Compressed Learning

University of Technology, Sydney

Tianyi Zhou Faculty of Engineering and Information Technology University of Technology, Sydney

> A thesis submitted for the degree of *Doctor of Philosophy* 31 August 2013

To my loving parents Yongxi Zhou and Jingping Yao

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Student: Tianyi ZHOU Date: 31/08/2013

Production Note: Signature removed prior to publication.

Acknowledgements

I benefited and learned a lot from my advisor, several professors, my friends, my colleagues and my family during PhD study in University of Technology, Sydney and Nanyang Technological University. I would like to take this good opportunity to appreciate their significant helps to me.

The first person I would like to express my appreciation and gratitude to is Professor Dacheng Tao. I am so lucky to have Prof. Tao as my professional mentor and academic advisor. I benefited significantly from various detailed discussions with him. Discussing a problem with him has been always a humbling but eye-opening experience, and he always gives me sufficient freedom to think and explore. His careful criticisms bridging both theory and application have greatly broadened my thought in research. His vision, creativeness and enthusiasm in solving challenging problems has greatly encouraged me and inspired my works. Without his high scientific criterion, endless patience, generous support, and constant guidance, this thesis cannot be accomplished. I also want to thank Prof. Tao as a nice friend, for his invaluable suggestions and experienced instructions on my research career and life.

I also wish to express my appreciation to other Professors who have gave me helpful guidance and encouragement during my PhD study and on conferences: Prof. Chengqi Zhang, Prof. Xindong Wu, Prof. Xingquan Zhu, Prof. Jieping Ye, Prof. Jerome H. Friedman, Prof. Trevor Hastie, Prof. Dean P. Foster and Prof. Emmanuel Candès. I learned a lot from discussions with them and their attitude for doing high-quality research. I have been fortunate to work in a group gathering the most brilliant researchers and best friends in the past 5 years: Dr. Wei Bian, Dr. Jun Li, Dr. Bo Geng, Dr. Xinmei Tian, Dr. Zhang Zhang, Dr. Chao Zhang, Dr. Naiyang Guan, Dr. Lusong Li, Dr. Xiaoguang Rui, Dr. Weifeng Liu, Dr, Shengzheng Wang, Yang Mu, Bo Xie, Dongjing Song, Si Si, Yuanyuan Fu, Yong Luo, Yangxi Li, Zhibin Hong, Nannan Wang, Mingming Gong, Lianyang Ma, Maoying Qiao, Xiaoyan Li, Tongliang Liu, Fei Gao, Changxin Ding, Jie Gui, Xinchao Wang, Tianhao Zhang. Especially, I am deeply indebted to Dr Wei Bian, who gave me strong motivation and critical guidance when I have meet difficulties in research. He spent much time to teach me valuable things that I cannot easily learn by myself, especially at the beginning of my PhD study. I learned lots from discussion and collaboration with all group members in statistics, machine learning and optimization. Moreover, I enjoyed the invaluable friendships with them, their kindly support and accompany are always my source of strength and courage in both research and daily life. I own my deepest thanks to all of them!

I am also grateful to all the other friends who made my 5 years at Singapore and Sydney unforgettable: Guodong Long, Jing Jiang, Chunyang Liu, Meng Fang, Shirui Pan, Mingsong Mao, Hongshu Chen, Can Wang, Junfu Yin, Guoxin Su, Dianshuang Wu, Yi Ji, Ming Xie, Xiang Li, Yifan Li, Qian Sun, and my dearest friends Taoyu Lin and Peng Su since my college. They are the ones who have given me support during both joyful and stressful times, to whom I will always be thankful.

Finally, it is my greatest honor to thank my family: my parents, my grandparents, my uncle and auntie. They are always believing in me, keeping encouraging me, giving me indispensable suggestions, and fully supporting all my final decisions. No words could possibly express my deepest gratitude for their endless love, self-sacrifice and unwavering help. To them I dedicate this dissertation.

Abstract

There has been an explosion of data derived from the internet and other digital sources. These data are usually multi-dimensional, massive in volume, frequently incomplete, noisy, and complicated in struc-These "big data" bring new challenges to machine learning ture. (ML), which has historically been designed for small volumes of clearly defined and structured data. In this thesis we propose new methods of "compressed learning", which explore the components and procedures in ML methods that are compressible, in order to improve their robustness, scalability, adaptivity, and performance for big data analysis. We will study novel methodologies that compress different components throughout the learning process, propose more interpretable general compressible structures for big data, and develop effective strategies to leverage these compressible structures to produce highly scalable learning algorithms. We present several new insights into popular learning problems in the context of compressed learning. The theoretical analyses are tested on real data in order to demonstrate the efficacy and efficiency of the methodologies in real-world scenarios.

