
Compressed Learning

Tianyi Zhou

Faculty of Engineering and Information Technology

University of Technology, Sydney

A thesis submitted for the degree of

Doctor of Philosophy

31 August 2013

To my loving parents

Yongxi Zhou and Jingping Yao

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted

for a degree nor has it been submitted as part of requirements for a

degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I

have received in my research work and the preparation of the thesis

itself has been acknowledged. In addition, I certify that all informa-

tion sources and literature used are indicated in the thesis.

Student: Tianyi ZHOU

Date: 31/08/2013

Production Note:

Signature removed prior to publication.

Acknowledgements

I benefited and learned a lot from my advisor, several professors, my

friends, my colleagues and my family during PhD study in University

of Technology, Sydney and Nanyang Technological University. I would

like to take this good opportunity to appreciate their significant helps

to me.

The first person I would like to express my appreciation and gratitude

to is Professor Dacheng Tao. I am so lucky to have Prof. Tao as my

professional mentor and academic advisor. I benefited significantly

from various detailed discussions with him. Discussing a problem

with him has been always a humbling but eye-opening experience,

and he always gives me sufficient freedom to think and explore. His

careful criticisms bridging both theory and application have greatly

broadened my thought in research. His vision, creativeness and enthu-

siasm in solving challenging problems has greatly encouraged me and

inspired my works. Without his high scientific criterion, endless pa-

tience, generous support, and constant guidance, this thesis cannot be

accomplished. I also want to thank Prof. Tao as a nice friend, for his

invaluable suggestions and experienced instructions on my research

career and life.

I also wish to express my appreciation to other Professors who have

gave me helpful guidance and encouragement during my PhD study

and on conferences: Prof. Chengqi Zhang, Prof. Xindong Wu, Prof.

Xingquan Zhu, Prof. Jieping Ye, Prof. Jerome H. Friedman, Prof.

Trevor Hastie, Prof. Dean P. Foster and Prof. Emmanuel Candès. I

learned a lot from discussions with them and their attitude for doing

high-quality research.

I have been fortunate to work in a group gathering the most brilliant

researchers and best friends in the past 5 years: Dr. Wei Bian, Dr.

Jun Li, Dr. Bo Geng, Dr. Xinmei Tian, Dr. Zhang Zhang, Dr.

Chao Zhang, Dr. Naiyang Guan, Dr. Lusong Li, Dr. Xiaoguang

Rui, Dr. Weifeng Liu, Dr, Shengzheng Wang, Yang Mu, Bo Xie,

Dongjing Song, Si Si, Yuanyuan Fu, Yong Luo, Yangxi Li, Zhibin

Hong, Nannan Wang, Mingming Gong, Lianyang Ma, Maoying Qiao,

Xiaoyan Li, Tongliang Liu, Fei Gao, Changxin Ding, Jie Gui, Xinchao

Wang, Tianhao Zhang. Especially, I am deeply indebted to Dr Wei

Bian, who gave me strong motivation and critical guidance when I

have meet difficulties in research. He spent much time to teach me

valuable things that I cannot easily learn by myself, especially at

the beginning of my PhD study. I learned lots from discussion and

collaboration with all group members in statistics, machine learning

and optimization. Moreover, I enjoyed the invaluable friendships with

them, their kindly support and accompany are always my source of

strength and courage in both research and daily life. I own my deepest

thanks to all of them!

I am also grateful to all the other friends who made my 5 years at Sin-

gapore and Sydney unforgettable: Guodong Long, Jing Jiang, Chun-

yang Liu, Meng Fang, Shirui Pan, Mingsong Mao, Hongshu Chen,

Can Wang, Junfu Yin, Guoxin Su, Dianshuang Wu, Yi Ji, Ming Xie,

Xiang Li, Yifan Li, Qian Sun, and my dearest friends Taoyu Lin and

Peng Su since my college. They are the ones who have given me sup-

port during both joyful and stressful times, to whom I will always be

thankful.

Finally, it is my greatest honor to thank my family: my parents,

my grandparents, my uncle and auntie. They are always believing

in me, keeping encouraging me, giving me indispensable suggestions,

and fully supporting all my final decisions. No words could possibly

express my deepest gratitude for their endless love, self-sacrifice and

unwavering help. To them I dedicate this dissertation.

Abstract

There has been an explosion of data derived from the internet and

other digital sources. These data are usually multi-dimensional, mas-

sive in volume, frequently incomplete, noisy, and complicated in struc-

ture. These “big data” bring new challenges to machine learning

(ML), which has historically been designed for small volumes of clearly

defined and structured data. In this thesis we propose new methods

of “compressed learning”, which explore the components and proce-

dures in ML methods that are compressible, in order to improve their

robustness, scalability, adaptivity, and performance for big data anal-

ysis. We will study novel methodologies that compress different com-

ponents throughout the learning process, propose more interpretable

general compressible structures for big data, and develop effective

strategies to leverage these compressible structures to produce highly

scalable learning algorithms. We present several new insights into

popular learning problems in the context of compressed learning. The

theoretical analyses are tested on real data in order to demonstrate

the efficacy and efficiency of the methodologies in real-world scenarios.

In particular, we propose “manifold elastic net (MEN)” and “double

shrinking (DS)” as two fast frameworks extracting low-dimensional

sparse features for dimension reduction and manifold learning. These

methods compress the features on both their dimension and cardinal-

ity, and significantly improve their interpretation and performance in

clustering and classification tasks.

We study how to derive fewer “anchor points” for representing large

datasets in their entirety by proposing “divide-and-conquer anchor-

ing”, in which the global solution is rapidly found for near-separable

non-negative matrix factorization and completion in a distributed

manner. This method represents a compression of the big data itself,

rather than features, and the extracted anchors define the structure

of the data.

Two fast low-rank approximation methods, “bilateral random pro-

jections (BRP)” of fast computer closed-form and “greedy bilateral

sketch (GreBske)”, are proposed based on random projection and

greedy augmenting update rules. They can be broadly applied to

learning procedures that requires updates of a low-rank matrix vari-

able and result in significant acceleration in performance.

We study how to compress noisy data for learning by decomposing it

into the sum mixture of low-rank part and sparse part. “GO decom-

position (GoDec)” and the “greedy bilateral (GreB)” paradigm are

proposed as two efficient approaches to this problem based on ran-

domized and greedy strategies, respectively. Modifications of these

two schemes result in novel models and extremely fast algorithms for

matrix completion that aim to recover a low-rank matrix from a small

number of its entries. In addition, we extend the GoDec problem in

order to unmix more than two incoherent structures that are more

complicated and expressive than low-rank or sparse matrices. The

three proposed variants are not only novel and effective algorithms

for motion segmentation in computer vision, multi-label learning, and

scoring-function learning in recommendation systems, but also reveal

new theoretical insights into these problems.

Finally, a compressed learning method termed “compressed labeling

(CL) on distilled label sets (DL)” is proposed for solving the three

core problems in multi-label learning, namely high-dimensional labels,

label correlation modeling, and sample imbalance for each label. By

compressing the labels and the number of classifiers in multi-label

learning, CL can generate an effective and efficient training algorithm

from any single-label classifier.

Contents

Contents vii

List of Figures xiii

List of Tables xxii

Nomenclature xxv

1 Introduction 1

1.1 Low-rank and Sparse Structures in Learning Problems 3

1.1.1 Low-rank Structure and Dimension Reduction 3

1.1.2 Sparse Structure and Sparse Learning 5

1.2 Literature Survey of Compressed Learning 7

1.3 Main Contributions and Road Map 10

2 Manifold Elastic Net: A Unified Framework for Sparse Dimen-

sion Reduction 16

2.1 Introduction . 17

2.1.1 The proposed approach . 18

2.2 Manifold Elastic Net . 20

2.2.1 Part optimization . 21

2.2.2 Whole alignment . 22

2.2.3 Classification error minimization 24

2.2.4 Elastic net penalty . 25

2.2.5 LARS for MEN . 27

2.2.6 Fast LARS . 32

vii

CONTENTS

2.2.7 Algorithm . 33

2.2.8 Discussions . 35

2.3 Experiments . 38

2.4 Conclusion . 50

3 Double Shrinking for Sparse Dimension Reduction 53

3.1 Introduction . 54

3.1.1 Double shrinking model 55

3.1.2 Previous works . 56

3.1.3 Main contribution . 58

3.2 Definitions . 59

3.2.1 Karush-Kuhn-Tucker conditions 59

3.2.2 Definitions . 60

3.3 Double shrinking Algorithm . 62

3.3.1 Initialization . 62

3.3.2 Direction . 63

3.3.3 Step size and update of A, B 68

3.3.4 Update of x, μ and η . 70

3.3.5 Algorithm . 70

3.3.6 Analyses and Proofs . 72

3.4 Extensions of double shrinkage . 75

3.4.1 Elastic net double shrinkage 75

3.4.2 Reweighted �1 double shrinkage 76

3.4.3 Structured double shrinkage 77

3.4.4 Sparse learning with multiple equality constraints 78

3.5 Relationships to existing techniques 79

3.5.1 Relationship to sparse PCA 80

3.5.2 Relationship to sparse coding 81

3.5.3 Relationship to LARS . 84

3.6 Experiments . 85

3.6.1 Classification . 86

3.6.2 Nonlinear manifold learning 87

3.6.3 Data clustering . 89

viii

CONTENTS

3.6.4 Feature selection . 91

3.6.5 Scalability study . 96

3.7 Conclusion . 97

4 Divide-and-Conquer Anchoring for Near-separable Nonnegative

Matrix Factorization and Completion 102

4.1 Introduction . 103

4.1.1 Separable Nonnegative Matrix Factorization 104

4.1.2 Related Works . 106

4.1.3 Motivation and Main Contributions 107

4.2 Divide-and-Conquer Anchoring (DCA) 109

4.2.1 Divide Step: Anchoring on Low-dimensional Projections . 109

4.2.2 Conquer Step: Hypothesis Testing 112

4.2.3 DCA for Incomplete Data Matrix 113

4.2.4 Analysis: the Number of Sub-problems 116

4.3 Rapid Anchoring in 1D or 2D Space 117

4.3.1 Seeking Vertices of Convex Hull in 1D Space 118

4.3.2 Seeking Extreme Rays of Conical Hull in 2D Space 118

4.4 Numerical Results . 120

4.4.1 Empirical Study on Synthetic Data 121

4.4.2 Collaborative Filtering by Finding Representative Users . . 123

4.4.3 Reconstruction of Images, Texts and Handwritten Digits . 124

5 Randomized and Greedy Strategies for Bilateral Low-rank Ap-

proximation 126

5.1 Bilateral Random Projections (BRP) 126

5.1.1 Introduction . 126

5.1.2 Bilateral random projections (BRP) based low-rank ap-

proximation . 128

5.1.2.1 Low-rank approximation with closed form 128

5.1.2.2 Power scheme modification 128

5.1.3 Approximation error bounds 129

5.1.4 Proofs of error bounds . 132

ix

CONTENTS

5.1.4.1 Proof of Theorem 8 132

5.1.4.2 Proof of Theorem 9 134

5.1.4.3 Proof of Theorem 10 135

5.1.4.4 Proof of Theorem 11 137

5.1.4.5 Proof of Theorem 12 138

5.1.5 Empirical Study . 140

5.2 Greedy Bilateral Sketch (GreBske) 142

5.2.1 Low-rank Approximation 142

5.2.2 Greedy Bilateral Sketch 143

5.2.3 Empirical Study . 146

6 GO Decomposition and Randomized Low-rank + Sparse Decom-

position 148

6.1 Introduction . 149

6.2 Go Decomposition (GoDec) . 151

6.2.1 Näıve GoDec . 151

6.2.2 Fast GoDec via BRP based approximation 152

6.3 Convergence of GoDec . 152

6.4 Experiments . 159

6.4.1 RPCA vs. GoDec . 159

6.4.2 Background modeling . 160

6.4.3 Shadow/Light removal . 161

6.5 Conclusion . 162

7 Greedy Bilateral Paradigm and Greedy Low-rank + Sparse De-

composition 163

7.1 Introduction . 164

7.2 Background and Problem Formulation 165

7.3 Greedy Bilateral (GreB) Paradigm 166

7.4 Greedy Bilateral Smoothing . 167

7.5 Analysis . 168

7.6 Experiments on Video Data . 171

x

CONTENTS

8 Randomized and Greedy Algorithms for Matrix Completion 173

8.1 Introduction to Low-rank Matrix Completion 173

8.2 GoDec for matrix completion . 175

8.2.1 Model and Algorithm . 175

8.2.2 Matrix Completion Experiments of GoDec 176

8.3 Greedy Bilateral Completion (GreBcom) 177

8.3.1 Model and Algorithm . 177

8.3.2 Greedy Bilateral Completion 177

8.3.3 Matrix Completion Experiments of GreBcom 179

9 Three GoDec Variants Unmixing General Incoherent Structures182

9.1 Introduction . 183

9.2 Main Contributions of This Chapter 186

9.3 Shifted Subspace Tracking (SST) for Motion Segmentation 188

9.3.1 The Problem of Motion Segmentation 188

9.3.2 SST model . 191

9.3.3 SST Algorithm . 193

9.3.3.1 Initialization . 193

9.3.3.2 Update of τ . 194

9.3.3.3 Update of L . 195

9.3.3.4 Update of S . 197

9.3.4 Motion Segmentation Experiments of SST 198

9.4 Multi-label Subspace Ensemble for Multi-label Learning 200

9.4.1 The Problem of Multi-label Learning 200

9.4.2 MSE model . 203

9.4.3 MSE Algorithm . 205

9.4.3.1 MSE training: randomized decomposition 205

9.4.3.2 MSE prediction: group sparsity 207

9.4.4 Multi-label Prediction Experiments of MSE 208

9.5 Linear Functional GoDec for Learning Recommendation System . 212

9.5.1 LinGoDec Model and Algorithm 213

9.5.2 Empirical Study of LinGoDec 214

xi

CONTENTS

10 Compressed Labeling on Distilled Labelsets 216

10.1 Introduction . 217

10.1.1 Three problems . 218

10.1.2 Previous works . 219

10.1.3 The proposed method . 223

10.2 Compressed labeling (CL) via random projections 226

10.2.1 Random projection signs of label matrix 226

10.2.2 Improved sample balance of CL labels 227

10.2.3 Mutual independence of CL labels 233

10.2.4 Classification via support vector machines 234

10.3 Recovery algorithm on distilled labelsets (DLs) 234

10.3.1 Labelset distilling method (LDM) 235

10.3.2 Joint distribution of two random projection signs 236

10.3.3 KL divergence test for recovery 238

10.3.4 Recovery bound . 242

10.4 Discussion . 255

10.4.1 Contributions to multi-label learning 255

10.4.2 Relationship with compressed sensing 257

10.4.3 Relationship with error-correcting output codes 259

10.5 Experiments . 263

10.5.1 Evaluation metrics . 264

10.5.2 Datasets . 265

10.5.3 Label compression and recovery 266

10.5.4 Multi-label prediction: comparison with BR 268

10.5.5 Multi-label prediction: comparison with other multi-label

learning methods . 283

10.5.6 Multi-label prediction: comparison with 2 SVM algorithms

dealing with imbalanced data 287

10.5.7 Compression-performance trade-off 289

10.6 Conclusion . 291

11 Conclusions 294

xii

List of Figures

1.1 Relationships between the proposed approaches in this thesis. . . 11

2.1 Sample face images from the three databases. The first row comes

from UMIST; the second row comes from FERET; and the third

row comes from YALE. 39

2.2 Recognition Rate vs. Dimension on FERET 40

2.3 Recognition Rate vs. Dimension on UMIST 41

2.4 Recognition Rate vs. Dimension on YALE 42

2.5 Boxplot of Recognition Rate vs. Dimension (from 21 to 30) on

FERET with 4 (5) training samples per person. For every dimen-

sion, from left to right, the seven boxes refer to MEN, DLA, LPP,

NPE, FLDA, PCA, and SPCA. 44

2.6 Boxplot of Recognition Rate vs. Dimension (from 10 to 19) on

UMIST with 5 (7) training samples per person. For every dimen-

sion, from left to right, the seven boxes refer to MEN, DLA, LPP,

NPE, FLDA, PCA, and SPCA. 45

2.7 Boxplot of Recognition Rate vs. Dimension (from 5 to 14) on

YALE with 5 (7) training samples per person. For every dimension,

from left to right, the seven boxes refer to MEN, DLA, LPP, NPE,

FLDA, PCA, and SPCA. 46

2.8 Plots of first 10 bases obtained from 7 dimensionality reduction al-

gorithms on FERET For each column, from top to bottom: MEN,

DLA, LPP, NPE, FLDA, PCA, and SPCA 47

xiii

LIST OF FIGURES

2.9 Plots of first 10 bases obtained from 7 dimensionality reduction

algorithms on UMIST For each column, from top to bottom: MEN,

DLA, LPP, NPE, FLDA, PCA, and SPCA 48

2.10 Plots of first 10 bases obtained from 7 dimensionality reduction

algorithms on YALE For each column, from top to bottom: MEN,

DLA, LPP, NPE, FLDA, PCA, and SPCA 49

2.11 Entries of one column of projection matrix vs. its �1-norm in one

LARS loop of MEN . 50

2.12 Coefficient paths of 10 entries (features) in one column vector . . 51

3.1 (FERET) Recognition rate vs. Subspace dimensions curves of

LDA, PCA, NPE and their double shrinkage versions on FERET

face dataset. The first 10 dense eigenfaces obtained via eigen-

value decomposition (the top row) and the corresponding 10 66%

sparse eigenfaces obtained via double shrinkage (the bottom row)

are shown on the bottom of each plot. 88

3.2 (UMIST) Recognition rate vs. Subspace dimensions curves of

LDA, PCA, NPE and their double shrinkage versions on UMIST

face dataset. The first 10 dense eigenfaces obtained via eigen-

value decomposition (the top row) and the corresponding 10 66%

sparse eigenfaces obtained via double shrinkage (the bottom row)

are shown on the bottom of each plot. 89

3.3 (YALE) Recognition rate vs. Subspace dimensions curves of LDA,

PCA, NPE and their double shrinkage versions on YALE face

dataset. The first 10 dense eigenfaces obtained via eigenvalue de-

composition (the top row) and the corresponding 10 66% sparse

eigenfaces obtained via double shrinkage (the bottom row) are

shown on the bottom of each plot. 90

xiv

LIST OF FIGURES

3.4 (ORL) Recognition rate vs. Subspace dimensions curves of LDA,

PCA, NPE and their double shrinkage versions on ORL face dataset.

The first 10 dense eigenfaces obtained via eigenvalue decomposi-

tion (the top row) and the corresponding 10 66% sparse eigenfaces

obtained via double shrinkage (the bottom row) are shown on the

bottom of each plot. 91

3.5 (MNIST) Recognition rate vs. Subspace dimensions curves of

LDA, PCA, NPE and their double shrinkage versions on MNIST

handwritten digit dataset. The corresponding projection matrices

are 66% sparse. 91

3.6 (USPS) Recognition rate vs. Subspace dimensions curves of LDA,

PCA, NPE and their double shrinkage versions on USPS hand-

written digit dataset. The corresponding projection matrices are

66% sparse. 92

3.7 (3D face) Two-dimensional embedding (with neighborhood graph

of the original data) of 698 64×64 face images via double shrinking-

ISOMAP. The images were sampled from a face rendered with dif-

ferent poses. Illumination differences were artificially eliminated.

50% of the face images have sparse representations in the two-

dimensional subspace and thus are projected on the two coordi-

nate axes X and Y . We sample 21 images from each axis and

show them on the top and right of this figure, respectively. 93

3.8 (COIL-20) Two-dimensional embedding (with neighborhood graph

of the original data) of 144 32 × 32 images of two objects (a toy

cat and a toy duck) via double shrinkage-LLE. The images were

sampled from a toy cat and a toy duck rendered with different

poses. 90% of the images have sparse representations in the two-

dimensional subspace and thus are projected on the two coordinate

axesX and Y . We sample 21 images from each axis and show them

on the top and right of this figure, respectively. 94

xv

LIST OF FIGURES

3.9 (Breast cancer) Sum of squares vs. Subspace dimensions (left),

Accuracy vs. Subspace dimensions (middle), Normalized mutual

information vs. Subspace dimensions (right) of clustering results

on low dimensional representations of breast cancer data via PCA

and double shrinkage-PCA. There are 60% samples owing zero

representations on each coordinate obtained via double shrinkage. 95

3.10 (Wine) Sum of squares vs. Subspace dimensions (left), Accuracy

vs. Subspace dimensions (middle), Normalized mutual information

vs. Subspace dimensions (right) of clustering results on low dimen-

sional representations of wine data via PCA and double shrinkage-

PCA. There are 60% samples owing zero representations on each

coordinate obtained via double shrinkage. 95

3.11 (Semeion) Sum of squares vs. Subspace dimensions (left), Accu-

racy vs. Subspace dimensions (middle), Normalized mutual in-

formation vs. Subspace dimensions (right) of clustering results on

low dimensional representations of Semeion handwritten digit data

via PCA and double shrinkage-PCA. There are 60% samples ow-

ing zero representations on each coordinate obtained via double

shrinkage. 96

3.12 (Pitprops) Variance vs. Cardinality curves for the first 3 sparse

principle components of the covariance matrix of Pitprops data

obtained via double shrinkage and their corresponding solution

paths. In the Variance vs. Cardinality plot, the red dash-dot line

on the top of is the variance of the corresponding dense principle

component, the red cross on each curve marks the corresponding

selected principle component. In the solution path plot, the ver-

tical red dash-dot line in each plot marks the step at which the

sparse principle component is selected, curves with different colors

represent the change of different variables. 98

xvi

LIST OF FIGURES

3.13 Trade-off curves between explained variance and cardinality for the

first sparse principal component of colon cancer data (left) and

lymphoma data (right). Different Sparse PCA methods (Greedy

search, Path SPCA, SPC, Double shrinkage) are compared with

each other. SPC computes 10 sparse solutions of different cardi-

nalities, while the other methods computes 500 solutions to build

their solution paths. Their corresponding time costs are listed on

the bottom of each plot. 99

3.14 Trade-off curves between explained variance and cardinality for the

first sparse principal component of a 100 × 100 gaussian random

matrix (left) and a 500×500 gaussian random matrix (right), each

entry of the matrix is sampled from an independent standard gaus-

sian distribution. Different Sparse PCA methods (Sparse PCA,

Greedy search, Path SPCA, SPC, Double shrinkage) are compared

with each other. SPC computes 10 sparse solutions of different

cardinalities, while the other methods computes 100 (left) or 500

(right) solutions to build their solution paths. Their corresponding

time costs are listed on the bottom of each plot. 100

4.1 Sub-problem in the divide step of DCA: finding the low-dimensional

anchors YĀ on hyperplane P when all data points X are contained

in a convex hull of k anchors (vertices) XA. 109

4.2 Sub-problem in the divide step of DCA: finding the low-dimensional

anchors YĀ on hyperplane P when all data points X are contained

in a conical hull of k anchors (extreme rays) XA. 111

4.3 Finding the anchors of full observable data points (a complete 300×
500 matrix of rank 10) in a conical hull of anchors on 30 noise levels

and 4 sub-problem amounts (only for DCA). Each point in the

plots is obtained by averaging the results of 20 random trails on 20

different matrices. DCA invoking 2D rapid anchoring in Section

4.3 is compared to SPA [97] and XRAY [145]. 119

xvii

LIST OF FIGURES

4.4 Finding the anchors of full observable data points (a complete 50×
100 matrix of rank 10 each row is normalized to have unit �1 norm)

in a convex hull of anchors on 25 noise levels and 4 sub-problem

amounts (only for DCA). Each point in the plots is obtained by

averaging 5 random trails on 5 different matrices. DCA invoking

1D rapid anchoring in Section 4.3 is compared to LP based method

Hottopixx [23]. 120

4.5 Finding the anchors of data points with massive missing values (an

incomplete 50×100 matrix each entry is observed with probability

sampling ratio) in a conical hull of anchors via solving 125 sub-

problems by DCA on 4 noise levels. The left two plots show the

results when sampling ratio varies between [0.01, 0.31] and the rank

k is fixed to 10, while the two plots on the right show the results

when rank k varies between [5, 50] and the sampling ratio is fixed

to 0.15. Each point in the plots is obtained by averaging 20 random

trails on 20 different matrices. The divide step of DCA uses 2D

rapid anchoring in Section 4.3. 123

5.1 low-rank matrix recovery via BRP: the recovery time for matrices

of different size and different rank. 141

5.2 low-rank approximation via BRP: the relative approximation error

for a 1000× 1000 matrix with standard normal distributed entries

on different rank. 142

5.3 low-rank image compression via BRP on FERET: BRP compresses

700 40 × 40 face images sampled from 100 individuals to a 700 ×
1600 matrix with rank 60. Upper row: Original images. Middle

row: images compressed by SVD (6.59s). Bottom row: images

compressed by BRP (0.36s). 143

5.4 Low-rank approximation performed by Lanczos method (L-SVD),

randomized SVD (R-SVD) and GreBske (G-SVD) on 104 × 104

matrix whose entries are sampled from i.i.d. normal distribution,

p (K in G-SVD) is the power parameter. 146

xviii

LIST OF FIGURES

6.1 Background modeling results of four 200-frame surveillance video

sequences in X = L + S mode. Top left: lobby in an office build-

ing (resolution 128× 160, learning time 39.75 seconds). Top right:

shopping center (resolution 256 × 320, learning time 203.72 sec-

onds). Bottom left: Restaurant (resolution 120 × 160, learning

time 36.84 seconds). Bottom right: Hall of a business building

(resolution 144× 176, learning time 47.38 seconds). 160

6.2 Shadow/light removal of face images from four individuals in Yale

B database in X = L + S mode. Each individual has 64 images

with resolution 192× 168 and needs 24 seconds learning time. . . 161

7.1 Phase diagram for GreBsmo on 500 × 500 matrices. Low-rank

component is generated as L = UV , where entries of U and V

are sampled from N(0, 1/n). Entries of sparse component S are

sampled as 1 or −1 with probability ρ/2 and 0 with probability

1 − ρ. On the 30 × 30 grid of sparsity-rank/n plane, 20 trials

are performed for each (ρ, r) pair. L is said to be successfully

recovered if its rel. err.≤ 10−2. The phase diagram shows the

successful recovery rate for each (ρ, r) pair. 169

7.2 Background modeling of GreBsmo on three video sequences, top

row: Hall, 144×176 pixels, 500 frames; middle row: ShoppingMall,

256 × 320 pixels, 253 frames; bottom row: Boostrap, 120 × 160

pixels, 500 frames. 171

8.1 Phase diagram for GreBcom on 1000 × 1000 matrices. On the

20×20 grid of sampling ratio-rank/n plane, 10 trials are performed

for each (ρ, r) pair. A matrix is said to be successfully recovered if

rel. err.≤ 10−3. The phase diagram shows the successful recovery

rate for each (ρ, r) pair. 179

9.1 Background modeling and object flow tracking results of a 50-

frame surveillance video sequence from Hall dataset with resolution

144× 176. 197

xix

LIST OF FIGURES

9.2 Background modeling and object flow tracking results of a 50-

frame surveillance video sequence from Shoppingmall dataset with

resolution 256× 320. 199

9.3 Phase diagram (left) and corresponding CPU seconds (right) for

LinGoDec on 750× 750 matrices. Low-rank weight matrix W is of

size 750 × 500, and is generated by W = UV , where entries of U

and V are sampled from N(0, 1/750) and N(0, 1/750), respectively.

Features of items in Z is sampled from N(0, 1/750). Entries of

sparse anomaly S are sampled as 1 or −1 with probability ρ/2

and 0 with probability 1 − ρ. Noise G has entries sampled from

N(0, 10−3). On the 50× 30 grid of sparsity-rank/n plane, 10 trials

are performed for each (ρ, r) pair. W is said to be successfully

recovered if its rel. err.≤ 10−2. The phase diagram shows the

successful recovery rate for each (ρ, r) pair. 214

10.1 Compressed labeling on distilled labelsets. In the training stage,

CL first compresses the original label matrix Y into Z, which is

the sign matrix of random projections of Y on Gaussian random

matrix A. Then binary classifiers (such as SVM) corresponding

to the training set {X,Z} are independently learned and stored

in W . Meanwhile, the frequently appeared label subsets in Y are

extracted by labelset distilling method (LDM) and stored in the

distilled labelsets (DLs) D. In the prediction stage, CL first pre-

dicts the new labels z of a given sample x via the binary classifiers

W . Given A and D, the DLs appearing in z are identified by a

KL-divergence test based recovery algorithm and indexed by Ω.

The final prediction y is the union of all the appeared DLs. 224

10.2 Random projections of x, y on two random vectors α and β, which

are drawn uniformly from a k-dimensional hypersphere. The signs

of random projections are marked as “+” for positive and “−” for

negative in the figure. The hyperplanes W1 and W2 are perpen-

dicular to x and y, respectively. 229

xx

LIST OF FIGURES

10.3 Plot of δ/ (1 + δ) − γ as a function of γ ∈ [0, 1/2) on 5000 points

between 0 and 1/2. 250

10.4 Sample balance, label independence and recovery error rate on 21

datasets (1). From top to bottom: Bibtex, Corel5k, Mediamill,

IMDB, Enron. 269

10.5 Sample balance, label independence and recovery error rate on 21

datasets (2). From top to bottom: Genbase, Medical, Emotions,

Scene, Slashdot. 270

10.6 Sample balance, label independence and recovery error rate on 21

datasets (3). From top to bottom: Yahoo-Arts, Yahoo-Business,

Yahoo-Computers, Yahoo-Education, Yahoo-Entertainment. . . . 271

10.7 Sample balance, label independence and recovery error rate on

21 datasets (4). From top to bottom: Yahoo-Health, Yahoo-

Recreation, Yahoo-Reference, Yahoo-Science, Yahoo-Social. 272

10.8 Sample balance, label independence and recovery error rate on 21

datasets (5) on Yahoo-Society. 273

10.9 Trade-off between label compression and 5 prediction performance

metrics, time costs on 5 datasets. From top to bottom: Bibtex,

Corel5k, Mediamill, Enron and Medical. 290

xxi

List of Tables

2.1 Best recognition rate (%) on three databases. For MEN, DLA,

LPP (SLPP), NPE, LDA (FLDA), PCA, SPCA (Sparse PCA),

the numbers in the parentheses behind the recognition rates are

the subspace dimensions. Numbers in the second column denote

the number of training samples per individual. 42

3.1 Time complexity per iteration round of Sparse PCA, DSPCA,

rSVD, SPC, Greedy SPCA and Double Shrinkage for calculat-

ing one sparse vector solution with s nonzero entries. We have

sA, sB ≤ s ≤ min{n, p}. 82

3.2 Total cardinality and proportion of explained variance of the first

6 sparse principal components obtained via different methods from

pitprops data. The results of Sparse PCA, rSVD and Greedy

SPCA are calculated from the sparse loading vectors published

in [273], [201] and [176], respectively. 97

3.3 Time cost (CPU seconds) of Sparse PCA, Path SPCA (faster ver-

sion of DSPCA), Greedy SPCA, SPC and Double Shrinkage on two

gene datasets (colon cancer, lymphoma) and two artificial datasets

(a 100× 100 and a 500× 500 Gaussian random matrix). Note the

time cost of SPC denotes the time for computing 10 sparse solu-

tions rather than all the solutions on a solution path. 101

xxii

LIST OF TABLES

4.1 Normalized mean absolute error (NMAE), root mean square er-

ror (RMSE) and CPU seconds of DCA and matrix completion on

MovieLens. n/m/k of 3 datasets: 100k(943/1682/10), 1M(6040/3952/10),

10M(69878/10677/10). Result format: NMAE/RMSE/CPU sec-

onds. 124

4.2 Reconstruction error and CPU seconds of SPA, XRAY and DCA

on three datasets. The rank k for reconstructing them is 30, 50, 50.

