMs of UDP traffic record and Teardrop attack record gen-
erated using original data.

This phenomenon is found in other attacks as well. The images of the TAMs

of the normal UDP traffic record and the Teardrop attack record are exhibited in

Fig. 5.6. In comparison with the image of the normal UDP traffic TAM, the TAM

of the Teardrop attack traffic demonstrates the distinct pattern of the multivariate

correlations. In addition, the images of the TAMs shown in Fig. 5.7 reveal that the

behaviours of ICMP-based attacks, namely the Pod attack and the Smurf attack,

show apparent dissimilarity to the image of the TAM of the normal ICMP traffic.
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(c) Smurf attack traffic record

Figure 5.7: Images of TAMs of ICMP traffic record, Pod attack record and Smurf
attacks generated using original data

The above evaluation results demonstrate that our proposed TAM-based MCA

approach achieves promising performance in characterisation of various types of net-

work traffic. Utilising the extracted multivariate correlations could improve the per-

formance of DoS attack detection system. Moreover, by looking into the images, we

can easily identify the visual patterns of the different traffic records. However, the
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difference is not clear enough between some of images such as the images of the nor-

mal ICMP traffic record and the Pod attack traffic record and so on. This may dilute

the accuracy of our detection system.

To further inspect the above suggestions, we conduct a 10-fold cross-validation in

the following section to evaluate the performance of detecting DoS attacks using the

discriminative power provided by the TAM.

Ten-fold Cross-validation

To evaluate the performance of our DoS attack detection system using TAM-based

MCA approach along with the change of the threshold, the average TNRs for legiti-

mate traffic and the average DRs for the individual types of DoS attacks are shown

in Table 5.1.

Table 5.1: Average Detection Performance of the Proposed System on Original Data
Against Different Thresholds

Type of Threshold
records 1σ 1.5σ 2σ 2.5σ 3σ

Normal 98.74% 99.03% 99.23% 99.35% 99.47%
Teardrop 71.50% 63.92% 57.93% 52.81% 48.45%
Smurf 100.00% 100.00% 100.00% 100.00% 100.00%
Pod 100.00% 100.00% 100.00% 100.00% 100.00%
Neptune 82.44% 61.79% 57.00% 54.84% 52.96%
Land 0.00% 0.00% 0.00% 0.00% 0.00%

Throughout the evaluation, our proposed detection system achieves encouraging

performance in most of the cases except Land attack. The rate of correct classification

of the Normal records rises from 98.74% to 99.47% along with the increase of the

threshold. Meanwhile, the Smurf and Pod attack records are completely detected
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without being influenced by the change of the threshold. However, the detection

system suffers serious degeneration in the cases of the Teardrop and Neptune attacks

when the threshold is greater than 1.5σ. The DRs for these two attacks drop sharply

to 48.45% and 52.96% respectively while the threshold is set to 3σ.

Table 5.2: Detection Rate and False Positive Rates Achieved by the Proposed System
on Original Data

Threshold
1σ 1.5σ 2σ 2.5σ 3σ

FPR 1.26% 0.97% 0.77% 0.65% 0.53%
DR 95.09% 89.38% 88.05% 87.44% 86.91%
Accuracy 95.17% 89.62% 88.32% 87.73% 87.22%

To have a better overview of the performance of our MCA-based detection system,

the overall FPR and DR are highlighted in Table 5.2. The overall FPR and DR are

computed over all traffic records regardless the types of attacks. When the threshold

grows from 1σ to 3σ, the FPR drops quickly from 1.26% to 0.53%. Correspondingly,

the DR also drops from 95.09% to 86.91% while the threshold rises. It shows clearly

in the table that a larger number of legitimate traffic records are covered by a greater

threshold, and more DoS attack records are incorrectly accepted as legitimate traffic

in the meantime.

Problems with the Current System and Solution

Although the detection system achieves a moderate overall detection performance in

the above evaluation, we want to explore the causes of degradation in detecting the

Land, Teardrop and Neptune attacks.
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Our analysis shows that the problems come from the data used in the evaluation,

where the basic features in the non-normalised original data are in different scales.

Therefore, even though our TAM-based MCA approach is promising in character-

isation and clearly reveals the patterns of the various types of traffic records, our

detector is still ineffective in some of the attacks. For instance, the Land, Teardrop

and Neptune attacks whose patterns are different than the patterns of the legitimate

traffic. However, the level of the dissimilarity between these attacks and the respec-

tive normal profiles are close to that between the legitimate traffic and the respective

normal profiles. Moreover, the changes appearing in some other more important fea-

tures with much smaller values can hardly take effect in distinguishing the DoS attack

traffic from the legitimate traffic, because the overall dissimilarity is dominated by the

features with large values. Nevertheless, the non-normalised original data contains

zero values in some of the features (both the important and the less important fea-

tures), and they confuse our MCA approach and make many new generated features

(e.g., Trij,k) equal to zeros. This severely degrades the discriminative power of the

new feature set (e.g., TAM lower
xi

), which is not supposed to happen.

Apparently, an appropriate data normalisation technique should be employed to

eliminate the bias. Therefore, we adopt the statistical normalisation technique [102]

to this work. The statistical normalisation has been detailed in Section 4.3.4.

5.3.4 Evaluation Using the Normalised Data

Taking consideration of the afore-discussed solution, we conduct the same series of

experiments in this section on the data normalised using the statistical normalisation

technique.
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Network Traffic Characterisation

In this section, the characterisation of network traffic is conducted on the data nor-

malised using the statistical normalisation technique. The images of the respective

TAMs are shown in Figs. 5.8-5.10. The images of the attack TAMs present com-

pletely different patterns to the respective normal TAMs. Moreover, the values of
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(c) Neptune attack traffic record

Figure 5.8: Images of TAMs of normal TCP traffic record, Land attack record and
Neptune attack record generated using normalised data
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elements of the TAMs are in the same scale, so that the TAMs generated by the pro-

posed TAM-based MCA approach using normalised data provide a higher accurate

characterisation to the corresponding network traffic.
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(c) Smurf attack traffic record

Figure 5.9: Images of TAMs of ICMP traffic, Pod attack record and Smurf attack
record generated using normalised data

To verify our observation, a 10-fold cross-validation is conducted as done in Sec-

tion 5.3.3 on the data normalised using the aforementioned statistical normalization

technique. The results are given in Section 5.3.4.
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(b) Teardrop attack traffic record

Figure 5.10: Images of TAMs of UDP traffic record and Teardrop attack record
generated using normalised data

Ten-fold Cross-validation

The detection performance based on the normalized data is given in Table 5.3. The

results reveal that the data do have significant influence on our detection system,

whose overall performance increases dramatically when taking the normalized data

as the inputs.

Table 5.3: Average Detection Performance of the Proposed System on Normalised
Data Against Different Thresholds

Type of Threshold
records 1σ 1.5σ 2σ 2.5σ 3σ

Normal 97.36% 97.97% 98.32% 98.56% 98.75%
Teardrop 100.00% 100.00% 100.00% 100.00% 100.00%
Smurf 100.00% 100.00% 100.00% 100.00% 100.00%
Pod 100.00% 100.00% 100.00% 100.00% 100.00%
Neptune 100.00% 100.00% 100.00% 100.00% 100.00%
Land 100.00% 100.00% 100.00% 100.00% 100.00%
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The Teardrop, Neptune and Land attacks, which are mostly misclassified in the

previous evaluation, can now be completely and correctly classified by the system

along with the increase of the threshold. In comparison with the TNR of our detection

system achieved on the non-normalised Normal records, the one achieved on the

normalised Normal records decreases a bit to maximum 98.75% when the threshold

is set to 3σ. However, it manages to remain in the reasonable range.

Then, similar to the previous evaluation, we show the overall FPR and DR in

Table 5.4. The FPR shown in the table drops nearly 1% when the threshold increases

from 1σ to 2σ. Finally it reaches to 1.25% while the threshold is staying at 3σ. The

DR of the system remains constant at 100.00%. It is clearly seen that the proposed

detection system achieves a better DR with the normalised data than with the original

(non-normalised) data.

Table 5.4: Detection Rate and False Positive Rate Achieved by the Proposed System
on Normalised Data

Threshold
1σ 1.5σ 2σ 2.5σ 3σ

FPR 2.64% 2.03% 1.68% 1.44% 1.25%
DR 100.00% 100.00% 100.00% 100.00% 100.00%
Accuracy 99.94% 99.95% 99.96% 99.96% 99.97%

5.3.5 Performance Comparisons

To make a complete comparison, the ROC curves of the previous two evaluations

are shown in Figs. 5.11 and 5.12. The relationship between DR and FPR is clearly

revealed in the ROC curves. The DR increases when larger numbers of false positive

are tolerated.
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Figure 5.11: The ROC curve for analysing original data
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Figure 5.12: The ROC curve for analysing normalised data

In Fig. 5.11, the ROC curve for analysing the original data using our proposed

detection system shows a rising trend. The curve climbs gradually from 86.91% DR to

89.38% DR, and finally reaches to 95.09% DR. Likewise, the ROC curve for analysing

the normalised data remains a high level of DR at 100.00% constantly as shown in

Fig. 5.12. It is clear that our DoS attack detection system always enjoys higher
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detection rates while working with the normalised data than with the original data

in all cases.

