
Extensible Records in the System E Framework and a New
Approach to Object-Oriented Type Inference

Ryan Heise

A dissertation submitted for the degree of Doctor of Philosophy

Faculty of Information Technology

University of Technology, Sydney

2013

Copyright c© 2013

Ryan Heise

Abstract

Extensible records were proposed by Wand as a foundation for studying object-oriented type inference.

One of their key benefits is that they allow for an elegant encoding of object-oriented inheritance, where

one class of objects may be defined as an extension of another class of objects. However, every system

of type inference designed for extensible records to date has been developed in the Hindley/Milner-

style, a consequence being that polymorphism in these systems is not first-class and analysis is not

strictly compositional. We argue that both of these features are necessary to retain the modelling and

engineering benefits of traditional object-oriented languages such as Java:

1. Object-oriented modelling depends on the treatment of objects as first-class citizens, and this

demands a type inference system capable of handling first-class polymorphism.

2. Object-oriented engineering encourages the separate development of software modules, and this

should be supported by the type inference system with compositional analysis.

Both of these features are present in a type system for the λ-calculus called System E, which

supports first-class polymorphism via intersection types, and compositional type inference via expansion

variables. However, research into System E has so far focused on refining and simplifying the formulation

of expansion variables and exploring type inference algorithms with various properties. Meanwhile, the

system has not yet been extended beyond the terms of the pure λ-calculus and it lacks many features

that would be needed in a practical object-oriented language.

In this dissertation, we combine System E with Wand’s extensible records resulting in a new approach

to type inference for extensible records that better preserves the modelling and engineering benefits of

object orientation stated above. The resulting system, called System Evcr, is significant because previous

i

Abstract ii

type inference systems, both for extensible records in particular, and also for object orientation in

general, have at best preserved only one or the other of these two benefits, but never both of them

simultaneously. System Evcr also makes a significant contribution to the work on System E, since it

demonstrates for the first time that the System E’s expansion variables can be adapted to analyse

programs whose term language extends beyond the pure λ-calculus.

To demonstrate the potential use of System Evcr in object-oriented type inference, an implementation

of our type inference algorithm was created and is shown to succeed on problem examples that previous

systems either fail to analyse, or else fail to analyse compositionally.

Declaration

I declare that the work in this thesis has not previously been submitted for a degree nor has it been

submitted as part of requirements for a degree except as fully acknowledged within the text. I also

declare that the thesis has been written by me. Any help that I have received in my research work and

the preparation of the thesis itself has been acknowledged. In addition, I declare that all information

sources and literature used are indicated in the thesis.

(Ryan Heise)

iii

Acknowledgements

I wish to thank my principal supervisor Barry Jay and co-supervisor Wayne Brooks for their guidance

and support, and for teaching me the toolset that I depended upon to develop the ideas within this

dissertation. I also wish to thank Pascal Zimmer for helping me to understand the capabilities of

existing extensible record type systems, Joe Wells for many vital and informative discussions about

expansion variables and Adam Bakewell for assisting me to understand the opus unification algorithm.

Many thanks also go to fellow student Quy Tuan Nguyen with whom I have had many stimulating

discussions about both his own research and mine.

This work was supported by an Australian Postgraduate Award from the Australian Government

Department of Innovation, Industry, Science and Research.

iv

Table of Contents

1 Introduction 1

1.1 Key Considerations for Object-Oriented Type Inference 4

1.1.1 Object-Orientation . 5

1.1.2 First-Class Polymorphism . 8

1.1.3 Compositionality . 18

1.2 Prior Work . 23

1.2.1 Object-Orientation & First-Class Polymorphism 23

1.2.2 Object-Orientation & Compositionality . 24

1.2.3 First-Class Polymorphism & Compositionality 26

1.3 Extensible Records in the System E Framework . 30

1.3.1 Extensible Records . 30

1.3.2 System E . 34

1.3.3 System Evcr . 35

1.4 Outline of the Dissertation . 39

1.5 How to read this dissertation . 40

2 Review of System E 43

2.1 λ-Calculus . 44

2.2 Type System . 45

2.3 Expansions and Expansion Variables . 49

2.3.1 The Traditional Approach . 50

2.3.2 The System E Approach . 52

2.4 Type Inference . 56

2.4.1 β-Unification . 57

2.4.2 Covering Unification . 64

2.4.3 Comparison of β-Unification and Covering Unification 67

2.5 Summary . 68

v

TABLE OF CONTENTS vi

3 System Ev: The Value Restriction 70

3.1 The Value Restriction . 71

3.2 Simplifications . 72

3.2.1 Type Equivalences . 72

3.2.2 Restrictions to Simple Types . 73

3.2.3 Unique Derivations . 74

3.3 Type System . 75

3.3.1 Terms and Reductions . 75

3.3.2 Types and Expansions . 77

3.3.3 Typing Derivations . 85

3.4 Type Inference . 99

3.4.1 Preliminary Definitions . 100

3.4.2 Algorithm opusβ . 101

3.4.3 Algorithm I . 110

3.5 Examples . 122

3.6 Efficiency . 125

3.7 Summary . 126

4 System Evc: Constants 128

4.1 Motivations . 128

4.2 Integrating Constants with E-Variables . 129

4.3 Type System . 130

4.3.1 Terms and Reductions . 130

4.3.2 Types and Expansions . 132

4.3.3 Typing Derivations . 134

4.4 Type Inference . 140

4.4.1 Algorithm opusβ . 140

4.4.2 Algorithm I . 141

4.5 Examples . 143

4.5.1 Issues . 146

4.6 Summary . 147

5 System Evcr: Extensible Records 148

5.1 Integrating Extensible Records with E-Variables . 148

5.2 Type System . 153

5.2.1 Terms and Reductions . 153

5.2.2 Types and Expansions . 156

5.2.3 Typing Derivations . 163

5.3 Type Inference . 171

TABLE OF CONTENTS vii

5.3.1 Algorithm opusβ . 171

5.3.2 Algorithm I . 176

5.4 Examples . 183

5.4.1 Extensible Records . 183

5.4.2 Object-Orientation . 187

5.4.3 First-Class Polymorphism . 194

5.4.4 Compositionality . 197

5.5 Efficiency . 200

5.6 Summary . 201

6 Conclusions 203

6.1 Future Work . 205

Bibliography 207

A Additional Proofs 214

B Examples from the System E Inference Report 228

C The opus Unification Algorithm 234

C.1 Adapting opus to System Evcr . 236

List of System Ev Definitions and

Theorems

Definition 3.1 (Terms for Ev) . 75

Definition 3.2 (Free variables for Ev) . 76

Definition 3.3 (Term substitution for Ev) . 76

Definition 3.4 (α-conversion for Ev) . 77

Definition 3.5 (Reduction for Ev) . 77

Definition 3.6 (Syntax for Ev) . 77

Definition 3.7 (Type equivalence for Ev) . 78

Definition 3.8 (Intersection components for Ev) . 79

Lemma 3.9 (Intersection components for Ev) . 79

Corollary 3.10 (Simple type equivalence for Ev) . 80

Definition 3.11 (Expansion application for Ev) . 80

Lemma 3.12 (Expansion application preserves syntactic categories for Ev) 81

Lemma 3.13 (� acts as the identity for Ev) . 81

Lemma 3.14 (Expansion composition for Ev) . 81

Lemma 3.15 (Expansion distribution equivalence for Ev) 82

Lemma 3.16 (Expansion preserves type equivalence for Ev) 83

Lemma 3.17 (Type variables for Ev) . 85

Corollary 3.18 (Type substitution for Ev) . 85

Definition 3.19 (Term contexts for Ev) . 85

Definition 3.20 (Operations on term contexts for Ev) 86

Definition 3.21 (Typings for Ev) . 86

Definition 3.22 (Operations on typings for Ev) . 86

Definition 3.23 (Typing judgements for Ev) . 87

Definition 3.24 (Typing derivations for Ev) . 87

Lemma 3.25 (Typing derivations for Ev) . 88

viii

LIST OF SYSTEM EV DEFINITIONS AND THEOREMS ix

Lemma 3.26 (Variable types for Ev) . 88

Lemma 3.27 (Equivalent types for Ev) . 89

Lemma 3.28 (Expansion for Ev) . 91

Lemma 3.29 (Term substitution for Ev) . 94

Theorem 3.30 (Subject reduction for Ev) . 97

Theorem 3.31 (Progress for Ev) . 98

Definition 3.32 (Distinct sequences for Ev) . 100

Definition 3.33 (Unification constraints for Ev) . 100

Definition 3.34 (Operations on unification constraints for Ev) 100

Definition 3.35 (Solved unification constraints and constraint sets for Ev) 101

Definition 3.36 (Unifiers for Ev) . 101

Definition 3.37 (Unification algorithm for Ev) . 101

Definition 3.38 (Covering unifier sets for Ev) . 101

Definition 3.39 (Covering unification algorithm for Ev) 101

Definition 3.40 (rfactorβ for Ev) . 102

Lemma 3.41 (Correctness of −−−→rfactorβ for Ev) . 102

Definition 3.42 (Variable structures for Ev) . 104

Definition 3.43 (varstruct for Ev) . 105

Definition 3.44 (ovars for Ev) . 106

Definition 3.45 (Fresh renamings for Ev) . 107

Definition 3.46 (−−→opusβ relation for Ev) . 107

Definition 3.47 (opusβ reduction for Ev) . 109

Lemma 3.48 (Correctness of ⇒σ
∗ for Ev) . 109

Definition 3.49 (Algorithm opusβ for Ev) . 110

Theorem 3.50 (Correctness of opusβ for Ev) . 110

Definition 3.51 (estrip for Ev) . 110

Lemma 3.52 (Correctness of estrip for Ev) . 111

Lemma 3.53 (estrip reversion for Ev) . 111

Definition 3.54 (isect for Ev) . 112

Lemma 3.55 (Correctness of isect for Ev) . 112

Lemma 3.56 (isect reversion for Ev) . 113

Definition 3.57 (Algorithm I for Ev) . 115

Theorem 3.58 (Termination of I for Ev) . 116

Theorem 3.59 (Correctness of I for Ev) . 116

Theorem 3.60 (Principality of I for Ev) . 118

List of System Evc Definitions and

Theorems

Amendment to Definition 3.1 (Terms for Evc) . 130

Amendment to Definition 3.2 (Free variables for Evc) 131

Amendment to Definition 3.3 (Term substitution for Evc) 131

Amendment to Definition 3.5 (Reduction for Evc) . 132

Amendment to Definition 3.6 (Syntax for Evc) . 132

Amendment to Definition 3.11 (Expansion application for Evc) 133

Definition 4.1 (typeof for Evc) . 134

Amendment to Definition 3.24 (Typing derivations for Evc) 134

Requirement 4.2 (φ-typability for Evc) . 135

Lemma 4.3 (Constant types for Evc) . 135

Lemma 4.4 (Constant term contexts for Evc) . 136

Restatement of Lemma 3.25 (Typing derivations for Evc) 137

Restatement of Lemma 3.27 (Equivalent types for Evc) 137

Restatement of Lemma 3.28 (Expansion for Evc) . 138

Restatement of Lemma 3.29 (Term substitution for Evc) 138

Restatement of Theorem 3.30 (Subject reduction for Evc) 139

Restatement of Theorem 3.31 (Progress for Evc) . 139

Amendment to Definition 3.43 (varstruct for Evc) . 140

Restatement of Theorem 3.50 (Correctness of opusβ for Evc) 141

Amendment to Definition 3.57 (Algorithm I for Evc) 141

Restatement of Theorem 3.58 (Termination of I for Evc) 142

Restatement of Theorem 3.59 (Correctness of I for Evc) 142

Restatement of Theorem 3.60 (Principality of I for Evc) 143

x

List of System Evcr Definitions and

Theorems

Amendment to Definition 3.1 (Terms for Evcr) . 153

Amendment to Definition 3.2 (Free variables for Evcr) 154

Amendment to Definition 3.3 (Term substitution for Evcr) 154

Amendment to Definition 3.5 (Reduction for Evcr) . 155

Amendment to Definition 3.6 (Syntax for Evcr) . 156

Definition 5.1 (Meets judgement for Evcr) . 157

Definition 5.2 (Valid substitutions for Evcr) . 157

Convention 5.3 (Valid substitutions for Evcr) . 157

Lemma 5.4 (Meets subsumption for Evcr) . 157

Lemma 5.5 (Meets substitution for Evcr) . 158

Definition 5.6 (Lacks judgement for Evcr) . 159

Lemma 5.7 (Lacks equivalence for Evcr) . 159

Amendment to Definition 3.11 (Expansion application for Evcr) 161

Lemma 5.8 (Lacks expansion for Evcr) . 161

Amendment to Definition 4.1 (typeof for Evcr) . 163

Amendment to Definition 3.24 (Typing derivations for Evcr) 164

Lemma 5.9 (Label identity for Evcr) . 165

Lemma 5.10 (Extension parameter type for Evcr) . 165

Restatement of Lemma 3.25 (Typing derivations for Evcr) 166

Restatement of Lemma 3.27 (Equivalent types for Evcr) 167

Restatement of Lemma 3.28 (Expansion for Evcr) . 168

Restatement of Lemma 3.29 (Term substitution for Evcr) 169

Restatement of Theorem 3.30 (Subject reduction for Evcr) 169

Restatement of Theorem 3.31 (Progress for Evcr) . 170

Amendment to Definition 3.43 (varstruct for Evcr) . 172

xi

LIST OF SYSTEM EVCR DEFINITIONS AND THEOREMS xii

Amendment to Definition 3.45 (Fresh renamings for Evcr) 172

Definition 5.11 (hunify for Evcr) . 172

Lemma 5.12 (hunify correctness for Evcr) . 173

Lemma 5.13 (hunify is complete and principal for Evcr) 173

Amendment to Definition 3.46 (−−→opusβ relation for Evcr) 175

Restatement of Theorem 3.50 (Correctness of opusβ for Evcr) 176

Amendment to Definition 3.57 (Algorithm I for Evcr) 176

Lemma 5.14 (Row variable substitution for Evcr) . 178

Restatement of Theorem 3.58 (Termination of I for Evcr) 179

Restatement of Theorem 3.59 (Correctness of I for Evcr) 179

Restatement of Theorem 3.60 (Principality of I for Evcr) 180

List of Figures

2.1 System E type equalities . 47

2.2 System E typing rules . 48

2.3 System E expansion application rules . 54

3.1 Equivalences considered by the implementation of rfactorβ 105

3.2 Performance of opusβ vs opus with functions . 126

5.1 Performance of opusβ vs opus with extensible records 200

5.2 Performance of opusβ on object-oriented examples . 201

C.1 The opus algorithm . 235

xiii

Chapter 1

Introduction

Type inference is a feature of some programming languages that use type information to statically

check the validity of programs. Normally, this type information is manually inserted into a program by

the programmer, and then an automated type checker uses this information at compile time to check

whether the right types of expressions are used in the right types of contexts. The type checker ideally

guarantees that accepted programs will not have any type errors at runtime. If a language goes one

step further to offer type inference, then the programmer is free to leave out this type information, and

a type inferencer will attempt to automatically compute the missing information.

Type inference has long been used in functional programming languages to relieve programmers of

the burden of manually inserting type information. However, attempts to bring the benefits of type

inference to object-oriented languages have been met with limited success. This is unfortunate since,

from the 1990s, object-orientation has been the dominant software development methodology used

throughout both industry and education.

Table 1.1 lists the top 11 programming languages in April 2013 listed by the TIOBE Programming

Community Index [1], an indicator of the popularity of programming languages. Although such lists

should be taken as only rough indicators of language popularity, we can observe from this list a clear

pattern of the dominance of the object-oriented paradigm, with only C not supporting object-oriented

programming constructs. A more interesting observation, though, is that the languages in this list

1

Chapter 1. Introduction 2

Rank Language Rating

#1 C 17.862%
#2 Java 17.681%
#3 C++ 9.714%
#4 Objective-C 9.598%
#5 C# 6.150%
#6 PHP 5.428%
#7 (Visual) Basic 4.699%
#8 Python 4.442%
#9 Perl 2.335%
#10 Ruby 1.972%
#11 JavaScript 1.509%

Table 1.1: TIOBE Programming Community Index for April 2013

supporting object-orientation adopt two distinct approaches to typing. Java, C++, Objective-C and C#

check types at compile time (i.e. “static typing”), and rely on programmer-supplied type annotations

to achieve this, while PHP, Python, Perl, Ruby and JavaScript check the types of values at runtime

(i.e. “dynamic typing”) and do not require any type information to be known at compile time. Visual

Basic can operate under either approach, and will use static typing if the programmer supplies type

annotations or will use dynamic typing otherwise.

While static typing with explicit type annotations may create more work for the programmer, it

also provides the significant benefit of ruling out unsafe programs at compile time and alerting the

programmer to faulty code before it is released to users. On the other hand, while dynamic typing may

allow for more rapid software development, it also leaves programs vulnerable to type errors at runtime.

Missing from Table 1.1, however, are object-oriented languages that are statically typed and require no

type annotations through the use of type inference. Such languages could be seen as truly mixing the

best of both extremes by allowing programs to be written rapidly without requiring the programmer to

supply type information, but to still benefit from static type checking by having this type information

automatically inferred by the compiler.

While a number of foundations for object-oriented type inference have been proposed, none has been

as successful as those used by functional programming languages, and there has not yet been a pro-

posal that entirely preserves the modelling and engineering benefits of the object-oriented programming

style. In particular, previous efforts have not been able to simultaneously address both of the following

Chapter 1. Introduction 3

considerations that are important in the object-oriented paradigm:

1. Object-oriented modelling depends on the treatment of objects as “first-class” citizens, and as

such, objects are often passed through parameters. With respect to the type system, objects

often also have polymorphic types, meaning that they may be reused in different contexts at

different types. Thus, we should expect of any object-oriented type inference system that it be

able to infer polymorphic types for parameters, which is referred to as first-class polymorphism.

2. Object-oriented engineering encourages the separate development of software modules, and as

such, it ought to be possible to analyse and compile a single module on its own without having to

re-analyse and recompile the entire system. This kind of analysis is referred to as compositional

analysis and should be expected of any object-oriented type inference system.

The overall challenge is to create a type inference system that simultaneously supports (1) first-class

polymorphism, (2) compositionality and of course (3) object-orientation itself. The current state of

affairs is that we have systems that support any two out of these three features (to an extent), but no

system that supports all three:

First-class polymorphism

(e.g. Flow analysis)
?

Compositionality

(e.g. Intersection types)

Object-orientation
(e.g. Hindley/Milner + records)

A useful observation is that Hindley/Milner-style type inference [45], despite being widely used in

functional languages, is incapable of inferring types that require first-class polymorphism, and that while

certain kinds of flow analysis [46, 49, 3] are capable of this, flow analysis is fundamentally incompatible

with compositional analysis. However, a workable combination is intersection types which support both

Chapter 1. Introduction 4

first-class polymorphism and compositionality, and records which support object-orientation.

In this dissertation, we pursue object-oriented type inference using a particular kind of record known

as an extensible record [62, 64], and a particular system of intersection types called System E [17]. The

resulting system has been implemented and is demonstrated to successfully infer types for functional,

object-oriented programs that make use of first-class polymorphism, while at the same time performing

type inference in a strictly compositional manner. While the system presented in this dissertation does

not include all features often found in object-oriented programming languages, such as general recursion

and state, it instead aims to provide a foundation for studying object-oriented type inference where

compositionality and first-class polymorphism are built in from the beginning. Such a foundation is

important if type inference is ever to be adopted by mainstream object-oriented languages such as Java

where first-class polymorphism and compositional analysis are expected. By focusing on only the core

elements of object orientation, this work follows in the same vein as Featherweight Java [27] and Abadi

and Cardelli’s Object Calculus [2], which also omit all but a few core constructs that are necessary to

represent objects themselves, simplifying to an extent that allows complex typing issues to be better

understood.

This introduction is organised as follows. Section 1.1 outlines key considerations for object-oriented

type inference and presents motivating examples. Section 1.2 reviews the prior work. Section 1.3 pro-

vides an overview of our new system based on extensible records and System E. Section 1.4 outlines the

chapters of this dissertation. Finally, Section 1.5 provides instructions on how to read this dissertation.

1.1 Key Considerations for Object-Oriented Type Inference

A type inference system that preserves the modelling and engineering benefits of object-orientation

should have the following features:

• Object-orientation

• First-class polymorphism

• Compositionality

Chapter 1. Introduction 5

The following subsections will introduce each of these features, argue for the importance of the last

two features with respect to the first, and set out all of the associated problem examples that we intend

to handle in our system.

1.1.1 Object-Orientation

Within object-orientation, many alternative paradigms have been explored, including prototypes [59],

multimethods [33] and aspects [30] to name just a few. In this dissertation we will limit our analysis

to object-oriented concepts that are common to popular, mainstream object-oriented languages such

as C++, Java and C#. Shared by all of these languages are: objects, classes, inheritance, method

overriding and dynamic dispatch. In this section, we introduce these five features using examples in the

Java language.

The fundamental concept in object-oriented programming is that of an object. An object is a

programming abstraction that allows for the modelling of real-world objects. For example, a banking

program might be built from account and customer objects, while a car simulator might contain car,

engine and wheel objects. The key point of object-orientation is that an object encapsulates both data

and associated operations, meaning that a car object, for instance, might contain position, velocity and

direction data, along with operations to control the accelerating, braking and steering of the car.

From the program’s point of view, an object is essentially a record of data fields with associated

functions attached to it, called methods. Each method is aware of, and can refer to, the object to which

it belongs. Most object-oriented languages also classify objects into classes so that all objects belonging

to a class share the same record structure and methods. Programmers will therefore write code for

the classes only and use those classes to spawn like objects. For each class, a special method called a

constructor defines how new objects of the class are created and initialised.

The example below defines a class of Rectangle objects in the Java language, with fields width and

height, a constructor Rectangle, and associated methods area and toString:

1 class Rectangle

2 {

3 double width;

4 double height;

Chapter 1. Introduction 6

5 Rectangle(double rwidth, double rheight) { this.width = rwidth; this.height = rheight; }

6 double area() { return this.width * this.height; }

7 String toString() { this.width + "x" + this.height; }

8 }

The underlined expressions are called types and they are used to restrict the set of possible values

that may be assigned to fields, parameters and other sorts of variables, as well as the values that must

be returned by methods. For example, the fields width and height may be assigned only values of type

double, while the method toString must return a value of type String.

The following program illustrates the creation and use of an object from class Rectangle:

1 Rectangle r = new Rectangle(2,3);

2 System.out.println(r.width);

3 System.out.println(r.height);

4 System.out.println(r.area());

5 System.out.println(r.toString());

Line 1 shows constructor Rectangle being invoked via operator new. Lines 2-5 illustrate the use of

the dot operator “.” to access both the fields and the methods of the new object r. The resulting 4

values are printed using method println which itself is accessed from the built-in object System.out

via the dot operator.

Since both the fields and methods are accessed via the dot operator, it is intuitively as though the

object r were simply a record of 4 fields, altogether containing 2 data values and 2 functions. However,

what makes objects different from records is that each method can refer to its containing object. In the

Java syntax shown above, this is accomplished via the keyword this. Hence, when the area method

uses the dot operator to access this.width and this.height, it is referring to the width and height

fields of the containing object.

An important reuse feature of class-based object-oriented languages is the ability for a sub-class of

objects to be defined as an extension of a super-class of objects, a feature known as inheritance. Using

this feature, we can define a class of PositionedRectangle objects as an extension of the class of

Rectangle objects. The non-constructor members of the superclass are automatically inherited by the

subclass, and so the subclass needs only to define a new constructor and any additional members:

Chapter 1. Introduction 7

1 class PositionedRectangle extends Rectangle

2 {

3 double x;

4 double y;

5 PositionedRectangle(double rx, double ry, double rwidth, double rheight)

6 {

7 super(rwidth, rheight); // Invoke the superclass’ constructor

8 this.x = rx;

9 this.y = ry;

10 }

11 double distanceTo(PositionedRectangle rect)

12 {

13 return sqrt(sqr(rect.x-this.x)+sqr(rect.y-this.y));

14 }

15 String toString()

16 {

17 return super.toString() + "(" + this.x + "," + this.y + ")";

18 }

19 }

The subclass adds two fields x and y, a new constructor PositionedRectangle, a new method

distanceTo, and also overrides the existing toString method with a new definition. The superclass’

version of toString may still be accessed from the subclass via super, and likewise for the superclass’

constructor. Through this mechanism, the subclass can reuse any code from the superclass that was

not inherited.

Object-oriented languages typically use dynamic dispatch when invoking a method. Given a variable

rect referring to either a Rectangle or a PositionedRectangle where the actual type is not known at

compile time, the invocation rect.toString() will select the appropriate version of the toString()

method based on the runtime value of rect. This is illustrated by the following example:

1 Rectangle larger(Rectangle r1, Rectangle r2)

2 {

3 if (r1.area() > r2.area()) return r1;

4 else return r2;

5 }

6 String test()

7 {

8 Rectangle r1 = new Rectangle(2, 2);

Chapter 1. Introduction 8

9 PositionedRectangle r2 = new PositionedRectangle(1, 2, 10, 20);

10 Rectangle bigRect = larger(r1, r2);

11 return bigRect.toString();

12 }

When method bigRect.toString() is invoked inside method test(), the runtime environment will

identify that bigRect is currently holding the value r2 which is a PositionedRectangle, and therefore

the PositionedRectangle version of toString will be used to produce the string ”10x20(1,2)”.

1.1.2 First-Class Polymorphism

In this section, we introduce the concepts of polymorphism and first-class polymorphism, and discuss

why these are important in the object-oriented programming style. Finally, we illustrate through

examples how first-class polymorphism arises in practice in object-oriented programming.

What is polymorphism?

Polymorphism refers to the ability of a program expression to be reused in different contexts at different

types. This is achieved by assigning that expression a polymorphic type that somehow represents the

set of different types at which the expression can be used. In modern object-oriented languages such as

Java, C++ and C#, polymorphism can arise in three different situations as illustrated by the following

Java example:

1 void printRect(Rectangle r) { System.out.println(r.toString()); }

2 <X> X identity(X x) { return x; }

3 void test() {

4 Rectangle r = new Rectangle(2,3);

5 PositionedRectangle pr = new PositionedRectangle(2,3,2,3);

6 System.out.println(r.area());

7 System.out.println(pr.area());

8 printRect(r);

9 printRect(pr);

10 Rectangle r1 = identity(r);

11 PositionedRectangle pr1 = identity(pr);

12 }

Chapter 1. Introduction 9

In lines 6-7, inheritance polymorphism allows method area to work in both class Rectangle

and its subclass PositionedRectangle without being recoded. In lines 8-9, subtype polymorphism

allows method printRect to work on both objects of type Rectangle and objects of its subtype

PositionedRectangle without being recoded. And in lines 10-11, parametric polymorphism, allows

method identity to be used to take a Rectangle to a Rectangle and a PositionedRectangle to a

PositionedRectangle without being recoded, since method identity is defined (line 2) to take any X

to an X for some type parameter X, universally quantified by <X>.

What is first-class polymorphism?

Objects are treated as first-class citizens in the sense that they can be used in expressions, assigned to

variables and passed through parameters to methods. This is in contrast to classes which are tradition-

ally not first-class citizens and can be used only in specific situations, such as immediately following

the new operator while creating a new object from a class. Similarly, polymorphism in mainstream

object-oriented languages is also first-class in the sense that objects can be given polymorphic types

regardless of whether those objects are used within expressions, assigned to variables or passed through

parameters to methods.

Of the three kinds of polymorphism described above, parametric polymorphism has been histor-

ically difficult to support in type inference in combination with first-class polymorphism. Milner’s

Algorithm W [45] for the Hindley/Milner type system, which is used in the majority of functional

programming languages that have type inference, and local type inference [48] which is used in the

functional/object-oriented language Scala, both sacrifice first-class polymorphism to make type in-

ference possible1. The common realisation in both of these approaches is that it is easy to infer a

parametrically polymorphic type for a local variable, but much harder to infer one for a method or

function parameter. This can be illustrated by the following example:

1 class Foo {

2 void poly(b) {

3 let a = new A();

4 a.m1(true);

5 a.m1(42);

1Programming languages based on these systems sometimes permit first-class polymorphism, but the programmer is

required to manually supply type information in such cases.

Chapter 1. Introduction 10

6 b.m2(true);

7 b.m2(42);

8 }

9 }

In this program, methods a.m1 and b.m2 are each used polymorphically since they each need to deal

with arguments of type boolean and int. In the case of a.m1, there happens to be a convenient way

to infer the complete polymorphic type of a, including its method m1. Because a is initialised locally

to an instance of class A, it is possible to analyse class A to determine the type of a.

In contrast to variable a, we have no such hint about the variable b since its actual value originates

outside the context of method poly. If parametric polymorphism is used, there are various unrelated

possible types for method b.m2 and no clear choice exists. Some possible alternative types include (see

Section 1.1.3 for a discussion on why these types are unrelated):

1 <X> X m2(X x);

2 <X> Pair<X,X> m2(X x);

3 <X> Pair<X,Pair<X,X>> m2(X x);

4 <X> Pair<X,Pair<X,Pair<X,X>>> m2(X x);

5 ...

The way to deal with this situation in the widely used Hindley/Milner system is to impose a restricted

form of parametric polymorphism called let-polymorphism in which only variables introduced via let-

declarations, such as variable a, may be polymorphic, while parameters such as variable b may not

be polymorphic. After applying this restriction, the above program is simply ruled out as an invalid

program.

It is not an easy task to design a type inference system that supports first-class polymorphism, and

some of the challenges appear to be inherent in the use of parametric polymorphism itself, suggesting

that alternative approaches to first-class polymorphism should be considered. One of the main difficul-

ties in working with parametric polymorphism is that systems based on it tend to have limited support

for compositional analysis, an issue that will be discussed in Section 1.1.3 and Section 1.2.3.

Chapter 1. Introduction 11

First-class polymorphism in practice

In this section, we examine how first-class polymorphism is used in practice in object-oriented program-

ming. There are fundamental differences between the function-oriented and object-oriented program-

ming styles that influence the use of first-class polymorphism in each style. It is these differences that

make the limitations of Hindley/Milner-style type inference, which are relatively more tolerable in the

function-oriented programming style, less tolerable in the object-oriented programming style.

In function-oriented programming, functions are declared separately from data, and are often free

to be declared globally via let-declarations and act on local data in any part of the program. Because

of this, there is a good chance that functions will benefit from let-polymorphism (if they are declared

via a let-declaration) and the type inferencer will be able to infer its polymorphic type automatically.

In object-oriented programming, methods (the object-oriented counterpart to functions) are not

declared globally. Instead, methods and data are bundled together into objects, making methods just

as likely to be accessed from parameters as regular data, and this reduces the opportunity for methods

to benefit from let-polymorphism during type inference.

The following pattern describes a general situation in which first-class polymorphism can arise in

object-oriented programming:

1 class C

2 {

3 A partA;

4 B partB;

5 void action(ServiceProvider service)

6 {

7 service.operateOn(partA);

8 service.operateOn(partB);

9 }

10 }

Some class C is composed of two (or more) parts, each of different types. In one of its methods

(here, action), a service provider object is passed in as a parameter, and one of its methods (here,

operateOn) is applied polymorphically to the two parts, partA and partB, which have different types.

This polymorphism is first class since operateOn is accessed via an object that came through a param-

eter.

Chapter 1. Introduction 12

One application of this pattern is in computer games designed to run on today’s multicore CPU

architectures. With the increasing prevalence of multicore CPUs on the desktop, it has become increas-

ingly important to consider how best to design games to utilise the parallel processing power available

in these CPUs [21]. In a multithreaded game design, artificial intelligence, audio, physics, graphics, etc.

can all be processed in parallel by different threads with each thread potentially running on a different

CPU core. Thread creation tends to be an expensive operation and so it is useful to share a thread

pool between different parts of the application allowing old threads to be recycled and reused rather

than recreated.

In Java, a game component can use a shared thread pool to execute two tasks in parallel as follows:

1 class GameComponent {

2 Callable<Result1> task1 = ...;

3 Callable<Result2> task2 = ...;

4 void doWork(ExecutorService threadPool) {

5 Future<Result1> future1 = threadPool.submit(task1);

6 Future<Result2> future2 = threadPool.submit(task2);

7 Result1 result1 = future1.get();

8 Result2 result2 = future2.get();

9 process(result1, result2);

10 }

11 }

Lines 2 and 3 define the two tasks to be performed in parallel, where task1 produces a result of

type Result1 and task2 produces a result of type Result2. Here, physics algorithms, audio processing,

or other typical game functions could be substituted for task1 and task2, or indeed, a single game

function could be further decomposed into threads (see [21] for examples).

Method doWork takes a shared threadPool as a parameter and uses it to submit the two tasks to

be executed. The threadPool parameter is an instance of the standard Java class ExecutorService,

and its submit method is polymorphically defined with the following method signature:

1 <T> Future<T> submit(Callable<T> task)

Here, the type parameter T indicates the type of result produced by a given task, and in our case it is

either Result1 or Result2. Callable represents the generic interface of a task, and Future represents

Chapter 1. Introduction 13

a future result that is not immediately ready but will become ready once the thread completes.

Note that the thread pool’s submit method is used polymorphically. On Line 5, task1 is submitted

to be executed, and a Future result of type Result1 is returned. On Line 6, task2 is submitted and a

Future result of type Result2 is returned. Since the submit method belongs to a thread pool that was

shared via a parameter, this polymorphism is also first class.

Finally, lines 7-8 block and wait for the two threads to complete, and then obtain the results from

the two futures so that they can be combined and processed on Line 9.

Reflecting on this example, the first-class polymorphism is a direct result of method submit being

bundled together with the data (i.e. the thread pool) that is passed through a parameter, and this

“bundling” is of course a technique that is central to object-oriented programming. In functional

programming, the polymorphic method submit might instead be declared as a global function where it

can benefit from let-polymorphism, and might be defined to take the thread pool data that was once

bundled together with it as an additional parameter. While the first-class polymorphism in the above

example could possibly be avoided by coding in the functional style, the challenge is to build a type

inference system that supports the kinds of polymorphism that arise in the object-oriented programming

style.

Next we consider an example taken from the Java implementation of the type inference algorithm

presented in this dissertation (for complete source code, see [26]). Type inference algorithms often make

use of type substitutions which substitute types for type variables in given expressions, although to sim-

plify matters in the following presentation, we shall consider only the substitution of variables for other

variables. If s is a substitution and e is an expression, we intend to use code of the form s.apply(e)

to apply substitution s to expression e, and this should produce a new expression with all of the vari-

able substitutions applied. A substitution can work on different kinds of expressions. For example, a

substitution could work on a single variable. It could also work on another substitution that contains

variables within it. In the full System E (the rules of which are presented in Chapter 2, Figure 2.3), a

substitution will also work on other kinds of expressions such as types containing variables and expan-

sions containing variables. Because a substitution can work on different types of expressions, the type

of a substitution must be polymorphic. And because substitutions are often passed as parameters to

methods, the example will also employ first-class polymorphism.

Chapter 1. Introduction 14

The example consists of 5 classes:

• Class Substitution defines a linked list of extended substitutions with an identity substitution

at the root.

• Class IdentitySub defines an identity substitution which has no effect when applied to an ex-

pression.

• Class ExtendedSub defines one particular link in a list of substitutions of one variable for another

variable.

• Class Variable defines a named variable.

• Class Expression defines the superclass of all expressions. Substitution and Variable are

subclasses.

First, we have the class of Substitution objects which may be applied to expressions. A substitution

is itself a kind of expression:

1 abstract class Substitution extends Expression<Substitution> {

2 abstract <X extends Expression<X>> X apply(X expression);

3 }

The polymorphic type for method apply states that the method can operate on any type X of

Expression and will produce as its result the same type X of Expression. For example, if applied to

a Variable, the return type will be Variable, and if applied to a Substitution, the return type will

be Substitution.

There are two kinds of substitution which together are used to build linked lists of variable assign-

ments. The first kind of substitution, represented by class IdentitySub, is the identity substitution. It

has no effect when applied to an expression, and it is used as the root of a substitution linked list:

1 class IdentitySub extends Substitution {

2 <X extends Expression<X>> X apply(X expression) { return expression; }

3 ExtendedSub applySubToSelf(ExtendedSub s) { return s; }

4 String str() { return "{}"; }

5 }

For now, we focus on the implementation of method apply which in this case just returns back the

original expression without modification.

Chapter 1. Introduction 15

The second kind of substitution is the ExtendedSub which consists of a variable assignment of

variable v to variable x, combined with all of the variable assignments contained in the tail substitution:

1 class ExtendedSub extends Substitution {

2 Variable x;

3 Variable v;

4 Substitution tail;

5 ExtendedSub(Variable x, Variable v, Substitution tail) {

6 this.x = x;

7 this.v = v;

8 this.tail = tail;

9 }

10 <X extends Expression<X>> X apply(X expression) {

11 return expression.applySubToSelf(this);

12 }

13 Substitution applySubToSelf(ExtendedSub s) {

14 return new ExtendedSub(this.x, s.apply(this.v), s.apply(this.tail));

15 }

16 String str() {

17 return this.x.str() + "=" + this.v.str() + "," + this.tail.str();

18 }

19 }

Again we shall focus on the implementation of method apply. Unlike an IdentitySub, the way

in which to apply an ExtendedSub to an expression depends upon the type of expression. Hence,

Line 11 uses dynamic dispatch to let each expression decide how to handle the application via method

applySubToSelf. Each kind of expression must provide an implementation of this method to define

how an ExtendedSub should be applied to that expression. Because the expression on Line 11 could

itself be another substitution, even substitutions must define this applySubToSelfmethod. In Line 14

above, an extendedSub defines this method by applying the given substitution s recursively to each

component of this.

There are two points to make about substitutions. First, method applySubToSelf in class ExtendedSub

uses its parameter s polymorphically, on one occasion to transform the variable this.v into another

variable, and on another occasion to transform the substitution this.tail into another substitution.

Because the parameter is used polymorphically, this method requires first-class polymorphism.

Chapter 1. Introduction 16

The second point is that the polymorphic type for method apply in class Substitution is arguably

quite difficult for a programmer to discover, and automated type inference could help to alleviate

this problem. In this case, we have two different mechanisms for polymorphism being used together:

parametric polymorphism on the type parameter X to ensure that the return type is the same as the

parameter type, and subtype polymorphism to allow X to be any subtype of Expression. An added

complication is that class Expression must also be parameterised by a type parameter so that the

related methods in that class can also produce the correct return types.

Next, we have the class of Variable objects. Each Variable has a name, and can be substituted

for other variables:

1 class Variable extends Expression<Variable> {

2 String name;

3 Variable(String name) { this.name = name; }

4 Variable applySubToSelf(ExtendedSub s) {

5 if (this.name.equals(s.x.name)) { return s.v; }

6 else { return s.tail.apply(this); }

7 }

8 String str() { return (this.name); }

9 }

Method applySubToSelf performs the actual work of variable substitution. If the head of the

substitution matches this variable, then the variable assignment in the head is applied, otherwise the

tail of the substitution is applied.

Finally, we have class Expression of which all other classes are subclasses. Every expression de-

fines an applySubToSelf method, as we have seen, and also a str method for producing a string

representation of the expression:

1 abstract class Expression<X extends Expression<X>> {

2 abstract X applySubToSelf(ExtendedSub s);

3 abstract String str();

4 }

Based on the implementation of the strmethods, the string {} would represent the identity substitu-

tion, while the string x=a,y=b,{} would represent a substitution that, when applied to any expression,

will replace variable x by a, and variable y by b.

Chapter 1. Introduction 17

To show the above classes working together, and to exercise the polymorphism found within them,

the following program creates two substitutions, applies one substitution to the other, and then prints

a string representation of the result:

1 Variable a = new Variable("a");

2 Variable b = new Variable("b");

3 Variable c = new Variable("c");

4 Variable d = new Variable("d");

5 IdentitySub id = new IdentitySub();

6 // Create two substitutions and compose them

7 Substitution s1 = new ExtendedSub(b, a, id);

8 Substitution s2 = new ExtendedSub(a, b, new ExtendedSub(c, d, id));

9 Substitution s1s2 = s1.apply(s2);

10 // Print out the result

11 System.out.println("s1 = " + s1.str());

12 System.out.println("s2 = " + s2.str());

13 System.out.println("s1 s2 = " + s1s2.str());

This produces the following output:

1 s1 = b=a,{}

2 s2 = a=b,c=d,{}

3 s1 s2 = a=a,c=d,b=a,{}

Reflecting on this example, the key polymorphic code is s.apply(e) which applies a substitution to

an expression. Since there are various types of expression, apply must be polymorphic to support them

all. At the same time, there are different kinds of substitution, which are handled by dynamic dispatch.

It should be noted that if there were only one kind of substitution, it might be tempting to switch the

object and parameter around to read e.apply(s) so that apply need no longer be polymorphic. If the

type inference system of the language did not support first-class polymorphism, then this trick could

be used to avoid the type inference system’s limitation.

However, there are good object-oriented reasons to define apply as a method on substitutions rather

than on expressions. At purely the interface level, apply is conceptually an operation that is associated

with substitution objects and ought to be part of the specification of how a substitution may be used.

Getting the interface right conceptually can also help to make the system future proof so that new

classes introduced in the future would be more likely to fit the interface. As it turns out, when this

Chapter 1. Introduction 18

example is extended to the full system given in [26], substitutions will be but one of a more general

class of objects known as expansions that can be applied to any expression, and at this point, the need

for first-class polymorphism cannot be avoided.

Once again, the challenge is to offer type inference that allows programmers to make their usual

object-oriented design choices without letting limitations of the type inference system dictate their

design in any way.

1.1.3 Compositionality

Object-oriented programming encourages a separation of concerns between different software compo-

nents. At the lowest level, a well-designed class should consist of fields and methods that are closely

related and this tends to increase internal dependencies and lower external dependencies. At a higher

level, classes can be grouped into packages, again with an aim to increase internal dependencies and

lower external dependencies. This separation of concerns is good from a software engineering point of

view, especially in large software projects, because it allows different programmers to independently

work on different classes, and different teams of programmers to independently work on different pack-

ages. As long as the boundaries between different software components are clearly defined, it should be

possible for a programmer to recompile the one class being worked on, or for a team of programmers to

recompile the package being worked on, without needing to recompile the entire software project. To

support such separate compilation, any analysis during compilation should be compositional, meaning

that it should be possible to analyse different program subcomponents in isolation.

For many object-oriented languages, separate compilation is supported by constructing a dependency

graph between classes and checking file modification dates to determine whether any dependencies need

to be compiled, and if not, then compiling only the target class. In the case of Java, dependency

information can be indicated at the top of each source file in the form of import statements which

specify other classes that are depended upon2. Also, the compiler must be configured with a class path

specifying the directories where classes to be imported can be found in the file system. The process is

roughly illustrated by the following example:

2This is a simplification. Java actually treats import statements as shorthand for writing fully qualified class names

throughout the body of the class, and analyses the entire class to discover the dependencies

Chapter 1. Introduction 19

1 import package1.A;

2 import package2.B;

3 class C {

4 void mono(B b) {

5 A a = new A();

6 a.m1(true);

7 b.m2(42);

8 }

9 }

This Java class specifies dependencies on two external classes A and B. Because these dependencies

are explicitly named, the compiler can, while compiling C, efficiently locate definitions for A and B

in the class path under file names corresponding to these class names. Assuming A and B have not

changed since the last compile, the compilation of C can be completed using the already-compiled type

information for A and B.

If we consider type inference, care must be taken to preserve the benefits of separate compilation.

Before omitting the types, we must have a clear understanding of what is a type and what is a class.

In Java, C++, C# and many other object-oriented languages, every class name is a also type name,

and this can lead to some confusion about the difference between the two. In Line 5, the occurrence of

A in “A a” indicates the type of variable a, while the occurrence of A in “new A()” indicates the class

from which a new object is to be created. The conceptual difference between the two is that class A

holds all of the code needed to create a fully functioning object, while type A specifies only what field

and methods an object must have, without specifying any code for the methods.

In a hypothetical version of Java supporting type inference, the above program might be written as

follows, where parameter “B b” is now specified simply as “b”, and local variable declaration “A a” is

now replaced by a let declaration without a type:

1 import package1.A;

2 class C {

3 mono(b) {

4 let a = new A();

5 a.m1(true);

6 b.m2(42);

7 }

8 }

Chapter 1. Introduction 20

Notice that the process of omitting types can lead to some import statements being omitted that

were previously used for efficient compilation. In particular, while there is still a genuine dependency

on class A, which is needed to create the new object a, there is no longer any dependency on class B,

and the inferred type of parameter b could just as well be any alternative type that also provides a

method m2 that accepts an int argument. If the inferred type of b must be a class name (such as “B”),

then the only way to find a matching class would be to search the entire class path for such matching

candidates. Setting aside the potential obstacle posed by the sheer number of classes that would need

to be searched every time a parameter type must be inferred (roughly 7,000 classes in the standard Java

library alone, as of version 1.6), such a whole program analysis will lead to the following problems:

1. In order to make the parameter type as general as possible (so as not to unnecessarily prevent

arguments from being passed into it), the inferred parameter type would need to comprehen-

sively describe all possible candidate classes within the set of 7,000+ classes. Such a type could

potentially become very large.

2. If, at the time of compilation, a complete set of matching classes was found and combined to

produce the inferred parameter type, but then after the initial compilation, a new class B1 was

created that would now also match, a recompilation of class C would now be required to include

B1 as an acceptable parameter type. Thus, class C would need to be regularly recompiled as new

classes are invented, despite class C having no explicit dependency on those classes. The result is

that separate compilation would be problematic.

One way to avoid the problems associated with whole-program analysis when inferring parameter’s

type is to use structural types [4] where, rather than parameter b’s type being a class name, it can

instead be a description of the fields and methods that are required of b. For example, it is possible,

based on the usage of variable b, to infer a structural type such as

1 {

2 void m1(boolean);

3 }

indicating that b must be an object containing a method m1 that takes a parameter of type boolean

and returns a result of type void.

Chapter 1. Introduction 21

However, the problem of compositional type inference becomes still more challenging when consid-

ering code reuse. This is illustrated by the example of class Foo introduced in Section 1.1.2:

1 class Foo {

2 poly(b) {

3 let a = new A();

4 a.m1(true);

5 a.m1(42);

6 b.m2(true);

7 b.m2(42);

8 }

9 }

Even when structural types are used, it is not a trivial matter to infer a type for parameter b which

is reused at two different types, and the success of any type inference approach depends to a large extent

on the kind of polymorphism that is offered by the language.

For compositional type inference to work, we should try to find a type for parameter b that is general

enough to represent all other possible types for b, or what is commonly referred to as a principal type.

This is necessary because it is not known which other parts of the program will use method poly, and

we need to ensure that no potential caller of this method will be prevented from using it due to the type

of parameter b being unnecessarily narrow. When using parametric polymorphism, it unfortunately

turns out that there exists no principal type for b. We can in fact find at least two valid yet unrelated

types for b (using Java’s interface syntax for describing types):

1 interface B1<Y> {

2 <X> Y m2(X x);

3 }

4 interface B2 {

5 <X> X m2(X x);

6 }

Note that in B1, type variable X is not within scope under the universal quantifier <Y>, and so it is

not possible to instantiate <Y> to X in B1 to yield B2. Even if we were instead to look for a finite set of

types which between them represent all other types for b, such a finite set does not exist either because

we can find an infinite set of unrelated types for b:

Chapter 1. Introduction 22

1 interface B2 { <X> X m2(X x); }

2 interface B3 { <X> Pair<X,X> m2(X x); }

3 interface B4 { <X> Pair<X,Pair<X,X>> m2(X x); }

4 interface B5 { <X> Pair<X,Pair<X,Pair<X,X>>> m2(X x); }

5 interface B6 ...

The problem can also be viewed from the perspective of the following smaller code fragment:

1 b.m2(true);

2 b.m2(42);

Whether or not this code fragment has a type depends very much on the nature of b. For example,

in a context where b has type int, the above code fragment has no type. Whereas in a context where b

has the type described by interface B2, the above code fragment has type void (statements in Java

do not have values and are therefore of type void). The pair of the type and the context in which this

type is assigned is together called a typing. For compositional type inference to work, it is necessary to

find a typing for a given code fragment that is general enough to represent all other possible typings

for that code fragment, which is commonly referred to as a principal typing [67]. Finding a principal

typing means that it is not necessary to know how the term will be used at the moment the term is

analysed because it is certain that a principal typing will be general enough to be instantiated into any

other valid typing as required. However, by similar reasoning as before, there exists no principal typing

for the above code fragment because we can construct an infinite set of unrelated typings, the type of

each being void and the context of each assigning to b one of the types from the set {B1, B2, . . . }.

When dealing with compositional type inference, the notion of typings is more useful than the

notion of types, since the goal of compositional type inference is to compute both the type and the

context for a given program fragment. That is, if a type inference algorithm cannot analyse a program

subcomponent without being provided external context as input, then it cannot truly analyse that

program subcomponent in isolation. As identified by Wells [67], the lack of principal typings in various

systems based on parametric polymorphism is the key factor that makes type inference in those systems

challenging. Even the Hindley/Milner type system, which restricts polymorphism to rank 1, lacks the

principal typings property. It instead has the weaker principal types property which asserts that if

the required context is supplied as input, then the type inference algorithm can find a principal type

Chapter 1. Introduction 23

for a given program fragment. This allows type inference to be partially compositional, albeit at the

cost of first-class polymorphism. For example, in functional languages such as Haskell, the application

term t1 t2 of function t1 to argument t2 (which in Java syntax corresponds to a method invocation

t1(t2)) can be analysed compositionally by analysing the components t1 and t2, in any order, and

then combining the results. However, the let-term let x = t1 in t2 (which corresponds to the Java

syntax T x = t1; t2; where T is the required type annotation for the variable x, and t2 is any Java

expression that may refer to the value of variable x) must be analysed non-compositionally by first

analysing t1 and then using the result as context information about x while analysing t2.

Another indicator of the difficulty of performing type inference for systems based parametric poly-

morphism is the fact many such systems are now known to have undecidable type inference, meaning that

any type inference algorithm is forced to be either incomplete or non-terminating. Such systems with

undecidable type inference include System F [66], System F+η [65], System F≤ [47], System Fω [60],

as well as all rank k restrictions (k > 2) of System F [35] where rank [42] refers to the depth to which

polymorphism is allowed on parameters. Specifically, rank 1 refers to a system where a parameter

cannot be polymorphic, rank 2 allows a parameter to be polymorphic, rank 3 allows a parameter itself

to have a parameter that is polymorphic, and so on.

The difficulties described here suggest a problem inherent in parametric polymorphism itself, and

they motivate a consideration of alternative approaches to compositional type inference and first-class

polymorphism. Such alternatives will be considered in Section 1.2.3.

1.2 Prior Work

Until now, there has been no type inference system that simultaneously supports object-orientation,

first-class polymorphism and compositionality. However, there are systems that can support two out of

the three items. This section reviews the prior work for each pair of items.