Result format: �2 error/CPU seconds. 125

6.1 Relative error and time cost of RPCA and GoDec in low-rank+sparse

decomposition tasks. The results separated by “/” are RPCA and

GoDec, respectively. 159

7.1 Comparison of time costs in CPU seconds of PCP, GoDec and

GreBsmo in low-rank and sparse matrix decomposition task on

background modeling datasets. 172

8.1 Relative error and time cost of OptSpace and GoDec in matrix

completion tasks. The results separated by “/” are SVT [35] (a

nuclear norm minimization method), OptSpace [137] (a subspace

optimization method on Grassmann manifold) and GoDec, respec-

tively. See [137] for the results of the other methods, e.g., FPCA

and ADMIRA. 176

8.2 Relative error and time cost of OptSpace, SVP, ADMiRA and

GreBcom in matrix completion tasks of different matrix size and

rank. Notations: m(n)-square matrix size, r-rank, ρ-sampling ra-

tio |Ω|0/mn, rel. err.-relative error, time-CPU time, “-”-does not

apply due to speed or divergence. 180

xxiii

LIST OF TABLES

8.3 RMSEtest/CPU time of OptSpace, SVP and GreBcom in ma-

trix completion tasks on recommendation system data with dif-

ferent training set ratio (for MovieLens) or different number of

test ratings per user (for Jester), “-”-does not apply due to speed

or divergence. Size and rank information (m/n/r) of datasets:

100k(943/1682/3), 1M(6040/3952/10), 10M(69878/10677/10), J1(24983/100/10),

J2(23500/100/10), J3(24938/100/10). 181

9.1 Information of datasets that are used in experiments of MSE. In the

table, n (training samples+test samples) is the number of samples,

p is the number of features, k is the number of labels, “Card” is

the average cardinality of all label vectors. 209

9.2 Prediction performances (%) and CPU seconds of BR [216], ML-

KNN [246], MDDM [253] and MSE on Yahoo. Prec-precision, Rec-

recall, F1-F1 score, Acc-accuracy 210

9.3 Prediction performances (%) and CPU seconds of BR [216], ML-

KNN [246], MDDM [253] and MSE on 8 datasets. Prec-precision,

Rec-recall, F1-F1 score, Acc-accuracy 211

10.1 Information of datasets that are used in label compression and

recovery experiments and multi-label prediction experiments. In

the table, n refers to the number of samples, p refers to the number

of features, k refers to the number of labels, K refers to the number

of unique label vectors, “Card” refers to the average cardinality of

all label vectors, “Density” refers to the average nonzero entry

proposition of all label vectors. 266

10.2 Training set size, test set size and the obtained distilled labelsets

size of each datasets in the multi-label prediction experiments. In

order to compare the number of distilled labelsets d with the num-

ber of labels k and the number of unique labelsets K, we list k and

K of each datasets in the table as well. 274

xxiv

LIST OF TABLES

10.3 Multi-label performances and time costs of BR and CL on 21

datasets with different C parameters (1). HL-Hamming Loss, Prec-

Precision, Rec-Recall, Acc-Accuracy, Time-CPU seconds, labels-

Number of Labels in training stage. “-” denotes the failed experi-

ment that incorrectly predicts all the test samples as negative. The

best performances of BR and CL are highlighted with different colors.275

10.4 Multi-label performances and time costs of BR and CL on 21

datasets with different C parameters (2). 276

10.5 Multi-label performances and time costs of BR and CL on 21

datasets with different C parameters (3). 277

10.6 Multi-label performances and time costs of BR and CL on 21

datasets with different C parameters (4). 278

10.7 Multi-label performances and time costs of BR and CL on 21

datasets with different C parameters (5). 279

10.8 Multi-label performances and time costs of BR and CL on 21

datasets with different C parameters (6). 280

10.9 Prediction performances and time costs of ML-knn, MDDM, ML-

CS and CL on 10 datasets. “-” denotes the failed experiment whose

time cost exceeds 105 secondes. 284

10.10Prediction performances and time costs of ML-knn, MDDM, ML-

CS and CL on 11 sub datasets from Yahoo dataset. 285

10.11Prediction performances and time costs of SVM-SMOTE, SVM-

WEIGHT and CL on 5 datasets. 288

xxv

Chapter 1

Introduction

Over the past few decades there has been a dramatic growth in both the fun-

damental theories and practical algorithms used in statistical machine learning

[109][21] (ML). The theoretical and practical use of these algorithms has attracted

considerable attention from numerous fields. ML explores the inner structure of

data by building statistical models for related variables, and then either learning

or averaging the models by fitting data samples. The extracted structure provides

essential information about the data and brings significant improvement on tra-

ditional techniques for solving both supervised and unsupervised tasks, because

the statistical model is exquisitely fit for purpose and is derived from the data

itself. ML enables the computer to learn directly from the data, free from human

experience or bias, and is therefore a more efficient and adaptive realization of ar-

tificial intelligence. The practical use of ML can result in far-reaching impact on

the world, from data networks, communication, information technology, graphics,

and signal processing to biology, medical science [115], public health, meteorol-

ogy, and economics. It influences not only the way in which people discover the

physical world around them and their relationship with it, but also the speed and

accuracy of how they do it. ML has the potential to improve lives and reduce

unnecessary costs. However, applying ML to real-world data remains challenging

and has significant limitations.

In most of todays practical applications, large-volume and high-dimensional

big data with missing values and unexpected noise is far more common than

small, clean data that strictly satisfies the assumptions in many ML methodolo-

1

gies. Many ML methods benefit from the complex and detailed data structure

encoded in their models. Although improvements are possible when this kind of

ML method is applied to small quantities of data whose structure can be kept con-

sistent with the model assumptions, dramatic increases in data scale are usually

accompanied by violation of these underlying (and often complicated) assump-

tions. The performance of ML becomes unpredictable and frequently unstable.

In addition, the high volume and dimensionality leads to an increase in process-

ing time and sample complexity, and this impacts on computational burden and

results in a large variability in learning results. Conventional ML methods may

therefore fail when applied to big data, and novel ML techniques that allow more

flexibility in the size of data and their structure need to be developed. These

requirements demand that the ML methods a) adopt simple structured assump-

tions that are powerful and flexible enough to fit data with different structures,

noise, and missing values, b) can be used for both supervised or unsupervised

learning tasks, and c) keep time and sample complexity sufficiently small for use

on big data.

With these requirements in mind, here we tackle the problem of compressed

learning of big data for different tasks. In particular, we take advantage of com-

pressible components within big data to express complicated data structures and

develop highly scalable algorithms for specific learning tasks. The compressible

components in the model simultaneously preserve variable correlations, which is

extremely helpful for improving performance. This scheme is called “compressed

learning” because it aims to develop big data learning methods on compressed

features, labels, or learning tasks by fully exploring their correlations and struc-

tures. Although the methodology can be traced back to classic learning methods,

such as dimension reduction and feature selection, the techniques presented in

this thesis broaden the concept beyond feature extraction and to data with more

complicated structure. In addition, we provide several novel insights on how to

develop scalable and robust algorithms specifically for big data.

We first introduce low-rank and sparse structures, which are the most fa-

miliar compressible structures already used in ML research. We then provide a

brief overview of the compressed learning models and algorithms proposed in this

thesis.

2

1.1 Low-rank and Sparse Structures in Learning

Problems

There has been an explosion in the quantity, although not necessarily the qual-

ity, of information from the internet and other digital sources. These data are

usually characterized by high-dimensionality, huge volume, incompleteness, fre-

quently dominant noise, and complicated structure, all of which bring intriguing

new challenges to compressive acquisition, signal processing, and ML. Traditional

methods are limited by the computational time needed, sample complexity, stor-

age, and de-noising capability. These limitations have driven recent attempts to

exploit the intrinsic redundancy and structure of the data. For a single signal or

individual instance, the redundancy is usually exhibited by its sparsity, i.e. it is

nonzero only for a small set of entries. Compressed sensing [71][41] recovers a sig-

nal from its highly compressed measurements by an undetermined linear system,

and therefore leveraging this sparsity. For multiple instances, or more specifically

a matrix, the redundancy is often identified by its low-rank structure, i.e. all

the instances lie in a subspace spanned by a small number of bases. Low-rank

structure can be analogized to sparsity due to its sparse spectrum. Alternatively,

the matrix X can be written as the sum of a few rank-1 matrices such that

X =
∑r

i=1 UiVi, in which Ui is a column vector and Vi is a row vector.

1.1.1 Low-rank Structure and Dimension Reduction

A primary focus of ML is to find succinct and effective representations of originally

high-dimensional samples [109][143][209][207]. Linear dimensionality deduction is

such a tool that projects the original samples from a high-dimensional space to

a low-dimensional subspace.

Real-world data matrices are unlikely to be exactly low rank. However, ap-

proximating them to low-rank matrices provides a good trade-off between accu-

racy and time/space costs, especially when its singular values decay fast. The

low-rank approximation [238] can replace the original matrix in least squares

regression and matrix product, and also provides a low-dimensional representa-

tion which can boost both classification and clustering performance. Although

3

the low-rank approximation is probably optimal when constructed from singular

value decomposition (SVD), the expensive time cost makes SVD prohibitive for

large matrices. Therefore, many faster Monte Carlo algorithms [75][53][183] have

been proposed as an alternative to SVD, which trade sufficiently high probability

at the cost of acceptably small error. Typically, Monte Carlo algorithms build the

low-rank approximation from randomly selected columns or rows [27], or linear

projections (which are called “sketch”) of certain random matrices [108]. These

can be regarded as faster and more structured alternatives to principal compo-

nents analysis (PCA) [119].

Some other examples of conventional linear dimensionality reduction algo-

rithms include Fisher’s linear discriminant analysis (FLDA) [87], regularized

FLDA, and geometric mean-based subspace selection [208]. All of these algo-

rithms assume samples are drawn from different Gaussians. PCA maximizes the

mutual information between original high-dimensional Gaussian-distributed sam-

ples and projected low-dimensional samples. PCA, which is unsupervised, does

not utilize class label information. In contrast, LDA finds a projection matrix

that simultaneously maximizes the trace of the between-class scatter matrix and

minimizes the trace of the within-class scatter matrix in the projected subspace.

Similar to PCA, FLDA and regularized FLDA assume samples are drawn from

homoscedastic Gaussians. Therefore, FLDA and regularized FLDA do not work

well when Gaussians are heteroscedastic. Additionally, they always merge classes

that are close together in the high-dimensional space. Although the geometric

mean-based subspace selection and its harmonic mean-based extension [18] as-

sume samples are drawn from heteroscedastic Gaussians and do not tend to merge

close classes, they basically work for Gaussian distributed samples.

However, linear dimensionality reduction performs poorly when expressing

data with nonlinear structure or local similar geometry. Manifold learning-based

dimensionality reduction extends the low-rank concept from linear subspace to

smooth manifolds, e.g. locally linear embedding (LLE) [196], ISOMAP [210],

Laplacian eigenmaps (LE) [15][157], Hessian eigenmaps (HLLE) [72], Generative

Topographic Mapping (GTM) [22][92] and local tangent space alignment (LTSA)

[254]. LLE uses linear coefficients that reconstruct a given measurement from its

neighbors to represent the local geometry and then seeks low-dimensional em-

4

bedding in which the coefficients are still suitable for reconstruction. ISOMAP

preserves the global geodesic distances of all pairs of measurements. LE preserves

proximity relationships by manipulations on an undirected weighted graph, which

indicate the neighbor relationships of pairwise measurements. LTSA exploits the

local tangent information as a representation of the local geometry, and this local

tangent information is then aligned to provide a global coordinate. HLLE obtains

the final low-dimensional representations by applying eigenanalysis to a matrix

built by estimating the Hessian over the neighborhood. All these algorithms

possess the out of sample problem, and thus several linearizations have been

proposed, e.g. locality preserving projections (LPP) [110], neighborhood pre-

serving embedding (NPE) [112], and orthogonal neighborhood preserving projec-

tions (ONPP). Recently, we developed a systematic framework (patch alignment

[249][250] for understanding the common properties of, and intrinsic differences

between, the different algorithms, including their linearizations. In particular,

this framework demonstrated that i) algorithms are intrinsically different at the

patch optimization stage, and ii) all algorithms share an almost identical whole

alignment stage. Another unified view of popular manifold learning algorithms is

the graph embedding framework [235]. Based on both frameworks, different algo-

rithms have been developed, e.g. discriminative locality alignment [164], manifold

regularization [16], and marginal Fisher’s analysis [227].

Specific dimension reduction models can be designed for different learning

tasks. In these methods, the data samples are compressed to a low-dimensional

feature space, in which the useful information is well preserved, the assumptions of

the learning model are fulfilled, and the time cost of applying learning algorithms

is reduced. However, the compression is only applied to the dimensions of data, is

not robust to outliers, and cannot express more complicated structures. Moreover,

the training stage of these methods always requires SVD, and the associated

expensive time cost significantly limits these applications for big data.

1.1.2 Sparse Structure and Sparse Learning

Sparsity has been widely exploited to compress information, obtain efficient cod-

ing of massive data, and select important features. In signal processing, com-

5

pressed sensing [40][71][206][166][261] has proved that a sparse signal can be ex-

actly recovered from a small number of its random projections significantly less

than the Nyquist rate. In statistics, lasso [211] and other �1-regularized regres-

sion models [160][161][166] have been proposed to select important variables for

building a parsimonious prediction model of a response. In sparse coding [1, 142,

150], an over-complete dictionary leads to sparse representations for dense signals

of the same type. The sparse representation has been proven to be effective for

many learning tasks such as classification and recognition [230][273][262].

Early statistics research on sparse learning mainly focused on solving the fea-

ture selection problem, e.g. lasso [211], least angle regression (LARS) [77], elastic

net [275], the smoothly clipped absolute deviation penalty (SCAD) [128], sure

independence screening [84], Dantzig selector [38] and Dantzig selector with se-

quential optimization (Dasso) [130]. A direct method to reduce the number of

involved features in learning problems is to set very small coefficients as zero.

However, this strategy is problematic because small coefficients might be very

important. Since each new base is a linear combination of the original ones, it is

reasonable to consider each as the response of several variables, i.e. the original

features. In this way, the problem of sparse learning becomes similar to variable

selection and coefficient shrinkage. In linear regression, the Lp norm penalty

is always combined with the loss function to reduce over-fitting. In particular,

�1-norm (or lasso) possesses the desirable property of driving an acceptable num-

ber of coefficients to zero, and this leads to a sparse model between responses

and variables because of its singularity in the origin [185][123]. The number of

lasso-selected variables is no larger than the number of samples. Moreover, lasso

randomly selects one variable from the group of variables that are highly corre-

lated. Therefore, elastic net has been proposed to address the above problems

and achieve the grouping effect by adding the �2 penalty to lasso.

In recent years, group sparsity [243] and structured sparsity [131][124] have

been proposed to not only capture the sparse structure in learning problems, but

also consider the variable relations when selecting features. This is effective in

problems such as multi-task learning [6][159][7].

Although sparse learning has recently become extremely popular, it also has

several limitations. Firstly, the algorithms that pursue a sparse solution are

6

always slow in speed. Secondly, sparse learning merely compresses the features

or weights the variables in learning problems. Thirdly, a sparse structure is not

expressive on some big data with complicated structures.

1.2 Literature Survey of Compressed Learning

In history, several names have been proposed or used for different types of com-

pressed learning. Various broadly discussed techniques, such as dimension reduc-

tion and sparse learning mentioned before, can be classified as two categories of

compressed learning, because of the compressible structures and data redundancy

they explored. Most methods in these categories focus on feature extraction or

selection resulting in a decreasing number of features. However, there also exists

other compressed learning methods beyond these two categories. We will give a

brief introduction to them below, while their details can be found in the beginning

of each Chapter.

Instead of merely assuming low-rank or sparse structures, a more expressive

compression of the original data with structural information is to decompose it

as a mixture of different compressible structures rather than a simple one. An

representative of this kind is robust PCA [37], which decompose the data matrix

into the sum of a low-rank part and a sparse part. A more general assumption

X = L+S is applied in this case [43], i.e., the data matrix X can be decomposed

as the sum of a low-rank matrix L and a sparse matrix S. L explains the compo-

nents that lie in a subspace and smoothly change across different instances, while

S contains the spiky anomalies that are rarely shared by different instances. This

model is called “robust PCA” due to its robustness to sparse noise S when recov-

ering principle components of L from X, and can be applied to video surveillance,

graphical mode selection, image alignment, multi-label learning [259], etc. PCP

[37] recovers L and S from X by minimizing sum of the trace norm of L and the

�1 norm of S. It can be proved that the solution to this convex relaxation is the

exact recovery if X = L + S indeed exists and L and S are sufficiently incoher-

ent [43][37]. That is, L obeys the incoherence property in (8.1) and thus is not

sparse, while S has nonzero entries uniformly selected at random and thus is not

low-rank. Popular optimization algorithms such as augmented Lagrangian mul-

7

tiplier, accelerated proximal gradient method and accelerated projected gradient

method [46] have been applied. But full SVD as a costly subroutine is required

to be repeatedly invoked in any of them.

Another commonly observed phenomenon on big data is the large amount of

missing values, which cannot be always replaced by arbitrary numbers (for exam-

ple, zeros) and thus needs to be completed according to the low-rank structure

among data entries. The goal of matrix completion [39][36] is to recover the whole

data matrix X from partial noisy entries or undersampled linear measurements

A(X) (A is the sampling operator) by leveraging the connections between dif-

ferent instances. Such connections can be well captured by low-rank structure.

Matrix completion has broad applications in various real problems of consider-

able importance, such as collaborative filtering in recommendation system [272]

link prediction for social network, quantum state tomography and traffic distance

completion. The matrix completion problem was firstly written as a rank mini-

mization that is NP-hard both to solve and approximate. Thus trace norm (�1

norm of singular values) as the convex surrogate of rank has been minimized in

many popular approaches [35][132]. For a matrix X ∈ R
m×n of rank-r with SVD

decomposition X = BΣD, the obtained global solution is provable to exactly re-

cover X from O(nr log6 n) uniformly sampled noisy entries if it fulfills incoherence

property. Another norm receiving much attention for encouraging low-rank solu-

tion is max-norm ‖X‖max = inf{‖U‖2,∞‖V T‖2,∞ : X = UV } [204][151] (‖ · ‖2,∞
is the maximum �2 row norm of a matrix), whose theoretical recovery bound is

established based on Rademacher complexity of its unit ball [89]. The max-norm

can be defined as the global solution to an non-convex optimization on left and

right factors U and V .

Both trace norm minimization and max-norm minimization can be formu-

lated as semidefinite programming (SDP) which has standard solvers. Various

accelerated optimization methodologies [168][151] also have been applied to them

for practical purpose. However, most of them rely on costly computation of full

SVD in each iterate, and thus do not scale well to large-scale problems. This

fact induces a revisit of rank minimization/constraint based formulations. For-

ward greedy selection methods including ADMiRA [152] and GECO [200] are

developed for rank minimization. GECO adopts an interesting greedy strategy:

8

it increments the rank by 1 and adds the optimal rank-1 direction into the op-

timization per iterate. Incremental OptSpace [137] also has a similar scheme.

We inherit a similar spirit but solve different optimization models in GreB. Error

minimization with rank constraint is also considered in SVP [129]. Some of them

like OptSpace and GECO model the low-rank variable as factorization USV and

optimize over (U, V) pair and S. Unfortunately, truncated SVD or large matrix

multiplication is still required in these approaches. In addition, the update of S

is to solve a large-scale overdetermined linear system and thus time consuming

in practice. Furthermore, the rank is fixed within some algorithms, so in this

case the recovery accuracy strongly relies on the quality of rank estimation. On-

line/stochastic gradient method [12] and aggregated (divide-and-conquer) method

[170] have also been considered for pursuing approximated recovery. Since GreB

can be straightforwardly transferred to or invoked as a subroutine by them to

take their advantages, they will not be included in later comparison.

While most other compressed learning methods are seeking for low-dimensional

latent features or sparse/compressible representations, the number of labels or re-

sponses could also be huge in real problems and lead to a large output space that is

difficult to be handled by current supervised learning methods. One sub-category

of compressed learning contains approaches simplifying the learning process by

compressing the output space. These techniques are always designed for joint pre-

diction, multi-label learning or multi-task learning. In this thesis, we are mainly

interested in multi-label learning adopting this label compression strategy. The

{0, 1} label matrix Y is sparse and thus compressible. In [122], Y is compressed

via random projections Y ′ = Y A, and then a new regression model Y ′ = XW ′ is

obtained, the original Y can be recovered via compressed sensing algorithms. This

is a successful application of compressed sensing (CS) [71] to multi-label learning

and inherits the theoretical merit of CS, i.e., only O(log(k)) models needs to be

trained for data with k labels. This method reduces the model complexity caused

by the large number of labels. Some label transformation methods (please refer to

10.1.2) can also be regarded as label compression by exploring their correlations

and structure.

9

1.3 Main Contributions and Road Map

In the remainder of this thesis, we expand the compressed structures from low-

rank and sparse to more complicated structures that are more common and more

adaptive for big data purposes. For different learning tasks, we will develop

compressed learning models that leverage these structures to reduce the time cost

and improve the learning performance, especially in noisy and large-scale cases

that cannot be fully handled by previous methods. The concept of “compressed

learning” plays an essential role in these models and algorithms, and provides new

insights in to various significant learning problems. We show the relationships

between the proposed approaches from different perspectives in Figure 1.1. A

brief introduction to these techniques are given below in the sequence of Chapters.

In particular, Chapter 2 and Chapter 3 aim to develop fast algorithms that

extract the low-dimensional sparse features of the data for a broad set of learning

tasks. This problem not only compresses data on its dimensions, but also on its

cardinality. Chapter 2 introduces the “manifold elastic net (MEN)” [269, 267],

which learns low-dimensional feature space with a sparse projection matrix or

sparse data representations by formulating the problem as a sparse regression

with elastic net regularization. It is a unified framework that can be applied to

most manifold learning and dimensionality reduction models in order to obtain

sparse solutions. Chapter 3 introduces “double shrinking (DS)” [264], in which

similar learning tasks are solved by establishing an �1-norm regularized eigenvalue

maximization/minimization model and by developing a path-following optimiza-

tion algorithm. The DS model is more challenging to optimize, but is more gen-

eralizable than the regression model adopted by MEN. Both methods improve

the interpretation of extracted features and the learning performance in different

learning tasks, such as clustering and recognition, and when applied to different

real data including human faces, object images, and genomic data.

Chapter 4 studies how to compress big data into fewer “anchor points” that are

able to represent the whole dataset in learning problems. This problem is different

from dimensionality reduction that compresses features, since it aims to compress

entire data samples. In particular, we propose a “divide-and-conquer anchoring

(DCA)” [257] method to rapidly find anchor points as the global optimal solution

10

Figure 1.1: Relationships between the proposed approaches in this thesis.

for near-separable, non-negative matrix factorization (NMF). This method is able

to process extremely large-scale data in a distributed manner and in cases that

are corrupted with noise or contain missing values. Empirical studies highlight

its robust properties across different types of data.

Chapter 5 provides two low-rank matrix approximation strategies to deal with

large numbers of data samples that can be accurately approximated by a small

number of basis vectors. The first strategy, “bilateral random projections (BRP)”

11

[263], is developed based on spectrum analysis of random matrix theory. BRP

offers a closed form of low-rank approximation built from left and right random

projections of a data matrix. The number of required random projections can

be far less than the size of the data matrix, and as a result the time cost is very

small. The other strategy, “greedy bilateral sketch” [258], formulates the problem

as an optimization of the left and right factors of the low-rank approximation, and

updates the two factors in a mutually adaptive and greedy augmenting manner,

that is the size of factor matrices are dynamically increased by adding the best

rank-one direction into them. These two strategies are able to handle low-rank

structure learning problems on big data, and are supported by solid theoretical

guarantees.

Chapter 6 and Chapter 7 study learning noisy data by compressing it to the

linear mixture of the two compressible structures, i.e. represent the data matrix

X as the sum of a sparse part S, a low-rank part L, and noise G. This mixture

structure is more expressive and generalizable for big data, in which not all the

samples can be limited to a single simple structure. Chapter 6 proposes “GO

decomposition (GoDec)” [265], in which the two incoherence structures are sep-

arated from data by fast randomized update rules, while the “greedy bilateral

(GreB)” scheme [258] in Chapter 7 provides a greedy and factor model-based

method for solving the unmixing problem, resulting in even greater acceleration.

The low-rank structure always represents the shared information between sam-

ples, while the sparse structure usually captures the individual or anormal effect

in specific samples, or outliers. Hence, the extracted compressible structures can

be applied to a vast range of classification or clustering-based learning tasks in

computer vision and text mining, and is able to achieve robust performance.

Convergence analysis of these two approaches is presented.

Chapter 8 focuses on matrix completion, which predicts the missing values of

a data matrix from partial entries by exploring their relationships as defined by

low-rank structure. This problem aims to learn unknown data from compressed

information, and has tremendous utility in recommendation systems and signal

processing. However, the slow speed of existing algorithms limits its potential.

We extend GoDec and GreB (Chapter 6 and 7) [265, 258] to produce randomized

and greedy algorithms for matrix completion of large-scale matrices. Experimen-

12

tal results on real recommendation data of movies and jokes shows significant

improvements in both speed and prediction accuracy using these two algorithms.

In Chapter 9 we extend the low-rank and sparse structures of GoDec and GreB

to more expressive and general structures, and propose fast unmixing algorithms

for these more complicated structures. In particular, we propose three non-trivial

variants: 1) in “shifted subspace tracking (SST)” [260] for motion segmentation,

we further decompose the sparse S (moving objects) as the sum of multiple row-

sparse matrices, each of which is a low-rank matrix after a specific geometric

transformation sequence and defines a motion shared by multiple objects; 2) in

“multi-label subspace ensemble (MSE)” [259, 266] for multi-label learning, we

further decompose the low-rank L into subcomponents with separable subspaces,

each corresponding to the mapping of a single label in feature space. The predic-

tion can then be effectively conducted by group lasso on the subspace ensemble;

3) in “linear functional GoDec (LinGoDec)” for estimating the scoring functions

of each user in a recommendation system, we further decompose the low-rank L

as WZT , where the rows of W are the linear scoring functions and the rows of Z

are the items represented by available features. These variants expand the con-

cepts of incoherent structures defined by low-rank and sparse matrices to multiple

(≥ 2) components and more complicated structures, and allow nonlinear corre-

lations among samples. Therefore, compared to robust PCA and GoDec, which

limit the clean data matrix to be the sum of a low-rank part and a sparse part,

these variants are capable of modeling much broader classes and more general

types of data in real applications, including motion in videos, multi-label data,

and recommendation systems, where the mixing structures are more complicated

and more difficult to separate.

Chapter 10 proposes a novel multi-label learning scheme, “compressed labeling

(CL) on distilled label sets (DL)” [268], that can produce effective and efficient

multi-label learning from any single-label classifier. This approach simultane-

ously solves three core problems in multi-label learning, namely high-dimensional

labels, label correlation modeling, and sample imbalance for each label. Rather

than compressing the features or samples in learning, CL compresses the responses

and the number of classifiers in supervised learning. In particular, CL compresses

the high-dimensional sparse label vectors to a compact 0-1 balanced label vector

13

of low dimensions, learns far fewer single-label classifiers independently, and uses

a hypothesis-testing method to determine the appearance of frequent label sets

(i.e. distilled label sets) from the compressed label vector in prediction. CL signif-

icantly improves the balance of the training samples and reduces the dependence

between different labels. Moreover, it accelerates the learning process by training

less binary classifiers for compressed labels, and makes use of label dependence

via DL-based tests. Theoretically, we prove the recovery bound of CL, which

verifies the effectiveness of CL for improving label compression and multi-label

classification performance by the label correlations preserved in DLs. The com-

pressed learning scheme in CL substantially reduces both the time and sample

complexity of multi-label learning to less than those for independent single-label

learning, and simultaneously fully explores the label correlations to improve the

prediction accuracy.

In summary, this thesis studies compressed learning from several different

perspectives. First, we study how to compress feature dimension, representation

cardinality, representative samples, and responses of supervised learning for dif-

ferent learning tasks, and in doing so we broaden the methodology of compressed

learning. Second, we study different forms of compressible structures, includ-

ing sparse and low-dimensional features, the sum mixture of low-rank and sparse

structures, low-rank structure under nonlinear transformation, low-rank structure

defined by multiple functions, low-rank structure that can be decomposed into

multiple distinguishable subspaces, and the sum mixture of these variants with

sparse structure. These expressive and compressible structures provide powerful

tools for building accurate and adaptive models for complicated data. Third,

the proposed compressed learning models take both noise and missing values

into account in their development, and are therefore robust on big data that are

not as clean as many ML methodologies assume. In addition, the divide-and-

conquer, randomized, and greedy strategies adopted in these methods lead to

highly scalable algorithms that can easily handle large volumes of data that can-

not be processed by conventional ML methods. Most of the proposed methods

can be modified to fast online learning [255, 117] after minor changes. Finally, all

of the proposed methods provide practical solutions to real-life problems, and we

demonstrate their efficacy and efficiency on real data, underpinned by solid the-

14

ory from rigorous analysis. Some contents of this thesis come from our published

papers [257]-[270].