Last but not least, three state-of-the-art detection approaches, namely network

intrusion detection system based on covariance feature space [48], intrusion detection

system using nearest neighbour based on triangle area [98], and the proposed attack

detection system using EDM-based MCA approach proposed in Chapter 4 are selected

to compare with our proposed detection system. The best accuracies on detecting

DoS attacks achieved by the various approaches and systems are given in Table 6.5.

Although all approaches and systems highlighted in Table 6.5 have high accura-

cies on DoS attack detection, our proposed detection system using TAM-based MCA

approach (95.17% for the original data and 99.97% for the normalised data) clearly

outperforms the network intrusion detection system based on covariance feature space

(97.89%) and intrusion detection system using nearest neighbour based on triangle

area (92.15%). In addition, our proposed detection system cooperating with nor-

malised data (99.97%) shows a marginal advantage over the DoS attack detection

system using EDM-based MCA approach (99.96%). Although this is a narrow lead,

our detection system is more promising especially when it is deployed on a production

network with a throughput of 1 Gbps. Due to a significantly fewer number of false

alarms generated per second, network administrators will be much less interrupted

by the false information.
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Table 5.5: Performance Comparisons with Different Detection Approaches

The proposed
detection sys-
tem using
TAM-based
MCA approach
(Original data,
Threshold = 1σ)

The proposed
detection system
using TAM-
based MCA
approach (Nor-
malised data,
Threshold = 3σ)

Network intrusion
detection system
based on covariance
feature space [48]
(Threshold approach
with 4D principle
and Cov len3 150)

Intrusion de-
tection system
using near-
est neighbour
based on tri-
angle area
[98]

The DoS attack
detection system
using EDM-based
MCA approach pro-
posed in Chapter 4
(Normalised data,
Threshold = 3σ)

Accuracy 95.17% 99.97% 97.89% 92.15% 99.96%
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5.4 Computational Complexity and Time Cost Anal-

ysis

In this section, we conduct an analysis on the computational complexity and the time

cost of our proposed DoS attack detection system using the proposed TAM-based

MCA approach.

The computational complexity of the proposed DoS attack detection system con-

sists of two components, namely the complexity of the proposed TAM-based MCA

approach and the complexity of the detection process in our proposed attack detection

system.

On one hand, as discussed in Section 5.1.1, triangle areas of all possible com-

binations of any two distinct features in a traffic record need to be computed when

processing our proposed MCA. Since each traffic record has m features (or dimen-

sions), m(m−1)
2

triangle areas are generated and are used to construct a TAM lower
xi

.

Thus, the proposed MCA has a computational complexity of O(m2).

On the other hand, as explained in Section 5.2, the MD between the observed

feature vector (i.e., the TAM lower
xi

) and TAM lower
Xnormal of the respective normal pro-

file needs to be computed in the detection process of our proposed detection system

to evaluate the level of the dissimilarity between them. Thus, this computation in-

curs a complexity of O(M2), in which M = m(m−1)
2

is the dimensions of TAM lower
xi

.

O(M2) can be written as O(m4). By taking the computational complexities of the

proposed MCA and the detection process of our proposed detection system into

account, the overall computational complexity of the proposed detection system is

O(m2) + O(m4) = O(m4). However, m is a fixed number which is 32 in our case, so

that the overall computational complexity is indeed equal to O(1).
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Similarly, the DoS attack detection system using EDM-based MCA approach pro-

posed in Chapter 4 achieves the same computational complexities ofO(m2) andO(m4)

in data processing and attack detection respectively. Moreover, the number of fea-

tures (m) in use is identical to that used in our proposed detection system as well.

Thus, the overall computational complexity of the DoS attack detection system using

EDM-based MCA approach is O(1).

The computational complexities of the other two state-of-the-art detection systems

that have been compared in Section 5.3.5 has already been analysed in Section 4.4.

The overall computational complexity of the network intrusion detection system based

on covariance feature space [48] is O(nm2)+O(lm2) = O(lm2), where n is the number

of sequential samples in a group, m is the number of physical features of a sample and

l is the number of known classes/clusters needed to be compared with. Another state-

of-the-art approach (i.e., intrusion detection system using nearest neighbour based on

triangle area [98]) has an overall complexity of O(ml2) + O(l2n2) = O(l2n2), where

m is the number of features (or dimensions) in a traffic record, l is the number of

clusters used in generating triangle areas and n is the number of training samples. In

real network environments, the types of attacks and the number of available training

samples are often varying. Thus, the computational complexities of these two state-

of-the-art detection systems cannot be constants.

In general, our proposed detection system can achieve equal or better computa-

tional complexity than the three other approaches. The computational complexities

of the above discussed approaches are summarised in Table 5.6.
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Table 5.6: Computational Complexities of Different State-of-the-art Detection Approaches

The proposed flood-
ing DoS attack
detection system
using TAM-based
MCA approach

The DoS attack de-
tection system using
EDM-based MCA ap-
proach proposed in
Chapter 4

Network intrusion detection
system based on covariance
feature space [48] (Thresh-
old approach with 4D prin-
ciple and Cov len3 150)

Intrusion detec-
tion system using
nearest neighbour
based on triangle
area [98]

O(1) O(1) O(lm2) O(l2n2)
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Moreover, time cost is discussed to show the contribution of our proposed TAM-

based MCA approach in terms of acceleration of data processing. Our proposed

TAM-based MCA approach can proceed approximately 23,092 traffic records per sec-

ond. In contrast, the EDM-based MCA approach presented in Chapter 4 can achieve

approximately 12,044 traffic records per second, which is nearly less than half of that

achieved by our proposed TAM-based MCA approach. Due to the unavailability of

the source code of triangle area based nearest neighbours approach [98], we cannot

provide a comparison to it.

5.5 Summary

This chapter has proposed a TAM technique to enhance and to speed up the process

of MCA. The evaluation shows that the new TAM-based MCA approach accurately

characterises the various types of network traffic and reveals the correlations between

features.

In addition, this chapter has also proposed a new DoS attack detection system

based on the TAM-based MCA approach and the anomaly-based detection technique.

The evaluations have been conducted using the KDD Cup 99 dataset to verify the

effectiveness and the performance of the proposed DoS attack detection system. The

influence of original (non-normalised) and normalised data has been studied in the

paper. The results have revealed that when working with non-normalised data, our

detection system achieves maximum 95.17% detection accuracy although it does not

work well in identifying Land, Neptune and Teardrop attack records.



Section 5.5. Summary 121

The problem, however, can be solved by utilising statistical normalisation tech-

nique to eliminate the bias from the data. The results of evaluating with the nor-

malised data have shown a more encouraging detection accuracy of 99.97% and nearly

100.00% DRs for the various DoS attacks. Besides, the comparison result has proven

that our detection system outperforms three state-of-the-art approaches in terms of

detection accuracy.

Moreover, the computational complexity and the time cost of the proposed de-

tection system have been analysed and shown in Section 5.4. The proposed system

achieves equal or better performance in comparison with the three state-of-the-art

approaches shown in [48], [98] and Chapter 4.

To be part of the future work, we will further employ more sophisticated classifi-

cation techniques to further alleviate the false positive rate.



Chapter 6

Detection of Denial-of-Service
Attacks Based on Computer Vision
Techniques

DoS attacks have emerged as one of the most severe network intrusive behaviours and

have posed serious threats to the infrastructures of computer networks and various

network-based services.

Over the recent two decades, a variety of anomaly-based detection systems have

been proposed. However, the existing systems [60][71] suffer from a common issue in

achieving high accuracy in classifying both normal traffic and attack traffic. This is

partly because most of these systems only use several simple network features of in-

coming traffic (e.g., IP header fields) in modelling normal network traffic, and ignore

the correlations between the network features. Although there is a current research

trend to make use of the correlations between the features in intrusion detection,

most of the proposed systems [48][97][98] are based on traditional statistical correla-

tion analysis techniques, which are only capable of studying the correlations between

the features (variables) in a given sample set. The properties inherited from these

122
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traditional statistical correlation analysis techniques make these anomaly-based de-

tection systems incapable of recognising individual attack records hiding in a sample

set.

In addition, more sophisticated classifiers are demanded to help improve detection

accuracy. The techniques used in computer vision tasks are the potential candidates.

Due to some commonalities shared between DoS attack detection and computer vision

tasks, such as image retrieval and object shape recognition. Normal traffic to DoS

attack detection can be equivalent to queries to image retrieval tasks or object shape

recognition tasks. DoS attacks to our detection task can be interpreted as the images

or the object shapes that do not match the queries. Therefore, computer vision

techniques can provide intuitive and effective solutions to the problem.

In this chapter, we propose a more sophisticated anomaly-based system for detect-

ing DoS attacks. The proposed system is designed, based on our work [89] submitted

to IEEE/ACM Transactions on Networking, to overcome all the aforementioned is-

sues and solves the detection problem from the perspective of computer vision. Our

system has three key features:

• First, the hidden correlations between the features of network traffic are ex-

tracted using the MCA techniques previously developed in Chapters 4 and 5 to

provide accurate network traffic characterisation,

• Second, individual attack records hidden in the crowd can be easily recognised

by our system. This is owing to one of the merits (i.e., the capability of analysing

correlation between features within individual records) of our MCA techniques

which equips the analysis of correlation being conducted on individual network

traffic records, and
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• Finally, to improve the detection accuracy, our proposed system adopts the

principle of image retrieval in the design of attack detectors. To the best of our

knowledge, it is the first time that the Earth Mover’s Distance [61] (a robust

distance metric) has ever been applied to field of network DoS attack detection.