In particular, we propose "manifold elastic net (MEN)" and "double shrinking (DS)" as two fast frameworks extracting low-dimensional sparse features for dimension reduction and manifold learning. These methods compress the features on both their dimension and cardinality, and significantly improve their interpretation and performance in clustering and classification tasks.

We study how to derive fewer "anchor points" for representing large datasets in their entirety by proposing "divide-and-conquer anchoring", in which the global solution is rapidly found for near-separable non-negative matrix factorization and completion in a distributed manner. This method represents a compression of the big data itself, rather than features, and the extracted anchors define the structure of the data.

Two fast low-rank approximation methods, "bilateral random projections (BRP)" of fast computer closed-form and "greedy bilateral sketch (GreBske)", are proposed based on random projection and greedy augmenting update rules. They can be broadly applied to learning procedures that requires updates of a low-rank matrix variable and result in significant acceleration in performance.

We study how to compress noisy data for learning by decomposing it into the sum mixture of low-rank part and sparse part. "GO decomposition (GoDec)" and the "greedy bilateral (GreB)" paradigm are proposed as two efficient approaches to this problem based on randomized and greedy strategies, respectively. Modifications of these two schemes result in novel models and extremely fast algorithms for matrix completion that aim to recover a low-rank matrix from a small number of its entries. In addition, we extend the GoDec problem in order to unmix more than two incoherent structures that are more complicated and expressive than low-rank or sparse matrices. The three proposed variants are not only novel and effective algorithms for motion segmentation in computer vision, multi-label learning, and scoring-function learning in recommendation systems, but also reveal new theoretical insights into these problems.

Finally, a compressed learning method termed "compressed labeling (CL) on distilled label sets (DL)" is proposed for solving the three core problems in multi-label learning, namely high-dimensional labels, label correlation modeling, and sample imbalance for each label. By compressing the labels and the number of classifiers in multi-label learning, CL can generate an effective and efficient training algorithm from any single-label classifier.

Contents

Co	onter	nts		vii
Li	st of	Figur	es	xiii
Li	st of	Table	S	xxii
N	omer	nclatur	'e	xxv
1	Intr	oduct	ion	1
	1.1	Low-r	ank and Sparse Structures in Learning Problems	3
		1.1.1	Low-rank Structure and Dimension Reduction	3
		1.1.2	Sparse Structure and Sparse Learning	5
	1.2	Litera	ture Survey of Compressed Learning	
	1.3		Contributions and Road Map	
2	Ma	nifold	Elastic Net: A Unified Framework for Sparse Dimer	1-
	sion	Redu	action	16
	2.1	Introd	luction	17
		2.1.1	The proposed approach	18
	2.2	Manif	old Elastic Net	20
		2.2.1	Part optimization	
		2.2.2	Whole alignment	
		2.2.3	Classification error minimization	
		2.2.4	Elastic net penalty	
		2.2.5	LARS for MEN	
		2.2.6	Fast LARS	32

		2.2.7	Algorithm	33
		2.2.8	Discussions	35
	2.3	Exper	iments	38
	2.4	Concl	usion	50
3	Doι	ıble Sł	nrinking for Sparse Dimension Reduction	53
	3.1	Introd	luction	54
		3.1.1	Double shrinking model	55
		3.1.2	Previous works	56
		3.1.3	Main contribution	58
	3.2	Defini	tions	59
		3.2.1	Karush-Kuhn-Tucker conditions	59
		3.2.2	Definitions	60
	3.3	Doubl	le shrinking Algorithm	62
		3.3.1	Initialization	62
		3.3.2	Direction	63
		3.3.3	Step size and update of A, B	68
		3.3.4	Update of x, μ and η	70
		3.3.5	Algorithm	70
		3.3.6	Analyses and Proofs	72
	3.4	Exten	sions of double shrinkage	75
		3.4.1	Elastic net double shrinkage	75
		3.4.2	Reweighted ℓ_1 double shrinkage	76
		3.4.3	Structured double shrinkage	77
		3.4.4	Sparse learning with multiple equality constraints \ldots .	78
	3.5	Relati	ionships to existing techniques	79
		3.5.1	Relationship to sparse PCA	80
		3.5.2	Relationship to sparse coding	81
		3.5.3	Relationship to LARS	84
	3.6	Exper	iments	85
		3.6.1	Classification	86
		3.6.2	Nonlinear manifold learning	87
		3.6.3	Data clustering	89