15

Chapter 2

Manifold Elastic Net: A Unified

Framework for Sparse Dimension

Reduction

It is difficult to find the optimal sparse solution of a manifold learning based

dimensionality reduction algorithm. The lasso or the elastic net penalized mani-

fold learning based dimensionality reduction is not directly a lasso penalized least

square problem and thus the least angle regression (LARS) [77], one of the most

popular algorithms in sparse learning, cannot be applied. Therefore, most current

approaches take indirect ways or have strict settings, which can be inconvenient

for applications. In this chapter, we proposed the manifold elastic net or MEN

for short. MEN incorporates the merits of both the manifold learning based di-

mensionality reduction and the sparse learning based dimensionality reduction.

By using a series of equivalent transformations, we show MEN is equivalent to

the lasso penalized least square problem and thus LARS is adopted to obtain the

optimal sparse solution of MEN. In particular, MEN has the following advantages

for subsequent classification: 1) the local geometry of samples is well preserved

for low dimensional data representation, 2) both the margin maximization and

the classification error minimization are considered for sparse projection calcula-

tion, 3) the projection matrix of MEN improves the parsimony in computation,

4) the elastic net penalty reduces the over-fitting problem, and 5) the projection

16

matrix of MEN can be interpreted psychologically and physiologically. Experi-

mental evidence on face recognition [116] over various popular datasets suggests

that MEN is superior to top level dimensionality reduction algorithms.

2.1 Introduction

One of the primary focuses in data mining and machine learning is finding

a succinct and effective representation for original high dimensional samples

[109][143][68][149][156][209][207]. Linear dimensionality deduction is such a tool

that projects the original samples from a high dimensional space to a low dimen-

sional subspace. Meanwhile some particular information, e.g., manifold structure

and discriminative information, of the original high dimensional samples will be

well preserved while noises will be removed in the selected subspace.

In recent years, sparse learning becomes popular, because:

1. sparsity can make the data more succinct and simpler, so the calculation

of the low dimensional representation and the subsequent processing, e.g.,

classification and regression, becomes more efficient. Parsimony is especially

an important factor when the dimension of the original samples is very high

and the number of samples is very large;

2. sparsity can control the weights of original variables and decrease the vari-

ance brought by possible over-fitting with the least increment of the bias.

Therefore, the learn model can generalize better; and

3. sparsity provides a good interpretation of a model, thus reveals an explicit

relationship between the objective of the model and the given variables.

This is important for understanding practical problems, especially when

the number of variables is larger than that of the samples.

However, it is not easy to find the optimal solution of a sparse learning model.

In the original lasso, the residue sum of squares is minimized subject to the sum

of the absolute value of the coefficients being less than a constant. The quadratic

programming is sequentially utilized to get the solution and thus the time cost

17

is not acceptable for practical applications. Recently, the least angle regression

(LARS) [77] is proposed to seek a close form solution to the path of coefficients

in each step without using the quadratic programming, so it is more efficient and

less greedy than the original optimization algorithm used in lasso.

Hitherto, most of sparse dimensionality reduction algorithms are designed for

linear regression and only a few can be applied for subsequent classification, e.g.,

sparse principal component analysis (SPCA) [273], Nonnegative sparse principal

component analysis [245], sparse linear discriminant analysis (SLDA), sparse pro-

jections over graph (SPOG) [33][34] and SPCA using semi-definite programming

[60]. Both SPCA and SPCA using semi-definite programming do not consider

the sample label information and thus some discriminative information will be

removed after dimensionality reduction. SLDA can work well for binary class

classification but it cannot be applied for multi-class classification. SPOG uti-

lizes a particular manifold learning based dimensionality reduction algorithm,

e.g., locality preserving projections (LPP), to obtain the dense projection ma-

trix and then applies lasso to regress the corresponding sparse projection matrix.

Absolutely the problem is indirectly formulated to obtain the sparse projection

matrix. A direct formulation should be imposing the lasso penalty over a loss

function (i.e., a criterion) of a dimensionality reduction algorithm. However, it is

difficult to use LARS to obtain its optimal solution because the objective function

is not a direct regression problem. Therefore, researchers currently take indirect

routs to obtain sparse projection matrices.

2.1.1 The proposed approach

In this chapter, we propose the manifold elastic net (MEN), which obtains a

sparse projection matrix for subsequent classification. MEN directly imposes the

elastic net penalty (i.e., the combination of the lasso penalty and the �2-norm

penalty) over the loss (i.e., the criterion) of a discriminative manifold learning

based dimensionality reduction algorithm. By using a series of complex linear

algebra equivalent transformations, the objective function of MEN can be rewrit-

ten as a lasso penalized least square problem and thus LARS can be applied to

obtain the optimal sparse solution of MEN.

18

In detail, we first apply the part optimization of the patch alignment frame-

work to encode the local geometry of a set of training samples. In the second

step, the whole alignment of the patch alignment framework is applied to calcu-

late the unified coordinate system for local patches obtained in the first step. For

low dimensional data representation, the linearization or the linear approxima-

tion is adopted in MEN. Although we can impose some discriminative informa-

tion preservation criterion (e.g., margin maximization) over the part optimization

stage, it is not directly relevant to the classification error minimization. There-

fore, we put a new item that minimizes the classification error in the third step.

To obtain a sparse projection matrix with the grouping effect, in the fourth step,

the elastic net penalty is adopted in MEN. So far, the objective function of MEN

is fully constructed.

With the well defined MEN, we then apply LARS to obtain the optimal so-

lution of MEN. We transform MEN into a form in which the correlation of basis

can be written as the correlation of coefficients. Active set is built according

to LARS. In each step, no more than one element of the basis is added to the

active set according to its correlation. All elements in the active set are changed

in each step with special direction and distance in the space of coefficients. The

direction and distance of a path in each step have closed form solution according

to the extended simplex. The sparsity of the projection matrix is controlled by

the cardinality of the active set. Because the LARS for MEN generates bases in

an independent way, the same procedure is conducted multiple times to obtain

a set of bases. Under this procedure, these bases are orthogonal. Thorough ex-

periments on face recognition [199] task based on popular face datasets show the

effectiveness of the proposed MEN by comparing against the top level dimension-

ality reduction algorithms.

The rest of the paper is organized as follows. Section 2 presents the proposed

manifold elastic net (MEN) including the objective function of MEN and the

LARS optimization for MEN. Section 3 shows the effectiveness of MEN for face

recognition over different face datasets. Section 4 concludes.

19

2.2 Manifold Elastic Net

Consider in the discriminative dimensionality reduction problem with training

samples and corresponding class labels. Let X = [x1, x2, · · · , xn]
T ∈ R

n×p be a

given training set in a high dimensional space Rn×p and C = [c1, c2, · · · , cn]T ∈ R
n

be the corresponding class label vector. The objective here is to find a projection

matrix W = [w1, w2, · · · , wd]
T ∈ R

p×d that projects samples xT ∈ R
p in the high

dimensional space onto a low dimensional subspace, i.e., zT = xTW , such that

samples from different classes can be well separate, i.e., the classification error

can be extremely minimized.

Manifold learning based dimensionality reduction aims to find the correspond-

ing low dimensional representation z in a low dimensional Euclidean space of x

to preserve (actually approximate) the data intrinsic structure. Popular manifold

learning based dimensionality reduction algorithms, however, have the following

two problems: 1) the classification error is not directly and explicitly considered,

although some algorithms compound discriminative information preservation cri-

teria, e.g., margin maximization; and 2) the obtained low dimensional representa-

tion linear combines of all variables in the high dimensional space, so it is difficult

to clear interpret and efficiently represent data.

Sparse learning provides sparse data representation via variable selection, and

has the following advantages: 1) the sparsity improves the parsimony in compu-

tation, i.e., the computational cost can be significantly reduce; 2) the penalties

and the constraints introduced in a learning model discourage the possible over-

fitting of the model; and 3) the learned model can be well interpreted. However,

existing sparse learning algorithms are designed for linear regression problems

and the data intrinsic structure is usually ignored.

To achieve the merits of manifold learning based dimensionality reduction and

the advantages of sparse learning, in this chapter, we propose the manifold elastic

net (MEN), which is a general framework to obtain the sparse solution of the

manifold learning based discriminative dimensionality reduction. There are few

research results on combining sparse learning and discriminative dimensionality

reduction because the projection matrix of a lasso penalized model cannot be

obtained directly by using the least angle regression (LARS).

20

MEN is not a direct combination of the manifold learning based dimensionality

reduction and the sparse learning. It however finds the optimal sparse solution of

every manifold learning based discriminative dimensionality reduction algorithm

via the patch alignment framework and a new classification error minimization

based criterion. In particular, MEN encodes the local geometry of a set of samples

and finds an aligned coordinate system for data representation under the patch

alignment framework; MEN utilizes the classification error minimization criterion

to directly link the classification error with the selected subspace; and MEN

incorporates the elastic net regularization to sparsify the projection matrix.

2.2.1 Part optimization

Different manifold learning algorithms encode different types of local geometry

of samples, e.g., locally linear embedding (LLE) applies linear coefficients to re-

construct a sample by its neighbors. The patch alignment framework has well

demonstrated that different algorithms have different optimization criteria to en-

code different local geometry over patches.

In MEN, the same as the part optimization in the patch alignment frame-

work, each patch is constructed by a particular sample xi and its k related ones

xi1 , xi1 , · · · , xik . The patch is denoted by Xi =
[
xT
i , x

T
i1
, xT

i2
, · · · , xT

ik

]T ∈ R
(k+1)×p.

MEN finds a linear mapping fi that projects the patch Xi ∈ R
p to a low di-

mensional subspace R
d, i.e., fi : Xi �−→ Zi, where Zi =

[
zTi , z

T
i1
, zTi2 , · · · , zTik

]T ∈
R

(k+1)×d. The part optimization maximizes the similarity of the local geometry

represented by Xi and that described by Zi:

argmin
Zi

tr
(
ZT

i LiZi

)
, (2.1)

where Li ∈ R
(k+1)×(k+1) encodes the local geometry of the patch Xi and it is

different over different dimensionality reduction algorithms.

For a given sample xi, its k related ones are divided into two groups: the

k1 ones in the same class with xi and the k2 ones from different classes with xi.

These two groups are selected independently and denoted by {xi1 , xi2 , · · · , xik1}

21

and
{
xi1 , xi2 , · · · , xik1

}
respectively. Therefore, the patch for xi is defined by

Xi =
[
xT
i , x

T
i1 , x

T
i2 , · · · , xT

ik1 , x
T
i1
, xT

i2
, · · · , xT

ik1

]T
∈ R

(k1+k2+1)×p.

The corresponding the low dimensional representation is

Zi =
[
zTi , z

T
i1 , z

T
i2 , · · · , zTik1 , zTi1 , zTi2 , · · · , zTik1

]T
∈ R

(k1+k2+1)×d.

Let Fi =
{
i, i1, i2, · · · , ik1 , i1, i2, · · · , ik2

}
to be the index set. In the low dimen-

sional subspace, we expect that the distances between the given sample and the

group of related samples from different classes are as large as possible, while the

distances between the sample and the group of related samples in the same class

are as small as possible. Therefore the part optimization is:

argmin
Zi

k1∑
j=1

‖zi − zij‖22 − κ

k2∑
p=1

‖zi − zip‖22, (2.2)

where κ is a trade-off parameter to control the impacts of the two parts. Define

the coefficient vector:

ωi =

⎡
⎣ k1︷ ︸︸ ︷
1, 1, ..., 1,

k2︷ ︸︸ ︷−κ,−κ, ...,−κ

⎤
⎦T

, (2.3)

then we can obtain the part optimization matrix,

Li =

[∑k1+k2
j=1 (ωi)j −ωT

i

−ωi diag (ωi)

]
. (2.4)

2.2.2 Whole alignment

Each patch Xi for 1 ≤ i ≤ n has a corresponding low dimensional representation

Zi. To unify all low dimensional patches Zi =
[
zTi , z

T
i1 , z

T
i2 , · · · , zTik1 , zTi1 , zTi2 , · · · , zTik1

]T
for 1 ≤ i ≤ n together into a consistent coordinate system, according to the patch

alignment framework, we assume that the coordinate of Zi is selected from the

global coordinate Z =
[
zT1 , z

T
2 , · · · , zTn

]T ∈ R
n×d by a using sample selection

22

matrix Si ∈ R
(k1+k2+1)×n:

Zi = ZSi, (2.5)

where the selection matrix Si is defined by

(Si)pq

{
1, if q = Fi {p};
0, else.

. (2.6)

According to (2.5), the part optimization defined in (2.1) can be rewritten as:

argmin
Z

tr
(
ZTST

i LiSiZ
)
. (2.7)

After summing over all part optimizations together, the whole alignment is given

by:

argmin
Z

n∑
i=1

tr
(
ZTST

i LiSiZ
)

=argmin
Z

tr

(
ZT

n∑
i=1

(
ST
i LiSi

)
Z

)

=argmin
Z

tr
(
ZTLZ

)
, (2.8)

where L is the alignment matrix. It is obtained by an iterative procedure:

L (Fi, Fi) ← L (Fi, Fi) + Li. (2.9)

It is worth emphasizing that the mapping f : X �→ Z from the high dimen-

sional space to the low dimensional subspace can be nonlinear and implicit. How-

ever, the linear approximation Z = XW is adopted, i.e., we expect the difference

between Z and XW is minimized. In particular, W = [w1, w2, · · · , wd] ∈ R
p×d.

Therefore, the objective function is:

argmin
Z,W

tr
(
ZTLZ

)
+ β‖Z −XW‖22. (2.10)

23

2.2.3 Classification error minimization

In MEN, although the discriminative information for classification is considered

duly in (2.10), the classification error is not directly modeled. To further enhance

the performance of MEN for classification problems, it is necessary to provide

an explicit way to represent the classification error minimization in the objec-

tive function. The least square error minimization is usually adopted in binary

classification,

argmin
W

‖Y −XW‖22. (2.11)

However, it is very challenging to apply (2.11) to multi-class classification. This is

mainly because the class label vector C cannot be directly utilized as the output

(response) Y .

Recently, the least squares linear discriminant analysis [239][205] or LS-LDA

for short is proposed and presents the equivalence relationship between the least

square formulation and the conventional linear discriminant analysis (LDA) for

multi-class classification under a mild condition. However, the dimension of the

indicator matrix is the number of classes c. Therefore, LS-LDA can only reduce

the original data to a c−1 dimensional subspace. It is pretty fine when samples are

drawn from homoscedastic Gaussians because the Bayes optimal is achieved iff the

dimension of the subspace is c−1. However, for practical applications, samples are

usually not sampled from homoscedastic Gaussians and a dozen of experimental

evidences show that we usually achieve the best classification performance in a

subspace lower than c− 1 when c is large.

In this chapter, we propose a flexible method to design the indicator matrix Y

and the dimension of the selected subspace is allowed to be any number between

1 and c−1. In comparing with LS-LDA, the proposed indicator design method is

more flexible and powerful to gain a lower dimensional representation and higher

recognition rate. Therefore, the new method meets most demands for practical

applications, e.g., face recognition.

The nearest-neighbor (NN) rule is commonly applied in classification prob-

lmes. In NN, it would be perfect when samples in the same class are projected

onto the same point after dimensionality reduction, and this point is the low

24

dimensional representation of the corresponding class center. Meanwhile the

variance of these projected class centers is expected to be maximized. As a

consequence, the low dimensional projection of class centers can be conveniently

obtained by the weighted principal component analysis (PCA).

In detail, suppose the given n samples belong to c classes, and there are ci

samples in the ith class. The ith class center is oi = (1/ci)
∑mi

j=1 xj, wherein xj is

the jth sample in the ith class and is a row vector in R
p. The proportion of the

ith class is pi = ci/n. Therefore, the weighted covariance matrix of class centers

is given by:

V =
m∑
i=1

pio
T
i oi. (2.12)

Suppose we expect to find a d dimensional subspace. The d eigenvectors as-

sociated with the largest d eigenvalues η = [η1, η2, · · · , ηd] of V are selected to

calculate the low dimensional representation of the class center oi according to

ôi = oiη. (2.13)

Therefore, the indicator matrix Y = [y1, y2, · · · , yn]T is given by yj = ôi. On

combining (2.10) and (2.11), we have

argmin
Z,W

‖Y −XW‖22 + αtr
(
ZTLZ

)
+ β‖Z −XW‖22, (2.14)

where α and β are trade-off parameters to control the impacts of different parts.

2.2.4 Elastic net penalty

In MEN, we expect to obtain a sparse projection matrix for explicit data represen-

tation and effective interpretation, i.e., control the number of nonzero elements in

each column of the projection matrix. This nonzero number of the entries of the

projection matrix can be characterized by the �0-norm of the projection matrix.

We can impose it over the objective function defined in (2.14) as a penalty. How-

ever, it turns to be an NP-hard problem and thus it is always impossible to be

solved in a polynomial time, because the penalty is nonconvex [166]. Therefore,

25

the �1-norm of the projection matrix, i.e., lasso, is usually adopted as a relaxation

of the �0 penalty. Although lasso is convex, it is difficult to find the solution of

the lasso regularized model. This is because the lasso term is not differentiable.

Least angle regression or LARS for short has been proposed to greedily search

the optimal solution of the lasso penalized linear regression problem. LARS con-

tinuously shrinks the particular coefficients (entries of the projection matrix W)

towards zeros, while simultaneously preserves high prediction accuracy.

However, the lasso penalty has the following two disadvantages: 1) the number

of selected variables is limited by the number of observations and 2) the lasso

penalized model can only select one variable from a group of correlated ones and

does not care which one is selected. By imposing an �2-norm of the projection

matrix on the lasso penalized problem, similar to the elastic net, we can overcome

the aforementioned two disadvantages and retain the favorable properties of the

lasso penalty. In detail, the �2-norm of the projection matrix is helpful to increase

the dimension (and the rank) of the combination of the data matrix and the

response. In addition, the combination of the �1 and �2 of the projection matrix

is convex with respect to the projection matrix and thus the obtained projection

matrix has the grouping effect property.

Therefore, to obtain a sparse projection matrix W with the grouping effect,

both �1-norm and �2-norm of the projection matrix are added as penalties to the

objective function defined in (2.14) and we obtain the full definition of MEN:

argmin
Z,W

‖Y −XW‖22 + αtr
(
ZTLZ

)
+ β‖Z −XW‖22 + λ1‖W‖1 + λ2‖W‖22.

(2.15)

Although there are four parameters, i.e., α, β, λ1, λ2, needed to be determined

in the above model, the parameter tunning can be done in an efficient way by con-

sidering the roles of each term in the objective function (and its weight). The first

three terms are the objective of discriminative manifold learning, while the last

two terms are elastic net regularization encouraging group sparsity. Therefore,

we can jointly tune α and β by temporarily ignoring the elastic net regulariza-

tion, where large α stretches the low-dimensional points Z close to the nonlinear

manifold defined by L but might lead to worse linear approximation, large β can

26

result in better linear approximation but worse reflection of the favored mani-

fold structure. Large α and β put more weight onto manifold learning than the

discriminative information. After determining α and β, we can tune λ1 and λ2

in the same way as elastic net, because current problem equals to linear square

regression with elastic net regularization.

2.2.5 LARS for MEN

It has been demonstrated that LARS is effective and efficient to find the optimal

solution of the lasso or the elastic net (the combination of �1 and �2) penalized

multiple linear regression. Therefore, it can be directly applied to penalized least

squares only. However, the proposed MEN defined in (2.15), at the first glance,

is not a penalized least square.

In this Section, we detail utilizing LARS to obtain the optimal solution of

MEN. Although LARS is designed to solve the penalized multiple linear regression

where the coefficients are a vector rather than a matrix, the column vectors of the

projection matrix W in MEN are independent bases. Therefore, we can calculate

them one by one. In the following analysis, we consider a particular column of W ,

i.e., wi, and the corresponding vector yi in the indicator matrix Y . To simplify

the notations below, we keep using W and Y instead of wi and yi.

Because the low dimensional representation Z and the projection matrix W

are independent, we can eliminate Z in the objective function. In detail, Z is

obtained by setting the differentiate of the objective function F with respect to

Z as 0, i.e.,

∂F

∂Z
= α

(
L+ LT

)
Z + 2β (Z −XW) = 0. (2.16)

Therefore, we have

Z = β (αL+ βI)−1 XW. (2.17)

According to (2.17), we can eliminate Z in the objective function defined in (2.15),

27

and thus we have:

argmin
Z,W

W TXTAXW − 2W TXTY + λ1‖W‖1 + λ2‖W‖22. (2.18)

where this A is an asymmetric matrix computed from L:

A =α
(
β (αL+ βI)−1

)T
L
(
β (αL+ βI)−1

)
+

β
(
β (αL+ βI)−1 − I

)T (
β (αL+ βI)−1 − I

)
+ I. (2.19)

To apply LARS to obtain the optimal solution of (2.18), we expect the first

item in it to be a quadratic form. Because 2XTAX = XT
(
A+ AT

)
X and the

eigenvalue decomposition of
(
A+ AT

)
/2 can be written as UDUT , the objective

function defined in (2.18) without the elastic net penalty can be rewritten as:

W TXTAXW − 2W TXTY

=W TXT
(
D1/2UT

)T (
D1/2UT

)
XW − 2W TXT

(
D1/2UT

)T ((
D1/2UT

)T)−1
Y

=

∥∥∥∥((D1/2UT
)T)−1

Y − (D1/2UT
)
XW

∥∥∥∥2
2

. (2.20)

The constant item can be ignored in optimization without loss of generality. We

further set

X∗ = (1 + λ2)
−1/2

[(
D1/2UT

)
X√

λ2I
p×p

]
∈ R

(n+p)×p, (2.21)

Y ∗ =

⎡
⎣((D1/2UT

)T)−1
Y

0p×1

⎤
⎦ ∈ R

(n+p)×1 (2.22)

in (2.18), and then we get

argmin
W ∗ ‖Y ∗ −X∗W ∗‖22 + λ‖W ∗‖1, (2.23)

where λ = λ1/ (1 + λ2) and W ∗ =
√
1 + λ2W .

28

According to (2.23), the LARS algorithm can be applied to obtain the optimal

solution of the proposed MEN. LARS provides an efficient algorithm to solve the

lasso penalized multiple linear regression.

Below we sketch LARS for the transformed MEN defined in (2.23) and provide

novel viewpoints to LARS, which are helpful to better understand the proposed

MEN.

We begin with a coefficient vector W ∗ (a column in the projection matrix

with ith entry (W ∗)i with all zero entries. A variable (a column vector in X,

i.e., a particular feature) in R
n is most correlated with the objective function is

added to the active set A. Then the corresponding coefficient in W ∗ increases

as large as possible until a second variable (another column vector in X, i.e.,

another feature) in R
n has the same correlation as the first variable. Instead of

continuously increasing the coefficient vector in the direction of the first variable,

LARS proceeds on a direction equiangular over all variables in the active set A

until a new variable earns its way into A. To make the coefficient vector W ∗

becomes K-sparse (at most K nonzero entries), we conduct the above procedure

for K loops. The optimization path direction and the corresponding path length

(step size) in LARS are determined by the correlations, which are the negative

gradient of the objective function defined in (2.23) without the lasso penalty, i.e.,

C = − ∂F

∂W ∗ = 2 (X∗)T (Y ∗ −X∗W ∗) = [c1, c2, · · · , cp]T . (2.24)

The constant 2 can be simply ignored without loss of generality in the following

analysis.

The larger the correlation ci is, the more important the corresponding vari-

able will be, and thus the larger the corresponding coefficient (W ∗)i in W ∗ will

be. In sparse learning, important variables are added to the active set A sequen-

tially according to their corresponding correlations defined in (2.24), and then

the direction and distance of coefficient vector of all the important variables are

determined.

Let A be the active set of ”most correlated” variables whose coefficients are

nonzero, while the other variables form an inactive set I. Thus the sparsity is

determined by the cardinality of A. The correlations of variables in A are always

29

identical to each other in A and larger than the correlations of variables in I.

Those correlations of variables in I are usually different to each other. Initially,

all the variables are in inactive set I and thus the corresponding coefficients are

all zero.

To make W ∗ K-sparse, we need to conduct the following three steps for K

loops. In the first step, the variable in the inactive set I with the largest corre-

lation is added to the active set A, i.e.,

Ĉ = max
j

{|ĉj|} and A =
{
j : |ĉj| = Ĉ

}
, (2.25)

where ĉj is the current correlation of the jth variable.

In the second step, the direction of the coefficient vector W ∗ is calculated. To

make the optimization more global and less greedy, the correlations of the active

variables are required to decrease equally in preferred direction. In the kth loop,

if the direction vector is ω, then the current correlation is given by

Ck =(X∗
A)

T (Y ∗ −X∗W ∗
k)

= (X∗
A)

T (Y ∗ −X∗ (W ∗
k−1 + ρω

))
=Ck−1 + ρ (X∗

A)
T X∗

AωA, (2.26)

where X∗
A contains all variables in A and each its column is sampled from X∗,

Ck−1 is the correlation in the (k − 1)th loop, ρ is a constant that is irrelevant

to the direction computation, ωA stores directions associated with variables in

A, and the change of the correlation at this step is (X∗
A)

T X∗
AωA. The sign of

ωA, i.e., s, is identical to that of Ck−1, so we can calculate the magnitude of ωA

directly and then assign its sign as s. This X∗
AωA is an extended simplex with

vertices defined by active variables. We project the ith column of X∗, i.e., (X∗)i,

onto X∗
AωA and thus we get (X∗)Ti X∗

AωA. Because the correlations of the active

variables are required to decrease equally in preferred direction, i.e., (X∗)Ti X∗
AωA

equals to each other over the index i, the only possible solution of X∗
AωA is the

normal vector through the origin in the simplex space. Therefore, we have

ωA = s · (X∗T
A X∗

A

)−1
1A = s ·G−1A 1A, (2.27)

30

where GA = X∗T
A X∗

A is the Gram matrix of X∗
A. In LARS, ωA is obtained by

minimizing the squared distance between the point X∗
AωA on the simplex and the

origin, subject to ‖ωA‖1 = 1.

To normalize the change of the correlation X∗T
A X∗

AωA to a unit vector uA, we

need to update AA and ωA, and thus we obtain a normalized uA, i.e.,

AA =← (
1T
AG

−1
A 1A

)−1/2
, (2.28)

ωA ← s · AAG
−1
A 1A and (2.29)

uA ← X∗
AωA. (2.30)

In the third step, we calculate the distance or magnitude of changes ρ1. To

have an efficient optimization procedure, this ρ1 should be as large as possible.

At the same time, we have to guarantee that correlations of variables in A are

always identical to each other in A and larger than correlations of variables in

I. Therefore ρ is increased until the correlation of a particular variable in I is

equivalent to the correlations of active variables, i.e.,

ρ1 = min+
j∈AC

{
Ĉ − ĉj
AA − aj

,
Ĉ + ĉj
AA + aj

}
, (2.31)

where AC is the complement of A, a = X∗T
A uA, aj is the jth entry of a, Ĉ is the

largest correlation defined in (2.25) and obtained in the first step, and ρ1 is a

possible candidate of ρ mentioned in (2.26).

According to LARS, to obtain an identical solution to MEN defined in (2.23),

the lasso modification is considered, i.e., the argument of the distance ρ stops

increasing when a coefficient of variables in A is zero, or mathematically,

W ∗
Ak = W ∗

Ak−1 + ρ2sAωA = 0, (2.32)

where ρ2 is another possible candidate of ρ defined in (2.26). According to (2.32),

we can obtain

ρ2 = min+
{−W ∗

Ak−1/sAωA

}
. (2.33)

31

Therefore, the distance of W ∗, i.e., ρ, is the minimum of ρ1 and ρ2, i.e.,

ρ = min+ {ρ1, ρ2} . (2.34)

In each loop, one new variable is added to the active set A according to (2.25),

the direction and distance of the coefficient vector W ∗ are calculated according

to (2.30) and (2.34). After K loops, W ∗ is K-sparse. According to the elastic

net, to eliminate the double shrinkage, the optimal W should be corrected:

W =
√

1 + λ2W
∗. (2.35)

2.2.6 Fast LARS

LARS is inefficient when the size of the training set is large, because the time

cost for calculating the inverse of the Gram matrix GA defined in (2.27) is huge.

Because the dimension of this GA is increasing at each of the K loops, according

to [99], the inverse of GA can be obtained incrementally, i.e., the inverse of the

Gram matrix (GAk
)−1 in the kth loop can be updated from

(
GAk−1

)−1
in the

previous loop. Particularly, in the kth loop, a new variable (X)i ∈ R
n is added to

the active set A, and thus we have

GAk
=X∗T

Ak
X∗

Ak
= XT

Ak
XAk

+ 2λ2I

=

[
XT

Ak−1

(X)Ti

] [
XAk−1

(X)i

]
+ 2λ2I

=

[
XT

Ak−1
XAk−1

XT
Ak−1

(X)i
(X)Ti XAk−1

(X)Ti (X)i

]
+ 2λ2I

=

[
XT

Ak−1
XAk−1

+ 2λ2I XT
Ak−1

(X)i
(X)Ti XAk−1

(X)Ti (X)i + 2λ2

]
. (2.36)

Let A, B, C and D be the blocks of GA, i.e., A = XT
Ak−1

XAk−1
+ 2λ2I,

B = XT
Ak−1

(X)i, C = (X)Ti XAk−1
, and D = (X)Ti (X)i + 2λ2. Let SA to be the

Schur complement of A, i.e., SA = D − CA−1B. According to rules of the block

32

matrix calculation, (GAk
)−1 is given by:

(GAk
)−1 =

[
A−1 + A−1BS−1A CA−1 −A−1BS−1A

−S−1A CA−1 S−1A

]
, (2.37)

where A−1 =
(
GAk−1

)−1
is the inverse of the Gram matrix obtained in the previous

loop. The time cost for calculating the inverse of the Gram matrix in the kth loop

can be reduced from O(p3) to O(p2 + 5p) (p is the size of active set in the kth

loop) when the inverse of the Gram matrix in the previous loop is available.

We can further accelerate the computation of LARS for MEN by taking the

advantage of the sparse structure of X∗. For example, when calculating the

equiangular vector a and the inner product GA, the block matrix calculation can

reduce the time cost as well.

2.2.7 Algorithm

In this chapter, we propose an efficient framework MEN for discriminative dimen-

sionality reduction with sparse projection. Based on the discussion in the above

33

six subsections, MEN is shown in Algorithm 1.