The proposed anomaly-based DoS attack detection system is evaluated using the

KDD Cup 99 dataset [84] on DoS attacks. The experimental results are compared

against two state-of-the-art detection systems (i.e., the network intrusion detection

system based on covariance feature space [48] and the intrusion detection system

using nearest neighbour based on triangle area [98]). The computational complexity

of our system is also discussed and compared with the two state-of-the-art detection

systems. The overall evaluation shows that our detection system achieves 99.95%

accuracy, outperforming previous systems by more than 2%.

The rest of this chapter is organised as follows. Section 6.1 introduces the relevant

mathematical techniques for network traffic data analysis. Section 6.2 proposes a new

DoS attack detection system based on computer vision techniques. Section 6.3 designs

and discusses the relevant algorithms involved in the proposed DoS attack detection

system. Section 6.4 illustrates performance evaluations of our proposed detection

system on the KDD Cup 99 dataset. Finally, summary is drawn in Section 6.5.
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6.1 Mathematical Techniques for Network Traffic

Data Analysis

This section introduces the relevant mathematical techniques to be involved in net-

work traffic data analysis. These techniques are principal component analysis (dis-

cussed in Section 6.1.1), multivariate correlation analysis (discussed in Section 6.1.2)

and earth mover’s distance (discussed in Section 6.1.3). They will be applied in

dimensionality reduction, multivariate correlation analysis and attack recognition re-

spectively.

6.1.1 Principal Component Analysis

As a linear mathematical system, the PCA helps eliminate distractive noise and seek

the best lower dimensional representation for data with a high dimensionality. It

is driven by the idea that greater contribution on data representation comes from

the eigenvectors which conserve larger variations (i.e., eigenvalues). To reveal the

importance of the eigenvectors in a data space to which the interested data belongs,

a multivariate analysis is performed. The analysis involves a transformation con-

verting the interested data into a new orthonormalised coordinate system, where the

axes indicate the directions of the eigenvectors and the data is maximally linearly

decorrelated. The detailed process of the PCA is shown as follows.

Given a dataset X = [x1 x2 · · · xn], where

xi =

⎡
⎢⎢⎢⎢⎢⎣
f i
1

f i
2

...

f i
m

⎤
⎥⎥⎥⎥⎥⎦
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denotes the ith observation with m features and i is ranged from 1 to n, zero-mean

normalisation is first conducted on the dataset for all the observations to make the

PCA work properly. The zero-mean dataset is represented by (6.1.1).

Xzm = [(x1 − x̄) (x2 − x̄) · · · (xn − x̄)], (6.1.1)

in which

x̄ =
1

n

n∑
i=1

xi. (6.1.2)

Then, the principal components (i.e., eigenvectors) are obtained by performing eigen

decomposition on the sample covariance matrix defined in (6.1.3).

CX =
1

n− 1
XzmX

T
zm. (6.1.3)

The CX is then decomposed into a matrix W and a diagonal matrix Λ. The two

matrices satisfy the condition given in (6.1.4).

ΛW = CXW. (6.1.4)

The columns of the matrix W stand for the eigenvectors (i.e., the principal compo-

nents) of the covariance matrix CX , and the elements along the diagonal of the matrix

Λ are the ranked eigenvalues associated with the corresponding eigenvectors in the

matrix W .

To determine the optimal number of principal components to be retained based on

the analysis results from the PCA, a cumulative-variance-based selection criterion is

applied. The selected k (1 ≤ k ≤ m) principal components, namely the eigenvectors

in matrix W which are associated with the first k largest eigenvalues, provide the best

presentation for the original dataset and reduce the dimensionality of the original data

space from m to k. A new lower-dimensional representation, defined in (6.1.5), for
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the given dataset is obtained by projecting X onto the selected k-dimensional data

subspace.

XPr = [x1Pr
x2Pr

· · · xnPr
]. (6.1.5)

The ith observation is now represented as shown in (6.1.6).

xiPr
=

⎡
⎢⎢⎢⎢⎢⎣
f i
1Pr

f i
2Pr

...

f i
kPr

⎤
⎥⎥⎥⎥⎥⎦ , (1 ≤ i ≤ n). (6.1.6)

6.1.2 Multivariate Correlation Analysis

There are two distinct MCA approaches proposed in Chapters 4 and 5 for the extrac-

tion of hidden correlative information from the features of an observation. They are

EDM-based MCA approach and TAM-based MCA approach respectively. In compar-

ison with other approaches shown in [48] and [98], these two MCA approaches have

been proven to be advanced in the following aspects. These approaches

• Require only the knowledge of current observation in performing analysis, and

• Withstand the problem that all features being changed linearly [48].

Given the dataset XPr = [x1Pr
x2Pr

· · · xnPr
] obtained using PCA, the correlative

information residing in the ith observation xiPr
= [f i

1Pr
f i
2Pr

· · · f i
kPr

]T , (1 ≤ i ≤ n)

is extracted using the EDM-based MCA approach and the TAM-based approach

respectively as follows.
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EDM-based MCA Approach

In the EDM-based MCA approach proposed in Chapter 4, a data transformation is

first carried out on the ith observation and is achieved by simply multiplying xT
iPr

with a k-by-k identity matrix I. This results in a new k-by-k feature matrix x′iPr
as

shown in (6.1.9).

x′iPr
= xT

iPr
I =

⎡
⎢⎢⎢⎢⎢⎣
f i
1Pr

0 · · · 0

0 f i
2Pr

· · · 0
...

...
. . .

...

0 0 · · · f i
kPr

⎤
⎥⎥⎥⎥⎥⎦

k×k

. (6.1.7)

The elements on the diagonal of the matrix x′iPr
are the features of the observation

xiPr
. The jth column of the matrix x′iPr

is a k-dimensional column vector denoted by

(6.1.8).

F i
j =

⎡
⎢⎢⎢⎢⎢⎣
ηij,1

ηij,2
...

ηij,k

⎤
⎥⎥⎥⎥⎥⎦ , (6.1.8)

where ηij,p = 0 if j 	= p, otherwise ηij,p = f i
jPr

. The superscript i stands for the index

of an observation varying from 1 to n, and the subscripts j and p are both ranged

from 1 to k. Then, the k-by-k feature matrix x′iPr
can be rewritten as (6.1.9).

x′iPr
= [F i

1 F
i
2 · · · F i

k]. (6.1.9)

Once the transformation is finished, the Euclidean distance is applied to extract

the correlation between the column vectors F i
j and F i

p in the matrix x′iPr
. The corre-

lation is defined as EDi
j,p =

√
(F i

j − F i
p)

T (F i
j − F i

p), where 1 ≤ i ≤ n, 1 ≤ j ≤ k and

1 ≤ p ≤ k. Therefore, the correlations between features in the original traffic record
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xiPr
can be denoted using a k-by-k matrix (i.e., a Euclidean distance map) as shown

in (6.1.10).

EDMxiPr
=

[
EDi

j,p

]
k×k

, (6.1.10)

where all the correlations are arranged on the map in accordance with their indices.

For example, EDi
j,p is positioned on the jth row and the pth column of the map.

Furthermore, EDMxiPr
is a symmetric matrix in which EDi

j,p = EDi
p,j. For the

whole dataset, the hidden correlations are represented by the EDMs of individual

feature vectors, namely XEDM = [EDMx1Pr
EDMx2Pr

· · · EDMxnPr
]k×k×n.

TAM-based MCA Approach

By contrast, the TAM-based MCA approach proposed in Chapter 5 attempts to

accomplish the same task from a different perspective, in which the concept of triangle

area is applied to extract the geometrical correlation between the jth and pth features

in an observation xiPr
. To obtain the triangle formed involving the jth and pth features,

a data transformation is engaged. The observation xiPr
is first projected on the (j, p)-

th two-dimensional Euclidean subspace as shown in (6.1.11).

yi,j,p = [εj εp]
TxiPr

=

[
f i
jPr

f i
pPr

]
, (6.1.11)

where 1 ≤ i ≤ n, 1 ≤ j ≤ k, 1 ≤ p ≤ k and j 	= p. Moreover, εj = [ej,1 ej,2 · · · ej,k]T

and εp = [ep,1 ep,2 · · · ep,k]T . The elements in the vectors εj and εp are all zeros, except

the (j, j)-th and the (p, p)-th elements whose values are ones in εj and εp respectively.

The projected point, yi,j,p, is located on the Cartesian coordinate system in the (j, p)-

th two-dimensional Euclidean subspace with coordinate (f i
jPr

, f i
pPr

). Then, on the

Cartesian coordinate system, a triangle (i.e., Δf i
jPr

Of i
pPr

) formed by the origin (i.e.,
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O) and the projected points of the coordinate (f i
jPr

, f i
pPr

) on the j-axis and the p-axis is

found, and whose area is defined as Trij,p = (‖ (f i
jPr

, 0)−(0, 0) ‖ × ‖ (0, f i
pPr

)−(0, 0) ‖
)/2, where 1 ≤ i ≤ n, 1 ≤ j ≤ k, 1 ≤ p ≤ k and j 	= p. In order to make a complete

analysis, all possible permutations of any two distinct features in the observation xiPr

are extracted and the corresponding triangle areas are computed. A k-by-k matrix

(i.e., a Triangle area map) is constructed and represented in (6.1.12).