1.2.1 Object-Orientation & First-Class Polymorphism

Type inference for object-oriented languages with first-class polymorphism has been studied without

compositional analysis.

Chapter 1. Introduction 24

The first and most actively researched approach initiated by Palsberg and Schwartzbach [46] is

based on flow analysis. In this approach, types are sets of classes, and subtyping is set inclusion. The

analysis begins by tracing method calls throughout the entire program, and generating constraints from

these methods calls and also from uses of expressions within each method. Parametric polymorphism

is supported by effectively splitting the flow graph for each different call of a method so that a method

can be re-analysed with different types for different calls. The generated set of constraints is then

solved using a fixed-point computation, and the program is considered typable if this constraint set is

solvable. This approach was extended by Plevyak and Chien [49] to support more precise polymorphism

in programs that contain deep polymorphic call chains by iteratively splitting the flow graph. A further

improvement on Plevyak and Chien’s algorithm was the Agesen’s Cartesian Product Algorithm [3]

which increases efficiency by replacing the iterative splitting procedure with an immediate case analysis

of all of the combinations of types that are possible for each call site. All of the above variations,

however, require the use of a whole-program analysis, and cannot support separate compilation.

A more recent and quite different approach is Plumicke’s type inference system for Java [52, 51].

This system supports first-class parametric polymorphism and also makes use of intersection types

in order to compute a principal type for any method. In this approach, the type for a polymorphic

parameter is inferred by performing a whole-program search for a set of classes that, after having each

been analysed themselves, are found to be compatible with the usage of the parameter. Thus, despite

having the principal types property, the type inference procedure is prevented from being compositional

due to the required whole-program search.

1.2.2 Object-Orientation & Compositionality

Type inference for object-orientation with a limited form of compositional analysis has been studied

using variations of Algorithm W for the Hindley/Milner type system. With the exception of let-terms,

Algorithm W is compositional. The most general type of a function λx.t taking parameter x and

returning the value of its body t can be analysed by first analysing its body t in isolation. The most

general type of a function application s t can be analysed by first analysing the function s and the

argument t in isolation. The Hindley/Milner type system uses parametric polymorphism so that if the

Chapter 1. Introduction 25

most general types of the function s and the argument t contain type parameters, a type unification

algorithm can be applied to make necessary substitutions for these type parameters so that the type

of the parameter of s matches the type of the argument t. The only kind of term that Algorithm W

does not analyse compositionally is the let-term let x = s in t. To infer the type of x from its usage

within t alone would be equivalent to the problem of inferring the type of a parameter x from its usage

within the function body. As we saw in the previous section, it is especially difficult in parametrically

polymorphic type systems to infer the type of such a variable x if x is used polymorphically. It is for

this reason that Algorithm W analyses let-terms non-compositionally and uses a prior analysis of the

term s to provide a hint as to the polymorphic nature of the variable x. Despite its non-compositional

analysis of let-terms, Algorithm W is compositional to an extent and that is why it is included in this

section.

Algorithm W has been extended to support objects in various ways. Wand produced a variant

of Algorithm W using his extensible records [62, 64] which elegantly encode objects and inheritance

by allowing the extension of existing records with additional fields. Wand’s original type inference

algorithm was incomplete, but complete versions were developed by Jategaonkar and Mitchell [28], and

also by Remy [55]. More recently, Boudol developed a type inference system for extensible records that

addresses safety issues with integrating recursion and state [9]. Variations of extensible records have

also been developed to include first-class record labels [22, 58] which allow the expression of functions

that abstract over labels.

A variation on the extensible record idea also explored by Wand [63] and others [25, 54, 44] is record

concatenation in which two records, each with multiple fields, can be joined to form a new record.

Record concatenation has been studied as a way to encode multiple inheritance, whereby fields and

methods from multiple superclasses can be inherited by a single subclass. An interesting result from

Remy [54] demonstrates that any language with record extension possesses record concatenation for free

by a translation from the latter into the former. Makholm and Wells [44] proved that type inference

for record concatenation is NP-complete, and also presented a restricted form of record concatenation

with O(n2) complexity, or O(n) if bounded in the number of field labels. The simply typed variation of

their system has principal typings, and can be extended with let-polymorphism having principal types.

Chapter 1. Introduction 26

1.2.3 First-Class Polymorphism & Compositionality

The desire to have first-class polymorphism is often discussed in relation to the Hindley/Milner system

where first-class polymorphism has been restricted to ease type inference. Although the Hindley/Milner

system uses parametric polymorphism, the desire to regain first-class polymorphism should not neces-

sarily be tied to parametric polymorphism. Rather, any form of polymorphism that can support the

same kinds of code reuse as parametric polymorphism can be considered as a possible means to this

end. In this section, we consider both parametric polymorphism and intersection type polymorphism,

and investigate the extent to which they support first-class polymorphism and compositional analysis.

Parametric polymorphism

In Section 1.1.2 and Section 1.1.3, we saw that type inference systems based on parametric polymorphism

tend to have difficulty dealing with first-class polymorphism and compositional analysis. Consequently,

the prior work in this section can only describe systems that support first-class polymorphism and

compositionality partially.

We may consider Algorithm W to be compositional to an “extent” since it does generally analyse

programs from the bottom up, with only the exception of let-terms. To work around the difficulties

with first-class polymorphism, there have been efforts to extend Algorithm W to create “partial” type

inference algorithms [39, 41, 31] that will infer types for all terms contained within the Hindley/Milner

system, but will fall back on programmer-supplied type annotations when first-class polymorphism is

needed.

Currently, the most powerful type inference systems using parametric polymorphism are based on

the rank 2 fragment of System F, which contains the typing power of the Hindley/Milner system.

However, these type inference systems are not compositional due to the lack of a principal typings

property. The first such algorithm was developed by Kfoury and Wells [35] which reduces the type

inference problem to an acyclic semi-unification problem. The second such algorithm was developed

by Lushman [43] which improves efficiency by instead translating into the R-acyclic semi-unification

problem. In an attempt to address the lack of principal typings in System F, Lushman’s algorithm also

introduces an extended type syntax that can generalise over more types than raw System F types can.

Chapter 1. Introduction 27

However, the system is not complete and may sometimes infer a type that is not general. In such cases,

the programmer may use an annotation to express the desired type.

Beyond rank 2, System F is undecidable, both for unrestricted rank [66] and also for all rank k

restrictions for k > 2 [35], and no known type inference algorithm exists for these systems.

Intersection type polymorphism

A promising alternative to parametric polymorphism that is able to handle at least the same kinds

of code reuse is intersection type polymorphism, which was first developed by Coppo and Dezani [19],

and at around the same time by Pottinger [53]. In contrast to parametrically polymorphic types, an

intersection type does not use type parameters to generalise the set of all possible instances. Instead, an

intersection type explicitly enumerates the instance types that are intended to be used within a given

program. For example, if a polymorphic function is intended to be used at three different types T1, T2

and T3, then the intersection type to express this polymorphism is T1
.∩ T2

.∩ T3.

The typing power of these two kinds of polymorphism can be compared by considering the set of

terms of the λ-calculus that can be typed in each case. Systems based solely on parametric polymor-

phism type at most the set of strongly normalising λ-terms [24], but cannot type all such terms [60].

On the other hand, certain intersection type systems will type exactly the set of strongly normalising

λ-terms (see [23] for a discussion). By this comparison, intersection type polymorphism allows strictly

more programs to be typed than parametric polymorphism.

Regarding first-class polymorphism, type inference is still undecidable for systems with unrestricted

intersection types [53]. However, more promising is that type inference has been found decidable for

all finite-rank restrictions of some systems of intersection types including System I [36, 37] as well

as Boudol and Zimmer’s system based on the Klop calculus [10]. This makes it possible to create an

always-terminating type inference algorithm by setting a maximum height on the rank of polymorphism.

However, it is not yet clear how such decidable forms of type inference would be used in practice

since someone must still decide on a particular rank limit. For example, if the programmer decides to

run the analysis with a maximum rank of 10 and type inference fails at that rank limit, it is not clear

whether the programmer should accept that the program cannot be typed at this chosen rank limit, or

should instead try the analysis again at a higher rank limit. Exploiting the power of intersection types

Chapter 1. Introduction 28

may in practice require a shift in thinking where the programmer is expected to make the decision on

what level of precision is required for the analysis. Carlier and Wells [16] suggest a view along these

lines when the write: “In fact, there is no reason why one must use the full power of intersection types;

for example, one can choose to use principal typings of the rank-k restriction. In the long run, if one

wants to use intersection types, it seems best to view them as a flexible framework for typing with a

choice of a wide variety of different levels of precision.”

The main relevance of intersection type systems to this thesis is that such systems tend to have the

principal typings property, which makes these systems suitable for compositional analysis. A number

of different type inference algorithms have been developed to find these principal typings:

• The earliest algorithms by Coppo and Dezani [20] and Ronchi della Rocca and Venneri [56]

involved first computing a normal form for a term and then constructing a principal typing for

the normal form. An instance is derived from a principal typing via a set of transformation

operations that includes the usual substitution of types for type variables, as well as an operation

called expansion which is unique to intersection type polymorphism, which expands a type T into

an intersection of type instances T 1 .∩ T 2. One problem with this approach is that if given a non-

terminating program, the normalisation procedure will also be non-terminating, and there is no

simple way to define a subset of the system for which the algorithm always terminates. Another

issue is that by deriving an instance from a principal typing via a set of different operations rather

than a single operation (commonly, a substitution alone), it becomes more difficult to make this

operation composable, and to reason about in formal proofs. One more problem is that, without

any markers in the type syntax, it is difficult to identify which parts of a type may be subject to

the expansion operation (see Chapter 2, Section 2.3.1 for a more detailed review of this original

approach to expansions).

• Ronchi della Rocca developed the first approach based on type unification [57]. In this approach,

a program is analysed to produce a set of type constraints such that each time a function is applied

to an argument, the type of the argument must match the type of the function parameter. Finally,

the unification algorithm is invoked to solve this set of constraints. Since the constraint solving is

done purely at the type level, this opens the possibility to create an always terminating algorithm

Chapter 1. Introduction 29

by specifying a maximum rank on polymorphic types. Like the previous approach, however, this

approach still uses multiple operations to derive instance typings from principal typings, and uses

a complicated expansion operation.

• Kfoury introduced a new unification-based approach to type inference called β-unification [34].

It introduces expansion variables whereby the traditional expansion operation now becomes a

case of substituting an expansion for an expansion variable in the same way that a type can

be substituted for a type variable. Expansion variables make reasoning about expansions easier,

and also allow the different operations of type substitution and expansion to be treated in a

more uniform way. Kfoury and Wells developed this approach further in System I [36, 37] and

showed that every finite-rank restriction of System I has both principal typings and decidable

type inference. The type machinery for expansions and expansion variables was later greatly

simplified and refined by Carlier, Polakow, Wells and Kfoury in System E [17], which allowed

further progress to be made in the design of new type inference algorithms. The first System E

type inference algorithm [15] aimed to show that the process of β-unification for a given program

has a one-to-one correspondence with β-reduction of the same program. The second System E

type inference algorithm [6] makes this correspondence much clearer, and is also parameterised by

a choice of evaluation strategy between call-by-value and call-by-need (See Chapter 3, Section 2.4.1

for a more detailed review of this approach).

• Boudol and Zimmer also developed a type inference procedure that finds principal typings using

a modified Klop calculus [10]. They present a result similar to that of System I in that their

procedure corresponds step for step to reduction in the calculus. The expansion operation is

performed by keeping track of the set of type variables that need to be duplicated whenever an

argument is used by a function at an intersection of multiple types. However, this set of type

variables is not embedded in the type and must be found by analysing the program, which means

that the expansion operation cannot work in the realm of types alone. Also, intersection types

are permitted to occur only to the left of an arrow. This simplification meets the needs of the λ-

calculus and Klop-calculus, but may present difficulties when extending the system with additional

term forms (for example, our treatment of extensible records will require the introduction of

intersection types to the right of an arrow).

Chapter 1. Introduction 30

Comparing the approaches to type inference based on parametric polymorphism and intersection

types, intersection types clearly have an advantage in relation to compositional analysis due to the

principal typings property. Intersection type systems are also beginning to show promise in support-

ing decidable type inference beyond rank 2 using rank-stratified type systems (System I and Boudol

and Zimmer’s system). While it may not yet be clear how programmers ought best to exploit these

rank-stratified type systems, the overall benefits of intersection type polymorphism over parametric

polymorphism suggest that intersection types are a more promising avenue for future research.

1.3 Extensible Records in the System E Framework

This dissertation introduces a new approach to object-oriented type inference that results from integrat-

ing extensible records into the System E framework. In the resulting system, objects are represented

by extensible records, while first-class polymorphism and compositional type inference are provided by

System E.

The fact that this approach to object-oriented type inference supports both first-class polymorphism

and compositional type inference is significant because previous type inference systems, both for exten-

sible records in particular, and also for object-orientation in general, have supported only one or the

other of these two important features, but never both of them simultaneously. Our system also makes

a significant contribution to the work on System E, since it extends System E for the first time beyond

the terms of the pure λ-calculus, in this case, to work with extensible record data structures.

This section will give a brief overview of extensible records, System E and the system that results

from combining them, called System Evcr.

1.3.1 Extensible Records

A record is an unordered collection of labelled values called fields where access to individual fields is

provided by a field selection operator, often indicated by a dot, “.”. For example, if we let john denote

the record { name="John Smith", age=31 }, then the field selection john.age evaluates to 31 while

the field selection john.name evaluates to "John Smith". Records are a useful construct in a calculus

of objects, since an object can be represented simply as a record, where both the methods and fields of

Chapter 1. Introduction 31

the object can be represented by fields of the record.

An extensible record is essentially a special kind of record that can be defined as an extension of

an existing record. For example, given some record r, then the extensible record { name = "John", r

} is an extension of r, containing all of the fields of r plus the additional field labelled name of value

"John", with the additional field potentially overriding any existing field in r with the same name. A

record of multiple fields is built from successive record extensions starting with the empty record {}.

For example, we may define a record john as the following extension:

let john = { name="John Smith", { age=31, {} } }

Field selection is performed by scanning the fields from left to right until the first field with the

desired label is found, which is also the mechanism by which field overriding words. For example,

selecting the field age in the extensible record { age=41, john } will result in 41 and not 31, since the

field age=41 will be encountered first in the left-to-right scanning order. The ability to define one record

as an extension of another record while potentially overriding some of its fields is of particular interest

to object-orientation since it allows for an elegant encoding of object-oriented inheritance whereby one

class of objects may be defined as an extension of another class of objects, potentially overriding some

of its methods.

When an extensible record has the empty record {} at its base, it is no more expressive than an

ordinary record. The real power of extensible records comes from the ability to define a record with a

variable at its base. For example, the following function takes a parameter x representing an unknown

record, and returns an extension of x with an additional field labelled id:

λx. { id=3, x }

This is the basic mechanism by which object-oriented inheritance can be encoded into an extensible

record calculus. Here, variable x could represent an instance of a superclass that is being extended,

in which case variable x would essentially serve the same purpose as Java’s super keyword. Various

encodings of OO into an extensible record calculus will be presented in Section 5.4.2 in Chapter 5.

Chapter 1. Introduction 32

Typing with row variables

When an extensible record has the empty record {} at its base, it is typed by enumerating the types of

the record’s fields. For example, the extensible record {a=3,{b=true,{}}} has type {a:Int,b:Bool}.

However, when an extensible record has a term variable at its base, some means is needed to

indicate the types of the unknown fields represented by the term variable. This typing challenge has

been traditionally solved using row variables. Using this approach, the example function given in the

previous section can be typed

(1) λx. { id=3, x } : {ρ} → {id:Int, ρ}

where the type {ρ} → {id:Int, ρ} can be read as describing a function that takes as its parameter a

record of type {ρ} and returns a record of type {id:Int, ρ}. Here, ρ is a row variable representing the

types of the unknown fields of the parameter x, and so the resulting record has a type containing at

least the fields specified by ρ, plus the additional field id of type Int.

A row variable is similar to a type variable except that rather than being subject to type substi-

tutions, it is subject to row substitutions where a row is a set of pairs of field labels and types that

may appear within a record type. An important restriction on row variables is that they may not be

used to introduce duplicate field types into a record type. In the above function, ρ may not be used

to introduce another id field into the record type, but is free to introduce any number of other fields

besides id.

There have been various treatments of row variables in the literature, and each takes a different

approach to example (1) above:

• In Wand’s original system, the row variable ρ in example (1) does not itself restrict what field

labels may be introduced, and multiple occurrences of a field label may be introduced into a

record type. However, when duplicate labels are present, only the leftmost occurrence of a label

is effective and all others are ignored. When considering only the effective fields of a record type,

this approach prevents effective duplicate fields from being introduced, as desired, although it

fails to yield principal types, and it also leads to poor efficiency in the type inference algorithm.

Chapter 1. Introduction 33

• Jategaonkar and Mitchell [28] defined the substitution operation on record types as a partial

function, succeeding only when the set of labels already in the record are disjoint from the set

of labels being substituted for the row variable. That is, a substitution σ applied to the type of

example (1) is defined only if σρ does not contain any field labelled id. A consequence of this

approach is that any substitution for ρ must be aware of the entire record type in which ρ appears.

• Rémy [55] proposed encoding record types in a way that reflects both positive and negative

information about which fields are present and which are absent. For example, the equivalent of

type { name:String, age:Int } in Rémy’s system is Π(name : pre(String), age : pre(Int), a :

abs, b : abs, . . .) where a,b,. . . represent every other possible field label from the complete set of

field labels, excluding name and age. This is abbreviated to just abs, and so the record type can be

expressed as: Π(name : pre(String), age : pre(Int), abs). In this system, the function in example

(1) above can be given type Π(id : abs, ρ) → Π(id : pre(Int), ρ) where any type substituted for

ρ must have id : abs. However, it is interesting to note that although Rémy’s system does keep

track of positive and negative information on record types, the negative information of id : abs is

not directly associated with the variable ρ itself. Therefore, any substitution for ρ must still be

aware of all of the fields in the entire record type, as in the approach of Jategaonkar and Mitchell,

in order to prevent the instantiation of ambiguous types with multiple fields labelled id.

• Cardelli and Mitchell [12] developed a type system in which types again express both positive

and negative information about present and absent fields, but where a subtype relation is also

provided such that a type with more positive and negative information is considered a subtype of

a type with less positive and negative information. For example, the record type {} is the type of

all records, while the subtype {a : Int}\b is the type of all records which contain a field labelled

a of type Int and also lack any field labelled b. In this system, the function in example (1) above

can be assigned the type ∀(ρ <: {}\id).ρ → {ρ|id : Int} which asserts that, given any ρ that

is a subtype of the type of all records lacking label id, the function will take a record of type ρ

and return a record of type ρ modified with the addition of a field labelled id of type Int. Since

negative information is associated directly with the parameter type ρ, any substitution for ρ can

be performed on ρ alone and without any knowledge of the record type in which ρ is contained.

Chapter 1. Introduction 34

This is in contrast to Jategaonkar and Mitchell’s solution and also Rémy solution in which a

substitution cannot be performed on a row variable without being aware of the entire record type

in which the row variable is contained.

• In an approach developed by Harper and Pierce [25], and later refined by Gaster and Jones [22],

the idea of constrained quantification of row variables is used whereby negative information is

associated directly with row variables in the form of a predicate rather than with a subtype

relation. For example, the predicate T \id asserts that record type T lacks any field labelled id.

Using such a predicate, the function in example (1) above can be assigned the type ∀(ρ\id).{ρ} →

{id:Int, ρ} which asserts that for any row ρ that lacks a field labelled id, the function will take a

record of type {ρ} and return a record of type {id:Int, ρ}. Like Cardelli and Mitchell’s solution,

negative information is associated directly with the row variable ρ, any substitution for ρ can be

performed on ρ alone without any knowledge of the record type in which ρ is contained.

It is interesting to note that extensible records and row variables were originally developed by Wand

in the context of object-oriented type inference. Ironically, however, Wand’s original type inference

system, as well as all subsequent type inference systems for extensible records, were developed in the

Hindley/Milner style, severely hindering their applicability to object-orientation, a limitation discussed

at length in Section 1.1. It is for this reason that we wish to revisit extensible records within a more

modern type-theoretical framework that will preserve the modelling and engineering benefits of object-

orientation.

1.3.2 System E

This section will give a brief overview of System E, leaving a more detailed review for the next chapter.

System E is a type system for the λ-calulus that supports first-class polymorphism via intersection

types and type inference via expansion variables. In many ways, System E is a typical intersection

type system. For example, if the identity function is to be used within a program on both integers and

strings, it may be given a polymorphic intersection type such as Int→ Int .∩ String→ String.

What distinguishes System E from other intersection type systems, however, is that it uses expansion

variables as a means to express principal typings more clearly and more explicitly than has been done

Chapter 1. Introduction 35

in previous systems. In System E, the identity function has e (α → α) as a principal type, where α

is a type variable and e is an expansion variable. When it is discovered how the identity function is

used by the program during type inference, a so-called expansion may be substituted for e which may

then act upon (α→ α) to give, for example, the intersection type Int→ Int .∩ String→ String. An

expansion can introduce any number of intersection components corresponding to the various ways in

which the function is used, with potentially different types substituted for α in each case. This is true

even if the function is used zero times, and thus it is also possible to substitute for e an expansion that

results in an intersection of zero types. In System E, the intersection of zero types (the nullary case of

.∩) is written ω.

Current type inference algorithms for System E follow a procedure that has a one-to-one correspon-

dence with the evaluation of the program being analysed, a consequence being that the type inference

algorithm will terminate exactly whenever evaluation of the analysed program will terminate. For ex-

ample, such algorithms will run forever if analysing a program whose evaluation would run forever. This

behaviour is different from System E’s predecessor, System I, which is able to guarantee termination

by restricting polymorphism to some specified finite rank. However, it is stated as ongoing future work

in the papers on System E type inference [15, 6] to develop type inference algorithms that perform

any specified amount of partial evaluation followed by traditional monovariant analysis. Then, in the

case of programs whose evaluation exceeds this specified amount, the type inference algorithm would

terminate with a type of less precision. Since that is stated as ongoing future work in those papers, we

do not pursue the idea in this dissertation.

1.3.3 System Evcr

This dissertation contributes a new type system, called System Evcr, that results from integrating

extensible records with System E. Combining these two technologies results in a system capable of si-

multaneously supporting object-orientation, first-class polymorphism and compositional analysis, where

previous type inference systems have succeeded only in supporting two out of these three features. This

is of particular significance to object-oriented type inference since first-class polymorphism and compo-

sitional analysis are crucial to preserving the modelling and engineering benefits of object-orientation.

Chapter 1. Introduction 36

In this section, we give a brief overview of System Evcr.

One of the biggest challenges to integrating extensible records into the System E framework is that

much of the type machinery of System E was designed around a calculus of functions. It is not obvious,

for instance, how expansion variables make sense in the context of extensible records. In System Evcr,

this issue is sidestepped by treating extensible records as functions from labels to values, and by treating

field selection as the application of an extensible record to a label. To highlight the functional nature of

extensible records in our system, extensible records are defined using syntax resembling that of pattern

matching functions where labels are the only patterns. The → symbol is used to map a particular

record label to a particular value, and the .∩ symbol (here used as term operator rather than a type

operator) is used to join each case of the function. For example, we may define an extensible record as

follows:

let john = occupation→ "Student" .∩ name→ "John" .∩ age→ 37

Then, the application john name evaluates to "John" while the application john age evaluates to

37. By treating extensible records as functions, it is possible to reuse all of System E’s function-oriented

type machinery, almost as is. In particular, it is possible to represent record types as intersections of

function types in the manner of Kopylov [38], such that the extensible record john can be typed as

follows:

Record: occupation→ "Student" .∩ name→ "John" .∩ age→ 37

Type: occupation→ String .∩ name→ String .∩ age→ Int

Using the intersection type constructor .∩, the above type asserts that this record has type occupation→

String and type name → String and type age → Int. Each of these component types is a function

type taking a particular field label to a particular type of result. For example, the function type

occupation→ String asserts that the given record, when applied to the label occupation, will return

a String.

Chapter 1. Introduction 37

Since the above intersection type asserts that the record has all three function types, it is also

possible to derive a number of different intersection types for the same record:

(1) occupation→ String .∩ name→ String .∩ age→ Int

(2) occupation→ String .∩ name→ String

(3) occupation→ String

This results from recombining the component function types in different ways, and achieves very

much the same goal as subtype polymorphism where an object of a certain type can also be considered

an object of a type with strictly fewer fields. As long as these intersection types are automatically

inferred for the programmer, we argue that intersection type polymorphism can effectively serve the

purpose of subtype polymorphism and that we need not complicate the system by adding more kinds of

polymorphism. Similarly, intersection types can serve the purpose of parametric polymorphism because

they can type strictly more terms than are typable using parametric polymorphism (see Section 1.2.3).

Finally, intersection types can also serve the purpose of inheritance polymorphism which, as observed

in [29], can really be viewed as a special case of parametric polymorphism. It is a strength of our

system that only a single brand of polymorphism is required to support 3 different styles of polymorphic

programming.

With record types expressed as intersections of function types, the application of expansion variables

becomes straightforward. Just as expansion variables were applicable to function types in the original

System E, so too are they applicable to function types as they appear in record types in System Evcr,

as shown below:

e1 (occupation→ String) .∩ e2 (name→ String) .∩ e3 (age→ Int)

During type inference, if it is discovered that the record john is used only for its name and age

fields, an expansion may be substituted for e1 to reflect that it is used zero times, and expansions may

be substituted for e2 and e3 to reflect that they are each used once, resulting in the type:

Chapter 1. Introduction 38

name→ String .∩ age→ Int

One peculiar consequence of using ordinary function types to describe records is that the type syntax

is flexible enough to describe even impossible records, such as name→ String .∩ name→ Int. Since no

record can be defined in our language whose name field is simultaneously of type String and Int, this

would merely be treated as an empty type, and our typing derivation rules (Definition 3.24) will not

permit any record to be assigned this type. Not even the extensible record name→ "Joe" .∩ name→ 42

could be assigned this type, since name→ "Joe" should be treated as an extension of name→ 42, and

the former field will override the latter field (see Section 1.3.1).

In traditional type systems for extensible records, the most complicated typing issue is that of

typing records that are extensions of unknown records. Given the extensible record (in traditional

syntax) of { occupation = "Student", r } where r is a variable representing an unknown record,

Wand proposed the use of a row variable ρ to describe the type of r so that the entire record might be

given the type { occupation : String, ρ }. As discussed in Section 1.3.1, any substitution for the

row variable ρ must be careful not to introduce an additional field called occupation into the record

type, otherwise the resulting record type would have two fields with the same name.

System Evcr does not have row variables, but instead introduces a novel, more fine-grained primitive

called a constrained simple type variable. From this together with other primitives, it is possible in

System Evcr to construct a type that serves the same purpose as row variable. For example, the same

extensible record can be expressed and typed in System Evcr as follows:

Record: occupation→ "Student" .∩ r

Type: e1 (occupation→ String) .∩ e2 (α[occupation]→ e3 β)

Here, the type variable α[occupation] is constrained such that only labels not equal to occupation

may be substituted for it. Then, e2 (α[occupation]→ e3 β) effectively acts as a row variable because it

can be expanded, via e2, into an intersection of field types whose labels must not be equal to occupation.

Chapter 1. Introduction 39

Type inference itself is performed by an algorithm called I. This algorithm departs from previous

type inference algorithms for System E in that it does not aim to have a direct correspondence with

program evaluation. Rather, it follows the compositional style of AlgorithmW , analysing each program

subterm before working its way outward to the root term of the program. Algorithm I is parameterised

by the choice of a unification algorithm that is tasked with solving type constraints generated by I.

However, since I does not try to simulate program evaluation, the standard β-unification algorithm used

in previous type inference algorithms for System E cannot be used here. In particular, β-unification

assumes that all functions in the program being analysed are λ-abstractions of the λ-calculus, and

this assumption breaks down when we introduce extensible records posing as functions. Instead, I

is designed with covering unification in mind, which is particular kind of unification approach that

attempts to find a most general solution (or set of solutions) to the constraints given to it, and is

exemplified by the opus unification algorithm [7]. At a cost to efficiency, opus is able to find solutions

to arbitrary type constraints based solely on the types alone and making no assumptions about the

term language or semantics of the underlying calculus. However, opus’ loss of efficiency is not minor

(see Section 3.6 and Section 5.5) and the algorithm is too inefficient to be used in practice. The loss

of efficiency comes from the fact that, since unification in the presence of expansion variables often

does not have a single most-general solution, in order to find the most general set of solutions for a

given constraint, opus must branch the search path at potentially each step of unification leading to a

combinatorial explosion of alternative solutions.

As an efficient alternative to opus, we also present the new unification algorithm opusβ which derives

from opus, but sacrifices the property of covering unifier sets for a gain in efficiency by borrowing ideas

from β-unification. Algorithm I and opusβ have been implemented and are demonstrated successfully

on the object-oriented examples presented in this introduction.

1.4 Outline of the Dissertation

The following chapters introduce our system incrementally. An overview of each chapter is given below.

• Chapter 2 reviews System E and the fundamental concepts of intersection types and expansion

variables, and explains how they are used in type inference and type unification.

Chapter 1. Introduction 40

• Chapter 3 formally defines our initial calculus called System Ev containing only the terms of the

pure λ-calculus. System Ev differs from System E by the introduction of a value restriction which

is necessary to support the typesafe integration of constants and extensible records.

• Chapter 4 defines an extension of System Ev called System Evc that adds the new syntactic

category of constants. In this category, data values (e.g. integers), operations (e.g. +, -) and im-

portantly record labels can be included. System Evc depends on the value restriction of System Ev

to ensure type safety.

• Chapter 5 defines an extension of System Evc called System Evcr that adds extensible records.

System Evcr depends on the value restriction of System Ev to ensure type safety, and depends on

the constants of System Evc to provide record labels.

• Chapter 6 presents conclusions and future work.

• Appendix A contains additional proofs related to our type system and type inference algorithm

that were not included in the main body of the dissertation.

• Appendix B shows the output of our implementation on all examples from the System E Inference

Report [13].

• Appendix C includes the original opus algorithm [7].

1.5 How to read this dissertation

To help the reader understand the range of typing issues presented in this dissertation, System Evcr

will be presented incrementally with each increment presented in its own chapter: the first increment

System Ev presented in Chapter 3 will focus on the pure λ-calculus and also lay the groundwork for

studying extended term sets; the second increment System Evc presented in Chapter 4 will extend

System Ev to support constants; and the third increment System Evcr presented in Chapter 5 will

extend System Evc to support extensible records with record labels represented by constants.

Although this incremental presentation approach has the benefit of brevity and allows the material

to be organised by topic, it may also potentially pose some challenges for the reader since each new

Chapter 1. Introduction 41

increment will present only new or amended definitions, and the entire system will therefore be spread

across three chapters. To help guide the reader through this dissertation, this section will outline the

conventions used for incremental presentation. For each increment:

• If a definition is amended, the definition will be restated in full with the amended parts underlined.

• If a lemma is needs to be reproved due to amended definitions, the lemma will be restated.

• Theorems will always be restated.

• Proofs of restated lemmas and theorems will often be brief focusing on new cases.

As an example of an incremental definition, this dissertation will present three increments of the

definition of term syntax across three chapters with the following labels:

• In Chapter 3: Definition 3.1 (Terms for Ev)

• In Chapter 4: Amendment to Definition 3.1 (Terms for Evc)

• In Chapter 5: Amendment to Definition 3.1 (Terms for Evcr)

Note that the title of each increment of the definition has a suffix such as “- for Evcr” which allows the

three increments of the definition to be referenced distinctly in discussions that compare one increment

to another. When the context is clear, however, the short form reference “Definition 3.1” may also

commonly be used to refer to the “current” increment of the definition, particularly in the body of

proofs. This is important given that proofs of lemmas and theorems in one increment often carry across

to the next increment unchanged, and in such cases, any references made to Definition 3.1 should be

interpreted in the context of the current increment. Different increments of a lemma or theorem follow

similar naming and referencing conventions except that the prefix “Restatement of -” is used instead of

“Amendment to -”. For example, “Restatement of Theorem 3.30 (Subject reduction for Evc)”.

Since each increment focuses only on what is new, it is sometimes important to know how to

find definitions, lemmas and theorems from previous increments. This can be done via the index of

definitions and theorems, located immediately after the table of contents, which lists the page numbers

of all definitions, lemmas, theorems and their amendments or restatements by increment and by number.

However, this index is often not needed since each amended definition will restate in full the original

definition with amended parts underlined, while each proof of a restated lemma or theorem that focuses

Chapter 1. Introduction 42

only on new cases will make an in-text reference to the page number of the lemma or theorem from the

previous increment whose proof is being extended.

To give an example of how to read such a proof, consider Theorem 3.30 (Subject reduction for Ev)

whose page number can be found in index of definitions and theorems (after the table of contents). The

proof of this theorem can be read without reference to any previous increment because it is the first

increment. However, this theorem must be reproved for System Evc to take into account new terms and

reduction rules related to constants, and so in Chapter 4, this result is restated and reproved under the

label “Restatement of Theorem 3.30 (Subject reduction for Evc)” (which can also be found in the index

of definitions and theorems). When reading the proof of the restated theorem for System Evc, only one

additional case for reducing applications of constants is shown, and the cases for all other reduction

rules are stated as remaining unchanged. In this case, if the reader wishes to review the other cases,

a page number reference is given in the text to the original Theorem 3.30 (Subject reduction for Ev)

where a proof of all other cases can be found.

As a slightly more complicated example, when reading the proof of “Restatement of Theorem 3.30

(Subject reduction for Evcr)”, only the two additional cases for reducing applications of extensible

records are shown, and all other cases are stated as remaining unchanged. In this case, if the reader

wishes to review the other cases, the reader is given the page reference to “Restatement of Theorem 3.30

(Subject reduction for Evc)” which shows the proof for the cases relating to constants, and from there

a page reference is given to “Theorem 3.30 (Subject reduction for Ev)” which shows the proof for all of

the remaining cases related to pure λ-terms.

While this is perhaps an unfortunate consequence of presenting the work incrementally, readers who

are interested only in the new cases of the proofs for each chapter will be able to read those cases

without referring back to already established cases presented in previous chapters, and it is hoped that

this style of presentation will allow the reader to more easily take in a set of complex topics by focusing

on one topic at a time.

Chapter 2

Review of System E

System E is a type system for the λ-calculus that provides polymorphism via intersection types and

type inference via expansion variables. This chapter reviews the key concepts and ideas of System E

that will be used to formulate our own system starting from the next chapter.

Several formulations of System E exist. The original formulation [17] is parameterised on its sub-

typing relation, and defines special proof terms called skeletons which are concise encodings of typing

derivations. Since System E permits a reflexive subtyping relation, in which case no typing power is

added, and since skeletons do not add typing power, both of these features have sometimes been omit-

ted from some other formulations of System E. For example, all existing type inference algorithms for

System E exclude subtyping from analysis by choosing a reflexive subtyping rule [15, 6], while some

other formulations of System E have been presented without skeletons [7, 8]. Fortunately, none of these

features is necessary to support object-orientation, first-class polymorphism or compositional analysis,

and so the formulation of System E presented in this chapter will be simplified accordingly.

This chapter is organised as follows. Section 2.1 introduces the the λ-calculus on which System E

is built. Section 2.2 introduces the type language and typing rules of the type system. Section 2.3

defines the expansion and substitution operations of System E which are necessary for performing type

inference. Section 2.4 discusses the different approaches to type inference and type unification within

System E. Finally, Section 2.5 summarises the main topics of this chapter.

43

Chapter 2. Review of System E 44

2.1 λ-Calculus

The λ-calculus [18] is a model of computation frequently used to study typing issues in programming

languages. The λ-calculus is Turing-complete, yet is remarkably small, and maps closely to concepts

found in real programming languages. Programs expressed in the λ-calculus are constructed from terms,

sometimes called λ-terms, of which there are only three kinds. These terms are defined by the following

grammar:

s, t, u ::= x | λx.t | s t

Metavariables s, t and u range over terms. Metavariables x, y and z range over some countably

infinite set of term variables, λx.t is called a λ-abstraction which is a function taking a parameter x and

returning the result t, and s t is an application of the function s to the argument t.

Within a given term, each occurrence of a term variable can be considered as either bound or free.

A term variable x is bound if it occurs under a λx, and otherwise it is free. For example, in the term

λy.x (λx.x), the first occurrence of x is free while the second occurrence of x is bound by λx. Based

on these notions, the λ-calculus defines the operation of term substitution by which it is possible to

substitute some term s for all free occurrences of some term variable x within another term t. For

example, given the term λy.x (λx.x), substituting s for x results in λy.s (λx.x) because only the first

occurrence of x is free, while the second occurrence of x is bound by λx.

In the λ-calculus, the equivalent of executing a program is evaluating a λ-term. The evaluation of a

λ-term is performed by a sequence of steps called reductions. There is only one needed reduction rule in

the λ-calculus, called β-reduction, which works as follows: an application (λx.t) s, reduces to the term

t with s substituted for each free occurrence of x in t. For example, the application (λx.x x) (λy.y)

reduces to (λy.y) (λy.y) which in turn reduces to λy.y. The term λy.y cannot be reduced any further,

and is called a value.

A λ-term can be evaluated using a number of different strategies including call-by-value [50], call-

by-name [18] and call-by-need [5]. Each evaluation strategy is distinguished by performing sequences of

β-reductions in particular orders. Call-by-value reduces a function argument to a value before applying

the function. Call-by-name reduces a function argument after applying the function, each time the

Chapter 2. Review of System E 45

argument is used. Call-by-need reduces a function argument after applying the function, but only the

first time the argument is used, with subsequent uses automatically reusing the result of the first time

the argument was reduced.

In this dissertation, we will focus on the call-by-value semantics which is commonly used in object-

oriented programming languages such as Java, C++ and C#.

2.2 Type System

The two most important features of System E are intersection types and expansion variables.

Intersection types are used rather than parametrically polymorphic types to provide polymorphism

in System E. The primary difference between these two kinds of polymorphism is that a parametrically

polymorphic type represents a possibly infinite set of type instances, while an intersection type repre-

sents a finite set of type instances. Recall from Section 1.1.2 of Chapter 1 that the identity function in

Java can be defined with a parametrically polymorphic type as follows:

1 <X> X identity(X x) { return x; }

That is, the identity function can take any X to an X for some type parameter X, universally quan-

tified by <X>. In the λ-calculus, the identity function can be expressed as λx.x and the equivalent

parametrically polymorphic type can be expressed in conventional notation as ∀α.α→ α where α→ α

represents the type of a function taking an α to an α, and where ∀α universally quantifies the type

parameter α. This polymorphic type represents an infinite set of instance types, each resulting from

substituting a different type for the type parameter α.

In contrast, an intersection type can represent only a finite set of instance types, and is notated

by explicitly enumerating the instance types. For example, the identity function may be given the

intersection type int→ int .∩ bool→ bool which represents a set of exactly two instances, delimited

by .∩. Intersection types may appear less powerful than parametrically polymorphic types, but they in

fact type strictly more λ-terms than parametrically polymorphic types (see Section 1.2.3 of Chapter 1).

The reason that finitary polymorphism suffices is that programs themselves are finite and a function

such as the identity function will be used within a program in only a finite number of different contexts.

Chapter 2. Review of System E 46

The second important feature of System E is expansion variables, or E-variables, which are used

to express principal typings and thereby support compositional type inference. A principal type for

the identity function is e (α → α) where e is an expansion variable that marks a position where an

expansion operation can be performed. During type inference, a finite number of expansions can be

inserted at the position of e as the finite number of uses of the identity function are encountered. For

example, if the identity function is used on both integers and booleans, then this principal type can,

during the type inference process, be expanded to int→ int .∩ bool→ bool.

Note that while the System E type e (α → α) looks similar in structure to the parametrically

polymorphic type ∀α.α → α, they are very different in nature. e (α → α) is in fact a monomorphic

type, with the expansion variables and type variables serving only as placeholders during type inference

to construct true polymorphic types such as int → int .∩ bool → bool. That is to say, there is no

typing derivation rule that says that a function of type e (α → α) can be applied to both integers

and booleans, whereas there is such a rule for a function of type int → int .∩ bool → bool. Thus,

the most direct counterpart to the infinitary polymorphism in ∀α.α → α in System E is the finitary

polymorphism introduced by intersection types such as int→ int .∩ bool→ bool.

In the remainder of this section, we introduce the type syntax and the typing rules that form the

type system of System E. It is important to note that as far as the typing rules alone are concerned,

expansion variables have virtually no semantic value. When inserted into types, they act merely as

decorations and do not add to the typing power of the type system in any way. Their purpose is solely

for use in type inference where substitutions for expansion variables are used to derive more specific

types from more general types. Hence, while expansion variables will be introduced now as part of the

type syntax, a discussion of their actual use will be postponed until Section 2.3 where the operations

of expansion and substitution will be described in detail.

The types of System E are defined by the following grammar:

S, T, U ::= ω | S .∩ T | e T | α | S → T

ω is the omega type which can be assigned to unused terms. S .∩ T is an intersection type which can

be assigned to a term that is to be used at both type S and type T . e T is an E-variable application

Chapter 2. Review of System E 47

(S .∩ T) .∩ U = S .∩ (T .∩ U) .∩-associativity

S .∩ T = T .∩ S .∩-commutativity

T .∩ ω = T .∩-unit

e (S .∩ T) = e S .∩ e T e distributes over .∩

e ω = ω e distributes over ω

Figure 2.1: System E type equalities

type which decorates type T with an E-variable e, where metavariables e, f, g range over some countably

infinite set of E-variables. Metavariables α, β and γ indicate type variables which represent unknown

types. And finally, S → T is a function type from parameter type S to result type T .

Intersection types in System E are designed to be used linearly. That is, S .∩ T .∩ U is the type of

a term that is to be used 3 times, once at type S, once at type T and once at type U . ω should be

viewed as the nullary case of .∩, and so ω is the type of a term that is used zero times.

System E imposes a set of equalities on types, given in Figure 2.1. With ω as the nullary case of

.∩, an E-variable e distributes over ω in conceptually the same way that it distributes over .∩. Notice

that while .∩ is associative and commutative, it is not also idempotent, meaning that T .∩ T is not, in

general, equal to T . This is due to System E’s linear typing model since T .∩ T is the type of a term

that is to be used twice at type T , which is distinct from T , the type of a term that is to be used once

at type T .

A term context (metavariable Γ) is a total function from term variables to types, mapping only a

finite number of term variables to non-ω types. A term context is written x1 : T1, . . . , xn : Tn with y : ω

assumed for each variable y not explicitly mentioned. The term context that maps all term variables

to ω is denoted Γω.

A typing judgement t : T � Γ asserts that term t has type T in the term context Γ, or alternatively,

that term t has typing T � Γ. For example, the judgement x y : α � x : β → α, y : β asserts that in a

context where x has type β → α and y has type β, the term x y has type α.

The rules for deriving typing judgements in System E are presented in Figure 2.2. These rules

enforce System E’s linear typing model, which is illustrated by the following two examples.

The first example is a typing derivation for the term λx.x x in which the variable x is used twice:

Chapter 2. Review of System E 48

(var)
x : T � x : T

(omega)
t : ω � Γω

(abs)
t : T � Γ, x : S

λx.t : S→T � Γ
(int)

t : S � Γ1 t : T � Γ2

t : S .∩ T � Γ1
.∩ Γ2

(app)
t : S→T � Γ1 s : S � Γ2

t s : T � Γ1
.∩ Γ2

(evar)
t : T � Γ

t : e T � e Γ

where : (Γ1
.∩ Γ2)(x) = Γ1(x) .∩ Γ2(x) and (e Γ)(x) = e Γ(x)

Figure 2.2: System E typing rules

x : β → α � x : β → α
(var)

x : β � x : β
(var)

x x : α � x : (β → α) .∩ β
(app)

λx.x x : ((β → α) .∩ β)→ α�
(abs)

Rule (var) permits only x to be mentioned in the term context, and Rule (app) forces both uses of

x to be mentioned, and nothing more. Since the individual typing for each x mentions x only once in

the term context, Rule (app) must merge the term contexts to reflect both uses of x in the application

x x. When abstracting over x, we obtain a function whose parameter type indicates that the parameter

is used twice and at what types the parameter will be used.

The second example is a typing derivation for the term λx.(λy.y) in which the variable x is not used:

y : α � y : α (var)

λy.y : α→ α�
(abs)

λx.(λy.y) : ω → (α→ α)�
(abs)

In the first two judgements, x is not mentioned and so it is forced to have type ω in the term context.

When abstracting over x in the final judgement, we obtain a function whose parameter type indicates

that the parameter is not used.

Intersection types are introduced into parameter types and argument types in different ways. If a

parameter is used multiple times by a function thereby requiring an intersection type, it is Rule (app)

that is responsible for introducing an intersection type into the term context, and Rule (abs) that

Chapter 2. Review of System E 49

transfers the intersection type to the parameter type. However, these rules can ultimately introduce

intersection types only to the types of parameters. To introduce an intersection type to the type of an

argument that is to be passed into that parameter, Rule (var) can be used if the argument is a variable,

or Rule (int) can be used for anything else. The following example illustrates the application of λx.x x

to the argument λy.y. Rule (app) and Rule (abs) are used to derive that the parameter type of λx.x x

is an intersection type, while Rule (int) is used to give argument λx.x the required intersection type

(where T abbreviates α→ α):

x : T→T � x : T→T
(var)

x : T � x : T
(var)

x x : T � x : (T→T) .∩ T
(app)

λx.x x : ((T→T) .∩ T)→T�
(abs)

y : T � y : T
(var)

λy.y : T→T�
(abs)

y : α � y : α (var)

λy.y : T�
(abs)

λy.y : (T→T) .∩ T�
(int)

(λx.x x) (λy.y) : T�
(app)

2.3 Expansions and Expansion Variables

The expansion operation of intersection type systems was introduced by Coppo, Dezani and Venneri [20]

to achieve principal typings, and as such, it is an operation that is crucial to supporting compositional

type inference (see Section 1.1.3 for a discussion relating principal typings and compositional analysis).

A typing for some term t is said to be principal if all other possible typings for t can be derived from it

via some specified operation or set of operations. In intersection type systems, this set usually includes

the expansion operation along with the standard substitution operation which substitutes types for

type variables. The main innovation of System I and its successor System E was to introduce expansion

variables, or “E-variables”, allowing both normal type substitution and expansion to be done using a

single, unified substitution operation. It has been established that System I has the principal typings

property for all finite-rank restrictions of the system [37]. System E improves on the work of System I

by offering a much more simply defined expansion operation that is also “composable”, allowing type

inference procedures to be broken into solution steps which can be composed together into a single

solution (see Section 2.3.2). A similar principal typings result as the one for System I has not yet been

established for System E, although it has been established that the second type inference algorithm for

Chapter 2. Review of System E 50

System E [6] infers typings that are principal with respect to a subset of System E typings that have a

correspondence with either call-by-name or call-by-value evaluation.

Before we introduce System E’s unified substitution operation based on expansion variables, we

will discuss how the separate type substitution and expansion operations originally worked in earlier

intersection type systems.

2.3.1 The Traditional Approach

This section reviews the traditional approach to type substitutions and expansions in which they are

treated as separate operations.

Let us first review type substitutions. If we already know that the judgement λx.λy.x y : (α→ β)→

(α→ β)� can be derived, then it stands to reason that the judgement λx.λy.x y : (S → T)→ (S → T)�

can also be derived, for any types S and T. This is justified because if we take the typing derivation of

the first judgement and substitute type S for every occurrence of the type variable α and type T for

every occurrence of the type variable β, we get a valid typing derivation for the second judgement:

Original derivation After substituting α := S, β := T

x : α→ β � x : α→ β
(var)

y : α � y : α (var)

x y : β � x : α→ β, y : α
(app)

λy.x y : α→ β � x : α→ β
(abs)

λx.λy.x y : (α→ β)→ (α→ β)�
(abs)

x : S → T � x : S → T
(var)

y : S � y : S
(var)

x y : T � x : S → T, y : S
(app)

λy.x y : S → T � x : S → T
(abs)

λx.λy.x y : (S → T)→ (S → T)�
(abs)

Because type variables represent unknown types sitting at the leaves of the type tree, type substi-

tution has the corresponding effect of replacing applications of Rule (var) at the leaves of the typing

derivation tree. At least in the absence of intersection types, this allows for the expression of principal

typings for terms, from which all other typings can be derived via a type substitution.

However, when considering intersection types, type substitution alone is insufficient to derive all

other possible typings, and so the expansion operation was introduced alongside the type substitution

Chapter 2. Review of System E 51

operation to obtain the principal typings property in intersection type systems [20]. In contrast to type

substitution which has the effect of replacing leaves in the typing derivation tree, expansion has the

effect of replacing nested nodes in the typing derivation tree, specifically introducing applications of

Rule (int). In its original conception, the expansion operation is applied to typings by first selecting a

nucleus consisting of the segments of the typing to which an expansion operation may be applied. In

the following example, a possible nucleus has been underlined:

λx.λy.x y : (α→ β)→ (α→ β)�

A nucleus must be selected in such a way that the marked segments correspond to a node in the

typing derivation tree where it would be permissible to insert an application of Rule (int). Since the

marked segments are not explicitly part of the type syntax, the notion of a nucleus is implicit in nature,

and the selection of a valid nucleus is governed by a set of rules which are not all straightforward to

understand (see [16] for a discussion). This was one of the motivations for using expansion variables in

System I and System E which make nuclei explicit in the type syntax. This explicit treatment of nuclei

will be discussed in Section 2.3.2.

Next, once the nucleus has been selected, the expansion operation replaces the marked segments of

the nucleus with an intersection of copies of the original segment with type variables renamed:

λx.λy.x y : ((α1 → β1) .∩ (α2 → β2))→ ((α1 → β1) .∩ (α2 → β2))�

This expansion is sound because it corresponds to the insertion of an application of Rule (int) into

the derivation of the original typing at the following point:

Original derivation After expansion

...
λy.x y : α→β � x : α→β

λx.λy.x y : (α→β)→(α→β)�

...
λy.x y : α1→β1 � x : α1→β1

...
λy.x y : α2→β2 � x : α2→β2

λy.x y : (α1→β1) .∩ (α2→β2) � x : (α1→β1) .∩ (α2→β2)
← (int)

λx.λy.x y : ((α1→β1) .∩ (α2→β2))→((α1→β1) .∩ (α2→β2))�

Chapter 2. Review of System E 52

Like type substitution, expansion allows more specific typings to be derived from more general ones,

and together these operations allow the expression of principal typings.

2.3.2 The System E Approach

We now turn to the System E approach which combines both type substitution and expansion into

a single substitution operation. The key is to introduce expansion variables which are used to mark

positions within a typing where expansions may be applied. Now, the substitution operation can be

used to substitute not only types for type variables but also expansions for expansion variables.

Normal type substitutions work as before, so this section will focus on expansion substitutions.