Algorithm 1: Manifold Elastic Net (MEN)

Input: Training data matrix X = [x1, x2, · · · , cn] ∈ R
n×p; Class label

vector C = [c1, c2, · · · , cn]T ; W = [w1, w2, · · · , wd] ∈ 0p×d, where d

is the dimensions of subspace

Output: Sparse projection matrix W = [w1, w2, · · · , wd] ∈ R
p×d

for k ← 1 to d do

Optional PCA reconstruction of original data X;

Part optimization: build n patches for the n given samples according to

definition of manifold, calculate matrix Li for each patch using (2.3)

and (2.4);

Whole alignment: unify the patches in a global coordinate, compute

big matrix L using (2.9);

Classification error minimization: Calculate the indicator matrix Y

using scaled PCA for class centers using (2.13;

New data matrix and indicator matrix: Calculate X∗ and Y ∗ from X

and Y using (2.21) and (2.22);

for m ← 1 to K do
Update active set: add the variable with largest correlation to A

using (2.24) and (2.25); Direction calculation using (2.29), (2.30)

and fast LARS (2.37); Distance calculation using (2.31), (2.33) and

(2.34); Update wk using (2.35);

end

Update projection matrix W by adding wk into W ;

end

In MEN, after necessary initializations, we first build patches for all training

samples by calculating Li of each patch in the part optimization according to (2.4)

in subsection 1. Then these Li matrixes are unified in a global coordinate system

into one matrix L according to (2.9) in whole alignment step explained in Section

2.2.2. Afterwards, the indicator matrix Y is computed according to the weighted

PCA over class centers defined in (2.13) in Section 2.2.3. A matrix A defined in

(2.15) in the objective function can be obtained from L and other parameters.

The eigenvalue decomposition is conducted over
(
A+ AT

)
/2 to construct the

34

new data matrix X∗ and the new indicator matrix Y ∗ according to (2.21) and

(2.22), respectively.

Then the LARS algorithm is applied to calculate a sparse projection matrix.

The direction and distance of each loop are computed according to (2.30) and

(2.34). The incremental method to obtain the inverse of the Gram matrix defined

in (2.37) is considered speeding up LARS. This process is conducted several times

and the projection matrix is computed column by column. Finally a sparse

projection matrix is obtained as the output of MEN. This matrix is ready to

project a given sample in R
p to a low dimensional subspace R

d with K-sparse.

MEN is an efficient algorithm with high convergence velocity, because the

computation in LARS explained in subsections 5 and 6 is equivalent to the cost

of a least square fit. Given a training set X ∈ R
n×p, to obtain a sparse matrix

W ∈ R
p×d each column of which contains K nonzero elements, d times of LARS

are required in MEN. Most steps in LARS are simple matrix computations. For

p
 n, MEN requires O(dK3 + dpK2) operations.

2.2.8 Discussions

MEN integrates the merits of both manifold learning and sparse learning via a

unified framework. It is not a direct combination of these two popular learning

schemes but a complementary embedding of both. Through the patch align-

ment framework, the local geometry of a given dataset is retained in MEN. The

weighted lasso and �2 penalties are added to produce a sparse projection ma-

trix with the grouping effect. The combined lasso and �2 is also termed as the

elastic net. Therefore, we term the proposed framework as the manifold elastic

net. As a consequence, MEN is superior to existing dimensionality reduction

algorithms, because of its powerful variable selection function and consideration

of the intrinsic structure of the dataset.

It has been well demonstrated that LARS is effective and efficient to solve

a lasso regularized least square problem. Therefore, to apply LARS to find the

optimal solution of MEN, it is essential to prove that MEN is equivalent to a

lasso regularized least square problem and LARS converges for optimization.

In particular, we prove that LARS can optimize a general form of the lasso

35

regularized problem, which contains both MEN and the lasso regularized least

square problem as special cases.

Theorem 1. LARS can solve a general form of the lasso regularized problem

defined below:

argmin
β

βTAβ + βTB + C + t‖β‖1, (2.38)

where β ∈ R
p×1 and A ∈ R

p×p (could be an asymmetric square matrix), B ∈ R
p×1,

and C and t are constants.

Proof. It is equivalent to prove that the problem defined in (2.38) is equivalent

to a lasso regularized least square problem.

The objective function defined in (2.38) without the lass penalty can be writ-

ten as:

βTAβ + βTB + C = βT

(
A+ AT

2

)
β + βTB + C, (2.39)

where
(
A+ AT

)
/2 ∈ R

p×p is a symmetric matrix and its eigenvalue decomposi-

tion is
(
A+ AT

)
/2 = UDUT .

Therefore, we have:

βT

(
A+ AT

2

)
β + βTB + C

=βT
(
D1/2UT

)T (
D1/2UT

)
β−

2βT
(
D1/2UT

)T (−1

2

((
D1/2UT

)T)−1
B

)
+ C

=

∥∥∥∥
(
−1

2

((
D1/2UT

)T)−1
B

)
− (D1/2UT

)
β

∥∥∥∥2
2

+ const. (2.40)

To simply represent the above objective function, without loss of generality, let

Y = −1

2

((
D1/2UT

)T)−1
B,X =

(
D1/2UT

)
, (2.41)

and ignore the constant. Therefore, we can transform the problem defined in

36

(2.38) to

argmin
β

‖Y −Xβ‖22 + t‖β‖1, (2.42)

which is a lasso regularized least square problem. It is not difficult to prove that

MEN is a special case of the problem defined in (refequ:theo1). Therefore, LARS

can be applied to solve MEN and the problem defined in (2.38).

Theorem 2. LARS converges in optimizing the problem defined in (2.38) in

Theorem 1.

Proof. Let the objective function defined in (2.38) without the lasso penalty be

F . After the kth loop, assume the estimate of the objective function becomes Fk.

If F is smooth in each loop, we have:

Fk − Fk−1
ωi

∈
[
min

{
∂Fk

∂βi

∣∣∣βi=βk
i
,
∂Fk

∂βi

∣∣∣βi=βk−1
i

}
,

max

{
∂Fk

∂βi

∣∣∣βi=βk
i
,
∂Fk

∂βi

∣∣∣βi=βk−1
i

}]
, (2.43)

where βi is the i
th element in coefficient vector β, and ω is the change of β between

two consecutive loops, i.e., ω = βk − βk−1 = [ω1, ω2, · · · , ωp]
T .

In LARS for the problem defined in (2.38), the sign of ω is the negative

gradient of objective function F on βk−1, i.e.,

sign (ωi) = sign

(
−∂Fk

∂βi

∣∣∣βi=βk−1
i

)
. (2.44)

In each loop of LARS, when correlation of one active variable becomes zeros,

the length of the coefficient path will stop increasing. Therefore, the sign vector

of correlations will not change in one loop, i.e.,

sign

(
−∂Fk

∂βi

∣∣∣βi=βk
i

)
= sign

(
−∂Fk

∂βi

∣∣∣βi=βk−1
i

)
= sign

(
Fk − Fk−1

ωi

)
= −sign (ωi)

According to the analyses, we can obtain the sign of (Fk − Fk−1):

sign (Fk − Fk−1) = −sign (ω) · sign (ω) = −1. (2.45)

37

According to the above equation, the objective function F is monotonic. In

addition, F is bounded. Therefore, we can safely draw the conclusion that LARS

converges in optimizing the problem defined in (2.38).

2.3 Experiments

In this section, we evaluate the performance of MEN by comparing against six rep-

resentative dimensionality reduction algorithms, i.e., principal component analy-

sis (PCA), Fisher’s linear discriminant analysis (FLDA), discriminative locality

alignment (DLA) [249][250], supervised locality preserving projection (SLPP),

neighborhood preserving embedding (NPE), and sparse principal somponent anal-

ysis (SPCA), on three standard face image databases, i.e., UMIST [11], FERET

[188] and YALE [13].

PCA is an unsupervised linear dimensionality reduction algorithm which projects

the data along the direction of maximal variance. FLDA is a supervised linear

dimensionality reduction method. SLPP is a supervised modification of the lo-

cality preserving projections, which is a linearization of the Laplacian Eigenmap.

NPE is a linear approximation to the locally linear embedding (LLE). SPCA is a

sparse dimensionality reduction algorithm which combines the lasso penalty with

PCA to produce sparse loadings.

Three standard face image datasets, e.g., UMIST, FERET and YALE, are

utilized in this chapter to evaluate the proposed MEN for discriminative dimen-

sionality reduction. There are 565 face images from 20 individuals in the UMIST

dataset. The samples demonstrate variations in race, gender, pose and appear-

ance. The FERET dataset consists of 13, 539 face images from 1, 565 individuals.

The images vary in size, gender, pose, illumination, facial expression and age.

We randomly select 100 individuals, each of which has 7 images from FERET

for performance evaluation. The YALE dataset contains 165 face images of 15

individuals. Lighting conditions, gender, facial expressions and configurations

are different among these images. All images from these three databases are nor-

malized to 40 × 40 pixel arrays with 256 gray levels per pixel. Figure 2.1 shows

sample images from these three datasets. Each image is reshaped to a long vector

by concatenating its pixel values in a particular order.

38

Figure 2.1: Sample face images from the three databases. The first row comes
from UMIST; the second row comes from FERET; and the third row comes from
YALE.

Different algorithms follow an equivalent procedure for all face recognition

experiments on various datasets. Firstly, the database is randomly divided into

two separate sets: training set and testing set. Then the training set is used to

learn the low dimensional subspace and corresponding projection matrix through

given algorithm. After this, samples in the testing set are projected to a low

dimensional subspace via the projection matrix. Finally, the nearest neighbor

classifier is used to recognize testing samples in the subspace.

We apply PCA to reduce dimensions of original high dimensional face images

before FLDA, DLA, LPP (with supervised setting) and NPE (with supervised

setting). For FLDA, we retain n− c dimensions in the PCA projection, where n

is the number of samples and c is the number of classes. We project samples to

the PCA subspace with n− 1 dimensions for DLA, SLPP and NPE.

For UMIST and YALE, we randomly select p = (5, 7) images per individual

for training, while the remaining images are used as testing samples. For FERET,

p = (4, 5) images per individual are selected as training set, and the remaining

for testing. All experiments are repeated five times, and the average recognition

rates are calculated.

The results of these dimensionality reduction algorithms on two settings of

39

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

FERET 4 Train

MEN
DLA

LPP

NPE

FLDA

PCA
SPCA

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

FERET 5 Train

MEN
DLA

LPP

NPE

FLDA

PCA
SPCA

Figure 2.2: Recognition Rate vs. Dimension on FERET

FERET are shown in Figure 2.2. These seven algorithms can be divided into 3

groups according to their performance: PCA and SPCA are at the bottom level,

because they are unsupervised and the label information is not considered. PCA

is slightly better than SPCA, because SPCA is designed to approximate PCA but

with less information retained to hold the sparse property. LPP, NPE and LDA

are at the middle level. They are much better than PCA and SPCA because they

consider the class label information. LPP and NPE preserve the local geometry

based on the neighborhood information of samples, while LDA ignores the local

geometry. LPP and NPE cannot perform as well as DLA and MEN because both

of them ignore the margin maximization or the inter-class information. MEN and

DLA are at the top level. MEN outperforms DLA because it reduces the noises

by using the elastic net penalty.

Experimental results on UMIST are shown in Figure 2.3. MEN outperforms

the other six algorithms consistently. Note the fact that MEN keeps having

the highest recognition rate when the dimension of the selected subspace is low.

This verifies the robustness of MEN in low dimension situation. In addition,

the computational cost is proportional to the dimension of the selected subspace.

Therefore MEN produces better results with less computational cost than other

dimensionality reduction methods.

40

0 2 4 6 8 10 12 14 16 18
10

20

30

40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

UMIST 5 Train

MEN
DLA

LPP

NPE

FLDA

PCA
SPCA

0 2 4 6 8 10 12 14 16 18
10

20

30

40

50

60

70

80

90

100

Dimension
R

ec
og

ni
tio

n
R

at
e

(%
)

UMIST 7 Train

MEN
DLA

LPP

NPE

FLDA

PCA
SPCA

Figure 2.3: Recognition Rate vs. Dimension on UMIST

Figure 2.4 shows MEN outperforms the other six algorithms on the YALE

dataset. The curves of MEN are smoother than those of the other algorithms.

This implicates that MEN is more stable than the other algorithms. MEN has

high recognition rate even when the training set is small and the dimensions of

the selected subspace is low. The priority of MEN can be attributes to its super-

vised learning property, consideration of data manifold structure, feature selection

ability brought by sparsity and the grouping effect. The sparsity of MEN filters

out classification irrelevant features, which bring unnecessary noises for classifi-

cation. This is effective especially when the number of classes is much smaller

than the number of the original features. Furthermore, the sparse projection

matrix brings better interpretation and lower computational cost for subsequent

calculation than dense projection matrices.

Table 2.1 lists the best recognition rate and the corresponding subspace di-

mension for each algorithm in the experiments on the three face image datasets.

Sparse dimensionality reduction algorithm including MEN and SPCA always ar-

rive their best recognition rate in lower dimensional subspace than other five

algorithms. This is because the sparsity brought by the lasso penalty is able to

select the most significant features. However, because SPCA does not consider

the class label information, it always performs more poorly than other supervised

41

0 2 4 6 8 10 12 14

10

20

30

40

50

60

70

80

90

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

YALE 5 Train

MEN
DLA

LPP

NPE

FLDA

PCA
SPCA

0 2 4 6 8 10 12 14

10

20

30

40

50

60

70

80

90

Dimension
R

ec
og

ni
tio

n
R

at
e

(%
)

YALE 7 Train

MEN
DLA

LPP

NPE

FLDA

PCA
SPCA

Figure 2.4: Recognition Rate vs. Dimension on YALE

algorithms. For each algorithm, the dimension of the best recognition rate is

decreasing with the increasing of training samples. This is because more training

samples make the low dimensional representation more stable and reliable.

Boxplots of the experimental results of these seven dimensionality reduction

algorithms on the three face image datasets are shown in Figure 2.5, Figure 2.6

and Figure 2.7, respectively. Each boxplot produces a box and whisker plot for

each method. The box has lines at the lower quartile, median, and upper quartile

values. Whiskers extend from each end of the box to the adjacent values in the

MEN DLA LPP NPE LDA PCA SPCA

FERET
4 90.67(17) 88.67(19) 74.00(17) 74.33(21) 76.33(25) 48.00(54) 45.67(41)
5 96.50(30) 88.50(35) 83.50(36) 82.00(19) 84.00(49) 54.00(51) 48.50(58)

MEN DLA LPP NPE LDA PCA SPCA

UMIST
5 95.89(17) 94.57(18) 90.11(19) 89.68(19) 88.21(18) 88.63(13) 80.63(19)
7 99.21(16) 97.62(19) 95.40(19) 95.17(18) 97.24(14) 93.79(19) 90.57(18)

MEN DLA LPP NPE LDA PCA SPCA

YALE
5 82.78(13) 79.11(12) 79.33(13) 77.11(14) 82.22(12) 61.11(12) 63.33(13)
7 90.33(12) 87.00(12) 85.00(13) 84.33(11) 81.67(11) 66.67(13) 63.33(12)

Table 2.1: Best recognition rate (%) on three databases. For MEN, DLA, LPP
(SLPP), NPE, LDA (FLDA), PCA, SPCA (Sparse PCA), the numbers in the
parentheses behind the recognition rates are the subspace dimensions. Numbers
in the second column denote the number of training samples per individual.

42

data-by default and the most extreme values within 1.5 times the interquartile

range from the ends of the box.

MEN achieves the most robust recognition rate, because it considers the sparse

property, the local geometry of intra-class samples, and the margin maximization

and classification error minimization of inter-class samples. MEN selects features

with the largest correlation and eliminates the most unstable ones. Manifold

learning methods, such as LPP, DLA and NPE, as well as LDA are more stable

than PCA and SPCA according to these boxplots because they consider the class

label information.

Figure 2.8, Figure 2.9 and Figure 2.10 show the columns of the projection

matrix of the seven algorithms on the three face image datasets. The low dimen-

sional subspace is spanned by the column vectors, which is called bases. The bases

of PCA are called Eigenfaces [222], while the bases of LDA are called Fisherfaces

[111] in previous literatures. Similar methods can be applied to DLA, SLPP,

NPE, SPCA and MEN. The bases of MEN are sparser and have less noise than

PCA and DLA because of its sparsity, and more grouping than SPCA because

of its grouping effect adopted from the �2 penalty. Sparse bases lead to com-

putational efficiency and good interpretation. According to Figure 2.8, Figure

2.9 and Figure 2.10, “MEN faces” retain the most discriminative facial features,

e.g., eyebrows, eyes, nose, mouth, ears and facial contours, while leave the other

parts blank. “SPCA faces” are sparse but without the grouping effect, their fa-

cial contours and organs are represented by some isolate points. “LPP faces” and

“NPE faces” are very similar in appearances and this fact well explains that they

perform comparably in these datasets. “DLA faces” have better description of

features and less noises than those obtained by LPP, NPE and FLDA.

In each LARS loop of the MEN algorithm, according to the algorithm listed

in Algorithm 1, all entries of one column in the MEN projection matrix are ze-

ros initially. They are sequentially added into the active set according to their

importance. The values of active ones are increased with equal altering correla-

tion. In this process, the �1-norm of the column vector is augmented. Figure 2.11

shows the altering tracks of some entries of the column vector in one LARS loop.

We called these tracks “coefficient path” in LARS. In Figure 2.11, every coeffi-

cient path starts from zero when the corresponding variable becomes active, and

43

21 22 23 24 25 26 27 28 29 30

30

40

50

60

70

80

90

R
ec

og
ni

tio
n

R
at

e
(%

)

Dimension

FERET 4 Train

21 22 23 24 25 26 27 28 29 30

40

50

60

70

80

90

100

R
ec

og
ni

tio
n

R
at

e
(%

)

Dimension

FERET 5 Train

Figure 2.5: Boxplot of Recognition Rate vs. Dimension (from 21 to 30) on
FERET with 4 (5) training samples per person. For every dimension, from left
to right, the seven boxes refer to MEN, DLA, LPP, NPE, FLDA, PCA, and
SPCA.

44

10 11 12 13 14 15 16 17 18 19

30

40

50

60

70

80

90

100

R
ec

og
ni

tio
n

R
at

e
(%

)

Dimension

UMIST 5 Train

10 11 12 13 14 15 16 17 18 19

75

80

85

90

95

100

R
ec

og
ni

tio
n

R
at

e
(%

)

Dimension

UMIST 7 Train

Figure 2.6: Boxplot of Recognition Rate vs. Dimension (from 10 to 19) on UMIST
with 5 (7) training samples per person. For every dimension, from left to right,
the seven boxes refer to MEN, DLA, LPP, NPE, FLDA, PCA, and SPCA.

45

5 6 7 8 9 10 11 12 13 14

10

20

30

40

50

60

70

80

R
ec

og
ni

tio
n

R
at

e
(%

)

Dimension

YALE 5 Train

5 6 7 8 9 10 11 12 13 14

30

40

50

60

70

80

90

R
ec

og
ni

tio
n

R
at

e
(%

)

Dimension

YALE 7 Train

Figure 2.7: Boxplot of Recognition Rate vs. Dimension (from 5 to 14) on YALE
with 5 (7) training samples per person. For every dimension, from left to right,
the seven boxes refer to MEN, DLA, LPP, NPE, FLDA, PCA, and SPCA.

46

Figure 2.8: Plots of first 10 bases obtained from 7 dimensionality reduction al-
gorithms on FERET For each column, from top to bottom: MEN, DLA, LPP,
NPE, FLDA, PCA, and SPCA

changes its direction when another variable is added into the active set. All the

paths keep in the directions which make the correlations of their corresponding

variables equally altering. The �1-norm is increasing along the greedy augment

of entries. The coefficient paths proceed along the gradient decent direction of

objective function on the subspace, which is spanned by the active variables.

Figure 2.12 shows 10 of the 1600 coefficient paths from LAPS loop for the

first base in experiment on FERET dataset. MEN selects ten important variables

(facial features) sequentially here. Each feature, its corresponding coefficient path

and the“MEN fac” when the feature is added into active set are assigned the same

color which is different with the other 9 features. In each “MEN face”, the new

added active feature is marked by a small circle, and all the active features are

marked by white crosses. The features selected by MEN can produce explicit

47

Figure 2.9: Plots of first 10 bases obtained from 7 dimensionality reduction al-
gorithms on UMIST For each column, from top to bottom: MEN, DLA, LPP,
NPE, FLDA, PCA, and SPCA

interpretation of the relationship between facial features and face recognition:

feature 1 is the left ear, feature 2 is the top of nose, feature 3 is on the head

contour, feature 4 is the mouth, feature 5 and feature 6 are on the left eye, feature

7 is the right ear, and feature 8 is the left corner of mouth. These features are

already verified of great importance in face recognition by many other famous

face recognition methods.

Moreover, Figure 2.12 also shows MEN can group correlated features, for

example, feature 5 and feature 6 are selected sequentially because they are both

on the left eye. In addition, features which are not very important, such as feature

9 and feature 10 in Figure 2.12, are selected after the selection of the other more

significant features and assigned smaller value than those more important ones.

Therefore, MEN is a powerful algorithm in variable (feature) selection.

48

Figure 2.10: Plots of first 10 bases obtained from 7 dimensionality reduction
algorithms on YALE For each column, from top to bottom: MEN, DLA, LPP,
NPE, FLDA, PCA, and SPCA

49

0 0.1 0.2 0.3 0.4 0.5 0.6
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

L-1 norm of one column of projection matrix

E
nt

rie
s

of
 o

ne
 c

ol
um

n
of

 p
ro

je
ct

io
n

m
at

rix

LARS loop in MEN

Figure 2.11: Entries of one column of projection matrix vs. its �1-norm in one
LARS loop of MEN

2.4 Conclusion

In this chapter, we propose a unifying framework which obtains a sparse pro-

jection matrix for subsequent classification, termed manifold elastic net or MEN

for short. MEN incorporates the advantages of both manifold learning based di-

mensionality reduction and sparse learning based dimensionality reduction, but

it is not a direct combination of these two. To obtain a sparse projection matrix,

MEN imposes the elastic net penalty over a loss function that is defined under the

patch alignment framework. The objective function of MEN can be transformed

into a lasso penalized least square problem by using a series of complex linear

algebra equivalent transformations, and thus the least angle regression (LARS)

can be applied to obtain the optimal sparse projection matrix.

In MEN, the patch alignment framework is first used to construct local patches

50

0 5 10 15 20 25

-0.1

-0.05

0

0.05

0.1

L-1 norm of column vector

10
 e

nt
rie

s
of

 c
ol

um
n

ve
ct

or

Coefficient paths in one LARS loop of MEN

Feature 1
Feature 2
Feature 3
Feature 4
Feature 5
Feature 6
Feature 7
Feature 8
Feature 9
Feature 10

Figure 2.12: Coefficient paths of 10 entries (features) in one column vector

of data and unifies these patches into a global coordinate system. Secondly,

the classification error is minimized directly via weighted principal component

analysis (PCA) over class centers. Thirdly, to obtain a sparse projection matrix

with the grouping effect, the elastic net penalty is added to the objective function.

After a series of equivalent transformations, MEN can be rewritten as a lasso-

type regression. Therefore, LARS can be applied to solve the problem efficiently.

In each LARS loop for MEN optimization, important variables are added into

the active set sequentially according to their correlation. All the elements in the

active set are altered along a special direction with a special distance in each

step. The special direction and distance keep the correlation of active elements

identical and the largest in a LARS loop. The procedure is conducted several

times to obtain a set of sparse bases because these bases are independent.

MEN enjoys advantages in several aspects: 1) the local geometry of intra-class

samples is well preserved for low dimensional data representation, 2) both the

margin maximization and the classification error minimization are considered for

discriminative information preservation, 3) the sparsity of the projection matrix of

MEN improves the parsimony in computation, 4) the elastic net penalty reduces

51

the over-fitting problem, and 5) the projection matrix of MEN can be interpreted

psychologically and physiologically.

Experimental results of face recognition on UMIST, FERET and YALE show

that MEN performs better and more stable than popular dimensionality reduc-

tion algorithms, such as the principal component analysis (PCA), Fisher’s linear

discriminant analysis (FLDA), the discriminative locality alignment (DLA), the

locality preserving projections with supervised setting (LPP), the neighborhood

preserving embedding with supervised setting (NPE), and the sparse principal

component analysis (SPCA).

There are still many interesting properties of MEN which have not been tar-

geted and formally proved in this chapter. In the future, we will analyze its error

bounds under different situations. Another important problem in MEN is how to

choose the optimal sparsity, so that we can remove most noise and retain most

discriminative information for subsequent classification. The compressed sensing

may be an effective tool to address the above concern. It is also valuable to re-

place the lasso penalty with the �0-norm penalty to further improve MEN with

more “accurate sparsity”. The lasso penalty is a relaxation of �0-norm penalty,

and there are alternatives which could perform better than the lasso penalty, e.g.,

the smoothly clipped absolute deviation penalty (SCAD) [128], the reweighted

�1 minimization [42], the adaptive lasso [274] and the adaptive elastic net. The

advantages of these methods can be adopted in MEN to further enhance the

variable selection ability of MEN, and there is still a long way to go.

52

Chapter 3

Double Shrinking for Sparse

Dimension Reduction

Learning tasks such as classification and clustering usually perform better and

cost less (time and space) on compressed representations rather than on the orig-

inal data. Previous works mainly compress data via dimension reduction. In

this chapter, we propose “double shrinking” to compress image data on both

dimensionality and cardinality via building either sparse low dimensional repre-

sentations or a sparse projection matrix for dimension reduction. We formulate

double shrinking model (DSM) as an �1 regularized variance maximization with

constraint ‖x‖2 = 1, and develop double shrinking algorithm (DSA) to optimize

DSM. DSA is a path-following algorithm that can build the whole solution path

of locally optimal solutions of different sparse levels. Each solution on the path

is the “warm start” for searching the next sparser one. In each iterate of DSA,

the direction, the step size and the Lagrangian multiplier are deduced from the

Karush-Kuhn-Tucker (KKT) conditions. The magnitudes of trivial variables are

shrunk and the importances of critical variables are simultaneously augmented

along the selected direction with the determined step length. Double shrinking

can be applied to manifold learning and feature selection for better interpretation

of features, and can be combined with classification and clustering to boost their

performance. The experimental results suggest that double shrinking produces

efficient and effective data compression.

53

3.1 Introduction

Sparsity has been widely exploited to compress information, obtain efficient cod-

ing of massive data and select important features. In signal processing, com-

pressed sensing [40][71][206][166][261] has proved that a sparse signal can be ex-

actly recovered from a small number of its random projections. In statistics, lasso

[211] and other �1 regularized regression models [160][161][166] are proposed to

select important variables for building a parsimonious prediction model of a re-

sponse. The success of sparsity and the �1 regularization for various applications

is supported by various facts. For example, images often have sparse represen-

tations [172] after specific transformations such as cosine transform (DCT) and

multi-scale geometric analysis (MGA) [8]; and many types of data, such as face

images and non-coding RNAs, are usually obtained in the form of redundant

features yet insufficient samples.

Dimension reduction has been broadly applied to machine learning for com-

pressing image data and preserving important information in the low-dimensional

subspace. For example, principal components analysis (PCA) [119][263] max-

imizes the mutual information between the original high-dimensional Gaussian

distributed samples and the projected low-dimensional samples. Fisher’s lin-

ear discriminant analysis (FLDA) [87] retains the discriminative information by

maximizing the between-class scatter and minimizing the within-class scatter.

Manifold learning algorithms [196][210] preserve the important geometric struc-

ture of images. In order to reduce the computational complexity and improve

the performance, learning tasks such as classification [270] and clustering are

usually conducted on the dimensionality reduced subspace instead of the origi-

nal high dimensional space. Dimensionality reduction using feature selection has

been formally shown to be important and effective in high dimensional classifica-

tion in [82], who characterized the impact of dimensionality on classification and

proposed the FAIR method for high-dimensional classification.

Compressed sensing compresses images by exploiting their sparsity. Dimen-

sion reduction compresses images by preserving the important informations. In

this chapter, we seamlessly integrate them together in a sparse learning frame-

work “double shrinking” that compresses image data on both dimensionality and

54

cardinality. To retain preferred information underlain in the high dimensional

and dense features, it either directly compresses the data to low dimensional and

sparse representations or finds a low dimensional and sparse projection matrix to

obtain low dimensional approximations. Our experimental results suggest that

each case has its own advantages on different applications. The sparse representa-

tion reduces the space cost and offers explicit interpretations to new coordinates.

Moreover, sparse representations of samples in the same class or cluster tend to

share the same support set, and thus the subsequent classification and clustering

can be improved. The sparse projection matrix for linear dimension reduction

saves the time cost of projection and provides explicit interpretations to selected

features. Our experimental results suggest that double shrinking can produce

competitive performance in many learning tasks comparing with dimension re-

duction algorithms that we are aware of.

3.1.1 Double shrinking model

In this chapter, we formulate double shrinking model (DSM) by introducing the

�1 regularization to the conventional dimension reduction problem. Thus DSM

can be written as

min
x

xTPx+ μ‖x‖1 s.t. xTx = 1, (3.1)

where xTPx refers to the conventional manifold embedding. This P is borrowed

from [17] to retain important information for different applications and includes

popular dimension reduction algorithms as special cases, such as locally linear

embedding (LLE) [196], ISOMAP [210], Hessian eigenmaps [72], Laplacian eigen-

maps [15], and their respective linear approximations [112]. For example, if P is

the normalized graph Laplacian L = I −D−1/2WD−1/2 [182], wherein W is the

adjacency matrix and D is the degree matrix, the solution x is the low dimen-

sional and sparse representation. If P is XTLX, wherein X is the data matrix

and L is the normalized graph Laplacian, the solution x is the sparse projection

matrix and the corresponding low dimensional representation is Xx. The sparsity

of the representation or the projection matrix is due to the �1 regularization in

(3.1). Sparse eigenvalue maximization problem can be equivalently transformed

to the sparse eigenvalue minimization problem (3.1) by changing the object from

55

maximizing xTPx− μ‖x‖1 to minimizing xT (−P)x+ μ‖x‖1.
DSM provides the first explanation of “double shrinking”, i.e., compressing

data or finding a projection matrix by simultaneously shrinking dimensionality

and cardinality. Most optimization problems solved by existing sparse PCA meth-

ods are relaxations of DSM or have similar forms with DSM. However, DSM is

characteristic in its equality constraint xTx = 1.

3.1.2 Previous works

Compared with existing works, the main challenge for optimizing DSM comes

from the simultaneous appearance of the �1 regularization and the equality con-

straint xTx = 1. Although either of them has been independently tackled in

special optimization algorithms, such as lasso [211] and PCA [119], the direct

optimization without relaxations for a problem simultaneously containing both is

rarely found. We prefer the constraint xTx = 1 because it is a critical constraint

existing in most dimension reduction methods to avoid trivial solution such as

all-zeros. In DSM, this constraint keeps the solution on the unit ball so the unim-

portant elements can drop to zeros quickly rather than to a very small nonzero

values, and the magnitudes of important elements can be bounded.

