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Abstract

There has been an explosion of data derived from the internet and

other digital sources. These data are usually multi-dimensional, mas-

sive in volume, frequently incomplete, noisy, and complicated in struc-

ture. These “big data” bring new challenges to machine learning

(ML), which has historically been designed for small volumes of clearly

defined and structured data. In this thesis we propose new methods

of “compressed learning”, which explore the components and proce-

dures in ML methods that are compressible, in order to improve their

robustness, scalability, adaptivity, and performance for big data anal-

ysis. We will study novel methodologies that compress different com-

ponents throughout the learning process, propose more interpretable

general compressible structures for big data, and develop effective

strategies to leverage these compressible structures to produce highly

scalable learning algorithms. We present several new insights into

popular learning problems in the context of compressed learning. The

theoretical analyses are tested on real data in order to demonstrate

the efficacy and efficiency of the methodologies in real-world scenarios.

In particular, we propose “manifold elastic net (MEN)” and “double

shrinking (DS)” as two fast frameworks extracting low-dimensional

sparse features for dimension reduction and manifold learning. These

methods compress the features on both their dimension and cardinal-

ity, and significantly improve their interpretation and performance in

clustering and classification tasks.

We study how to derive fewer “anchor points” for representing large

datasets in their entirety by proposing “divide-and-conquer anchor-

ing”, in which the global solution is rapidly found for near-separable



non-negative matrix factorization and completion in a distributed

manner. This method represents a compression of the big data itself,

rather than features, and the extracted anchors define the structure

of the data.

Two fast low-rank approximation methods, “bilateral random pro-

jections (BRP)” of fast computer closed-form and “greedy bilateral

sketch (GreBske)”, are proposed based on random projection and

greedy augmenting update rules. They can be broadly applied to

learning procedures that requires updates of a low-rank matrix vari-

able and result in significant acceleration in performance.

We study how to compress noisy data for learning by decomposing it

into the sum mixture of low-rank part and sparse part. “GO decom-

position (GoDec)” and the “greedy bilateral (GreB)” paradigm are

proposed as two efficient approaches to this problem based on ran-

domized and greedy strategies, respectively. Modifications of these

two schemes result in novel models and extremely fast algorithms for

matrix completion that aim to recover a low-rank matrix from a small

number of its entries. In addition, we extend the GoDec problem in

order to unmix more than two incoherent structures that are more

complicated and expressive than low-rank or sparse matrices. The

three proposed variants are not only novel and effective algorithms

for motion segmentation in computer vision, multi-label learning, and

scoring-function learning in recommendation systems, but also reveal

new theoretical insights into these problems.

Finally, a compressed learning method termed “compressed labeling

(CL) on distilled label sets (DL)” is proposed for solving the three

core problems in multi-label learning, namely high-dimensional labels,

label correlation modeling, and sample imbalance for each label. By

compressing the labels and the number of classifiers in multi-label

learning, CL can generate an effective and efficient training algorithm

from any single-label classifier.
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