First, expansion variables are introduced into typings via Rule (evar) as demonstrated below:

x : α→ β � x : α→ β y : α � y : α

x y : β � x : α→ β, y : α

λy.x y : α→ β � x : α→ β

λy.x y : e (α→ β) � x : e (α→ β)
← (evar)

λx.λy.x y : e (α→ β)→ e (α→ β)�

Rule (evar) is applied at the point in the derivation where we may wish to insert an expansion,

and the E-variable e marks the affected segments of the final typing in much the same way that the

underlined nucleus marked the affected segments in the traditional approach. Expansion variables

effectively replace the implicit rules for defining nuclei, and also combine with type variables to support

a unified substitution operator, and thereby make it easier to compute principal typings. During type

inference, an important process is to insert E-variables at appropriate points to give rise to principal

typings, and hence support compositional analysis. This will be discussed in Section 2.4.

Expansions themselves are defined more broadly in System E than in traditional systems. Whereas

traditional expansions modify typings in a way that corresponds to the introduction of Rule (int) into

a typing derivation, System E expansions modify typings in a way that corresponds to the introduction

of any of the following 3 rules into a typing derivation: Rule (int), Rule (omega) and Rule (evar).

Formally, the expansions form a new syntactic category consisting of

Chapter 2. Review of System E 53

E,F,G ::= ω | E .∩ F | e E | σ expansions

σ ::= � | σ, α := T | σ, e := E substitutions

with associated application rules defined in Figure 2.3. Each expansion can be applied to entities

which collectively refer to both types and expansions, the latter making expansions composable. ω

is the omega-expansion and transforms any entity into ω (either the type or the expansion depending

on context). E .∩ F is an intersection expansion and transforms an entity into an intersection of two

copies of the original entity with E recursively applied to the left copy and F recursively applied to

the right copy. e E is an E-variable application expansion and transforms an entity into an E-variable

application by recursively applying E to the original entity and applying the E-variable e to the result. σ

is a substitution, inductively defined as either the identity substitution �, or the extension of an existing

substitution with a type assignment α := T or an expansion assignment e := E. A substitution σ is

applied to an entity K by traversing the tree structure of K from its root to its leaves, and replacing

variables in the tree according to matching assignments in σ, but without descending into entities nested

within E-variable applications. For example, applying the substitution (�, α := S, β := T) to the type

α → e β results in S → e β. In order to also substitute for the β variable under e, we can instead use

the substitution (�, α := S, e := f (�, β := T)) which results in S → f T .

To understand how expansion application works in practice, we will consider the following term and

typing:

(J1) λx.λy.x y : e (α→β)→e (α→β)�

Let E be the intersection expansion (�, α := α1, β := β1) .∩ (�, α := α2, β := β2). Substituting

�, e := E results in the following typing:

Chapter 2. Review of System E 54

ω K = ω σ ω = ω

(E .∩ F) K = E K .∩ F K σ (K1
.∩K2) = σ K1

.∩ σ K2

(e E) K = e (E K) σ (e K) = (σ e) K

� e = e � σ (T1 → T2) = σ T1 → σ T2

� α = α σ � = σ

(σ,X := K) X = K σ (σ′, X := K) = σσ′, X := σ K

(σ,X := K) X ′ = σ X ′ if X 6= X ′

where: X ::= α | e entity variables

K ::= T | E entities

Figure 2.3: System E expansion application rules

(J2) λx.λy.x y : ((α1→β1) .∩ (α2→β2))→((α1→β1) .∩ (α2→β2))� (applying �, e := E)

The expansion E introduces an intersection of two copies of the original type under e. In order to

allow each branch of the new intersection to be subject to independent substitutions, the expansion

E explicitly renames the type variables α and β in each branch. However, explicitly renaming type

variables can be a lot of work, particularly when many type variables are involved. Fortunately, an

interesting property of expansion variables gives rise to a better alternative. The idea is that rather

than substituting the expansion E for e, we can instead substitute a simpler expansion E′ = f � .∩g�,

giving

(J3) λx.λy.x y : (f (α→β) .∩ g (α→β))→(f (α→β) .∩ g (α→β))� (applying �, e := E′ to J1)

Due to the way substitution application is defined, the E-variables f and g essentially create separate

namespaces, allowing each branch of the intersection to be subject to independent substitutions. For

example, to apply substitution σ1 = (�, α := S1, β := T1) to the left branch and substitution σ2 =

(�, α := S2, β := T2) to the right branch, we may use the substitution σ = (�, f := σ1, g := σ2) on J3

Chapter 2. Review of System E 55

resulting in

(J4) λx.λy.x y : ((S1→T1) .∩ (S2→T2))→((S1→T1) .∩ (S2→T2))� (applying σ to J3)

Expansion application is defined in such a way that expansions are composable. That is, it is a

property of System E expansions that an expansion F E has the same effect on a given entity as would

result from successively applying E and then F to that entity. More precisely, it holds in System E

that (F E) K = F (E K), and in the specific case of substitutions, that (σ2 σ1) K = σ2 (σ1 K). This

property is useful in type unification algorithms where a solution to a unification constraint is found

by applying a succession of expansions (or substitutions) to reach a solved state, and then composing

those expansions (or substitutions) to produce a single unifier.

E-variables make it possible to express principal typings. However, there are two choices in how

principal typings can be defined:

1. A principal typing can be defined as one from which all other typings can be derived via a

substitution operation. In this case, f (e (α→β)→e (α→β))� is a principal typing for λx.λy.x y.

2. A principal typing can be defined as one from which all other typings can be derived via an expan-

sion operation, because expansions generalise substitutions. In this case, e (α→β)→e (α→β)� is

a principal typing for λx.λy.x y. The outer E-variable f is no longer needed since an expansion

operation can always apply at the outer level without the assistance of an expansion variable to

target a more specific location.

Both definitions have been used in practice: the first type inference algorithm [15] for System E

used the expansion operation to define principal typings, while the second type inference algorithm [6]

for System E used the substitution operation.

Chapter 2. Review of System E 56

2.4 Type Inference

Type inference in System E is often referred to as typing inference because the process requires only the

term as input and returns a typing as output. This is in contrast to the Hindley/Milner approach to

type inference which requires both a term and a term context as input, and returns a type as output.

The difference can be illustrated by the problematic example of “self application” in which a term

variable is applied to itself. This is represented in the λ-calculus by the term x x. In the Hindley/Milner

approach, type inference cannot succeed for this term without being given some “hint” about the variable

x in the form of a term context. If the entire program were (let x = λy.y in x x), the Hindley/Milner

approach would be to first infer a polymorphic type for x based on an analysis of λy.y, in this case

∀α.α→ α. Only after determining that polymorphic type, the type for x x can be found by instantiating

that polymorphic type twice and setting up and solving a simple first-order unification problem between

the type of the second x and the parameter type of the first x. However, if x were a parameter rather

than a let-bound variable, as in the abstraction λx.x x, then the same type inference approach would

fail since no such hint could be obtained about the polymorphic nature of x. The dependency on such

a hint means that this approach is not strictly compositional because it cannot analyse the term x x

from just its components.

System E, on the other hand, does not require a term context as input, and in fact computes the

term context along with the type. The term x x can be analysed compositionally by first inferring

typings for each x, say α� x : α and β � x : β. Next, it is necessary to solve the constraint that α (the

type of the function) be equal to β → γ (a function that takes x : β as input), for some arbitrary γ.

The solution to this constraint is the substitution �, α := β → γ. After applying this substitution, the

typings for the two occurrences of x are refined to β → γ � x : β → γ and β � x : β. The substitution

that solved our constraint has essentially transformed the typings for the function x and the argument

x so that the type of the argument matches the parameter type of the function, and this means that

the inference of a typing for the entire application x x immediately follows by Rule (app):

x : β → γ � x : β → γ x : β � x : β

x x : γ � x : (β → γ) .∩ β
(app)

Chapter 2. Review of System E 57

In the process of applying Rule (app), the two distinct types for the two occurrences of x are inter-

sected together, and thus the following context information is inferred about x: it has the polymorphic

type (β → γ) .∩ β, being used once at type β → γ and once more at type β. Note that any other typing

for x x can be derived via an expansion of this typing. If we desire all other typings to be derivable via

a substitution, we also need to wrap this typing in an E-variable by Rule (evar), giving:

...
x x : e γ � x : e ((β → γ) .∩ β)

(evar)

It is a strength of intersection types that it is possible to infer a principal typing for such terms

without requiring any external context. Given the same term in System F or the Hindley/Milner type

system, a type inference procedure cannot compute a single context for x that would lead to a principal

typing for this application. For example, both ∀X.X→X and ∀X.X→T are possible types for x but

are unrelated to each other.

While the type inference process itself is straightforward in System E, the real work is actually

performed by the unification algorithm which is invoked to solve the constraints introduced by applica-

tions. Given a constraint that type S be the same as type T , the goal of the unification algorithm is

to compute a unifier which is a substitution σ that satisfies σS = σT . Since types in System E may

contain both type variables and expansion variables, a unifier may need to substitute not only types

for type variables but also expansions for expansion variables.

There are two main approaches to performing type unification with E-variables, called β-unification

(reviewed in Section 1.2.3 of Chapter 1) and covering unification [7]. These two approaches are reviewed

and compared in the following sections.

2.4.1 β-Unification

β-unification solves constraints generated from a program in a way that exactly corresponds to β-

reduction of the same program. A result of this correspondence is that the type inference procedure

will terminate on exactly the set of normalising terms, relative to a particular evaluation strategy.

Strictly speaking, a type unification algorithm operates at the level of types, and so it would seem that

Chapter 2. Review of System E 58

β-unification could not possibly make any guarantee of a correspondence with β-reduction of terms. To

make this guarantee, β-unification must assume that the set of constraints has been generated in just

the right way, and that E-variables have been inserted in just the right places. If this is the case, then

the unification of those constraints will correspond to β-reduction of the original program.

Constraints are of the form S ⋖ T , and an expansion E solves – or “unifies” – such a constraint if

E S = E T . A key aspect of β-unification is its use of asymmetric constraints whereby the unification

algorithm assumes that, when unifying the type of a function parameter with the type of an argument,

the argument type is always on the left side of a constraint and the parameter type is always on the right.

Care must be taken when recursively unifying two function types as in constraint S1 → S2 ⋖ T1 → T2.

This constraint is solved by recursively solving the the constraints T1 ⋖ S1 and S2 ⋖ T2, where the

parameter types are reversed due to the contravariance of parameter types in function subtyping.

A pre-step for β-unification is to generate for a given term an initial “unsolved” typing and an

initial set of constraints, the solution of which would transform the initial unsolved typing into a

valid typing for the term. Depending on the placement of the E-variables during this pre-step, the

same β-unification can be made to simulate either call-by-name or call-by-value [6]. The procedure

for constructing the initial typing and constraints was defined in [6] using the notion of skeletons, but

is equivalently restated below directly in terms of typings and constraints. We also present only the

simpler of the two procedures, which is call-by-name. The function initial takes a λ-term and returns a

pair (∆; τ) of a set of constraints ∆ and an initial typing τ .

initial(x) = (∅;α � x : α)
α fresh

initial(t) = (∆;T � Γ, x : S)

initial(λx.t) = (∆;S → T � Γ)

initial(t) = (∆1;T � Γ1) e initial(s) = (∆2;S � Γ2)

initial(t s) = (∆1 ∪∆2 ∪ T ⋖ S → α;α � Γ1
.∩ Γ2)

e, α fresh

The initial typing for a term variable corresponds to an application of Rule (var), and this is also a

valid typing without any constraint required. The initial typing for an abstraction is defined in a way

that corresponds to an application of Rule (abs), and it introduces no new constraints. The initial typing

for an application is defined in a way that corresponds to an application of Rule (app), except that

the type of the function t’s parameter may not yet match the type of the argument s. The unification

Chapter 2. Review of System E 59

constraint T ⋖ S → α is introduced to make these match, with α used as a fresh variable to indicate

the return type of the function, and also the result type of the application. Note that argument types

are always equipped with an E-variable allowing them to be expanded to match the required shape of

the parameter type to which they are passed.

Once the initial typing and set of constraints have been generated, β-unification begins. Due to

the way in which constraints are generated, constraints of the form U → T ⋖ e S → α correspond

to β-redexes of the form (λx.t) s where U corresponds to the type of the parameter x, T corresponds

to the type of the body t, S corresponds to the type of the argument s with an E-variable wrapped

around it so that it can be expanded to match the required parameter type, and α corresponds to the

type of the application result. Solving one constraint of this form corresponds to performing one step

of β-reduction on the λ-term.

The correspondence of β-unification to β-reduction can be understood by considering the example

of the non-terminating application (λx.x x) (λx.x x) which results in an equivalently non-terminating

sequence of β-unification steps. First, the initial typing and set of constraints are generated as follows:

initial(x) = (∅;α1 � x : α1 initial(x) = (∅;α1 � x : α1

initial(x x) = (α1 ⋖ e1α2→α3;α3 � x : α1
.∩ e1α2)

initial(λx.x x) = (α1 ⋖ e1α2→α3; (α1
.∩ e1α2)→α3 � Γω)

...
initial(λx.x x) = (β1 ⋖ e2β2→β3; (β1

.∩ e2β2)→β3 � Γω)

initial((λx.x x) (λx.x x)) = (











α1 ⋖ e1α2→α3,

e3β1 ⋖ e3(e2β2→β3),

(α1
.∩ e1α2)→α3 ⋖ e3((β1

.∩ e2β2)→β3)→γ











; γ � Γω)

The initial typing is therefore γ � Γω, and the constraints that must be solved to make this typing

correct are:

1. α1 ⋖ e1 α2 → α3 Corresponds to the 1st x x application

2. e3 β1 ⋖ e3 (e2 β2 → β3) Corresponds to the 2nd x x application

3. (α1
.∩ e1 α2)→ α3 ⋖ e3 ((β1

.∩ e2 β2)→ β3)→ γ Corresponds to (λx.x x) (λx.x x)

Chapter 2. Review of System E 60

Each constraint corresponds to an application in the program, although only the third constraint

corresponds to a β-redex. Since both sides of the constraint take the form of a function type, the con-

straint is recursively solved by generating the following constraints, taking care to reverse the parameter

types due to the contravariance of parameter types:

3a. e3 ((β1
.∩ e2 β2)→ β3) ⋖ α1

.∩ e1 α2

3b. α3 ⋖ γ

In (3a), the left type e3 ((β1
.∩ e2 β2)→ β3) now represents the type of the argument, and the right

type α1
.∩ e1 α2 represents the type of the parameter. The strategy to unify these two types is to make

the type of the argument expand, via e3, to match the required type of the parameter. The expansion

process on this constraint can be visualised as follows.

e3 ((β1
.∩ e2 β2)→ β3) ⋖ α1

.∩ e1 α2

e3 .∩

→ α1 e1

.∩ β3 α2

β1 e2

β2

By substituting the expansion � .∩ e1� for e3, it is possible to transform the left type to match

the structure required by the right type. To avoid any potential variable name clashes, the type

and expansion variables should also be freshly renamed in each branch, and so we use the following

substitution where the renaming substitutions are underlined:

σ1= e3 := �, (�, β1 := β′
1, e2 := e′2 �, β3 := β′

3) .∩ e1 (�, β1 := β′′
1 , e2 := e′′2 �, β3 := β′′

3)

Chapter 2. Review of System E 61

After applying this substitution, the constraint now looks as follows:

((β′
1
.∩ e′2 β2)→ β′

3) .∩ e1 ((β′′
1
.∩ e′′2 β2)→ β′′

3) ⋖ α1
.∩ e1 α2

.∩ .∩

→ e1 α1 e1

.∩ β′
3

→ α2

β′
1 e′2 .∩ β′′

3

β2 β′′
1 e′′2

β2

After expansion has matched as much of the tree as possible, the remainder of the unification is

performed with plain substitutions for the type variables α1 and α2 at the leaves of the tree. This is

achieved using the following substitution:

σ2= α1 := �, (β′
1
.∩ e′2 β′

2)→ β′
3, e1 := e1 (α2 := (β′′

1
.∩ e′′2 β2)→ β′′

3)

Note that since α2 exists under e1 and e1 acts as a namespace (see Section 2.3.2), we cannot directly

substitute for α2 using α2 := Instead we substitute for e1 an expansion that re-inserts e1 and then

applies a substitution for α2 underneath e1. This is achieved by the fragment e1 := e1 (α2 := . . .). This

results in the following unified type tree:

Chapter 2. Review of System E 62

((β′
1
.∩ e′2 β2)→ β′

3) .∩ e1 ((β′′
1
.∩ e′′2 β2)→ β′′

3) ⋖ ((β′
1
.∩ e′2 β2)→ β′

3) .∩ e1 ((β′′
1
.∩ e′′2 β2)→ β′′

3)

.∩ .∩

→ e1 → e1

.∩ β′
3

→ .∩ β′
3

→

β′
1 e′2 .∩ β′′

3 β′
1 e′2 .∩ β′′

3

β2 β′′
1 e′′2 β2 β′′

1 e′′2

β2 β2

Finally, constraint (3b) is easily solved by the following substitution which results in a complete

solution for constraint (3):

σ3= �, α3 := γ

Since expansions and substitutions in System E are composable, the substitution σ3σ2σ1 has the

combined effect of performing all of the above steps. The work accomplished so far by σ3σ2σ1 now

needs to be applied to the initial typing (which remains as γ �Γω since none of the above substitutions

decided on a type for γ), and also needs to be applied to the two remaining constraints that are in the

process of being solved, namely, (1) and (2). After applying the work of σ3σ2σ1, constraints (1) and

(2) become (4) and (5) respectively:

4. (β′
1
.∩ e′2β

′
2)→ β′

3 ⋖ e1 ((β′′
1
.∩ e′′2β2)→ β′′

3)→ γ

5. β′
1
.∩ e1 β′′

1 ⋖ (e′2 β2 → β′
3) .∩ e1 (e′′2 β2 → β′′

3)

Chapter 2. Review of System E 63

This now completes one step of β-unification, and this also corresponds to one step of β-reduction

on the original term. The correspondence to β-reduction is as follows: given a term t for which initial(t)

computes an initial typing of τ and an initial constraint set of ∆, if one step of β-unification produces the

substitution σ, there exists a corresponding step of β-reduction resulting in the term t′ where initial(t′)

gives the initial typing στ and the initial constraint set σ∆. In the above example, this can easily be

verified because the term after one step of reduction is identical to the original term. We note that the

resulting typing γ�Γω after one step of β-unification is identical to the original typing, that constraint

(4) is isomorphic to the original constraint (3), and also that once constraint (5) is factored into its

parts (5a) and (5b) below, those are also isomorphic to the original constraints (1) and (2):

5a. β′
1 ⋖ e′2 β2 → β′

3

5b. e1 β′′
1 ⋖ e1 (e′′2 β2 → β′′

3)

To understand the correspondence in more detail, constraint (3) corresponds to the application of

(λx.x x) to (λx.x x). One step of β-reduction has the effect of creating two copies of the argument

λx.x x and substituting them into the two occurrences of x in the body of the left function resulting

in (λx.x x) → (λx.x x). This corresponds to the unification of constraint (3) where the expansion

variable e3 is wrapped around the argument type allowing it to expand to match the required type of

the parameter. In the process, e3 is expanded into an intersection type thus creating two copies of the

argument type.

The substitution produced by this step of β-unification is then applied to constraint (1) which

corresponds to the first x x occurring as the body of the left function. Just as the body x x is transformed

into (λx.x x) (λx.x x) by term substitution, the corresponding constraint (1) is transformed into the

constraint (4) which is isomorphic to the initial constraint for (λx.x x) (λx.x x).

If the evaluation of a term terminates, then the β-unification procedure will also terminate with a

unifier that, when applied to the initial typing, produces a correct (and principal) typing for the term.

Chapter 2. Review of System E 64

2.4.2 Covering Unification

This section reviews the main ideas of covering unification, and presents a walk-through example. A

covering unification procedure attempts to compute a solution to a given constraint that is in some

sense “most general”. Rather than being guided by β-reduction, a covering unification procedure finds

unifiers purely by analysing type structure. Each constraint S
.
= T is now symmetric since there is no

assumption that one side corresponds to a function argument and the other a function parameter.

Ideally, the sort of most general solution to be computed would be a most general unifier; that is,

a unifier σ such that any other unifier σ′ factors through σ by some substitution σ′′ (i.e. σ′ = σ′′σ).

Unfortunately, constraints in System E do not always have most general unifiers. An example given

in [7] is the constraint e α
.
= α→ α which has the following unifiers:

σ1 = (e := (α := α→ α))

σ2 = (e := (α := α→ α), β := α)

σ1 is the obvious candidate for a most general unifier, although it does not qualify: σ1 (e β .∩β) = β .∩β

while σ2 (e β .∩ β) = β .∩ α, and hence there is no substitution σ′′ such that σ2 = σ′′σ1. The issue

is that σ1 merges the namespace under e with the top-level namespace so that there is no longer any

distinction between the β under e and the β at the top level. To fix this, it would be necessary for σ1

to rename all variables while eliminating e, however the substitution to achieve this would need to have

an infinite support.

This problem has led to the notion of a principal unifier [7] which is a unifier σ such that for any other

unifier σ′ there exists a substitution σ′′ such that σ′V = σ′′σV for some finite set of variables V that at

least includes all of the variables in the constraint being solved, and any other variables of consideration

(e.g. those appearing in other constraints being solved alongside this one, or type/expansion variables

appearing in the term context of an initial typing from which the constraint was generated). Letting

V be the set {e, α, β}, it is now possible to construct σ3, a replacement for σ1 that renames all of the

variables in V while eliminating e:

Chapter 2. Review of System E 65

σ3 = (e := (α := α→ α, β := β′, e := e′ �))

Now, the effect of σ1 is obtained by composing σ3 and (β′ := β, e′ := e �), while the effect of σ2 is

obtained by composing σ3 and (β′ := β, e′ := �, β := α).

A second issue is that single principal unifiers often do not exist [7]. For example, any solution to

the constraint e (α→ α) .∩ f (α→ α)
.
= α→ α must choose between substituting e := ω or f := ω and

so there can be no single principal unifier. In general, therefore, the kind of “most general solution”

that can be computed is a set of unifiers called a covering unifier set Σ such that for any unifier σ′,

there exists a σ ∈ Σ and a σ′′ such that σ′V = σ′′σV where V includes at least all of the variables in

the constraint being solved.

The problem of computing covering unifier sets in System E has not been as actively researched

as β-unification, however there has been some preliminary work with an algorithm called opus [7].

We can illustrate the main ideas of the opus algorithm by considering the application of the function

λy.y y : ((f γ → β) .∩ f γ) → β� to the argument λx.x : e (α → α)�. This gives the constraint

e (α → α)
.
= (f γ → β) .∩ f γ between the argument type and the parameter type, where no special

role is assumed of either the left or the right types.

At each step of unification, the search path may be branched if multiple but unrelated ways to

construct a unifier are found. Not all of these branches may lead to a unifier, and only those that

do will eventually be added to the covering set. At the very outset, our example constraint can be

interpreted in 3 different ways due to System E’s type equalities:

1. e (α→ α)
.
=(f γ → β) .∩ f γ

2. ω .∩ e (α→ α)
.
=(f γ → β) .∩ f γ

3. e (α→ α) .∩ ω
.
=(f γ → β) .∩ f γ

The second interpretation will not lead to a unifier since no substitution will make ω equal to a

function type or vice versa. However, the third interpretation will lead to a unifier. Since each step of

Chapter 2. Review of System E 66

unification is potentially a branching step, there will of course be too many branches to illustrate all of

them, and so we will illustrate only the first branch at each branch point.

Continuing, opus identifies two possible ways to construct a unifier for e (α→ α)
.
= (f γ → β) .∩f γ:

1. α′ → α′ .=(f γ → β) .∩ f γ (Using substitution e := (α := α′))

2. e1 (α→ α) .∩ e2 (α→ α)
.
=(f γ → β) .∩ f γ (Using substitution e := (e1 � .∩e2 �))

Note that β-unification never branches the search path and will in the above case always expand e

into an intersection type, choosing path (2). opus, aiming to find a most general representation of all

possible unifiers, must search both paths. In this walkthrough, we will again follow the first branch.

After taking this branch, we find once more that it is necessary to consider different interpretations of

the constraint under the type equality rules:

1. α′ → α′ .=(f γ → β) .∩ f γ

2. ω .∩ (α′ → α′)
.
=(f γ → β) .∩ f γ

3. (α′ → α′) .∩ ω
.
=(f γ → β) .∩ f γ

The first interpretation leads to a dead end because a function type cannot be unified with an

intersection type. The second interpretation also leads to a dead end because ω cannot be unified with

the function type f γ → β. But the third interpretation can be unified, and we will follow this branch.

The left component of the intersection can be unified as follows:

(f γ → f γ) .∩ ω
.
=(f γ → f γ) .∩ f γ (Using substitution α′ := f γ, β := f γ)

The right component of the intersection can, however, be unified in two different ways:

1. (ω → ω) .∩ ω
.
=(ω → ω) .∩ ω (Using substitution f := ω)

2. (ω → ω) .∩ ω
.
=(ω → ω) .∩ ω (Using substitution f := (γ := ω))

Note that despite resulting in the same typings, neither of the two unifiers is more general than the

other, and so both are added to the covering set, along with all of the other paths that we skipped

(excluding, of course, those paths that would lead to dead ends). opus is not perfect, and may potentially

Chapter 2. Review of System E 67

add redundant unifiers to the covering set. However, even if minimal covering unifier sets were produced,

it is questionable whether all of the additional unifiers found (such as the two above that produced the

exact same result) would be useful in practice. Furthermore, it should be clear that the amount of

branching required to search all the necessary paths makes this approach extremely inefficient (see

Section 3.6 and Section 5.5).

2.4.3 Comparison of β-Unification and Covering Unification

When we consider only the pure λ-terms, type inference based on β-unification is preferable because it

is hardwired to use knowledge of β-reduction to choose a single path of reduction leading to a single

unifier, and this has clear efficiency benefits. In comparison, covering unification—lacking any such

hint from β-reduction—must explore all possible alternative paths leading to a covering set of unifiers,

a process that is far less efficient.

However, when we extend the set of terms beyond those of the pure λ-calculus and extend the reduc-

tion rules beyond simple β-reduction, there appears to be more incentive to study covering unification.

In the case of System Evcr presented in Chapter 5, we add support for extensible records by adding new

term syntax, new term reduction rules and new typing rules, but using largely the same type syntax.

The advantage of designing System Evcr in this way is that we can use a covering unification algorithm

such as opus largely without modification. This is possible because covering unification supports all

type constraint forms, regardless of the term language used by the underlying calculus.

The same cannot be said about β-unification because it is hardwired to deal only with the sorts

of constraints that are generated by programs in the λ-calculus. In particular, constraints of the form

e (S → T)⋖ U are supported in β-unification, because the type e (S → T) matches its expectation of

what a function type looks like, assuming that all functions are λ-abstractions. But if some functions

are actually extensible records, as may be the case in System Evcr, then the unification algorithm needs

to expect that function types may also be in the form of intersections of function types, leading to

constraints of the form e1 (S1 → S2) .∩ e2 (T1 → T2) ⋖ U . Such constraints are not supported by β-

unification, but are supported by covering unification for the simple reason that everything is supported

by covering unification. If a covering unification algorithm is used, each time a new feature is added to

Chapter 2. Review of System E 68

the term language that can be typed within the existing type language, no changes should be required

for the covering unification algorithm itself.

It is therefore attractive to consider an algorithm like opus when scaling System E to support

additional term forms and reduction rules. The issue remains, however, that opus is presently too

inefficient to be useful in practice (see Section 3.6 and Section 5.5). According to [7], opus “provides a

fairly simple starting point for investigating how to produce finite representations of all unifiers for an

arbitrary constraint set” but in relation to developing efficient variants suggests “there is a lack of clear

motivation for this strand [. . .] until a wider range of practical instances of β-unification problems are

identified”. Our efforts to scale System E to support additional term forms has broadened the potential

application of unification with expansion variables, and this motivates a further look at the kind of

unification approach used in opus.

For the type inference system presented this dissertation, we pursue a hybrid unification approach

called opusβ which is, for the most part, based on the opus algorithm, but which also borrows efficiency

ideas from β-unification. Like opus, our algorithm handles all constraint forms, not only those that

arise when constraints are generated from pure λ-terms, which means that it can unify function types

regardless of whether they describe λ-abstractions, or in our case, extensible records. On the other

hand, like β-unification, our algorithm prunes the search path by using asymmetric constraints and

assuming that the left and right types represent function arguments and parameters respectively. The

resulting algorithm lacks the generality of opus, but on the other hand, provides us with a practical

algorithm that can be used in our implementation to demonstrate the examples of interest presented

in the introduction.

2.5 Summary

This chapter presented a formulation of System E containing only the features that will be used in

the remainder of this dissertation. We discussed the two key technologies of intersection types and

expansion variables. Intersection types provide polymorphism by listing the finite set of instance types

at which a term is to be used. Expansion variables support compositional type inference by enabling

the expression of principal typings, and provide a simpler way to reason about the expansion operation

Chapter 2. Review of System E 69

than the historical nucleus-based expansion operation. Finally, we discussed type inference and type

unification, and presented two existing approaches to type unification with expansion variables: β-

unification and covering unification. In the next chapter, we will build on these foundations as we begin

to present the new system proposed by this dissertation.

Chapter 3

System Ev: The Value Restriction

System Ev is the first of three increments which together make up our final system, called Evcr. The

main purpose of System Ev is to lay the groundwork to support constants, which are added in Chapter 4,

and extensible records, which are added in Chapter 5.

To prepare for the safe integration of constants and extensible records, System Ev augments System E

with a value restriction. The idea of a value restriction was first introduced in the functional language

ML to rule out unsafe applications in the presence of references [68], and is adapted in our system

to rule out unsafe applications in the presence of constants and extensible records. System Ev also

makes several simplifications to the definitions of System E in order to simplify the proofs and the

implementation, and we establish that these simplifications do not in themselves restrict the set of

typable terms. However, the value restriction itself does restrict the set of typable terms. For example,

the divergent application (λx.x x) (λx.x x) is typable in System E but due to our value restriction is

not typable in System Ev (see Section 3.1 for a discussion).

This chapter is organised as follows. Section 3.1 gives an overview of our value restriction. Sec-

tion 3.2 discusses the simplifications that have been made in System Ev. Section 3.3 presents System Ev

and establishes that it is typesafe. Section 3.4 presents the type inference algorithm and establishes

properties in relation to termination, correctness and principal typings. Section 3.5 demonstrates our

implementation of System Ev’s type inference algorithm on a set of examples and compares the inferred

70

Chapter 3. System Ev: The Value Restriction 71

typings to the original type inference algorithm for System E. Section 3.6 compares the efficiency of

opusβ and opus. Finally, Section 3.7 summarises the contributions of this chapter.

3.1 The Value Restriction

If constants and extensible records are introduced into the term language, it becomes possible to express

certain applications that are not reducible, and it is the job of the type system to rule out these

applications. For example, the constant application 3 false should be rejected since 3 is not a function

over booleans. Also, the field selection (a→ 3 .∩b→ false) c should be rejected since the field c is not

present in the record (a → 3 .∩ b → false). However, both of these applications would be typable by

Rule (omega) if System E were naively extended to support these terms, and therefore such a system

would not be typesafe.

Another problem occurs when typing the selection of an unknown field represented by a variable x

in an extensible record, such as (a→ 3 .∩b→ false) x. Now, there are two unrelated assumptions that

we could make about the term variable x: either x is the field labeled a and so the application has type

Int, or x is the field labeled b and so the application has type Bool. By Rule (int), we could conclude

that if x is both a and b, then the application has both type Int and Bool. This typing gives x an

empty type that has no permissible values. That is, there is no value that could ever be substituted for

x that would be equal to both the label a and the label b, making the typing a meaningless one.

System Ev addresses both issues by restricting uses of the expansion typing rules to non-application

terms, which we call values. This “value restriction” is similar to the value restriction for ML proposed by

Wright [68] to maintain type safety in the presence of application terms that manipulate state. Wright’s

value restriction, also known as value polymorphism, applies specifically to the typing derivation rule

associated with polymorphism (the “let” rule), while our value restriction applies more generally to the

family of rules associated with expansion, namely, rules (omega), (int) and (evar). It is the restriction

to Rule (omega) that addresses the first problem of unsafe typings, and the restricton to Rule (int) that

addresses the second problem of empty types. The restriction must also apply to Rule (evar) in order

for the family of expansion operations to work correctly together. Although this dissertation does not

cover state, our value restriction could theoretically be used as a foundation for studying state with

Chapter 3. System Ev: The Value Restriction 72

expansion variables, since it also restricts polymorphism to values.

The value restriction results in fewer terms being typable compared with System E. For example, in

systems that lack Rule (omega), divergent terms with infinite reduction paths, such as (λx.x x) (λx.x x),

are not typable [23]. Since System Ev does not allow Rule (omega) to be used with applications, then

divergent applications are not typable in System Ev. In contrast, System E makes all terms typable via

Rule (omega).

3.2 Simplifications

This section provides an overview of the simplifications that have been made in System Ev in order to

simplify the proofs and the implementation. None of these simplifications in themselves restrict the set

of typable terms.

3.2.1 Type Equivalences

In System E, the set of types is initially defined by a BNF grammar and is subsequently modified

by imposing type equality rules so that, for example, the .∩ operator is associative and commutative

with ω as its unit. When examining the grammar without any type equality rules imposed, T .∩ ω

may be considered as a distinct type from T , whereas after imposing the type equality rules, these are

considered to be one and the same type. However, this complicates certain proofs since it means that

it is not possible to perform induction directly on the structure of a type.

In System Ev, the set of types is instead defined by a grammar without any type equality rules, and

we define separately from this equivalence classes of types which correspond to System E’s types. We

use types in almost all parts of System Ev except for term contexts where we explicitly use equivalence

classes instead. It turns out that this is sufficient to completely preserve the power of System E’s type

equalities, as we will show in Lemma 3.27 (Equivalent types). One benefit of this change is that proofs

by induction on the structure of types are now straightforward.

A study of the types of System E without type equalities was first done by Kfoury and Bakewell [7]

while investigating the problem of unification with E-variables, although this was done independently

of any type system. System Ev is the first type system based on System E without type equalities for

Chapter 3. System Ev: The Value Restriction 73

which subject reduction is also proved.

3.2.2 Restrictions to Simple Types

In System Ev, we categorise types into two groups. Types of the form α and S → T are called

simple types while the remaining types of the form ω, S .∩ T and e T are called expansion types.

System E offers redundant rules for introducing expansion types, both via typing derivations and via

substitutions. Eliminating this redundancy can make it easier to reason about the type system, and

some of this redundancy can be eliminated by restricting certain typing rules, and substitutions of type

variables, to simple types.

In the case of typing rules, System E offers two ways to assign, for example, an intersection type to

a term variable:

x : S̄ .∩ T̄ � x : S̄ .∩ T̄
by (var)

x : S̄ � x : S̄ x : T̄ � x : T̄

x : S̄ .∩ T̄ � x : S̄ .∩ T̄
by (int)

In System Ev, we restrict Rule (var) to simple types so that only the second derivation is possible.

By Lemma 3.26 (Variable types), no typing power is lost by this restriction since it is always possible

to construct a derivation that assigns an arbitrary type to a variable by combining Rule (var) with uses

of rules (omega), (int) and (evar).

In the case of substitutions, System E offers two ways to construct a substitution that transforms

e α into, for example, an intersection type S̄ .∩ T̄ :

σ1 = e := (α := S̄ .∩ T̄)

σ2 = e := (α := S̄) .∩ (α := T̄)

This redundancy is eliminated in System Ev by restricting type variables to represent only simple

types. As such, α is now called a simple type variable rather than a type variable. After this modification,

Chapter 3. System Ev: The Value Restriction 74

only σ2 is a valid substitution. By Corollary 3.18 (Type substitution), no expressiveness is lost by this

restriction since the full power of System E type variables can still be emulated in System Ev by

wrapping each simple type variable in an E-variable. Simple type variables stem from the idea of

restricted substitutions[7] which were proposed as a way to simplify constraint unification by reducing

the number of non-isomorphic solutions to constraints. For example, the constraint e α
.
= S̄ .∩ T̄ has

both σ1 and σ2 as solutions in the full System E, but if restricted substitutions are used, then σ2 is

permitted as a solution while σ1 is not.

3.2.3 Unique Derivations

In System E, typing judgements do not, in general, have unique derivations. For example, since there is

no value restriction, we cannot assume applications are always typed using Rule (app). The judgement

s t : S .∩ T � Γω may in fact have been derived in either of the following ways:

s : U → (S .∩ T) � Γω t : U � Γω

s t : S .∩ T � Γω

by (app)
s t : S � Γω s t : T � Γω

s t : S .∩ T � Γω

by (int)

System E’s type equality rules also make it impossible to tell from the syntax of a type which typing

rule was used. For example the judgement λx.t : (S → T) .∩ ω � Γω may have been derived in either of

the following ways

t : T � x : S

λx.t : (S → T) .∩ ω � Γω

by (abs)
λx.t : (S → T) .∩ ω � Γω λx.t : ω � Γω

λx.t : (S → T) .∩ ω � Γω

by (int)

since the equality S → T = (S → T) .∩ω holds. Finally, System E’s Rule (var) allows the assignment of

any arbitrary type to a term variable, overlapping with a number of other typing rules. For example,

the previous section showed that the judgement x : S̄ .∩ T̄ � x : S̄ .∩ T̄ can be derived in either of the

Chapter 3. System Ev: The Value Restriction 75

following two ways:

x : S̄ .∩ T̄ � x : S̄ .∩ T̄
by (var)

x : S̄ � x : S̄ x : T̄ � x : T̄

x : S̄ .∩ T̄ � x : S̄ .∩ T̄
by (int)

System Ev, on the other hand, has a unique derivation for each derivable judgement. In the first

example above, we know that Rule (app) was used and not Rule (int) because the value restriction

prevents Rule (int) from being used on applications. In the second example above, we know that

Rule (int) was used and not Rule (abs) since (S → T) .∩ ω is an intersection type which is never equal

to the function type S → T (although the equivalence (S → T) .∩ ω ≡ S → T does hold). And in the

third example above, we know that Rule (int) was used and not Rule (var) since Rule (var) is restricted

to simple types and may not be used to directly assign an intersection type.

This property can be exploited in proofs since it is often useful to infer the form of the premises

based on the derived judgement. For an example of this, the reader is referred to propositions (7) to

(9) in the (app) case of the proof of Lemma 3.29 (Term substitution).

3.3 Type System

System Ev will now be defined formally, beginning with the term language, then the type language and

finally the typing derivation rules.

3.3.1 Terms and Reductions

This section defines the term language and reduction rules of System Ev.

Definition 3.1 (Terms for Ev). Let metavariables x, y and z range over the countably infinite set

of term variables (also called variables). The syntax for terms and their metavariable conventions are

Chapter 3. System Ev: The Value Restriction 76

given below.

s, t, u ::= v | s t terms

v ::= x | λx.t values

2

A term is either a value v or an application s t of some function term s to some argument term t. A

value is either a term variable x or an abstraction λx.t which is a function with parameter x and body t.

Definition 3.2 (Free variables for Ev). The free variables fv(t) of a term t are defined as follows:

fv(x) = {x}

fv(λx.t) = fv(t)\{x}

fv(s t) = fv(s) ∪ fv(t)

2

Definition 3.3 (Term substitution for Ev). A term substitution t[x := v] of value v for x in t is defined

by the following rules:

x[x := v] = v

y[x := v] = y y 6= x

(λx.t)[x := v] = λx.t

(λy.t)[x := v] = λz.t[y := z][x := v] y 6= x, z /∈ fv(v) ∪ {x}

(s t)[x := v] = s[x := v] t[x := v]

2

Note that a term substitution may substitute only values for variables, and not arbitrary terms.

This definition is sufficient for the call-by-value semantics that we use, but it will also be required to

support the extended definition of term substitution introduced in Chapter 5 for extensible records.

Chapter 3. System Ev: The Value Restriction 77

Definition 3.4 (α-conversion for Ev). We consider λx.t and λy.t[x := y] to be the same under α-

conversion if y /∈ fv(t). 2

The reduction rules follow a call-by-value evaluation strategy.

Definition 3.5 (Reduction for Ev). The reduction rules are defined as follows:

(λx.t) v > t[x := v]

t s > t′ s if t > t′

v t > v t′ if t > t′

2

3.3.2 Types and Expansions

This section defines the types, expansions and associated operations.

Definition 3.6 (Syntax for Ev). Let metavariables e, f, g range over the countably infinite set of

E-variables and let metavariables α, β, γ range over the countably infinite set of simple type variables.

The syntactic categories and their metavariable conventions are given below.

S, T, U ::= T̄ | T types

S̄, T̄ , Ū ::= α | S → T simple types

S,T,U ::= ω | S .∩ T | e T expansion types

E,F,G ::= ω | E .∩ F | e E | σ expansions

σ ::= � | σ, α := T̄ | σ, e := E substitutions

X ::= α | e variables

K ::= T | E entities

2

Chapter 3. System Ev: The Value Restriction 78

A type is either a simple type or an expansion type. A simple type is either a simple type variable

α or a function type S → T . An expansion type is either the omega type ω, an intersection type S .∩ T

or an E-variable application type e T . An expansion is either the omega expansion ω, an intersection

expansion E .∩F , an E-variable application expansion e E or a substitution σ. A substitution is either the

identity substitution �, a substitution extended with an assignment α := T̄ of simple type T̄ to simple

type variable α, or a substitution extended an assignment e := E of expansion E to the E-variable e. A

variable X refers to either a simple type variable or an E-variable. An entity K refers to either a type

or an expansion.

Note that a simple type may still contain intersection types, E-variable application types and ω in

nested positions, but not at the top level. For example, (S .∩ T)→ ω is a simple type, while S .∩ T and

ω are themselves not simple types.

Definition 3.7 (Type equivalence for Ev). For two types S and T , the proposition S ≡ T asserts that

S and T are equivalent types. The equivalence class 〈T 〉 is the set of all types that are equivalent to T .

The type equivalence relation ≡ is defined by the following rules:

Axioms

(S .∩ T) .∩ U ≡ S .∩ (T .∩ U)

S .∩ T ≡ T .∩ S

T .∩ ω ≡ T

e ω ≡ ω

e (S .∩ T) ≡ e S .∩ e T

Structural congruence

S → T ≡ S′ → T ′ if S ≡ S′ and T ≡ T ′

S .∩ T ≡ S′ .∩ T ′ if S ≡ S′ and T ≡ T ′

e T ≡ e T ′ if T ≡ T ′

Equivalence

T ≡ T

T ≡ T ′ if T ′ ≡ T

T ≡ T ′′ if T ≡ T ′ and T ′ ≡ T ′′

Chapter 3. System Ev: The Value Restriction 79

2

In Definition 3.7, the 5 axioms correspond to the type equality rules of System E (see Figure 2.1),

The structural congruence rules extend the rules to nested types, while the equivalence rules define

reflexivity, symmetry and transitivity, giving the required properties for an equivalence relation.

Definition 3.8 (Intersection components for Ev). For any simple type S̄ and type T , the proposition

S̄ .⊂ T asserts that S̄ is an intersection component of T , and is defined by the following rules:

S̄ .⊂ S̄

S̄ .⊂ T1
.∩ T2 if S̄ .⊂ T1 or S̄ .⊂ T2

S̄ 6 .⊂ T asserts that S̄ is not an intersection component of T . 2

With the exception of function types, for any given simple types S̄ and T̄ to be equivalent, they

must be one and the same type. This is established by Lemma 3.9 and Corollary 3.10 below.

Lemma 3.9 (Intersection components for Ev). Given any S, T , S̄ and T̄ , if S̄ is not a function type

and S̄ .⊂ S and S ≡ T , then S̄ .⊂ T .

Proof. The proof is by induction on the structure of the derivation of S ≡ T .

case: S = (T1
.∩ T2) .∩ T3 ≡ T1

.∩ (T2
.∩ T3) = T . Then S̄ .⊂ S implies S̄ .⊂ T1 or S̄ .⊂ T2 or S̄ .⊂ T3 which

implies S̄ .⊂ T .

case: S = T1
.∩ T2 ≡ T2

.∩ T1 = T . Then S̄ .⊂ S implies S̄ .⊂ T1 or S̄ .⊂ T2 which implies S̄ .⊂ T2
.∩ T1.

case: S = T1
.∩ ω ≡ T1 = T . Then S̄ .⊂ S implies S̄ .⊂ T1 or S̄ .⊂ ω. By the definition of .⊂, it is the case

that S̄ /∈ ω, therefore S̄ .⊂ T1.

case: S = e ω ≡ ω = T . This case does not occur since S̄ 6 .⊂ S by the definition of .⊂.

case: S = e (T1
.∩ T2) ≡ e T1

.∩ e T2. This case does not occur since S̄ 6 .⊂ S by the definition of .⊂.

case: S = S1 → S2 ≡ T1 → T2 = T , if S1 ≡ T1 and S2 ≡ T2. This case does not occur since the

assumption is that S̄ is not a function type.

Chapter 3. System Ev: The Value Restriction 80

case: S = S1
.∩ S2 ≡ T1

.∩ T2 if S1 ≡ T1 and S2 ≡ T2. If S̄ .⊂ S, then S̄ .⊂ S1 or S̄ .⊂ S2 which by ind.hyp.

implies S̄ .⊂ T1 or S̄ .⊂ T2, which by the definition of .⊂ implies S̄ .⊂ T1
.∩ T2.

case: S = e T ≡ e T ′ if T ≡ T ′. This case does not occur since S̄ 6 .⊂ S by the definition of .⊂.

case: S = T1 ≡ T1 = T . Immediate.

case: S = T1 ≡ T2 = T if T2 ≡ T1. Consider the mirrors of the asymmetric rules:

case: S = T1
.∩ (T2

.∩ T3) ≡ (T1
.∩ T2) .∩ T3 = T . Then S̄ .⊂ S implies S̄ .⊂ T1 or S̄ .⊂ T2 or S̄ .⊂ T3

which implies S̄ .⊂ T .

case: S = T1 ≡ T1
.∩ ω = T . If S̄ .⊂ T1 then S̄ .⊂ T1

.∩ ω by the definition .⊂.

case: S = ω ≡ e ω = T . This case does not occur since S̄ 6 .⊂ S by the definition of .⊂.

case: S = e T1
.∩ e T2 ≡ e (T1

.∩T2). Then S̄ .⊂S implies S̄ .⊂ e T1 or S̄ .⊂ e T2, neither of which can

be true by the definition of .⊂ and so this case does not occur.

case: S = T1 ≡ T3 = T if T1 ≡ T2 and T2 ≡ T3. If S̄ .⊂ T1, then by the induction hypothesis, S̄ .⊂ T2,

and then by the induction hypothesis, S̄ .⊂ T3.

2

Corollary 3.10 (Simple type equivalence for Ev). Given any S̄ and T̄ , if S̄ is not a function type and

S̄ ≡ T̄ then S̄ = T̄ .

Proof. By Lemma 3.9, since S̄ is not a function type and S̄ .⊂ S̄ and S̄ ≡ T̄ , then S̄ .⊂ T̄ , which by

Definition 3.8 implies that S̄ = T̄ . 2

Expansion application is defined in System Ev by exactly the same rules as those for System E

presented in the previous chapter, except that each α should be interpreted as a simple type variable

rather than a type variable.

Definition 3.11 (Expansion application for Ev). The rules for applying expansions to expansions,

types and E-variables are as follows:

Chapter 3. System Ev: The Value Restriction 81

ω K = ω σ ω = ω

(E .∩ F) K = E K .∩ F K σ (K1
.∩K2) = σ K1

.∩ σ K2

(e E) K = e (E K) σ (e K) = (σ e) K

� e = e � σ (S → T) = σ S → σ T

� α = α σ � = σ

(σ,X := K) X = K σ (σ′, X := K) = σσ′, X := σ K

(σ,X := K) X ′ = σ X ′ if X 6= X ′

2

Lemma 3.12 (Expansion application preserves syntactic categories for Ev). Given any E, F , e, σ1,

σ2, σ and T̄ , then (1) E F is an expansion, (2) E e is an expansion, (3) E T is a type, (4) σ1 σ2 is a

substitution, and (5) σ T̄ is a simple type.

Proof. Trivial, by induction on the structure of E then E1 in (1), by induction on the structure of E

in (2) and (3), by induction on the structure of σ1 then σ2 in (4), and by induction on the structure of

σ then T̄ in (5), with the cases proceeding according rules given in Definition 3.11. 2

Lemma 3.13 (� acts as the identity for Ev). Given any K, then � K = K.

Proof. Trivial by induction on the structure of K. 2

Lemma 3.14 (Expansion composition for Ev). Given any E, F and K, E (F K) = (E F) K.

Proof. The proof is similar to the one in [17], except that since we do not impose equalities on types,

induction is directly possible on the structure of K, and there is no need to define a size function and

prove an induction principle. A full proof is given in Appendix A. 2

Expansion composition is useful in constructing single substitutions that carry out the same work

as a sequence of substitutions. For example, the substitution σ4σ3σ2σ1 has the same effect as applying

the individual substitutions σ1, σ2, σ3, σ4 in sequence.

Chapter 3. System Ev: The Value Restriction 82

The following table illustrates the application of several different expansions to the type e α→ e α:

Expansion Resulting type

f (e := (α := T̄)) f (T̄ → T̄)

e := f (α := T̄) f T̄ → f T̄

(e:=(α:=S̄)) .∩ (e:=(α:=T̄)) (S̄ → S̄) .∩ (T̄ → T̄)

(e:=(α:=T̄)) .∩ ω (T̄ → T̄) .∩ ω

The last example can be derived using the following steps:

((e1:=(α:=T̄)) .∩ ω) (e1α → e1α) = (e1:=(α:=T̄)) (e1α → e1α) .∩ ω (e1α → e1α)

= (e1:=(α:=T̄)) (e1α → e1α) .∩ ω

= ((e1:=(α:=T̄)) (e1α) → (e1:=(α:=T̄)) (e1α)) .∩ ω

= (((e1:=(α:=T̄)) e1) α → ((e1:=(α:=T̄)) e1) α) .∩ ω

= ((α:=T̄) α → (α:=T̄) α) .∩ ω

= (T̄ → T̄) .∩ ω

The following two lemmas show that expansion applications preserve type equivalence.

Lemma 3.15 (Expansion distribution equivalence for Ev). Given any E, S and T , then E (S .∩T) ≡

E S .∩ E T .

Proof. The proof is by induction on the structure of E.

case: E = ω.

LHS = ω (T1
.∩ T2)

= ω def 3.11

≡ ω .∩ ω def 3.7

= ω T1
.∩ ω T2 def 3.11

= RHS

Chapter 3. System Ev: The Value Restriction 83

case: E = E1
.∩ E2.

LHS = (E1
.∩ E2) (T1

.∩ T2)

= E1 (T1
.∩ T2) .∩ E2 (T1

.∩ T2) def 3.11

≡ (E1 T1
.∩E1 T2) .∩ (E2 T1

.∩E2 T2) ind.hyp., def 3.7

≡ (E1 T1
.∩E2 T1) .∩ (E1 T2

.∩E2 T2) def 3.7

= (E1
.∩ E2) T1

.∩ (E1
.∩ E2) T2 def 3.11

= RHS

case: E = e E1.