Since the �1 norm is not differentiable, most of the frequently used optimiza-

tion methods are not applicable to the �1 regularized problems. In compressed

sensing and statistics, various algorithms have been developed to address the

�1 regularized least square regression or the �1 norm minimization with a mea-

surement constraint. Popular algorithms can be classified into the following four

groups.

1. Greedy algorithms: Orthogonal matching pursuit (OMP) [214] and com-

pressive sampling matching pursuit (CoSaMP) [178] sequentially select im-

portant variables by using the greedy search. The sparse solution for the

compressed sensing problem is obtained by optimizing the selected vari-

ables.

2. Convex optimization based algorithms: Basis pursuit [47] doubles variables

in the �1 norm minimization and then the �1 norm is replaced by the sum of

56

all the variables. Thus the objective becomes differentiable and the prob-

lem can be solved by linear programming. NESTA [24] adopts Nesterov’s

method [181] to minimize the smoothed approximation of the �1 norm and

converges at rate O (1/k2). An interior point algorithm based on the pre-

conditioned conjugate gradient method is applied in [139] for solving the

large scale compressed sensing problem. Coordinate gradient descent [215]

and gradient projection [86] also have been introduced to the compressed

sensing problem.

3. Iterative thresholding algorithms, e.g., message passing [73], iterative split-

ting and thresholding (IST) [61] and iterated hard shrinking [29], conduct

soft or hard thresholding on the solution at each iteration round and finally

obtain the sparse solution;

4. Fixed point method based algorithms: Bregman iterative algorithm [240],

fixed point continuation [107] and iteratively re-weighted least squares (IRLS)

[191] derive a fixed-point equation from the optimality condition of the com-

pressed sensing problem. They can yield accurate sparse solution within a

small number of iteration rounds.

However, pure greedy algorithms hardly ensure the optimality of DSM. The

additional equality constraint xTx = 1 in DSM makes the existing convex re-

laxation methods of the �1 regularized optimization invalid. Furthermore, the

iterative thresholding algorithms and the fixed point method based algorithms

have to change the �2 norm of the solution in each iteration round and thus vio-

lates the equality constraint xTx = 1 in DSM. In sum, most of the optimization

methods for optimizing the �1 regularized problem cannot be directly applied to

DSM.

The problems solved by existing sparse PCA algorithms are similar to DSM.

Most sparse PCA methods find sparse principal components (PCs) with large ex-

plained variance by solving two kinds of optimization: 1) sparsity constrained/regularized

regression-type problem with an inequality constraint xTx ≤ 1 or normalization

of the obtained x, e.g., Sparse PCA (SPCA) [273], sPCA-rSVD [201]; 2) spar-

sity constrained/regularized SDP that maximizes the explained variance of sparse

57

PC with an inequality constraint xTx ≤ 1, e.g., DSPCA [60], Path SPCA [59]

and SPC in PMD [229]. Greedy method is also applied to sparse PCA in [176].

However, they cannot directly solve DSM.

In summary, it is essential to develop an effective and efficient algorithm to

directly optimize DSM.

3.1.3 Main contribution

The main challenge for solving DSM comes from the �1 regularization and the

equality constraint xTx = 1. In this chapter, we propose DSA that builds a

solution path for DSM from the dense solution to sparse ones. Each solution on

the path is local optimal with respect to its associated regularization parameter.

DSA starts from a point on the path and two initial sets of critical variables and

trivial ones, respectively. In each iteration round, it proceeds on a direction along

which the importances of the critical variables are augmented and the magnitudes

of the trivial variables are shrunk until one of the following three events happens:

1) the magnitude of a trivial variable is shrunk to zero; 2) a critical variable is

transferred to the trivial variable set once its magnitude is shrunk to zero; and

3) a trivial variable is transferred to the critical variable set once its importance

reaches the minimum importance of the critical ones. The first two events provide

the second explanation of the name “double shrinking”. The direction, step size

and Lagrangian multiplier in each iteration round are determined by the Karush-

Kuhn-Tucker (KKT) conditions. Such continuation technique utilizes the current

solution as the “warm start” of the sparser one in the next iteration round and

thus accelerates the optimization. The time complexity of each iteration round

is less than O(s3A + s2B), wherein sA is the number of the critical variables and sB

is the number of the trivial ones. DSA has only one free parameter.

Double shrinking can be applied to manifold learning and feature selection

[167][83], and can be combined with classification [268] and clustering algorithms

to boost performance. It also provides an effective scheme for other �1 regular-

ized optimization with equality constraints. We apply double shrinking to differ-

ent machine learning tasks on image datasets of face recognition, hand-written

character classification, object categorization, UCI and gene expression, and ob-

58

tain promising performance. Some critical properties of double shrinking, i.e.,

variance-cardinality trade-off and speed, are evaluated and compared with exist-

ing sparse PCA methods and sparse coding methods, on both real datasets and

artificial ones. The experimental results suggest that double shrinking provides

an efficient and effective method for data compression.

The rest of the chapter is organized as follows. Section 3.2 defines concepts

used in DSM and DSA. Section 3.3 presents DSA and related proofs. Section 3.4

shows the experimental results of double shrinking for classification, clustering

and feature selection. Section 3.5 concludes the chapter.

3.2 Definitions

In this chapter, lower-case letter denotes a vector or a constant and capital letter

denotes a matrix or a set. Let xi be the ith entry of a vector x and Xij be the

entry that lies in the ith row and the jth column of the matrix X. Given an index

set S for a vector x, we define xS that satisfies (xS)i = xSi
. Given a row index

set A and a column index set B for a matrix X, we define XAB that satisfies

(XAB)ij = XAiBj
. We use superscripts ·k and ·∗ to signify a variable in the kth

iteration round and the final solution of DSA, respectively.

DSM (3.1) is an �1 regularized eigenvalue maximization with an equality con-

straint xTx = 1, and thus it has a locally optimal solution that satisfies two KKT

conditions. In this section, we first show the KKT conditions of DSM by defining

the subgradient of the �1 norm. Based on the KKT conditions, we define the im-

portance and magnitude of a variable in x. Since a sparse solution x is composed

of zero and nonzero variables, we then correspondingly define critical and trivial

variables that will be sequentially determined and updated through DSA.

3.2.1 Karush-Kuhn-Tucker conditions

We start from the KKT conditions [28] of DSM defined in (3.1). The lagrangian

L associated with (3.1) is

L(x, η) = xTPx+ η
(
xTx− 1

)
+ μ‖x‖1. (3.2)

59

Thus the KKT conditions of (3.1) are{
(P + ηI) x = −μ

2
∂‖x‖1,

xTx = 1,
(3.3)

where ∂‖x‖1 signifies the subgradient of ‖x‖1 and has the form

∂‖xi‖1 =
{

sign (xi) , xi �= 0;

δ ∈ [−1, 1] , xi = 0.
(3.4)

According to the definition of subgradient, the �1 norm is not differentiable at

0, and thus δ in (3.4) could be any real number between −1 and 1. If there

exist a Lagrangian multiplier η and an x that satisfy (3.3), x is at least a local

optimum of DSM (3.1). However, it is difficult to obtain the solution x and the

corresponding η from (3.3), because ∂‖xi‖1 is unknown. The proposed DSA can

sequentially determine zero variables in x and update the Lagrangian multiplier

η in its path-following scheme.

3.2.2 Definitions

DSA finds sparse local solutions of DSM via dynamically selecting and updating

critical and trivial variables in x. The final critical and trivial variables determine

the nonzero and zero variables in the solution x∗, respectively. We define the

importance and magnitude of a variable in x. They and KKT conditions together

decide the updating rules for critical and trivial variables in DSA.

Definition 1. (Importance) The importance of a variable xi is defined as the

absolute value of the partial derivative of xTPx+ η
(
xTx− 1

)
w.r.t. xi. Thus the

importance vector c of x is

c = |(P + ηI) x| . (3.5)

According to the first equation in the KKT conditions (3.3), on a locally optimal

solution, c can also be represented as

c =
∣∣∣μ
2
∂‖x‖1

∣∣∣ . (3.6)

60

The Lagrangian of DSM (3.2) can be decomposed as the sum of a loss function

xTPx + η
(
xTx− 1

)
and its �1 regularization μ‖x‖1. Hence the importance of a

variable xi measures the contribution of the variable xi to the reduction of the

loss function. The gradient g of the loss function, is also used in the subsequent

derivations,

g = (P + ηI) x = −μ

2
∂‖x‖1, (3.7)

c = sign (g) · g, g = sign (g) · . (3.8)

Definition 2. (Magnitude) The magnitude of a variable xi is its absolute value.

Thus the magnitude vector m of x is

m = |x| . (3.9)

We use A and B = AC (the complement of A) to denote the index sets of

critical and trivial variables in x, respectively.

Definition 3. (Critical variable) A critical variable is a variable with larger

importance than trivial ones and nonzero magnitude in the current iteration

round:

A = {i : ci ≥ cj:j∈B,mi �= 0} . (3.10)

Set A is dynamically updated throughout DSA. The final A∗ in DSA is the nonzero

set in the final solution x∗.

In DSA, A is initialized at the beginning of the algorithm. The importances

of critical variables cA are augmented and their corresponding magnitudes mA

are kept nonzero throughout DSA. A Critical variable will be transferred to B

once its magnitude shrinks to zero.

Definition 4. (Trivial variable) A trivial variable is a variable with smaller

importance than critical ones in the current iteration round:

B = {i : ci ≤ cj:j∈A} . (3.11)

Set B is dynamically updated throughout DSA. The final B∗ in DSA is the zero

set in the final solution x∗.

61

In DSA, B is initialized at the beginning of the algorithm. The magnitudes

of trivial variables mB are shrunk throughout DSA until reaching zeros. A triv-

ial variable will be transferred to A once its importance reaches the minimum

importance in cA.

3.3 Double shrinking Algorithm

In this section, we develop DSA to optimize DSM. DSA is a path-following algo-

rithm that finds the locally optimal solutions to a sequence of DSM (3.1) with the

tradeoff parameter μ increasing from small to large. This μ controls the sparsity

of the learned model. Each point on the solution path is a “warm start” for

searching the subsequent sparser solution.

DSA starts from the initial solution x, the critical variable set A and the

trivial variable set B. In each iteration round of DSA, the KKT conditions of

the current and subsequent locally optimal solutions determine the directions of

xA and xB. Afterward, the corresponding step size a is determined by three

events. Occurrence of either event will violate the definition of A or B. Thus

the optimization should be paused immediately and then both A and B will be

modified accordingly. Finally, the locally optimal solution x, the �1 regularization

weight μ and the Lagrangian multiplier η are updated. DSA stops when x reaches

preferred sparsity.

3.3.1 Initialization

The solution x, the critical variable set A and the trivial variable set B are

initialized at the beginning of DSA. The initial x must satisfy the KKT conditions

(3.3) with a certain weight μ. The initial sets A0 and B0 are preferred to be close

to the final nonzero and zero variable sets respectively, and thus many iteration

rounds can be saved.

In this chapter, we select the initial solution x0 as the dense solution of (3.1)

by setting μ = 0, i.e., the eigenvector of P associated with the smallest eigenvalue.

Let the target sparse solution x∗ has s ≤ p nonzero variables. The initial critical

variable set A0 is set as the variables with the first s largest importances in c0,

62

and B0 = (A0)C . There will be no difference to set A0 as the variables with the

first s largest magnitudes in m0 and B0 = (A0)C . That is because

c0 =
∣∣Px0

∣∣ ,m0 =
∣∣x0
∣∣ , Px0 = λx0, (3.12)

where λ is the corresponding eigenvalue. Thus, we have

c0 = λm0. (3.13)

Thus the order of variable importances in c0 is the same as the order of variable

magnitudes inm0. According to (3.10) and (3.3), the initial Lagrangian multiplier

η0 = −λ and the initial tradeoff μ0 = 0.

3.3.2 Direction

In the kth iteration round, DSA starts from the current solution xk, proceeds along

a direction ∇x with a particular step size a, and fetches a sparser locally optimal

solution xk+1 satisfying the KKT conditions of DSM (3.3) with μ = μk+1. In this

subsection, we apply the KKT conditions and the definitions of critical/trivial

variables to obtain a state transformation equation that reveals how importances

and magnitudes of variables in x change between xk and xk+1. Thus the equation

leads to the computation of the direction.

According to (3.3), xk satisfies the KKT conditions

Rk :

{ (
P + ηkI

)
xk = −μk

2
∂‖xk‖1

xkTxk = 1.
(3.14)

Consider the subgradient of �1 norm given in (3.4), ∂‖xk‖1 will keep the same

until arbitrary variables in xk change their signs. However, the updating rule in

DSA find the next solution on the path once a variable becoming zero and thus

avoid the change of solution signs before the update of variable set. In particular,

since events 1) and 2) in the step size computation (presented in Section 3.3) will

pause the current iteration round once the magnitude of a variable is shrunk to

zero, the signs of positive/negative variables in xk will not be inverted in xk+1

63

(note positive/negative variables are permitted to turn to zeros). According to

(4), we have

∂‖xk‖1 = ∂‖xk+1‖1. (3.15)

However, it is worthy noting that after the update of variable sets, the zero

variables are allowed to alter to positive/negative values in the next iterate, hence

the sign vectors of the solutions on the path can be changed in DSA. In summary,

the inverting of variable sign are not direct in DSA and needs a pause on a

intermediate state, i.e., zero. And a sparse solution is obtained when reaching

such intermediate state. Since xk and xk+1 are sequel sparse solutions on their

associated intermediate states, we can derive (3.15). Therefore,

Rk+1 −Rk :

{ (
P + ηkI

)
Δx

.
= −Δηxk − Δμ

2
∂‖xk‖1,

xkTΔx = 0,
(3.16)

where Δx = xk+1 − xk, Δη = ηk+1 − ηk and Δμ = μk+1 − μk.

We ignore two small quantities of the second order ΔηΔx and ΔxTΔx in

calculating Rk+1−Rk. The first equation of (3.16) can be decomposed by A and

B into (
Qk

AA Qk
AB

Qk
BA Qk

BB

)(
ΔxA

ΔxB

)
= −

(
Δμ∂‖xk

A‖1/2
Δμ∂‖xk

B‖1/2

)
−Δη

(
xk
A

xk
B

)

= −
(

ΔgA

ΔgB

)
−Δη

(
xk
A

xk
B

)
, (3.17)

where Qk = P + ηkI and Δg = gk+1 − gk. The last equivalence is due to (3.7).

We compute the direction ∇x by solving Δx from (3.17).

The following theorem determines ΔxB and ΔgA appeared in (3.17).

Theorem 3. If xk and xk+1 are two consecutive solutions in DSA that satisfy

the KKT conditions of DSM (3.3) with μ = μk and μ = μk+1, respectively, the

corresponding ΔgA and ΔxB are

ΔgA = Δμ/2 · sign (gkA) = ΔcA · sign (gkA) , (3.18)

ΔxB = −t · sign (xk
B

)
= ΔmB · sign (xk

B

)
, (3.19)

64

where Δc = ck+1 − ck, Δm = mk+1 −mk, and t is a constant.

Proof. When the event 2) in the step size criteria (see Section 3.3.3) happens,

i.e., the magnitude of a critical variable is shrunk to zero, DSA will stop at the

current iteration round and this variable with zero magnitude will be transited

from A to B. This ensures that all the critical variables are nonzero in DSA.

According to definitions of g in (3.7) and the subgradient of ‖x‖1 in (3.4), we

have

gkA = μk∂‖xk
A‖1/2 = μk/2 · sign (xk

A

)
, (3.20)

ΔgA = Δμ∂‖xk
A‖1/2 = Δμ/2 · sign (xk

A

)
. (3.21)

The �1 regularization weight μ is increasing throughout DSA to pursue solutions

from dense to sparse, so Δμ > 0. By combining (3.8), (3.20) and (3.21), we

obtain

ΔcA =
∣∣gkA +ΔgA

∣∣− ∣∣gkA∣∣ = Δμ/2. (3.22)

Thus the importances of critical variables in A are equally augmented in DSA.

This completes the proof of (3.18).

In DSA, the �1 norm ‖x‖1 is decreased along the gradient decent direction of

the trivial variables in B. According to (3.4), the negative partial derivative of

‖x‖1 w.r.t. a nonzero variable xi is −sign(xi). Thus ΔxB in DSA is

ΔxB = −t · sign (xk
B

)
. (3.23)

Due to the definition of magnitude in (3.9), we have

ΔmB = −t. (3.24)

This completes the proof of (3.19).

Theorem 3 indicates that in each iteration round, the importances of critical

variables in A are equally augmented, while magnitudes of trivial variables in B

are equally shrunk. This is consistent with the definition of critical and trivial

variables in Section 3.2.2.

65

In order to simplify the future derivation, we use a, a1 and a2 to represent μ,

η and t, and thus we have:

⎧⎪⎨
⎪⎩

a = Δμ/2,

a1a = t,

a2a = Δη.

(3.25)

By submitting (3.18), (3.19) and (3.25) into (3.17), we can obtain the state trans-

formation equation(
Qk

AA Qk
AB

Qk
BA Qk

BB

)(
ΔxA

−a1a · sign
(
xk
B

)
)

= −
(

a · sign (xk
A

)
ΔgB

)
− a2a

(
xk
A

xk
B

)
.

(3.26)

Both ΔxA and ΔgB in (3.17) are determined by solving the state transforma-

tion equation (3.26).

We decompose the state transformation equation (3.26) into the following two

equations:

Qk
AAΔxA − a1aQ

k
ABsign

(
xk
B

)
= −asign

(
xk
A

)− a2ax
k
A, (3.27)

Qk
BAΔxA − a1aQ

k
BBsign

(
xk
B

)
= −ΔgB − a2ax

k
B. (3.28)

Both ΔxA and ΔgB can then be obtained by solving the above two equations.

We summarize the obtained ΔxA, ΔgA, ΔxB and ΔgB:

ΔxA = −a
(
Qk

AA

)−1 (
sign

(
xk
A

)
+ a2x

k
A − a1Q

k
ABsign

(
xk
B

))
, (3.29)

ΔgA = a · sign (xk
A

)
, (3.30)

ΔxB = −a · a1sign
(
xk
B

)
, (3.31)

ΔgB = −a
(
Qk

BAΔxA + a2x
k
B − a1Q

k
BBsign

(
xk
B

))
. (3.32)

The above results reveal the changes of variable importances and magnitudes

between two consecutively obtained solutions in DSA. However, there still exist

three unknown constants a, a1 and a2 in (3.29)-(3.32).

This a is a multiplier shared by ΔxA, ΔgA, ΔxB and ΔgB, and thus we define

66

a as the step size of DSA and the corresponding direction vectors are

ΔxA = a∇xA,ΔgA = a∇gA (3.33)

ΔxB = a∇xB,ΔgB = a∇gB, (3.34)

where the direction vectors ∇xA, ∇gA, ∇xB and ∇gB are

∇xA = − (Qk
AA

)−1 (
sign

(
xk
A

)
+ a2x

k
A − a1Q

k
ABsign

(
xk
B

))
, (3.35)

∇gA = sign
(
xk
A

)
, (3.36)

∇xB = −a1sign
(
xk
B

)
, (3.37)

∇gB = − (Qk
BA∇xA + a2x

k
B − a1Q

k
BBsign

(
xk
B

))
. (3.38)

The step size a is determined by the step size criteria in Section 3.3.3.

In order to calculate the directions in (3.35)-(3.38), it is necessary to further

determine a1 and a2. This a1 is the only predefined algorithm parameter. We

derive a2 to ensure the second equation in KKT conditions (3.3), i.e., the equality

constraint xTx = 1. Since the initial x0 satisfies ‖x0‖2 = 1, a2 can be derived

from the second equation xkTΔx = 0 in (3.16):

xkTΔx = xk
A

T
ΔxA − a1ax

k
B

T
sign

(
xk
B

)
= xk

A

T
ΔxA − a1a

∥∥xk
B

∥∥
1
= 0. (3.39)

By substituting (3.29) into (3.39), we have

xk
A

T (
Qk

AA

)−1 (
sign

(
xk
A

)
+ a2x

k
A − a1Q

k
ABsign

(
xk
B

))
+ a1

∥∥xk
B

∥∥
1
= 0. (3.40)

Thus a2 is obtained by solving (3.40):

a2 =
a1

(∥∥xk
B

∥∥
1
+ xk

A
T (

Qk
AA

)−1
Qk

ABsign
(
xk
B

))
xk
A
T (

Qk
AA

)−1
xk
A

− xk
A
T (

Qk
AA

)−1
sign

(
xk
A

)
xk
A
T (

Qk
AA

)−1
xk
A

.

(3.41)

Since a2 defined in (3.41) is a necessary and sufficient condition of (3.39), the

second equation xTx = 1 in KKT conditions (3.3) and the second equation

xkTΔx = 0 in (3,14) are both satisfied throughout DSA.

67

The direction ∇x is then obtained by substituting a2 (3.41) into (3.35) and

(3.37).

3.3.3 Step size and update of A, B

One appealing property of DSA is that the step size a of each iteration round

can be adaptively determined by the following step size criteria without any

expensive computations such as the line search method. The variable sets A and

B are automatically updated in the computation of a.

According to the derivation of direction in Section 3.3.2 and the definition

of critical/trivial variables in Section 3.2.2, in each iteration round, DSA pro-

ceeds along the directions (3.35)-(3.38) until one of the following two criteria are

violated,

• the sign of each variable in x does not change;

• the importance of each trivial variable in B is less than the importance of

any critical variable in A.

The violations of the above two criteria result in the following three events. Thus

the iteration round will pause immediately when one of the following three events

happens.

1. The magnitude of a trivial variable is shrunk to zero, i.e.,

xk+1
i = xk

i + a∇xi = 0, i ∈ B. (3.42)

Thus the minimum step size that makes event 1) happen is

a(1) = min+
i∈B − xk

i

∇xi

, (3.43)

where a(1) is positive, and ∇xi is defined in (3.37).

2. The magnitude of a critical variable is shrunk to zero, i.e.,

xk+1
i = xk

i + a∇xi = 0, i ∈ A. (3.44)

68

Thus the minimum step size that makes event 2) happen is

a(2) = min+
i∈A − xk

i

∇xi

, (3.45)

where a(2) is positive, and ∇xi is defined in (3.35). Since the magnitude of

each critical variable in A is nonzero throughout DSA, the critical variable

xi will be transferred to the trivial variable set B once the event 2) happens

and it is directly shrunk to zero.

3. The importance of a nonzero trivial variable reaches the minimum impor-

tance of the critical ones, i.e.,

ck+1
j = min

i∈A
ck+1
i = min

i∈A
cki + a, j ∈ B. (3.46)

Since the trivial variable xk+1
j is nonzero, according to the definitions of the

gradient g in (3.7) and the subgradient of ‖x‖1 in (3.4), we have

gk+1
j = sign

(
xk+1
j

) · ck+1
j . (3.47)

By substituting (3.46) into (3.47), since gk+1
j = gkj + a∇gj, we have

sign
(
xk+1
j

) · (min
i∈A

cki + a

)
= gkj + a∇gj. (3.48)

Thus the minimum step size that makes event 3) happen is

a(3) = min+
j∈B

sign
(
xk+1
j

) ·mini∈A cki − gkj

∇gj − sign
(
xk+1
j

) , (3.49)

where a(3) is positive, and ∇gj is defined in (3.38). Since the importance

of each trivial variable in B is less than the minimum importance of the

critical variables in A, the trivial variable xj will be transferred to the

critical variable set A once the event 3) happens.

69

Therefore the step size a is determined by

a = min {a(1), a(2), a(3)} . (3.50)

3.3.4 Update of x, μ and η

Given the directions ∇xA, ∇xB and the step size a, the solution xk+1 is{
xk+1
A = xk

A + a∇xA

xk+1
B = xk

B + a∇xB,
(3.51)

where the step size a is obtained from (3.43)(3.45)(3.49)(3.50), directions ∇xA

and ∇xB are calculated according to (3.35) and (3.37), respectively.

At the end of each iteration round, η is updated for the computation of Q =

(P + ηI) of the next iteration round. According to the KKT conditions (3.3), we

have

(P + ηI) x = −μ

2
∂‖x‖1. (3.52)

By multiplying xT to both sides of (3.52) simultaneously, we have

xT (P + ηI) x = xTPx+ η = −μ

2
‖x‖1. (3.53)

Thus η is updated according to

ηk+1 = −xk+1TPxk+1 − μk+1

2

∥∥xk+1
∥∥
1
, (3.54)

where μk+1/2 is updated according to (3.25):

μk+1

2
=

μk

2
+

Δμ

2
=

μk

2
+ a. (3.55)

3.3.5 Algorithm

DSA builds a solution path for DSM from the dense solution to sparse ones. The

stopping criterion of DSA is defined as:

cardinality(x) ≤ s, (3.56)

70

where s is the target cardinality of the final sparse solution x∗.

Algorithm 2: Double shrinking Algorithm (DSA)

Input: P , s, a1, x
0, A0, B0

Output: The solution x∗

Initialize x := x0, A := A0, B := B0, η := −λ, μ := 0, k := 1;

while cardinality(xk) > s do
Calculate the direction ∇x via calculating ∇xB, ∇gA, a2, ∇xA and

∇gB by (3.37), (3.36), (3.41), (3.35) and (3.38), respectively;

Calculate the step size a by (3.43), (3.45), (3.49) and (3.50). Update A

and B when event 2) or 3) happens;

Update xk+1 = xk + a · ∇x, ηk+1 by (3.50) and Qk+1 =
(
P + ηk+1I

)
;

k:=k+1;

end

return x∗ = xk;

Algorithm 2 shows how to obtain a sparse solution x of DSM by DSA. How-

ever, in practice, a sparse projection matrix or a sparse representation of more

than one dimensionality is preferred. A sparse matrix X = [X1;X2; · · · ;Xd] for

DSM can be obtained by utilizing a sequence of DSAs. Before the (i+1)th DSA,

we update P as the residual P := P − (XT
i PXi) ·XiX

T
i . The initial solution x0

for the (i + 1)th DSA algorithm can be computed as the first eigenvector of the

updated P . Algorithm 3 shows how to use DSA to obtain d sparse vectors. The

update of P in sparse PCA has been broadly studied in previous literatures [169]

as “deflation methods”. We adopts the most commonly used deflation method in

Algorithm 3. Please refer to [169] for the detailed introduction of other deflation

methods.

Algorithm 3: DSA for d sparse vectors

Input: P , s, a1

Output: The sparse matrix X

for i ← 1 to d do

x := x0, the first eigenvector of P ;

Conduct DSA, and obtain the solution x∗;

Update P := P − (x∗TPx∗) · x∗x∗T ;
end

71

3.3.6 Analyses and Proofs

We theoretically analyze some crucial properties of DSA. The corresponding

proofs suggest that DSA converges to at least a local minimum of DSM (3.3) with

preferred sparsity in a small number of iteration rounds1. The time complexity

of each iteration round in DSA is not more than O(sA
3 + sB

2) and is possible to

be further reduced. We also analyze the influence of the unique parameter a1 to

the convergence of DSA.

DSA is derived from the KKT conditions of DSM, and thus the solution is

at least a local optimum of the optimization (3.1). Theorem 4 proves that DSA

converges to an approximate local optimum.

Theorem 4. (Convergence) In DSA, the solution of its kth iteration round xk

satisfies the KKT conditions (3.3) of the DSM (3.1) with an �1 penalty weight μk.

Proof. The solution of the first iteration round is the dense solution x0, which is

an eigenvalue of P , and thus we have{
Px0 = λx0,

x0Tx0 = 1.
(3.57)

Equation (3.58) can be written as{
(P − λ) x0 = −0

2
∂‖x‖1,

x0Tx0 = 1.
(3.58)

Refer to (3.3), the initial x0 satisfies the KKT conditions of DSM with an �1

penalty weight μk = 0. Without loss of generality, the solution of the first iter-

ation round can be set as any x that satisfies the KKT conditions of DSM (3.1)

with an arbitrary penalty weight μk.

Assume the solution of the kth iteration round xk satisfies the KKT conditions

1The number of iteration rounds is the number of occurrences of the three events in Section
3.3.3. The first two events happens p− s times, and the occurrences of event 3) are much less
than that of the first two events.

72

of DSM (3.1) with an �1 regularization weight μk, i.e.,{ (
P + ηkI

)
xk = −μk

2
∂‖xk‖1,

xkTxk = 1,
(3.59)

We initially consider the first equation in the KKT conditions (3.3). The state

transform equation (3.26) is satisfied when ΔxA and ΔgB are obtained according

to (3.29) and (3.32), respectively. Equation (3.26) derives (3.17). Since (3.17)

is an equal decomposition of (3.16), (3.16) is automatically satisfied. Since the

step size a ensures that the sign vector of x keeps unchanged inside each iteration

round (may change between two consecutive iteration rounds), we have ∂‖xk‖1 =
∂‖xk+1‖1. Thus the first equation in (3.16) can be rewritten as

(
P + ηkI

) (
xk+1 − xk

)
=−Δηxk − μk+1

2
∂‖xk+1‖1 + μk

2
∂‖xk‖1

.
=−Δη

(
xk +Δx

)− μk+1

2
∂‖xk+1‖1 + μk

2
∂‖xk‖1

=−Δηxk+1 − μk+1

2
∂‖xk+1‖1 + μk

2
∂‖xk‖1. (3.60)

By combining the first equation of (3.59) and (3.60), we arrive at

(
P + ηk+1I

)
xk+1 = −μk+1

2
∂‖xk+1‖1. (3.61)

Thus the first equation in the KKT conditions (3.3) is satisfied.

We then consider the second equation in the KKT conditions (3.3). By sub-

stituting a2 defined in (3.41) into ΔxA in (3.29), we have

xkTΔx = xk
A

T
ΔxA + xk

B

T
ΔxB = 0. (3.62)

By combining the first equation of (3.59) and (3.62), we arrive at

xk+1Txk+1 = 1. (3.63)

Thus (3.61) and (3.63) compose the KKT conditions of DSM (3.1) with an �1

73

regularization weight μk+1, and they are satisfied when x = xk+1. According to

the above analyses, we conclude that the solution of the kth iteration xk approx-

imately satisfies the KKT conditions (3.3) of DSM with an �1 penalty weight μk

in DSA. This completes the proof.

In DSA, the only predefined algorithm parameter is a1. Inappropriate selec-

tion of a1 increases the number of iteration rounds for the rectification of the

critical and trivial variables. However, different choice of a1 will not influence the

convergence to local optimums because Theorem 4 is independent of a1.