TAMxiPr
=

[
Trij,p

]
k×k

, (6.1.12)

where all the triangle areas are arranged on the map in accordance with their indexes

similar to Euclidean distance map in the EDM-based MCA approach. Additionally,

the values of the elements on the diagonal of the map are set to zeros (Trij,p = 0,

if j = p), because we only care about the correlation between each pair of distinct

features. Furthermore, since TAMxiPr
is a symmetric matrix in which Trij,p = Trip,j.

For the dataset XPr, its geometrical multivariate correlations can be represented as

XTAM = [TAMx1Pr
TAMx2Pr

· · · TAMxnPr
]k×k×n.

6.1.3 EMD-L1

The EMD [78] is a cross-bin function measuring the perceptual dissimilarity between

two distributions. It is inspired by the intuition that looking for a solution with

the minimum overhead on moving a mass of earth properly spreading in space to a

collection of holes in the same space. The mass of earth and the collection of holes

are taken as two distributions of signatures, which subsume histograms. The process

of measuring the distance between two signatures is modelled as the transportation

problem that is a special case of Linear Programming (LP) [5]. The cost of trans-

porting a unit of earth from its origin to a hole is determined by the ground distance
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that the earth needs to travel until it reaches the hole.

Assume that there are two-dimensional histograms with m rows and n columns

and N = m× n bins. The index set for bins is defined in (6.1.13).

I ′ = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, (6.1.13)

where (i, j) denotes the index of a bin or a node. The index set for flows is defined

in (6.1.14).

J ′ = {(i, j, k, l) : (i, j) ∈ I ′, (k, l) ∈ I ′}, (6.1.14)

where (i, j, k, l) denotes the flow from the bin (i, j) to the bin (k, l).

P = {pij : (i, j) ∈ I ′}, (6.1.15)

and

Q = {qij : (i, j) ∈ I ′}, (6.1.16)

are the two histograms to be compared. Histograms are normalised to a unit mass

(i.e.,
∑

i,j pij = 1 and
∑

i,j qij = 1). With these notations, the definition of EMD

between two histograms P and Q is obtained as follows.

EMD(P,Q) = min
F={fi,j;k,l:(i,j,k,l)∈J ′}

∑
J ′

fi,j;k,ldi,j;k,l, (6.1.17)

s.t.

⎧⎪⎪⎨
⎪⎪⎩

∑
(k,l)∈I′ fi,j;k,l = pij ∀(i, j) ∈ I ′∑
(i,j)∈I′ fi,j;k,l = qkl ∀(k, l) ∈ I ′

fi,j;k,l ≥ 0 ∀(i, j, k, l) ∈ J ′
, (6.1.18)

where F is the set of fi,j;k,l, which denotes the flow from the bin (i, j) of the histogram

P to the bin (k, l) of the histogramQ. An F satisfying the restrictions given in (6.1.18)
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is called a feasible flow from the histogram P to the histogram Q. The ground distance

di,j,k,l between the bin (i, j) and the bin (k, l) is commonly defined by Lp distance

di,j;k,l =‖ (i, j)T − (k, l)T ‖p= (| i− k |p + | j − l |p)1/p. (6.1.19)

New Formulation of EMD

Although the EMD has proven to be effective and to be perceptually consistent with

human vision for comparing distributions, the expensive computation restricts the

applications of the EMD mainly in offline tasks. Subsequent research on the EMD

suggests various techniques to alleviate the overhead of computation. An equivalent

simplification, the EMD-L1 [61], introduces a new efficient formulation of the EMD

between histograms (a special type of signatures with non-sparse structures). L1 (i.e.,

Manhattan) distance is chosen as the ground distance in this new formulation, which

redefines the computation of the EMD as a “network flow problem”.

With the new formulation, the computational complexity of the EMD can be

reduced by one order of magnitude in comparison with the original formulation using

transportation problem. This is owing to an important property of the L1 distance

that any shortest path between two points on a network can be decomposed into a

collection of edges between neighbour nodes with a ground distance of one between

them.

As shown in Fig. 6.1, the shortest path between the node (i, j) and the node (k, l),

where i < k and j < l, is decomposed into the collection of edges (including fi,j;i,j+1,

fi,l−1;i,l, fi,l;i+1,l, fk−1,l;k,l etc.) with ground distance of one, and its distance is defined

as the summation of the distances of the edges (i.e., di,j;k,l = di,j;i,j+1+ · · ·+di,l−1;i,l+

di,l;i+1,l + · · ·+ dk−1,l;k,l).
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fi,j;i,j+1
(di,j;i,j+1=1)

fi,l-1;i,l
(di,l-1;i,l=1)

fk-1,l;k,l
(d
k-1,l;k,l =1)

fi,j;k,l(di,j;k,l )

Remark: di,j;k,l = di,j;i,j+1 +…+ di,l-1;i,l + di,l;i+1,l +…+ dk-1,l;k,l

fi,l;i+
1,l

(d
i,l;i+

1,l =1)

…

...

(i,j) (i,j+1) (i,l-1) (i,l)

(i+
1,l)

(k-1,l)
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Figure 6.1: Decompose a flow

Using the following notations, the new formulation of the EMD (i.e., the EMD-L1)

considering only the flows (edges) between neighbour bins (nodes) is defined. Without

loss of generality, we assume that there are two-dimensional histograms with k rows

and q columns and N = k × q bins.

I = {(j, p) : 1 ≤ j ≤ k, 1 ≤ p ≤ q} (6.1.20)

is the index set where (j, p) indicates the index of a bin (or node) within a histogram.

J = {(j, p, c, d) : (j, p) ∈ I, (c, d) ∈ I} (6.1.21)

is the index set where (j, p, c, d) is the index of a flow fj,p;c,d from the bin (j, p) to the

bin (c, d).

J1 = {(j, p, c, d) : (j, p, c, d) ∈ J , dj,p;c,d = 1} (6.1.22)

denotes the index set where (j, p, c, d) is the index of a flow fj,p;c,d from the bin (j, p)

to the bin (c, d), and the bin (j, p) to the bin (c, d) are neighbour bins with a ground

distance of one.

A histogram Y and a histogram Z are defined in (6.1.23) and (6.1.24) respectively.

Y = {yjp : (j, p) ∈ I}, (6.1.23)
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and

Z = {zjp : (j, p) ∈ I}, (6.1.24)

where yjp denotes the bin (j, p) of the histogram Y , and zjp denotes the bin (j, p) of

the histogram Z. To compare the two histograms using EMD-L1, The histograms Y

and Z are first normalised to two unit masses (i.e.,
∑

j,p pjp = 1 and
∑

j,p qjp = 1,

where pjp and qjp denote the normalised masses of the earth on the bin (j, p) of the

histogram Y and the bin (j, p) of the histogram Z respectively). The EMD-L1 is

defined in (6.1.25).

EMD-L1(Y, Z) = min
F={fj,p;c,d:(j,p,c,d)∈J1}

∑
J1

fj,p;c,d, (6.1.25)

s.t.

⎧⎪⎨
⎪⎩

∑
c,d:(j,p,c,d)∈J1

(fj,p;c,d − fc,d;j,p) = bjp ∀(j, p) ∈ I

fj,p;c,d ≥ 0 ∀(j, p, c, d) ∈ J1

, (6.1.26)

where bjp is the difference between the two histograms Y and Z at the bin (j, p), and

a flow F satisfying (6.1.26) is called a feasible flow which consists of a number of

sub-flows fj,p;c,d.

The EMD-L1 can be interpreted as a network flow model, where each bin (j, p) is

treated as a node with weight bjp and has eight directed flows between itself and its

four neighbours. The intuition of constraint (6.1.26) is that the difference between

the total flow entering any node (j, p) on the network and the total flow leaving the

node (j, p) must equal to bjp. The total weight associated with all the nodes is 0 (i.e.,∑
(jp)∈I bjp = 0), since the two histograms Y and Z carry equal weights. Thus, the

task of this network flow modelling of the EMD-L1 is to make all nodes bear zero

weights by redistributing the weights via the flows.
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Owing to the new formulation, the EMD-L1 has significantly simplified the original

EMD from three aspects as follows.

• First, it reduces the number of variables from N4 to 4N as shown in (6.1.25).

• Second, it decreases the number of equality constraints by fifty percent.

• Third, it converts all ground distances to ones, which it is essentially important

due to the elimination of the expensive computation of ground distances.

Thus, each sub-flow fj,p;c,d is equivalent to the respective weighted sub-flow fj,p;c,d ×
dj,p;c,d, since the respective ground distance dj,p;c,d is now set to one.

Moreover, a tree-based algorithm was designed in [61] as an efficient discrete

optimization solver for EMD-L1 to find a Basic Feasible (BF) solution (i.e., a spanning

tree), which satisfies the constraint (6.1.26). The tree-based algorithm significantly

boosts up the process of problem solving and achieves much higher efficiency than

the original simplex algorithm. The underlying infrastructure to this improvement

has been well illustrated in [61, pp.847-848].