LHS = (e E1) (T1
.∩ T2)

= e (E1 (T1
.∩ T2)) def 3.11

≡ e (E1 T1
.∩ E1 T2) ind.hyp., def 3.7

≡ e (E1 T1) .∩ e (E1 T2) def 3.7

= (e E1) T1
.∩ (e E1) T2 def 3.11

= RHS

case: E = σ.

LHS = σ (T1
.∩ T2)

= σT1
.∩ σT2 def 3.11

= RHS

2

Lemma 3.16 (Expansion preserves type equivalence for Ev). Given any T , T ′ and E, if T ≡ T ′, then

E T ≡ E T ′.

Proof. The proof is by induction on the structure of the derivation of T ≡ T ′, and then the structure of

E, enumerating first over the cases of E and when E = σ, then enumerating over the cases of T ≡ T ′.

case: E = ω.

LHS = ω T

= ω def 3.11

= ω T ′ def 3.11

= RHS

case: E = E1
.∩ E2.

Chapter 3. System Ev: The Value Restriction 84

LHS = (E1
.∩ E2) T

= E1 T .∩E2 T def 3.11

≡ E1 T ′ .∩ E2 T ′ ind.hyp. (E1 smaller), ind.hyp. (E2 smaller), def 3.7

= (E1
.∩ E2) T

′ def 3.11

= RHS

case: E = e E1.

LHS = (e E1) T

= e (E1 T) def 3.11

≡ e (E1 T ′) ind.hyp. (E1 smaller), def 3.7

= (e E1) T
′ def 3.11

= RHS

case: E = σ. We now consider the cases for the derivation of T ≡ T ′. Here, the cases are straightforward

applications of Definition 3.11 and the induction hypotheses. The only tricky case is the one for

a substitution applied to an E-variable application:

case: If T1 ≡ T ′
1, then e T1 ≡ e T ′

1.

LHS = σ (e T1)

= (σ e) T1 def 3.11

≡ (σ e) T ′
1 ind.hyp. (T1 ≡ T ′

1 smaller), def 3.7

= σ (e T ′
1) def 3.11

= RHS

In this case, we do not know that σ e is smaller than σ, but we rely on the fact that the

derivation of T1 ≡ T ′
1 is smaller than the derivation of e T1 ≡ e T ′

1, and perform induction first

on the structure of the derivation of this type equivalence and then second on the structure

of the expansion E.

A full proof of the other cases is included in Appendix A.

2

The final lemma and corollary in this section establish that, although only simple types may be

substituted for simple type variables, the full power of System E type variables can be emulated by

wrapping each simple type in an E-variable.

Chapter 3. System Ev: The Value Restriction 85

Lemma 3.17 (Type variables for Ev). Given T and α, there exists an expansion E such that E α = T .

Proof. The proof is by induction on the structure of T .

case: T = ω. Then E = ω.

case: T = T1
.∩ T2. Then (1) ∃E1. E1 α = T1 by ind.hyp. (T1 smaller) and (2) ∃E2. E2 α = T2 by

ind.hyp. (T2 smaller). Then E = E1
.∩ E2 since (E1

.∩ E2) α = E1 α .∩ E2 α by def 3.11 which

equals T1
.∩ T2 by (1) and (2).

case: T = e T1. Then (1) ∃E1. E1 α = T1 by ind.hyp. (T1 smaller). Therefore E = e E1 since

(e E1) α = e (E1 α) by def 3.11 which equals e T1 by (1)

case: T = T̄ . Then E = (α := T̄). 2

Corollary 3.18 (Type substitution for Ev). Given any T , e and α, there exists a substitution σ such

that σ (e α) = T .

Proof. Let E be the expansion from Lemma 3.17 such that E α = T . Then σ = (e := E). 2

3.3.3 Typing Derivations

This section defines the typing derivations of System Ev. These definitions very closely match with

their counterparts in System E presented in the previous chapter and so little further explanation will

be required, except in relation to the introduction of simple types and the value restriction, and also the

replacement of System E’s type equalities by explicit type equivalences. In particular, the last change

means that the following definitions will make explicit use of type equivalences where needed.

Definition 3.19 (Term contexts for Ev). A term context Γ is a total function from term variables to

equivalence classes of types, mapping only a finite number of term variables to equivalence classes other

than 〈ω〉. The notation x1 : 〈T1〉, . . . , xn : 〈Tn〉 is used to represent a term context where each term

variable not explicitly given is assumed to be mapped to 〈ω〉. We use Γω to denote the term context in

which all term variables are mapped to 〈ω〉. 2

A key point about the above modified definition of term contexts is that explicit uses of type

equivalence classes are needed to give the same meaning as System E.

Chapter 3. System Ev: The Value Restriction 86

Definition 3.20 (Operations on term contexts for Ev). Intersection introduction, E-variable applica-

tion and expansion application are extended to term contexts as follows:

(Γ1
.∩ Γ2)(x) = Γ1(x) .∩ Γ2(x)

(e Γ)(x) = e Γ(x)

(E Γ)(x) = E Γ(x)

2

Observe that the type equivalences from Definition 3.7 also imply corresponding equalities on term

contexts:

(Γ1
.∩ Γ2) .∩ Γ3 = Γ1

.∩ (Γ2
.∩ Γ3)

Γ1
.∩ Γ2 = Γ2

.∩ Γ1

Γ .∩ Γω = Γ

e Γω = Γω

e (Γ1
.∩ Γ2) = e Γ1

.∩ e Γ2

Definition 3.21 (Typings for Ev). A typing T � Γ (metavariable τ) is a pair of a type T and term

context Γ. 2

Definition 3.22 (Operations on typings for Ev). Intersection introduction, E-variable application

and expansion application are extended to typings as follows:

Chapter 3. System Ev: The Value Restriction 87

(T1 � Γ1) .∩ (T2 � Γ2) = T1
.∩ T2 � Γ1

.∩ Γ2

e (T � Γ) = e T � e Γ

E (T � Γ) = E T � E Γ

2

Definition 3.23 (Typing judgements for Ev). A typing judgement t : T � Γ (metavariable J) asserts

that term t has typing T � Γ, or equivalently that term t has type T in term context Γ. 2

Definition 3.24 (Typing derivations for Ev). A typing derivation (metavariable D) is a proof tree of

a typing judgement. The rules for deriving valid typing judgements are as follows:

(var)
x : T̄ � x : 〈T̄ 〉

(omega)
v : ω � Γω

(abs)
t : T � Γ, x : 〈S〉

λx.t : S→T � Γ
(int)

v : τ1 v : τ2

v : τ1 .∩ τ2

(app)
t : S→T � Γ1 s : S � Γ2

t s : T � Γ1
.∩ Γ2

(evar)
v : τ

v : e τ

2

These rules differ from System E’s rules in three ways.

1. The value restriction is implemented for the rules associated with expansion. These rules are

(omega), (int) and (evar).

2. Rule (var) is restricted to simple types. This forces all typings of the form S .∩T �Γ to be derived

by Rule (int), all typings of the form e T � Γ to be derived by Rule (evar) and all typings of the

form ω � Γ to be derived by Rule (omega).

3. Equivalence classes of types are used explicitly within term contexts. This usage recovers expres-

siveness that would otherwise be lost as a consequence of removing System E’s type equalities.

As an example, the judgement x : T .∩ S � x : S .∩ T , which is derivable in System E, would no

Chapter 3. System Ev: The Value Restriction 88

longer be derivable without the type equality S .∩ T = T .∩ S. In System Ev, the corresponding

judgement x : T .∩ S � x : 〈S .∩ T 〉 is derivable because of the explicit use of the equivalence class

〈S .∩ T 〉 in the term context.

Together, these changes give rise to the property that each typing judgement has a unique derivation.

Lemma 3.25 (Typing derivations for Ev). Each typing judgement can be the conclusion of at most

one typing rule.

Proof. Consider any application of a typing rule that concludes with the typing judgement J denoting

t : T � Γ. In each case, the typing rule used to derive J can be determined by examining the syntax

of the term t and type T alone, and without examining the term context Γ (whose syntax cannot be

examined anyway, due to its use of type equivalence classes).

case: If t is a value,

case: If T = ω, then J was derived by (omega).

case: If T = T1
.∩ T2, then J was derived by (int).

case: If T = e T1, then J was derived by (evar).

case: If T = T̄ , then

case: If t = x, then J was derived by (var).

case: If t = λx.t1, then J was derived by (abs).

case: If t is an application, then J was derived by (app).

2

With regards to the second difference listed above, the following lemma establishes that x : T�x : 〈T 〉

still holds for any x and T , and therefore no expressiveness is lost by this restriction.

Lemma 3.26 (Variable types for Ev). Given any x and T , then x : T � x : 〈T 〉.

Proof. The proof is by induction on the structure of T .

case: T = ω. True by Rule (omega).

Chapter 3. System Ev: The Value Restriction 89

case: T = T1
.∩ T2. By the induction hypothesis, x : T1 � x : 〈T1〉 and x : T2 � x : 〈T2〉. By Rule (int),

x : T1
.∩ T2 � x : 〈T1

.∩ T2〉.

case: T = e T1. By the induction hypothesis, x : T1 � x : 〈T1〉. By Rule (evar), x : e T1 � x : 〈e T1〉.

case: T = T̄1. True by Rule (var).

2

With regards to the third difference listed above, the following lemma establishes that our explicit

use of equivalence classes preserves the power of System E’s type equalities.

Lemma 3.27 (Equivalent types for Ev). Given any t, T , T ′ and Γ, if t : T � Γ and T ≡ T ′, then

t : T ′
� Γ.

Proof. Let D be the derivation of t : T �Γ. The proof is by induction on the structure of D. The cases

proceed first by term form and then by the possible rules that may have been used to conclude T ≡ T ′.

We show some of the more interesting cases below, while a full proof is included in Appendix A.

case: t is v. We now consider the cases for the rule used to conclude T ≡ T ′. These cases fall into three

groups: axioms, structural congruence rules and equivalence rules.

case: Axiom (T1
.∩ T2) .∩ T3 ≡ T1

.∩ (T2
.∩ T3).

Due to Lemma 3.25 (Typing derivations), we know that D ends with

(2) v : T1 � Γ1 (3) v : T2 � Γ2

v : T1
.∩ T2 � Γ1

.∩ Γ2 (1) v : T3 � Γ3

v : (T1
.∩ T2) .∩ T3 � (Γ1

.∩ Γ2) .∩ Γ3

Then, (4) v : T2
.∩ T3 � Γ2

.∩ Γ3 (int) with (3) and (1)

∴ v : T1
.∩ (T2

.∩ T3) � Γ1
.∩ (Γ2

.∩ Γ3) (int) with (2) and (4)

The cases for the other axioms are similar, using the unique derivations property to discover

the premises in D.

case: Structural congruence rule
(1) T1 ≡ T ′

1 (2) T2 ≡ T ′
2

T1 → T2 ≡ T ′
1 → T ′

2

By Lemma 3.25, there are 2 possible cases for D.

Chapter 3. System Ev: The Value Restriction 90

case: D is the following application of Rule (var): x : T1 → T2 � x : 〈T1 → T2〉

Then, (3) x : T ′
1 → T ′

2 � x : 〈T ′
1 → T ′

2〉 (var)

∴ x : T ′
1 → T ′

2 � x : 〈T1 → T2〉 def. 3.7 with (3),(1),(2)

case: D ends with the following application of Rule (abs):

(3) t1 : T2 � Γ, x : 〈T1〉

λx.t1 : T1 → T2 � Γ

Then, (4) t1 : T ′
2 � Γ, x : 〈T1〉 ind.hyp with (3) and (2)

(5) t1 : T ′
2 � Γ, x : 〈T ′

1〉 def. 3.7 with (4)

λx.t1 : T ′
1 → T ′

2 � Γ (abs) with (5)

The cases for the other structural congruence rules are straightforward cases of induction on

the structure of D, using the unique derivations property to discover the premises in D.

case: Equivalence rule T ≡ T . Done.

case: Equivalence rule
T ′ ≡ T

T ≡ T ′

.

For the symmetric rules that have the same meaning when reflected from left to right, the

proofs are identical to existing cases. For the non-symmetric rules, the proofs are very similar

to their existing reverse cases.

case:
T ≡ T ′′ T ′′ ≡ T ′

T ≡ T ′

. Follows from the transitivity of =⇒ in the statement of the lemma.

case: t is t1 t2. Then D ends with

(1) t1 : T1 → T � Γ1 (2) t2 : T1 � Γ2

t1 t2 : T � Γ1
.∩ Γ2

(app)

Then, (3) T ≡ T ′ Assumption

(4) T1 → T ≡ T1 → T ′ def. 3.7 with (3)

(5) t1 : T1 → T ′
� Γ1 ind.hyp. with (1) and (4)

∴ t1 t2 : T ′
� Γ1

.∩ Γ2 (app) with (5) and (2)

2

It is normally expected in systems with type substitutions that if t has typing τ , then by a type

substitution lemma, t also has type στ for any substitution σ. This is also true in System Ev, however

this does not hold true for expansions in general. Due to the value restriction, it is safe for an expansion

Chapter 3. System Ev: The Value Restriction 91

to be applied to typing judgement only if the term being judged is a value, unless of course that

expansion is a substitution, in which case it can always apply. For example, if t = (λx.x) (λx.x) and

t : eα→ eα�Γω, then it does not follow by any expansion lemma that t : eα→ eα .∩ eα→ eα�Γω via

the use of expansion � .∩� because t is not a value.

However, this is generally not a problem if more E-variables are inserted into the original type. In

this case, the following typing can be derived for t:

x : eα→ eα � eα→ eα (var)

x : f (eα→ eα) � f (eα→ eα)
(evar)

λx.x : f (eα→ eα)→ f (eα→ eα) � Γω

(abs)

x : α � α (var)

x : eα � eα (evar)

λx.x : eα→ eα � Γω
(abs)

λx.x : f (eα→ eα) � Γω

(evar)

t : f (eα→ eα) � Γω

(app)

The extra E-variable f at the top level effectively allows an expansion to be applied at the top level

via a substitution, and so now it can follow from a substitution lemma that t : eα→ eα .∩ eα→ eα�Γω

via the substitution f := �, (� .∩�).

The following substitution/expansion lemma establishes the applicability of substitutions and ex-

pansions to typing judgements, and is a crucial lemma for establishing principal typings for our type

inference algorithm.

Lemma 3.28 (Expansion for Ev). Given any t, T , Γ and E, if t : T � Γ and if t is a value or E is a

substitution, then t : E T � E Γ.

Proof. Let D be the derivation of t : T � Γ. The proof is by induction on the structure of D then E.

case: E is ω, and so t is v.

(1) v : ω � Γω (omega)

∴ v : ω T � ω Γ def. 3.11 with (1)

case: E is E1
.∩ E2, and so t is v.

(1) v : T � Γ Assumption

(2) v : E1 T � E1 Γ ind.hyp. on (1) with E1 smaller

(3) v : E2 T � E2 Γ ind.hyp. on (1) with E2 smaller

(4) v : E1 T .∩ E2 T � E1 Γ .∩ E2 Γ (int) on (2) and (3)

∴ v : (E1
.∩ E2) T � (E1

.∩ E2) Γ def. 3.11 with (4)

Chapter 3. System Ev: The Value Restriction 92

case: E is e E1, and so t is v.

(1) v : T � Γ Assumption

(2) v : E1 T � E1 Γ ind.hyp. on (1)

(3) v : e (E1 T) � e (E1 Γ) (evar) on (2)

∴ v : (e E1) T � (e E1) Γ def. 3.11 with (3)

case: E is σ. Now, t can be any term, and we consider the possibilities for D.

case: D is the following application of Rule (var):

x : T � x : 〈T 〉

Then,

(1) x : σ T � x : 〈σ T 〉 lem 3.26

∴ x : σ T � σ (x : 〈T 〉) def 3.20 with (1)

case: D ends with an application of Rule (abs) of the form

(1) t1 : T2 � Γ, x : 〈T1〉

λx.t1 : T1 → T2 � Γ

Then,

(2) t1 : σ T2 � σ Γ, x : 〈σ T1〉 ind.hyp. on (1)

(3) λx.t1 : σ T1 → σ T2 � σ Γ (abs) with (2)

∴ λx.t1 : σ (T1 → T2) � σ Γ def. 3.11 with (3)

case: D ends with an application of Rule (app) of the form

(1) t1 : S → T � Γ1 (2) t2 : S � Γ2

t1 t2 : T � Γ1
.∩ Γ2

Then,

(3) t1 : σS → σT � σΓ1 ind.hyp. on (1)

(4) t2 : σS � σΓ2 ind.hyp. on (2)

(5) t1 t2 : σT � σΓ1
.∩ σΓ2. (app) with (3) and (4)

∴ t1 t2 : σT � σ (Γ1
.∩ Γ2). def 3.11 with (5)

case: D is the following application of Rule (omega):

Chapter 3. System Ev: The Value Restriction 93

(1) v : ω � Γω

Then,

v : σω � σΓω def 3.11 with (1)

case: D ends with an application of Rule (int) of the form

(1) v : T1 � Γ1 (2) v : T2 � Γ2

v : T1
.∩ T2 � Γ1

.∩ Γ2

Then,

(3) v : σT1 � σΓ1 ind.hyp. with (1)

(4) v : σT2 � σΓ2 ind.hyp. with (2)

(5) v : σT1
.∩ σT2 � σΓ1

.∩ σΓ2 (int) with (3) and (4)

∴ v : σ (T1
.∩ T2) � σ (Γ1

.∩ Γ2) def 3.11 with (5)

case: D ends with an application of Rule (evar) of the form

(2) v : T1 � Γ1

(1) v : e T1 � e Γ1

We now consider the cases for σ.

case: σ = �. True by Lemma 3.13.

case: σ = σ′, e := E1.

(3) v : E1 T1 � E1 Γ1 ind.hyp. with (2) and E1

(4) v : (σ e) T1 � (σ e) Γ1 def. 3.11 with (3)

∴ v : σ (e T1) � σ (e Γ1) def. 3.11 with (4)

case: σ = σ′, X := K, where X 6= e.

(3) v : σ′ (e T1) � σ′ (e Γ1) ind.hyp. with (1) and σ′

∴ v : σ (e T1) � σ (e Γ1) def. 3.11 with (3)

2

Type safety is established by the combination of progress and subject reduction. Our progress

theorem asserts that a typable closed application (with no free variables) can always be reduced by one

Chapter 3. System Ev: The Value Restriction 94

step. Our subject reduction theorem asserts that the reduced term after one step will have the same

typing as the original application. Together, these two theorems establish that evaluation of typable

closed application will never become stuck.

The following lemma is crucial for establishing subject reduction and asserts that typings for terms

are stable under term substitution.

Lemma 3.29 (Term substitution for Ev). Given any v, t, x, S, T , Γ1 and Γ2, if v : S � Γ2 and

t : T � Γ1, x : 〈S〉, then t[x := v] : T � Γ1
.∩ Γ2.

Proof. Let D be the derivation of t : T � Γ1, x : 〈S〉. The proof is by induction on the structure of D.

case: D ends with an application of Rule (var).

case: t is x. Then the application of Rule (var) is of the form

(1) x : T � x : 〈S〉

where (2) Γ1 = Γω and (3) T = S.

(4) v : S � Γ2 Assumption

(5) v : T � Γ2 (3),(4)

(6) v : T � Γ1
.∩ Γ2 (5) with (2)

∴ x[x := v] : T � Γ1
.∩ Γ2 (6) with def. 3.3

case: t is y where (1) y 6= x. Then the application of Rule (var) is of the form

(2) y : T � y : 〈T 〉

where (3) Γ1 = y : 〈T 〉 and (4) S ≡ ω.

(5) v : S � Γ2 Assumption

(6) v : ω � Γ2 lem. 3.27 with (5) and (4)

(7) Γ2 = Γω (omega) with (6)

(8) y : T � Γ1 (2) with (3)

Chapter 3. System Ev: The Value Restriction 95

(9) y : T � Γ1
.∩ Γ2 (8) with (7)

∴ y[x := v] : T � Γ1
.∩ Γ2 def. 3.3 with (9) and (1)

case: D ends with an application of Rule (abs) of the form

(1) t2 : T2 � Γ1, x : 〈S〉, x1 : 〈T1〉

λx1.t2 : T1 → T2 � Γ1, x : 〈S〉

where t = λx1.t2 and T = T1 → T2.

(2) x1 6= x α-conversion

(3) x1 /∈ fv(v) ”

(4) Γ2(x1) = 〈ω〉 ”

(5) t2[x := v] : T2 � (Γ1, x1 : 〈T1〉) .∩ Γ2 ind.hyp. with (1)

(6) t2[x := v] : T2 � (Γ1
.∩ Γ2), x1 : 〈T1〉 (5) with (4)

(7) λx1.t2[x := v] : T1 → T2 � Γ1
.∩ Γ2 (abs) with (6)

∴ (λx1.t2)[x := v] : T1 → T2 � Γ1
.∩ Γ2 def. 3.3 with (7), (2), (3)

case: D ends with an application of Rule (app) of the form

(1) t1 : T2 → T � Γ′
1, x : 〈S′〉 (2) t2 : T2 � Γ′′

1 , x : 〈S′′〉

t1 t2 : T � Γ1, x : 〈S〉

where t = t1 t2, (3) Γ1 = Γ′
1
.∩ Γ′′

1 and (4) S ≡ S′ .∩ S′′.

(5) v : S � Γ2 Assumption

(6) v : S′ .∩ S′′
� Γ2 lem 3.27 with (4) and (5)

∃Γ′
2,Γ

′′
2 such that (int) with (6)

(7) v : S′
� Γ′

2 ”

(8) v : S′′
� Γ′′

2 ”

(9) Γ2 = Γ′
2
.∩ Γ′′

2 ”

(10) t1[x := v] : T2 → T � Γ′
1
.∩ Γ′

2 ind.hyp with (1) and (7)

(11) t2[x := v] : T2 � Γ′′
1
.∩ Γ′′

2 ind.hyp with (2) and (8)

Chapter 3. System Ev: The Value Restriction 96

(12) t1[x := v] t2[x := v] : T � (Γ′
1
.∩ Γ′

2) .∩ (Γ′′
1
.∩ Γ′′

2) (app) with (10) and (11)

(13) (t1 t2)[x := v] : T � (Γ′
1
.∩ Γ′

2) .∩ (Γ′′
1
.∩ Γ′′

2) def. 3.3 with (12)

∴ (t1 t2)[x := v] : T � Γ1
.∩ Γ2 (13) with (3) and (9)

case: D ends with an application of Rule (omega) of the form

v1 : ω � Γω

where t = v1, T = ω, (1) Γ1 = Γω and (2) S ≡ ω.

(3) v : S � Γ2 Assumption

(4) v : ω � Γ2 lem. 3.27 with (3) and (2)

(5) Γ2 = Γω (omega) with (4)

(6) v1[x := v] is a value Observation of def 3.3

(7) v1[x := v] : ω � Γω (omega) with (6)

∴ v1[x := v] : ω � Γ1
.∩ Γ2 (7) with (1) and (5)

case: D ends with an application of Rule (int) of the form

(1) v1 : T1 � Γ′
1, x : 〈S′〉 (2) v1 : T2 � Γ′′

1 , x : 〈S′′〉

v1 : T1
.∩ T2 � Γ1, x : 〈S〉

where t = v1, T = T1
.∩ T2, (3) S ≡ S′ .∩ S′′ and (4) Γ1 = Γ′

1
.∩ Γ′′

1 .

(5) v : S � Γ2 Assumption

(6) v : S′ .∩ S′′
� Γ2 lem. 3.27 with (5) and (3)

∃Γ′
2,Γ

′′
2 such that (int) with (6)

(7) v : S′
� Γ′

2 ”

(8) v : S′′
� Γ′′

2 ”

(9) Γ2 = Γ′
2
.∩ Γ′′

2 ”

(10) v1[x := v] : T1 � Γ′
1
.∩ Γ′

2 ind.hyp. with (1) and (7)

(11) v1[x := v] : T2 � Γ′′
1
.∩ Γ′′

2 ind.hyp. with (2) and (8)

Chapter 3. System Ev: The Value Restriction 97

(12) v1[x := v] : T1
.∩ T2 � (Γ′

1
.∩ Γ′

2) .∩ (Γ′′
1
.∩ Γ′′

2) (int) with (10) and (11)

∴ v1[x := v] : T1
.∩ T2 � Γ1

.∩ Γ2 (12) with (4) and (9)

case: D ends with an application of Rule (evar) of the form

(1) v1 : T ′
� Γ′

1, x : 〈S′〉

v1 : e T ′
� e Γ′

1, x : 〈e S′〉

where t = v1, (2) T = e T ′, (3) S ≡ e S′ and (4) Γ1 = e Γ′
1.

(5) v : S � Γ2 Assumption

(6) v : e S′
� Γ2 lem. 3.27 with (5) and (3)

∃Γ′
2 such that (evar) with (6)

(7) v : S′
� Γ′

2 ”

(8) Γ2 = e Γ′
2 ”

(9) v1[x := v] : T ′
� Γ′

1
.∩ Γ′

2 ind.hyp. with (1) and (7)

(10) v1[x := v] : e T ′
� e Γ′

1
.∩ e Γ′

2 (evar) and def 3.11 with (9)

∴ v1[x := v] : e T ′
� Γ1

.∩ Γ2 (10) with (4), (8)

2

Theorem 3.30 (Subject reduction for Ev). If t : T � Γ and t > t′, then t′ : T � Γ.

Proof. The proof is by induction on the structure of the reduction t > t′.

case: (λx.t1) v > t1[x := v].

The derivation of (λx.t1) v : T � Γ ends with

(2) t1 : T � Γ1, x : 〈S〉

λx.t1 : S → T � Γ1 (1) v : S � Γ2

(λx.t1) v : T � Γ1
.∩ Γ2

where Γ = Γ1
.∩ Γ2.

Then t1[x := v] : T � Γ1
.∩ Γ2 by Lemma 3.29 with (1) and (2).

Chapter 3. System Ev: The Value Restriction 98

case: t1 t2 > t′1 t2 if (1) t1 > t′1.

The derivation of t1 t2 : T � Γ ends with

(2) t1 : S → T � Γ1 (3) t2 : S � Γ2

t1 t2 : T � Γ1
.∩ Γ2

where Γ = Γ1
.∩ Γ2.

(4) t′1 : S → T � Γ1 ind.hyp. with (1),(2)

∴ t′1 t2 : T � Γ1
.∩ Γ2 (app) with (4) and (3)

case: v1 t2 > v1 t′2 if (1) t2 > t′2.

The derivation of v1 t2 : T � Γ ends with

(2) v1 : S → T � Γ1 (3) t2 : S � Γ2

v1 t2 : T � Γ1
.∩ Γ2

where Γ = Γ1
.∩ Γ2.

(4) t′2 : S � Γ2 ind.hyp with (1),(3)

∴ v1 t′2 : T � Γ1
.∩ Γ2 (app) with (2) and (4)

2

Theorem 3.31 (Progress for Ev). If t s : T � Γω, then there exists a term t′ such that s t > t′.

Proof. The proof is by induction on the structure of t s.

The derivation of t s : T � Γω ends with

(1) t : S → T � Γω s : S � Γω

t s : T � Γω

case: t is v1.

case: s is v2.

case: v1 is x. This case cannot occur since, by (var) with (1), Γω(x) = 〈S → T 〉, which is a

contradiction.

case: v1 is λx.t. Then (λx.t) v2 > t[x := v2].

case: s is s1 s2. By the induction hypothesis, there exists an s′ such that s1 s2 > s′. Therefore,

v1 (s1 s2) > v1 s′.

Chapter 3. System Ev: The Value Restriction 99

case: t is t1 t2. By the induction hypothesis, there exists a t′ such that t1 t2 > t′. Therefore, (t1 t2) s >

t′ s. 2

3.4 Type Inference

This section defines a type inference algorithm for System Ev called Algorithm I. Algorithm I is

parameterised by the choice of type unification algorithm U . I will terminate whenever the chosen U

terminates, will produce correct results whenever the chosen U produces correct results, and will find

principal typing sets whenever the chosen U finds covering unifier sets. While these three properties

could be combined, we establish them independently so that a different subset of properties might be

established for each unification algorithm that is used with Algorithm I.

Our type inference algorithm departs from the previous algorithms for System E based on β-

unification [15, 6] in two respects. First, despite E-variables supporting compositional type inference,

β-unification itself is a form of whole-program analysis since it solves constraints in a way that corre-

sponds to evaluation of the whole program. Our type inference algorithm instead analyses programs

strictly compositionally by analysing each subterm in isolation before analysing the parent terms con-

taining those subterms. Second, β-unification’s correspondence to β-reduction means that adding new

terms and reduction rules may require corresponding changes to the type unification algorithm. Our

type inference algorithm is instead designed to work with unification algorithms that solve type con-

straints independently of the underlying term language from which those constraints were generated.

This means that if new terms are introduced that require no changes to the type syntax, no changes

will be needed to the unification algorithm.

Currently, two unification algorithms are suitable for use with Algorithm I in this respect. The first

is the existing algorithm opus [7] which terminates when a solution exists, produces correct results and

finds covering unifier sets. The entire opus algorithm is included in Appendix C for reference, along with

notes on how it can be adapted to our system. The second is our new algorithm, called opusβ, which

derives from opus, but sacrifices the property of covering unifier sets to gain efficiency by borrowing

ideas from β-unification. opusβ is established only to produce correct results, and thus its properties are

weaker than those of the original opus. However, a result of sacrificing the property of finding covering

Chapter 3. System Ev: The Value Restriction 100

unifier sets is that opusβ is more efficient than opus, which will be shown in Section 3.6.

This section is structured as follows. Section 3.4.1 defines what classifies as a type unification

algorithm and defines the property of covering unification. Section 3.4.2 presents the opusβ unification

algorithm. Finally, Section 3.4.3 presents our type inference algorithm called I.

3.4.1 Preliminary Definitions

Definition 3.32 (Distinct sequences for Ev). A distinct sequence is a sequence of distinct elements.

Informally, we will sometimes treat a distinct sequence as a set where the order of elements after

applying the ∩ and ∪ operations is left unspecified. For any metavariable, the superscript s indicates a

distinct sequence of that sort of item. 2

As examples of our metavariable convention for distinct sequences, τs ranges over distinct sequences

of typings while σs ranges over distinct sequences of substitutions.

Definition 3.33 (Unification constraints for Ev). A unification constraint S ⋖ T (metavariable δ) is

a pair of types. The meta-constructor
.
= is defined such that S

.
= T matches unification constraints

S ⋖ T and T ⋖ S. A unification constraint set (metavariable ∆) is a set of unification constraints. 2

Definition 3.34 (Operations on unification constraints for Ev). E-variable application and expansion

application are extended to unification constraints and unification constraint sets as follows:

e (S ⋖ T) = e S ⋖ e T

E (S ⋖ T) = E S ⋖ E T

e ∆ = {e δ | δ ∈ ∆}

E ∆ = {E δ | δ ∈ ∆}

The equivalence relation is extended to unification constraints as follows:

(S ⋖ T) ≡ (S′
⋖ T ′) if S ≡ S′ and T ≡ T ′

Chapter 3. System Ev: The Value Restriction 101

2

Definition 3.35 (Solved unification constraints and constraint sets for Ev). A unification constraint

or constraint set is defined to be solved by the following rules:

solved(S ⋖ T) iff S ≡ T

solved(∆) iff δ ∈ ∆ =⇒ solved(δ)

2

Definition 3.36 (Unifiers for Ev). A unifier for unification constraint set ∆ is a substitution σ such

that solved(σ∆).2

Definition 3.37 (Unification algorithm for Ev). A unification algorithm U is an algorithm that takes

a unification constraint set ∆ and computes a distinct sequence of unifiers for ∆. 2

Definition 3.38 (Covering unifier sets for Ev). A covering unifier set for unification constraint set ∆

is a distinct sequence of unifiers σs for ∆ such that for any unifier σ for ∆, there exists a unifier σ′ ∈ σs

and a substitution σ′′ such that σ∆ ≡ σ′′σ′∆. 2

Definition 3.39 (Covering unification algorithm for Ev). covering(U) asserts that U is a covering

unification algorithm in the sense that for any given ∆, if U(∆) terminates with the result σs, then σs

is a covering unifier set for ∆. 2

3.4.2 Algorithm opusβ

This section defines our new unification algorithm, called opusβ. This algorithm is derived from the

original opus algorithm and retains the ability to recognise all of the constraint forms necessary to

eventually handle extensible records. However, like β-unification, opusβ assumes that the left type of

a constraint is an argument type while the right type is a parameter type. This assumption allows

opusβ to choose a single search path to what is likely to be the most useful unifier rather than taking

all possible search paths in parallel. Consider, for example, the opus constraint e1 T1

.
= e2 T2. In order

Chapter 3. System Ev: The Value Restriction 102

to solve this constraint, opus must try substituting an expansion for e1 to make the left type the same

shape as the right type, and then also try substituting an expansion for e2 to make the right type the

same shape as the left type, thus branching the search path. Based on ideas from β-unification, opusβ

assumes that the left type represents an argument type and tries to substitute an expansion only for e1

to make the argument expand to match the required type of the parameter. This improves the efficiency

of opusβ over opus, although the resulting algorithm is therefore not a covering unification algorithm.

The opusβ algorithm consists of three main relations: −−−→rfactorβ , which factors initial constraints, −−→opusβ ,

which applies one reduction step of the constraint solving process, and ⇒σ
∗ , which performs a sequence

of alternating −−−→rfactorβ and −−→opusβ steps until a solution is found.

Definition 3.40 (rfactorβ for Ev). The −−−→rfactorβ relation on constraints and constraint sets factors out

common structure and is defined non-deterministically by the following rules:

∆
−−−−→
rfactorβ

⋃

{∆′ | δ ∈ ∆, δ
−−−−→
rfactorβ ∆′}

δ
−−−−→
rfactorβ ∆ if δ ≡ (S1→S2 ⋖ T1→T2) and {T1 ⋖ S1, S2 ⋖ T2}

−−−−→
rfactorβ ∆

δ
−−−−→
rfactorβ ∆ if δ ≡ (S1

.∩S2⋖T1
.∩T2) and {S1⋖T1, S2⋖T2}

−−−−→
rfactorβ ∆ and (S1 6≡ω∧S2 6≡ω)∨(T1 6≡ω∧T2 6≡ω)

δ
−−−−→
rfactorβ ∆ if δ ≡ (e S ⋖ e T) and ∆ = {e δ′ | (S ⋖ T)

−−−−→
rfactorβ ∆′, δ′ ∈ ∆′}

δ
−−−−→
rfactorβ {δ} if no other rule applies

2

Lemma 3.41 (Correctness of −−−→rfactorβ for Ev). For any E, ∆ and any unification constraint or unifi-

cation constraint set Y , if Y −−−→rfactorβ ∆ then solved(E ∆) =⇒ solved(E Y).

Proof. The proof is by induction on the structure of the derivation of Y −−−→rfactorβ ∆.

case: ∆1
−−−→
rfactorβ ∆ if ∆ =

⋃

{∆′ | δ ∈ ∆1, δ
−−−→
rfactorβ ∆′}

By the induction hypothesis, for each δ and ∆′ such that δ ∈ ∆1 and δ −−−→rfactorβ ∆′, solved(E ∆′) =⇒

solved(E δ). Therefore, by Definition 3.35 and Definition 3.34, solved(E ∆) =⇒ solved(E ∆1).

case: δ −−−→
rfactorβ ∆ if δ ≡ (S1→S2 ⋖ T1→T2) and {T1 ⋖ S1, S2 ⋖ T2}

−−−→
rfactorβ ∆.

If solved(E ∆), then:

Chapter 3. System Ev: The Value Restriction 103

(1) solved({E T1 ⋖ E S1, E S2 ⋖ E T2}) ind.hyp.

(2) E T1 ≡ E S1 and E S2 ≡ E T2 def 3.35

(3) E S1 → E S2 ≡ E T1 → E T2 def 3.7

∴ solved(E (S1 → S2 ⋖ T1 → T2)) def 3.35

case: δ −−−→
rfactorβ ∆ if δ ≡ (S1

.∩S2⋖T1
.∩T2) and {S1⋖T1, S2⋖T2}

−−−→
rfactorβ ∆ and (S1 6≡ ω ∧S2 6≡

ω) ∨ (T1 6≡ ω ∧ T2 6≡ ω).

Similar to the previous case.

case: δ −−−→
rfactorβ ∆ if δ ≡ (e S ⋖ e T) and ∆ = {e δ′ | (S ⋖ T) −−−→

rfactorβ ∆′, δ′ ∈ ∆′}.

If solved(E ∆), then for each e δ′ in ∆:

solved(E e δ′) def 3.35

solved((E e �) δ′) def 3.11

Therefore, solved((E e �) δ′) for each δ′ ∈ ∆′, and so by Definition 3.35 solved((E e �) ∆′). By

the induction hypothesis solved((E e �) (S ⋖ T)). By Definition 3.11, solved(E (e S ⋖ e T)).

case: δ −−−→
rfactorβ {δ} if no other rule applies . True by Definition 3.35.

2

−−−→
rfactorβ is based largely on −−→rfactor from the original opus algorithm (see Appendix C). The main

difference from the original algorithm is that constraints are now asymmetric rather than symmetric,

with the left type representing the type of an argument and the right type representing the type of a

parameter. Each rule works as follows:

• The first rule factors a constraint set by recursively factoring each constraint within the set.

• The second rule factors a constraint between types that are equivalent to function types. The

original constraint is factored into two constraints; the first is between the function parameter

types (with the order reversed to preserve the roles of the left and right types of a constraint) and

the second is between the function return types.

• The third rule factors a constraint between types that are equivalent to intersection types by

generating a constraint between the pair of left intersection components and another constraint

between the pair of right intersection components. The side condition ensures that this rule applies

Chapter 3. System Ev: The Value Restriction 104

only when at least one of the two intersection types is a “true” intersection type, by which we

mean that neither its left nor right component is ω. This rule makes it possible, for example, to

attempt to unify an intersection type e (S1 → S2) .∩ f (T1 → T2) with a function type U1 → U2.

Non-deterministically, the constraint can be factored in two ways. The first is by interpreting the

constraint as e (S1 → S2) .∩ f (T1 → T2) ⋖ (U1 → U2) .∩ ω and the second is by interpreting the

constraint as e (S1 → S2) .∩ f (T1 → T2)⋖ ω .∩ (U1 → U2).

• The fourth rule factors a constraint between types that are equivalent to E-variable applications.

This is done by recursively applying −−−→rfactorβ to the constraint nested within e and wrapping the

result of this recursive call back into e.

• The fifth rule applies as the default case and simply returns the original constraint as is.

Another point of difference with the original opus algorithm is the manner in which type equivalences

are handled. The original algorithm made use of a limited equivalence relation
unit

≡ that has only the

one rule: T is equivalent to T .∩ ω. Since System Ev defines a more complete equivalence relation ≡

that corresponds to the full set of type equalities present in System E (see Figure 2.1 in Chapter 2),

in −−−→rfactorβ we replace
unit

≡ by ≡. A consequence of this change being that some of the rules of the −−→opusβ

relation can be simplified (see the discussion following Definition 3.46 (−−→opusβ relation)).

Note that an implementation of −−−→rfactorβ should not expand out every possible type equivalence for each

use of≡ because there can be infinitely many. For example, given the constraint (S1 → S2) .∩ω⋖T1 → T2,

it suffices to consider only the equivalent constraint S1 → S2 ⋖ T1 → T2 so that it matches the second

rule of −−−→rfactorβ . It is not necessary to also consider constraints of the form S′
1 → S2 ⋖ T1 → T2 for each

S′
1 ≡ S1, because all of these would be handled in the same way by the same rule of −−−→rfactorβ .

Our implementation of −−−→rfactorβ [26] uses the following strategy to enumerate equivalent constraints.

First, all occurrences of ω .∩T and T .∩ω within the constraint δ are rewritten to T , forming a simplified

constraint δ′ which is clearly equivalent to δ. Then, only the equivalences listed in Figure 3.1 are

considered.

Definition 3.42 (Variable structures for Ev). A variable structure (metavariable V) is a partial func-

tion from variables to variable structures, with ∅ denoting the variable structure with an empty domain.

For any variable structure V and variable X , we define V/X as

Chapter 3. System Ev: The Value Restriction 105

δ′ = (S1 → S2 ⋖ T1 → T2) ≡ (S1 → S2 ⋖ T1 → T2)

δ′ = (S1
.∩ S2 ⋖ T1

.∩ T2) ≡ (S1
.∩ S2 ⋖ T1

.∩ T2)

δ′ = (S1
.∩ S2 ⋖ T) ≡ (S1

.∩ S2 ⋖ T .∩ ω) where T is a simple type or ω

δ′ = (S1
.∩ S2 ⋖ T) ≡ (S1

.∩ S2 ⋖ ω .∩ T) where T is a simple type or ω

δ′ = (S ⋖ T1
.∩ T2) ≡ (S .∩ ω ⋖ T1

.∩ T2) where S is a simple type or ω

δ′ = (S ⋖ T1
.∩ T2) ≡ (ω .∩ S ⋖ T1

.∩ T2) where S is a simple type or ω

δ′ = (e S ⋖ e T) ≡ (e S ⋖ e T)

δ′ = (e S ⋖ ω) ≡ (e S ⋖ e ω)

δ′ = (ω ⋖ e T) ≡ (e ω ⋖ e T)

Figure 3.1: Equivalences considered by the implementation of rfactorβ

V/X =











V(X) if V(X) is defined

∅ otherwise

2

For example, if V is the variable structure {e 7→ {f 7→ {α 7→ ∅}, g 7→ {α 7→ ∅}}}, then V/e is the

variable structure {f 7→ {α 7→ ∅}, g 7→ {α 7→ ∅}}, and V/e/f is the variable structure {α 7→ ∅}.

Variable structures are used to describe the structural relationships between E-variables and type

variables within a type or a collection of types, and the following definition gives a function that derives

a variable structure for any given type, unification constraint or unification constraint set.

Definition 3.43 (varstruct for Ev). The total function varstruct takes any type, unification constraint

or unification constraint set and returns a variable structure. It is defined by the following rules:

Chapter 3. System Ev: The Value Restriction 106

varstruct(α) = α 7→ ∅

varstruct(ω) = ∅

varstruct(S → T) = varstruct(S .∩ T) = varstruct(S) ⊔ varstruct(T)

varstruct(e T) = e 7→ varstruct(T)

varstruct(S ⋖ T) = varstruct(S) ⊔ varstruct(T)

varstruct(∆) =
⊔

{varstruct(δ) | δ ∈ ∆}

where V1 ⊔ V2 = {e 7→ (V1/e) ⊔ (V2/e) | e ∈ Dom(V1) ∪Dom(V2)}

2

To better understand the relationship between types and variable structures, some examples are

shown below of types and the corresponding variable structures that would be computed by varstruct.

Type Variable structure

e (f α → f α) {e 7→ {f 7→ {α 7→ ∅}}}

e (f α → g α) {e 7→ {f 7→ {α 7→ ∅}, g 7→ {α 7→ ∅}}}

f (e α → g ω) → f (e β → g α) {f 7→ {e 7→ {α 7→ ∅, β 7→ ∅}, g 7→ {α 7→ ∅}}}

The last example can be read, “under f , there are two variables, e and g. Under e there are two

variables, α and β. Under g there is one variable, α.”

Definition 3.44 (ovars for Ev). The set of outer variables of a type T , written ovars(T), is given by:

ovars(T) = Dom(varstruct(T))

2

The outer variables of a type are the variables at the top level of the variable structure of that type.

Chapter 3. System Ev: The Value Restriction 107

For example, for the type f (e α → g ω)→ f (e β → g α), the only outer variable is f since all other

variables are beneath f in the variable structure. The outer variables of a type are those variables that

can be directly addressed by a substitution.

Definition 3.45 (Fresh renamings for Ev). A fresh renaming for some finite set of variables Xs is

a substitution (�, X1 := K1, . . . Xn := Kn) where {X1 := K1, . . . Xn := Kn} = {e := e′ � | e ∈

Xs, e′ fresh} ∪ {α := α′ | α ∈ Xs, α′ fresh}. 2

Definition 3.46 (−−→opusβ relation for Ev). The −−→opusβ relation performs one step of unification on a

factored constraint and is defined by the following rules:

(α
.
= T̄ ,V) −−→opusβ (α := T̄) if α /∈ ovars(T̄) (T-unify)

(e T ⋖ T̄ ,V) −−→opusβ (e := ren(V, e)) (EA-unify)

(e S ⋖ T .∩ U,V) −−→opusβ (e := e1 � .∩e2 �) (EI-unify)

(e S ⋖ e T,V) −−→opusβ (e := e σ) if (S ⋖ T,V/e) −−→opusβ σ (E-unify)

(e := e ω) otherwise

(e S ⋖ f T,V) −−→opusβ (e := f g �) if S is α or T is T, g fresh (EE-unify)

(f := e g �) otherwise, g fresh

where ren(V , e) is a fresh renaming of the variables in Dom(V/e). 2

−−→opusβ is based largely on −→opus from the original opus algorithm (see Appendix C). Each rule of −−→opusβ

can be understood as follows.

• Rule (T-unify) unifies a simple type variable with a simple type and performs an occurs check.

This rule matches when the simple type variable appears on either the left or right side of a

constraint, since the meta-constructor
.
= is used. While the corresponding rule of the original

opus algorithm could handle constraints of the form α
.
= T1

.∩T2, this is not possible in System Ev

since a simple type variable can only be unified with a simple type. However, it is still possible

in System Ev to unify e α with T1
.∩ T2 via Rule (EI-unify).

• Rule (EA-unify) unifies an E-variable application with a simple type by eliminating the E-variable

and renaming the variables beneath it to avoid capture. This rule is the same as the corresponding

Chapter 3. System Ev: The Value Restriction 108

rule in the original algorithm except that it has now been generalised to support not just function

types but any simple type (including yet-to-be-defined type constants).

• Rule (EI-unify) unifies an E-variable application type with an intersection type. Following the

strategy of β-unification, Rule (EI-unify) assumes that the argument type on the left should

expand to match the shape of the parameter type on the right. Another path of unification that

could have been tried is to eliminate e by a substitution, although this could potentially fail if

S is is a simple type or ω. This additional path is searched in the original algorithm to obtain

a covering unifier set, while in our algorithm this rule has been made deterministic and chooses

only one search path. For example, unifying e (e1 Int .∩ e2 Str) and Int .∩ Str will now lead only

to e := ((e1 := �, e2 := ω) .∩ (e1 := ω, e2 := �)) and not also e := (e1 := �, e2 := �).

• Rule (E-unify) recursively solves one step of the nested constraint under e, taking care to also

descend one level deeper into the given variable structure (see below for a more detailed discussion).

• Rule (EE-unify) unifies two E-variable application types choosing either for the left type to expand

to match the shape of the right type, or vice versa. If S is a simple type variable or if T is

an expansion type, then e S expands to shape of f T . The rationale for this rule is that, by

Corollary 3.18 (Type substitution), a type of the form e α has the power of a System E type

variable and is therefore always capable of transforming via substitution to type f T . Hence, if

S is a simple type variable, then e S can expand to the exact shape of the right type. Otherwise,

if T is an “expansion” type, then we assume that e S should expand to match its shape. That

is, in this case, we assume e S is an argument type and f T is a parameter type. If neither of

these conditions hold, then the assumption is reversed and f T is assumed to be the argument

type while e S is assumed to be the parameter type. This rule essentially uses a heuristic to guess

which search path will lead to the most useful solution, and this allows the rule to be deterministic.

By comparison, the original algorithm opus will unify e S and f T by symmetrically trying to

expand e S to match the shape of T and also trying to expand f T to match the shape of S, thus

branching the search path.

When examining these rules, the main difference from the original opus algorithm is that each rule

has been made deterministic, resulting in increased efficiency. Another way in which efficiency has

Chapter 3. System Ev: The Value Restriction 109

been increased is the use of variable structures to generate renamings. All rules now take a variable

structure as a parameter which is assumed to be a variable structure for the constraint set being solved.

Rule (E-unify) plays an important part since, while recursively solving one step of the nested constraint,

it also passes the nested variable structure corresponding to that nested constraint. Rule (EA-unify)

then renames only the E-variables directly visible at the current level of nesting. This is in contrast to

the original rules of −→opus which blindly rename all E-variables involved in the constraint. Our renamings

are therefore smaller and more efficient to deal with, especially when many substitutions are composed

together in sequence.

Another important difference is that in the original opus algorithm, constraints of the form e T̄⋖ω are

handled by a special rule called (C EO-unify) which substitutes ω for e, However, in our own algorithm,

this rule is no longer needed. This is because −−−→rfactorβ will first factor this constraint to e (T̄⋖ω) due to the

full equivalence relation ≡ replacing the more limited relation
unit

≡ . After factorisation, this constraint

will now be handled by Rule (E-unify) of −−→opusβ which, since the inner constraint T̄ ⋖ ω is unsolvable,

will substitute e ω for e.

The main relation, ⇒σ
∗ , is now defined which performs a sequence of alternating −−−→rfactorβ and −−→opusβ

steps until a solution is found. This relation is then used to construct the final Algorithm opusβ.

Definition 3.47 (opusβ reduction for Ev). The relation ⇒σ is defined by: (∆,V) ⇒σ (∆2, σV) if

∆ −−−→rfactorβ ∆1 and δ ∈ ∆1 and not solved(δ) and (δ,V) −−→opusβ σ and σ∆1
−−−→
rfactorβ ∆2. The relation ⇒σ

∗ is

defined by (∆,V) ⇒�

∗ (∆,V) and (∆1,V1) ⇒σ2σ1

∗ (∆3,V3) if (∆1,V1) ⇒σ1 (∆2,V2) and (∆2,V2) ⇒σ2

∗

(∆3,V3). 2

The following lemma is key to establishing the correctness of the opusβ algorithm.

Lemma 3.48 (Correctness of ⇒σ
∗ for Ev). If (∆,V)⇒σ

∗ (∆′,V ′) and solved(∆′) then solved(σ∆).

Proof. The proof is by induction on the structure of the reduction of (∆,V)⇒σ
∗ (∆′,V ′).

case: (∆,V)⇒�

∗ (∆,V). Immediate.

case: (∆,V)⇒σ2σ1

∗ (∆′,V ′) if (∆,V)⇒σ1 (∆1,V1) and (∆1,V1)⇒σ2

∗ (∆′,V ′).

(1) solved(σ2∆1) ind.hyp.