		3.6.4	Feature selection	91
		3.6.5	Scalability study	96
	3.7	Conclu	usion	97
4	Div	ide-an	d-Conquer Anchoring for Near-separable Nonnegativ	e
	Mat	trix Fa	ctorization and Completion	102
	4.1	Introd	uction	103
		4.1.1	Separable Nonnegative Matrix Factorization	104
		4.1.2	Related Works	106
		4.1.3	Motivation and Main Contributions	107
	4.2	Divide	e-and-Conquer Anchoring (DCA)	109
		4.2.1	Divide Step: Anchoring on Low-dimensional Projections .	109
		4.2.2	Conquer Step: Hypothesis Testing	112
		4.2.3	DCA for Incomplete Data Matrix	113
		4.2.4	Analysis: the Number of Sub-problems	116
	4.3	Rapid	Anchoring in 1D or 2D Space	117
		4.3.1	Seeking Vertices of Convex Hull in 1D Space	118
		4.3.2	Seeking Extreme Rays of Conical Hull in 2D Space $\ . \ . \ .$	118
	4.4	Numer	rical Results	120
		4.4.1	Empirical Study on Synthetic Data	121
		4.4.2	Collaborative Filtering by Finding Representative Users	123
		4.4.3	Reconstruction of Images, Texts and Handwritten Digits .	124
5	Ran	ıdomiz	ed and Greedy Strategies for Bilateral Low-rank Ap)-
	pro	ximati	on	126
	5.1	Bilate	ral Random Projections (BRP)	126
		5.1.1	Introduction	
		5.1.2	Bilateral random projections (BRP) based low-rank ap-	
			proximation	128
			5.1.2.1 Low-rank approximation with closed form \ldots .	128
			5.1.2.2 Power scheme modification $\ldots \ldots \ldots \ldots$	128
		5.1.3	Approximation error bounds	129
		5.1.4	Proofs of error bounds	132

			5.1.4.1 Proof of Theorem $8 \dots \dots \dots \dots \dots \dots$	132
			5.1.4.2 Proof of Theorem 9	134
			5.1.4.3 Proof of Theorem 10 \ldots \ldots \ldots	135
			5.1.4.4 Proof of Theorem 11 \ldots \ldots \ldots	137
			5.1.4.5 Proof of Theorem 12 \ldots \ldots \ldots	138
		5.1.5	Empirical Study	140
	5.2	Greed	y Bilateral Sketch (GreBske)	142
		5.2.1	Low-rank Approximation	142
		5.2.2	Greedy Bilateral Sketch	143
		5.2.3	Empirical Study	146
6	GO	Decor	nposition and Randomized Low-rank + Sparse Decom-	
	pos	ition	1	48
	6.1	Introd	uction	149
	6.2	Go De	ecomposition (GoDec) $\ldots \ldots \ldots$	151
		6.2.1	Naïve GoDec	151
		6.2.2	Fast GoDec via BRP based approximation	152
	6.3	Conve	rgence of GoDec	152
	6.4	Exper	iments	159
		6.4.1	RPCA vs. GoDec	159
		6.4.2	Background modeling	160
		6.4.3	Shadow/Light removal	161
	6.5	Conclu	usion	162
7			ilateral Paradigm and Greedy Low-rank + Sparse De-	162
7	Gre		ilateral Paradigm and Greedy Low-rank + Sparse De-	162 L 63
7	Gre	edy B	ilateral Paradigm and Greedy Low-rank + Sparse De- on 1	
7	Gre com	edy B positi Introd	ilateral Paradigm and Greedy Low-rank + Sparse De- on 1 uction	L 63
7	Gre com 7.1	edy B positic Introd Backg	ilateral Paradigm and Greedy Low-rank + Sparse De- on 1 uction	164
7	Gre com 7.1 7.2	edy B position Introd Backg Greed	ilateral Paradigm and Greedy Low-rank + Sparse De- on 1 uction 1 round and Problem Formulation 1 y Bilateral (GreB) Paradigm 1	164 165
7	Gre com 7.1 7.2 7.3	edy B positic Introd Backg Greed Greed	ilateral Paradigm and Greedy Low-rank + Sparse De- on 1 uction 1 round and Problem Formulation 1 y Bilateral (GreB) Paradigm 1 y Bilateral Smoothing 1	163 164 165 166