6.2 DoS Attack Detection System

As the core components of comprehensive network security schemes, DoS attack de-

tection systems defend internal networks under administrative control from being

affected by the imposed malicious traffic. An overview of our proposed DoS attack

detection system architecture, which complies with the detection mechanisms sug-

gested in Chapter 3, is given in this section, in which general detection mechanism

and system framework are discussed in Sections 6.2.1 and 6.2.2 .
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6.2.1 General Detection Mechanisms

Four mechanisms (i.e., sample-by-sample detection, anomaly-based detectors, feature

extraction based on multivariate correlation analysis and attack recognition based

on computer vision techniques) are employed in the proposed DoS attack detection

system to achieve the objectives of this research project. The merits of these detection

mechanisms have been discussed in Chapter 3. Thus, in this section, we only attempt

to answer why and how to apply computer vision techniques to attack recognition.

First, the commonalities shared between DoS attack detection and computer vi-

sion tasks (e.g., image retrieval and shape recognition) encourage us adopt the prin-

cipals used in computer vision into the task of this paper. Normal traffic profiles to

our DoS attack detection system are treated as queries to image retrieval tasks or

shape recognition tasks. Instances of normal traffic, on one hand, are interpreted as

the images or the shapes that match the queries. DoS attacks, on the other hand,

are interpreted as the unmatched images or the unmatched shapes. The ideas and

techniques used in computer vision tasks can be introduced to solve the problems of

DoS attack detection.

Moreover, computer vision techniques, such as the EMD-L1, make use of cross-bin

correlation in assessing perceptional dissimilarity between two images, which con-

tributes higher accuracy than other bin-to-bin dissimilarity measures (e.g., L1, L2

and X2 distances) [61]. This coincides with one of the aims of our work that exploit-

ing correlation of features in detection. In addition, partial matching, another merit

supported by the EMD and its variants, helps further enhance the detection accuracy

of the proposed detection system. This is because this merit allows our system to

adjust its degree of tolerance to the variance of normal network traffic.



Section 6.2. DoS Attack Detection System 137

However, it is not an easy mission to formula a network intrusion detection prob-

lem as a computer vision task. The above idea cannot be applied to an existing

detection system as simple as a plug-and-play component to a computer system.

Since the fact that the EMD-L1 was originally designed for shape recognition, we

cannot straightly use it on either network traffic payloads or network flow statistics.

To achieve the task, reformulation of the existing detection system needs to be per-

formed to fill the gap between the EMD-L1 and the ordinary detection. In this study,

for instance, the ordinary network traffic records are converted into a kind of format

that is used to represent images. Then, the EMD-L1 can be applied to measure the

dissimilarity between the transformed network traffic records.

The means that we suggest to convert network traffic records are the proposed

MCA approaches discussed in Section 6.1.2. The approaches not only supply our

detection system with high quality discriminative features but also facilitate the fusion

of intrusion detection and computer vision. The two-dimensional EDM and TAM are

taken as the images of the analysed network traffic records.

6.2.2 System Framework

In this section, we deliver the complete framework of the proposed DoS attack detec-

tion system. It elaborates the detailed processes of dimensionality reduction, normal

profile generation and attack recognition. The integration of the aforementioned

mechanisms and algorithms into the proposed system is also presented in the dis-

cussion below. Our proposed DoS attack detection system, shown in Fig. 6.2, is

comprised of three major steps. They are Step 1: Basic Feature Generation, Step

2: Dimensionality Reduction Based on PCA and Step 3: Decision Making. Output
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from each step is passed down to and used as input in the next step.

Step 1:
Basic Feature

Generation

Normal Profile
Generation Based

on MCA

Image Generation
for Individual Test

Records

Attack
Detection Based

on EMD-L1

Normal Profiles

Training Phase

Test Phase

Step 3: Decision Making

Network Traffic
Step 2:

Dimensionality
Reduction Based

on PCA
Selected Feature

Subspace
Training Normal
Traffic Records

Training Normal Traffic Records

Testrd Traffic Records

Figure 6.2: The framework for our proposed denial-of-service attack detection system

Basic Feature Generation

In this step, basic features are generated from network traffic packets captured at the

destination network. Then, they are applied to construct records describing statistics

for a well-defined time interval. The detailed process can be found in [84].

Dimensionality Reduction Based on PCA

This step performs dimensionality reduction using PCA for the training normal traf-

fic records generated in Step 1. The detailed algorithm presented in Section 6.3.1 is

engaged in this task. Standing out from the feature reduction techniques, our sug-

gested dimensionality reduction algorithm does not cause loss of information due to

the use of PCA which seeks the optimal subspace for the best representation of the

data. The selected lower dimensional feature subspace obtained in the current step is

then used in both of the Training Phase and the Test Phase in Step 3 (i.e., Decision

Marking) to reduce the computational overhead.
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Decision Making

This step consists of Training Phase and Test Phase. The anomaly-based detection

mechanism is adopted in both of the phases. The detailed introduction to this step

is given as follows.

In Training Phase, normal profiles are generated for various types of legitimate /nor-

mal traffic records (i.e., TCP, UDP and ICMP traffic) using the algorithm presented

in Section 6.3.2. The normal traffic records used in this phase are identical to the set

of records involved in Step 2. In the process of generation, normal profiles are built

with the data projected onto the selected feature subspace recommended by Step 2.

The generated normal profiles (Pro) are stored in the database and are to be used in

attack detection.

In Test Phase, the sample-by-sample detection mechanism and the computer vi-

sion based attack recognition mechanism are adopted. Images of individual tested

records are generated and compared against the respective normal profiles Pro from

the Training Phase using the EMD-L1. As shown in the algorithm proposed in Sec-

tion 6.3.3, attack detection is modelled as a computer vision task, in which normal

profiles are used as queries to retrieve the matched records (i.e., normal TCP, UDP

and ICMP traffic records). Any unmatched images (records) are determined as at-

tacks.

6.3 Relevant Algorithms

In this section, a series of algorithms are proposed to equip our system with the

expected functionality. Detailed discussions are then presented to give insights into

the ideas behind.
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6.3.1 Algorithm for Dimensionality Reduction Based on PCA

Low dimensional feature space with an accurate representation for data makes signif-

icant contribution to accelerate the processing speed of the detection phase. Analysis

that provides insight into the space where the given data reside and help determine

the optimal subspace for data representation is desirable. Therefore, we suggest an

algorithm shown in Fig. 6.3 for dimensionality reduction based on PCA.

Require: Dataset X {X contains n instances, and each of which has
t features.}

Ensure: 1 ≤ k ≤ t

1: x̄ ← 1
n

∑n
i=1 xi

2: Xzm ← X − x̄ {Subtract x̄ from each instance in X}
3: CX ← 1

n−1XzmX
T
zm

4: Obtain Λ and W , which are subject to ΛW = CXW
5: for i = 1 to n do
6: σ2

i ←
∑i

l=1 λl

7: end for
8: Plot {σ2

1, σ
2
2, . . . , σ

2
n}

9: Locate the “elbow” on the scree plot and identify the index (k) of
the “elbow” point

10: Wk ← the selected first k eigenvectors of W
11: return Wk

Figure 6.3: The algorithm for dimensionality reduction based on the PCA.

Different from the work which applied PCA to dimensionality reduction for net-

work packet payloads [45], PCA is used in this work to determine the optimal feature

subspace for a given set of network traffic records without containing packet payloads.

In addition, we suggest using a cumulative-variance-based selection criterion in the

feature subspace selection.
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This algorithm is designed to analyse the feature space of a given dataset X, which

contains n instances and each of which is comprised of t features. PCA is first con-

ducted to investigate the contribution of the components as depicted from lines 1 to

4 in Fig. 6.3. Λ and W are sorted in descending order against the variance associated

to each component. Then, cumulative variance σ2
i is computed with an increment of

one as described in lines 5 to 7 and plotted on the screen. The “elbow” point on the

up-slope plot is located to determine the first k most influential components. The

motivation behind this assumption is that the cumulative variance increases rapidly

until the “elbow” point, and the curve becomes flat beyond the point. This infers

that the principal components beyond the “elbow” point retain very small variances

and are not important to the representation of the data. An example will be given in

Section 6.4.2 to demonstrate how cumulative variance plot works. Finally, once the

value of k is settled, the optimal feature subspace will be obtained and denoted by

Wk.