Chapter 3. System Ev: The Value Restriction 110

(2) ∃∆2, δ. ∆ −−−→rfactorβ ∆2 def. 3.47 with (∆,V)⇒σ1 (∆1,V1)

(3) δ ∈ ∆2 ”

(4) not solved(δ) ”

(5) (δ,V) −−→opusβ σ1 ”

(6) σ1∆2
−−−→
rfactorβ ∆1 ”

(7) V1 = σ1V ”

(8) solved(σ2 (σ1∆2)) lem 3.41 with (6),(1)

(9) solved((σ2σ1) ∆2)) lem 3.14

∴ solved((σ2σ1) ∆)) lem 3.41 with (2),(9)

2

Definition 3.49 (Algorithm opusβ for Ev). Algorithm opusβ is defined by:

opusβ(∆) = {σ | (∆, varstruct(∆))⇒σ
∗ (∆′,V), solved(∆′)}

2

Theorem 3.50 (Correctness of opusβ for Ev). Given any ∆ and σ, then σ ∈ opusβ(∆) =⇒

solved(σ∆).

Proof. Follows immediately from Lemma 3.48. 2

3.4.3 Algorithm I

This section will now present Algorithm I, a compositional type inference algorithm for System Ev.

Algorithm I analyses terms strictly compositionally by analysing each subterm in isolation before

analysing the parent terms containing those subterms.

Definition 3.51 (estrip for Ev). estrip is a total function from typings to typings, defined as follows:

estrip(τ) =











estrip(τ1) if τ = e τ1

τ otherwise

Chapter 3. System Ev: The Value Restriction 111

2

estrip has the effect of stripping any E-variables applied to a typing. For example, estrip(e1 e2 e3 τ)

returns the typing τ .

Lemma 3.52 (Correctness of estrip for Ev). Given any t and τ , if t : τ then t : estrip(τ).

Proof. The proof is by induction on the structure of τ .

case: τ is e τ1.

let σ = (e := id)

(1) t : τ assumption

(2) t : σ τ lem 3.28 with (1)

(3) t : τ1 def 3.11 with (2)

(4) t : estrip(τ1) ind.hyp. with (3)

∴ t : estrip(τ) def 3.51 with (4)

case: τ is not e τ1.

(1) t : τ assumption

(2) estrip(τ) = τ def 3.51

∴ t : estrip(τ) (1),(2)

2

During type inference, estrip is used to remove superfluous E-variables from typings before re-

wrapping them in fresh E-variables. To show that I satisfies the principal typings property, the following

lemma will be used to show that the original typing can be recovered from a stripped typing.

Lemma 3.53 (estrip reversion for Ev). For any typing τ there exists an expansion E such that

E estrip(τ)=τ .

Proof. The proof is by induction on the structure of τ .

case: τ is e τ1.

Chapter 3. System Ev: The Value Restriction 112

(1) ∃E1. E1 estrip(τ1) = τ1 ind.hyp.

(2) (e E1) estrip(e τ1)

= (e E1) estrip(τ1) def 3.51

= e (E1 estrip(τ1)) def 3.11

= e τ1 (1)

∴ E = e E1 (2)

case: τ is not e τ1.

(1) estrip(τ) = τ def 3.51

∴ E = � lem 3.13 with (1)

2

Definition 3.54 (isect for Ev). isect is a total function from distinct sequence of typings to typings,

defined by the following rules:

isect(∅) = ω � Γω

isect(τ, τs) =



























isect(τs) if estrip(τ) = (ω � Γω)

estrip(τ) otherwise if ∀τ ′.τ ′ ∈ τs =⇒ estrip(τ ′) = (ω � Γω)

e1 estrip(τ) .∩ e2 isect(τs) otherwise, where e1, e2 fresh

2

Effectively, isect takes a distinct sequence of typings and intersects them together into a single

typing with superfluous ω � Γω typings omitted and with fresh E-variables wrapped around different

intersection components. The case of a single typing is handled when τs = ∅.

Lemma 3.55 (Correctness of isect for Ev). Given any v, τ and τs, if τ ∈ τs =⇒ v : τ , then

v : isect(τs).

Proof. The proof is by induction on the size of τs.

case: τs = ∅.

(1) v : ω � Γω (omega)

∴ v : isect(∅) def 3.54 with (1)

Chapter 3. System Ev: The Value Restriction 113

case: τs = τ1, τ
s
1 where estrip(τ1) = ω � Γω.

(1) v : isect(τs1) ind.hyp.

∴ v : isect(τ1, τ
s
1) def 3.54 with (1)

case: τs = τ1, τ
s
1 where estrip(τ1) 6= ω � Γω and ∀τ ′.τ ′ ∈ τs1 =⇒ estrip(τ ′) = (ω � Γω).

(1) v : τ1 assumption

(2) v : estrip(τ1) lem 3.52 with (1)

∴ v : isect(τ1, τ
s
1) def 3.54 with (2)

case: τs = τ1, τ
s
1 where estrip(τ1) 6= ω � Γω and ∃τ ′ ∈ τs.estrip(τ ′) 6= (ω � Γω)

(1) ∃e1, e2. isect(τ1, τs1) = e1 estrip(τ1) .∩ e2 isect(τs1) def 3.54

(2) v : τ1 assumption

(3) v : estrip(τ1) lem 3.52 with (2)

(4) v : e1 estrip(τ1) (evar) with (3)

(5) v : isect(τs1) ind.hyp.

(6) v : e2 isect(τs1) (evar) with (5)

(7) v : e1 estrip(τ1) .∩ e2 isect(τs1) (int) with (4),(6)

∴ v : isect(τ1, τ
s
1) (7),(1)

2

During type inference, isect is used to intersect multiple possible typings for a value into a single

typing. To show that I satisfies the principal typings property, the following lemma will be used to

show that any of the original typings given to isect can be recovered from the result of isect.

Lemma 3.56 (isect reversion for Ev). Given any τ , τs and e, if τ ∈ τs, then there exists an expansion

E such that τ ≡ E (isect(τs)).

Proof. The proof is by induction on the size of τs.

case: τs = ∅. The premise τ ∈ ∅ is false, and therefore the implication is true.

case: τs = τ1, τ
s
1 where (1) estrip(τ1) = ω � Γω.

case: τ = τ1.

Chapter 3. System Ev: The Value Restriction 114

∃E′.τ = E′ (ω � Γω) lem 3.53 with (1)

= E′ (ω isect(τ1, τ
s
1)) def 3.11

= (E′ ω) (isect(τ1, τ
s
1)) def 3.11

∴ E = E′ ω

case: τ ∈ τs1 .

∃E.τ ≡ E isect(τs1) ind.hyp.

= E isect(τ1, τ
s
1) def 3.54

∴ σ = σ′

case: τs = τ1, τ
s
1 where estrip(τ1) 6= ω � Γω and (1) ∀τ ′.τ ′ ∈ τs1 =⇒ estrip(τ ′) = (ω � Γω).

case: τ = τ1.

∃E′.τ1 = E′ estrip(τ1) lem 3.53

= E′ isect(τ1, τ
s
1)) def 3.54

∴ E = E′

case: τ ∈ τs1 .

∃E′.τ = E′ (ω � Γω) lem 3.53 with (1)

= E′ (ω isect(τ1, τ
s
1)) def 3.11

= (E′ ω) isect(τ1, τ
s
1) def 3.11

∴ E = E′ ω

case: τs = τ1, τ
s
1 where estrip(τ1) 6= ω � Γω and ∃τ ′ ∈ τs.estrip(τ ′) 6= (ω � Γω)

case: τ = τ1.

(1) isect(τ1, τ
s
1) = e1 estrip(τ1) .∩ e2 isect(τs1) def 3.54

(2) where e1 6= e2 ”

∃E′.τ1 = E′ estrip(τ1) lem 3.53

≡ E′ estrip(τ1) .∩ (ω � Γω) def 3.7

= E′ estrip(τ1) .∩ ω isect(τs1) def 3.11

= (e1 := E′, e2 := ω) (e1 estrip(τ1) .∩ e2 isect(τs1)) def 3.11, (2)

= (e1 := E′, e2 := ω) isect(τ1, τ
s
1) (1)

∴ E = (e1 := E′, e2 := ω)

Chapter 3. System Ev: The Value Restriction 115

case: τ ∈ τs1 .

(1) isect(τ1, τ
s
1) = e1 estrip(τ1) .∩ e2 isect(τs1) def 3.54

(2) where e1 6= e2 ”

∃E′.τ ≡ E′ isect(τs1) ind.hyp.

= (e2 := E′) (e2 isect(τs1)) def 3.11

= (e2 := E′, e1 := ω) (e2 isect(τs1)) (2)

≡ (ω � Γω) .∩ (e2 := E′, e1 := ω) (e2 isect(τs1)) def 3.7

= ω estrip(τ1) .∩ (e2 := E′, e1 := ω) (e2 isect(τs1)) def 3.11

= (e2 := E′, e1 := ω) (e1 estrip(τ1)) .∩ (e2 := E′, e1 := ω) (e2 isect(τs1)) def 3.11

= (e2 := E′, e1 := ω) (e1 estrip(τ1) .∩ e2 isect(τs1)) def 3.11

= (e2 := E′, e1 := ω) isect(τ1, τ
s
1) (1)

∴ E = (e2 := E′, e1 := ω)

2

Definition 3.57 (Algorithm I for Ev). The type inference algorithm I takes a unification algorithm

and a term and returns a distinct sequence of typings. It is defined by the following rules:

Terms

I(U , v) = {e Iv(U , v)} e fresh (I.val)

I(U , t s) = {σ (e α � Γ1
.∩ Γ2) (I.app)

| (T � Γ1) ∈ I(U , t), (S � Γ2) ∈ I(U , s)

σ ∈ U({T ⋖ S → e α} ∪ {U ⋖ U | x : U ∈ Γ1
.∩ Γ2}), e, α fresh}

Values

Iv(U , x) = α � x : 〈α〉 α fresh (I.var)

Iv(U , λx.t) = isect({(S→T � Γ) | (T � Γ, x : 〈S〉) ∈ I(U , t)}) (I.abs)

2

Algorithm I has only two rules at the top level: (I.val) for values and (I.app) for applications.

Typings for values are wrapped in an E-variable, while typings for applications are not due to the value

Chapter 3. System Ev: The Value Restriction 116

restriction. Applications of the form t s are handled by recursively inferring typings for t and s and

then for each typing T �Γ1 for t and S�Γ2 for s, a unification constraint T ⋖S → e α is generated and

solved via U to make the type of argument s match the parameter type of function t. If it is intended

for I to produce a principal typing for t s, it is necessary for the result of U to be most general with

respect to all of the variables that appear within the typings for s and t (see Definition 3.38). To achieve

this, the additional dummy constraints U ⋖ U are introduced into the set of constraints solved by U .

While these constraints are trivially satisfied, their presence does have an effect on how U performs

variable renamings, and if U is a covering unification algorithm, these dummy constraints will force the

result of U to be most general with respect to all of the relevant variables. This procedure is repeated

for each of the different typings for s and t. After unification is applied in each case, each return type

of t is counted as an inferred type for t s. These results are not intersected together due to the value

restriction.

The specific cases for values are handled by Iv. (I.var) assigns a simple type variable, which is then

wrapped in an E-variable by (I.val). (I.abs) recursively infers typings for the function body and then

constructs a function type in a way that corresponds to an application of Rule (abs). All typings found

are intersected together, and then wrapped in an E-variable by (I.val).

Algorithm I satisfies the following properties.

Theorem 3.58 (Termination of I for Ev). Given any U and t, if each use of U by Algorithm I in

the course of computing I(U , t) terminates, then I(U , t) terminates.

Proof. Straightforward by induction on the structure of t. 2

Theorem 3.59 (Correctness of I for Ev). Given any U , τ and t, if τ ∈ I(U , t), then t : τ .

Proof. The proof is by induction on the structure of t.

case: t = x.

(1) ∃e, α. I(U , x) = {e Iv(U , x)} = {e α � x : 〈e α〉} (I.val)/(I.var)

(2) x : α � x : 〈α〉 (var)

(3) x : e α � x : 〈e α〉 (evar) with (2)

∴ if τ ∈ I(U , x), then x : τ (1),(3)

Chapter 3. System Ev: The Value Restriction 117

case: t = λx.t1.

let τs = {S→T � Γ | (T � Γ, x : 〈S〉) ∈ I(U , t1)}

(1) ∃e. I(U , λx.t1) = {e Iv(U , λx.t1)} = {e isect(τs)} (I.val)/(I.abs)

(2) ∀S, T,Γ.

(S→T � Γ) ∈ τs

=⇒ (T � Γ, x : 〈S〉) ∈ I(U , t1) (1)

=⇒ t1 : T � Γ, x : 〈S〉 ind.hyp.

=⇒ λx.t1 : S→T � Γ (abs)

(3) ∀τ ′.τ ′ ∈ τs =⇒ λx.t1 : τ ′ =⇒ transitivity with (2)

(4) λx.t1 : isect(τs) lem 3.55 with (3)

(5) λx.t1 : e isect(τs) (evar) with (4)

∴ if τ ∈ I(U , λx.t1), then λx.t1 : τ (1),(5)

case: t = t1 t2.

(1) I(U , t1 t2) = {σ (e α) � σ (Γ1
.∩ Γ2) | (I.app)

(2) (T1 � Γ1) ∈ I(U , t1), ”

(3) (T2 � Γ2) ∈ I(U , t2), ”

(4) σ ∈ U({T1 ⋖ T2→e α} ∪ {U ⋖ U | x : U ∈ Γ1
.∩ Γ2}), e, α fresh} ”

(6) For each (σ (e α) � σ (Γ1
.∩ Γ2)) ∈ I(U , t1 t2),

(6a) σ T1 ≡ σ T2 → σ (e α) def 3.37 with (4)

(6b) t1 : T1 � Γ1 ind.hyp. with (2)

(6c) t1 : σT1 � σΓ1 lem 3.28 with (6b)

(6d) t1 : σT2 → σ (e α) � σΓ1 lem 3.27 with (6c),(6a)

(6e) t2 : T2 � Γ2 ind.hyp. with (3)

(6f) t2 : σT2 � σΓ2 lem 3.28 with (6e)

(6g) t1 t2 : σ (e α) � σΓ1
.∩ σΓ2 (app) with (6d),(6f)

(6h) t1 t2 : σ (e α) � σ (Γ1
.∩ Γ2) lem 3.15 with (6g)

∴ if τ ∈ I(U , t1 t2), then t1 t2 : τ (6)-(6h)

Chapter 3. System Ev: The Value Restriction 118

2

Theorem 3.60 (Principality of I for Ev). Given any U , t and τ ′, if covering(U) and t : τ ′ and I(U , t)

terminates, then there exists a substitution σ and a typing τ ∈ I(U , t) such that τ ′ ≡ στ .

Proof. Let D be the derivation of t : τ ′. The proof is by induction on the structure of D.

case: D is the following application of Rule (var):

(1) x : T̄ � x : 〈T̄ 〉

(2) ∃e, α. I(U , x) = {e Iv(U , x)} = {e α � x : 〈e α〉} (I.val)/(I.var)

let σ1 = (e := (α := T̄))

(3) σ1 (e α � x : 〈e α〉) = τ ′ def 3.11

∴ σ is σ1 (3),(2)

case: D ends with the following application of Rule (abs):

(2) t1 : T2 � Γ, x : 〈T1〉

(1) λx.t1 : T1 → T2 � Γ

(3) I(U , t) terminates assumption

(4) ∃e. I(U , t) = {e Iv(U , λx.t1)} = {e isect(τs1)} where (I.val)/(I.abs) with (3)

τs1 = {S→T � Γ | (T � Γ, x : 〈S〉) ∈ I(U , t1)}

(5) I(U , t1) terminates (3),(4)

(6) ∃σ′′,Γ′′, T ′
1, T

′
2 such that ind.hyp with (5),(2)

(7) (T ′
2 � Γ′′, x : 〈T ′

1〉) ∈ I(U , t1) ”

(8) σ′′(T ′
2 � Γ′′, x : 〈T ′

1〉) ≡ (T2 � Γ, x : 〈T1〉) ”

(9) σ′′(T ′
1 → T ′

2 � Γ′′) ≡ (T1 → T2 � Γ) (8)

(10) (T ′
1 → T ′

2 � Γ′′) ∈ τs1 (7),(4)

(11) ∃E.(T ′
1 → T ′

2 � Γ′′) ≡ E isect(τs1) lem 3.56 with (10)

= (e := E) (e isect(τs1)) def 3.11

Chapter 3. System Ev: The Value Restriction 119

(12) (T1 → T2 � Γ) ≡ σ′′ (T ′
1 → T ′

2 � Γ′′) (9)

≡ σ′′ ((e := E) (e isect(τs1))) lem 3.16 with (11)

≡ (σ′′(e := E)) (e isect(τs1)) lem 3.14

∴ σ is σ′′(e := E) (12),(4)

case: D ends with an application of Rule (app) of the form

(2) t1 : T2 → T1 � Γ1 (3) t2 : T2 � Γ2

(1) t1 t2 : T1 � Γ1
.∩ Γ2

(4) I(U , t1 t2) terminates assumption

(5) I(U , t1) terminates (4)

(6) ∃σ1, T
′
1,Γ

′
1 such that ind.hyp. with (5), (2)

(7) (T ′
1 � Γ′

1) ∈ I(U , t1) ”

(8) σ1(T
′
1 � Γ′

1) ≡ (T2 → T1 � Γ1) ”

(9) I(U , t2) terminates (4)

(10) ∃σ2, T
′
2,Γ

′
2 such that ind.hyp. with (9), (3)

(11) (T ′
2 � Γ′

2) ∈ I(U , t2) ”

(12) σ2(T
′
2 � Γ′

2) ≡ (T2 � Γ2) ”

(13) Dom(σ1) ∩Dom(σ2) = ∅ def 3.57

(14) ∃e, α,∆ such that def 3.57 with (4),(7),(11)

(15) ∆ = {T ′
1 ⋖ T ′

2 → e α} ∪ {S ⋖ S | x : S ∈ Γ′
1
.∩ Γ′

2} ”

(16) e does not occur in T ′
1 � Γ′

1 or T ′
2 � Γ′

2 ”

(17) {σ (eα � Γ′
1
.∩ Γ′

2) | σ ∈ U(∆)} ⊆ I(U , t1 t2) ”

let σ3 = σ2σ1, e := E where E α = T1 E exists due to lem 3.17

(18) σ3T
′
1 = σ1T

′
1 ≡ T2 → T1 and σ3Γ

′
1 = σ1Γ

′
1 = Γ1 (13),(16),(8)

(19) σ3T
′
2 = σ2T

′
2 ≡ T2 and σ3Γ

′
2 = σ2Γ

′
2 = Γ2 (13),(16),(12)

(20) σ3 (e α) = T1 def 3.11

(21) σ3(T
′
2 → e α) ≡ T2 → T1 (19), (20)

Chapter 3. System Ev: The Value Restriction 120

(22) σ3 is a unifier for ∆ (18), (21)

(23) U(∆) terminates (4)

(24) ∃σ4, σ5. σ4 ∈ U(∆) and σ3∆ ≡ σ5σ4∆ covering(U) with (22),(23)

(25) σ3 (Γ′
1
.∩ Γ′

2) = Γ1
.∩ Γ2 (18), (19)

(26) σ3(eα) ≡ (σ5σ4)(eα) and σ3(Γ
′
1
.∩ Γ′

2) = (σ5σ4)(Γ
′
1
.∩ Γ′

2) (24)

(27) (σ4 (e α � Γ′
1
.∩ Γ′

2)) ∈ I(U , t1 t2) (24),(17)

(28) T1 � Γ1
.∩ Γ2 ≡ σ3 (e α � Γ′

1
.∩ Γ′

2) (20),(25)

≡ (σ5σ4) (e α � Γ′
1
.∩ Γ′

2) (26)

≡ σ5 (σ4 (e α � Γ′
1
.∩ Γ′

2)) lem 3.14

∴ σ = σ5 (27),(28)

case: D ends with an application of Rule (omega) of the form

(1) v : ω � Γω

(2) I(U , v) terminates assumption

(3) ∃e, τ1. I(U , v) = {e τ1} (I.val) with (2)

let σ1 = (e := ω)

(4) σ1 (e τ1) = (ω � Γω) def 3.11

∴ σ = σ1 (4),(3)

case: D ends with an application of Rule (int) of the form

(2) v : T1 � Γ1 (3) v : T2 � Γ2

(1) v : T1
.∩ T2 � Γ1

.∩ Γ2

Chapter 3. System Ev: The Value Restriction 121

(4) I(U , v) terminates assumption

(5) ∃σ1, e, T,Γ such that ind.hyp./(I.val) with (4),(2)

(6) I(U , v) = {e (T � Γ)} ”

(7) σ1 (e (T � Γ)) ≡ (T1 � Γ1) ”

(8) ∃σ2. σ2 (e (T � Γ)) ≡ (T2 � Γ2) ind.hyp. with (6),(3)

let σ3 = (e := σ1(e �) .∩ σ2(e �))

(9) σ3 (e (T � Γ)) = (σ1(e �)) (T � Γ) .∩ (σ2(e �)) (T � Γ)

= σ1((e �) (T � Γ)) .∩ σ2((e �) (T � Γ) lem 3.14

= σ1(e (T � Γ)) .∩ σ2(e (T � Γ)) def 3.11

≡ (T1 � Γ1) .∩ (T2 � Γ2) (7),(8)

= T1
.∩ T2 � Γ1

.∩ Γ2 def 3.22

∴ σ = σ3 (9),(6)

case: D ends with an application of Rule (evar) of the form

(2) v : T � Γ

(1) v : e T � e Γ

(3) I(U , v) terminates assumption

(4) ∃σ1, e1,Γ1, T1 such that ind.hyp./(I.val) with (3),(2)

(5) I(U , v) = {e1 (T1 � Γ1)} ”

(6) σ1 (e1 (T1 � Γ1)) ≡ (T � Γ) ”

let σ2 = (e1 := e (σ1(e1 �))

(7) σ2 (e1 (T1 � Γ1)) = (σ2 e1) (T1 � Γ1) def 3.11

= (e (σ1(e1 �))) (T1 � Γ1) def 3.11

= e ((σ1(e1 �)) (T1 � Γ1)) def 3.11

= e (σ1 ((e1 �) (T1 � Γ1))) lem 3.14

= e (σ1 (e1 (T1 � Γ1))) def 3.11

≡ e (T � Γ) def 3.7 with (6)

= e T � e Γ def 3.22

Chapter 3. System Ev: The Value Restriction 122

∴ σ = σ2 (7),(5)

2

3.5 Examples

This section presents a set of examples which are used to compare the behaviour of our type inference

algorithm I with the original type inference algorithm for System E based on β-unification [15]. Al-

though a newer β-unification algorithm was later published [6], an implementation is available only for

the original algorithm, and so we use that one for comparison purposes. This implementation is called

the System E type inference tool and is available at [14]. Algorithm I was implemented by this author

and is called evcr [26].

We demonstrate and compare the output of both implementations on selected examples from the

System E Inference Report [13], a collection of 61 terms that were used to demonstrate the original

System E type inference algorithm. Compared to the System E type inference tool, evcr succeeds and

fails on exactly the same set of terms with the exception of Term 8 (discussed below) which is supported

by the System E type inference tool but not by evcr. The output of evcr on all 61 terms from this

report is included in Appendix B.

Term 1 in the System E Inference Report is a single variable x:

1 $ x;;

2 : a[] <| x : a[]

In the inferred typing a[] <| x : a[], the letter a represents an E-variable, while [] represents a

simple type variable. Because Algorithm I wraps each simple type variable in an E-variable, only one

simple type variable is needed in practice and so its name is irrelevant. For example, given E-variables

a and b, the types a[] and b[] can for all intents and purposes function as distinct type variables,

where �, a := ([] := S̄,�), b := (�, [] := T̄) will substitute the simple type S̄ for the first [] and

the simple type T̄ for the second []. By Lemma 3.17 (Type variables), it is also possible to construct

substitutions that will substitute any two types (not just simple types) for a [] and b [].

Chapter 3. System Ev: The Value Restriction 123

The System E type inference tool infers a similar typing of a0 � x : a0, where a0 indicates a type

variable. Similarly to evcr, the System E type inference tool also requires only a single type variable

and names it a0. The only difference between these two typings is that evcr represents the type variable

by a simple type variable [] wrapped in an E-variable a.

Term 2 is the identity function:

1 $ \x.x;;

2 : a (b[] -> b[])

In the inferred typing, all lowercase letters (i.e. a and b) are E-variables. The System E type

inference tool infers e0 a0 → e0 a0 for this term, however both typings are principal in their respective

systems. In evcr, principal typings are instantiated via substitutions, and so the outer expansion

variable a is required to allow the substitution of an outer expansion. In the System E type inference

tool, principal typings are instantiated via expansions, and so no outer expansion variable is needed.

Term 3 is the application of one term variable to another:

1 $ x y;;

2 : a[] <| y : b[], x : b[] -> a[]

In this typing, a[] and b[] effectively represent distinct type variables. The System E type inference

tool infers a0 � y : e2 a0, x : e2 a0 → a0 for this term. In this typing, a0 and e2 a0 effectively represent

distinct type variables, corresponding respectively to a[] and b[] in the evcr typing. Just as evcr uses

only one simple type variable [], the System E type inference tool also uses only one type variable α0,

and strategically applies E-variables so that each distinct type variable occurs in a different namespace.

Term 4 is an example of “self application”:

1 $ x x;;

2 : a[] <| x : (b[] -> a[]) ^ b[]

The ability to infer typings for programs involving self application is crucial to our encoding of

object-orientation which is based on the self-application semantics (see Section 5.4 of Chapter 5). This

example is not possible in Hindley/Milner-based type inference because x is used polymorphically and

no context information is provided about x. In contrast, evcr is able to infer a typing for this term

Chapter 3. System Ev: The Value Restriction 124

compositionally without any context information for x, inferring an intersection of the two types at

which x is used. The System E type inference tool infers the similar typing a0 � x : (e2a0 → a0) .∩ e2a0

which again differs only in the approach to using E-variable namespaces to name distinct type variables.

Term 8 uses the Y-combinator to compute the factorial of 2 using Church Numerals:

1 $ (\h.(\x.h (x x)) (\x.h (x x))) (\f.\n.n (\v.\x.\y.y)

2 (\x.\y.x) (\f.\x.f x) (\g.\x.n (f (n (\p.\s.s

3 (p (\x.\y.y)) (\f.\x.f (p (\x.\y.y) f x))) (\s.s

4 (\f.\x.x) (\f.\x.x)) (\x.\y.x)) g) x)) (\f.\x.f (f x))

5 (No output due to non-termination)

Although this term is not strongly normalising, the System E type inference tool still manages to

find a type for it: (e0e0(e2a0 → a0) .∩ e0e0e2(e2a0 → a0)) → e0(e0e2e2a0 → e0a0). This type describes

a function taking a first parameter that is used twice, and a second parameter that is used once,

which is what we find when inspecting the Church Numeral \f.\x.f (f x) for 2 that is computed by

this example. The first parameter f is used twice, first at type e0e0(e2a0 → a0) and second at type

e0e0e2(e2a0 → a0), then under the E-variable e0, the second parameter x is used once at type e0e2e2a0,

and then also under the same E-variable e0, this function gives a result of type e0a0 which is also the

same as the result type of the first use of parameter f.

Interestingly, if given the Y-combinator subterm alone, the System E type inference tool will fail

to terminate just as evcr would. This example highlights an important difference between our type

inference approach and the standard β-unification approach used in the System E type inference tool.

β-unification is effectively a form of whole-program analysis. The only reason it can succeed for the

larger term, and fail for the Y-combinator subterm is that it needs the context of the larger program to

know how many times the Y-combinator will be unfolded. In contrast, the approach used by evcr is

strictly compositional and will attempt to analyse the Y-combinator subterm on its own, and lacking

the required context of how many times the Y-combinator will be unfolded, it will continue unfolding

forever. Although our type inference algorithm fails to analyse the Y-combinator term, it should be

noted that the Hindley/Milner type inference system also cannot analyse the Y-combinator term and

solves the problem by introducing a primitive fixed-point operator with a special typing rule. Adding

a fixed-point operator is important future work for System Ev, and may require using System E’s

non-linear types to account for an unknown (or infinite) number of uses of a given term.

Chapter 3. System Ev: The Value Restriction 125

Term 14 applies a function that discards its argument:

1 $ (\z.\x.x x) (\y.y);;

2 : a (((b[] -> c[]) ^ b[]) -> c[])

3 > \x.x x

The System E type inference algorithm infers the typing (e0(e2a0 → a0) .∩ e0e2a0)→ e0a0, which is

almost the same in structure as the one inferred by evcr except that it inserts an additional E-variable

e0. This additional E-variable is not inserted into the evcr typing due to our use of the value restriction,

which we can see when we look at the System Ev typing derivation for the subterm \x.x x (where evcr

syntax is used in the derivation):

x : b[] -> c[]� x : 〈b[] -> c[]〉
(var)

x : b[]� x : 〈b[]〉
(var)

x x : c[]� x : 〈((b[] -> c[]) ^ b[])〉
(app)

\x.x x : ((b[] -> c[]) ^ b[]) -> c[]�
(abs)

In order to insert an E-variable corresponding to e0 into the evcr typing, it would need to be

introduced into the derivation when the subject is the term x x, and this is specifically prevented by

the value restriction because x x is not a value.

3.6 Efficiency

As discussed in Chapter 2, opus creates a significant amount of branching in the search path in order

to produce a covering unifier set, and this branching makes the algorithm too inefficient to be useful in

practice. In this chapter, we compare the efficiency of opusβ and opus by running our implementation

of both algorithms side by side on the 58 convergent terms from the System E Inference Report.

Figure 3.2 shows the number of −−→opusβ steps required by opusβ and the number of −→opus steps required

by opus to find a typing for each of these 58 terms. In many cases, opus ran too long and was forceably

stopped after 5 minutes (indicated by “Timed out” in the figure). Of the cases in which opus success-

fully terminated, Term 41 was the worst case at 954,239 −→opus steps. By comparison, opus successfully

terminated on all 58 terms with the worst case being Term 11 at 1,104 −−→opusβ steps. The cumulative 3,481

−−→opusβ steps used by opusβ took 9 seconds to complete on an Intel R© Core
TM

i5-2400 CPU @ 3.10GHz

Chapter 3. System Ev: The Value Restriction 126

Term −−→opusβ steps −→opus steps
01 0 0
02 0 0
03 2 2
04 2 2
05 4 4
06 11 213
07 16 30
09 33 Timed out
10 33 Timed out
11 1104 Timed out
12 275 Timed out
13 245 Timed out
14 10 14
15 8 12
16 8 12
17 25 231
18 8 12
19 8 12
20 148 Timed out
21 106 Timed out

Term −−→opusβ steps −→opus steps
22 92 Timed out
23 78 Timed out
24 58 Timed out
25 64 Timed out
26 127 Timed out
27 41 2156
29 26 292
30 16 218
31 17 25
32 8 12
33 17 375
34 15 225
35 13 215
36 13 215
37 11 213
38 16 24
39 8 12
40 57 9609
41 65 954239

Term −−→opusβ steps −→opus steps
43 56 102857
44 13 289
45 50 Timed out
46 36 Timed out
47 30 89663
48 38 1313
49 46 52391
50 10 14
51 16 30
52 13 21
53 11 213
54 49 Timed out
55 118 Timed out
56 118 Timed out
57 6 6
58 26 60
59 6 6
60 26 40
61 25 Timed out

Figure 3.2: Performance of opusβ vs opus with functions

with a single-threaded implementation. By comparison, the cumulative 1,215,249 −→opus steps (of the cases

that terminated without timing out) took 203 seconds to complete on the same hardware.

As we shall see in Chapter 5, the difference in efficiency becomes even more pronounced when

analysing object-oriented programs, to the extent that records or objects with more than 2 fields cannot

in practice be analysed without some optimisations, such as those adopted by opusβ.

3.7 Summary

This chapter presented System Ev, the first of three increments of System Evcr. The main contribution

of System Ev is to introduce the value restriction, which is necessary to safely integrate constants

and extensible records in the following chapters. This system is established to be typesafe under the

call-by-value semantics. System Ev also simplified some definitions and removed some redundancies

of the original System E in order to simplify the proofs and implementation. Then, we presented a

type inference algorithm, called I, that is parameterised by the choice of unification algorithm, and

Chapter 3. System Ev: The Value Restriction 127

established that it terminates, is correct and finds principal typing sets whenever the chosen unification

algorithm terminates, is correct and finds covering unifier sets respectively. Algorithm I is currently

compatible with both the existing opus algorithm, which finds covering unifier sets, and with our own

algorithm opusβ, which sacrifices the covering unifier sets property for an increase in efficiency. Next,

we compared our implementation of Algorithm I with the System E type inference tool and found that

it matched the results of the System E type inference tool on all but one of the 61 λ-calculus examples

from the System E Inference Report, failing, where it did, in a way that was predictable and consistent

with the compositional approach of our algorithm. Finally, we examined the efficiency issues of opus

that motivated our desire to create a derivative of opus called opusβ that adopts efficiency ideas from

β-unification.

Chapter 4

System Evc: Constants

System Evc extends System Ev with constants. Constants are the built-in values in a language, including

both data values (e.g. 1, 2, 3, true, false) and functions (e.g. +, −, ∗, /, not, or). Constants are

desirable in any practical language because they allow for efficient implementations and effective type

checking. However, they also play a critical role in our approach to extensible records since field labels

will be treated as constants.

This chapter is organised as follows. Section 4.1 gives motivations for introducing constants. Sec-

tion 4.2 discusses how the value restriction is used to preserve type safety in the presence of constants.

Section 4.3 formally presents System Evc and establishes that it is typesafe. Section 4.4 adapts the

type inference and unification algorithms to support constants. Finally, Section 4.6 summarises the

contributions of this chapter.

4.1 Motivations

Integers, booleans and associated operations can in theory be represented in the terms of the pure

λ-calculus using Church encodings [18], but in practice it is desirable to include these as built-ins of a

programming language.

One reason to use built-in constants is of course that they allow for faster processing than Church

encodings. But another reason is that they allow better type checking. For example, in many program-

128

Chapter 4. System Evc: Constants 129

ming languages, we would expect the application not 3 to generate a type error since the argument 3

is not boolean. However, the Church encoding of this application, (λm.λa.λb.m b a) (λs.λz.s s s z),

is still a valid λ term in its own right, and is even reducible and typable in System Ev (reducing to

λa.λb.(λs.λz.s s s z) b a with type e1(e2e3α→ e2((((e4α→ e5α→ e3α→ e6α) .∩ e4α) .∩ e5α)→ e6α))),

although it results in a term that has no clear meaning in either a numeric or boolean interpretation. If

we wish to classify the application not 3 as having a type error, then it would be beneficial to define not

and 3 as built-in constants with special typing rules requiring the argument of not to have a boolean

type.

Apart from the usual reasons for desiring constants, another reason that is especially important for

this dissertation is that we would like to interpret extensible records as functions from field labels to

field values. Since it will then be possible to pass labels as arguments to functions, just like integers

and booleans, it makes sense to treat labels as just another kind of constant and reuse all of the type

machinery for constants.

4.2 Integrating Constants with E-Variables

If we were to naively add constants to System E, then nonsense applications such as not 3 would be

typable via Rule (omega):

not 3 : ω � Γω

(omega)

This is not desirable since applications that are unable to be reduced to values should be flagged as

type errors. In general, Rule (omega) allows any application to be typed regardless of whether or not

a reduction rule has been defined for it. This rule is at least justified for the pure λ-terms where any

function may be safely applied to any argument. However, once constants are introduced, functions

can be defined that require a certain type of argument and must reject all others, just as we would

like the not function to accept only boolean arguments and reject all others. Also, constants allow for

the introduction of values that are non-functional and cannot be applied to anything. For example, in

many languages the application 3 false should not be typable since 3 is not a function.

Chapter 4. System Evc: Constants 130

The solution adopted by System Evc is to make use of the value restriction of System Ev. Under the

value restriction, Rule (omega) is restricted to values and hence may not be used on application terms.

Since values are never reduced in the call-by-value semantics, we are assured that evaluation will never

get stuck for any terms assigned type ω by Rule (omega).

It is worth noticing that even with the value restriction in place, an application of a function can

still be assigned type ω if it can be derived that the function has a return type of ω. For example, the

application (not true) can still be assigned type ω in System Evc via the following derivation:

not : Bool→ ω � Γω true : Bool� Γω

not true : ω � Γω

(app)

To support this, function not would be given the principal type Bool→ e Bool requiring a parameter

of type Bool and returning a value of a type that is any expansion of type Bool (including ω).

4.3 Type System

System Evc introduces two new elements: constants (such as 3 and false), and type constants (such

as Int and Bool). This section will define System Evc as an extension of System Ev, following the

conventions set forth in Section 1.5 of Chapter 1. That is, any amended definitions, lemmas and

theorems given in this chapter will override their respective original definitions, lemmas and theorems

given in the previous chapter.

4.3.1 Terms and Reductions

System Evc introduces a single new term form into the term language: the type constant. The amended

term language, free variables, term substitution and reduction rule definitions are presented below, with

the amendments underlined.

Amendment to Definition 3.1 (Terms for Evc). Let metavariables x, y and z range over the count-

ably infinite set of term variables (also called variables). The syntax for terms and their metavariable

conventions are given below.

Chapter 4. System Evc: Constants 131

s, t, u ::= v | s t terms

v ::= x | c | λx.t values

c ::= . . . constants

2

The set of constants is left unspecified, and the relevant definitions of System Evc that follow are

parameterised by the choice of constants.

Amendment to Definition 3.2 (Free variables for Evc). The free variables fv(t) of a term t are

defined by the following rules:

fv(x) = {x}

fv(c) = ∅

fv(λx.t) = fv(t)\{x}

fv(s t) = fv(s) ∪ fv(t)

2

Amendment to Definition 3.3 (Term substitution for Evc). A term substitution t[x := v] of value

v for x in t is defined by the following rules:

x[x := v] = v

y[x := v] = y y 6= x

c[x := v] = c

(λx.t)[x := v] = λx.t

(λy.t)[x := v] = λz.t[y := z][x := v] y 6= x, z /∈ fv(v) ∪ {x}

(s t)[x := v] = s[x := v] t[x := v]

2

Chapter 4. System Evc: Constants 132

Amendment to Definition 3.5 (Reduction for Evc). The reduction rules are defined as follows:

c v > φ(c v) if φ(c v) is defined

(λx.t) v > t[x := v]

t s > t′ s if t > t′

v t > v t′ if t > t′

where φ is a partial function that takes an application of the form (c v) and returns a value. 2

The above definition allows for built-in operations to take a single argument only, although binary

operations can be supported by bundling the two arguments into a Church pair. For example, the +

operation can be defined as follows:

φ(+ v) = sum(a, b) if v (λx.λy.x) > . . . > a and v (λx.λy.y) > . . . > b

and a, b are integer constants

and sum(a, b) calculates the sum of a and b

4.3.2 Types and Expansions

Typically, constants such as 3, false and "Hello World" have corresponding types Int, Bool and

Str which are introduced into the type system as type constants. Supporting type constants requires

additions to the type syntax and the rules for expansion application.

Amendment to Definition 3.6 (Syntax for Evc). Let metavariables e, f, g range over the countably

infinite set of E-variables and let metavariables α, β, γ range over the countably infinite set of simple

type variables. The syntactic categories and their metavariable conventions are given below.

Chapter 4. System Evc: Constants 133

S, T, U ::= T̄ | T types

S̄, T̄ , Ū ::= α | C | S → T simple types

C ::= . . . type constants

S,T,U ::= ω | S .∩ T | e T expansion types

E,F,G ::= ω | E .∩ F | e E | σ expansions

σ ::= � | σ, α := T̄ | σ, e := E substitutions

X ::= α | e variables

K ::= T | E entities

2

The set of type constants is left unspecified, and the relevant definitions of System Evc that follow

are parameterised by the choice of type constants.

Amendment to Definition 3.11 (Expansion application for Evc). The rules for applying expansions

to expansions, types and E-variables are defined as follows:

ω K = ω σ ω = ω

(E .∩ F) K = E K .∩ F K σ (K1
.∩K2) = σ K1

.∩ σ K2

(e E) K = e (E K) σ (e K) = (σ e) K

� e = e � σ (S → T) = σ S → σ T

� α = α σ � = σ

(σ,X := K) X = K σ (σ′, X := K) = σσ′, X := σ K

(σ,X := K) X ′ = σ X ′ if X 6= X ′ σ C = C 2

Chapter 4. System Evc: Constants 134

4.3.3 Typing Derivations

The typing rule for constants should consider both data constants and function constants. In Sys-

tem Evc, a data constant such as true would have the simple type Bool or any expansion of Bool

including, for example, Bool .∩ Bool and ω. For data constants, it therefore suffices to have a typing

rule that assigns a simple type to each data constant with all other types derivable by subsequent

applications of the expansion typing rules (int), (omega) and (evar).

Functional constants are more complicated. A functional constant such as not would have the simple

type Bool→ e Bool. That is, it requires a Bool argument and returns a result whose type can be any

expansion of Bool. To allow the return type to be any expansion of Bool, the typing rule for constants

should incorporate the ability to apply substitutions (in this case, for e). The function not also ought

to have the equivalent type (Bool .∩ ω)→ e Bool for Lemma 3.27 (Equivalent types) to hold, and this

type is not derivable via the expansion rules or via a substitution. Therefore, we need a typing rule for

constants that also incorporates type equivalence.

In summary, the process for deriving a type for a constant is:

1. Begin with a raw type (e.g. Bool for true and Bool→ e Bool for not)

2. Apply the desired substitution

3. Derive the desired equivalent type

For step 1, we define the raw types of constants as follows.

Definition 4.1 (typeof for Evc). typeof is a total function from constants to type constants and

function types. For any constant c, typeof(c) is called the raw type of c. 2

For steps 2 and 3, we introduce the new typing derivation rule for constants as follows.

Amendment to Definition 3.24 (Typing derivations for Evc). A typing derivation (metavariable

D) is a proof tree of a typing judgement. The rules for deriving valid typing judgements are given

below.

Chapter 4. System Evc: Constants 135

(var)
x : T̄ � x : 〈T̄ 〉

(omega)
v : ω � Γω

(con)
c : T̄ � Γω

T̄ ≡ σ typeof(c) (int)
v : τ1 v : τ2

v : τ1 .∩ τ2

(abs)
t : T � Γ, x : 〈S〉

λx.t : S→T � Γ
(evar)

v : τ

v : e τ

(app)
t : S→T � Γ1 s : S � Γ2

t s : T � Γ1
.∩ Γ2

2

The new rule (con) assigns to a constant any simple type that is equivalent to any substitution

of the constant’s raw type. Invoking the equivalence relation in Rule (con) ensures that Lemma 3.27

(Equivalent types) holds, while applying the substitution σ ensures that Lemma 3.28 (Expansion) holds.

Also, restricting the type to a simple type ensures that Lemma 3.25 (Typing derivations) holds, forcing

all intersection types, E-variable application types and the ω type to be introduced via rules (int), (evar)

and (omega) respectively.

Since the actual set of constants is left unspecified, the following requirement ensures that for any

given set of constants, subject reduction and progress still hold in the presence of constant applications

such as not true.

Requirement 4.2 (φ-typability for Evc). If c v : T � Γω, then φ(c v) is defined and φ(c v) : T � Γ. 2

Two additional lemmas hold for types in System Evc. The first lemma establishes that no expres-

siveness is lost by the restriction of Rule (con) to simple types, and the second lemma asserts that the

term context of a typing of a constant is always empty.

Lemma 4.3 (Constant types for Evc). Given any T , σ and c, if T ≡ σ typeof(c), then c : T � Γω.

Proof.

(1) σ typeof(c) is a simple type lem 3.12

(2) c : σ typeof(c) � Γω (con) with (1)

(3) σ typeof(c) ≡ T assumption

∴ c : T � Γω lem 3.27 with (2) and (3)

Chapter 4. System Evc: Constants 136

2

Lemma 4.4 (Constant term contexts for Evc). Given any c, T and Γ, if c : T � Γ, then Γ = Γω.

Proof. Let D be the derivation of c : T � Γ. The proof is by induction on the structure of D. There

are only four cases of typing rules where the subject can be a constant.

case: D is the following application of Rule (con):

c : T̄ � Γω

T̄ ≡ σ typeof(c)

where T = T̄ and (1) Γ = Γω. The result is (1).

case: D is the following application of Rule (omega):

c : ω � Γω

where T = ω and (1) Γ = Γω. The result is (1).

case: D ends with the following application of Rule (int):

c : T1 � Γ1 c : T2 � Γ2

c : T1
.∩ T2 � Γ1

.∩ Γ2

where T = T1
.∩ T2 and Γ = Γ1

.∩ Γ2. By the induction hypothesis, Γ1 = Γω and Γ2 = Γω.

Therefore Γ = Γω.

case: D ends with the following application of Rule (evar):

c : T1 � Γ1

c : e T1 � e Γ1

where T = e T1 and (1) Γ = e Γ1. By the induction hypothesis, Γ1 = Γω and so from (1) we get

(2) Γ = e Γω. By Definition 3.7 and Definition 3.20, we have e Γω = Γω, and so from (2) we get

Γ = Γω.

2

Chapter 4. System Evc: Constants 137

Finally, we extend the proofs of lemmas and theorems from the previous chapter that are affected

by the introduction of constants and type constants.

Restatement of Lemma 3.25 (Typing derivations for Evc). Each typing judgement can be the

conclusion of at most one typing rule.

Proof. Consider any application of a typing rule that concludes with the typing judgement J denoting

t : T � Γ. The cases are the same as before (p.88), with one new case for constants.

case: If t is a value,

case: If T = T̄

case: If t = c, then J was derived by (con).

2

Restatement of Lemma 3.27 (Equivalent types for Evc). Given any t, T , T ′ and Γ, if t : T � Γ

and T ≡ T ′, then t : T ′
� Γ.

Proof. Let D be the derivation of t : T �Γ. The proof is by induction on the structure of D. The cases

are the same as before (p.89), with one new case for Rule (con).

case: t is v.

case: T ≡ T ′ was derived by structural congruence rule
(1) T1 ≡ T ′

1 (2) T2 ≡ T ′
2

T1 → T2 ≡ T ′
1 → T ′

2

By Lemma 3.25, D can end with one of three possible rules; as before, Rule (var) and

Rule (con), but now also Rule (con) whose case is shown below:

case: D is the following application of Rule (con):

(3) c : T1 → T2 � Γω

(4) T1 → T2 ≡ σ typeof(c)

Then,

(5) T1 → T2 ≡ T ′
1 → T ′

2 Assumption

(6) T ′
1 → T ′

2 ≡ σ typeof(c) def. 3.7 with (4) and (5)

∴ c : T ′
1 → T ′

2 � Γω (con) with (6)

Chapter 4. System Evc: Constants 138

2

Restatement of Lemma 3.28 (Expansion for Evc). Given any t, T , Γ and E, if t : T � Γ and if t

is a value or E is a substitution, then t : E T � E Γ.

Proof. Let D be the derivation of t : T �Γ. The cases are the same as before (p.91), with one new case

for Rule (con).

case: E is σ.

case: D is the following application of Rule (con)

(1) c : T̄1 � Γω

(2) T̄1 ≡ σ1 typeof(c)

Then,

(3) σ T̄1 ≡ σ (σ1 typeof(c)) lem. 3.16 with (2)

(4) σ T̄1 ≡ (σσ1) typeof(c) lem. 3.14 with (3)

∴ c : σ T̄1 � Γω lem 4.3 with (4)

2

Restatement of Lemma 3.29 (Term substitution for Evc). Given any v, t, x, S, T , Γ1 and Γ2, if

v : S � Γ2 and t : T � Γ1, x : 〈S〉, then t[x := v] : T � Γ1
.∩ Γ2.

Proof. Let D be the derivation of t : T � Γ1, x : 〈S〉. The cases are the same as before (p.94), with one

new case for Rule (con).

case: D is the following application of Rule (con):

(1) c : T̄1 � Γω

(2) T̄ ≡ σ typeof(c)

where (3) t = c, (4) T = T̄1, (5) Γ1 = Γω and (6) S ≡ ω.

Chapter 4. System Evc: Constants 139

(7) v : S � Γ2 Assumption

(8) v : ω � Γ2 lem. 3.27 with (7) and (6)

(9) Γ2 = Γω (omega) with (8)

(10) c : T̄1 � Γ1
.∩ Γ2 (1) with (5) and (9)

∴ c[x := v] : T̄1 � Γ1
.∩ Γ2 def. 3.3 with (10)

2

Restatement of Theorem 3.30 (Subject reduction for Evc). If t : T �Γ and t > t′, then t′ : T �Γ.

Proof. The cases are the same as before (p.97), but with one new case for constant applications.

case: c v > φ(c v) if φ(c v) is defined.

By Requirement 4.2, φ(c v) : T � Γ.

2

Restatement of Theorem 3.31 (Progress for Evc). If t s : T � Γω, then there exists a term t′ such

that t s > t′.

Proof. The proof is by induction on the structure of t s.

The derivation of t s : T � Γω ends with

(1) t : S → T � Γω s : S � Γω

t s : T � Γω

The cases are the same as before (p.98), but with one new case for constants.

case: t is v1.

case: s is v2.

case: v1 is c. By the assumption, c v2 : T � Γω. Therefore, φ(c v2) is defined by Require-

ment 4.2. Hence, c v2 > φ(c v2). 2

Chapter 4. System Evc: Constants 140

4.4 Type Inference

This section extends our type inference algorithm I and unification algorithm opusβ to support con-

stants, and re-establishes theorems and lemmas stated in the previous chapter that are affected by the

introduction of constants and type constants.

4.4.1 Algorithm opusβ

This section extends our type unification algorithm opusβ to support type constants. A type constant

can potentially be unified with a simple type variable, an E-variable application or itself. However, no

new rules need to be added to the −−→opusβ relation to support these cases:

• The unification of a type constant with a simple type variable is already handled by Rule (T-unify)

because type constants are included in the category of simple types.

• The unification of a type constant with an E-variable application is already handled by Rule (EA-unify),

also for the reason that type constants are included in the category of simple types.

• The unification of a type constant with itself is not needed because the −−→opusβ relation is invoked

only on unsolved constraints, by Definition 3.47 (opusβ reduction).

All that is required to support type constants is a small change to the definition of varstruct which

is used by ovars, which in turn is used by the occurs check of Rule (T-unify).

Amendment to Definition 3.43 (varstruct for Evc). The total function varstruct takes any type,

unification constraint or unification constraint set and returns a variable structure. It is defined by the

Chapter 4. System Evc: Constants 141

following rules:

varstruct(α) = α 7→ ∅

varstruct(C) = ∅

varstruct(ω) = ∅

varstruct(S → T) = varstruct(S .∩ T) = varstruct(S) ⊔ varstruct(T)

varstruct(e T) = e 7→ varstruct(T)

varstruct(S ⋖ T) = varstruct(S) ⊔ varstruct(T)

varstruct(∆) =
⊔

{varstruct(δ) | δ ∈ ∆}

where V1 ⊔ V2 = {e 7→ (V1/e) ⊔ (V2/e) | e ∈ Dom(V1) ∪Dom(V2)} 2

Restatement of Theorem 3.50 (Correctness of opusβ for Evc). Given any ∆ and σ, then σ ∈

opusβ(∆) =⇒ solved(σ∆).