8	Ran	domiz	ed and Greedy Algorithms for Matrix Completion 1	.73
	8.1	Introdu	uction to Low-rank Matrix Completion	173
	8.2	GoDec	e for matrix completion	175
		8.2.1	Model and Algorithm	175
		8.2.2	Matrix Completion Experiments of GoDec	176
	8.3	Greedy	y Bilateral Completion (GreBcom)	177
		8.3.1	Model and Algorithm	177
		8.3.2	Greedy Bilateral Completion	177
		8.3.3	Matrix Completion Experiments of GreBcom	179
9	Thr	ee GoI	Dec Variants Unmixing General Incoherent Structures1	.82
	9.1	Introd	uction \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	183
	9.2	Main (Contributions of This Chapter	186
	9.3	Shifted	l Subspace Tracking (SST) for Motion Segmentation $\ . \ . \ .$	188
		9.3.1	The Problem of Motion Segmentation	188
		9.3.2	SST model	191
		9.3.3	SST Algorithm	193
			9.3.3.1 Initialization	193
			9.3.3.2 Update of τ	194
			9.3.3.3 Update of L	195
			9.3.3.4 Update of S	197
		9.3.4	Motion Segmentation Experiments of SST	198
	9.4	Multi-	label Subspace Ensemble for Multi-label Learning	200
		9.4.1	The Problem of Multi-label Learning	200
		9.4.2	MSE model	203
		9.4.3	MSE Algorithm	205
			9.4.3.1 MSE training: randomized decomposition	205
			9.4.3.2 MSE prediction: group sparsity	207
		9.4.4	Multi-label Prediction Experiments of MSE	208
	9.5	Linear	Functional GoDec for Learning Recommendation System $\ . \ .$	212
		9.5.1	LinGoDec Model and Algorithm	213
		9.5.2	Empirical Study of LinGoDec	214

10	Con	presse	ed Labeling on Distilled Labelsets	216
	10.1	Introd	uction	217
		10.1.1	Three problems \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	218
		10.1.2	Previous works	219
		10.1.3	The proposed method $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	223
	10.2	Compr	ressed labeling (CL) via random projections $\ldots \ldots \ldots$	226
		10.2.1	Random projection signs of label matrix \ldots	226
		10.2.2	Improved sample balance of CL labels $\hfill \ldots \ldots \ldots \ldots$.	227
		10.2.3	Mutual independence of CL labels	233
		10.2.4	Classification via support vector machines $\ . \ . \ . \ .$.	234
	10.3	Recove	ery algorithm on distilled labelsets $(DLs) \dots \dots \dots \dots$	234
		10.3.1	Labelset distilling method (LDM) \hdots	235
		10.3.2	Joint distribution of two random projection signs $\ . \ . \ .$	236
		10.3.3	KL divergence test for recovery $\hdots \ldots \hdots \hdot$	238
		10.3.4	Recovery bound	242
	10.4	Discus	sion \ldots	255
		10.4.1	Contributions to multi-label learning $\ldots \ldots \ldots \ldots$	255
		10.4.2	Relationship with compressed sensing	257
		10.4.3	Relationship with error-correcting output codes $\ . \ . \ .$.	259
	10.5	Experi	ments	263
		10.5.1	Evaluation metrics	264
		10.5.2	Datasets	265
		10.5.3	Label compression and recovery $\hdots \hdots \hdo$	266
		10.5.4	Multi-label prediction: comparison with BR $\ .\ .\ .$.	268
		10.5.5	Multi-label prediction: comparison with other multi-label	
			learning methods $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	283
		10.5.6	Multi-label prediction: comparison with 2 SVM algorithms	
			dealing with imbalanced data \hdots	287
		10.5.7	Compression-performance trade-off $\ . \ . \ . \ . \ . \ .$	289
	10.6	Conclu	sion	291
11 (Con	clusior	lS	29 4

List of Figures

1.1	Relationships between the proposed approaches in this thesis	11
2.1	Sample face images from the three databases. The first row comes	
	from UMIST; the second row comes from FERET; and the third	
	row comes from YALE	39
2.2	Recognition Rate vs. Dimension on FERET	40
2.3	Recognition Rate vs. Dimension on UMIST	41
2.4	Recognition Rate vs. Dimension on YALE	42
2.5	Boxplot of Recognition Rate vs. Dimension (from 21 to 30) on	
	FERET with 4 (5) training samples per person. For every dimen-	
	sion, from left to right, the seven boxes refer to MEN, DLA, LPP,	
	NPE, FLDA, PCA, and SPCA.	44
2.6	Boxplot of Recognition Rate vs. Dimension (from 10 to 19) on	
	UMIST with 5 (7) training samples per person. For every dimen-	
	sion, from left to right, the seven boxes refer to MEN, DLA, LPP,	
	NPE, FLDA, PCA, and SPCA.	45
2.7	Boxplot of Recognition Rate vs. Dimension (from 5 to 14) on	
	YALE with $5(7)$ training samples per person. For every dimension,	
	from left to right, the seven boxes refer to MEN, DLA, LPP, NPE,	
	FLDA, PCA, and SPCA	46
2.8	Plots of first 10 bases obtained from 7 dimensionality reduction al-	
	gorithms on FERET For each column, from top to bottom: MEN,	
	DLA, LPP, NPE, FLDA, PCA, and SPCA	47