The time complexity of each iteration round in DSA is determined by the

cardinality of the critical variable set A in this iteration round. Theorem 5 shows

the time complexity of DSA.

Theorem 5. (Complexity) The time complexity of each iteration round of DSA

is not more than O (s3A + s2B), wherein sA and sB are the cardinalities of A and

B respectively in this iteration round.

Proof. In each iteration round of DSA, the directions ∇xB, ∇gA, a2, ∇xA and

∇gB are calculated according to (3.37), (3.36), (3.41), (3.35) and (3.38), respec-

tively. The step size a is calculated by using (3.43), (3.45), (3.49) and (3.50). Both

xk+1 and ηk+1 are updated by using (3.51) and (3.54), respectively. The main com-

putational costs of these operations are the matrix inverse calculation
(
Qk

AA

)−1
in (3.35) with complexity O (s3A) and the matrix multiplication Qk

BBsign
(
xk
B

)
in

(3.38) with complexity O (s2B). Thus, the time complexity of each iteration round

is O (s3A + s2B), wherein sA and sB are the cardinalities of A and B respectively

in this iteration round. This completes the proof.

It is possible to further reduce the time complexity of each iteration round

by accelerating the matrix inverse computation. In particular,
(
Qk+1

AA

)−1
can be

updated from
(
Qk

AA

)−1
approximately. If Δη is small compared with Qk

AA and I,

according to [186], we have

(
Qk+1

AA

)−1
=
(
Qk

AA +ΔηI
)−1

∼= (Qk
AA

)−1 −Δη
(
Qk

AA

)−1 (
Qk

AA

)−1
. (3.64)

74

If A is not updated at the end of the kth iteration round, then
(
Qk+1

AA

)−1
can be

updated from
(
Qk

AA

)−1
according to (3.64). If one variable xi is removed from

A at the end of the kth iteration, assume the updated A is A∗, it is still possible

to update
(
Qk

A∗A∗
)−1

from
(
Qk

AA

)−1
by using the block matrix inverse [99]. The

above analyses show preliminary results on the acceleration.

3.4 Extensions of double shrinkage

It has proved that the �p norms with 0 ≤ p < 2 can be employed as penalties to

obtain sparse solutions. However, the sparse solution will own different proper-

ties when different p value is selected. In compressed sensing [41], the �1 norm

is minimized as a convex relaxation of cardinality or the �0 norm minimization

for exact recovery of sparse signal. In elastic net [275], the weighted sum of the

�1 norm and the �2 norm is minimized, this elastic net penalty has a grouping

effect to the strongly correlated variables. In adaptive lasso [274] and reweighted

�1 minimization [42], the �p(0 ≤ p < 1) norm or its approximation is minimized

to obtain more sparse solutions, which enjoy consistency and better performance

than the �1 norm when signal is extremely sparse or substantially fewer mea-

surements are available. In group lasso [243] and structured sparsity [131][124], a

mixed �1−�2 norm is minimized, because it can encode the structural information

of variables and this information can improve the accuracy and decrease the time

cost. Double shrinkage can be extended to these sparse penalties. At the end of

this section, we will discuss the possibilities to extend double shrinkage to sparse

learning problems with equality constraints.

3.4.1 Elastic net double shrinkage

Elastic Net penalty [275] is a weighted sum of the �1 norm and the �2 norm, i.e.,

μ1‖x‖1 + μ2‖x‖22. (3.65)

Compared with the �1 norm, elastic net penalty has special priorities in the

following three scenarios: 1) when the data dimensionality p is much higher

75

than the sample number n, the �1 norm minimization can only select n nonzero

variables at most. But elastic net penalty can select more variables and produce

more stable solution in this case; 2) elastic net penalty can group the strongly

correlated variables together in the final solution, while the �1 norm can only

select one variable in each group; and 3) if n > p and there exist highly correlated

variables, elastic net penalty will produce better prediction than the �1 norm.

In DSM, if the elastic net penalty is adopted, the problem (3.1) can be written

as

min
x

xTPx+ μ1‖x‖1 + μ2‖x‖22 s.t. xTx = 1. (3.66)

This problem can be rewritten as the �1 norm penalized optimization:

min
x

xT (P + μ2I) x+ μ1‖x‖1 s.t. xTx = 1. (3.67)

Thus the elastic net penalized DSM (3.66) can be optimized via DSA algorithm

by solving (3.67). According to [275], since x shrinks twice in (3.66), i.e., the ridge

regularization and the �1 regularization, the final solution should be rescaled by

using

x∗ ←
√
1 + μ2x

∗. (3.68)

3.4.2 Reweighted �1 double shrinkage

In double shrinkage, when the solution x is required to be very sparse or the

number of given samples are substantially insufficient, the �p(0 ≤ p < 1) norm

is a better choice than the �1 norm because it can produce more sparse or more

robust solutions. However, the �p(0 ≤ p < 1) norm is not convex and thus lots

of optimization algorithms are invalid. In [42] and [274], the reweighted �1 min-

imization is used to achieve the similar effects of the �p(0 ≤ p < 1) penalties.

Reweighted �1 minimization iteratively solves a sequence of the weighted �1 min-

imization problems, wherein the �1 norm applied to the next iteration round is

weighted by the inverse of the magnitude of the solution obtained in the current

iteration round. We can apply this reweighted �1 minimization to DSA. In its

76

(k + 1)th iteration round, the following �1 minimization problem is solved:

min
x

xTPx+ μ

q∑
i=1

|xi|∣∣xk
i

∣∣ s.t. xTx = 1, (3.69)

where xk is the solution obtained in the kth iteration and has dimension of q. The

problem (3.69) can be written as

min
x

xTQx+ μ‖x‖1 s.t. xTx = 1,

Q = diag
(∣∣xk

∣∣)Pdiag
(∣∣xk

∣∣) .
This problem can be handled by DSA. Let the solution to be x̂k+1, and the

solution of the subsequent (k + 1)th iteration round is

xk+1 =
∣∣xk
∣∣ · x̂k+1. (3.70)

In summary, DSA can solve the �p(0 ≤ p < 1) norm penalized double shrinkage.

3.4.3 Structured double shrinkage

Recent studies in structured sparsity [243][131][124][256] have proved that when

the structural information of the variables in x is known, the time cost of the

sparse solution pursuit can be decreased and the corresponding accuracy can be

improved. In this case, variables are separated into different groups, and vari-

ables in the same group tend to be zero or nonzero simultaneously. In structured

sparsity, a mixed �1 − �2 norm is chosen as the penalty to encode the structural

information into the optimization problem. Assume that variables in x are sep-

arated into k groups, i.e., x =
[
x1, x2, · · · , xk

]T
, wherein xi =

[
xi
1, x

i
1, · · · , xi

ni

]
is

the ith group. The structured sparsity penalty is

‖x‖s =
k∑

i=1

√
‖xi‖22. (3.71)

In double shrinkage, structured sparsity can encode the discriminative informa-

tion and the structural information of variables into the optimization to improve

77

the classification performance and accelerate the speed of variable selection, re-

spectively. When x is the projection vector, the group can be defined as the

strongly correlated features in the original data, and thus variables in the same

group will be simultaneously selected if their importances are sufficiently large.

When x is the low dimensional representation, the group can be defined as the

samples in the same class, and thus the sparse low dimensional representations of

the samples in the same group will approach to zero or nonzero simultaneously.

3.4.4 Sparse learning with multiple equality constraints

Because of the advantages of sparse learning in improving interpretability and

computational efficiency, the �1 regularization has been widely introduced to

many classical machine learning models. However, most of the current �1 op-

timization algorithms cannot deal with sparse learning problems with equality

constraints. Double shrinkage provides a novel scheme to tackle this kind of

problems. Assume the optimization problem has the following form:

min
x

F (x) + μ‖x‖1
s.t. Hi(x) = 0, i = 1, · · · , n. (3.72)

The corresponding KKT conditions are:{
∂F (x) +

∑n
i=1 ηi∂Hi(x) = −μ∂‖x‖1,

Hi(x) = 0, i = 1, · · · , n. (3.73)

wherein ηi is the Lagrangian multiplier corresponding to the constraintHi(x) = 0.

Let the solution of the kth iteration round be xk, we have:{
∂F (xk+1)− ∂F (xk) +

∑n
i=1 η

k+1
i ∂Hi(x

k+1)−∑n
i=1 η

k
i ∂Hi(x

k) = −Δμ∂‖xk‖1,
Hi(x

k+1)−Hi(x
k) = 0, i = 1, · · · , n.

(3.74)

78

By replacing F and Hi with their second order Taylor expansions, respectively,

the first equation in (3.81) can be written as(
Qk

AA(η
k+1) Qk

AB(η
k+1)

Qk
BA(η

k+1) Qk
BB(η

k+1)

)(
ΔxA

−a1a · sign
(
xk
B

)
)

= −
(

a · sign (xk
A

)
ΔgB

)
− a

(
hA(η

k+1)

hB(η
k+1)

)
, (3.75)

where Qk is a p × p matrix and h(ηk+1) is a p × 1 vector computed from ηk+1.

The ηk+1 in (3.82) includes n variables and is calculated by solving n equations

Hi(x
k+1)−Hi(x

k) = 0, i = 1, · · · , n.
In each iteration round, the direction Δx is computed by building the state

transformation equation from (3.82) and solve the equation by using the similar

method proposed in Section 3.3.2. Afterward, the step size a is obtained according

to the three events defined in Section 3.3.3. Thus a solution path of the sparse

learning problem (3.79) can be achieved via an iterative algorithm similar to DSA.

Sparse learning problem with inequality constraints can be easily solved by

using the gradient projection method. In each iteration round, the solution is

optimized on the gradient decent direction and then projected onto the feasible

set determined by the inequality constraints. They are not the main focus of

double shrinkage and we do not put details on due to the limited page length.

3.5 Relationships to existing techniques

Although double shrinkage is intrinsically different from sparse PCA, sparse cod-

ing, and LARS in terms of problem formulation and concrete algorithm, it is

helpful to discuss their relationships for better understanding the proposed algo-

rithm. In this section, we first analyze the links and differences between double

shrinkage and sparse PCA, sparse coding, and LARS, respectively. We then show

their connections in motivations and similarities in objective functions given ad-

ditional constraints.

79

3.5.1 Relationship to sparse PCA

Sparse PCA aims at finding sparse PCs which simultaneously have simpler in-

terpretation and less but comparable explained variance comparing with PCA.

Several formulations and algorithms have been proposed for sparse PCA. Zou et

al. [273] formulated sparse PCA as a regression-type problem and solved it by

alternating optimization, where least angle regression (LARS) [77] for elastic net

is utilized in each iteration round. Direct sparse PCA (DSPCA) [60] relaxes the

original sparse PCA to a semidefinite programming (SDP) problem and solves it

via standard SDP solver. Path sparse PCA [59] is a fast greedy search algorithm

solving sparse PCA by relaxing the equality constraint xTx = 1 with xTx ≤ 1.

The sPCA-rSVD [201] formulates sparse PCA as regularized singular value de-

composition (SVD) and solves it via combining linear regression and thresholding.

Penalized matrix decomposition (PMD) [229] formulates sparse PCA as a matrix

decomposition problem restricting upper bounds of the �1 and �2 norms of the

two decomposition components. PMD is solved by sparse principal components

(SPC) proposed in [229], which alternatively soft-thresholding based power it-

erations of the two components. The online sparse coding method proposed in

[173] can also be applied to sparse PCA after modification. It adds the “elas-

tic net” constraints to the dictionary D in the dictionary learning problem and

performs alternative online updates of dictionary and representation. The rows

of the obtained sparse D can be used as sparse PCs. Greedy SPCA [176] uses a

combinatorial greedy method to determine the nonzero entries in sparse PC.

Double shrinkage shares the same motivation as sparse PCA, i.e., finding

sparse alternatives of standard eigenvectors that remains the largest explained

variance. In addition, DSM shares the same objective function with many existing

sparse PCA methods. In applications, the results of both sparse PCA and double

shrinkage can obtain sparse dimension reduction of the given data.

However, double shrinkage is intrinsically different from existing sparse PCA

methods in the following two aspects:

• Double shrinkage and existing sparse PCA methods are different in opti-

mization problem formulations. DSM only adds an �1 regularization on

the original eigenvalue maximization for standard PCA. Existing sparse

80

PCA methods can be mainly interpreted as optimizations of two relaxations

to DSM: 1) sparsity constrained/regularized regression-type problem with

constraint xTx ≤ 1 or normalization of the obtained x, e.g., Sparse PCA,

sPCA-rSVD and online sparse coding; 2) sparsity constrained/regularized

SDP that maximizes the explained variance of sparse PC with constraint

xTx ≤ 1, e.g., DSPCA, Path SPCA and SPC. One significant contribution

of double shrinkage is that the equality constraint xTx = 1 is not relaxed

in the �1 regularized optimization.

• Double shrinkage and existing sparse PCA methods are different in opti-

mization algorithms. DSA is a path-following algorithm for DSM and ap-

proximately ensures the local optimality of the solutions on the path. Most

existing sparse PCA methods adopt special formulations of sparse PCA and

develop algorithms based on existing ones in compressed sensing and sparse

coding. Path SPCA [59] is a greedy algorithm solving one kind of relaxation

of the cardinality penalized PCA with the �2 ball constraint. It builds the

solution path by greedily selecting the nonzero entry that maximizes the in-

creasing of variance. Such greedy path building method is different from the

homotopy-type path-following scheme adopted in DSA, because DSA finds

the sequential sparse solution by updating the KKT conditions required on

the solution. This difference is analogous to the difference between forward

selection and LARS in solving lasso. Another significant contribution of

the proposed double shrinkage is that it optimizes a new sort of sparsity

regularized optimization model with an equality constraint.

We provide a theoretical comparison of the time complexity of DSA with the

existing sparse PCA algorithms in Table 3.5.1. The numerical comparisons are

available in Section 3.6.5.

3.5.2 Relationship to sparse coding

Sparse coding (or equivalently dictionary learning) [142][1][150][173] builds a dic-

tionary D ∈ R
d×p and its corresponding sparse representation A ∈ R

n×d for

obtaining a sparse approximation AD of the given data X ∈ R
n×p. As a trade off

81

Table 3.1: Time complexity per iteration round of Sparse PCA, DSPCA, rSVD,
SPC, Greedy SPCA and Double Shrinkage for calculating one sparse vector so-
lution with s nonzero entries. We have sA, sB ≤ s ≤ min{n, p}.

Method Time Complexity

Sparse PCA O (s4)
DSPCA O (p3)
rSVD O (np)
SPC O (np)
Greedy SPCA O (p3)
Double Shrinkage O (s3A + s2B)

between dimensionality and sparsity with guaranteed approximation precision,

D is usually an overdetermined dictionary with d > p. The problem of sparse

coding has been formulated as an alternating unconstrained optimization:

min
A,D

‖X − AD‖2F + μ ‖A‖1 . (3.76)

The objective function is composed of the least square error of the approximation

and the �1 regularization of the sparse representation A. In some variants, one of

these two parts is transformed into a constraint, and thus the above optimization

turns to an �1 constrained least square regression or an �1 minimization with

the constraint X = AD. Most of the existing sparse coding methods iteratively

optimize A with the fixed D (sparse coding stage) and then optimize D with the

fixed A (dictionary update stage). They differ in the concrete algorithms of the

two stages. The first stage solves an �1 regularized least square regression and

the second stage is a least square regression.

The objective function of sparse coding (3.76) is equivalent to that of DSM

(3.1) if an extra constraint ATA = I is added to (3.76). To see this, we unfold

the least square error in (3.76):

‖X − AD‖2F = tr
(
XTX − 2XTAD +DTATAD

)
= tr

(
DTD − 2XTAD

)
+ tr

(
XTX

)
. (3.77)

82

The second equivalence is due to the additional orthogonal constraint of A. Since

X is a constant matrix, the last term tr
(
XTX

)
can be dropped in the opti-

mization. We set the gradient of the objective function (3.77) w.r.t. D to zero

and obtain D = ATX. A new optimization problem is obtained by substituting

D = ATX into (3.77):

max
ATA=I

tr
(
ATXXTA

)
+ μ ‖A‖1 . (3.78)

When A includes only one column, the above optimization is equal to DSM (3.1)

with P = XXT . According to this connection, the sparse representations in

dictionary learning can be deemed as sparse dimension reduction of the given

data.

However, sparse coding is different from double shrinkage in both problem

formulation and algorithm scheme. In particular,

• Sparse coding is an unconstrained optimization of two variables, while dou-

ble shrinkage is a constrained optimization of a single variable. The objec-

tive function of sparse coding can be equally transformed to that of double

shrinkage if its solution A fulfills ATA = I. However, neither original

sparse coding nor double shrinkage (in d sparse vectors situation) ensures

the orthogonality of the solution matrix1. Thus they address different op-

timization problems and have different solutions.

• Sparse coding approximates the given data matrix X with its sparse repre-

sentations on a dictionary, i.e., AD. To ensure an accurate approximation,

an overdetermined dictionary and high dimensional (d > p) representations

are required. In contrast, double shrinkage reduces the dimensionality of

the given data X with maximum explained variance and sparse representa-

tions/projection matrix. Moreover, the matrix P in double shrinkage can

be build by different dimension reduction methods besides P = XXT in

(3.78) for different utilizations.

• Sparse coding algorithms adopt alternating optimization that sequentially

1Although the solution matrix is possible to be orthogonal in double shrinkage, the proba-
bility of this situation is extremely small in practice and thus can be ignored.

83

solves two unconstrained optimizations, while DSA is a path-following al-

gorithm for an �1 regularized optimization with an equality constraint.

3.5.3 Relationship to LARS

LARS is a path-following algorithm [185] for the �1 regularized least square re-

gression, which has been broadly used in compressed sensing and model selection:

min
x

‖y − Ax‖22 + μ‖x‖1. (3.79)

LARS starts from the origin x = 0 and sequentially adds the zero variable xi with

the largest correlation (the absolute value of gradient) into the active set (nonzero

set) in each iteration round. According to the KKT conditions of (3.79), i.e., the

subgradient of objective function is equal to 0, LARS optimizes the variables

within the active set in each iteration round via selecting a direction that equally

decreases their correlations. The active variables proceed along the direction until

a zero variable outside the active set reaches their correlation. This is due to the

subgradient of the �1 norm in (4). Then the iteration round terminates and the

next one begins by adding a new zero variable into the active set. LARS builds

the solution path of (3.79) from 0 to dense. Each solution on the path satisfies

the KKT conditions with the corresponding μ.

DSA is a path-following algorithm and similar to LARS. In particular, DSA

measures absolute value of gradient to discriminate whether a variable is critical

or not, DSA determines the direction of x in each iteration round by ensuring the

KKT conditions of DSM, and the corresponding step size is determined by the

subgradient of the �1 norm. DSA inherits the advantages of LARS, i.e., the local

optimality of solutions on the path and the simultaneous update of critical/trivial

variable set (active set) and the coefficients of active variables.

However, DSA is intrinsically different from LARS. In particular,

• DSA optimizes an equality constrained optimization model rather than an

unconstrained one in LARS, and thus it has two KKT conditions to guar-

antee rather than one in LARS on the solution path. The Lagrangian

multiplier η is also updated in DSA by updating of a2 according to the

equality constraint xTx = 1.

84

• DSA simultaneously shrinks the magnitudes of trivial variables and in-

creases the importances of critical variables along a direction of both critical

and trivial variables, while LARS only shrinks the correlation (similar to

importance in DSA) of critical variables and keeps magnitudes of the trivial

variables zero in the optimization.

• DSA has three stopping criteria for determining of the step size in each

iteration round, while LARS has two.

• DSA can start from the dense solution or arbitrary point on the solution

path, while LARS can only start from the origin 0 (or backward LARS can

only start from the optimal dense solution of the least squares).

3.6 Experiments

In this section, we show double shrinkage can benefit several machine learning

tasks including classification, nonlinear manifold learning, clustering and feature

selection. Experiments are conducted on different kinds of datasets, such as face

datasets [188][14][11][197][210], COIL-20 object dataset [180], UCI machine learn-

ing repository [10], Pitprops data [212] and gene expression data [5][4]. Double

shrinkage is applied to classification and feature selection experiments for produc-

ing sparse projection matrix, while it is employed to derive sparse low dimensional

representations in nonlinear manifold learning and clustering experiments. We

show that the obtained sparse solutions perform competitively compared against

the corresponding dense solutions. We also compare double shrinkage against

existing sparse PCA solvers [273][176][59][201][229] on Pitprops data, gene ex-

pression data and artificial data. The experimental results demonstrate that

double shrinkage is able to produce better solution with less time cost. We im-

plement all the algorithms in MatLab and run all the experiments on a 3.0GHz

Intel Xeon processor with 32GB main memory under Windows XP. In DSA, the

only free parameter a1 = 0.4 is fixed in all experiments.

85

3.6.1 Classification

Double shrinkage can obtain proper representations of data samples and thus

benefit the subsequent classification. We evaluate double shrinkage by testing

the classification performance of the sparse projection matrix obtained by DSA

on 4 human face datasets, including FERET [188], UMIST [11], YALE [14], and

ORL [197], and 2 handwritten digit datasets, including MNIST [147] and USPS

[109].

The FERET dataset consists of 13, 539 face images from 1, 565 individuals.

The images vary in size, gender, pose, illumination, facial expression and age. In

our experiment, we randomly select 100 individuals, each of which has 7 images, 5

of which are randomly chosen for training and the rest for test. There are 565 face

images from 20 individuals in the UMIST dataset. The samples change in race,

gender, pose and appearance. We randomly choose 7 images of each individual for

training and the rest for test. The YALE dataset contains 165 face images of 15

individuals. Lighting conditions, gender, facial expressions and configurations are

different among these images. The ORL dataset includes 400 face images from 10

individuals. The images were taken at different times, varying the lighting, facial

expressions and facial details. The MNIST dataset collects 70, 000 handwritten

digit images from 0 to 9, we randomly choose 130 images for each digit in our

experiment. The USPS dataset is composed of 9, 298 handwritten digit images

from 0 to 9, we randomly select 80 images for each digit in our experiment.

Three linear dimension reduction methods, i.e., principal component analysis

(PCA) [119], linear discriminant analysis (LDA) [87], neighborhood preserving

embedding (NPE) [112] and their double shrinkage versions, i.e., DS-PCA, DS-

LDA, are compared on both datasets. For DS-PCA, P is the negative covariance

matrix −XTX. For DS-LDA, P is −[S†WSB+(S†WSB)
T]/2, wherein SW is within-

class scatter matrix, SB is between-class scatter matrix, and ·† denotes the Moore-

Penrose matrix inverse.

In each experiment, we initially obtain the dense projection matrix from a

linear dimension reduction method and a corresponding 66% sparse projection

matrix (2/3 entries are zeros) from its double shrinkage version. Then the test

data is projected onto these two low dimensional subspaces defined by the two

86

projection matrices, respectively. Finally, the nearest neighbor classifier is used

for classification.

Figure 3.1-Figure 3.6 show the classification performance of these 3 linear

dimension reduction methods and their corresponding double shrinkage versions

on the 6 datasets, respectively. All the figures show the recognition rates of

double shrinkage versions are comparable to the corresponding linear dimension

reduction methods on each dataset. This observation indicates that a very sparse

projection matrix obtained by using DSA includes sufficient discriminative in-

formation with much less storage requirements (1/3 of the dense one’s in the

experiments).

For human face classification experiments, In each plot below the performance

evaluation curves, we show the first 10 projection vectors of a linear dimension

reduction method and the first 10 projection vectors of its double shrinkage ver-

sion. Comparing against the dense ones, although the sparse projection vectors

are blank at most areas, the important biological features, e.g., eyebrows, eyes,

nose, mouth, mustache and profile, are usually selected for subsequent classifi-

cation. Since these selected features have clear physical meanings, the sparse

projection vectors can provide an explicit interpretation to the new coordinate.

Therefore, by building a sparse projection matrix, double shrinkage provides a

more efficient strategy to compress the useful information for subsequent clas-

sification and a more explicit interpretation to the obtained subspace than the

conventional linear dimension reduction algorithms.

3.6.2 Nonlinear manifold learning

Nonlinear manifold learning remains the manifold structure of the high dimen-

sional data in its low dimensional representations. In order to explore the advan-

tages of double shrinkage for nonlinear manifold learning, we design two experi-

ments based on the double shrinkage versions of ISOMAP [210] and LLE [196].

In each experiment, the matrix P is calculated according to [17]. Then DSA is

applied to the given data for producing a sparse low dimensional representation.

We run the double shrinking version of ISOMAP (DS-ISOMAP) on the face

dataset used in [210]. ISOMAP preserves global geodesic distances of all sample

87

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

LDA (dense)
DS-LDA (66% sparse)

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

Dimension
R

ec
og

ni
tio

n
R

at
e

(%
)

PCA (dense)
DS-PCA (66% sparse)

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

NPE (dense)
DS-NPE (66% sparse)

Figure 3.1: (FERET) Recognition rate vs. Subspace dimensions curves of LDA,
PCA, NPE and their double shrinkage versions on FERET face dataset. The
first 10 dense eigenfaces obtained via eigenvalue decomposition (the top row) and
the corresponding 10 66% sparse eigenfaces obtained via double shrinkage (the
bottom row) are shown on the bottom of each plot.

pairs. The face dataset is composed of 698 images of size 64 × 64 with different

poses and light directions. In Fig 3.7, the two dimensional embedding of the face

data obtained via DS-ISOMAP is presented with the neighborhood graph of the

original data. The short distance between connected samples indicates that the

neighborhood structure of the original data is well preserved in the two dimen-

sional embedding. Because of the sparsity obtained by using double shrinking,

50% of the samples are projected onto the two axes in their low dimensional

representations. The sample images on the two axes exhibited in Fig 3.7 imply

that DS-ISOMAP entirely recovers the intrinsic geometric structure of the face

data. For instance, the samples on X axis encode the poses from top-left to

bottom-right with smoothing changing illumination. Thus the global geometric

structure of the original data is well preserved. Note that the original ISOMAP

results assign left-right pose change to the X axis, which is an obvious difference

produced by dense representation. Therefore, double shrinking can find the in-

trinsic dimension of the data with favor of sparsity and inherit advantages from

the used nonlinear manifold learning method.

We run the double shrinkage version of LLE (DS-LLE) on a subset of COIL-20

[180], including two objects duck and cat. Therefore, the intrinsic dimension of

the subset is two and we can embed the samples in a two dimensional subspace for

visualization. LLE [196] preserves the local geometry by retaining the neighbor

reconstruction coefficients. The images of each object are taken 5 degrees apart

88

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

LDA (dense)
DS-LDA (66% sparse)

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

PCA (dense)
DS-PCA (66% sparse)

0 2 4 6 8 10 12 14 16 18 20
10

20

30

40

50

60

70

80

90

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

NPE (dense)
DS-NPE (66% sparse)

Figure 3.2: (UMIST) Recognition rate vs. Subspace dimensions curves of LDA,
PCA, NPE and their double shrinkage versions on UMIST face dataset. The
first 10 dense eigenfaces obtained via eigenvalue decomposition (the top row) and
the corresponding 10 66% sparse eigenfaces obtained via double shrinkage (the
bottom row) are shown on the bottom of each plot.

as the object is rotated on a turning table and each object has 72 images with

size 32× 32.

Figure 3.8 presents the two dimensional DS-LLE embedding by using the

neighborhood graph of the original data. Because of the sparsity obtained by

double shrinkage, most samples (90%) are projected onto the two axes. The

sample images on the two axes are shown at the bottom of Figure 3.8. They

imply that most duck images are distributed along the X axis, while most cat

images are distributed along the Y axis. This observation indicates that double

shrinkage is able to enhance the separability of low dimensional representations.

Moreover, images on each axis preserve local similarity and smoothness over

neighbor samples. This property is inherited from LLE. Therefore, compared

against nonlinear manifold learning method, double shrinkage is able to provide

sematic and more compact representations.

3.6.3 Data clustering

We apply DSA to PCA and obtain sparse low dimensional representations of

given data for k-means [109] based clustering. The matrix P is −XXT . The

clustering results of PCA and DS-PCA are compared with each other in subspaces

of different dimensions by using three different evaluation metrics, including sum

of squares, accuracy and the normalized mutual information. Sum-of-squares

adds the square deviation of each sample from its cluster center. Smaller sum-of-

89

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

LDA (dense)
DS-LDA (66% sparse)

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

PCA (dense)
DS-PCA (66% sparse)

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

NPE (dense)
DS-NPE (66% sparse)

Figure 3.3: (YALE) Recognition rate vs. Subspace dimensions curves of LDA,
PCA, NPE and their double shrinkage versions on YALE face dataset. The first
10 dense eigenfaces obtained via eigenvalue decomposition (the top row) and
the corresponding 10 66% sparse eigenfaces obtained via double shrinkage (the
bottom row) are shown on the bottom of each plot.

squares implies better clustering performance. Accuracy and normalized mutual

information are defined in [234] and [32], respectively. Higher accuracy and larger

normalized mutual information correspond to better clustering result. We test the

clustering performance of double shrinkage on three datasets in the UCI machine

learning repository [10], which are breast cancer, wine and Semeion handwritten

digit dataset. The Breast cancer dataset includes 569 30-dimensional samples in

2 classes, the wine dataset includes 178 13-dimensional samples in 3 classes, and

the Semeion dataset includes 1593 256-dimensional samples in 10 classes. The

sparsity (the proposition of zero entries) in DSA is set as 60%.

Figure 3.9, Figure 3.10 and Figure 3.11 show the clustering results of the three

evaluation metrics obtained by using PCA and DS-PCA on the three datasets.

The sparse low dimensional representations obtained by DS-PCA outperform

the dense representations obtained by PCA in most situations. This observa-

tion indicates that doubles shrinkage can effectively compress the original data

and simultaneously preserve the important information for subsequent cluster-

ing. This advantage should be attributed to the sparsity of the low dimensional

representations, which enhance the separability of the data.

90

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

LDA (dense)
DS-LDA (66% sparse)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

PCA (dense)
DS-PCA (66% sparse)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

NPE (dense)
DS-NPE (66% sparse)

Figure 3.4: (ORL) Recognition rate vs. Subspace dimensions curves of LDA,
PCA, NPE and their double shrinkage versions on ORL face dataset. The first
10 dense eigenfaces obtained via eigenvalue decomposition (the top row) and
the corresponding 10 66% sparse eigenfaces obtained via double shrinkage (the
bottom row) are shown on the bottom of each plot.