Proof. The original proof (p.110) remains unchanged since opusβ is defined to stop as soon as all

constraints are solved, independently of what rules are used to solve the constraint. 2

4.4.2 Algorithm I

Algorithm I, too, requires only a very minor change to support constants.

Amendment to Definition 3.57 (Algorithm I for Evc). The type inference algorithm I takes a

unification algorithm and a term and returns a distinct sequence of typings. It is defined by the following

Chapter 4. System Evc: Constants 142

rules:

Terms

I(U , v) = {e Iv(U , v)} e fresh (I.val)

I(U , t s) = {σ (e α � Γ1
.∩ Γ2) (I.app)

| (T � Γ1) ∈ I(U , t), (S � Γ2) ∈ I(U , s)

σ ∈ U({T ⋖ S → e α} ∪ {U ⋖ U | x : U ∈ Γ1
.∩ Γ2}), e, α fresh}

Values

Iv(U , x) = α � x : 〈α〉 α fresh (I.var)

Iv(U , c) = typeof(c) � Γω (I.con)

Iv(U , λx.t) = isect({(S→T � Γ) | (T � Γ, x : 〈S〉) ∈ I(U , t)}) (I.abs)

2

The new rule (I.con) simply uses typeof(c) to supply the type of the constant c. The rest of the rules

remain as before, and in particular, Rule (I.val) will be used to wrap the inferred type of a constant in

a fresh E-variable.

As before, Algorithm I satisfies three properties.

Restatement of Theorem 3.58 (Termination of I for Evc). Given any U and t, if each use of U by

I(U , t) terminates, then I(U , t) terminates.

Proof. Straightforward by induction on the structure of t. 2

Restatement of Theorem 3.59 (Correctness of I for Evc). Given any U , τ and t, if τ ∈ I(U , t),

then t : τ .

Proof. The cases are the same as before (p.116), with one new case for constants.

case: t = c.

(1) ∃e. I(U , c) = {e Iv(U , c)} = {e typeof(c) � Γω} (I.val)/(I.con)

(2) c : typeof(c) � Γω (con)

(3) c : e typeof(c) � Γω (evar) with (2)

∴ if τ ∈ I(U , c), then c : τ (1),(3)

Chapter 4. System Evc: Constants 143

2

Restatement of Theorem 3.60 (Principality of I for Evc). Given any U , t and τ ′, if covering(U)

and t : τ ′ and I(U , t) terminates, then there exists a substitution σ and a typing τ ∈ I(U , t) such that

τ ′ ≡ στ .

Proof. Let D be the derivation of t : τ ′. The cases are the same as before (p.118), with one new case

for Rule (con).

case: D is the following application of Rule (con):

(1) c : T̄ � Γω

(2) T̄ ≡ σ1 typeof(c)

(3) ∃e. I(U , c) = {e Iv(U , c)} = {e typeof(c) � Γω} (I.val)/(I.con)

(4) (e := σ1) (e typeof(c) � Γω) = (σ1 typeof(c) � Γω) def 3.11

≡ τ ′ (2)

∴ σ is (e := σ1) (4),(3)

2

4.5 Examples

In this section, we demonstrate our implementation evcr on a variety of examples and examine the

behaviour of Algorithm I in practice with respect to constants. Although constants represent only a

small addition to our system, some interesting issues turn up in practice, and these will be discussed.

Inferred types for data constants such as 3 are always wrapped in E-variables for generality:

1 $ 3;;

2 : a Int

The E-variable a acts as a placeholder for the insertion of an expansion during type inference when

it is discovered how 3 is to be used. For example, consider the abstraction:

Chapter 4. System Evc: Constants 144

1 $ \x. x + x;;

2 : a ((Int ^ Int) -> b Int)

The parameter is used twice at type Int, hence its intersection type Int ^ Int. In order to apply

this function to the argument 3, the type inference algorithm will unify the parameter type Int ^ Int

with the argument type a Int and produce a substitution that replaces a by an intersection expansion.

Since System Evc does not directly allow functional constants to take more than one parameter,

binary operators can be defined to accept Church pairs:

1 $ (2,3);;

2 : a ((b Int -> c Int -> d[]) -> d[])

3 = (\x.\y.\f.f x y) 2 3

4 > (\y.\f.f 2 y) 3

5 > \f.f 2 3

6 $ add;;

7 : a (((b (c d[] -> c (w -> d[])) -> Int) ^ (e (w -> f (g[] -> g[])) -> Int)) -> h Int)

8 $ add (2,3);;

9 : a Int

10 = + ((\x.\y.\f.f x y) 2 3)

11 > + ((\y.\f.f 2 y) 3)

12 > + (\f.f 2 3)

13 > 5

The surface syntax (2,3) on Line 1 is automatically translated to the Church pair

f.f 2 3 which has type a ((b Int -> c Int -> d[]) -> d[]). The predefined functional constant

add on Line 6 has a parameter type compatible with Church pairs. It is an intersection of two types,

indicating that add uses its parameter twice. In the first use, the given Church pair is used at type b

(c d[] -> c (w -> d[])) -> Int where w (which represents type omega1) is used to indicate that

the second value of the pair is unused. In the second use, the given Church pair is used at type e (w

-> f (g[] -> g[])) -> Int, this time indicating that the first value of the pair is not used. In other

words, this parameter type reveals that the given Church pair will be used twice, once for its first value,

and once for its second value. The result of add is an Int, wrapped in an E-variable for generality.

Note that the infix notation 2 + 3 is simply translated into an ordinary application of add:

1The lowercase letter w is reserved to mean ω, while all other lowercase letters indicate E-variables.

Chapter 4. System Evc: Constants 145

1 $ 2 + 3;;

2 : a Int

3 = add ((\x.\y.\f.f x y) 2 3)

4 > add ((\y.\f.f 2 y) 3)

5 > add (\f.f 2 3)

6 > 5

As we should expect in a system with constants, it is possible for there to be no typings found for

a given application if a function is applied to the wrong types of arguments:

1 $ 3 + false;;

2 : No typings found

This type error is only caught due to the value restriction, without which this application could

have been assigned type ω.

Intersection type polymorphism also works well with constants. The following program requires as

input a function that can take both integers to integers and booleans to booleans, and tests whether

that function acts as the identity on two particular values:

1 $ \f.f 3 == 3 && f true;;

2 : a (((b Int -> Int) ^ (c Bool -> Bool)) -> d Bool)

Here, && is the logical-AND operator, and == is the equality operator. This example is not supported

by Hindley/Milner-style type inference since polymorphic function parameters are not allowed. The

application of the above program to the identity function produces the expected answer true of the

expected type a Bool:

1 $ (\f.f 3 == 3 && f true) (\x.x);;

2 : a Bool

3 = (\f.and ((\x.\y.\f.f x y) (== ((\x.\y.\f.f x y) (f 3) 3)) (f true))) (\x.x)

4 > and ((\x.\y.\f.f x y) (== ((\x.\y.\f.f x y) ((\x.x) 3) 3)) ((\x.x) true))

5 > and ((\x.\y.\f.f x y) (== ((\x.\y.\f.f x y) 3 3)) ((\x.x) true))

6 > and ((\x.\y.\f.f x y) (== ((\y.\f.f 3 y) 3)) ((\x.x) true))

7 > and ((\x.\y.\f.f x y) (== (\f.f 3 3)) ((\x.x) true))

8 > and ((\x.\y.\f.f x y) true ((\x.x) true))

9 > and ((\y.\f.f true y) ((\x.x) true))

10 > and ((\y.\f.f true y) true)

11 > and (\f.f true true)

12 > true

Chapter 4. System Evc: Constants 146

4.5.1 Issues

Although constants are our most trivial addition to System E, they are not always well behaved. This

section describes some of the issues.

Both opusβ and β-unification use asymmetric unification constraints of the form S ⋖ T where S is

assumed to be an argument type and T a parameter type. However, it is possible to define functional

constants that break this assumption. An example is the if/else ternary function which takes a boolean

argument followed by two arbitrary arguments which must have the same type as each other. This is

problematic because it will cause constraints to be generated between two argument types rather than

between a parameter type and an argument type. Hence, when generating unification constraints for

applications of the if/else ternary function, it may make sense to fall back to the full Algorithm opus

in that specific case.

But even if we use the full Algorithm opus when unifying argument types with argument types, it

can sometimes happen that the types of abstractions and the types of functional constants do not unify

very well, as illustrated by the following example:

1 $ not;;

2 : a (Bool -> b Bool)

3 $ \x.x;;

4 : c (d [] -> d [])

5 $ if (true) not else (\x.x);;

6 : e (Bool -> Bool)

On their own, the types for not and \x.x appear to be satisfactory. One important feature that both

types have is that the result types are wrapped in an E-variable which allows, via an expansion, the

result to have type ω if needed. But when these two types are unified with each other, this E-variable

is eliminated because the identity function must return exactly the same type as its parameter which,

in unification with the type of not, must be exactly type Bool. The inability of the return type to be

ω causes a problem for programs such as the one below:

1 $ let ignore = \x.3;;

2 : a (w -> b Int)

3 $ let myfalse = (if (true) not else \x.x) true;;

Chapter 4. System Evc: Constants 147

4 : Bool

5 $ ignore myfalse

6 : No typings found

Since ignore ignores its argument, it requires its argument to have type ω. And since myfalse

cannot be given type ω, it is impossible to apply ignore to myfalse, even though this application

should be typesafe.

4.6 Summary

This chapter presented System Evc, an extension of System Ev with constants. Despite being a relatively

simple extension, we exposed some of the problems associated with introducing constants. First, a naive

attempt to introduce constants would allow unsafe applications to be typable via Rule (omega), and

type safety would be lost. In System Evc, type safety was preserved by adopting a value restriction to

rule out unsafe applications of constants. Second, while constants appear to be well behaved in most

normal usages, an issue can arise when two argument types are unified, and this will require further

study.

Chapter 5

System Evcr: Extensible Records

System Evcr is the final system presented in this dissertation. It builds on the intersection types and

expansion variables of System E, the value restriction of System Ev and the constants of System Evc

to develop a system of extensible records that supports first-class polymorphism, compositional type

inference and object-orientation.

This chapter is organised as follows. Section 5.1 gives an overview of the approach System Evcr takes

to integrate extensible records with expansion variables. Section 5.2 formally defines System Evcr and

establishes its properties. Section 5.3 formally defines the type inference and unification algorithms and

establishes their properties. Section 5.4 shows how all of the problem examples from the introductory

chapter can be encoded into our calculus and demonstrates our type inference algorithm on each of

them. Section 5.5 revisits the efficiency differences between opus and opusβ in the context of extensible

records. Finally, Section 5.6 summarises the contributions of this chapter.

5.1 Integrating Extensible Records with E-Variables

In System Evcr, extensible records are treated as functions from labels to terms, and this allows us to

reuse all of the existing type machinery of System E that was designed around functions. The syntax

for defining an extensible record resembles that for defining a pattern matching function in which labels

are the only patterns, and the default case is the empty record {}:

148

Chapter 5. System Evcr: Extensible Records 149

let john = name→ "John Smith" .∩ age→ 31 .∩ {}

The field selection john.age now becomes a straightforward function application, john age, which

conveniently has a similar syntax. As is the case with field selection for traditional extensible records,

the application john age is evaluated by scanning the cases of the function from left to right until a

case with a matching label is found.

Following Kopylov [38], we interpret record types as intersections of function types such that john

now has the type:

name → String .∩ age → Int

In a way that resembles subtyping, our type system also allows john to be assigned weaker types

with fields omitted, such as

name → String

which happens to be the function type that is needed in order to apply john to the label name. Subtype

polymorphism demands that the record john be able to have both of the above types simultaneously.

System Evcr provides the same effect without subtype polymorphism by using an intersection type to

intersect both of the above types together:

(name → String .∩ age → Int) .∩ (name → String)

This type is linear, indicating that john is to be used once at type name → String .∩ age → Int

and once at type name → String.

One consequence of treating extensible records as functions from labels to values is that labels are

now first-class citizens. In System Evcr, it is possible for a term variable to represent an unknown label,

and so the function λx.(name→ "John" .∩employed→ true .∩{}) x is possible, which takes an unknown

label as a parameter and then selects a field of a record matching that unknown label. First-class labels

are an interesting consequence of our treatment of records as functions over labels, although this was

Chapter 5. System Evcr: Extensible Records 150

not a specific design goal of System Evcr. We do not push this idea to the heights reached in the system

by Leijen [40] where term variables can appear in place of the labels of actual fields. For example,

Leijen’s system allows functions such as λx.λy.(x→ "John" .∩y → true .∩{}) which takes two unknown

labels and constructs a record using those two labels, but this is not supported by System Evcr.

The most significant departure of System Evcr from the traditional extensible record type systems is

its treatment of row variables. In fact, System Evcr does not include row variables in its type language,

although types that serve the same purpose as row variables can be constructed from more fine-grained

primitives. Before we show how row variables can be constructed, we will illustrate how row variables

work at the coarse-grained level by assuming the existence of pre-built row variables represented by

metavariable ρ. The purpose of beginning the explanation at the coarse-grained level is not only to

begin at a point of familiarity, but also to show why the coarse-grained level is insufficient in System Evcr

and why, ultimately, we must build row variables out of more fine-grained primitives.

At the coarse-grained level, our approach follows that of constrained quantification introduced by

Harper and Pierce [25] (see Section 1.3.1 in Chapter 1 for a review) in that we use predicates directly

on row variables. One difference is that we use predicates directly on each occurrence of a row variable

rather than once globally, which can be illustrated by the following example:

λx.id→ 3 .∩ x : ρ\id→ (id→ Int .∩ ρ\id)

The row variable ρ\id represents an unknown record type lacking a field labelled id, and the list

of labels following \ is called a label constraint. Note that each row variable is uniquely identified by

the combination of its name and its label constraint, and it is only because both occurrences of ρ\id

in the above type have the same name and label constraint that these refer to the same row variable.

By comparison, the row variables ρ\id and ρ\age are not the same row variable despite having the

same name ρ. This simplifies the theory since we do not need to add a third component to typings that

carries around information about each row variable.

This coarse-grained view of row variables is, however, insufficient when attempting to solve unifica-

tion constraints. For example, consider the constraint

Chapter 5. System Evcr: Extensible Records 151

α→ T̄ ⋖ ρ\age

in which the left type is a record type with one field whose label is unknown (of type α), and the right

type is a row variable representing an unknown record type lacking a field labelled age. Without some

way to refine the simple type variable α so that it may prevent any later substitution of the label age,

the best that can be done to solve this constraint is to pick some concrete label not equal to age to

substitute for α. The choice would however be arbitrary, and so this constraint of course has no single

most-general unifier. It does not even have a finite covering unifier set because there are infinitely many

labels not equal to age that could be substituted for α and that are unrelated to one another.

The example above illustrates a need to place label constraints directly on simple type variables.

We call α[L] a constrained simple type variable, and it represents an unknown label that must not be

equal to any of the labels in the label constraint L. Once we have constrained simple type variables,

row variables can now be constructed from this and other primitives. For example, a row variable ρ\L,

for some given label constraint L, can be encoded as:

e (β[L]→ f γ)

This type behaves as a row variable because it can be expanded via e to any intersection of function

types, the domain of which can be any label besides those listed in L. That is, it describes record types

that do not use any of the field names in L. The unification constraint that caused earlier difficulty can

now be expressed as:

α→ T̄ ⋖ e (β[age]→ f γ)

This unification constraint now has a most general unifier (α := β[age], e := (f := (γ := T̄))) which

results in the following solved constraint:

β[age]→ T̄ ⋖ β[age]→ T̄

Based on this encoding of row variables, we return to the example function used in the literature

Chapter 5. System Evcr: Extensible Records 152

review on row variables (Section 1.3.1), which can now be assigned the following type in System Evcr:

λx.(id→ 3 .∩ x) : e (α[id]→ f α)→ (id:Int, e (α[id]→ f α))

Here, the encoded row variable e (α[id]→ f α) indicates that the type of x must be a record type

not already containing the label id, or more precisely, that the type of x must be composed of function

types where each parameter type must be a label not equal to id. A possible argument that satisfies

this constraint is the following extensible record:

a→ 3 .∩ b→ 4 .∩ {} : a→ Int .∩ b→ Int

Substituting this extensible record for the parameter x and substituting its type for the encoded

row variable gives the following extensible record:

id→ 3 .∩ a→ 3 .∩ b→ 4 .∩ {} : id→ Int .∩ a→ Int .∩ b→ Int

It is important to note that the constraint on parameter x prevents only the type of the argument

from containing an id field, but does not prevent the argument itself from containing an id field. For

example, the following possible argument also satisfies the constraint:

id→ "hidden" .∩ a→ 3 .∩ b→ 4 .∩ {} : a→ Int .∩ b→ Int

This is possible because System Evcr allows an extensible record to be assigned a type with fields

omitted (in this case, field id) in a way that resembles subtyping. Substituting this argument for the

parameter x and substituting its type for the encoded row variable gives the following extensible record:

id→ 3 .∩ id→ "hidden" .∩ a→ 3 .∩ b→ 4 .∩ {} : id→ Int .∩ a→ Int .∩ b→ Int

This type is valid because the new field id → 3 overrides the old field id → "hidden" so that the

resulting record effectively has only one id field of value 3.

Chapter 5. System Evcr: Extensible Records 153

Finally, we turn to the use of expansion variables in record types. Expansion variables should be

inserted into typings by the type inference algorithm in such a way that the inferred typing represents

the range of the different typings that are possible for a given term. In the case of extensible records,

this must include types where some fields have been omitted, and must also include intersections of two

alternative types for the same record. To address the first requirement, expansion variables are placed

around each field type, and by substituting the ω expansion for one of these expansion variables, it is

possible to obtain a type with that field omitted. For example, if john has type e1 (name → String)

.∩ e2 (age → Int), we can derive another type with field age omitted by substituting ω for e2 giving

e1 (name → String) .∩ ω, which is equivalent to e1 (name → String).

To address the second requirement, expansion variables are also placed around whole record types

containing multiple fields, and by substituting an intersection expansion for one of these expansion

variables, it is possible to obtain an intersection type with each branch having a different alternative

type. For example, if john has type e3 (e1 (name → String) .∩ e2 (age → Int)), we can derive

another type for john that intersects together several other derivable types by substituting for e3 an

intersection expansion E1
.∩E2 where E1 and E2 derive alternative types for the left and right branches

of the intersection.

5.2 Type System

This section formally defines System Evcr as an extension of System Evc.

5.2.1 Terms and Reductions

To support extensible records, we need to extend the term language as well as the rules for free variables,

term substitution and reduction.

Amendment to Definition 3.1 (Terms for Evcr). Let metavariables x, y and z range over the

countably infinite set of term variables (also called variables). Let metavariable l range over the count-

ably infinite set of labels . The syntax for terms and their metavariable conventions are given below.

Chapter 5. System Evcr: Extensible Records 154

s, t, u ::= v | s t terms

v ::= x | c | λx.t | l → t .∩ v values

c ::= . . . | l | {} constants

2

The values are extended to include extensions, where the extension l→ t .∩v is a function that takes

label l to term t and otherwise acts as value v. The constants are extended to include labels and the

empty record {}.

Extensions resemble pattern matching functions where labels are the only patterns that can be

matched. Being functions, extensions are subtly different from extensible records. A traditional ex-

tensible record {field=2+3, {}} would be reducible to {field=5, {}}, but the extension (field2→

2+ 3 .∩ {}) is not reducible at all since it is already a value. The subterm 2+ 3 is not reduced until the

function is applied to the label field2. However, the standard behaviour of extensible records can be

encoded by using the syntactic sugar { l = t1, t2 } to denote (λx.λy.(l → x .∩ y)) t1 t2.

Amendment to Definition 3.2 (Free variables for Evcr). The free variables fv(t) of a term t are

defined by the following rules:

fv(x) = {x}

fv(c) = ∅

fv(λx.t) = fv(t)\{x}

fv(l → t .∩ v) = fv(t) ∪ fv(v)

fv(s t) = fv(s) ∪ fv(t)

2

Amendment to Definition 3.3 (Term substitution for Evcr). A term substitution t[x := v] of value

Chapter 5. System Evcr: Extensible Records 155

v for x in t is defined by the following rules:

x[x := v] = v

y[x := v] = y y 6= x

c[x := v] = c

(λx.t)[x := v] = λx.t

(λy.t)[x := v] = λz.t[y := z][x := v] y 6= x, z /∈ fv(v) ∪ {x}

(l → t .∩ v)[x := v1] = l → t[x := v1] .∩ v[x := v1]

(s t)[x := v] = s[x := v] t[x := v]

2

Amendment to Definition 3.5 (Reduction for Evcr). The reduction rules are defined as follows:

c v > φ(c v) if φ(c v) is defined

(λx.t) v > t[x := v]

(l → t .∩ v) l > t

(l → t .∩ v) l1 > v l1 if l1 6= l

t s > t′ s if t > t′

v t > v t′ if t > t′

where φ is a partial function that takes an application of the form (c v) and returns a value. 2

For example, the field selection john age is reduced to 31 via the following reduction path:

(name→ "John Smith" .∩ age→ 31 .∩ {}) age

> (age→ 31 .∩ {}) age

> 31

These reduction rules work only if the selected field actually exists in the record. If selection of the

non-existent field address is tried, reduction will become stuck at the application {} address for which

Chapter 5. System Evcr: Extensible Records 156

no reduction rule exists:

(name→ "John Smith" .∩ age→ 31 .∩ {}) address

> (age→ 31 .∩ {}) address

> {} address

By the progress theorem, the typing rules ensure that this cannot happen.

5.2.2 Types and Expansions

This section extends the definitions of types and expansions to account for constrained simple type

variables, labels and the empty record type.

Amendment to Definition 3.6 (Syntax for Evcr). Let metavariables e, f, g range over the countably

infinite set of E-variables and let metavariables α, β, γ range over the countably infinite set of simple

type variables. The syntactic categories and their metavariable conventions are given below.

S, T, U ::= T̄ | T types

S̄, T̄ , Ū ::= α[L] | C | S → T simple types

C ::= . . . | l | {} type constants

S,T,U ::= ω | S .∩ T | e T expansion types

E,F,G ::= ω | E .∩ F | e E | σ expansions

σ ::= � | σ, α := T̄ | σ, e := E substitutions

X ::= α[L] | e variables

K ::= T | E entities

2

The simple types are extended with constrained simple type variables α[L] where L is a label con-

Chapter 5. System Evcr: Extensible Records 157

straint specifying a finite set of labels written as a comma-delimited list. If L is empty, then α[L] is

a simple type variable and is written α. The type constants are extended with labels and the empty

record type {}. The variables are extended with constrained simple type variables.

Note that the definition of constrained simple type variables subsumes the definition of simple

type variables and thus relevant proofs need only consider the general case of constrained simple type

variables. Also note that it is now the combination of variable name and label constraint that uniquely

identifies a constrained simple type variable such that if L1 6= L2, then α[L1] 6= α[L2]. This means that

α[L1] and α[L2] can be independently assigned by substitutions despite having the same name.

Given that label constraints are now attached to simple type variables, it is necessary to restrict

substitutions so that only simple types that meet constraint L can be substituted for some α[L]. The

following definitions treat this formally.

Definition 5.1 (Meets judgement for Evcr). The meets judgement T̄ ↾L asserts that simple type T̄

satisfies the label constraint L and is defined as follows:

T̄ ↾L iff L 6= ∅ =⇒ ((T̄ = l and l /∈ L) or (T̄ = α[L′] and L′ ⊇ L))

2

The definition of the meets judgement can be understood as follows. If the label constraint L is

empty, then it is met by all simple types. If L is not empty, then it is met only if T̄ is a label that is

not in L, or T̄ is a constrained simple type variable whose label constraint contains at least all of the

labels in L.

Definition 5.2 (Valid substitutions for Evcr). A substitution σ is valid if and only if, for each assign-

ment α[L] := T̄ in σ, it is the case that T̄ ↾L. 2

Convention 5.3 (Valid substitutions for Evcr). Only valid substitutions are used.

The following lemma establishes that if a simple type meets a constraint L, then it also meets any

weaker constraint (i.e. that is a subset of L).

Lemma 5.4 (Meets subsumption for Evcr). Given any T̄ , L and L′, if T̄ ↾L and L ⊇ L′, then T̄ ↾L′.

Chapter 5. System Evcr: Extensible Records 158

Proof. By Definition 5.1 with (1) we have the following cases:

case: (3) L is empty.

(4) L′ is empty (3),(2)

∴ T̄ ↾L′ def 5.1 with (4)

case: L is not empty. Then by Definition 5.1 with (1) we have the following cases:

case: (3) T̄ = l and (4) l /∈ L.

(5) l /∈ L′ (4),(2)

∴ T̄ ↾L′ def 5.1 with (3),(5)

case: (3) T̄ = α[L′′] and (4) L′′ ⊇ L.

(5) L′′ ⊇ L′ (4),(2)

∴ T̄ ↾L′ def 5.1 with (3),(5)

2

The following lemma establishes that meets judgements are stable under type substitution.

Lemma 5.5 (Meets substitution for Evcr). Given any T̄ , L and σ, if T̄ ↾L, then (σ T̄)↾L.

Proof. The proof is by induction on the structure of σ. Following Definition 5.1, we have the following

cases:

case: L is empty. Then σ T̄ is a simple type by Lemma 3.12 and (σ T̄)↾L by Definition 5.1.

case: L is not empty. Then by Definition 5.1 with (1) we have the following cases:

case: (2) T̄ = l and (3) l /∈ L.

(4) l↾L def 5.1 with (3)

∴ (σ l)↾L def 3.11 with (4)

case: (2) T̄ = α[L′] and (3) L′ ⊇ L. There are three cases for σ:

case: σ = �. Immediate.

case: σ = (σ′, α[L′] := T̄1) where (4) T̄1↾L
′.

(5) σ α[L′] = T̄1 def 3.11

(6) σ α[L′]↾L′ (4),(5)

∴ σ α[L′]↾L lem 5.4 with (6),(3)

Chapter 5. System Evcr: Extensible Records 159

case: σ = (σ′, X := K) where X 6= α[L′].

(4) (σ′ α[L′])↾L ind.hyp. (σ′ smaller)

∴ (σ α[L′])↾L def 3.11 with (4)

2

Label constraints operate at the level of individual labels. However, at the level of extensible records,

it will also be useful to determine whether the type of a particular record lacks a certain label. This is

handled by the next judgement.

Definition 5.6 (Lacks judgement for Evcr). The lacks judgement T ::l is defined by the following rules:

ω::l

(S .∩ T)::l if S::l and T ::l

(e T)::l if T ::l

(S → T)::l if S ≡ S̄ and S̄↾l

2

Effectively, the lacks judgement T ::l asserts that T is composed of function types of the form T1 → T2

where in each case, T1 is equivalent to a simple type that meets the label constraint {l}.

Lemma 5.7 (Lacks equivalence for Evcr). Given any T , T ′ and l, if T ::l and T ≡ T ′, then T ′::l.

Proof. The proof is by induction on the structure of the derivation of T ≡ T ′.

case: (T1
.∩ T2) .∩ T3 ≡ T1

.∩ (T2
.∩ T3). By Definition 5.6, ((T1

.∩ T2) .∩ T3)::l is derived from (1) T1::l and

(2) T2::l and (3) T3::l. By Definition 5.6 with (1), (2) and (3), we can also derive (T1
.∩(T2

.∩T3))::l.

case: T1
.∩ T2 ≡ T2

.∩ T1. By Definition 5.6, (T1
.∩ T2)::l is derived from (1) T1::l and (2) T2::l. By

Definition 5.6 with (1) and (2), we can also derive (T2
.∩ T1)::l.

case: T1
.∩ ω ≡ T1. By Definition 5.6, (T1

.∩ ω)::l is derived from T1::l, which is the desired result.

case: e ω ≡ ω. By Definition 5.6, ω::l.

Chapter 5. System Evcr: Extensible Records 160

case: e (T1
.∩ T2) ≡ e T1

.∩ e T2. By Definition 5.6, (e (T1
.∩ T2))::l is derived from (T1

.∩ T2)::l which in

turn is derived from (1) T1::l and (2) T2::l. By definition 5.6 with (1) and (2), we can derive (3)

(e T1)::l and (4) (e T2)::l, and from (3) and (4) we can derive (e T1
.∩ e T2)::l.

case: T1 → T2 ≡ T ′
1 → T ′

2, if (1) T1 ≡ T ′
1 and T2 ≡ T ′

2. By Definition 5.6, (T1 → T2)::l is derived from

(2) T1 ≡ T̄1 and (3) T̄1↾l. By (1) and (2), we have (4) T ′
1 ≡ T̄1. By Definition 5.6 with (4) and

(3) we can derive (T ′
1 → T ′

2)::l.

case: T1
.∩ T2 ≡ T ′

1
.∩ T ′

2, if T1 ≡ T ′
1 and T2 ≡ T ′

2. By Definition 5.6, (T1
.∩ T2)::l is derived from (1)

T1::l and (2) T2::l. By the induction hypothesis with (1) we have (3) T ′
1::l and by the induction

hypothesis with (2) we have (4) T ′
2::l. Now by Definition 5.6 with (3) and (4), we can derive

(T ′
1
.∩ T ′

2)::l.

case: e T1 ≡ e T ′
1, if T1 ≡ T ′

1. By Definition 5.6, (e T1)::l is derived from (1) T1::l. By the induction

hypothesis with (1), we have (2) T ′
1::l. By Definition 5.6 with (2) we can derive (e T ′

1)::l.

case: T ≡ T . Done.

case: T ≡ T ′ if T ′ ≡ T . For the symmetric rules that mean the same when reflected from left to right,

these cases have already been proved. For the non-symmetric rules, we have the following cases:

case: T1
.∩ (T2

.∩ T3) ≡ (T1
.∩ T2) .∩ T3. Similar to the reverse case.

case: T ≡ T .∩ ω. By Definition 5.6, (1) ω::l. By Definition 5.6 with the assumption T ::l and (1),

we have (T .∩ ω)::l.

case: ω ≡ e ω. By Definition 5.6, (1) ω::l. By Definition 5.6 with (1), we have (e ω)::l.

case: e T1
.∩ e T2 ≡ e (T1

.∩ T2). By Definition 5.6, (e T1
.∩ e T2)::l is derived from (1) (e T1)::l

and (2) (e T2)::l which are in turn derived from (3) T1::l and (4) T2::l. By Definition 5.6,

from (3) and (4) we can derive the judgement (5) (T1
.∩T2)::l and from (5) we can derive the

judgement (e (T1
.∩ T2))::l.

case: T ≡ T ′′, if T ≡ T ′ and T ′ ≡ T ′′. This case follows from the transitivity of =⇒ in the statement

of the lemma.

2

The lacks judgement T ::l is used when typing extensions to ensure that the type of the record being

extended does not already contain a function type of the form l→ T ′. From the rules of Definition 5.6

Chapter 5. System Evcr: Extensible Records 161

(Lacks judgement), it follows that (l1 → T1
.∩ l2 → T2)::l3 since the function domain lacks l3. Also, we

have (α[l3] → T1
.∩ l2 → T2)::l3 since the constraint on α[l3] ensures that the domain cannot be made

to include l3 even after a substitution. We also permit ((l1 .∩ ω) → T1)::l3 where the parameter type

is equivalent to a label, so that Lemma 3.27 (Equivalent types) holds. By comparison, the judgement

(l1 → T1
.∩ l2 → T2)::l1 cannot be derived since the function domain does contain the label l1.

Amendment to Definition 3.11 (Expansion application for Evcr). The rules for applying expansions

to expansions, types and E-variables are defined as follows:

ω K = ω σ ω = ω

(E .∩ F) K = E K .∩ F K σ (K1
.∩K2) = σ K1

.∩ σ K2

(e E) K = e (E K) σ (e K) = (σ e) K

� e = e � σ (S → T) = σ S → σ T

� α[L] = α[L] σ � = σ

(σ,X := K) X = K σ (σ′, X := K) = σσ′, X := σ K

(σ,X := K) X ′ = σ X ′ if X 6= X ′ σ C = C

2

Again, it should be noted that new case for constrained simple type variables subsumes the original

case for simple type variables. That is, if the constraint L is empty, the case becomes � α = α which

is the same as the original case.

The following lemma asserts that lacks judgements are stable under expansion.

Lemma 5.8 (Lacks expansion for Evcr). Given any T , l and E, if T ::l, then (E T)::l.

Proof. The proof is by induction on the structure of E and T .

case: E = ω.

(1) ω::l def 5.6

∴ (ω T)::l def 3.11 with (1)

case: E = E1
.∩ E2.

Chapter 5. System Evcr: Extensible Records 162

(1) (E1 T)::l ind.hyp. (E1 smaller)

(2) (E2 T)::l ind.hyp. (E2 smaller)

(3) (E1 T .∩ E2 T)::l def 5.6 with (1),(2)

∴ ((E1
.∩E2) T)::l def 3.11 with (3)

case: E = e E1.

(1) (E1 T)::l ind.hyp. (E1 smaller)

(2) (e (E1 T))::l def 5.6 with (1)

∴ ((e E1) T)::l def 3.11 with (2)

case: E = σ. We now consider the cases for T .

case: T = ω.

(1) ω::l def 5.6

∴ (σ ω)::l def 3.11 with (1)

case: T = T1
.∩ T2.

(1) (T1
.∩ T2)::l assumption

(2) T1::l def 5.6 with (1)

(3) T2::l ”

(4) (σT1)::l ind.hyp. with (2)

(5) (σT2)::l ind.hyp. with (3)

(6) (σT1
.∩ σT2)::l def 5.6 with (4),(5)

∴ (σ (T1
.∩ T2))::l def 3.11 with (6)

case: T = e T1. We now consider the three cases for σ.

case: σ = �.

(1) (e T1)::l assumption

∴ (� (e T1))::l lem 3.13 with (1)

case: σ = (σ′, e := E1).

(1) (E1 T1)::l ind.hyp. (E1 and T1 smaller)

(2) (((σ′, e := E1) e) T1)::l def 3.11

∴ ((σ′, e := E1) (e T1))::l def 3.11

case: σ = (σ′, X := K) where X 6= e.

Chapter 5. System Evcr: Extensible Records 163

(1) (σ′ (e T1))::l ind.hyp. (σ′ smaller)

(2) ((σ′ e) T1)::l def 3.11

(3) (((σ′, X := K) e) T1)::l def 3.11

∴ ((σ′, X := K) (e T1))::l def 3.11

case: T = α[L′]. This case cannot occur by Definition 5.6.

case: T = C. This case cannot occur by Definition 5.6.

case: T = T1 → T2.

(1) (T1 → T2)::l assumption

(2) ∃T̄1. T1 ≡ T̄1 def 5.6 with (1)

(3) T̄1↾l ”

let S̄ = σ T̄1

(4) S̄↾l lem 5.5 with (3)

(5) σ T1 ≡ S̄ lem 3.16 with (2)

(6) (σ T1 → σ T2)::l def 5.6 with (5),(4)

∴ (σ (T1 → T2))::l def 3.11 with (6)

2

5.2.3 Typing Derivations

This section extends typeof with the raw types for labels and the empty record, and defines the new

rules used to derive typings for extensions.

Amendment to Definition 4.1 (typeof for Evcr). typeof is a total function from constants to type

constants and function types, defined as:

typeof(c) = l iff c = l

typeof({}) = {}

For any constant c, typeof(c) is called the raw type of c. 2

Chapter 5. System Evcr: Extensible Records 164

Amendment to Definition 3.24 (Typing derivations for Evcr). A typing derivation (metavariable

D) is a proof tree of a typing judgement. The rules for deriving valid typing judgements are given

below.

(var)
x : T̄ � x : 〈T̄ 〉

(omega)
v : ω � Γω

(con)
c : T̄ � Γω

T̄ ≡ σ typeof(c) (int)
v : τ1 v : τ2

v : τ1 .∩ τ2

(abs)
t : T � Γ, x : 〈S〉

λx.t : S→T � Γ
(evar)

v : τ

v : e τ

(extl)
t : T � Γ

l→t .∩ v : S→T � Γ
S≡l (extr)

v : T̄ � Γ

l→t .∩ v : T̄ � Γ
T̄ ::l

(app)
t : S→T � Γ1 s : S � Γ2

t s : T � Γ1
.∩ Γ2

2

The new rules (extl) and (extr) assign typings individually to the left and right branches of an

extension, which provides the necessary flexibility to apply expansions at any nested branch. These

individual typings may be combined by Rule (int) to produce a type that mentions all of an extensible

record’s fields. The side condition T̄ ::l in (extr) ensures that the new label l being introduced in the

extension is not already present in the extension type. The following example illustrates a typing

derivation for the record john which is defined as name→ "John Smith" .∩ age→ 31 .∩ {}:

"John Smith" : Str� Γω
(con)

"John Smith" : e1 Str� Γω
(evar)

john : name→ e1 Str� Γω
(extl)

john : e (name→ e1 Str) � Γω

(evar)

31 : Int� Γω
(con)

31 : f1 Int � Γω

(evar)

age→ 31 .∩ {} : age→ f1 Int� Γω

(extl)

john : age→ f1 Int� Γω

(extr)

john : f (age→ f1 Int) � Γω

(evar)

john : e (name→ e1 Str) .∩ f (age→ f1 Int) � Γω

(int)

Note that Definition 4.1 defines typeof with the restriction that label l is the only constant that

can have raw type l. This is necessary for progress to hold since otherwise non-label constants would

Chapter 5. System Evcr: Extensible Records 165

be accepted by the type system as valid arguments to extensions. For example, if it were possible to

define a constant & such that typeof(&) = l for some label l, then the application (l → 3 .∩ {}) & would

be typable despite being irreducible.

The following lemma asserts that label l is the only value that can have type l in an empty term

context:

Lemma 5.9 (Label identity for Evcr). Given any v, T and l, if v : T � Γω and T ≡ l, then v = l.

Proof. Given v : T � Γω and T ≡ l we have (1) v : l � Γω by Lemma 3.27. By Lemma 3.25 (1) was

derived by either (var) or (con). (1) could not have been derived by (var) because that would require

a non-empty term context. Therefore (1) was derived by (con) as follows:

v : l � Γω
(2) l ≡ σ typeof(v)

Since typeof(v) is a simple type by Definition 4.1, then by Lemma 3.12, (3) σ typeof(v) is also a

simple type. By Corollary 3.10 with (2) and (3), we have (4) l = σ typeof(v). By Definition 4.1,

typeof(v) is either some type constant C or some function type T1 → T2, and so by Definition 3.11, one

of the following is true:

(A) σ typeof(v) = σ C = C

(B) σ typeof(v) = σ (T1 → T2) = σT1 → σT2

Due to (4), we know that (A) must be true, and so C = l, which also means that typeof(v) = l. By

Definition 4.1, typeof(v) = l iff v = l, and so v = l.

2

The next lemma asserts that if an extension at type T1 → T2 is applicable to a value v at type T1

in an empty term context, then T1 is equivalent to a label and v is the same label:

Lemma 5.10 (Extension parameter type for Evcr). Given any l, s, v, v1, Γ, T1 and T2, if l→ s .∩ v :

T1 → T2 � Γ and v1 : T1 � Γω, then there exists a label l′ such that v1 = l′ and T1 ≡ l′.

Proof. Let D be the derivation of l → s .∩ v : T1 → T2 � Γ. The proof is by case analysis of D. There

are only two possible typing rules that assign typings to extensions.

Chapter 5. System Evcr: Extensible Records 166

case: D ends with the following application of Rule (extl)

(2) s : T2 � Γ

(1) l→ s .∩ v : T1 → T2 � Γ
(3) T1 ≡ l

By Lemma 5.9 with (3) and the assumption v1 : T1 � Γω we have (4) v = l. The result is (4) and

(3).

case: D ends with the following application of Rule (extr)

(2) v : T1 → T2 � Γ

(1) l→ s .∩ v : T1 → T2 � Γ
(3) (T1 → T2)::l

By Definition 5.6 with (3), we have (4) T1 ≡ S̄ and (5) S̄↾l. By Definition 5.1 with (5) we have

the following two cases:

case: S̄ = l′′ and l′′ 6= l. Then by Lemma 5.9 with (4) and the assumption v1 : T1 � Γω we have

(6) v = l′′. The result is (6) and (4).

case: S̄ = α[L] and l ∈ L. This case cannot occur which we will prove by contradiction. By

Lemma 3.27 with (4) and the assumption v1 : T1�Γω, we have (6) v1 : S̄�Γω. If we suppose

that S̄ = α[L], then (6) becomes v1 : α[L] � Γω however there is no typing rule that can

be used to assign a constrained simple type variable α[L] to a value in an empty context.

Therefore S̄ 6= α[L].

2

Finally, we extend the proofs of lemmas and theorems that are affected by the introduction of

extensions and constrained simple type variables.

Restatement of Lemma 3.25 (Typing derivations for Evcr). Each typing judgement can be the

conclusion of at most one typing rule.

Proof. Consider any application of a typing rule that concludes with the typing judgement J denoting

t : T � Γ. The cases are the same as before (p.137), with the following new cases for extensions.

• If t is a value,

Chapter 5. System Evcr: Extensible Records 167

– If T = T̄

∗ If t = l → t1 .∩ v, then

· If T = T1 → T2 and T1 ≡ l, then J was derived by (extl).

· Otherwise J was derived by (extr) 2.

Restatement of Lemma 3.27 (Equivalent types for Evcr). Given any t, T , T ′ and Γ, if t : T � Γ

and T ≡ T ′, then t : T ′
� Γ.

Proof. Let D be the derivation of t : T �Γ. The proof is by induction on the structure of D. The cases

are the same as before (p.137), with two new cases for Rule (extl) and Rule (extr).

case: t is v.

case: T ≡ T ′ was derived by structural congruence rule
(1) T1 ≡ T ′

1 (2) T2 ≡ T ′
2

T1 → T2 ≡ T ′
1 → T ′

2

By Lemma 3.25, D can end with one of five possible rules; as before, Rule (var), Rule (con)

and Rule (con), but now also Rule (extl) and Rule (extr) whose cases are shown below:

case: D ends with the following application of Rule (extl)

(4) t1 : T2 � Γ

(3) l→ t1 .∩ v : T1 → T2 � Γ
(5) T1 ≡ l

Then,

(6) t1 : T ′
2 � Γ ind.hyp. with (4) and (2)

(7) T ′
1 ≡ l def 3.7 with (5) and (1)

∴ l→ t1 .∩ v : T ′
1 → T ′

2 � Γ (extl) with (6) and (7)

case: D ends with the following application of Rule (extr)

(4) v : T1 → T2 � Γ

(3) l → t1 .∩ v : T1 → T2 � Γ
(5) (T1 → T2)::l

where

Chapter 5. System Evcr: Extensible Records 168

(6) T1 → T2 ≡ T ′
1 → T ′

2 Assumption

(7) v : T ′
1 → T ′

2 � Γ ind.hyp. with (4) and (6)

(8) ∃T̄1. T1 ≡ T̄1 def 5.6 with (5)

(9) T̄1↾l ”

(10) T ′
1 ≡ T̄1 (1),(8)

(11) (T ′
1 → T ′

2)::l def. 5.6 with (10),(9)

∴ l → t1 .∩ v : T ′
1 → T ′

2 � Γ (extr) with (7) and (11)

2

Restatement of Lemma 3.28 (Expansion for Evcr). Given any t, T , Γ and E, if t : T � Γ and if t

is a value or E is a substitution, then t : E T � E Γ.

Proof. Let D be the derivation of t : T � Γ. The cases are the same as before (p.138), with two new

cases for Rule (extl) and Rule (extr).

case: E is σ.

case: D ends with the following application of Rule (extl):

(2) t1 : T1 � Γ

(1) l → t1 .∩ v : S → T1 � Γ
(3) S ≡ l

Then,

(4) t1 : σT1 � σΓ ind.hyp. with (2)

(5) σS ≡ σl lem. 3.16 with (3)

(6) σS ≡ l def. 3.11 with (5)

(7) l→ t1 .∩ v : σS → σT1 � σΓ (extl) with (4) and (6)

∴ l→ t1 .∩ v : σ (S → T1) � σΓ def. 3.11 with (7)

case: D ends with the following application of Rule (extr):

(2) v : T̄1 � Γ

(1) l→ t1 .∩ v : T̄1 � Γ
(3) T̄1::l

Then,

Chapter 5. System Evcr: Extensible Records 169

(4) v : σT̄1 � σΓ ind.hyp. with (2)

(5) (σT̄1)::l lem. 5.8 with (3)

∴ l→ t1 .∩ v : σT̄1 � σΓ (extr) with (4) and (5)

2

Restatement of Lemma 3.29 (Term substitution for Evcr). Given any v, t, x, S, T , Γ1 and Γ2, if

v : S � Γ2 and t : T � Γ1, x : 〈S〉, then t[x := v] : T � Γ1
.∩ Γ2.

Proof. Let D be the derivation of t : T � Γ1, x : 〈S〉. The cases are the same as before (p.138), with

two new cases for Rule (extl) and Rule (extr).

case: D ends with an application of Rule (extl) of the form

(2) t1 : T1 � Γ1, x : 〈S〉

(1) l→ t1 .∩ v1 : S1 → T1 � Γ1, x : 〈S〉
(3) S1 ≡ l

where (4) t = l → t1 .∩ v1 and (5) T = S1 → T1.

(6) t1[x := v] : T1 � Γ1
.∩ Γ2 ind.hyp. with (2)

(7) l → t1[x := v] .∩ v1[x := v] : S1 → T1 � Γ1
.∩ Γ2 (extl) with (6) and (3).

∴ (l → t1 .∩ v1)[x := v] : S1 → T1 � Γ1
.∩ Γ2 def. 3.3 with (7)

case: D ends with an application of Rule (extr) of the form

(2) v1 : T̄1 � Γ1, x : 〈S〉

(1) l→ t1 .∩ v1 : T̄1 � Γ1, x : 〈S〉
(3) T̄1::l

where (4) t = l → t1 .∩ v1 and (5) T = T̄1.

(6) v1[x := v] : T̄1 � Γ1
.∩ Γ2 ind.hyp. with (2)

(7) l → t1[x := v] .∩ v1[x := v] : T̄1 � Γ1
.∩ Γ2 (extr) with (6) and (3)

∴ (l → t1 .∩ v1)[x := v] : T̄1 � Γ1
.∩ Γ2 def. 3.3 with (7)

2

Restatement of Theorem 3.30 (Subject reduction for Evcr). If t : T �Γ and t > t′, then t′ : T �Γ.

Proof. The cases are the same as before (p.139), with two new cases for the reduction rules of extension

applications.

Chapter 5. System Evcr: Extensible Records 170

case: (l→ t′ .∩ v) l > t′.

The derivation of (l→ t′ .∩ v) l : T � Γ ends with

(2) l → t′ .∩ v : S → T � Γ1 (3) l : S � Γ2

(1) (l → t′ .∩ v) l : T � Γ1
.∩ Γ2

where Γ = Γ1
.∩ Γ2.

By Lemma 5.10 with (2) and (3), we have (4) S ≡ l. Following the proof of Lemma 3.25 in the

case of (4), the derivation of l → t′ .∩ v : S → T � Γ1 ends with the following application of Rule

(extl):

(5) t′ : T � Γ1

l → t′ .∩ v : S → T � Γ1

S ≡ l

By Lemma 4.4 with (3), we have (6) Γ2 = Γω. Finally, by (6) and (5), we have t′ : T � Γ1
.∩ Γ2.

case: (l→ t1 .∩ v) l1 > v l1 if (1) l1 6= l.

The derivation of (l→ t1 .∩ v) l1 : T � Γ ends with

(2) l → t1 .∩ v : S → T � Γ1 (3) l1 : S � Γ2

(l → t1 .∩ v) l1 : T � Γ1
.∩ Γ2

where Γ = Γ1
.∩ Γ2.

By Lemma 5.10 with (2) and (3), we have S ≡ l1 and hence (4) S 6≡ l due to (1). Following the

proof of Lemma 3.25 in the case of (4), the derivation of l → t′ .∩ v : S → T � Γ1 ends with the

following application of Rule (extr):

(5) v : S → T � Γ1

l→ t1 .∩ v : S → T � Γ1

(S → T)::l

By Rule (app) with (5) and (3) we have v l1 : T � Γ1
.∩ Γ2.

2

Restatement of Theorem 3.31 (Progress for Evcr). If t s : T �Γω, then there exists a term t′ such

that t s > t′.

Chapter 5. System Evcr: Extensible Records 171

Proof. The proof is by induction on the structure of t s.

The derivation of t s : T � Γω ends with

(1) t : S → T � Γω s : S � Γω

t s : T � Γω

The cases are the same as before (p.139), but with one new case for extensions.

case: t is v1.

case: s is v2.

case: v1 is l → t1 .∩ v.

case: v2 = l. Then (l → t1 .∩ v) l > t1.

case: v2 6= l.

(1) (l → t1 .∩ v) v2 : T � Γω assumption

(2) ∃S. l → t1 .∩ v : S → T � Γω rule (app) with (1)

(3) v2 : S � Γω ”

(4) ∃l′.v2 = l′ lem 5.10 with (2),(3)

∴ (l → t1 .∩ v) v2 > v v2 (4) and v2 6= l

2

5.3 Type Inference

This section extends our type inference algorithm I and unification algorithm opusβ to support exten-

sible records, and re-establishes all theorems and lemmas from the previous chapter.

5.3.1 Algorithm opusβ

This section extends the unification algorithm opusβ to support constrained simple type variables.

Variable Structures and Renamings

The definitions of variable structures and renamings are updated by replacing each mention of a simple

type variable by a constrained simple type variable. The logic behind these rules does not change,

Chapter 5. System Evcr: Extensible Records 172

however, and the new definitions subsume the old definitions.

Amendment to Definition 3.43 (varstruct for Evcr). The total function varstruct takes any type,

unification constraint or unification constraint set and returns a variable structure. It is defined by the

following rules:

varstruct(α[L]) = α[L] 7→ ∅

varstruct(C) = ∅

varstruct(ω) = ∅

varstruct(S → T) = varstruct(S .∩ T) = varstruct(S) ⊔ varstruct(T)

varstruct(e T) = e 7→ varstruct(T)

varstruct(S ⋖ T) = varstruct(S) ⊔ varstruct(T)

varstruct(∆) =
⊔

{varstruct(δ) | δ ∈ ∆}

where V1 ⊔ V2 = {e 7→ (V1/e) ⊔ (V2/e) | e ∈ Dom(V1) ∪Dom(V2)} 2

Amendment to Definition 3.45 (Fresh renamings for Evcr). A fresh renaming for some finite set

of variables Xs is a substitution (�, X1 := K1, . . .Xn := Kn) where {X1 := K1, . . .Xn := Kn} = {e :=

e′ � | e ∈ Xs, e′ fresh} ∪ {α[L] := α′[L] | α[L] ∈ Xs, α′ fresh}. 2

Unification with Constrained Simple Type Variables

We isolate the rules for unification with constrained simple type variables into a separate function called

hunify.