2.9	Plots of first 10 bases obtained from 7 dimensionality reduction	
	algorithms on UMIST For each column, from top to bottom: MEN,	
	DLA, LPP, NPE, FLDA, PCA, and SPCA	48
2.10	Plots of first 10 bases obtained from 7 dimensionality reduction	
	algorithms on YALE For each column, from top to bottom: MEN,	
	DLA, LPP, NPE, FLDA, PCA, and SPCA	49
2.11	Entries of one column of projection matrix vs. its ℓ_1 -norm in one	
	LARS loop of MEN	50
2.12	Coefficient paths of 10 entries (features) in one column vector $\ . \ .$	51
3.1	(FERET) Recognition rate vs. Subspace dimensions curves of	
	LDA, PCA, NPE and their double shrinkage versions on FERET	
	face dataset. The first 10 dense eigenfaces obtained via eigen-	
	value decomposition (the top row) and the corresponding 10 66%	
	sparse eigenfaces obtained via double shrinkage (the bottom row)	
	are shown on the bottom of each plot. \ldots \ldots \ldots \ldots \ldots	88
3.2	(UMIST) Recognition rate vs. Subspace dimensions curves of	
	LDA, PCA, NPE and their double shrinkage versions on UMIST	
	face dataset. The first 10 dense eigenfaces obtained via eigen-	
	value decomposition (the top row) and the corresponding $10~66\%$	
	sparse eigenfaces obtained via double shrinkage (the bottom row)	
	are shown on the bottom of each plot	89
3.3	(YALE) Recognition rate vs. Subspace dimensions curves of LDA,	
	PCA, NPE and their double shrinkage versions on YALE face	
	dataset. The first 10 dense eigenfaces obtained via eigenvalue de-	
	composition (the top row) and the corresponding $10~66\%$ sparse	
	eigenfaces obtained via double shrinkage (the bottom row) are	
	shown on the bottom of each plot	90

3.4	(ORL) Recognition rate vs. Subspace dimensions curves of LDA,	
	PCA, NPE and their double shrinkage versions on ORL face dataset.	
	The first 10 dense eigenfaces obtained via eigenvalue decomposi-	
	tion (the top row) and the corresponding 10.66% sparse eigenfaces	
	obtained via double shrinkage (the bottom row) are shown on the	
	bottom of each plot.	91
3.5	(MNIST) Recognition rate vs. Subspace dimensions curves of	
	LDA, PCA, NPE and their double shrinkage versions on MNIST	
	handwritten digit dataset. The corresponding projection matrices	
	are 66% sparse.	91
3.6	(USPS) Recognition rate vs. Subspace dimensions curves of LDA,	
	PCA, NPE and their double shrinkage versions on USPS hand-	
	written digit dataset. The corresponding projection matrices are	
	66% sparse.	92
3.7	(3D face) Two-dimensional embedding (with neighborhood graph	
	of the original data) of 698 64×64 face images via double shrinking-	
	ISOMAP. The images were sampled from a face rendered with dif-	
	ferent poses. Illumination differences were artificially eliminated.	
	50% of the face images have sparse representations in the two-	
	dimensional subspace and thus are projected on the two coordi-	
	nate axes X and Y. We sample 21 images from each axis and	
	show them on the top and right of this figure, respectively	93
3.8	$\left(\text{COIL-20} \right)$ Two-dimensional embedding (with neighborhood graph	
	of the original data) of 144 32×32 images of two objects (a toy	
	cat and a toy duck) via double shrinkage-LLE. The images were	
	sampled from a toy cat and a toy duck rendered with different	
	poses. 90% of the images have sparse representations in the two-	
	dimensional subspace and thus are projected on the two coordinate	
	axes X and Y. We sample 21 images from each axis and show them	
	on the top and right of this figure, respectively	94

LIST OF FIGURES

98

3.9 (Breast cancer) Sum of squares vs. Subspace dimensions (left), Accuracy vs. Subspace dimensions (middle), Normalized mutual information vs. Subspace dimensions (right) of clustering results on low dimensional representations of breast cancer data via PCA and double shrinkage-PCA. There are 60% samples owing zero representations on each coordinate obtained via double shrinkage. 95 3.10 (Wine) Sum of squares vs. Subspace dimensions (left), Accuracy vs. Subspace dimensions (middle), Normalized mutual information vs. Subspace dimensions (right) of clustering results on low dimensional representations of wine data via PCA and double shrinkage-PCA. There are 60% samples owing zero representations on each coordinate obtained via double shrinkage..... 953.11 (Semeion) Sum of squares vs. Subspace dimensions (left), Accuracy vs. Subspace dimensions (middle), Normalized mutual information vs. Subspace dimensions (right) of clustering results on low dimensional representations of Semeion handwritten digit data via PCA and double shrinkage-PCA. There are 60% samples owing zero representations on each coordinate obtained via double shrinkage. 96 3.12 (Pitprops) Variance vs. Cardinality curves for the first 3 sparse principle components of the covariance matrix of Pitprops data obtained via double shrinkage and their corresponding solution paths. In the Variance vs. Cardinality plot, the red dash-dot line on the top of is the variance of the corresponding dense principle component, the red cross on each curve marks the corresponding selected principle component. In the solution path plot, the vertical red dash-dot line in each plot marks the step at which the sparse principle component is selected, curves with different colors