1 2 3 4 5 6 7 8 9
20

30

40

50

60

70

80

90

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

LDA (dense)
DS-LDA (66% sparse)

1 2 3 4 5 6 7 8 9
10

20

30

40

50

60

70

80

90

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

PCA (dense)
DS-PCA (66% sparse)

1 2 3 4 5 6 7 8 9
10

15

20

25

30

35

40

45

50

55

60

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

NPE (dense)
DS-NPE (66% sparse)

Figure 3.5: (MNIST) Recognition rate vs. Subspace dimensions curves of LDA,
PCA, NPE and their double shrinkage versions on MNIST handwritten digit
dataset. The corresponding projection matrices are 66% sparse.

3.6.4 Feature selection

We test the performance of DSA for solving sparse PCA and selecting critical

features from a collection of high dimensional data. In this experiment, the

matrix P is −XTX. We compare the explained variance of DSA and popular

existing sparse PCA algorithms, i.e., Sparse PCA [273], Greedy SPCA [176],

Path SPCA [59], sPCA-rSVD [201] and SPC [229] on different cardinalities. We

do not include DSPCA [60] in our experiments, because it relaxes the sparse PCA

problem to an SDP problem and thus has an expensive computational complexity

of O(n3) per iteration round. We choose to use Path SPCA [59], because it is a

faster alternative of DSPCA.

91

1 2 3 4 5 6 7 8 9
20

30

40

50

60

70

80

90

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

LDA (dense)
DS-LDA (66% sparse)

1 2 3 4 5 6 7 8 9
10

20

30

40

50

60

70

80

90

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

PCA (dense)
DS-PCA (66% sparse)

1 2 3 4 5 6 7 8 9
10

15

20

25

30

35

40

45

50

55

60

Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

NPE (dense)
DS-NPE (66% sparse)

Figure 3.6: (USPS) Recognition rate vs. Subspace dimensions curves of LDA,
PCA, NPE and their double shrinkage versions on USPS handwritten digit
dataset. The corresponding projection matrices are 66% sparse.

We use the explained variance as the evaluation criterion of the obtained

sparse loading vectors. When only one sparse loading vector v is considered, the

variance explained by the corresponding component Xv is

V ar(v) = vTXTXv. (3.80)

When the obtained sparse loading vectors are more than one, for example, V

including k sparse loading vectors, the corresponding components are possibly to

be correlated. Thus, summing up the variance explained individually by each of

the components overestimates the variance explained by all the components. In

this case, we use the QR decomposition of the first k sparse PCs XV = QR, and

define the variance explained by the k corresponding components XV as

V ar(V) =

k∑
i=1

R2
i,i. (3.81)

The proportion of the explained variance is defined as V ar(V)/V ar(V
′
), wherein

V
′
is the first k loading vectors obtained by the classical PCA.

The “pitprops” dataset, composed of 180 observations of 13 variables, is a

standard benchmark to evaluate algorithms for solving sparse PCA in [212], [176]

,[201] and [273]. Following the setting used in previous studies, we compute the

first 6 sparse loading vectors from the 13 × 13 pitprops covariance matrix by

92

-25 -20 -15 -10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

15

Figure 3.7: (3D face) Two-dimensional embedding (with neighborhood graph of
the original data) of 698 64× 64 face images via double shrinking-ISOMAP. The
images were sampled from a face rendered with different poses. Illumination
differences were artificially eliminated. 50% of the face images have sparse rep-
resentations in the two-dimensional subspace and thus are projected on the two
coordinate axes X and Y . We sample 21 images from each axis and show them
on the top and right of this figure, respectively.

using DSA. In Table 3.6.4, we present the total cardinality and the proportion

of the explained variance of the first 6 sparse loading vectors obtained by Sparse

PCA, rSVD, Greedy SPCA and DSA. The experimental results illustrate that

the sparse loading vectors obtained by DSA can retain more variance with the

same or even smaller cardinality than existing sparse PCA algorithms.

Since DSA is able to build the whole solution path of sparse PCA, we take

the construction of the solutions with the total cardinality of 24 in Table 3.6.4

93

�

�

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 3.8: (COIL-20) Two-dimensional embedding (with neighborhood graph of
the original data) of 144 32× 32 images of two objects (a toy cat and a toy duck)
via double shrinkage-LLE. The images were sampled from a toy cat and a toy
duck rendered with different poses. 90% of the images have sparse representations
in the two-dimensional subspace and thus are projected on the two coordinate
axes X and Y . We sample 21 images from each axis and show them on the top
and right of this figure, respectively.

for example. We plot the explained variance vs. cardinality curves for all the

solutions on the path of the first three loading vectors and the corresponding

solution paths in Figure 3.12. We use red cross and vertical red dash-dot line

to mark the selected sparse solution. The variance-cardinality trade-off curves

in Figure 3.12 indicate that a few sparse loading vectors with small cardinality

can explain sufficient variance. In double shrinkage, the magnitudes of the trivial

variables keep shrinking to zeros, while the importances of the critical variables

94

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

Dimension

S
um

 o
f s

qu
ar

es

PCA (dense)
DS-PCA (60% sparse)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Dimension

A
cc

ur
ac

y
(%

)

PCA (dense)
DS-PCA (60% sparse)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Dimension

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

PCA (dense)
DS-PCA (60% sparse)

Figure 3.9: (Breast cancer) Sum of squares vs. Subspace dimensions (left), Ac-
curacy vs. Subspace dimensions (middle), Normalized mutual information vs.
Subspace dimensions (right) of clustering results on low dimensional represen-
tations of breast cancer data via PCA and double shrinkage-PCA. There are
60% samples owing zero representations on each coordinate obtained via double
shrinkage.

1 2 3 4 5
0

50

100

150

200

250

300

350

Dimension

S
um

 o
f s

qu
ar

es

PCA (dense)
DS-PCA (60% sparse)

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Dimension

A
cc

ur
ac

y
(%

)

PCA (dense)
DS-PCA (60% sparse)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Dimension

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

PCA (dense)
DS-PCA (60% sparse)

Figure 3.10: (Wine) Sum of squares vs. Subspace dimensions (left), Accuracy
vs. Subspace dimensions (middle), Normalized mutual information vs. Subspace
dimensions (right) of clustering results on low dimensional representations of
wine data via PCA and double shrinkage-PCA. There are 60% samples owing
zero representations on each coordinate obtained via double shrinkage.

keeps increasing, so the solution path of each variable in Figure 3.12 is piecewise

linear and monotone in most intervals. However, double shrinkage also allows

transfers between the trivial variable set and the critical variable set when the

importance of a trivial variable reaches the minimal importance of the critical

ones, or when the magnitude of a critical variable is shrunk to zero. Thus some

solution paths in Figure 3.12 change their directions (from increasing to decreas-

ing or from decreasing to increasing) on the way.

We then compare DSA with other sparse PCA algorithms on two gene ex-

95

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

Dimension

S
um

 o
f s

qu
ar

es

PCA (dense)
DS-PCA (60% sparse)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Dimension
A

cc
ur

ac
y

(%
)

PCA (dense)
DS-PCA (60% sparse)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Dimension

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

PCA (dense)
DS-PCA (60% sparse)

Figure 3.11: (Semeion) Sum of squares vs. Subspace dimensions (left), Accuracy
vs. Subspace dimensions (middle), Normalized mutual information vs. Subspace
dimensions (right) of clustering results on low dimensional representations of
Semeion handwritten digit data via PCA and double shrinkage-PCA. There are
60% samples owing zero representations on each coordinate obtained via double
shrinkage.

pression data sets, i.e., Colon cancer [5] and Lymphoma [4]. On both datasets,

we consider the 500 genes with largest variance. For each sparse PCA method

except SPC, the solution path of the first sparse loading vector (including 500 so-

lutions) is computed. For SPC, because it adjusts the cardinality of the solution

by tuning the parameter in the �1 constraint, the whole solution path is difficult

to obtain. Thus we compute 10 sparse solutions with different cardinalities by

adjusting the parameter c2 of constraint ‖v‖1 ≤ c2 within the range [1,
√
500]. We

show their variance vs. cardinality trade-off curves in Fig 3.13, together with the

corresponding computation time. Note that SPC computes 10 sparse solutions

in the shown computation time, while each of the other method computes 500

solutions to build the whole solution path. The curves demonstrate that com-

paring with other sparse PCA algorithms, DSA can obtain sparse solution with

comparable variance in much less CPU seconds on different cardinalities.

3.6.5 Scalability study

We compare the scalability of DSA with other sparse PCA solvers on two artificial

datasets, including a 100×100 Gaussian random matrix and a 500×500 Gaussian

random matrix. The variance-cardinality trade-off curves of different methods

and the corresponding time costs are shown in Fig 3.14. We also compute 10

96

Table 3.2: Total cardinality and proportion of explained variance of the first 6
sparse principal components obtained via different methods from pitprops data.
The results of Sparse PCA, rSVD and Greedy SPCA are calculated from the
sparse loading vectors published in [273], [201] and [176], respectively.

Method Total Card. Variance Prop.

Sparse PCA [273] 18 75.80%
rSVD [201] 25 79.24%
Greedy SPCA [176] 12 54.06%

14 71.50%
Double Shrinkage 10 58.06%

14 72.28%
18 76.24%
21 79.87%
24 80.62%

solutions in each of SPC experiments and show the total time cost for obtaining

the 10 solutions. The results imply that Greedy SPCA, Path SPCA and DSA have

comparable performance on the explained variance of the obtained sparse loading

vectors, while the explained variances of the sparse loading vector obtained by

SPCA and SPC are smaller. Double shrinkage has the lowest time cost among

all the algorithms. In addition, the CPU seconds of DSA increase slowly with

the increasing data size compared with the other solvers. This observation is

consistent with the time complexity analysis of DSA. The appealing scalability

of DSA suggests its priority in solving large scale problems.

For clearer comparison, we list the time costs of different methods on the 2

gene datasets and 2 artificial datasets in Table 3.6.5. Note the time cost of SPC

denotes the time for computing 10 sparse solutions rather than all the solutions

on a solution path.

3.7 Conclusion

This paper proposed double shrinkage for data compression. Different from exist-

ing dimension reduction methods, double shrinkage compresses data by simulta-

97

1 2 3 4 5 6 7 8 9 10 11 12 13
1

1.5

2

2.5

3

3.5

4

PC1

Cardinality

V
ar

ia
nc

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
-1

-0.8

-0.6

-0.4

-0.2

0

Solution path of Double Shrinkage for PC1

Iteration

V
ar

ia
bl

e

1 2 3 4 5 6 7 8 9 10 11 12 13
1

1.5

2

2.5

PC2

Cardinality

V
ar

ia
nc

e

1 2 3 4 5 6 7 8 9 10 11 12 13

0

0.2

0.4

0.6

0.8

1
Solution path of Double Shrinkage for PC2

Iteration
V

ar
ia

bl
e

1 2 3 4 5 6 7 8 9 10 11 12 13
1

1.2

1.4

1.6

1.8

2

PC3

Cardinality

V
ar

ia
nc

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-0.5

0

0.5

1
Solution path of Double Shrinkage for PC3

Iteration

V
ar

ia
bl

e

Figure 3.12: (Pitprops) Variance vs. Cardinality curves for the first 3 sparse prin-
ciple components of the covariance matrix of Pitprops data obtained via double
shrinkage and their corresponding solution paths. In the Variance vs. Cardinal-
ity plot, the red dash-dot line on the top of is the variance of the corresponding
dense principle component, the red cross on each curve marks the corresponding
selected principle component. In the solution path plot, the vertical red dash-
dot line in each plot marks the step at which the sparse principle component is
selected, curves with different colors represent the change of different variables.

neously shrinking both dimensionality and cardinality. It improves the low dimen-

sional representation by exploiting the promising properties of sparsity, which has

been successfully applied to problems in signal processing and statistics. Double

shrinkage model (DSM) is an �1 penalized eigenvalue maximization/minimization

with an unitary constraint. It consists of manifold embedding and the �1 norm

penalty to shrink the data dimensionality and cardinality, respectively.

We then developed double shrinkage algorithm (DSA) to optimize DSM. DSA

is a path-following algorithm that can build the whole solution path of DSM ef-

98

50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
4

Cardinality

V
ar

ia
nc

e

Path SPCA (7.7358s)
Double Shrinking (1.2763s)
Greedy SPCA (20338.0121s)
SPC (0.6474s)

Figure 3.13: Trade-off curves between explained variance and cardinality for the
first sparse principal component of colon cancer data (left) and lymphoma data
(right). Different Sparse PCA methods (Greedy search, Path SPCA, SPC, Double
shrinkage) are compared with each other. SPC computes 10 sparse solutions of
different cardinalities, while the other methods computes 500 solutions to build
their solution paths. Their corresponding time costs are listed on the bottom of
each plot.

ficiently. We analyzed the essential properties of DSA. Each solution on the

solution path is proved to be at least an approximation of a local optimum on the

corresponding sparse level. The time complexity of each iteration round is about

O(sA
3+sB

2), wherein sA and sB are the number of the critical variables and triv-

ial ones, respectively. The step size of each iteration round has a closed form, and

thus its computation is efficient. DSA has only one free parameter a1 that can

be conveniently determined, so it can be applied in practice conveniently. Com-

pared against the corresponding dimension reduction method, double shrinkage

has promising priorities in providing explicit interpretation to selected features,

decreasing the computational costs, improving the data representation for subse-

99

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

Cardinality

V
ar

ia
nc

e

Sparse PCA (158.6985s)
Greedy SPCA (12.8145s)
Path SPCA (0.47722s)
Double Shrinking (0.14364s)
SPC (2.3914s)

Figure 3.14: Trade-off curves between explained variance and cardinality for the
first sparse principal component of a 100 × 100 gaussian random matrix (left)
and a 500 × 500 gaussian random matrix (right), each entry of the matrix is
sampled from an independent standard gaussian distribution. Different Sparse
PCA methods (Sparse PCA, Greedy search, Path SPCA, SPC, Double shrinkage)
are compared with each other. SPC computes 10 sparse solutions of different
cardinalities, while the other methods computes 100 (left) or 500 (right) solutions
to build their solution paths. Their corresponding time costs are listed on the
bottom of each plot.

quent classification and clustering.

We applied double shrinkage to classification, manifold learning, clustering

and feature selection on several datasets, such as face datasets, handwritten digit

datasets, COIL-20 object dataset, datasets in UCI machine learning repository,

gene expression data and artificial data. The sparse projection matrix obtained

by double shrinkage produces competitive classification performance compared

against the dense one obtained by the corresponding linear dimension reduction

method. The selected sparse features have explicit interpretations. The sparse

100

Table 3.3: Time cost (CPU seconds) of Sparse PCA, Path SPCA (faster version
of DSPCA), Greedy SPCA, SPC and Double Shrinkage on two gene datasets
(colon cancer, lymphoma) and two artificial datasets (a 100 × 100 and a 500 ×
500 Gaussian random matrix). Note the time cost of SPC denotes the time for
computing 10 sparse solutions rather than all the solutions on a solution path.

Method Colon cancer Lymphoma 100× 100 500× 500

Sparse PCA − − 158.70 58385
Path SPCA 7.7358 6.9304 0.4772 7.7119
Greedy SPCA 20338 20743 12.815 20610
SPC 0.6474 0.6051 2.3914 7.2551
Double Shrinkage 1.2763 1.2658 0.1436 2.0399

low dimensional representations obtained by double shrinkage outperform the

original dense ones in clustering. In nonlinear manifold learning, double shrink-

age is able to recover the intrinsic geometric structure of data and associate

semantics with the selected subspace coordinates by inheriting advantages of the

corresponding manifold learning methods. Double shrinkage also has appealing

performance in feature selection. Given the total cardinality, double shrinkage

produces sparser loading vectors with more explained variance in less time than

existing sparse PCA methods.

Double shrinkage has several important extensions. It can be conveniently

extended to DSM using elastic net penalty and reweighted �1 minimization,

which can produce sparse solutions with grouping effect and more zeros, re-

spectively. The discriminative information can be encoded into the structured

sparsity penalty and thus the classification performance of the sparse representa-

tion obtained via double shrinkage can be improved. Moreover, double shrinkage

provides a scheme for other sparse learning problems with equality constraints,

which are hard to be directly solved by existing �1 minimization algorithms.

101

Chapter 4

Divide-and-Conquer Anchoring

for Near-separable Nonnegative

Matrix Factorization and

Completion

Nonnegative matrix factorization (NMF) becomes tractable in polynomial time

with unique solution under separability assumption, which postulates all the data

points are contained in the conical hull of a few anchor data points. Recently de-

veloped linear programming and greedy pursuit methods can pick out the anchors

from noisy data and results in a near-separable NMF. But their efficiency could

be seriously weakened in high dimensions. In this chapter, we show that the an-

chors can be precisely located from low-dimensional geometry of the data points

even when their high dimensional features suffer from serious incompleteness.

Our framework, entitled divide-and-conquer anchoring (DCA), divides the high-

dimensional anchoring problem into a few cheaper sub-problems seeking anchors

of data projections in low-dimensional random spaces, which can be solved in par-

allel by any near-separable NMF, and combines all the detected low-dimensional

anchors via a fast hypothesis testing to identify the original anchors. We further

develop two non-iterative anchoring algorithms in 1D and 2D spaces for data in

convex hull and conical hull, respectively. These two rapid algorithms in the ul-

102

tra low dimensions suffice to generate a robust and efficient near-separable NMF

for high-dimensional or incomplete data via DCA. Compared to existing meth-

ods, two vital advantages of DCA are its scalability for big data, and capability

of handling incomplete and high-dimensional noisy data. A rigorous analysis

proves that DCA is able to find the correct anchors of a rank-k matrix by solv-

ing O(k log k) sub-problems. Finally, we show DCA outperforms state-of-the-art

methods on various datasets and tasks.

4.1 Introduction

Nonnegative matrix factorization (NMF) [149, 50, 104, 103] decomposes a data

matrix X ∈ R
n×m
+ containing n nonnegative m-dimensional data points {xi}ni=1

in the form of X = FW , where F ∈ R
n×k
+ and W ∈ R

k×m
+ are also two nonneg-

ative matrices and usually k � min(n,m). The rows of W are composed of k

nonnegative basis vectors representing all the samples, while the n rows of F are

nonnegative weight vectors encoding the n data points into conical combinations

of the basis vectors. The nonnegativity of both F and W often results in more

natural and interpretable part-based decomposition than other low-rank matrix

factorizations [238], where the intrinsic parts extracted from W are usually sparse

and reveals how a composite data point is generated. As a consequence, NMF

has been broadly applied to numerous practical problems, such as text topic

modeling, signal separation, social networks, collaborative filtering, dimension

reduction, sparse coding [80] and feature selection [149]. Nonetheless, the theo-

retical properties of its solutions remained unclear for a long period until recently,

and almost all the practical NMF algorithms [148, 158, 120, 138, 31, 67] rely on

heuristics of alternating minimizing reconstruction error

min
F∈Rn×k

+ ,W∈Rk×m
+

D(X,FW), (4.1)

and cast the factorization into non-convex programming, where D(·, ·) is a dis-

tance metric between two matrices.

103

4.1.1 Separable Nonnegative Matrix Factorization

The lack of rigorous analysis is the result of a fact that NMF is NP-hard [225] and

highly ill-posed in its original form, because, in this case, the problem is com-

putationally prohibitive, and neither uniqueness nor correctness guarantee can

be made on its solution. It is therefore necessary to impose additional assump-

tions on the data points and reduce the original NMF to a tractable problem,

meanwhile the generality of NMF is expected to be maintained maximally. An

early effort is made in [70], which gave a separability assumption, under which the

uniqueness of NMF solution can be achieved. Given the geometric concepts of

(convex) cone, conical hull, simplex and convex hull, the separability assumption

can be defined both geometrically and algebraically.

Definition 5. (Cone, conical hull, simplex, convex hull) A (convex) cone

is a non-empty convex set that is closed with respect to conical combinations of

its elements. In particular, given a set of points R = {ri}ki=1, which is comprised

of k generators (rays) ri ∈ R
m, a cone cone(R) can be defined by

cone(R) =

{
k∑

i=1

αiri

∣∣∣∣∣ ri ∈ R,αi ∈ R+

}
. (4.2)

And cone(R) is the conical hull of R. Analogically, a simplex is a non-empty

convex set that is closed with respect to convex combinations of its elements. In

particular, given a set of points V = {vi}ki=1, which is comprised of k generators

(vertices) vi ∈ R
m, a simplex Δ(V) can be defined by

Δ(V) =

{
k∑

i=1

αivi

∣∣∣∣∣ vi ∈ V, αi ∈ R+,
k∑

i=1

αi = 1

}
. (4.3)

And Δ(V) is the convex hull of V . Hence, simplex defined by a convex hull is a

special case of cone defined by a conical hull.

Definition 6. (Separability assumption) All the data points in X reside in

a conical hull of R, which is a subset A ⊆ [n] of data points in X. Geometrically,

104

the separability assumption is

∀i ∈ [n], xi ∈ cone (XA) , XA = {xi}i∈A. (4.4)

Algebraically, separability assumption means

X = FXA,ΠF =

[
Ik

F ′

]
(4.5)

where Ik is a k-by-k identity matrix, F ′ ∈ R
(n−k)×k
+ , and Π is a row permutation

matrix.

In separability assumption, the data points in XA are extreme rays of the cone

cone(XA) because none of them, or their generators, can be expressed by conical

combinations of other elements in cone(XA)
1. In addition, cone(XA) is finitely

generated because all the elements in X are conical combinations of a finite set

XA. It is also pointed because its nonnegativity does not allow it containing both

a vector x and −x. According to a basic law [179]: a finitely generated and pointed

cone cone(R) possesses a finite and unique set of extreme rays R, and cone(R) is

the conical hull generated by these extreme rays R, so we immediately obtain the

uniqueness of solution. Note in this case, the original NP-hard NMF problem is

reduced to finding the k extreme rays (or the “anchors”) from data points in X,

which can be solved in polynomial time.

Separability assumption selects a few data points to represent the other data

points in the whole dataset. This constraint is more than merely an artificial

trick: it is favored and justified by various practical applications. For example, it

implies a word associated with a unique topic in topic modeling [114], an audio

signal that only belongs to one source in blind source separation [50], and a

highly representative user in collaborative filtering [241, 94]. Moreover, in big

data challenges, it is more natural, interpretable and efficient to represent high-

dimensional data by a few actual data points selected from a huge data pool rather

than artificial basis vectors. In fact, such “data expresses itself” assumption has

1Here we assume that X includes sufficient data points and thus can completely represent
cone(XA).

105

become a popular trend in the recent study of other related matrix factorization,

such as rank revealing QR [102], CUR [75] and subspace clustering [78].

4.1.2 Related Works

A special case of separable NMF was firstly studied in [9] and [23], in which all

data points are assumed to be normalized to have unit �1 norm and are included

in a convex hull. So the goal is to find out the k extreme points, or the vertices of

the convex hull from X. Since a vertex cannot be expressed as a convex combina-

tion of other data points, a linear programming (LP) pursuing the combination

weights can be conducted on each data point to test if such expression exists [9].

If the LP is infeasible, an extreme point is detected. However, this algorithm

[9] needs to solve n LP each optimizes n − 1 variables and is not scalable for

large-scale problems. A single LP method named “Hottopixx” [23] is proposed

to solve the separable NMF by decomposing X = CX in an elegantly designed

feasibility polyhedral of C, in which an element implies a feasible F in (4.5).

Hottopixx solves an LP of n2 variables. Thus, a stochastic gradient method with

only asymptotic convergence is specially developed for applying it to large-scale

problems. It is also robust to small data noise, but the noise level needs to be

estimated in advance. This problem considering noise is called near-separable

NMF, which is defined as finding XA from X = FXA + N , where N is noise.

A more robust and flexible LP method adopting a new LP model modified from

Hottopixx is proposed in [96]. Compared to Hottopixx, it automatically detects

rank k, and does not demand normalization to data points so it can address gen-

eral near-separable NMF within a conical hull. Since most LP methods aim at

optimizing C rather than finding XA, post-processing that extracts XA from C

is usually indispensable.

Different from LP, another class of near-separable NMF algorithms is based

on the methodology of greedy pursuit. The key idea is to select a data point on

the direction of which the current residual can be decreased at a fast speed, and

add the selected data point into XA as a new anchor. The weight matrix F and

the residual matrix X − FXA are updated after each update of XA. The above

procedure is iterated until reaching an error tolerance or a sufficiently large A.

106

Different algorithms adopt a distinct residual in their selection criterion and up-

date of residual. For example, successful projection algorithm (SPA) [97] adopts

a modified Gram-Schmidt orthogonalization with column/row pivoting. XRAY

[145] selects a new anchor according to the residual of a randomly selected exterior

data point, the maximum residual among all exterior points, or their averaged

residual, and updates the residual matrix by solving a nonnegative least square

regression. These greedy pursuit algorithms normally have smaller computational

complexity than their LP rivals, but their iterative selection procedures can only

be computed in single thread due to the nature of greedy method. Thus, a heavy

computational burden may still arise in high dimensions for them. Although

they can be applied to noisy data, it is always more difficult to achieve a rigid

robustness on them than on LP methods.

4.1.3 Motivation and Main Contributions

In this chapter, we investigate how to precisely locate the anchor set XA of near-

separable NMF in two difficult cases commonly arising in big data challenges but

rarely studied in previous separable NMF literature. In particular, we develop a

highly scalable algorithm framework addressing high-dimensional (such as dimen-

sion reduction methods [119, 196, 210]) or incomplete data matrix with missing

values (such as matrix completion methods [39, 36, 132, 232, 258]). The former

case usually makes the computations of previous methods impractical, while the

latter case cannot be handled by any existing algorithm.

Our framework, entitled divide-and-conquer anchoring (DCA), exploits the

geometric connections between convex hull or conical hull and their projections

in low dimensions, and estimates their anchors (i.e., vertices of convex hull or

extreme rays of conical hull) from simple statistics to the detected anchors of

data projections [226] in low-dimensional spaces. In its divide step, DCA solves

a number of sub-problems in parallel. Each sub-problem aims at finding the an-

chors of a low-dimensional conical hull covering the random projections of the

original data points. The sub-problem can be solved by arbitrary near-separable

NMF, while the minimum number of sub-problems producing an accurate es-

timation of XA is determined only by k. In its conquer step, DCA conducts

107

a fast hypothesis testing that selects anchors based on simple statistics to the

collected low-dimensional anchors. We demonstrate that DCA performs much

more efficiently than other methods in high dimensions because, 1) the product

of sub-problem’s complexity and number in DCA could be much smaller than the

complexity of the original problem in high dimensions, especially when k � m;

and, 2) the multiple sub-problems in DCA are solved independently so parallel

or distributed computing such as MapReduce [62] can be directly leveraged to

gain further acceleration.

Another primary advantage of DCA is its capability to handle incomplete data

matrix with massive missing values. Since solving the sub-problems in the divide

step only requires partial low-dimensional geometry information of the original

data points, and the hypothesis testing in the conquer step treats anchors in

each low dimensional space as a random trial in statistics, very few entries of the

original data matrix are sufficient to provide an effective “sub-sampling ” leading

to a reliable NMF solution. Different to DCA for fully observable data, in the

divide step, each low-dimensional anchor is scored by the number of available data

projections in the associated space. In the conquer step, the k anchors are selected

according to the proportion rather than the times of each point being selected

as anchors in low dimensions, because the numbers of available projections for

different data points might differ from each other due to their missing features

on different dimensions. DCA still enjoys promising robustness to noise even in

the incomplete case.

DCA gives each sub-problem the freedom to invoke any near-separable NMF

in arbitrary lower dimensions. This property makes DCA an unified framework

rather than a sole algorithm. However, we also discover that a much simpler

and efficient algorithm can replace the previous sophisticated separable NMF in

ultra-low dimensions and achieve a comparable performance. In particular, we

build two rapid anchoring algorithms; one finds the vertices of a convex hull in 1D

space, and the other finds the extreme rays of a conical hull in 2D space. We show

that when the noise is not too big, DCA invoking these two simple algorithms is

adequately powerful to identify all the high dimensional anchors precisely even

in missing value situations.

108

4.2 Divide-and-Conquer Anchoring (DCA)

DCA is a divide-and-conquer framework [170] for near-separable NMF and with

two steps: the divide step equals applying near-separable NMF to data random

projections in multiple subspaces, whilst the conquer step is a fast hypothesis

testing based on statistics of the low-dimensional anchors achieved in the divide

step. Note the concept of “divide-and-conquer” for DCA is more close to that

used in [170] and is slightly different from that used in algorithm design, because

DCA directly divides the original problem into several solvable sub-problems

rather than recursively divides those sub-problems into smaller sub-problems.

X = { }
XA = { } { }

{ }

Y = { }
YA = { } { }{ }

{ }{ }

Δ(XA)

Δ(YA)

Figure 4.1: Sub-problem in the divide step of DCA: finding the low-dimensional
anchors YĀ on hyperplane P when all data points X are contained in a convex
hull of k anchors (vertices) XA.

4.2.1 Divide Step: Anchoring on Low-dimensional Pro-

jections

In each sub-problem, DCA projects all the data points (i.e., the row vectors)

in X to a randomly generated d-dimensional hyperplane P = P(B). This ran-

109

dom P denotes a subspace B = [β1; β2; · · · ; βd] ∈ R
d×m spanned by d random

vectors {βi}di=1 uniformly sampled from the unit hypersphere S
m−1 in R

m. The

projections of data matrix X onto P is

Y = XBT , Y ∈ R
n×d. (4.6)

Note in separable NMF, all data points in X are contained in the conical hull

cone(XA) of an unknown subset XA whose elements (rows) are selected from

the rows of X. The divide step of DCA is based on a key fact: although the

nonnegativity of X has not been retained in Y , the geometry of conical hull

cone(XA) is partially preserved in Y . This fact enables us to bridge the high

dimensional anchors and the anchors in P. Specifically, if xi denotes the ith row

of X and yi denotes the ith row of Y , [n] = {1, 2, · · · , n}, we have the following

theorem.

Theorem 6. (Geometry preserved in low dimensions) If ∀i ∈ [n], xi ∈
cone(XA), then for any hyperplane P of arbitrary dimensions d, ∀i ∈ [n], yi ∈
cone(YĀ), and Ā ⊆ A always holds in this case.

The above theorem indicates that the n random projections Y of n data points

X are contained in a conical hull of several anchors in R
d too. In addition, these

anchors are rows of Y , and must be the random projections of anchors in X. In

the noiseless case, this fact immediately implies a criterion to pick out anchors,

i.e., a data point whose random projection is an anchor in certain low-dimensional

space should also be an anchor in the original space. Here, the low-dimensional

anchors in Y can be extracted by arbitrary separable NMF with computations far

less than applying the same NMF algorithm to X. Illustrations of the projection

geometry when X is included in a convex hull and a conical hull are given in

Figure 4.1 and Figure 4.2, respectively.