Definition 5.11 (hunify for Evcr). The hunify function unifies a constrained simple type variable with

a simple type, and is defined by the rules below.

hunify(α[L1]
.
= β[L2]) = (�, α[L1] := γ[L1∪L2], β[L2] := γ[L1∪L2]) γ fresh (TT-unify)

hunify(α[L]
.
= C) = (�, α[L] := C) if C↾L (TC-unify)

hunify(α
.
= T1 → T2) = (�, α := T1 → T2) if α /∈ ovars(T1 → T2) (TA-unify)

Chapter 5. System Evcr: Extensible Records 173

2

Lemma 5.12 (hunify correctness for Evcr). Let δ = (α[L]
.
= T̄). If hunify(δ) = σ is defined, then

σα[L] ≡ σT̄ .

Proof. The proof is by case analysis of the rules for hunify(δ).

case: σ = (�, α[L] := γ[L ∪ L2], β[L2] := γ[L ∪ L2]) by Rule (TT-unify)where γ is fresh and T̄ = β[L2].

Then σ α[L] = γ[L ∪ L2] = σ β[L2] by Definition 3.11.

case: σ = (�, α[L] := C) by Rule (TC-unify)where T̄ = C and C↾L. Then σα[L] = C = σC by

Definition 3.11.

case: σ = (�, α[L] := T1 → T2) by Rule (TA-unify)where T̄ = T1 → T2 and L = ∅ and α[L] /∈

ovars(T1 → T2). Then σα[L] = T1 → T2 by Definition 3.11 and T1 → T2 = σ(T1 → T2) since

α[L] /∈ ovars(T1 → T2).

2

The function hunify encapsulates all that is needed from a unification algorithm to support exten-

sible records, and the purpose of extracting these rules into a separate function is to make the job

simpler for other unification algorithms to borrow this functionality (such as the opus algorithm given

in Appendix C). While the opusβ unification algorithm does not in general aim to find covering unifier

sets, the hunify fragment of the algorithm does find covering unifier sets, which are always of size one

(i.e. single, principal unifiers).

Lemma 5.13 (hunify is complete and principal for Evcr). Let δ = (α[L]
.
= T̄). If there exists a unifier

σ for δ, then

1. hunify(δ) = σ1 is defined, and

2. for any set of variables Xs that excludes the fresh variables introduced by hunify(δ), there exists a

substitution σ2 such that ∀X ∈ Xs. σX ≡ σ2σ1X.

Proof. The proof is by case analysis of T̄ .

case: T̄ is β[L2].

Chapter 5. System Evcr: Extensible Records 174

1. σ1 = (�, α[L] := γ[L ∪ L2], β[L2] := γ[L ∪ L2]) by (TT-unify).

2. Let σ′ = (σ, γ[L ∪ L2] := σα[L]). Then,

(1) σ′σ1 = σ′ (�, α[L] := γ[L ∪ L2], β[L2] := γ[L ∪ L2])

= σ′, α[L] := σ′γ[L ∪ L2], β[L2] := σ′γ[L ∪ L2]

= σ′, α[L] := σα[L], β[L2] := σα[L]

= σ, γ[L ∪ L2] := σα[L], α[L] := σα[L], β[L2] := σα[L]

We next test if σ′ is a candidate for σ2 by checking that ∀X ∈ Xs. σ′σ1X ≡ σX . Because

γ is fresh, γ[L ∪ L2] is not in Xs and so there are only the following 3 possibilities for each

X ∈ Xs:

case: X = α[L]. Then σ′σ1α[L] equals σαL by (1).

case: X = β[L2]. Then σ′σ1β[L2] equals σαL by (1) which is equivalent to σβ[L2] by the

assumption that σ is a unifier.

case: X /∈ {α[L], β[L2], γ[L ∪ L2]}. Then σ′σ1X = σX by Definition 3.11 with (1).

Therefore, ∀X ∈ Xs. σ′σ1X ≡ σX , and so σ2 is σ′.

case: T̄ is C.

1. We consider the cases for L.

case: L is empty. Then σ1 = (α[L] := C) by (TC-unify).

case: L is not empty.

(1) σ α[L] ≡ σ C assumption

(2) σ α[L] ≡ C def 3.11 with (1)

(3) σ α[L] = C cor 3.10 with (2)

(4) α[L]↾L def 5.1

(5) (σ α[L])↾L lem 5.5 with (4)

(6) C↾L (5),(3)

(7) σ1 = (α[L] := C) (TC-unify) with (6)

In both cases, σ1 = (α[L] := C).

2. By Definition 3.11, (8) σσ1 = (σ, α[L] := C). Next, we consider σ as a candidate for σ2.

There are two possibilities for each X ∈ Xs:

Chapter 5. System Evcr: Extensible Records 175

case: X = α[L]. Then by (8) and (3), it follows that σσ1α[L] = σα[L].

case: X 6= α[L]. Then by Definition 3.11 with (8) and the assumption that X 6= α[L], it

follows that σσ1X = σX .

Therefore, ∀X ∈ Xs. σσ1X ≡ σX , and so σ2 is σ.

case: T̄ is T1 → T2.

1.

(1) σ α[L] ≡ σ (T1 → T2) assumption

(2) σ α[L] ≡ σ T1 → σ T2 def 3.11 with (1)

(3) σ α[L] = σ T1 → σ T2 cor 3.10 with (2)

(4) α[L]↾L def 5.1

(5) (σ α[L])↾L lem 5.5 with (4)

(6) σ α[L] is a function type (3)

(7) L = ∅ def 5.1 with (5),(6)

(8) α[L] /∈ ovars(T1 → T2) (1)

(9) σ1 = (α[L] := T1 → T2) (TA-unify) with (7),(8)

2. By Definition 3.11, (10) σσ1 = (σ, α[L] := σ (T1 → T2)). Next, we consider σ as a candidate

for σ2. There are two possibilities for each X ∈ Xs:

case: X = α[L]. Then σσ1 α[L] equals σ (T1 → T2) by (10) which is equivalent to σ α[L] by

(1).

case: X 6= α[L]. Then σσ1 X = σ X by Definition 3.11 and (10).

Therefore, ∀X ∈ Xs. σσ1X ≡ σX , and so σ2 is σ.

2

Based on the definition of hunify, two unification rules for the −−→opusβ relation are changed to account

for constrained simple type variables.

Amendment to Definition 3.46 (−−→opusβ relation for Evcr). The −−→opusβ relation performs one step of

Chapter 5. System Evcr: Extensible Records 176

unification on a factored constraint and is defined by the following rules:

(α[L]
.
= T̄ ,V) −−→opusβ hunify(α[L]

.
= T̄) (T-unify)

(e T ⋖ T̄ ,V) −−→opusβ (e := ren(V, e)) (EA-unify)

(e S ⋖ T .∩ U,V) −−→opusβ (e := e1 � .∩e2 �) (EI-unify)

(e S ⋖ e T,V) −−→opusβ (e := e σ) if (S ⋖ T,V/e) −−→opusβ σ (E-unify)

(e := e ω) otherwise

(e S ⋖ f T,V) −−→opusβ (e := f g �) if S is α[L] or T is T, g fresh (EE-unify)

(f := e g �) otherwise, g fresh

where ren(V , e) is a fresh renaming of the variables in Dom(V/e). 2

Note that the logic of Rule (EE-unify) has not changed, and the simple type variables have merely

been replaced by constrained simple type variables. The real change is to Rule (T-unify) which has

been updated to unify a constrained simple type variable with a simple type by invoking hunify.

Restatement of Theorem 3.50 (Correctness of opusβ for Evcr). Given any ∆ and σ, then σ ∈

opusβ(∆) =⇒ solved(σ∆).

Proof. The proof remains unchanged from the one for System Evc (p.141). 2

5.3.2 Algorithm I

Algorithm I requires the addition of one new rule to support extensible records.

Amendment to Definition 3.57 (Algorithm I for Evcr). The type inference algorithm I takes a

unification algorithm and a term and returns a distinct sequence of typings. It is defined by the following

Chapter 5. System Evcr: Extensible Records 177

rules:

Terms

I(U , v) = {e Iv(U , v)} e fresh (I.val)

I(U , t s) = {σ (e α � Γ1
.∩ Γ2) (I.app)

| (T � Γ1) ∈ I(U , t), (S � Γ2) ∈ I(U , s)

σ ∈ U({T ⋖ S → e α} ∪ {U ⋖ U | x : U ∈ Γ1
.∩ Γ2}), e, α fresh}

Values

Iv(U , x) = α � x : 〈α〉 α fresh (I.var)

Iv(U , c) = typeof(c) � Γω (I.con)

Iv(U , λx.t) = isect({(S→T � Γ) | (T � Γ, x : 〈S〉) ∈ I(U , t)}) (I.abs)

Iv(U , l → t .∩ v) = let τ s
1 = {(l → T1 � Γ1) | (T1 � Γ1) ∈ I(U , t)} in (I.ext)

let τ s
2 = {σ(T2 � Γ2) | (T2 � Γ2) ∈ I(U , v),

σ ∈ U({e(α[l] → f β) ⋖ T2} ∪ {U ⋖ U | x : U ∈ Γ2}), e, f, α, β fresh} in

isect(τ s
1 ∪ τ s

2)

2

In words, the new rule (I.ext) states that to infer a typing for an extension l → t .∩ v we must first

infer typings for the subterms t and v. Typings for l→ t .∩ v are constructed from the typings for t in a

way that corresponds to the (extl) typing rule and these are placed in the set τs1 . The inferred typings

for v on the other hand may not be immediately suitable as typings for l→ t .∩v because by Rule (extr)

they must “lack” the label l in their domain. To fix this, the unification algorithm is invoked with a

constraint (explained below) to ensure that in each case the type of v lacks the label l. The typings

for v after unification are then placed in the set τs2 . Finally, all of the typings from both τs1 and τs2

are then intersected together into a single typing using the function isect which wraps each intersection

component in a fresh E-variable for generality.

The novel part of this rule is the way that E-variables are used in combination with constrained

simple type variables to describe the constraint that the type of v must lack the label l in its domain.

The constraint e(α[l]→f β) ⋖ T2 ensures that T2 will lack the label l after the unifier is applied, and

is also designed so that e can be expanded into an intersection of function types in cases where T2

Chapter 5. System Evcr: Extensible Records 178

represents the type of an extension with multiple fields. The type e (α[l]→f β)) essentially corresponds

to a row variable that would be found in traditional extensible record systems, but is instead built up

from more primitive constructs, most of which are inherited from the System E type system.

The following lemma is used to show that our encoding of row variables is general enough to describe

any unknown record type.

Lemma 5.14 (Row variable substitution for Evcr). Given any T , α[l], β and e, if T ::l then there

exists an expansion E such that E (α[l]→ e β) ≡ T .

Proof. The proof is by induction on the structure of the derivation of T ::l.

case: ω::l. Then E is ω.

case: (T1
.∩ T2)::l if T1::l and T2::l.

(1) ∃E1. E1 (α[l]→ e β) ≡ T1 ind.hyp.

(2) ∃E2. E2 (α[l]→ e β) ≡ T2 ind.hyp.

(3) (E1
.∩ E2) (α[l]→ e β) = E1 (α[l]→ e β) .∩E2 (α[l]→ e β) def 3.11

≡ T1
.∩ T2 (1),(2)

∴ E is E1
.∩ E2 (3)

case: (e1 T1)::l if T1::l.

(1) ∃E1. E1 (α[l]→ e β) ≡ T1 ind.hyp.

(2) (e1 E1) (α[l]→ e β) = e1 (E1 (α[l]→ e β)) def 3.11

(3) ≡ e1 T1 (1)

∴ E is e1 E1 (3)

case: (T1 → T2)::l if (1) T1 ≡ T̄1 and (2) T̄1↾l.

(3) ∃E1. E1 β = T2 lem 3.17

(4) (α[l] := T̄1, e := E1) (α[l]→ e β) = T̄1 → T2 def 3.11 with (2),(3)

≡ T1 → T2 def 3.7 with (1)

∴ E is (α[l] := T̄1, e := E1) (4)

2

Finally, we extend the proofs of lemmas and theorems from previous chapters that are effected by

the introduction of extensions constrained simple types variables.

Chapter 5. System Evcr: Extensible Records 179

Restatement of Theorem 3.58 (Termination of I for Evcr). Given any U and t, if each use of U

by I(U , t) terminates, then I(U , t) terminates.

Proof. Straightforward by induction on the structure of t. 2

Restatement of Theorem 3.59 (Correctness of I for Evcr). Given any U , τ and t, if τ ∈ I(U , t),

then t : τ .

Proof. The cases are the same as before (p.142), with one new case for extensions.

case: t = l → t1 .∩ v.

(1) ∃e. I(U , t) = {e Iv(U , t)} = {e isect(τs1 ∪ τs2)} where (I.val)/(I.ext)

τs1 = {l→ T1 � Γ1 | (T1 � Γ1) ∈ I(U , t1)}

τs2 = {σ (T2 � Γ2) | (T2 � Γ2) ∈ I(U , v),

σ ∈ U({e1(α[l]→e2β)⋖ T2}∪{U ⋖ U |x : U ∈ Γ2}),

e1, e2, α, β fresh}

(2) For each (l → T1 � Γ1) ∈ τs1 where (1)

(2a) (T1 � Γ1) ∈ I(U , t1)

(2b) t1 : T1 � Γ1 ind.hyp. with (2a)

(2c) l → t1 .∩ v : l→ T1 � Γ1 (extl) with (2b)

(3) τ ′ ∈ τs1 =⇒ l→ t1 .∩ v : τ ′ (2)-(2c)

(4) For each σ (T2 � Γ2) ∈ τs2 where from (1)

(4a) (T2 � Γ2) ∈ I(U , v), ”

(4b) σ ∈ U({e1(α[l]→e2β)⋖ T2}∪{U ⋖ U |x : U ∈ Γ2}), ”

(4c) e1, e2, α, β fresh ”

(4d) (e1 (α[l]→ e2 β))::l def 5.6

(4e) (σ (e1 (α[l]→ e2 β)))::l lem 5.8 with (4d)

(4f) σ (e1 (α[l]→ e2 β)) ≡ σ T2 def 3.37 with (4b)

(4g) (σT2)::l lem 5.7 with (4e),(4f)

(4h) v : T2 � Γ2 ind.hyp. with (4a)

Chapter 5. System Evcr: Extensible Records 180

(4i) v : σ T2 � σ Γ2 lem 3.28 with (4h)

(4j) l → t1 .∩ v : σ T2 � σ Γ2 (extr) with (4i),(4g)

(5) τ ∈ τs2 =⇒ l→ t1 .∩ v : τ (4)-(4j)

(6) ∀τ ′. τ ′ ∈ τs1 ∪ τs2 =⇒ l → t1 .∩ v : τ ′ (3),(5)

(7) l → t1 .∩ v : isect(τs1 ∪ τs2) lem 3.55 with (6)

(8) l → t1 .∩ v : e isect(τs1 ∪ τs2) (evar) with (7)

∴ if τ ∈ I(U , l → t1 .∩ v), then l→ t1 .∩ v : τ (1),(8)

2

Restatement of Theorem 3.60 (Principality of I for Evcr). Given any U , t and τ ′, if covering(U)

and t : τ ′ and I(U , t) terminates, then there exists a substitution σ and a typing τ ∈ I(U , t) such that

τ ′ ≡ στ .

Proof. Let D be the derivation of t : τ ′. The cases are the same as before (p.143), with two new cases

for Rule (extl) and Rule (extr).

case: D ends with an application of Rule (extl) of the form

(2) t1 : T ′
1 � Γ′

(1) l → t1 .∩ v : S → T ′
1 � Γ′

(3) S ≡ l

Chapter 5. System Evcr: Extensible Records 181

(5) I(U , t) terminates assumption

(6) ∃e. I(U , t) = {e Iv(U , t)} = {e isect(τs1 ∪ τs2)} where (I.val)/(I.ext) with (5)

τs1 = {l→ T1 � Γ1 | (T1 � Γ1) ∈ I(U , t1)}

τs2 = {σ1 (T2 � Γ2) | (T2 � Γ2) ∈ I(U , v),

σ1 ∈ U({e1 (α[l]→e2β)⋖T2} ∪ {U⋖U | x : U∈Γ2}),

e1, e2, α, β fresh}

(7) I(U , t1) terminates (5),(6)

(8) ∃σ′
1, T

′′
1 ,Γ

′′ such that ind.hyp. with (7),(2)

(9) (T ′′
1 � Γ′′) ∈ I(U , t1) ”

(10) σ′
1(T

′′
1 � Γ′′) ≡ (T ′

1 � Γ′) ”

(11) σ′
1(l → T ′′

1 � Γ′′) ≡ (S → T ′
1 � Γ′) (10),(3)

(12) (l→ T ′′
1 � Γ′′) ∈ τs1 (9),(6)

(13) (l→ T ′′
1 � Γ′′) ∈ (τs1 ∪ τs2) (12)

(14) ∃E.(l → T ′′
1 � Γ′′) ≡ E isect(τs1 ∪ τs2) lem 3.56 with (13)

= (e := E) (e (isect(τs1 ∪ τs2))) def 3.11

(15) S → T ′
1 � Γ′ ≡ σ′

1(l → T ′′
1 � Γ′′) (11)

≡ σ′
1((e := E) (e isect(τs1 ∪ τs2))) lem 3.16 with (14)

= (σ′
1(e := E)) (e isect(τs1 ∪ τs2)) lem 3.14

∴ σ is σ′
1(e := E) (15),(6)

case: D ends with an application of Rule (extr) of the form

(2) v : T1 � Γ1

(1) l→ t1 .∩ v : T1 � Γ1

(3) T1::l

Chapter 5. System Evcr: Extensible Records 182

(4) I(U , t) terminates assumption

(5) I(U , v) terminates def 3.57 with (4)

(6) ∃T ′
1,Γ

′
1. I(U , v) = {T

′
1 � Γ′

1} (I.val) with (5)

(7) ∃e. I(U , t) = {e Iv(U , t)} = {e isect(τs1 ∪ τs2)} where (I.val)/(I.ext) with (4)

τs1 = {l→ T0 � Γ0 | (T0 � Γ0) ∈ I(U , t1)}

τs2 = {σ0 (T ′
1 � Γ′

1) | σ0 ∈ U(∆)} (6)

where ∆={e1(α[l]→e2β)⋖T ′
1}∪{U⋖U |x : U ∈ Γ′

1}, e1, e2, α, β fresh

(8) ∃σ1. σ1(T
′
1 � Γ′

1) ≡ (T1 � Γ1) ind.hyp. with (2),(6)

(9) e1 does not occur in T ′
1 � Γ′

1 e1 is fresh

(10) ∃E. E (α[l]→ e2 β) ≡ T1 lem 5.14 with (3)

let σ2 = (σ1, e1 := E)

(11) σ2 is a unifier for ∆ def 3.11, (8),(9),(10)

(12) U(∆) terminates (4),(7)

(13) ∃σ3, σ4. σ3 ∈ U(∆) and σ2∆ ≡ σ4σ3∆ covering(U) with (12),(11)

(14) σ3 (T ′
1 � Γ′

1) ∈ τs2 (13)

(15) σ3 (T ′
1 � Γ′

1) ∈ τs1 ∪ τs2 (14)

(16) ∃E′. σ3 (T ′
1 � Γ′

1) ≡ E′ isect(τs1 ∪ τs2) lem 3.56 with (15)

= (e := E′) (e isect(τs1 ∪ τs2)) def 3.11

(17) σ2(T
′
1 � Γ′

1) ≡ (T1 � Γ1) (8), e1 is fresh

(18) T1 � Γ1 ≡ σ2(T
′
1 � Γ′

1) (17)

≡ (σ4σ3) (T
′
1 � Γ′

1) (13)

= σ4 (σ3 (T ′
1 � Γ′

1)) lem 3.14

≡ σ4 ((e := E′) (e isect(τs1 ∪ τs2))) (16)

= (σ4(e := E′)) (e isect(τs1 ∪ τs2))) lem 3.14

∴ σ = σ4(e := E′) (18),(7) 2

Chapter 5. System Evcr: Extensible Records 183

5.4 Examples

This section demonstrates our implementation evcr on a set of extensible record-based examples and

object-oriented examples encoded using extensible records. Section 5.4.1 first introduces examples

of extensible records and examines the behaviour of our system in relation to field extension, field

overriding, first-class labels and subtyping. Then, sections 5.4.2, 5.4.3 and 5.4.4 demonstrates evcr on

the examples of object-orientation, first-class polymorphism and compositionality originally presented

in Chapter 1 in sections 1.1.1, 1.1.2 and 1.1.3 respectively.

5.4.1 Extensible Records

Basic Syntax

The syntax for expressing extensible records in evcr is similar to the syntax used in the theory except

that labels are now prefixed with a dot to distinguish them from ordinary variable identifiers. Also,

braces { ... } can be used interchangeably with parentheses (...) and by convention will be

used instead of parentheses when enclosing extensible records. An extensible record containing two

fields name and employed can be defined as follows:

1 $ {.name -> "John" ^ .employed -> true ^ {}};;

2 : a (b (.name -> c Str) ^ d (.employed -> e Bool))

evcr also supports the following record-like syntactic sugar, using a comma to separate fields and

using = to separate field labels from field values:

1 $ {name = "John", employed = true, {}};;

2 : a (b (.name -> c Str) ^ d (.employed -> e Bool))

Since field labels are prefixed with a dot, the application of an extensible record to a field label

resembles the traditional “dot” notation for field selection:

1 $ {name = "John", employed = true, age = 41, {}} .age;;

2 : a Int

3 = (.name -> "John" ^ .employed -> true ^ .age -> 41 ^ {}) .age

4 > (.employed -> true ^ .age -> 41 ^ {}) .age

5 > (.age -> 41 ^ {}) .age

6 > 41

Chapter 5. System Evcr: Extensible Records 184

Row Variables and Field Overriding

The following example defines a function that takes an unknown record as a parameter and returns an

extension of it:

1 $ \r. {age = 41, r};;

2 : a (b c ([.age] -> d []) -> b (c ([.age] -> d []) ^ e (.age -> f Int)))

Here, [.age] represents a constrained simple type variable with the label constraint including only

the label .age, while [] represents a constrained simple type variable with an empty label constraint.

The encoded row variable c ([.age] -> d []) specifies that the given record type must not already

expose an age field. The following example demonstrates the application of this function to a record:

1 $ (\r. {age = 41, r}) {name = "John", employed = true, {}};;

2 : a (b (c (.name -> d Str) ^ e (.employed -> f Bool)) ^ g (.age -> h Int))

3 = (\r..age->41^r) (.name->"John"^.employed->true^{})

4 > .age->41^.name->"John"^.employed->true^{}

The next example shows the application of the same function to a record that does have an existing

age field, thereby demonstrating field overriding:

1 $ (\r. {age = 41, r}) {name = "John", employed = true, age = "nonsense", {}};;

2 : a (b (c (.name -> d Str) ^ e f (.employed -> g Bool)) ^ h (.age -> i Int))

3 = (\r..age->41^r) (.name->"John"^.employed->true^.age->"nonsense"^{})

4 > .age->41^.name->"John"^.employed->true^.age->"nonsense"^{}

This works because the constrained simple type variable [.age] requires only that the type of the

given record does not expose an age field, even though the actual record may contain an age field. To

analyse this term, evcr would have first analysed the argument as:

1 $ {name = "John", employed = true, age = "nonsense", {}};;

2 : j (k (.name -> l Str) ^ m (n (.age -> o Str) ^ p (.employed -> q Bool)))

with all fields present, and then eliminated the existing .age field by substituting the ω expansion for

the E-variable n before introducing the new .age field.

Chapter 5. System Evcr: Extensible Records 185

First-Class Labels

Labels are first-class citizens and can be passed as arguments to extensions. They can also be bound to

term variables, just as any other value can be bound to term variables. This means that it is possible to

define abstractions over term variables that represent labels, and it is possible to infer types for these

term variables compositionally.

In the following example, we have the application of a record to an unknown label represented by

the term variable x:

1 $ {name = "John", employed = true, {}} x;;

2 : a Str <| x : .name

3 : a Bool <| x : .employed

Interestingly, the unknown label represented by x could actually be one (but not both) of two

possibilities: either x is the label .name or x is the label .employed. These two possibilities cause

evcr to infer two possible and independent typings, which are not intersected together due to the value

restriction. This analysis is compositional and does not depend on any outside context.

When we abstract over x, we get a value which now permits us to intersect the two independent

typings together into a single intersection type:

1 $ \x.{name = "John", employed = true, {}} x;;

2 : a (b (.employed -> c Bool) ^ d (.name -> e Str))

As desired, this “η-expansion” is inferred to have the same type as the original record itself:

1 $ {name = "John", employed = true, {}};;

2 : a (b (.employed -> c Bool) ^ d (.name -> e Str))

Another consequence of making labels first-class citizens is that extensible record types occuring in

parameter type positions can sometimes be more general than is actually useful. For example, consider

the following function:

1 $ let area = \rect. rect.width * rect.height;;

2 : a (((b .width -> Int) ^ (c .height -> Int)) -> d Int)

Chapter 5. System Evcr: Extensible Records 186

Although rect is intended to represent an extensible record, as far as the type inference algorithm

is concerned, rect could potentially be a λ-abstraction that uses its argument zero times. Thus it is

possible to substitute the ω expansion for E-variables a and c resulting in the following type:

1 $ let area = \rect. rect.width * rect.height;;

2 : a (((w -> Int) ^ (w -> Int)) -> d Int)

At this type, the area function would no longer accept an extensible record as an argument since

by rules (extl) and (extr), no extensible record can be assigned field types w -> Int and w -> Int.

The rect parameter is now permitted only to be an abstraction that uses its parameter zero times and

returns an Int (e.g. \x.3).

Record Subtyping

The examples in this section demonstrate that intersection types are powerful enough to support code

reuse that is usually supported via subtype polymorphism. Consider the following function that calcu-

lates the area of a rectangle:

1 $ let area = \rect. rect.width * rect.height;;

2 : a (((b .width -> Int) ^ (c .height -> Int)) -> d Int)

This function can of course be applied to a record with only width and height fields:

1 $ area {width=3, height=5, {}};;

2 : a Int

3 --- reduction steps omitted ---

4 > 15

However, in a way that resembles subtyping, this function can also be applied to a record that

contains fields width and height plus additional fields x and y:

1 $ area {x=2, y=2, width=3, height=5, {}};;

2 : a Int

3 --- reduction steps omitted ---

4 > 15

The record argument’s type adapts to match the parameter type, and so it is the record argument

that is acting polymorphically, not the function. What happens during type inference is that first the

argument’s type is inferred in isolation:

Chapter 5. System Evcr: Extensible Records 187

1 $ {x=2, y=2, width=3, height=5, {}};;

2 : a (b (.x -> c Int) ^ d (e (.y -> f Int) ^ g (h (.height -> i Int) ^ j (.width -> k Int))))

Then, at the point of application, the type inference algorithm eliminates the fields labelled x and y

from this type by substituting the ω expansion for E-variables b and e, and this transforms the record’s

type to the required parameter type.

This polymorphism can be exercised by writing a single program that uses the same record at both

types. To demonstrate this, we define the following set of functions:

1 $ let area = \rect. rect.width * rect.height;;

2 : a (((b .width -> Int) ^ (c .height -> Int)) -> d Int)

3 $ let rect2str = \rect.

4 str(rect.x)++","++str(rect.y)++":"++str(rect.width)++"x"++str(rect.height);;

5 : a (((((b .x -> Int) ^ (c .y -> Int)) ^ (d .width -> Int)) ^ (e .height -> Int)) -> f Str)

6 $ let poly = \rect.

7 "rect=" ++ rect2str rect ++ ", area=" ++ str (area rect);;

8 : a ((((((b .x -> Int) ^ (c .y -> Int)) ^ (d .width -> Int)) ^ (e .height -> Int))

9 ^ (f .width -> Int) ^ (g .height -> Int))

10 -> h Str)

The area function uses the given record at a type exposing only the width and height fields. The

rect2str function uses the given record at a type exposing all four fields. Finally, the poly function

takes a rectangle and uses it with both of the other functions. Its parameter type is an intersection

type showing that the parameter is used once for all 4 fields (Line 8), and then used a again just for its

width and height fields (Line 9). The application of this function to our polymorphic rectangle record

succeeds with the following result:

1 $ poly {x=2, y=2, width=3, height=5, {}};;

2 : a Str

3 --- reduction steps omitted ---

4 > "rect=2,2:3x5, area=15"

5.4.2 Object-Orientation

This section demonstrates our type inference algorithm on all of the object-oriented examples from

Chapter 1, Section 1.1.1. These examples are supported by encoding the various object-oriented fea-

Chapter 5. System Evcr: Extensible Records 188

tures, such as objects, classes, inheritance, method overriding and dynamic dispatch, into more primitive

features, such as variables, functions and records.

There are two main approaches to encoding objects using record-like structures, and they differ

primarily in their treatment of the special variable “this” by which objects can refer to themselves.

Wand’s approach [64] follows the recursive record semantics pioneered by Cardelli [11] and uses a fixed-

point operator to recursively bind references to this within a record to the record itself. The other

approach is the self-application semantics [32] where each method takes this as a parameter, and where

invoking a method involves applying the method stored in a record to the record itself.

Operationally, the self-application semantics is simpler to implement since it does not require any

special primitive to support recursion. However, from a typing perspective, the recursive record seman-

tics is superior because it does not need a this parameter on each method, and this allows expected

subtype relations to hold. For example, we shall see later that if a this parameter is exposed on all

methods, then the type of PositionedRectangle objects can no longer be considered a subtype of the

type of Rectangle objects.

Since we are in a calculus without a fixed-point operator, we adopt the self-application semantics.

It is possible to use this semantics because evcr has no difficulty inferring typings for programs that

involve self-application. This is in contrast to Hindley/Milner-based type inference which supports

self-application only in limited situations where context information is available. Because the self-

application semantics exposes the this parameter on all methods, only the non-subtyping examples

can be typed. However, to handle the subtyping example, we use a variation on the self-application

semantics in which wrapper objects are used to “hide” the this parameter. While not as elegant

as the recursive record semantics, wrapper objects at least allow us to demonstrate that our system

of expansion variables and extensible records produces expected results when the this parameter is

hidden, and that it should therefore also produce expected results if the system were extended with a

fixed-point operator to support the recursive record semantics.

First, the non-subtyping examples are demonstrated using the self-application semantics, and then

the subtyping example is demonstrated using a variation of this semantics.

Chapter 5. System Evcr: Extensible Records 189

Self-Application Semantics

In the self-application semantics, an object is an extensible record containing both data fields and

methods. A method is a function whose first parameter must be this. A class is simply a function

that takes initial field values as parameters and returns an object based on those initial field values.

For example, the Rectangle class is defined as follows:

1 $ let Rectangle = \w.\h. {

2 width = w,

3 height = h,

4 area = \this. {

5 this.width * this.height

6 },

7 toString = \this. {

8 str(this.width) ++ "x" ++ str(this.height)

9 },

10 {}

11 };;

The inferred type shown below reflects that the Rectangle class is a function taking the two field

values as parameters and returning a record containing fields width and height and methods area and

toString.

1 : a (b c d e [] -> b (c f g h [] ->

2 c (d (.width -> e [])

3 ^ f (g (.height -> h [])

4 ^ i (j (.area -> k (((l .width -> Int) ^ (m .height -> Int)) -> n Int))

5 ^ o (.toString -> p (((q .width -> Int) ^ (r .height -> Int)) -> s Str)))))))

According to this type, the area method requires its this parameter to have type (l .width ->

Int) ^ (m .height -> Int). That is, it requires this to be a record containing fields width and

height. The toString method requires exactly the same of its this parameter.

A Rectangle object rect is created by applying class Rectangle to initial field values, and its

methods are invoked by passing rect itself to the this parameter:

1 $ let rect = Rectangle 10 20 in

2 let a = rect.area rect in

Chapter 5. System Evcr: Extensible Records 190

3 let s = rect.toString rect in

4 "area=" ++ str a ++ ", toString=" ++ s;;

5 : a Str

6 --- reduction steps omitted ---

7 > "area=200, toString=10x20"

The subclass PositionedRectangle is also defined as a function taking initial field values and

returning an object. However, this object is constructed as an extension of super which is an instance

of the superclass Rectangle:

1 $ let PositionedRectangle = \x.\y.\w.\h.

2 let super = Rectangle w h;

3 {

4 x = x,

5 y = y,

6 toString = \this. {

7 super.toString this ++ "(" ++ str(this.x) ++ "," ++ str(this.y) ++ ")"

8 },

9 super

10 };;

Note that the subclass PositionedRectangle inherits fields width and height and method toString

from the superclass Rectangle. It then extends Rectangle by adding two fields x and y and overriding

method toString with a new definition. Also note that the new implementation of toString is able

to refer to and reuse the original inherited implementation of toString by invoking super.toString.

The inferred type for class PositionedRectangle shown below describes a function that takes 4

parameters, representing 4 field values, and returns a record containing fields x, y, width and height,

and methods area and toString. Note that since the toString method of PositionedRectangle

overrides the toString method of the superclass Rectangle, this method appears in the inferred type

only once:

1 : a (b c d e f g [] -> b (c d e h i j [] -> c (d e h k l m n [] -> d (e h k l o p q [] ->

2 e (f (.x -> g [])

3 ^ h (k (l (m (.width -> n [])

4 ^ o (p (.height -> q [])

5 ^ r s (.area

6 -> t (((u .width -> Int) ^ (v .height -> Int))

7 -> w Int))))

Chapter 5. System Evcr: Extensible Records 191

8 ^ x (.toString

9 -> y (((((z .width -> Int) ^ (ba .height -> Int)) ^ (bb .x -> Int)) ^ (bc .y -> Int))

10 -> bd Str)))

11 ^ i (.y -> j [])))))))

As before, a PositionedRectangle object r can be created by applying the class to initial field

values, and the new object r can be used by applying its methods to r itself:

1 let r = PositionedRectangle 1 2 3 4 in

2 "area=" ++ str(r.area r) ++ ", toString=" ++ r.toString r;;

3 : a Str

4 --- reduction steps omitted ---

5 > "area=12, toString=3x4(1,2)"

The self-application semantics is limited when it comes to subtyping due to the exposed this

parameter. Ideally, a PositionedRectangle object should be coercible to have the same type as a

Rectangle, but because of the exposed this parameter, it is not. To understand why, consider the

following function which finds the larger of two rectangles:

1 $ let larger = \r1.\r2. {

2 if (r1.area r1 > r2.area r2) r1

3 else r2

4 };

Since it is not known during static analysis whether this function will return r1 or r2, the function

will effectively coerce the given r1 and r2 to have the same type by unifying the two types:

1 let r1 = Rectangle 2 2;

2 let r2 = PositionedRectangle 1 2 10 20;

3 let bigRect = larger r1 r2;

4 bigRect;;

5 : a b c (d (e f (.width -> g Int)

6 ^ h (i j k (.height -> l Int)

7 ^ m n o p q (.area -> r (((s .width -> Int) ^ (t .height -> Int)) -> u Int))))

8 ^ v x y z (.toString -> w))

The type of bigRect, which is the unification of the types of r1 and r2, is satisfactory with respect

to the members width, height and area, but the toString method is typed as ω making it unusable:

Chapter 5. System Evcr: Extensible Records 192

1 bigRect.toString bigRect;;

2 : No typings found

The reason that toString has type ω after unification is that the type of r1’s toStringmethod and

r2’s toStringmethod are are incompatible and not unifiable: r2.toString requires its this parameter

to have x and y fields, while r1.toString does not and cannot have this requirement due to the linear

typing model.

This problem can be solved by hiding the this parameter, which will be done in the following

section.

Hiding the “this” Parameter

In this section, we show how to create a wrapper around objects encoded in the self-application semantics

that hides the this parameter, achieving similar typing benefits to the recursive record semantics.

The Rectangle class is now defined in three steps. First, we define a raw class called Rectangle raw

in the normal self-application semantics:

1 let Rectangle_raw = \w.\h. {

2 width = w,

3 height = h,

4 area = \this. {

5 this.width * this.height

6 },

7 toString = \this. {

8 str(this.width) ++ "x" ++ str(this.height)

9 },

10 {}

11 };

Then, we define wrapper class called Rectangle wrapwhich wraps around an instance of Rectangle raw

called r:

1 let Rectangle_wrap = \r.

2 {

Chapter 5. System Evcr: Extensible Records 193

3 width = r.width,

4 height = r.height,

5 area = r.area r,

6 toString = r.toString r,

7 ()

8 };

This wrapper class defines the same fields and methods as the raw class but pre-applies the this

parameter so that it is no longer exposed to users of the wrapper.

Finally, the actual Rectangle class is defined which creates a wrapped rectangle with a raw rectangle

as its argument:

1 let Rectangle = \w.\h.Rectangle_wrap (Rectangle_raw w h);

A rectangle object created from this class now has a type that does not expose the this parameter:

1 Rectangle 2 3;;

2 : a (b c (.width -> d Int) ^ e (f (g (.area -> h Int) ^ i (.toString -> j Str))

3 ^ k l m (.height -> n Int)))

The subclass PositionedRectangle is defined similarly in terms of a raw class, a wrapper class and

the actual class. The raw class is defined as follows:

1 let PositionedRectangle_raw = \x.\y.\w.\h.

2 let super = Rectangle_raw w h;

3 {

4 x = x,

5 y = y,

6 toString = \this. {

7 super.toString this ++ "(" ++ str(this.x) ++ "," ++ str(this.y) ++ ")"

8 },

9 super

10 };

The wrapper class needs its own super reference to be a wrapper rectangle rather than a raw

rectangle, and is defined as:

1 let PositionedRectangle_wrap = \r.

2 let super = Rectangle_wrap r;

Chapter 5. System Evcr: Extensible Records 194

3 {

4 x = r.x,

5 y = r.y,

6 toString = r.toString r,

7 super

8 };

Finally, the actual PositionedRectangle class is defined to create a wrapper positioned rectangle

with a raw positioned rectangle as its argument:

1 let PositionedRectangle = \x.\y.\w.\h.

2 PositionedRectangle_wrap (PositionedRectangle_raw x y w h);

By hiding the this parameter, a PositionedRectangle can now be coerced into a Rectangle and

the subtyping example works as expected:

1 let larger = \r1.\r2.

2 {

3 if (r1.area > r2.area) r1 else r2

4 };

5 let r1 = Rectangle 2 2;

6 let r2 = PositionedRectangle 1 2 10 20;

7 let bigRect = larger r1 r2;

8 bigRect.toString;;

9 : a Str

10 > "10x20(1,2)"

While a true fixed-point operator may still be a more elegant way to express the self-referential

nature of objects, the above encoding at least demonstrates that our system of expansion variables and

extensible records produces expected results when the this parameter is hidden, and should therefore

also produce expected results if the recursive record semantics are used.

5.4.3 First-Class Polymorphism

This section demonstrates the substitution example from Chapter 1, Section 1.1.2. Because it requires

first-class polymorphism, this example is not supported by object-oriented type inference systems in

the Hindley/Milner style, such as those based on extensible records [62, 64, 28, 55, 9].

The example in the introduction was originally presented with 5 classes, however some of those

classes, specifically Substitution and Expression, served only as types and contained no actual code.

Chapter 5. System Evcr: Extensible Records 195

In this section, those particular classes are excluded, and only the following 3 classes are needed:

Variable, IdentitySub and ExtendedSub.

Class Variable is defined by the following function:

1 let Variable = \name.

2 {

3 name = name,

4 applySubToSelf = \this.\s. {

5 let tail = s.tail;

6 if (this.name == s.x.name) s.v

7 else tail.apply tail this

8 },

9 toString = \this. {

10 this.name

11 },

12 {}

13 };;

Method applyToSelf, as originally presented in Chapter 1, took a substitution s as its only parame-

ter. When encoded using the self-application semantics, this method is augmented to take an additional

this parameter. Furthermore, when invoking method tail.apply on Line 7, the first argument passed

(i.e. to parameter “this”) must be the object on which the method is being invoked, which in this case

is the object tail, and then the normal method arguments follow after that.

Class IdentitySub is defined as follows:

1 let IdentitySub =

2 {

3 apply = \this.\item. {

4 item

5 },

6 applySubToSelf = \this.\s. {

7 s

8 },

9 toString = \this. {

10 "{}"

11 },

Chapter 5. System Evcr: Extensible Records 196

12 {}

13 };;

Even though applySubToSelf in this case does not use its this parameter, the parameter should

still be present consistently on all methods.

Finally, class ExtendedSub is defined by the following function:

1 let ExtendedSub = \x.\v.\tail.

2 {

3 x = x,

4 v = v,

5 tail = tail,

6 apply = \this.\item. {

7 item.applySubToSelf item this

8 },

9 applySubToSelf = \this.\s. {

10 let newV = s.apply s (this.v);

11 let newTail = s.apply s (this.tail);

12 {v=newV, tail=newTail, this}

13 },

14 toString = \this. {

15 let x = this.x;

16 let v = this.v;

17 let tail = this.tail;

18 x.toString x ++ ":=" ++ v.toString v ++ "," ++ tail.toString tail

19 },

20 {}

21 };;

Note that the applySubToSelf method of the ExtendedSub class uses s.apply polymorphically:

first on Line 10 to take a variable to a variable, and then on Line 11 to take a substitution to a

substitution. The inferred type of the applySubToSelf method reflects this polymorphism:

Chapter 5. System Evcr: Extensible Records 197

1 w (x ((y z ba ([.v,.tail] -> bb []) ^ (bg .tail -> bh [])) ^ (bi .v -> bj []))

2 -> x ((((bk .apply -> bl [] -> bh [] -> y z bc bd []) ^ bl [])

3 ^ (bm .apply -> bn [] -> bj [] -> y be bf []) ^ bn [])

4 -> y (be (.v -> bf []) ^ z (ba ([.v,.tail] -> bb []) ^ bc (.tail -> bd [])))))

Line 1 is the type of the this parameter, lines 2 and 3 are an intersection of the two different types

at which the substitution s is used, and line 4 is the type of the substitution that is returned where

the “row variable” ba ([.v,.tail] -> bb []) represents all of the unknown additional methods and

fields of this.

Putting this polymorphism to the test, we create two substitutions, apply one to the other, and

then produce a string representation of the result:

1 let a = Variable "a";

2 let b = Variable "b";

3 let c = Variable "c";

4 let d = Variable "d";

5 let id = IdentitySub;

6 let s1 = ExtendedSub b a id;

7 let s2 = ExtendedSub a b (ExtendedSub c d id);

8 let s1s2 = s1.apply s1 s2;

9 let s1Str = s1.toString s1;

10 let s2Str = s2.toString s2;

11 let s1s2Str = s1s2.toString s1s2;

12 "s1 is " ++ s1Str ++ " , s2 is " ++ s2Str ++ " , s1s2 is " ++ s1s2Str;;

13 : a Str

14 --- reduction steps omitted ---

15 > "s1 is b:=a,{} , s2 is a:=b,c:=d,{} , s1s2 is a:=a,c:=d,b:=a,{}"

Type inference succeeds, and evaluation produces the same answer as the original Java version of

Chapter 1.

5.4.4 Compositionality

This section presents the examples of compositional analysis from Chapter 1, Section 1.1.3. Com-

positional analysis is not possible in type inference systems following Palsberg and Schwartzbach’s

approach [46], nor is it possible in Martin Plümicke’s Java type inference algorithm [52, 51], since these

systems are inherently based on a whole-program analysis.

Chapter 5. System Evcr: Extensible Records 198

Both of the examples presented in the introduction reference a class A which was left unspecified,

but which we now define below:

1 let A = {

2 m1 = \this.\arg. {

3 arg

4 },

5 {}

6 };;

7 : a (.m1 -> b (w -> c (d [] -> d [])))

Two examples were presented in the introduction.

Example 1

1 let C = {

2 mono = \this.\b. {

3 let a = A;

4 let _ = a.m1 a true;

5 let _ = b.m2 b 42;

6 ()

7 },

8 {}

9 };;

10 : a (.mono -> b (w -> c (((d .m2 -> e [] -> f Int -> w) ^ e []) -> g ())))

In Example 1, method mono makes use of two variables. Variable a is an object defined from a

known class A. Variable b, on the other hand, is an object passed through the parameter of method

mono and as such, the class of b is not known. By deconstructing the inferred type above, the inferred

type of parameter b is found to be:

(d .m2 -> e [] -> f Int -> w) ^ e []

Rather than searching the whole program for a class name to be used as the type of b, evcr has

instead inferred a structural type. The left component of the intersection type represents the type of an

object with a single method called m2 which takes a this parameter of type e [], and then takes an

Chapter 5. System Evcr: Extensible Records 199

integer and returns a value that is not used. The right component of the intersection type says that b

must also have the same type as the this parameter of method m2 so that the self-application semantics

can work.

This example was used in the introduction to show that while a type for variable a could be easily

inferred using known context information about class A, the same cannot be said for variable b since

nothing is known of the origin of b. However, it is important to note that evcr ignores the fact that

context information is actually available about a and infers types for both variables compositionally

based only on how those variables are used within the method.

Example 2

1 let Foo = {

2 poly = \this.\b. {

3 let a = A;

4 let _ = a.m1 a true;

5 let _ = a.m1 a 42;

6 let _ = b.m2 b true;

7 let _ = b.m2 b 42;

8 ()

9 },

10 {}

11 };;

12 : a (.poly -> b (w -> c ((

13 ((d .m2 -> e [] -> f Int -> w) ^ e [])

14 ^ (g .m2 -> h [] -> i Bool -> w) ^ h [])

15 -> j {})))

Example 2 is a slight variation on Example 1 in which both variables a and b are used polymor-

phically. evcr succeeds to infer a structural type for parameter b based on the way in which b is used

within method poly. Lines 13 and 14 reveal the type of b as an intersection type with Line 13 revealing

m2 as a method that takes integers, and Line 14 revealing m2 as a method that takes booleans.

Chapter 5. System Evcr: Extensible Records 200

0

200000

400000

600000

800000

1000000

1200000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

steps

fields

opusβ

∗ ∗

∗
opus

• •

•
•

Figure 5.1: Performance of opusβ vs opus with extensible records

5.5 Efficiency

This section revisits the efficiency issues with opus that originally motivated the development of opusβ.

In Section 3.6, we saw that the amount of branching performed by opus led the algorithm being pro-

hibitively inefficient in many of the purely functional examples tested. When considering extensible

records, the efficiency issues with opus become even more pronounced, to the extent that records with

more than 2 fields cannot in practice be analysed without some optimisations such as those applied in

opusβ.

To illustrate the efficiency issues, we run our implementation on a set of extensible records of the

form (l1 → 1, . . . ln → 1, {}) for n = 1..25, once using opusβ and once again using opus. Figure 3.2

plots on the X-axis the number of fields in each record, and on the Y-axis the number of −−→opusβ steps

and −→opus steps needed to analyse the record using opusβ and opus respectively. The figure shows that

type inference using opus quickly becomes impractical with extensible records that have a mere 3 fields.

Based on these results, it is clear that opusβ is the more viable option for demonstrating Algorithm I

on programs with records and therefore objects.

Figure 5.2 demonstrates opusβ on each of the object-oriented examples presented in this chapter,

Chapter 5. System Evcr: Extensible Records 201

Example −−→opusβ steps

Section 5.4.2, Computing the largest rectangle (self-application semantics) 4259
Section 5.4.2, Computing the largest rectangle (wrapped semantics) 5240
Section 5.4.3, First-class polymorphism, substitution example 9892
Section 5.4.4, Compositionality, Example 1 124
Section 5.4.4, Compositionality, Example 2 214

Figure 5.2: Performance of opusβ on object-oriented examples

showing in each case the number of −−→opusβ steps used. The cumulative 19,729 −−→opusβ steps took 18 seconds

to complete on an Intel R© Core
TM

i5-2400 CPU @ 3.10GHz with a single-threaded implementation.

Although opusβ is a significant improvement over opus in terms of efficiency, it is clearly not the

perfect unification algorithm. In addition to improving efficiency further, it would be desirable to have

an algorithm that also offers the covering unifier sets property (as in opus) and offers some guarantee

regarding termination (e.g. by limiting rank as in System I).

opusβ might best be viewed as a first attempt to reduce opus’s branching of the search path based on

sound ideas from β-unification while retaining opus’s ability to handle all constraint forms. Importantly,

these efficiency improvements make it possible to demonstrate our type inference system successfully

on the object-oriented examples of interest presented in the introduction.

5.6 Summary

This chapter presented System Evcr, our final system including both extensible records and constants.

We have shown that it is possible to adapt System E’s technology of expansion variables to apply to

extensible records. To do so, we encoded extensible records as functions from labels to values, and

typed them using intersections of function types from labels to types, which has enabled us to reuse

all of the function-oriented type machinery of System E. The challenging typing issue of row variables

has been handled in System Evcr through the novel use of constrained simple type variables which, in

combination with function types, intersection types and E-variables, can be used to construct types

that serve the same purpose as row variables. We showed how the object-oriented problem examples

from Chapter 1 could be encoded into our calculus and, using our implementation evcr, demonstrated

that Algorithm I was able to automatically infer typings for all of these examples. We then revisited

Chapter 5. System Evcr: Extensible Records 202

our motivation to create an optimised derivative of opus, and we presented data to illustrate how opusβ

alleviates some of the significant performance deficiencies of opus in the context of extensible records.

Chapter 6

Conclusions

In this dissertation, we presented a new approach to type inference for object-orientation that addresses

two objectives important to the object-oriented programming style:

1. First-class polymorphism should be used to support objects as first-class citizens.

2. Compositional analysis should be used to support the separate development of software modules.

The fact that our approach supports both of these objectives is significant because previous type

inference approaches for objects have succeeded in satisfying only one or the other, but not both at

the same time. For example, the approach of flow analysis by Palsberg and Schwartzbach [46] and the

Java type inference algorithm by Martin Plümicke [52, 51] support first-class polymorphism, but at the

cost of requiring a whole program analysis which prevents separate compilation. Conversely, the many

approaches derived from the Hindley/Milner type inference system such as those based on extensible

records [62, 64, 28, 55, 9] support a limited form of compositional analysis, but sacrifice the first-class

polymorphism that is necessary to treat objects properly as first-class citizens.

Our solution combined System E with extensible records in ways that are novel in both disciplines.

On the System E side, we showed that the expansion machinery of System E will work almost unmodified

on extensible records if extensible records are interpreted as functions having intersections of function

types, and record labels are treated as first-class constants that can be passed as arguments. Type

safety in the call-by-value semantics is ensured by a value restriction on the expansion typing rules.

203

Chapter 6. Conclusions 204

On the extensible records side, we invented a new alternative to row variables called constrained simple

type variables which are useful when extensible records are treated as functions from first-class labels to

values, and which can encode the usual notion of row variables when combined with the existing syntax

of function types, intersection types and E-variables.