3.13	Trade-off curves between explained variance and cardinality for the	
	first sparse principal component of colon cancer data (left) and	
	lymphoma data (right). Different Sparse PCA methods (Greedy	
	search, Path SPCA, SPC, Double shrinkage) are compared with	
	each other. SPC computes 10 sparse solutions of different cardi-	
	nalities, while the other methods computes 500 solutions to build	
	their solution paths. Their corresponding time costs are listed on	
	the bottom of each plot.	99
3.14	Trade-off curves between explained variance and cardinality for the	
	first sparse principal component of a 100×100 gaussian random	
	matrix (left) and a 500×500 gaussian random matrix (right), each	
	entry of the matrix is sampled from an independent standard gaus-	
	sian distribution. Different Sparse PCA methods (Sparse PCA,	
	Greedy search, Path SPCA, SPC, Double shrinkage) are compared	
	with each other. SPC computes 10 sparse solutions of different	
	cardinalities, while the other methods computes 100 (left) or 500	
	(right) solutions to build their solution paths. Their corresponding	
	time costs are listed on the bottom of each plot	100
4.1	Sub-problem in the divide step of DCA: finding the low-dimensional	
	anchors $Y_{\bar{A}}$ on hyperplane \mathbb{P} when all data points X are contained	
	in a <i>convex hull</i> of k anchors (vertices) X_A	109
4.2	Sub-problem in the divide step of DCA: finding the low-dimensional	
	anchors $Y_{\bar{A}}$ on hyperplane \mathbb{P} when all data points X are contained	
	in a <i>conical hull</i> of k anchors (extreme rays) X_A	111
4.3	Finding the anchors of full observable data points (a complete 300 \times	
	500 matrix of rank 10) in a conical hull of anchors on $30 noise levels$	
	and 4 sub-problem amounts (only for DCA). Each point in the	
	plots is obtained by averaging the results of 20 random trails on 20	
	different matrices. DCA invoking 2D rapid anchoring in Section	
	4.3 is compared to SPA [97] and XRAY [145]. \ldots	119

4.4	Finding the anchors of full observable data points (a complete 50 \times	
	100 matrix of rank 10 each row is normalized to have unit ℓ_1 norm)	
	in a convex hull of anchors on 25 noise levels and 4 sub-problem	
	amounts (only for DCA). Each point in the plots is obtained by	
	averaging 5 random trails on 5 different matrices. DCA invoking	
	1D rapid anchoring in Section 4.3 is compared to LP based method	
	Hottopixx [23]	120
4.5	Finding the anchors of data points with massive missing values (an	
	incomplete 50×100 matrix each entry is observed with probability	
	sampling ratio) in a conical hull of anchors via solving 125 sub-	
	problems by DCA on 4 noise levels. The left two plots show the	
	results when sampling ratio varies between $[0.01, 0.31]$ and the rank	
	k is fixed to 10, while the two plots on the right show the results	
	when rank k varies between $[5, 50]$ and the sampling ratio is fixed	
	to 0.15. Each point in the plots is obtained by averaging 20 random	
	trails on 20 different matrices. The divide step of DCA uses 2D	
	rapid anchoring in Section 4.3	123
5.1	low-rank matrix recovery via BRP: the recovery time for matrices	
	of different size and different rank	141
5.2	low-rank approximation via BRP: the relative approximation error	
	for a 1000×1000 matrix with standard normal distributed entries	
	on different rank.	142
5.3	low-rank image compression via BRP on FERET: BRP compresses	
	700 40 \times 40 face images sampled from 100 individuals to a 700 \times	
	1600 matrix with rank 60. Upper row: Original images. Middle	
	row: images compressed by SVD (6.59s). Bottom row: images	
	compressed by BRP (0.36s). \ldots \ldots \ldots \ldots \ldots \ldots	143
5.4	Low-rank approximation performed by Lanczos method (L-SVD),	
	randomized SVD (R-SVD) and GreBske (G-SVD) on $10^4\times10^4$	
	matrix whose entries are sampled from i.i.d. normal distribution,	
	p (K in G-SVD) is the power parameter	146