6.3.2 Algorithm for Normal Profile Generation Based on MCA

Profiles of legitimate network traffic behaviours are core components to an anomaly-

based detection system. Accurate characterisation to network traffic behaviours is

essential and affects the detection performance of our proposed system directly. The

algorithm for normal profile generation is elaborated in Fig. 6.4. The EDM-based

MCA approach and the TAM-based MCA approach are employed in the algorithm

for charactering legitimate network traffic behaviours.
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Require: Dataset X and subspace Wk {X contains n instances, and each of which
has t features. Wk is the selected first k eigenvectors of W .}

1: Initialise DIS {It is an array with n elements denoted by Disi(1 ≤ i ≤ n).}
2: if using EDM-based MCA then
3: Initialise XEDM with n k-by-k matrices denoted as EDMxi

(1 ≤ i ≤ n)
4: else if using TAM-based MCA then
5: Initialise XTAM with n k-by-k matrices denoted as TAMxi

(1 ≤ i ≤ n)
6: end if
7: XPr ← X ×Wk {XPr contains n instances, and each of which has k features.}
8: if using EDM-based MCA then
9: for i = 1 to n do
10: EDMxi

← [EDi
j,p]k×k, where 1 ≤ j, p ≤ k {Euclidean distance between

projected features i and j is computed and assigned to the (i, j)-th element
in EDMxi

.}
11: end for
12: EDM ← 1

n

∑n
i=1EDMxi

13: for i = 1 to n do
14: Disi ← EMD-L1(EDMxi

, EDM) {Earth mover’s distance between
EDMxi

and EDM .}
15: end for
16: else if using TAM-based MCA then
17: for i = 1 to n do
18: TAMxi

← [Trij,p]k×k, where 1 ≤ j, p ≤ k
19: end for
20: TAM ← 1

n

∑n
i=1 TAMxi

21: for i = 1 to n do
22: Disi ← EMD-L1(TAMxi

, TAM)
23: end for
24: end if
25: DIS ← 1

n

∑n
i=1 Disi

26: Std =
√

1
n

∑n
i=1(Disi −DIS)2

27: if using EDM-based MCA then
28: Pro ← (EDM,DIS, Std)
29: else if using TAM-based MCA then
30: Pro ← (TAM,DIS, Std)
31: end if
32: return Pro

Figure 6.4: The algorithm for normal profile generation based on MCA.

A normal profile is generated based on a given training dataset X and a selected

subspace Wk. The normal profile consists of three elements, namely an image (EDM
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or TAM) of the mean of the given training samples, the mean (DIS) and the standard

deviation (Std) of the earth mover’s distances (Disi) between individual training

samples and the mean of the given training samples.

To develop the normal profile, an algorithm described in Fig. 6.4 is to be used.

Two variables DIS and XEDM (or XTAM) are defined and initialised at the first

place. DIS is a 1-by-n array to record the earth mover’s distances between the given

training samples and their mean. XEDM and XTAM are three-dimensional (k-by-

k-by-n) matrices to store the EDM and the TAM generated for the given training

samples respectively. However, only one of the two will be defined in accordance with

the MCA approach chosen in the algorithm. The previously mentioned EDM and

TAM are both k-by-k matrices and represent the images of the training samples.

The transformation of a training sample from a feature vector to an image is an

important step in the process of normal profile generation. It builds a bridge between

network traffic classification and computer vision. Since none of the computer vision

techniques is initially designed for the task of network traffic classification, modifi-

cation to the existing techniques or redefinition of the original problem is necessary.

Thus, in this chapter we redefine our DoS attack detection problem as a computer vi-

sion problem, namely taking network traffic records as images and building up profile

for these images. The details of the redefinition (transformation) are given below.

Dimensionality reduction is first conducted by projecting X onto the selected

subspace Wk as shown in line 7 of Fig. 6.4 before the transformation of the given

dataset X commences. Then, EDMxi
or TAMxi

is generated for each training sample

using the corresponding MCA techniques discussed in Section 6.1.2. The mean (EDM

or TAM) of the image (EDM or TAM) is computed as shown in line 12 or line 20
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after the transformation is completed. Afterwards, the earth mover’s distance between

the image of each training sample and the image of the mean of the given training

samples is calculated using the EMD-L1 and assigned to Disi. Upon the completion

of measuring the earth mover’s distances of individual training samples to the mean,

the distribution of the earth mover’s distances is then estimated. The mean (DIS)

and the standard deviation (Std) of the EMDs (Disi) are computed as given in lines

25 and 26 respectively. Finally, the normal profile is built corresponding to the

chosen MCA approach as shown in line 28 (or line 29) of Fig. 6.4.

6.3.3 Algorithm for Attack Detection Based on EMD-L1

The algorithm presented in Fig. 6.5 describes the procedure of attack recognition. To

determine whether a tested sample xtest is legitimate or intrusive, the selected feature

subspace Wk, the pre-generated normal profile Pro and parameter α are required.

Require: Tested sample xtest, subspace Wk, normal profile Pro and parameter α
1: xPr

test ← xtest ×Wk {Project tested sample xtest onto the subspace Wk.}
2: if using EDM-based MCA then
3: EDMxtest ← [EDi

j,p]k×k, where 1 ≤ j, p ≤ k

4: Distest ← EMD-L1(EDMxtest , EDM)
5: else if using TAM-based MCA then
6: TAMxtest ← [Trij,p]k×k, where 1 ≤ j, p ≤ k

7: Distest ← EMD-L1(TAMxtest , TAM)
8: end if
9: if (DIS − α× Std) ≤ Distest ≤ (DIS + α× Std) then
10: return Normal
11: else
12: return Attack
13: end if

Figure 6.5: The algorithm for attack detection based on the EMD-L1.
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Dimensionality reduction is performed on the tested sample xtest through pro-

jecting the sample onto the selected feature subspace Wk in order to enhance the

detection speed and accuracy. Then, the transformation of the projected tested sam-

ple xPr
test to an image is conducted in accordance with the chosen MCA approach,

namely the EDM-based MCA approach or the TAM-based MCA approach. The im-

age is matched against the pre-determined query (i.e., the normal profile Pro). The

similarity between the image (EDMxtest or TAMxtest) of the tested sample and the

mean image (EDM or TAM) from the provided normal profile Pro is measured using

the EMD-L1 and assigned to Distest.

The tested sample is finally classified as an attack or a normal record using the

criterion depicted in line 9 of Fig. 6.5. The lower threshold on the left most hand side

and the upper threshold on the right most hand side are both determined by three

parameters DIS, Std and α. The parameters DIS and Std are suggested by the

profile Pro developed in the phase of normal profile generation using the algorithm

given in Fig. 6.4. The parameter α is ranged from 1 to 3, and it denotes the range

where network traffic records are allowed to be accepted as legitimate ones in the

estimated distribution of the EMDs learnt during normal profile generation.

6.4 System Evaluation

In this section, we conduct evaluations on our proposed DoS attack detection sys-

tem using the KDD Cup 99 dataset [84]. During the evaluations, the 10 percent

labelled data subset of the KDD Cup 99 dataset is used, where five different types

of DoS attacks (Teardrop, Smurf, Pod, Neptune and Land attacks) and three types

of legitimate traffic (TCP, UDP and ICMP traffic) are available. All records of the
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above mentioned network traffic from the 10 percent labelled data subset are first ex-

tracted. Then, they are further categorised into six groups according to their labels.

The specific numbers of the filtered records can be found in Table 4.1.

6.4.1 Evaluation Metrics

Four metrics, namely TNR, DR, FPR and Accuracy (i.e. the proportion of the

overall samples which are classified correctly), are used to quantitatively estimate the

performance of our proposed system.

6.4.2 Evaluations on Detection Performance

A 10-fold cross-validation is conducted to evaluate the performance of our proposed

DoS attack detection system. We randomly select 70% of the filtered records shown

in Table 4.1 to form an evaluation dataset. This helps avoid the bias hiding in the

sequential data affecting the normal profile generation and the detection performance

of the proposed system. The detailed evaluations to our proposed detection system

are presented in the following.

Dimensionality Reduction

Analysis on the selected filtered legitimate (Normal) traffic is conducted using the

algorithm given in Fig. 6.3 to help determine the optimal feature subspace for data

representation for the entire training dataset. Three feature subspaces are chosen

with respect to normal TCP, UDP and ICMP traffic. The selected feature subspaces

are used in Training Phase (Section 6.4.2) and the Test Phase (Section 6.4.2) to
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supply with accurate representation for all records. The new lower dimensional rep-

resentations of the records are used to train and to test the proposed DoS detection

system.
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(a) Accumulative variance plot for TCP traffic

0 5 10 15 20 25 30 35
0.9975

0.998

0.9985

0.999

0.9995

1

(b) Accumulative variance plot for UDP traffic

0 5 10 15 20 25 30 35

0.75

0.8

0.85

0.9

0.95

1

(c) Accumulative variance plot for ICMP traffic

Figure 6.6: Accumulative variance plots for TCP, UDP and ICMP traffic



Section 6.4. System Evaluation 148

As proposed in Section 6.2.2, we apply the plot of accumulative variances in the

election of the optimal feature subspaces. The up-slope on the plot indicates the

potential optimal subspace for data representation. Thus, we can eliminate these

less important PCs and retain only the first a few critical PCs to form a new low

dimensional feature space.

To determine the number of critical PCs to be retained for various types of network

traffic in our evaluators, the accumulative variance plots for normal TCP, UDP and

ICMP traffic are shown in Figs. 6.6a-6.6c respectively. The horizontal axes of the

figures stand for the number of PCs, and the vertical axes of the figures represent the

accumulative variances with respect to the numbers of PCs shown on the horizontal

axes. Table 6.1 shows where the up-slopes on the plots for TCP, UDP and ICMP

traffic are found.

However, these numbers are not always practicable, and the best performance

may be achieved around these numbers. For instance, using only the first two PCs to

represent the TCP traffic is not applicable in our detection system. This is because the

maps (i.e., EDM and TAM) constructed using only two features are always identical

for all records after normalisation. Hence, we will choose the first three PCs instead

of the first two PCs.