Our type inference algorithm departed from the previous algorithms for System E in order to support

additional term forms beyond those of the pure λ-calculus. While previous type inference algorithms for

System E are based on β-unification which assumes that all functions are λ-abstractions, our type infer-

ence algorithm was designed with covering unification in mind which makes no assumptions about the

term language and thus supports extensible records posing as functions. However, covering unification

is unfortunately a much slower process than β-unification because it needs to search more constraint

reduction paths to produce a full covering set of unifiers. For this reason, we developed a hybrid unifi-

cation algorithm that, like covering unification, handles all constraint forms, but like β-unification, uses

asymmetric constraints to cut down the number of constraint reduction paths that need to be searched.

Further study will be required to discover desirable properties for such a hybrid algorithm and to design

an algorithm accordingly.

The main technical results contributed by this dissertation can be summarised as follows:

• A proof that System Ev, System Evc and System Evcr are typesafe by subject reduction (Theo-

rem 3.30) and progress (Theorem 3.31).

• A proof for each of System Ev, System Evc and System Evcr that our type inference algorithm I

terminates, is correct and finds principal typing sets whenever the chosen unification algorithm

terminates, is correct and finds covering unifier sets respectively (Theorem 3.58, Theorem 3.59

and Theorem 3.60 respectively).

• A proof for each of System Ev, System Evc and System Evcr that our hybrid type unification

algorithm opusβ is correct (Theorem 3.50).

In addition to these technical results, we also implemented and tested the type inference algorithm,

verifying that it succeeds in inferring types for all of the object-oriented problem examples presented

in the introduction. We compared our implementation to the System E type inference tool and found

that the former matches the latter on all but one of the 61 λ-calculus examples from the System E

Chapter 6. Conclusions 205

Inference Report in Appendix B (failing, where it does, in a way that is expected and consistent with

the compositional approach of our algorithm). Using this implementation, we also highlighted the

efficiency problems with opus and the improvements made in opusβ.

6.1 Future Work

Currently, our system supports only a core subset of object-oriented programming features. The fol-

lowing diagram shows what has been achieved to date, and in what direction future progress might be

made:

Functions Constants Records Recursion Imperatives

E/Ev Evc Evcr ? ?

While recursive programs are possible in System E by using a Y-combinator represented in pure λ-

terms, type inference must resort to non-compositional analysis to succeed on such programs. Another

issue is that current type inference algorithms for System E are restricted to the linear fragment of the

type system, meaning that it is technically not feasible for them to infer a linear typing for a recursive

function that may recurse for an unknown number of times (e.g. computing the factorial of an unknown

number read from the user), or for an infinite number of times (e.g. a server operating system that

(ideally) runs forever). These limitations might be addressed by adding a built-in Y-combinator with

its own typing rule and making use of non-linear types to account for an unknown or infinite number

of uses of a given term.

Imperative programming is also theoretically possible in System E by using monads [61] to capture

the behaviour of state in a purely functional manner. However, there are efficiency benefits to building

state-manipulating primitives directly into a language, and this will require changes to System E’s type

system.

Chapter 6. Conclusions 206

Apart from adding new syntactic features to System E, another area for future research is to find

further practical type system restrictions that offer decidable type inference. System I has decidable

type inference for all finite-rank restrictions, although other as yet undiscovered restrictions may be

possible. For example, papers on both of the previous type inference algorithms for System E [15, 6]

state as future work the objective to develop type inference algorithms that perform any specified

amount of evaluation (corresponding to partial evaluation of the program being analysed), followed by

traditional monovariant analysis. The problems associated with constants also need further study. For

example, the unifier of not : Bool → e Bool and λx.x : f [] → f [] results in Bool → Bool which is

unsatisfactory since the E-variable on the return type is lost (Section 4.5.1). Lastly, more work needs

to be done on unification algorithms that support type unification in the general case, and not just in

the specific case of β-unification which is hardwired to work for the pure λ-calculus. Such a unification

algorithm will allow System E to be more easily extended to support the full range of term forms that

can be found in real world object-oriented programming languages such as C++ and Java.

Bibliography

[1] TIOBE Programming Community Index. http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html.

[2] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 1st edition, 1996.

[3] Ole Agesen. The cartesian product algorithm: Simple and precise type inference of parametric

polymorphism. In Proceedings of the 9th European Conference on Object-Oriented Programming,

ECOOP ’95, pages 2–26, London, UK, UK, 1995. Springer-Verlag.

[4] Roberto Amadio and Luca Cardelli. Subtyping recursive types. ACM TRANSACTIONS ON

PROGRAMMING LANGUAGES AND SYSTEMS, 15(4):575–631, 1993.

[5] Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler. A call-

by-need lambda calculus. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, POPL ’95, pages 233–246, New York, NY, USA, 1995. ACM.

[6] Adam Bakewell, Sbastien Carlier, A. J. Kfoury, and J. B. Wells. Inferring intersection typings that

are equivalent to call-by-name and call-by-value evaluations. Technical report, 2005.

[7] Adam Bakewell and Assaf J. Kfoury. Unification with expansion variables: Preliminary results

and problems. Technical report, 2004.

[8] Adam Bakewell and Assaf J. Kfoury. Properties of a rewrite system for unification with expansion

variables. Technical report, 2005.

207

BIBLIOGRAPHY 208

[9] Gérard Boudol. The recursive record semantics of objects revisited. J. Funct. Program., 14:263–315,

May 2004.

[10] Grard Boudol and Pascal Zimmer. On type inference in the intersection type discipline. Electr.

Notes Theor. Comput. Sci., 136:23–42, 2005.

[11] Luca Cardelli. A semantics of multiple inheritance. Inf. Comput., 76:138–164, February 1988.

[12] Luca Cardelli and John C. Mitchell. Operations on records. In Proceedings of the fifth international

conference on Mathematical foundations of programming semantics, pages 22–52, New York, NY,

USA, 1990. Springer-Verlag New York, Inc.

[13] Sébastien Carlier. System E inference report. http://www.macs.hw.ac.uk/DART/software/

system-e/examples/terms.html.

[14] Sébastien Carlier. System E type inference tool. http://www.macs.hw.ac.uk/DART/software/

system-e/.

[15] Sébastien Carlier and J. B. Wells. Type inference with expansion variables and intersection types in

System E and an exact correspondence with β-reduction. In Proceedings of the 6th ACM SIGPLAN

international conference on Principles and practice of declarative programming, PPDP ’04, pages

132–143, New York, NY, USA, 2004. ACM.

[16] Sébastien Carlier and J. B. Wells. Expansion: the crucial mechanism for type inference with

intersection types: A survey and explanation. Electronic Notes in Theoretical Computer Science,

136:173–202, 2005.

[17] Sbastien Carlier, Jeff Polakow, J. B. Wells, and A. J. Kfoury. System E: Expansion variables

for flexible typing with linear and non-linear types and intersection types. In IN PROGRAM-

MING LANGUAGES & SYSTEMS, 13TH EUROPEAN SYMP. PROGRAMMING, pages 294–

309. Springer-Verlag, 2004.

[18] Alonzo Church. The Calculi of Lambda Conversion. (AM-6) (Annals of Mathematics Studies).

Princeton University Press, Princeton, NJ, USA, 1985.

BIBLIOGRAPHY 209

[19] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for the

λ-calculus. 1980.

[20] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Principal Type Schemes and

Lambda-calculus Semantics, pages 480–490. Accademic Press, London, 1980.

[21] William Damon. Multithreaded game programming and hyper-

threading technology. http://software.intel.com/en-us/articles/

multithreaded-game-programming-and-hyper-threading-technology, September 2011.

[22] Benedict R. Gaster and Mark P. Jones. A polymorphic type system for extensible records and

variants. Technical report, 1996.

[23] Silvia Ghilezan. Strong normalization and typability with intersection types. Notre Dame Journal

of Formal Logic, 37(1):44–52, 1996.

[24] Jean-Yves Girard. Interprtation fonctionnelle et limination des coupures de l’arithmtique d’ordre

suprieur. Thèse d’état, Université Paris 7, June 1972.

[25] Robert Harper and Benjamin Pierce. A record calculus based on symmetric concatenation. In Pro-

ceedings of the 18th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

POPL ’91, pages 131–142, New York, NY, USA, 1991. ACM.

[26] Ryan Heise. evcr. http://www.ryanheise.com/software/evcr/.

[27] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core

calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23:396–450, May 2001.

[28] Lalita Jategaonkar and John Mitchell. ML with extended pattern matching and subtypes. In

LFP ’88: Proceedings of the 1988 ACM conference on LISP and functional programming, pages

198–211, New York, NY, USA, 1988. ACM.

[29] C. B. Jay. Methods as pattern-matching functions. Foundations of Object-Oriented Languages,

page 16, 2004.

BIBLIOGRAPHY 210

[30] Gregor Kiczales John, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean marc

Loingtier, and John Irwin. Aspect-oriented programming. pages 220–242. Springer-Verlag, 1997.

[31] Mark P. Jones. First-class polymorphism with type inference.

[32] S. Kamin. Inheritance in smalltalk-80: a denotational definition. In Proceedings of the 15th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’88, pages 80–87,

New York, NY, USA, 1988. ACM.

[33] Sonya E. Keene. Object-Oriented Programming in Common Lisp: A Programmer’s Guide to

CLOS. page 290, 1989.

[34] A. J. Kfoury. Beta-reduction as unification. In Banach Center Publication, pages 137–158. Springer-

Verlag, 1996.

[35] A. J. Kfoury and J. B. Wells. A direct algorithm for type inference in the rank-2 fragment of the

second-order λ-calculus. SIGPLAN Lisp Pointers, VII(3):196–207, 1994.

[36] A. J. Kfoury and J. B. Wells. Principality and decidable type inference for finite-rank intersection

types. In POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pages 161–174, New York, NY, USA, 1999. ACM.

[37] Assaf J. Kfoury and J. B. Wells. Principality and type inference for intersection types using

expansion variables. Theoret. Comput. Sci., 311(1–3):1–70, 2004.

[38] Alexei Kopylov. Dependent intersection: A new way of defining records in type theory. Technical

report, Ithaca, NY, USA, 2000.

[39] Didier Le Botlan and Didier Rémy. MLF: raising ML to the power of System F. In Proceedings of

the eighth ACM SIGPLAN international conference on Functional programming, ICFP ’03, pages

27–38, New York, NY, USA, 2003. ACM.

[40] Daan Leijen. First-class labels for extensible rows. Technical Report UU-CS-2004-51, Department

of Computer Science, Universiteit Utrecht, December 2004.

BIBLIOGRAPHY 211

[41] Daan Leijen. HMF: Simple type inference for first-class polymorphism. SIGPLAN Not, 43(9):283–

294, 2008.

[42] Daniel Leivant. Polymorphic type inference. In Proceedings of the 10th ACM SIGACT-SIGPLAN

symposium on Principles of programming languages, POPL ’83, pages 88–98, New York, NY, USA,

1983. ACM.

[43] Brad Lushman and Gordon V. Cormack. A more direct algorithm for type inference in the rank-2

fragment of the second-order -calculus. Technical Report CS-2006-08, 2006.

[44] Henning Makholm and J. B. Wells. Type inference and principal typings for symmetric record

concatenation and mixin modules. Technical report, 2005.

[45] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System

Sciences, 17:348–375, 1978.

[46] Jens Palsberg and Michael I. Schwartzbach. Object-oriented type inference. pages 146–161. ACM

Press, 1991.

[47] Benjamin C. Pierce. Bounded quantification is undecidable. In POPL ’92: Proceedings of the 19th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 305–315,

New York, NY, USA, 1992. ACM.

[48] Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans. Program. Lang. Syst.,

22(1):1–44, 2000.

[49] John Plevyak and Andrew A. Chien. Precise concrete type inference for object-oriented languages.

In Proceedings of the ninth annual conference on Object-oriented programming systems, language,

and applications, OOPSLA ’94, pages 324–340, New York, NY, USA, 1994. ACM.

[50] G. Plotkin. Call-by-name, call-by-value and the -calculus. Theoretical Computer Science, 1(2):125–

159, December 1975.

BIBLIOGRAPHY 212

[51] Martin Plümicke. Typeless programming in Java 5.0 with wildcards. In Proceedings of the 5th

international symposium on Principles and practice of programming in Java, PPPJ ’07, pages

73–82, New York, NY, USA, 2007. ACM.

[52] Martin Plümicke and Jörg Bäuerle. Typeless programming in Java 5.0. In Proceedings of the

4th international symposium on Principles and practice of programming in Java, PPPJ ’06, pages

175–181, New York, NY, USA, 2006. ACM.

[53] G. Pottinger. A type assignment for the strongly normalizable λ-terms. In J. P. Seldin and J. R.

Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,

pages 567–577. Academic Press, Inc., New York, N.Y., 1980.

[54] Didier Rémy. Typing record concatenation for free. In Proceedings of the 19th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, POPL ’92, pages 166–176, New

York, NY, USA, 1992. ACM.

[55] Didier Rémy. Type inference for records in a natural extension of ML. In Carl A. Gunter and

John C. Mitchell, editors, Theoretical Aspects Of Object-Oriented Programming. Types, Semantics

and Language Design. MIT Press, 1993.

[56] S. Ronchi Della Rocca and B. Venneri. Principal type schemes for an extended type theory.

Theoretical Computer Science, 28(1-2):151 – 169, 1983.

[57] S. Ronchi Della Rocca. Principal type scheme and unification for intersection type discipline.

Theor. Comput. Sci., 59:181–209, July 1988.

[58] Martin Sulzmann. Designing Record Systems. Research Report YALEU/DCS/RR-1128, Yale

University, Department of Computer Science, April 1997.

[59] David Ungar and Randall B. Smith. Self: The power of simplicity. SIGPLAN Not., 22:227–242,

December 1987.

[60] Pawel Urzyczyn. Type reconstruction in Fω. Mathematical Structures in Computer Science, 7:329–

358, 1997.

BIBLIOGRAPHY 213

[61] Philip Wadler. Monads for functional programming. In Advanced Functional Programming, First

International Spring School on Advanced Functional Programming Techniques-Tutorial Text, pages

24–52, London, UK, 1995. Springer-Verlag.

[62] Mitchell Wand. Complete type inference for simple objects. In Proc. 2nd IEEE Symposium on

Logic in Computer Science, pages 37–44, 1987.

[63] Mitchell Wand. Type inference for record concatenation and multiple inheritance. Inf. Comput.,

93:1–15, July 1991.

[64] Mitchell Wand. Type inference for objects with instance variables and inheritance. In Carl Gunter

and John C. Mitchell, editors, Theoretical Aspects of Object-Oriented Programming, pages 97–120.

MIT Press, 1994. Originally appeared as Northeastern University College of Computer Science

Technical Report NU-CCS-89-2, February, 1989.

[65] J. B. Wells. Typability is undecidable for F+eta. Tech. Rep. 96-022, Comp. Sci. Dept., Boston

Univ., March 1996.

[66] J. B. Wells. Typability and type checking in System F are equivalent and undecidable. Ann. Pure

Appl. Logic, 98(1–3):111–156, 1999.

[67] J. B. Wells. The essence of principal typings. In Proc. 29th Int’l Coll. Automata, Languages, and

Programming, volume 2380 of LNCS, pages 913–925. Springer-Verlag, 2002.

[68] Andrew Wright. Simple imperative polymorphism. In LISP and Symbolic Computation, pages

343–356, 1995.

Appendix A

Additional Proofs

Lemma 3.14. Given any E, F and K, E (F K) = (E F) K.

Proof. The proof is by induction on the structure of E, F and K. This is similar to the proof in [17],

except that since we do not impose equalities on types, induction is now directly possible on the structure

of K, and there is no need to define a size function and prove an induction principle.

case: E = ω.

LHS = ω (F K)

= ω def 3.11

= ω K def 3.11

= (ω F) K def 3.11

= RHS

case: E = E1
.∩ E2.

LHS = (E1
.∩ E2) (F K)

= E1 (F K) .∩ E2 (F K) def 3.11

= (E1 F) K .∩ (E2 F) K ind.hyp. (E1 smaller), ind.hyp. (E2 smaller)

= (E1 F .∩ E2 F) K def 3.11

= ((E1
.∩ E2) F) K def 3.11

= RHS

214

Appendix A. Additional Proofs 215

case: E = e E1.

LHS = (e E1) (F K)

= e (E1 (F K)) def 3.11

= e ((E1 F) K) ind.hyp. (E1 smaller)

= (e (E1 F)) K def 3.11

= ((e E1) F) K def 3.11

= RHS

case: E = σ1.

case: F = ω.

LHS = σ1 (ω K)

= σ1 ω def 3.11

= ω def 3.11

= ω K def 3.11

= (σ1 ω) K def 3.11

= RHS

case: F = F1
.∩ F2.

LHS = σ1 ((F1
.∩ F2) K)

= σ1 (F1 K .∩ F2 K) def 3.11

= σ1 (F1 K) .∩ σ1 (F2 K) def 3.11

= (σ1 F1) K .∩ (σ1 F2) K ind.hyp. (F1 smaller), ind.hyp. (F2 smaller)

= (σ1 F1
.∩ σ1 F2) K def 3.11

= (σ1 (F1
.∩ F2)) K def 3.11

= RHS

case: F = e F1.

case: σ1 = �.

LHS = � ((e F1) K)

= (e F1) K lem 3.13

= (� (e F1)) K lem 3.13

= RHS

case: σ1 = σ′
1, e := E1.

Appendix A. Additional Proofs 216

LHS = (σ′
1, e := E1) ((e F1) K)

= (σ′
1, e := E1) (e (F1 K)) def 3.11

= E1 (F1 K) def 3.11

= (E1 F1) K ind.hyp. (E1 and F1 smaller)

= ((σ′
1, e := E1) (e F1)) K def 3.11

= RHS

case: σ1 = σ′
1, X1 := K1 where X1 6= e.

LHS = (σ′
1, X1 := K1) ((e F1) K)

= (σ′
1, X1 := K1) (e (F1 K)) def 3.11

= σ′
1 (e (F1 K)) def 3.11

= σ′
1 ((e F1) K) def 3.11

= (σ′
1 (e F1)) K ind.hyp. (σ′

1 smaller)

= ((σ′
1, X1 := K1) (e F1)) K def 3.11

= RHS

case: F = σ2.

case: K = ω.

LHS = σ1 (σ2 ω)

= σ1 ω def 3.11

= ω def 3.11

= (σ1 σ2) ω def 3.11

= RHS

case: K = K1
.∩K2.

LHS = σ1 (σ2 (K1
.∩K2))

= σ1 (σ2 K1
.∩ σ2 K2) def 3.11

= σ1 (σ2 K1) .∩ σ1 (σ2 K2) def 3.11

= (σ1 σ2) K1
.∩ (σ1 σ2) K2 ind.hyp. (K1 smaller), ind.hyp. (K2 smaller)

= (σ1 σ2) (K1
.∩K2) def 3.11

= RHS

case: K = e K ′.

case: σ2 = �.

Appendix A. Additional Proofs 217

LHS = σ1 (� (e K ′))

= σ1 (e K ′) lem 3.13

= (σ1 �) (e K ′) def 3.11

= RHS

case: σ2 = σ′
2, e := E1.

LHS = σ1 ((σ′
2, e := E1) (e K ′))

= σ1 (E1 K ′) def 3.11

= (σ1 E1) K
′ ind.hyp. (E1 and K ′ smaller)

= (σ1 σ′
2, e := σ1 E1) (e K ′) def 3.11

= (σ1 (σ′
2, e := E1)) (e K ′) def 3.11

= RHS

case: σ2 = σ′
2, X2 := K2, where X2 6= e.

LHS = σ1 ((σ′
2, X2 := K2) (e K ′))

= σ1 (σ′
2 (e K ′)) def 3.11

= (σ1 σ′
2) (e K ′) ind.hyp. (σ′

2 smaller)

= (σ1 σ′
2, X2 := σ1 K2) (e K ′) def 3.11

= (σ1 (σ′
2, X2 := K2)) (e K ′) def 3.11

= RHS

case: K = σ3.

case: σ3 = �.

LHS = σ1 (σ2 �)

= σ1 σ2 def 3.11

= (σ1 σ2) � def 3.11

= RHS

case: σ3 = σ′
3, X3 := K3.

Appendix A. Additional Proofs 218

LHS = σ1 (σ2 (σ′
3, X3 := K3))

= σ1 (σ2 σ′
3, X3 := σ2 K3) def 3.11

= σ1 (σ2 σ′
3), X3 := σ1 (σ2 K3) def 3.11

= (σ1 σ2) σ
′
3, X3 := (σ1 σ2) K3 ind.hyp. (σ′

3 smaller), ind.hyp. (K3 smaller)

= (σ1 σ2) (σ
′
3, X3 := K3) def 3.11

= RHS

case: K = α[L].

case: σ2 = �.

LHS = σ1 (� α[L])

= σ1 α[L] def 3.11

= (σ1 �) α[L] def 3.11

= RHS

case: σ2 = σ′
2, α[L] := T̄ where T̄ ↾L.

LHS = σ1 ((σ′
2, α[L] := T̄) α[L])

= σ1 T̄ def 3.11

= (σ1σ
′
2, α[L] := σ1T̄) α[L] lem 5.5,conv 5.3,def 3.11

= (σ1 (σ′
2, α[L] := T̄)) α[L] def 3.11

= RHS

case: σ2 = σ′
2, X2 := K2 where X2 6= α[L].

LHS = σ1 ((σ′
2, X2 := K2) α[L])

= σ1 (σ′
2 α[L]) def 3.11

= (σ1 σ′
2) α[L] ind.hyp. (σ′

2 smaller)

= (σ1 σ′
2, X2 := σ1 K2) α[L] def 3.11

= (σ1 (σ′
2, X2 := K2)) α[L] def 3.11

= RHS

case: K = C.

Appendix A. Additional Proofs 219

LHS = σ1 (σ2 C)

= σ1 C def 3.11

= C def 3.11

= (σ1 σ2) C def 3.11

= RHS

case: K = T1 → T2.

LHS = σ1 (σ2 (T1 → T2))

= σ1 (σ2 T1 → σ2 T2) def 3.11

= σ1 (σ2 T1)→ σ1 (σ2 T2) def 3.11

= (σ1 σ2) T1 → (σ1 σ2) T2 ind.hyp. (T1 smaller), ind.hyp. (T2 smaller)

= (σ1 σ2) (T1 → T2) def 3.11

= RHS

2

Lemma 3.16. Given any T , T ′ and E, if T ≡ T ′, then E T ≡ E T ′.

Proof. The proof is by induction on the structure of the derivation of T ≡ T ′, and then the structure of

E. However, the cases are enumerated first by the cases of E and when E = σ, by the cases of T ≡ T ′.

case: E = ω.

LHS = ω T

= ω def 3.11

= ω T ′ def 3.11

= RHS

case: E = E1
.∩ E2.

LHS = (E1
.∩ E2) T

= E1 T .∩E2 T def 3.11

≡ E1 T ′ .∩ E2 T ′ ind.hyp. (E1 smaller), ind.hyp. (E2 smaller), def 3.7

= (E1
.∩ E2) T

′ def 3.11

= RHS

case: E = e E1.

Appendix A. Additional Proofs 220

LHS = (e E1) T

= e (E1 T) def 3.11

≡ e (E1 T ′) ind.hyp. (E1 smaller), def 3.7

= (e E1) T
′ def 3.11

= RHS

case: E = σ. We now consider the cases for the derivation of T ≡ T ′.

case: (T1
.∩ T2) .∩ T3 ≡ T1

.∩ (T2
.∩ T3).

LHS = σ ((T1
.∩ T2) .∩ T3)

= (σT1
.∩ σT2) .∩ σT3 def 3.11

≡ σT1
.∩ (σT2

.∩ σT3) def 3.7

= σ (T1
.∩ (T2

.∩ T3)) def 3.11

= RHS

case: T1
.∩ T2 ≡ T2

.∩ T1.

LHS = σ (T1
.∩ T2)

= σT1
.∩ σT2 def 3.11

≡ σT2
.∩ σT1 def 3.7

= σ (T2
.∩ T1) def 3.11

= RHS

case: T .∩ ω ≡ T .

LHS = σ (T .∩ ω)

= σT .∩ σω def 3.11

= σT .∩ ω def 3.11

≡ σT def 3.7

= RHS
case: e ω ≡ ω.

LHS = σ (e ω)

= (σ e) ω def 3.11

= ω def 3.11

= σ ω def 3.11

= RHS

case: e (T1
.∩ T2) ≡ e T1

.∩ e T2.

Appendix A. Additional Proofs 221

LHS = σ (e (T1
.∩ T2))

= (σ e) (T1
.∩ T2) def 3.11

≡ (σ e) T1
.∩ (σ e) T2 lem 3.15

= σ (e T1) .∩ σ (e T2) def 3.11

= σ (e T1
.∩ e T2) def 3.11

= RHS

case: If T1 ≡ T ′
1 and T2 ≡ T ′

2, then T1 → T2 ≡ T ′
1 → T ′

2.

LHS = σ (T1 → T2)

= σT1 → σT2 def 3.11

≡ σT ′
1 → σT ′

2 ind.hyp. (T1 ≡ T ′
1 smaller), ind.hyp. (T2 ≡ T ′

2 smaller), def 3.7

= σ (T ′
1 → T ′

2) def 3.11

= RHS

case: If T1 ≡ T ′
1 and T2 ≡ T ′

2, then T1
.∩ T2 ≡ T ′

1
.∩ T ′

2.

LHS = σ (T1
.∩ T2)

= σT1
.∩ σT2 def 3.11

≡ σT ′
1
.∩ σT ′

2 ind.hyp. (T1 ≡ T ′
1 smaller), ind.hyp. (T2 ≡ T ′

2 smaller), def 3.7

= σ (T ′
1
.∩ T ′

2) def 3.11

= RHS

case: If T1 ≡ T ′
1, then e T1 ≡ e T ′

1.

LHS = σ (e T1)

= (σ e) T1 def 3.11

≡ (σ e) T ′
1 ind.hyp. (T1 ≡ T ′

1 smaller), def 3.7

= σ (e T ′
1) def 3.11

= RHS

case: T ≡ T .

LHS = σT

≡ σT def 3.11

= RHS

case: If T ′ ≡ T then T ≡ T ′. This can be seen by reading the proofs for the other cases in reverse.

case: If T ≡ T ′ and T ′ ≡ T ′′, then T ≡ T ′′.

Appendix A. Additional Proofs 222

LHS = σT

≡ σT ′ ind.hyp. (T ≡ T ′ smaller)

≡ σT ′′ ind.hyp. (T ′ ≡ T ′′ smaller)

= RHS

2

Lemma 3.27. Given any t, T , T ′ and Γ, if t : T � Γ and T ≡ T ′, then t : T ′
� Γ.

Proof. Let D be the derivation of t : T �Γ. The proof is by induction on the structure of D. The cases

proceed first by term form and then by the possible rules that may have been used to conclude T ≡ T ′.

case: t is v. Now we consider the cases for the rule used to conclude T ≡ T ′.

case: Axiom (T1
.∩ T2) .∩ T3 ≡ T1

.∩ (T2
.∩ T3).

Then D ends with

(2) v : T1 � Γ1 (3) v : T2 � Γ2

v : T1
.∩ T2 � Γ1

.∩ Γ2 (1) v : T3 � Γ3

v : (T1
.∩ T2) .∩ T3 � (Γ1

.∩ Γ2) .∩ Γ3

Then,

(4) v : T2
.∩ T3 � Γ2

.∩ Γ3 (int) with (3) and (1)

∴ v : T1
.∩ (T2

.∩ T3) � Γ1
.∩ (Γ2

.∩ Γ3) (int) with (2) and (4)

case: Axiom T1
.∩ T2 ≡ T2

.∩ T1.

Then D ends with

(1) v : T1 � Γ1 (2) v : T2 � Γ2

v : T1
.∩ T2 � Γ1

.∩ Γ2

Then,

v : T2
.∩ T1 � Γ2

.∩ Γ1 (int) with (2) and (1)

case: Axiom T ′ .∩ ω ≡ T ′.

Then D ends with

(1) v : T ′
� Γ v : ω � Γω

v : T ′ .∩ ω � Γ

Appendix A. Additional Proofs 223

Then (1) is the result.

case: Axiom e ω ≡ ω.

Then D ends with

(1) v : ω � Γω

v : e ω � Γω

Then, (1) is the result.

case: Axiom e (T1
.∩ T2) ≡ e T1

.∩ e T2.

Then D ends with

(1) v : T1 � Γ1 (2) v : T2 � Γ2

v : T1
.∩ T2 � Γ1

.∩ Γ2

v : e (T1
.∩ T2) � e (Γ1

.∩ Γ2)

Then,

(3) v : e T1 � e Γ1 (evar) with (1)

(4) v : e T2 � e Γ2 (evar) with (2)

∴ v : e T1
.∩ e T2 � e (Γ1

.∩ Γ2) (int) with (3) and (4)

case: Structural congruence rule
(1) T1 ≡ T ′

1 (2) T2 ≡ T ′
2

T1 → T2 ≡ T ′
1 → T ′

2

By Lemma 3.25, there are five possible cases for D.

case: D is the following application of Rule (var):

x : T1 → T2 � x : 〈T1 → T2〉

Then,

(3) x : T ′
1 → T ′

2 � x : 〈T ′
1 → T ′

2〉 (var)

∴ x : T ′
1 → T ′

2 � x : 〈T1 → T2〉 def. 3.7 with (3),(1),(2)

case: D is the following application of Rule (con):

(3) c : T1 → T2 � Γω

(4) T1 → T2 ≡ σ typeof(c)

Appendix A. Additional Proofs 224

Then,

(5) T1 → T2 ≡ T ′
1 → T ′

2 Assumption

(6) T ′
1 → T ′

2 ≡ σ typeof(c) def. 3.7 with (4) and (5)

∴ c : T ′
1 → T ′

2 � Γω (con) with (6)

case: D ends with the following application of Rule (abs):

(3) t1 : T2 � Γ, x : 〈T1〉

λx.t1 : T1 → T2 � Γ

Then,

(4) t1 : T ′
2 � Γ, x : 〈T1〉 ind.hyp with (3) and (2)

(5) t1 : T ′
2 � Γ, x : 〈T ′

1〉 def. 3.7 with (4)

λx.t1 : T ′
1 → T ′

2 � Γ (abs) with (5)

case: D ends with the following application of Rule (extl)

(4) t1 : T2 � Γ

(3) l→ t1 .∩ v : T1 → T2 � Γ
(5) T1 ≡ l

Then,

(6) t1 : T ′
2 � Γ ind.hyp. with (4) and (2)

(7) T ′
1 ≡ l def 3.7 with (5) and (1)

∴ l→ t1 .∩ v : T ′
1 → T ′

2 � Γ (extl) with (6) and (7)

case: D ends with the following application of Rule (extr)

(4) v : T1 → T2 � Γ

(3) l → t1 .∩ v : T1 → T2 � Γ
(5) (T1 → T2)::l

where

Appendix A. Additional Proofs 225

(6) T1 → T2 ≡ T ′
1 → T ′

2 Assumption

(7) v : T ′
1 → T ′

2 � Γ ind.hyp. with (4) and (6)

(8) ∃T̄1. T1 ≡ T̄1 def 5.6 with (5)

(9) T̄1↾l ”

(10) T ′
1 ≡ T̄1 (1),(8)

(11) (T ′
1 → T ′

2)::l def. 5.6 with (10),(9)

∴ l → t1 .∩ v : T ′
1 → T ′

2 � Γ (extr) with (7) and (11)

case: Structural congruence rule
(1) T1 ≡ T ′

1 (2) T2 ≡ T ′
2

T1
.∩ T2 ≡ T ′

1
.∩ T ′

2

Then D ends with the following application of Rule (int)

(3) v : T1 � Γ1 (4) v : T2 � Γ2

v : T1
.∩ T2 � Γ1

.∩ Γ2

Then,

(5) v : T ′
1 � Γ1 ind.hyp. with (3) and (1)

(6) v : T ′
2 � Γ2 ind.hyp. with (4) and (2)

∴ v : T ′
1
.∩ T ′

2 � Γ1
.∩ Γ2 (int) with (5) and (6)

case: Structural congruence rule
(1) T1 ≡ T ′

1

e T1 ≡ e T ′
1

Then D ends with the following application of Rule (evar)

(2) v : T1 � Γ1

v : e T1 � e Γ1

Then,

(3) v : T ′
1 � Γ1 ind.hyp. with (2) and (1)

∴ v : e T ′
1 � e Γ1 (evar) with (3)

case: Equivalence rule T ≡ T .

Done.

case: Equivalence rule
T ′ ≡ T

T ≡ T ′

.

Appendix A. Additional Proofs 226

For the symmetric rules that have the same meaning when reflected from left to right, these

cases have already been proved. For the non-symmetric rules, we have the following cases:

case: T1
.∩ (T2

.∩ T3) ≡ (T1
.∩ T2) .∩ T3.

Similar to the reverse case.

case: T ≡ T .∩ ω.

(1) v : T � Γ Assumption

(2) v : ω � Γω (omega)

v : T .∩ ω � Γ (int) with (1) and (2)
case: ω ≡ e ω.

Then D ends with the following application of Rule (omega)

(1) v : ω � Γω

Then,

v : e ω � Γω (evar) with (1)

case: e T1
.∩ e T2 ≡ e (T1

.∩ T2).

Then D ends with

(1) v : T1 � Γ1

v : e T1 � e Γ1

(2) v : T2 � Γ2

v : e T2 � e Γ2

v : e T1
.∩ e T2 � e Γ1

.∩ e Γ2

Then,

(3) v : T1
.∩ T2 � Γ1

.∩ Γ2 (int) with (1) and (2)

∴ v : e (T1
.∩ T2) � e Γ1

.∩ e Γ2 (evar) with (3)

case:
T ≡ T ′′ T ′′ ≡ T ′

T ≡ T ′

.

This case follows automatically from the transitivity of =⇒ in the statement of the lemma.

case: t is t1 t2.

Then D ends with

Appendix A. Additional Proofs 227

(1) t1 : T1 → T � Γ1 (2) t2 : T1 � Γ2

t1 t2 : T � Γ1
.∩ Γ2

(app)

Then,

(3) T ≡ T ′ Assumption

(4) T1 → T ≡ T1 → T ′ def. 3.7 with (3)

(5) t1 : T1 → T ′
� Γ1 ind.hyp. with (1) and (4)

∴ t1 t2 : T ′
� Γ1

.∩ Γ2 (app) with (5) and (2)

2

Appendix B

Examples from the System E

Inference Report

This appendix show the output of evcr on all of the 61 example terms from the System E Inference

Report.

Term 01

x

: a [] <| x : a []

Term 02

\x.x

: a (b [] -> b [])

Term 03

x y

: a [] <| y : b [], x : b [] -> a []

Term 04

x x

: a [] <| x : (b [] -> a []) ^ b []

Term 05

f x y

: a [] <| f : b [] -> c [] -> a [], y : c [], x : b []

Term 06

(\x.x) y

: a [] <| y : a []

228

Appendix B. Examples from the System E Inference Report 229

Term 07

(\x.x x) y

: a [] <| y : (b [] -> a []) ^ b []

Term 08

(\h->(\x->h (x x)) (\x->h (x x))) (\f->\n->n (\v->\x->\y->y) (\x->\y->x) (\f->\x->f x)

(\g->\x->n (f (n (\p->\s->s (p (\x->\y->y)) (\f->\x->f (p (\x->\y->y) f x)))

(\s->s (\f->\x->x) (\f->\x->x)) (\x->\y->x)) g) x)) (\f->\x->f (f x))

: Fails to terminate

Term 09

(\z.\x.x x) z (\y.y)

: a (b [] -> b [])

Term 10

(\z.\x.x x) y (\z.z)

: a (b [] -> b [])

Term 11

(\two.\k.two two two k) (\f.\x.f (f x)) (\v.\w.v)

: a (b c d e f g h i j k l m n o p q r [] -> b (w -> c (w -> d (w -> e (w -> f (w ->

g (w -> h (w -> i (w -> j (w -> k (w -> l (w -> m (w -> n (w -> o (w -> p (w ->

q (w -> r [])))))))))))))))))

Term 12

(\two.\k.two two k) (\f.\x.f (f x)) (\v.\w.v)

: a (b c d e f [] -> b (w -> c (w -> d (w -> e (w -> f [])))))

Term 13

(\f.\x.f (f x)) (\f.\x.f (f x)) (\v.\w.v)

: a (b c d e f [] -> b (w -> c (w -> d (w -> e (w -> f [])))))

Term 14

(\z.\x.x x) (\y.y)

: a (((b [] -> c []) ^ b []) -> c [])

Term 15

(\z.\x.x) (\z.z)

: a (b [] -> b [])

Term 16

(\z.\x.x) z

: a (b [] -> b [])

Term 17

(\y.(\x.w (x y) z) a) b

: a [] <| w : c [] -> d [] -> a [], b : b [], a : b [] -> c [], z : d []

Term 18

(\y.\x.x) (\y.y)

: a (b [] -> b [])

Appendix B. Examples from the System E Inference Report 230

Term 19

(\y.\x.x) z

: a (b [] -> b [])

Term 20

(\x.x x x x x x x x x x x) (\y.y)

: a (b [] -> b [])

Term 21

(\x.x x x x x x x x) (\y.y)

: a (b [] -> b [])

Term 22

(\x.x x x x x x x) (\y.y)

: a (b [] -> b [])

Term 23

(\x.x x x x x x) (\y.y)

: a (b [] -> b [])

Term 24

(\x.x x x x xx) (\y.y)

: a [] <| xx : a []

Term 25

(\x.x x x x x) (\y.y)

: a (b [] -> b [])

Term 26

(\x.z (x (\f.\u.f u)) (x (\v.\g.g v))) (\y.y y y)

: a [] <| z : b (c (d [] -> e []) -> c (d [] -> e [])) -> f ((g (h i [] ->

h ((i [] -> j []) -> j [])) -> k []) -> k []) -> a []

Term 27

(\x.x x) (\y.y z y)

: a [] <| z : ((b [] -> c [] -> d (((e [] -> f [] -> g []) ^ f []) -> g [])

-> a []) ^ c []) ^ b [] ^ d e []

Term 28

(\x->x x) (\x->x x)

: Fails to terminate

Term 29

(\x.x w) (\y.y z y)

: a [] <| w : (b [] -> c [] -> a []) ^ c [], z : b []

Term 30

(\x.x I) (\y.A)

: a [] <| A : a []

Term 31

(\x.w x) (\y.y z y)

: a [] <| w : b (((c [] -> d [] -> e []) ^ d []) -> e []) -> a [], z : b c []

Appendix B. Examples from the System E Inference Report 231

Term 32

(\x.\y.y) z

: a (b [] -> b [])

Term 33

(\x.\y.x) (\y.y y)

: a (w -> b (((c [] -> d []) ^ c []) -> d []))

Term 34

(\x.\w.x) y

: a (w -> b []) <| y : a b []

Term 35

(\x.x) (f y)

: a [] <| f : b [] -> a [], y : b []

Term 36

(\x.x) (\y.y y)

: a (((b [] -> c []) ^ b []) -> c [])

Term 37

(\x.x) (\y.y)

: a (b [] -> b [])

Term 38

(\w.\x.(\z.x) w) y

: a (b [] -> b [])

Term 39

(\w.\x.x) y

: a (b [] -> b [])

Term 40

(\x.x) (\x.x) (\x.x) (\x.x) (\x.x) (\y.y y)

: a (((b [] -> c []) ^ b []) -> c [])

Term 41

(\y.\x.x (f (x x)) x y) (\y.y y) (\x.x)

: a [] <| f : b (c [] -> c []) -> d (e [] -> e []) -> f (((g [] -> h [])

^ g []) -> h []) -> a []

Term 42

(\y->\x->x (f (x x)) x y) (\x->x) (\y->y y)

: Fails to terminate

Term 43

(\y.\x.x (f (x x)) x) (\y.y y) (\x.x)

: a [] <| f : b (c [] -> c []) -> d (e [] -> e []) -> a []

Term 44

(\x.x) y z

: a [] <| z : b [], y : b [] -> a []

Appendix B. Examples from the System E Inference Report 232

Term 45

(\x.x x x x) (\y.y)

: a (b [] -> b [])

Term 46

(\x.x x x) (\y.y)

: a (b [] -> b [])

Term 47

(\x.x x a) (\y.y)

: a [] <| a : a []

Term 48

(\x.a x x) ((\y.b (c y)) (d e))

: a [] <| d : f [] -> e [], e : f [], b : d [] -> (b [] ^ c []),

c : e [] -> d [], a : b [] -> c [] -> a []

Term 49

(\x.x (x y)) ((\z.z) (\x.a x))

: a [] <| a : (b [] -> a []) ^ (c [] -> b []), y : c []

Term 50

(\x.x y) z

: a [] <| z : b [] -> a [], y : b []

Term 51

(\x.x x) z

: a [] <| z : (b [] -> a []) ^ b []

Term 52

(\x.f x) y

: a [] <| f : b [] -> a [], y : b []

Term 53

(\x.x) y

: a [] <| y : a []

Term 54

(\f.\x.f (f x)) (\x.x)

: a (b [] -> b [])

Term 55

(\f.\x.f (f x)) (\g.\y.g (g y))

: a (b (((c [] -> d []) ^ (e [] -> c [])) ^ (f [] -> e []) ^ (g [] -> f []))

-> b (g [] -> d []))

Term 56

(\f.\x.f (f x)) (\g.\x.g (g x))

: a (b (((c [] -> d []) ^ (e [] -> c [])) ^ (f [] -> e []) ^ (g [] -> f []))

-> b (g [] -> d []))

Appendix B. Examples from the System E Inference Report 233

Term 57

f (g (h x))

: a [] <| f : b [] -> a [], g : c [] -> b [], h : d [] -> c [], x : d []

Term 58

(\x.x x) _if _false (\x.x) (\f.\x.f (f x))

: a [] <| _if : (c [] -> b [] -> d (e [] -> e []) -> f (g ((h [] -> i [])

^ (j [] -> h [])) -> g (j [] -> i [])) -> a []) ^ c [], _false : b []

Term 59

_if _true (\x.x) (\w.y)

: a [] <| _if : b [] -> c (d [] -> d []) -> e (w -> f []) -> a [], _true : b [], y : e f []

Term 60

(\x.x x) (_if _false (\x.x) (\f.\x.f (f x)))

: a [] <| _if : b [] -> c (d [] -> d []) -> e (f ((g [] -> h []) ^ (i [] -> g []))

-> f (i [] -> h [])) -> ((j [] -> a []) ^ j []), _false : b []

Term 61

(\x.x x) (\y.y)

: a (b [] -> b [])

Appendix C

The opus Unification Algorithm

This appendix provides a formal definition of the opus algorithm [7] which succeeds in finding a covering

unifier set for any constraint that has a solution. This presentation of opus will use the notation below:

• X1 := K1, . . . Xn := Kn abbreviates �, X1 := K1, . . . Xn := Kn.

• e/σ abbreviates e := e σ and applies substitution σ under namespace e.

• ~e abbreviates a sequence of E-variables e1 e2 . . . en.

• ~e/σ abbreviates e1/ . . . /en/σ and applies substitution σ under namespace ~e.

• Metavariable Σ ranges over sets of substitutions.

• Metavariable τ ranges over typings.

Figure C.1 presents the complete opus algorithm. Note that opus is defined in such a way that no

equalities are assumed to have been imposed on types. So, for example, T is not equal to T .∩ω. When

it is beneficial for this particular equality to hold, an explicit equivalence relation
unit

≡ is used instead,

although
unit

≡ only takes the place of the .∩-unit equality rule (and its reflection) and not any of the other

equality rules.

A covering unifier set is computed by taking all possible reduction paths under =⇒
c∗

from a given ∆

to solved constraint sets. That is, a covering unifier set for ∆ is the set {σ | ∆
σ

=⇒
c∗

∆′, solved(∆′)}. A

constraint reduction ∆
σ

=⇒
c∗

∆′ happens through a series of reduction steps of the form ∆1

σ1=⇒
c

∆2. In

234

Appendix C. The opus Unification Algorithm 235

Preliminary definitions

• A constraint δ is an unordered pair of types written S
.
= T , where solved(S

.
= T) iff S = T .

• A constraint set ∆ is a set of constraints, where solved(∆) iff ∀δ ∈ ∆. solved(δ).
• An expansion join E1 ⊔E2 is defined by:

ω ⊔ ω = ω

(E1
.∩ F1) ⊔ (E2

.∩ F2) = (E1 ⊔E2) .∩ (F1 ⊔ F2)

e E ⊔ e F = e (E ⊔ F)

σ1 ⊔ σ2 = σ if for all X, σX is defined by one of the following cases:

σ X =











σ1(X) if ¬supported(σ2, X) or σ1(X) = σ2(X)

σ2(X) if ¬supported(σ1, X)

σ1(e) ⊔ σ2(e) if supported(σ1, e), supported(σ2, e) and X = e

where: supported(σ, e) iff σ e 6= e � and supported(σ, α) iff σ α 6= α

• The expansion restriction E|T results in E′ iff E′ T=E T , and ∀F. F T=E T =⇒ ∃G. F=E′ ⊔G.

•
unit

≡ is the equivalence relation formed by taking the compatible closure of T .∩ ω
unit

≡ T and ω .∩ T
unit

≡ T .

• S .∩T indicates the intersection type S .∩ T when S
unit

6≡ ω and T
unit

6≡ ω.

Constraint factorisation

∆
−−−→
rfactor

⋃

{∆′ | δ ∈ ∆, δ
−−−→
rfactor ∆′}

δ
−−−→
rfactor ∆ if δ

unit

≡ ~e (S1
.∩T1

.
= S2

.∩ T2) and {~e (S1

.
= S2), ~e (T1

.
= T2)}

−−−→
rfactor ∆

δ
−−−→
rfactor ∆ if δ

unit

≡ ~e (S1→T1

.
= S2→T2) and {~e (S1

.
= S2), ~e (T1

.
= T2)}

−−−→
rfactor ∆

δ
−−−→
rfactor {δ} if δ 6= S1→T1

.
= S2→T2 and δ 6= S1

.∩T1

.
= S2

.∩T2

Constraint part unification (where σ∆ freshly renames the variables in ∆)

α
.
= T −→opus∆ {σ | σ = (α := T), σ α = σ T} (C T-unify)

e T
.
= T1→T2

−→opus∆ {(e := σ∆)} (C EA-unify)

e T
.
= ω −→opus∆ {(e := σ∆), (e := ω)} (C EO-unify)

e T
.
= T1

.∩ T2
−→opus∆ {(e := σ∆), (e := e1 � .∩e2�) | e1, e2 fresh} (C EI-unify)

e T1

.
= e T2

−→opus∆ {(e := e(e1σ1
.∩∩ enσn)) | e1...en fresh, (T1

.
=T2) −→opus∆ Σ ∪ {σi}

n
i=1} (C E-unify)

e1 T1

.
= e2 T2

−→opus∆ {(e1 := e5 (EL e3 � .∩ER|T1
), e2 := e5 (EL|T2

.∩ER e4�)) (C EE-unify)

| e3, e4, e5, e
L
1 . . . eLp , e

R
1 . . . eRq fresh, e1 6= e2,

e3 T1

.
= T2

−→opus∆ Σ1 ∪ {σL
i }

p

i=1
, EL = eL1 σL

1
.∩ . . . eLp σL

p ,

T1

.
= e4 T2

−→opus∆ Σ2 ∪ {σR
i }qi=1

, ER = eR1 σR
1

.∩ . . . eRq σR
q }

Constraint reduction

∆
σ

=⇒
c

∆2 if ∆
−−−−→
rfactorβ ∆1 and δ ∈ ∆1 and not solved(δ) and δ −→opus∆ σ and σ∆1

−−−−→
rfactorβ ∆2

∆
�

=⇒
c∗

∆

∆1

σ2σ1=⇒
c∗

∆3 if ∆1

σ1=⇒
c

∆2 and ∆2

σ2=⇒
c∗

∆3

Figure C.1: The opus algorithm

Appendix C. The opus Unification Algorithm 236

each step, the constraint set is factored with −−→rfactor, one step of unification is performed with −→opus, and

the constraint set is once again factored.

The relation −−→rfactor is non-deterministic. This non-determinism is introduced through the use of

the
unit

≡ relation and its purpose is to handle the unification of an intersection type with a type that

cannot become an intersection type via substitution (i.e. a simple type or ω). For example, given the

constraint S .∩ T
.
= U1 → U2, there are potentially two alternative ways for it to be solved. One way is

to interpret the constraint as S .∩ T
.
= (U1 → U2) .∩ ω and the other way is to interpret the constraint

as S .∩ T
.
= ω .∩ (U1 → U2).

The relation −→opus is then used to perform a single step of unification. Each rule operates only on the

outer variables of the types being unified, and in many cases, parallel reduction paths are generated:

• (C T-unify) unifies a type variable with a type and performs an occurs check. This rule also

applies when the type variable is on the right since opus interprets constraints as unordered pairs.

• (C EA-unify) eliminates E-variable e, using a renaming to avoid E-variable capture.

• (C EO-unify) introduces two possible paths for unification. One is to eliminate e using a renaming

to avoid E-variable capture, and the other is to simply substitute the ω expansion for e.

• (C EI-unify) introduces two possible paths. One is again the elimination of e, and the other is to

substitute an intersection expansion for e to make the left side the same shape as the right side.

• (C E-unify) substitutes for e an intersection of unifiers for the inner constraint T1

.
= T2, with each

component wrapped in a distinct E-variable so that they can be individually selected.

• (C EE-unify) covers all possibilities for two expansion applications with different E-variables by

inductively applying opus′ to the constraints e3 T1

.
= T2 and T1

.
= e4 T2. All of the results are

wrapped in distinct E-variables so that they can be individually selected.

C.1 Adapting opus to System Evcr

The opus algorithm is easily adapted to System Evcr. First, the new syntactic categories must be

included in the type language:

Appendix C. The opus Unification Algorithm 237

S̄, T̄ , Ū ::= . . . | C | α[] simple types

With the introduction of constrained simple type variables, the regular type variables can be removed

and substitutions should follow Convention 5.3. The new types can be handled by updating just two

rules of opus:

α[L]
.
= T̄ −→opus∆ {hunify(α[L]

.
= T̄)} (C T-unify)

e T
.
= T̄ −→opus∆ {(e := σ∆)} (C EA-unify)

The first rule invokes hunify which was established by Lemma 5.13 to find principal unifiers. As

such, it is expected that opus should continue to find covering unifier sets with the amendment to this

rule.

The second rule generalises the original (C EA-unify) rule to support not only function types, but

all simple types (including type constants and constrained simple type variables). The proof that

Rule (C EA-unify) leads to a covering unifier set is given in case 3 of Lemma 2 in the opus paper [7].

The logic of this proof continues to hold if “simple types” are mentioned in place of “function types”.

	Title Page

	Abstract
	Declaration
	Acknowledgements
	Table of Contents
	List of System Ev Definitions and Theorems
	List of System Evc Definitions and Theorems
	List of System Evcr Definitions and Theorems
	List of Figures
	1 Introduction
	2 Review of System E
	3 System Ev: The Value Restriction
	4 System Evc: Constants
	5 System Evcr: Extensible Records
	6 Conclusions
	Bibliography
	A Additional Proofs
	B Examples from the System E Inference Report
	C The opus Unification Algorithm