- 6.2 Shadow/light removal of face images from four individuals in Yale B database in X = L + S mode. Each individual has 64 images with resolution 192×168 and needs 24 seconds learning time. . . 161
- 7.2 Background modeling of GreBsmo on three video sequences, top row: Hall, 144×176 pixels, 500 frames; middle row: ShoppingMall, 256 × 320 pixels, 253 frames; bottom row: Boostrap, 120 × 160 pixels, 500 frames.
- 9.1 Background modeling and object flow tracking results of a 50frame surveillance video sequence from Hall dataset with resolution $144 \times 176. \ldots 197$

9.2	Background modeling and object flow tracking results of a 50-
	frame surveillance video sequence from Shoppingmall dataset with
	resolution 256×320
9.3	Phase diagram (left) and corresponding CPU seconds (right) for
	LinGoDec on 750×750 matrices. Low-rank weight matrix W is of
	size 750×500 , and is generated by $W = UV$, where entries of U
	and V are sampled from $\mathcal{N}(0, 1/750)$ and $\mathcal{N}(0, 1/750)$, respectively.
	Features of items in Z is sampled from $\mathcal{N}(0, 1/750)$. Entries of
	sparse anomaly S are sampled as 1 or -1 with probability $\rho/2$
	and 0 with probability $1 - \rho$. Noise G has entries sampled from
	$\mathcal{N}(0, 10^{-3})$. On the 50 × 30 grid of sparsity-rank/n plane, 10 trials
	are performed for each (ρ, r) pair. W is said to be successfully
	recovered if its rel. err. $\leq 10^{-2}$. The phase diagram shows the
	successful recovery rate for each (ρ, r) pair

10.3	Plot of $\delta/(1+\delta) - \gamma$ as a function of $\gamma \in [0, 1/2)$ on 5000 points	
	between 0 and $1/2$	250
10.4	Sample balance, label independence and recovery error rate on 21	
	datasets (1). From top to bottom: Bibtex, Corel5k, Mediamill,	
	IMDB, Enron	269
10.5	Sample balance, label independence and recovery error rate on 21	
	datasets (2). From top to bottom: Genbase, Medical, Emotions,	
	Scene, Slashdot	270
10.6	Sample balance, label independence and recovery error rate on 21	
	datasets (3). From top to bottom: Yahoo-Arts, Yahoo-Business,	
	Yahoo-Computers, Yahoo-Education, Yahoo-Entertainment. $\ . \ .$	271
10.7	Sample balance, label independence and recovery error rate on	
	21 datasets (4). From top to bottom: Yahoo-Health, Yahoo-	
	Recreation, Yahoo-Reference, Yahoo-Science, Yahoo-Social	272
10.8	Sample balance, label independence and recovery error rate on 21	
	datasets (5) on Yahoo-Society. \ldots \ldots \ldots \ldots \ldots	273
10.9	Trade-off between label compression and 5 prediction performance	
	metrics, time costs on 5 datasets. From top to bottom: Bibtex,	
	Corel5k, Mediamill, Enron and Medical.	290

List of Tables

2.1	Best recognition rate $(\%)$ on three databases. For MEN, DLA,	
	LPP (SLPP), NPE, LDA (FLDA), PCA, SPCA (Sparse PCA),	
	the numbers in the parentheses behind the recognition rates are	
	the subspace dimensions. Numbers in the second column denote	
	the number of training samples per individual	42
3.1	Time complexity per iteration round of Sparse PCA, DSPCA,	
	rSVD, SPC, Greedy SPCA and Double Shrinkage for calculat-	
	ing one sparse vector solution with s nonzero entries. We have	
	$s_A, s_B \leq s \leq \min\{n, p\}.$	82
3.2	Total cardinality and proportion of explained variance of the first	
	6 sparse principal components obtained via different methods from	
	pitprops data. The results of Sparse PCA, rSVD and Greedy	
	SPCA are calculated from the sparse loading vectors published	
	in $[273]$, $[201]$ and $[176]$, respectively.	97
3.3	Time cost (CPU seconds) of Sparse PCA, Path SPCA (faster ver-	
	sion of DSPCA), Greedy SPCA, SPC and Double Shrinkage on two	
	gene datasets (colon cancer, lymphoma) and two artificial datasets	
	(a 100×100 and a 500×500 Gaussian random matrix). Note the	
	time cost of SPC denotes the time for computing 10 sparse solu-	
	tions rather than all the solutions on a solution path	101