Table 6.1: The Numbers of Principle Components for Various Network Traffic

TCP UDP ICMP

2 PCs 6 PCs 4 PCs
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Training Phase

In the Training Phase of the Decision Marking (Step 3) shown in Fig. 6.2, profiles

are generated with respect to various types (i.e., TCP, UDP and ICMP) of Normal

traffic records. Moreover, as the plots of the accumulative variances only suggest the

preliminary results, we need to conduct further selection based on the suggestion from

the preliminary outcomes from the previous section. In this work, we test three sets

of PCs for each type of traffic, except TCP traffic. According to the reason given in

the previous section, we decide to use the first three PCs for TCP traffic only. The

numbers of PCs used in the further selection are given in Table 6.2. Normal profiles are

built with respect to the chosen feature subspaces (i.e., the aforementioned numbers

of PCs). Then, the generated normal profiles are utilised in the Test Phase.

Table 6.2: The Numbers of Principle Components Using in the Training and Test for
Various Network Traffic

TCP UDP ICMP

3 PCs 5 PCs 6 PCs 7 PCs 3 PCs 4 PCs 5 PCs

Test Phase

During the Test Phase of the Decision Marking shown in Fig. 6.2, we test our pro-

posed detection system against both the Normal records and the attack records in the

evaluation dataset. The thresholds with respect to different normal profiles are deter-

mined given the parameter α varying from 1 to 3 with an increment of 0.5. The tests

run against the various sets of PCs (i.e., the selected lower dimensional subspaces)

shown in Table 6.2.
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The best performance is achieved on three PCs for TCP traffic and five PCs for

both UDP and ICMP traffic. Tables 6.3 and 6.4 present the corresponding experimen-

tal results for the proposed detection systems based on EDM and TAM respectively.

Table 6.3: False Positive Rates, Detection Rates and Accuracies Achieved by the
Proposed System Based on the EDM-based MCA Approach

Threshold
1σ 1.5σ 2σ 2.5σ 3σ

FPR 2.02% 1.00% 0.60% 0.56% 0.56%
DR 100.00% 99.91% 99.74% 99.72% 99.68%
Accuracy 99.95% 99.89% 99.73% 99.71% 99.68%

Table 6.4: False Positive Rates, Detection Rates and Accuracies Achieved by the
Proposed System Based on the TAM-based MCA Approach

Threshold
1σ 1.5σ 2σ 2.5σ 3σ

FPR 1.93% 1.19% 0.63% 0.60% 0.58%
DR 100.00% 99.83% 99.68% 99.68% 93.35%
Accuracy 99.95% 99.81% 99.67% 99.67% 93.50%

As shown in the above tables, both the proposed detection system based on the

EDM-based MCA approach and the one based on the TAM-based MCA approach

achieve encouraging results. The threshold controls the degree of the dissimilarity,

which is accepted by the system, between a test object and the respective learnt

normal profile. If the dissimilarity is beyond the determined threshold, the test object

is classified as an attack. On one hand, it can be seen clearly from the Tables 6.3 and

6.4 that a better FPR is achieved when a greater threshold is accepted. On the other

hand, greater thresholds produce lower DRs.
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Figure 6.7: Detection accuracy versus threshold

To provide a visualisation for the relationship between Accuracy and Threshold,

Fig. 6.7 is given above. The figure reveals that the greater the threshold is, the lower

the detection accuracy is. It is also clearly seen from Fig. 6.7 that both the proposed

detection system based on EDM and the one based on TAM enjoy promising perfor-

mance with 99.95% accuracy when the threshold is set to 1σ. The accuracy of the

both systems declines stably to 99.71% and 99.67% respectively at the threshold of

2.5σ. After this point, the proposed detection system based on TAM drops signifi-

cantly to 93.50%, but the system based on EDM manages to achieve an accuracy of

99.68%.
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6.4.3 Comparison of Performance

To show a clearer picture of how our proposed DoS attack detection system per-

forms, we make comparisons with two other state-of-the-art detection systems in this

section. These two systems are covariance feature space based network intrusion de-

tection system [48] and network intrusion detection using triangle-area-based nearest

neighbours approach [98].

In the comparisons, the best performance of these systems is selected and shown

in Table 6.5. The comparison results illustrate that our proposed detection system in

cooperation with either EDM or TAM achieves 99.95% accuracy which considerably

outperforms the other two systems in terms of detection accuracy. Covariance feature

space based network intrusion detection system [48] achieves 97.89% and network

intrusion detection using triangle-area-based nearest neighbours approach delivers a

92.15% accuracy.

Although, in comparison with the DoS attack detection systems proposed in Chap-

ters 4 and 5, this new DoS attack detection system does not show an significant ad-

vance in terms of detection accuracy. It is worth notice that the proposed system

easily achieves the equal performance requiring significantly less information (i.e.,

fewer features involved in analysis and detection). This reduces the computational

overhead.
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Table 6.5: Performance Comparisons with Different Detection Approaches

Network intrusion detection
system based on covariance
feature space [48] (Thresh-
old approach with 4D prin-
ciple and Cov len3 150)

Intrusion detection
system using nearest
neighbour based on
triangle area [98]

The proposed
detection system
based on EDM
(Threshold = 1σ)

The proposed
detection system
based on TAM
(Threshold = 1σ)

Accuracy 97.89% 92.15% 99.95% 99.95%
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6.4.4 Analysis on Computational Complexity and Time Cost

In this section, we conduct an analysis on the computational complexity of our pro-

posed detection system in two folds, namely the complexity of the feature extraction

and the complexity of the detection.

As discussed in Section 6.1.2, during feature extraction, Euclidean distances of all

possible combinations of two distinct features in a traffic record need to be computed

when processing the EDM-based MCA. Since each traffic record has m features (or

dimensions), m2 Euclidean distances are generated and are used to construct a EDM.

Thus, EDM-based MCA has a computational complexity of O(m2). Equally, the

TAM-based MCA presented in Section 6.1.2 delivers a computational complexity of

O(m2) due to the fact that m2 triangle areas are generated and are used to construct

a TAM as well. However, as both the EDM and the TAM are symmetric matrices and

the elements along the main diagonals of the matrices are zeros, the numbers of the

computations of these two MCA approaches can be reduced by more than 50% when

they are put into practise. Whereas, this does not reduce their computational com-

plexities. In attack detection, EMD-L1 [61] is applied. As explained in Section 6.1.3,

EMD-L1 incurs a complexity of O(N2), where N = m2 is the number of elements

within a EDM or a TAM. Thus, taking the computational complexities of the feature

extraction and the detection into account, the overall computational complexity of

the proposed detection system is O(m2) +O(m4) = O(m4).

Network intrusion detection system based on covariance feature space [48] incurs

a computational complexity of O(2n × m×(m+1)
2

) = O(nm2) in data preprocessing,

where n is the number of sequential samples in a group and m is the number of

physical features of a sample. In attack detection, the observed covariance matrix of
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a group of sequential samples needs to be compared with all l known classes/clusters.

Therefore, it has a computational complexity of O(lm2). The overall computational

complexity of the network intrusion detection system based on covariance feature

space is O(nm2) +O(lm2) = O(lm2)

Triangle-area-based nearest neighbours approach [98] has an overall computational

complexity of O(ml2)+O(l2n2), in which O(ml2) and O(l2n2) are complexities of the

data preprocessing and the attack detection respectively (m is the number of features

in a traffic record, l is the number of clusters used in generating triangle areas and n

is the number of training samples). The complexity can be rewritten as O(l2n2).

In general, our proposed detection system can achieve comparable computational

complexity to the two other approaches. Table 6.6 is provided to summarize the

computational complexities of the above discussed approaches.

Moreover, time cost is discussed to demonstrate the capability of our proposed

detection system in data processing. Approximately 58,944 traffic records and 59,738

traffic records can be proceeded per second by our DoS attack detection system in

cooperation with EDM-based MCA and TAM-based MCA respectively.

Table 6.6: Computational Complexities of Different State-of-the-art Detection Ap-
proaches

The proposed DoS attack
detection system based on
computer vision techniques

Network intrusion de-
tection system based
on covariance feature
space [48]

Intrusion detection sys-
tem using nearest neigh-
bour based on triangle
area [98]

O(m4) O(lm2) O(l2n2)
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6.5 Summary

This chapter has proposed a DoS attack detection system which is equipped with

our previously developed MCA techniques and the EMD-L1. The former techniques

help extract the correlations between individual pairs of two distinct features within

each network traffic record and offer more accurate characterization for network traf-

fic behaviours. The latter technique facilitates our system to be able to effectively

distinguish both known and unknown DoS attacks from legitimate network traffic.

Evaluation has been conducted using the KDD Cup 99 data set to verify the

effectiveness and performance of the proposed DoS attack detection system. The

results have revealed that our detection system achieves maximum 99.95% detection

accuracy while working with either the EDM-based MCA technique or the TAM-

based MCA technique. It outperforms two state-of-the-art approaches. Moreover,

we have analysed the computational complexity of the proposed detection system,

which achieves comparable performance in comparison with the two state-of-the-art

approaches. The time cost analysis shows that the proposed detection system is able

to cope with high speed network segments.



Chapter 7

Conclusions

Over the recent two decades, DoS attacks have emerged as one type of the most severe

network intrusive behaviours and have posed serious threats to the infrastructures

of computer networks and various network-based services. Accurate and efficient

network security schemes against these attacks are essential to the availability of

computer networks and network-based services.