4.1	Normalized mean absolute error (NMAE), root mean square er-
	ror (RMSE) and CPU seconds of DCA and matrix completion on
	MovieLens. $n/m/k$ of 3 datasets: $100k(943/1682/10)$, $1M(6040/3952/10)$,
	10M(69878/10677/10). Result format: NMAE/RMSE/CPU sec-
	onds
4.2	Reconstruction error and CPU seconds of SPA, XRAY and DCA
	on three datasets. The rank k for reconstructing them is 30, 50, 50.
	Result format: $\ell_2 \text{ error/CPU}$ seconds
6.1	Relative error and time cost of RPCA and GoDec in low-rank+sparse
	decomposition tasks. The results separated by "/" are RPCA and
	GoDec, respectively
7.1	Comparison of time costs in CPU seconds of PCP, GoDec and
	GreBsmo in low-rank and sparse matrix decomposition task on
	background modeling datasets
8.1	Relative error and time cost of OptSpace and GoDec in matrix
	completion tasks. The results separated by "/" are SVT $[35]$ (a
	nuclear norm minimization method), $OptSpace$ [137] (a subspace
	optimization method on Grassmann manifold) and GoDec, respec-
	tively. See $[137]$ for the results of the other methods, e.g., FPCA
	and ADMIRA
8.2	Relative error and time cost of OptSpace, SVP, ADMiRA and
	GreBcom in matrix completion tasks of different matrix size and
	rank. Notations: $m(n)$ -square matrix size, r -rank, ρ -sampling ra-
	tio $ \Omega _0/mn$, rel. errrelative error, time-CPU time, "-"-does not
	apply due to speed or divergence

8.3	$RMSE_{test}$ /CPU time of OptSpace, SVP and GreBcom in ma-	
	trix completion tasks on recommendation system data with dif-	
	ferent training set ratio (for MovieLens) or different number of	
	test ratings per user (for Jester), "-"-does not apply due to speed	
	or divergence. Size and rank information $(m/n/r)$ of datasets:	
	100k(943/1682/3), 1M(6040/3952/10), 10M(69878/10677/10), J1(24	
	J2(23500/100/10), J3(24938/100/10)	181
9.1	Information of datasets that are used in experiments of MSE. In the	
	table, n (training samples+test samples) is the number of samples,	
	p is the number of features, k is the number of labels, "Card" is	
	the average cardinality of all label vectors	209
9.2	Prediction performances $(\%)$ and CPU seconds of BR [216], ML-	
	KNN [246], MDDM [253] and MSE on Yahoo. Prec-precision, Rec-	
	recall, F1-F1 score, Acc-accuracy	210
9.3	Prediction performances $(\%)$ and CPU seconds of BR [216], ML-	
	KNN [246], MDDM [253] and MSE on 8 datasets. Prec-precision,	
	Rec-recall, F1-F1 score, Acc-accuracy	211
10.1	Information of datasets that are used in label compression and	
	recovery experiments and multi-label prediction experiments. In	
	the table, n refers to the number of samples, p refers to the number	
	of features, k refers to the number of labels, K refers to the number	
	of unique label vectors, "Card" refers to the average cardinality of	
	all label vectors, "Density" refers to the average nonzero entry	
	proposition of all label vectors	266
10.2	Training set size, test set size and the obtained distilled labelsets	
	size of each datasets in the multi-label prediction experiments. In	
	order to compare the number of distilled labels ets \boldsymbol{d} with the num-	
	ber of labels k and the number of unique labelsets K , we list k and	
	K of each datasets in the table as well	274

10.3 Multi-label performances and time costs of BR and CL on 21		
datasets with different C parameters (1). HL-Hamming Loss, Prec-		
Precision, Rec-Recall, Acc-Accuracy, Time-CPU seconds, labels-		
Number of Labels in training stage. "-" denotes the failed experi-		
ment that incorrectly predicts all the test samples as negative. The		
best performances of BR and CL are highlighted with different colors. 275		
10.4 Multi-label performances and time costs of BR and CL on 21		
datasets with different C parameters (2)		
10.5 Multi-label performances and time costs of BR and CL on 21		
datasets with different C parameters (3)		
10.6 Multi-label performances and time costs of BR and CL on 21		
datasets with different C parameters (4)		
10.7 Multi-label performances and time costs of BR and CL on 21		
datasets with different C parameters (5)		
10.8 Multi-label performances and time costs of BR and CL on 21		
datasets with different C parameters (6)		
10.9 Prediction performances and time costs of ML-knn, MDDM, ML-		
CS and CL on 10 datasets. "-" denotes the failed experiment whose		
time cost exceeds 10^5 secondes. $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 284$		
10.10Prediction performances and time costs of ML-knn, MDDM, ML-		
CS and CL on 11 sub datasets from Yahoo dataset		
10.11Prediction performances and time costs of SVM-SMOTE, SVM-		
WEIGHT and CL on 5 datasets		