The effective schemes to prevent the DoS attacks exploiting system vulnerabilities

can be as simple as patching the systems in a timely manner. However, the flooding-

based DoS attacks are hard to be handled, due to the underlying mechanisms of

computer networks, which specify that connected devices need to process any network

traffic addressed to them.

Among the various proposed network security schemes (i.e., detection, prevention,

mitigation and response) for DoS attacks, detection is the first line in defence, which

is mainly because of the nature of its functionality that provides accurate recognition

of any malicious behaviours in the protected environments. The success in recognition

of anomalies is a prerequisite for all the other network security schemes, including

prevention, mitigation and response, to function properly. The detection of DoS

157
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attacks is required to be prompt and accurate.

To achieve the aforementioned objectives, we have conducted in-depth research

on DoS attacks and developed effective schemes to analyse and to detect the DoS

attacks in this thesis. A summary of the research conducted for this thesis is provided

in Section 7.1, and potential future work is discussed in Section 7.2.

7.1 Summary

The review of general DoS attack detection has been conducted in Chapter 2, followed

by the evaluation on the recent research contributions and achievements on network-

based detection using correlation analysis techniques. Chapter 2 has also reviewed the

detection approaches based on computer vision techniques proposed in the literature.

Chapter 3 has proposed a general system framework for DoS attack detection. The

various detection mechanisms (i.e., network traffic monitoring at destination network,

attack detection based on individual traffic records, multivariate correlation analysis,

anomaly-based intrusion detection and traffic classification based on computer vision

techniques) have been detailed in this chapter as well. These detection mechanisms

equip all detection systems, which comply with the proposed framework, with the

following desirable properties. First, these detection systems provide best-fit pro-

tections to the protected networks. Second, they can achieve a higher probability

in accurate classification of a sample than any other detection systems applying the

group-based detection mechanism in a general network scenario. Finally, these de-

tection systems are capable of labelling intrusive network traffic samples individually,

which is not supported by any detection system designed based on the group-based
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detection mechanism.

In Chapter 4, the MCA approach based on EDM has been proposed to help extract

the multivariate correlations between any two distinct features of a network traffic

record. The EDM-based MCA approach stands out from other existing MCA ap-

proaches, owing to its independence on prior knowledge of network traffic and its effec-

tiveness of network traffic characterisation. The proposed EDM-based MCA approach

has been evaluated using a benchmark dataset (i.e., the KDD Cup 99 dataset) on

the effectiveness of network traffic characterisation. The evaluation results show that

information extracted using the EDM-based MCA approach can clearly reveal the

correlations between different features and accurately characterise the various types

of traffic. In addition, this extracted information effectively discloses the changes of

network traffic behaviours caused by DoS attacks and supplies with highly discrim-

inative features for network traffic classification. Besides, Chapter 4 has proposed a

DoS attack detection system using the EDM-based MCA approach. This detection

system strictly coincides with the system framework proposed in Chapter 3. Thus, it

inherits all the properties highlighted in Chapter 3. The proposed attack detection

system has been evaluated using the KDD Cup 99 dataset as well. It has achieved

encouraging detection accuracy on both the original data and the normalised data,

and outperforms the other two state-of-the-art systems (i.e., the network intrusion

detection system based on covariance feature space and the intrusion detection sys-

tem using nearest neighbour based on triangle area) in terms of detection accuracy

and computational complexity completely.

Chapter 5 has proposed a novel technique (i.e., TAM) to enhance and to speed up

the process of MCA. This new MCA approach based on TAM is designated to study
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the geometrical correlations (i.e., triangle areas) between any two distinct features,

and requires less computation than measuring the space distance. In the section of

evaluation, it has been proven that the TAM-based MCA approach is as promising

in network traffic characterisation as the EDM-based MCA approach, and consumes

fewer CPU circles in processing.

In addition, another new DoS attack detection system, powered by the TAM-based

MCA technique and the anomaly-based detection technique, has been suggested in

Chapter 5. These two techniques equip the proposed DoS attack detection system

with the capability of distinguishing both known and unknown DoS attacks from

legitimate network traffic with high accuracy. The density estimation has been used

to find the close boundary on one-dimensional data space for the separation of the

legitimate and the attack traffic. The evaluations have been conducted using the

KDD Cup 99 dataset to verify the effectiveness and the performance of the proposed

DoS attack detection system. The influence of original (non-normalised) and nor-

malised data has been studied in Chapter 5. The results have revealed that utilising

statistical normalisation technique eliminates the bias from the data and boosts up

the detection accuracy. Besides, the comparison result has proven that our detec-

tion system outperforms three state-of-the-art approaches (i.e., the network intrusion

detection system based on covariance feature space, the intrusion detection system

using nearest neighbour based on triangle area and the approach proposed in Chap-

ter 4) in terms of detection accuracy and computational complexity. Moreover, the

proposed DoS attack detection system achieves better performance in terms of time

cost in comparison with the approach shown in Chapter 4.

In Chapter 6, a DoS attack detection system using computer vision techniques has
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been proposed, and the task of DoS attack detection has been innovatively reformu-

lated as a computer vision task. Network traffic records are treated as images in the

proposed DoS attack detection system. Legitimate traffic to DoS attack detection is

equivalent to queries to image retrieval tasks or object shape recognition tasks. DoS

attacks to our detection task can be interpreted as the images or the object shapes

that do not match the queries. To achieve this reformulation, our previously devel-

oped MCA techniques and the EMD-L1 are introduced to the proposed DoS attack

detection system. The fusion of our proposed MCA approaches and the EMD-L1 is

unique in research literature, and the use of the EMD-L1 in the task of DoS attack

detection is also a novel attempt. The EMD-L1 provides an unique feature (i.e.,

flexible and robust partial matching) to our detection system. Moreover, evaluation

has been conducted using the KDD Cup 99 dataset to verify the effectiveness and

performance of the proposed DoS attack detection system. The results have revealed

that our detection system achieves maximum 99.95% detection accuracy while work-

ing with either the EDM-based MCA technique or the TAM-based MCA technique.

It outperforms two state-of-the-art approaches (i.e., the network intrusion detection

system based on covariance feature space and the intrusion detection system using

nearest neighbour based on triangle area). Furthermore, we have analysed the com-

putational complexity of the proposed detection system, which achieves comparable

performance in comparison with the two state-of-the-art approaches. Last but not

least, the time cost analysis shows that the proposed detection system is able to cope

with high speed network segments.
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7.2 Future Work

Within the realm of a set of network security schemes, Intrusion Detection Systems

(IDSs) are playing an increasingly important role. Most modern-day Anomaly-based

IDSs (AIDSs) have incorporated various machine learning and statistical techniques

to discover the latent underlying structures of the network traffic data. With the

knowledge of these underlying structures, it can then be used to achieve various

purposes, such as the classification between various types of intrusions.

However, as intrusion countermeasures become more sophisticated, so do the in-

trusion techniques themselves. It is apparent that many of the intrusions can oc-

cur collaboratively and simultaneously on nodes throughout a network. Nowadays,

attackers can initiate automated attacks targeting all vulnerable services within a

network simultaneously, rather than just focusing on a specific service. Therefore, it

makes traditional AIDSs developed for single node attacks susceptible to these types

of attacks, and hence, unsuitable to be in a collaborative environments, such as a

Cloud Computing environment.

In order to detect the coordinated attacks, Collaborative Intrusion Detection Sys-

tems (CIDSs) have been proposed to correlate suspicious evidence between differ-

ent IDSs to improve the efficiency of intrusion detection. In CIDSs, network traffic

summarisation is of an important precursor [41] towards reliable intrusion detection.

However, traditionally, network information is collected and processed by IDS-alike

software built on a single network device dealing with only the traffic flow in and

out from that device. The traffic information, which the network device is capable

of knowing, is hence limited, and the computation is proportional to the amount of

traffic flow that the device experiences. The drawback of such approach can be found
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both in terms of both accuracy and efficiency:

In terms of accuracy, without the knowledge of network data from other nodes,

any summarisation is built specific to some partial, insignificant portion of all avail-

able data over the entire network. The effort of exchanging and combining these

summarisations alone in a later stage without the data itself is of course having a

minimal gain in information.

In terms of efficiency, for a node with denser traffic, an additional computation

is required to process summarisation. As summarisation itself is of a pure overhead

operation, therefore, in an ideal environment, one would prefer a node having less

traffic (subsequently requires lesser processing) to spend more time in performing

summarisation tasks.

With the large dense network of nodes forming a cloud environment, firstly, it

presents us with the unprecedented opportunities where network data from all nodes

can be made readily available. At the same time, the challenge itself is also unprece-

dented in a sense that one must perform summarisation and combine the results in

a distributed and parallel manner, by utilising all available processing powers within

the network. At the same time, as we are now dealing with all network data of the

entire cloud, where an unknown number of categories can possibly exist. Therefore,

the summarisation algorithms will need to expand its categories in an “on-demand”

fashion, that is to automatically creates new clusters, once it discovers new types of

traffic is emerging.

It is a potential future work in network intrusion detection to build on the statisti-

cal theories recently developed from parallel inference and to reformulate and propose

novel mathematical models for parallel summarisation of network traffic for a large,
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dense, dynamic and cloud computing environment.
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