However, the anchors of Y in merely one hyperplane cannot always reveal all

the anchors in X. Because the projections of some anchors in X are possible to

be interior points within the conical hull in low dimensions. It happens when

the angle between the anchor and the hyperplane belongs to a specific region.

This problem can be solved by repeating the low-dimensional anchor searching

on multiple different hyperplanes, then any anchor in X could have chance to be

110

O

X = { }
XA = { } { }

{ }

Y = { }
YA = { } { }

{ }

Figure 4.2: Sub-problem in the divide step of DCA: finding the low-dimensional
anchors YĀ on hyperplane P when all data points X are contained in a conical
hull of k anchors (extreme rays) XA.

projected as a low-dimensional anchor. This equals to solving multiple indepen-

dent sub-problems. If the output of separable NMF in each sub-problem is the

low-dimensional anchors’s indexes Ā := SNMF(Y), we use superscript to index

different sub-problem, and assume there are s sub-problems, the divide step of

DCA is

Āi := SNMF
(
X(Bi)T

)
, i = 1, 2, · · · , s. (4.7)

In DCA, solving a sufficient number (a later analysis will show the number

is O(k log k)) of sub-problems in parallel is able to guarantee that the collected

low-dimensional anchors includes the projections of all the anchors with a high

probability. In addition, the non-anchors cannot be selected in the sub-problems

for noiseless cases, and can be selected but with much smaller probability than the

actual anchors for noisy cases. These facts enable us to distinguish the anchors

and non-anchors by combining the solutions of sub-problems in the conquer step

of DCA.

111

4.2.2 Conquer Step: Hypothesis Testing

The conquer step of DCA is composed of a hypothesis testing that accepts or

rejects each data point associated with a detected low-dimensional anchor (from

the s sub-problems) as an anchor. Since the anchors are usually detected in sub-

problems with higher probability than non-anchors, the hypothesis testing can

then be reduced to picking out the k data points whose random projections are

most frequently selected as anchors in all the sub-problems. Let I(i ∈ Āj) : i →
{0, 1} be the indicator function for the event that data index i is within Āj of the

jth sub-problem. For fully observable X, DCA estimates the k elements in A as

the k data indexes associated with the top k largest
∑s

j=1 I(i ∈ Āj), i.e.,

A := arg max
H⊆[n],|H|=k

∑
i∈H

s∑
j=1

I(i ∈ Āj), (4.8)

where |H| denotes the number of elements in set H. In the noiseless case, the non-

anchors cannot to be selected in sub-problems, so the above conquer step (4.8)

is reduced to finding all the elements appearing at least once in the solutions of

sub-problems, i.e.,

A :=
s⋃

i=1

Āi. (4.9)

In some applications, the rank k is unknown and needs to be determined

automatically. When the noise is not overwhelming, a large gap can be observed

between anchor and non-anchor on their statistics
∑s

j=1 I(i ∈ Āj). Hence, a

tolerance τ can be pre-defined to detect such gap in the sorted
∑s

j=1 I(i ∈ Āj)

of all data points and automatically identify k. Let p be the new index set after

sorting
∑s

j=1 I(i ∈ Āj) of all i ∈ [n] in descending order (i.e., pl = i means the

ith data point has the lth largest
∑s

j=1 I(i ∈ Āj) among the n data points), A can

be estimated without knowing k by

A := p[l�], l
� = min {l : g(pl)− g(pl+1) ≥ τs} ,

g(pl) =
s∑

j=1

I(pl ∈ Āj).
(4.10)

112

4.2.3 DCA for Incomplete Data Matrix

An appealing property of DCA that makes it different to other methods is its

capability to handle incomplete matrix with massive missing values. This is

possible for DCA because it merely requires to know partial geometry of the low-

dimensional projections of data points rather than complete data points in high

dimensions.

In this case, for each sub-problem, the random vectors {βi}di=1 spanning the

subspace B of a hyperplane P(B) should be sparse and share the same support

set ΩB. Moreover, the random projection of a data point xi on the hyperplane

P(B) is legal for use only when the dimensions of xi on ΩB are not missing,

i.e., when supp(xi) ⊆ ΩB. In addition, ΩB must ensure a sufficiently large set

{i : supp(xi) ⊆ ΩB} in X whose data dimensions on ΩB are not missing. Because

this can guarantee a sufficiently large probability to involve anchors in the set.

When the missing values in X are distributed at random, ΩB can be selected as a

small set composed of one or two randomly chosen dimensions. In contrast, when

the observable set supp(xi) share some structural patterns across n data points,

it is preferred to extract the dimensions that are frequently observed together in

most data points to form an ΩB.

Therefore, in the divide step of DCA for incomplete data, each sub-problem

applies near-separable NMF to the low-dimensional random projections of a sub-

set of data points, such that

Āi := SNMF
(
XΦBi ,ΩBi

(Bi)T
)
,

ΦBi = {i : supp(xi) ⊆ ΩBi}, i = 1, 2, · · · , s, (4.11)

where XΦBi ,ΩBi
denotes the sub-matrix of X built from rows indexed by ΦBi and

columns indexed by ΩBi .

The matrix incompleteness also causes a difference in the conquer step. On

the one hand, since the subsets of data points involved in the s sub-problems are

of different sizes |ΦBi |, and a larger subset indicates a higher confidence of finding

real anchors rather than an interior point due to the absence of real anchors in the

subset, we score the indicator function I(i ∈ Āj) in (4.8) by |ΦBj |/n. On the other

hand, different data points are involved in a different number of sub-problems, so

113

it is more robust to compare their proportions of being selected as anchors across

the involved sub-problems, rather than their times of being selected as anchors.

Therefore, the conquer step for incomplete data is

A := arg max
H⊆[n],|H|=k

∑
i∈H

f(i),

f(i) = 1∑s
j=1 I(i∈ΦBj)

s∑
j=1

|Φ
Bj |
n

I(i ∈ Āj).
(4.12)

Note the times of data point xi being involved in sub-problems
∑s

j=1 I(i ∈ ΦBj)

and its times of being selected
∑s

j=1 I(i ∈ Āj) cannot be confused in the above

procedure.

Analogically, when the rank k is unknown and needs to be determined au-

tomatically for the incomplete data, a tolerance τ is applied to detect the gap

between anchors and non-anchors on their statistics such that

A := p[l�], l
� = min {l : f(pl)− f(pl+1) ≥ τs} . (4.13)

In our empirical study, we discover that the number of observable entries in

X required by DCA to accurately estimate anchors XA could be much less than

the number of observations required by matrix completion to recover the the

matrix. This interesting phenomenon has a heuristic explanation that picking

out the indexes of k anchors from [n] should be easier than recovering the exact

values of all missing entries. But a more important application of DCA implied

by this fact is that we can apply DCA to the highly incomplete rating matrix

in recommendation system [163], and find out the representative users. The

ratings of other users can then be predicted after collecting ratings only from

representative users.

In Algorithm 4, we give a detailed description of the DCA framework, and

show how to handle data matrix in noiseless, noisy, complete and incomplete

114

situations by different strategies.

Algorithm 4: Divide-and-Conquer Anchoring (DCA)

Input: X, rank k or tolerance τ , d, K, parameters for separable NMF

SNMF

Output: Index set A of anchors in X

Divide Step (in parallel):;

for i ← 1 to s do

1) Complete data:;

Uniformly sample d random vectors {βi}dj=1 on the unit hypersphere

S
m−1, let Bi = [β1; β2; · · · ; βd];

Apply SNMF to X(Bi)T and let Āi := SNMF
(
X(Bi)T

)
;

2) Incomplete data:;

Select a subset ΩBi of m dimensions, uniformly sample d random

vectors {βi}dj=1 on the unit hypersphere S
|ΩBi |−1, let

Bi = [β1; β2; · · · ; βd];

Apply SNMF to XΦBi ,ΩBi
(Bi)T and let Āi := SNMF

(
XΦBi ,ΩBi

(Bi)T
)
,

ΦBi = {i : supp(xi) ⊆ ΩBi};
end

Conquer Step:;

1) Noiseless and complete data:;

A :=
⋃s

i=1 Ā
i;

2) Noisy and complete data:;

A := arg max
H⊆[m],|H|=k

∑
i∈H

g(i), g(i) =
s∑

j=1

I(i ∈ Āj);

or automatically determine k by

A := p[l�], l
� = min {l : g(pl)− g(pl+1) ≥ τs};

3) Noisy and incomplete data:;

A := arg max
H⊆[n],|H|=k

∑
i∈H

f(i);

f(i) = 1∑s
j=1 I(i∈ΦBj)

s∑
j=1

|Φ
Bj |
n

I(i ∈ Āj);

or automatically determine k by

A := p[l�], l
� = min {l : f(pl)− f(pl+1) ≥ τs};

115

4.2.4 Analysis: the Number of Sub-problems

We now analyze in what situation the proposed DCA framework is able to identify

all the anchors XA successfully.

Lemma 1. Let B = {βi}di=1 be d random directions sampled uniformly from

S
m−1. Assume the index set for the detected anchors on hyperplane defined by B

to be Ā. Denoted by

p∗i = Pr[i ∈ Ā], (4.14)

i.e., p∗i is the probability for the random projection yi of data point xi being iden-

tified as an anchor in a sub-problem. Since the detected low-dimensional anchors

must be the random projections of the actual anchors (Theorem 6), we have

k∑
i=1

p∗i = 1. (4.15)

Based on the above lemma, we can provide the following theorem about the

minimum number of sub-problems that can guarantee an accurate anchor esti-

mation.

Theorem 7. (Identifiability) Suppose mini∈A p∗i ≥ α/k > 0, i = 1, 2, ..., k.

Given the statistics from the solutions of s sub-problems finding low-dimensional

anchors,

g(i) =
s∑

j=1

I(i ∈ Āj) (4.16)

by Theorem 6, clearly we have

g(i : i ∈ A) ≥ 0,
∑
i∈A

g(i) =
s∑

i=1

|Āi| and g(i : i /∈ A) = 0; (4.17)

further, it holds with probability at least 1− k exp
(−αs

3k

)
that

min
i∈A

g(i) > 0. (4.18)

Proof. For ∀i ∈ A, we introduce a random variable ξt = I(i ∈ Āj), then Pr(ξt =

116

1) = p∗i . By Chernoof bound, we have

Pr

(
s∑

t=1

ξt < (1− δ)sp∗i

)
≤ exp

(
−δ2sp∗i
2 + δ

)
, ∀δ ≥ 0. (4.19)

Since g(i) =
∑s

t=1 ξt, and let δ = 1, we have

Pr(g(i) = 0) ≤ exp

(
−sp∗i

3

)
. (4.20)

This yields

Pr(mini∈A g(i) > 0) = 1− Pr(∪i∈Ag(i) = 0)

≥ 1−∑i∈A Pr(g(i) = 0)

≥ 1−∑i∈A exp
(
− sp∗i

3

)
≥ 1− k exp

(
− sminj∈A p∗j

3

)
.

(4.21)

Since minj∈A p∗j ≥ α/k, this completes the proof.

Therefore, as long as the number of sub-problems s >> 3
α
k log k, we have

mini∈A g(i) > 0, which indicates that all the k vertices can be successfully iden-

tified by DCA.

4.3 Rapid Anchoring in 1D or 2D Space

In this section, we consider two extreme cases of DCA, i.e., the sub-problems

seek anchors in a 1D or 2D space. Instead of adopting the sophisticated near-

separable NMF proposed before, we build two simple and efficient non-iterative

algorithms that locate the 1D or 2D anchors after a computation of O(n) flops. In

the framework of DCA, they enjoy a comparable performance as state-of-the-art,

but are much more efficient, especially in big data challenge.

117

4.3.1 Seeking Vertices of Convex Hull in 1D Space

A number of previous works [9, 23] tackle the separable NMF in a special case

where all the data points are normalized to have unit �1 norm and are included in

a convex hull. The framework of DCA allows us to divide the original anchoring

problem in m-dimensional space to O(k log k) sub-problems, each of which aims

at finding the anchors in a 1D space. According to Figure 4.1, the convex hull

in 1D space is a box on the real axis, and the associated anchors are the two

vertices of the box. Therefore, uniformly sample s random vectors {βi}si=1 on

the hypersphere Sm−1, each sub-problem is reduced to finding the maximum and

minimum of the n data projections on each of the s random directions, i.e.,

Āi :=

{
argmax

j
xjβ

T
i , argmin

j
xjβ

T
i

}
, i = 1, 2, · · · , s. (4.22)

When βi is randomly selected from the set of m unit vectors (only one element

is 1 and others are all 0), the above sub-problem can be further simplified to

finding the maximum and minimum on a randomly selected dimension. Since

finding the maximum or minimum in n values are linear in computation, DCA

using the above procedure merely has a time complexity of O(nk log k) for single

thread computing.

4.3.2 Seeking Extreme Rays of Conical Hull in 2D Space

If we drop the normalization restriction of data points, and generalize the convex

hull to a conical hull, the separable NMF problem turns back to the general one

we studied in former sections. A simple algorithm can still be built even for

this general situation. In particular, we divide the original anchoring problem in

m-dimensional space to O(k log k) sub-problems, each of which aims at finding

the anchors in a 2D space. According to Figure 4.2, the conical hull in 2D

space is a region bounded by two rays with initial points at the origin (0, 0),

and the associated anchors are the 2D random projections of two data points

with the largest angle between their rays. Therefore, in the divide step of DCA,

we uniformly sample s pairs of random vectors {βi1, βi2}si=1 on the hypersphere

S
m−1, each sub-problem is reduced to finding the maximum and minimum angle

118

between the 2D random projections of the n data points and the horizontal axis

in a 2D plane, whose coordinates are {βi1, βi2}, i.e.,

Āi :=
{
argmaxj arctan 2

(
xjβ

T
i1, xjβ

T
i2

)
,

argminj arctan 2
(
xjβ

T
i1, xjβ

T
i2

)}
,

i = 1, 2, · · · , s.
(4.23)

The function arctan 2(·, ·) is defined as

arctan 2(y, x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

arctan(y/x), x > 0;

arctan(y/x) + π, y ≥ 0, x < 0;

arctan(y/x)− π, y < 0, x < 0;

π/2, y > 0, x = 0;

−π/2, y < 0, x = 0.

(4.24)

Note that the random vectors {βi1, βi2} can also be selected from the set of unit

vectors, so the number of all possible pairs is m(m − 1)/2. In this case, each

sub-problem is reduced to finding the two extreme rays in a 2D space spanned by

two randomly selected dimensions. Due to the efficiency of this random selection

of dimension pairs, the overall time complexity of DCA adopting the above divide

step is also O(nk log k) for single thread computing.

10
-2

10
-1

10
0

10
110

-4

10
-3

10
-2

10
-1

10
0

noise level

C
P

U
 s

ec
on

ds

SPA
XRAY
DCA(s=75)
DCA(s=258)
DCA(s=441)
DCA(s=624)

10
-2

10
-1

10
0

10
10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise level

an
ch

or
 in

de
x

re
co

ve
ry

 ra
te

SPA
XRAY
DCA(s=75)
DCA(s=258)
DCA(s=441)
DCA(s=624)

10
-2

10
-1

10
0

10
1-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

noise level

-a
nc

ho
r r

ec
ov

er
y

er
ro

r

SPA
XRAY
DCA(s=75)
DCA(s=258)
DCA(s=441)
DCA(s=624)

Figure 4.3: Finding the anchors of full observable data points (a complete 300×
500 matrix of rank 10) in a conical hull of anchors on 30 noise levels and 4 sub-
problem amounts (only for DCA). Each point in the plots is obtained by averaging
the results of 20 random trails on 20 different matrices. DCA invoking 2D rapid
anchoring in Section 4.3 is compared to SPA [97] and XRAY [145].

119

10
-4

10
-3

10
-2

10
-1

10
-6

10
-4

10
-2

10
0

10
2

noise level

C
P

U
 s

ec
on

ds

Hottopixx
DCA(s=30)
DCA(s=53)
DCA(s=77)
DCA(s=100)

10
-4

10
-3

10
-2

10
-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise level

an
ch

or
 in

de
x

re
co

ve
ry

 ra
te

Hottopixx
DCA(s=30)
DCA(s=53)
DCA(s=77)
DCA(s=100)

10
-4

10
-3

10
-2

10
-1

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

noise level
-a

nc
ho

r r
ec

ov
er

y
er

ro
r

Hottopixx
DCA(s=30)
DCA(s=53)
DCA(s=77)
DCA(s=100)

Figure 4.4: Finding the anchors of full observable data points (a complete 50×100
matrix of rank 10 each row is normalized to have unit �1 norm) in a convex hull
of anchors on 25 noise levels and 4 sub-problem amounts (only for DCA). Each
point in the plots is obtained by averaging 5 random trails on 5 different matrices.
DCA invoking 1D rapid anchoring in Section 4.3 is compared to LP based method
Hottopixx [23].

Remark: the above two simple algorithms do not require any iterative com-

putations, and have much smaller time complexity than former near-separable

NMF (most have time complexity Ω(nm2) or O(mnr)), and are able to achieve

comparable accuracy when the data noise is not too big. However, this does not

mean former algorithms do not have advantage in DCA. In contrast, they can

significantly improve DCA in serious noisy case due to their capability for solving

near-separable NMF in higher dimension |ΩB| > 2. This can be explained by

two major reasons 1) much more random hyperplanes can be sampled to produce

a more precise and reliable anchor estimation, because |ΩB| > 2 implies
(

m
|ΩB |
)

available hyperplanes; and, 2) more actual anchors can still remain to be anchors

after projected onto a hyperplane of higher dimension, and their projections are

more easier to be distinguished from those of non-anchors especially in the noisy

case.

4.4 Numerical Results

In this section, we report the experimental results of DCA on both synthetic and

real datasets, and give thorough comparisons between 3 state-of-the-art near-

separable NMF algorithms and DCA. All the experiments were run by MATLAB

120

on a multi-core workstation, and only single thread computing is applied for fair

comparison. CPU second is used to measure the efficiency of all algorithms,

and two other metrics are used to evaluate the anchor recovery precision. In

particular, for a trial with real anchor index set A and its estimate Â, the anchor

index recovery rate ρ is defined as

ρ =
|A ∩ Â|
|A| , (4.25)

and the −anchor recovery error η is defined as

η = − 1

|A|
∑
i∈A

min
j∈Â

‖xi − xj‖2
‖xi‖2 . (4.26)

Larger ρ and η implies more accurate recovery of anchors. The precision of

multiple trials are measured by their average ρ and η. Note these two metrics

behave differently: a large ρ implies exact localization of anchor indexes, while a

large η can cover a sub-optimal case when data points close to the actual anchors

are selected as anchors.

4.4.1 Empirical Study on Synthetic Data

Four groups of experiments are conducted on two kinds of synthetic datasets:

the first two groups address the problem of finding anchors from full observable

(complete) data points in a conical hull and a convex hull, respectively; the

rest two groups address the problem of finding anchors from data points with

massive missing values and in a conical hull, for varying ratio of observable entries

and varying matrix rank, respectively. Each experiment evaluates algorithms on

varying noise level, and on varying numbers of sub-problems for DCA. Each

evaluation metric reported in the experiment results is the average of multiple

trials under the same setting.

The synthetic data matrix in the experiments is generated in the form of

X = FXA +N , where F = [Ik;UV], and the entries of noise N are generated by

i.i.d. Gaussian N(0, σ2) with noise level denoted by σ. In the convex hull case,

the entries of U and V are generated by i.i.d. uniform distribution in [0, 1] at

121

first and then their rows are normalized to have unit �1 norm. In this case, the

clear data UV automatically have normalized rows. In the conical hull case, the

entries of basis vectors V are generated by i.i.d. uniform distribution in range

[0, 1], while each row of weight matrix U are generated according to a Dirichlet

distribution whose k parameters are chosen uniformly in [0, 1].

The results of the first two groups of experiments are given in Figure 4.3 and

Figure 4.4 respectively, and the results of the rest two groups are shown in Figure

4.5.

In the fully observable data case, DCA performs slightly worse than SPA and

XRAY on the same noise level, but outperforms Hottopixx on both recovery rate

and error. It can be seen that DCA is able to precisely find out most anchor

indexes even when the noise level is close to 1. Although SPA and XRAY can

handle a bit more noise, DCA is sufficiently robust for most practical applications.

In addition, the anchor recovery error of DCA is equal to or smaller than that of

SPA or XRAY. This indicates that DCA can find a data point closer to the actual

anchor than the two methods, when the noise is too large to allow any algorithm

to find the real anchor. Furthermore, the results show two vital advantages of

DCA: 1) very few sub-problems randomly selected from the huge complete set

(of size 124750 for Figure 4.3 and 100 for Figure 4.4) are able to produce an

accurate solution. This is consistent with our theoretical analysis in Section

4.2.4; and, 2) DCA is much faster than other methods even when it is run by a

single thread. It can be expected that a parallel or distributed DCA is able to

provide a substantially efficient algorithm that cannot be offered by any previous

method for big data challenges.

In the incomplete data case, DCA exhibits remarkable capability and success-

fully locates most anchors even when 90% entries in the matrix are missing and

the rest observed ones are corrupted by relatively large noise. Note there are

merely 125 sub-problems involved in the divide step of DCA. This indicates that

DCA does not use all the information encoded in the observed entries, and can

still achieve promising performance. Compared to similar plots reported in ma-

trix completion (MC) literatures [258][39], we further find out that the sampling

ratio required by DCA to recover anchors are much less than that required by MC

to recover the matrix. But their goals in massive applications are identical, i.e.,

122

5 10 15 20 25 30 35 40 45 50
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

rank of data matrix

-a
nc

ho
r r

ec
ov

er
y

er
ro

r DCA(noise level=0.01)
DCA(noise level=0.032)
DCA(noise level=0.1)
DCA(noise level=0.32)

0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sampling ratio

an
ch

or
 in

de
x

re
co

ve
ry

 ra
te

DCA(noise level=0.01)
DCA(noise level=0.032)
DCA(noise level=0.1)
DCA(noise level=0.32)

0.05 0.1 0.15 0.2 0.25 0.3
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

sampling ratio

-a
nc

ho
r r

ec
ov

er
y

er
ro

r DCA(noise level=0.01)
DCA(noise level=0.032)
DCA(noise level=0.1)
DCA(noise level=0.32)

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank of data matrix

an
ch

or
 in

de
x

re
co

ve
ry

 ra
te

DCA(noise level=0.01)
DCA(noise level=0.032)
DCA(noise level=0.1)
DCA(noise level=0.32)

Figure 4.5: Finding the anchors of data points with massive missing values (an in-
complete 50×100 matrix each entry is observed with probability sampling ratio)
in a conical hull of anchors via solving 125 sub-problems by DCA on 4 noise levels.
The left two plots show the results when sampling ratio varies between [0.01, 0.31]
and the rank k is fixed to 10, while the two plots on the right show the results
when rank k varies between [5, 50] and the sampling ratio is fixed to 0.15. Each
point in the plots is obtained by averaging 20 random trails on 20 different ma-
trices. The divide step of DCA uses 2D rapid anchoring in Section 4.3.

to represent a huge number of data points by a few basis. This means DCA can

replace MC in various situations (analogous to the relation between PCA [119]

and CUR [75]). Another interesting phenomenon of DCA shown in Figure 4.5

is that its performance improves with the increase of rank, which is opposite to

what we usually observed in MC. This is interpretable, because to select a fewer

anchors from a great number of data points and ensure that they can express

the whole dataset is much difficult than to pick out more redundant data points,

which can easily lead to a small reconstruction error. Hence more information

from data is required in the former case.

4.4.2 Collaborative Filtering by Finding Representative

Users

We show an interesting application of DCA in recommendation systems, which

were mentioned in Section 4.2.3 and cannot be handled by other separable NMF.

In particular, we assume that there exist some representative users whose ratings’

conical combination is able to express all the other users’ ratings. This assumption

generates an extremely efficient method to predict unknown ratings in the user-

item rating matrix, that is, we can detect the representative users at first and only

collect ratings from them. Then we can predict the other users’ missing ratings

123

by the ratings of these users. This problem can be rapidly solved by DCA for

incomplete data, in which the rating matrix is X and the ratings of representative

users are the anchors XA.

We apply this method to MovieLens 1 dataset, which includes 100k, 1M and

10M ratings to movies in its three subsets, and compare its reconstruction error

and speed with state-of-the-art matrix completion algorithm GreB [258]. Since

the ratings of the detected representative users cannot be known from the real

dataset, we assign the results of matrix completion to them. The results in

Table 4.1 show that DCA outperforms GreB on both prediction accuracy and

computational efficiency.

Table 4.1: Normalized mean absolute error (NMAE), root mean square error
(RMSE) and CPU seconds of DCA and matrix completion on MovieLens. n/m/k
of 3 datasets: 100k(943/1682/10), 1M(6040/3952/10), 10M(69878/10677/10).
Result format: NMAE/RMSE/CPU seconds.

GreB DCA

100k 0.15/0.94/0.57 0.11/0.87/0.12
1M 0.12/0.86/3.54 0.09/0.80/1.36
10M 0.11/1.04/20.67 0.08/0.95/5.98

4.4.3 Reconstruction of Images, Texts and Handwritten

Digits

A primary goal of separable NMF is to express the whole dataset by the ex-

tracted anchors. We apply SPCA, XRAY and DCA (conical hull case) to three

real datasets, i.e., Grolier encyclopedia article dataset (15276 words’ counts in

30991 articles) 2, and MIT scene dataset with gist features (2688 images with 512

features) 3, and MNIST dataset of handwritten digits (70000 28× 28 images for

digits from 0 to 9) 4. We do not evaluate LP based methods here due to its large

1http://www.grouplens.org/node/73
2http://www.cs.nyu.edu/ roweis/data.html
3http://people.csail.mit.edu/torralba/code/spatialenvelope/
4http://yann.lecun.com/exdb/mnist/

124

Table 4.2: Reconstruction error and CPU seconds of SPA, XRAY and DCA on
three datasets. The rank k for reconstructing them is 30, 50, 50. Result format:
�2 error/CPU seconds.

SPA XRAY DCA

MIT scene 0.3351/0.085 0.3133/104.19 0.2766/0.038
MNIST 569.21/1.891 0.6128/233.69 0.5792/0.928
Grolier 0.5041/3.777 0.3589/17.89 0.2907/1.303

time costs on these large-scale datasets. In each experiment, after obtaining the

anchors XA, a nonnegative least square regression is used to calculate the weight

matrix F ′ from XA and X. We show the average normalized �2 reconstruction

error ‖xi − x̂i‖2/‖xi‖2 and CPU seconds of different methods in Table 4.2. DCA

achieves the best performance on both accuracy and efficiency in most trials.

125

Chapter 5

Randomized and Greedy

Strategies for Bilateral Low-rank

Approximation

5.1 Bilateral Random Projections (BRP)

Low-rank structure has been profoundly studied in data mining and machine

learning. In this chapter, we show a dense matrix X’s low-rank approximation

can be rapidly built from its left and right random projections Y1 = XA1 and Y2 =

XTA2, or bilateral random projection (BRP). We then show power scheme can

further improve the precision. The deterministic, average and deviation bounds of

the proposed method and its power scheme modification are proved theoretically.

The effectiveness and the efficiency of BRP based low-rank approximation is

empirically verified on both artificial and real datasets.

5.1.1 Introduction

Recent research about low-rank structure concentrate on developing fast approx-

imation and building meaningful decompositions. Two appealing representatives

are the randomized approximate matrix decomposition [108] and column selection

[65]. The former proves that a matrix can be well approximated by its projection

to the column space of its random projections. This rank-revealing method pro-

126

vides a fast approximation of SVD/PCA. The latter proves that a column subset

of a low-rank matrix can span its whole range. The low-rank approximation based

on random projections for streaming data is also studied in [53].

In this chapter, we consider the problem of fast low-rank approximation.

Given r bilateral random projections (BRP) of an m×n dense matrix X (w.l.o.g,

m ≥ n), i.e., Y1 = XA1 and Y2 = XTA2, wherein A1 ∈ R
n×r and A2 ∈ R

m×r are

random matrices,

L = Y1

(
AT

2 Y1

)−1
Y T
2 (5.1)

is a fast rank-r approximation of X. The computation of L includes an inverse

of an r × r matrix and three matrix multiplications. Thus, for a dense X, 2mnr

floating-point operations (flops) are required to obtain BRP, r2(2n+r)+mnr flops

are required to obtain L. The computational cost is much less than SVD based

approximation. The L in (5.1) has been proposed in [85] as a recovery of a rank-

r matrix X from Y1 and Y2, where A1 and A2 are independent Gaussian/SRFT

random matrices. However, we propose that L is a tight rank-r approximation of a

full rank matrixX, when A1 and A2 are correlated random matrices updated from

Y2 and Y1, respectively. We then apply power scheme [195] to L for improving

the approximation precision, especially when the eigenvalues of X decay slowly.

Theoretically, we prove the deterministic bound, average bound and devia-

tion bound of the approximation error in BRP based low-rank approximation

and its power scheme modification. The results show the error of BRP based

approximation is close to the error of SVD approximation under mild conditions.

Comparing with randomized SVD in [108] that extracts the column space from

unilateral random projections, the BRP based method estimates both column

and row spaces from bilateral random projections.

We give an empirical study of BRP on both artificial data and face image

dataset. The results show its effectiveness and efficiency in low-rank approxima-

tion and recovery.

127

5.1.2 Bilateral random projections (BRP) based low-rank

approximation

We first introduce the bilateral random projections (BRP) based low-rank approx-

imation and its power scheme modification. The approximation error bounds of

these two methods are discussed at the end of this section.

5.1.2.1 Low-rank approximation with closed form

In order to improve the approximation precision of L in (5.1) when A1 and A2

are standard Gaussian matrices, we use the obtained right random projection Y1

to build a better left projection matrix A2, and use Y2 to build a better A1. In

particular, after Y1 = XA1, we update A2 = Y1 and calculate the left random

projection Y2 = XTA2, then we update A1 = Y2 and calculate the right random

projection Y1 = XA1. A better low-rank approximation L will be obtained if the

new Y1 and Y2 are applied to (5.1). This improvement requires additional flops

of mnr in BRP calculation.

5.1.2.2 Power scheme modification

When singular values of X decay slowly, (5.1) may perform poorly. We design

a modification for this situation based on the power scheme [195]. In the power

scheme modification, we instead calculate the BRP of a matrix X̃ = (XXT)qX,

whose singular values decay faster than X. In particular, λi(X̃) = λi(X̃)
2q+1

.

Both X and X̃ share the same singular vectors. The BRP of X̃ is:

Y1 = X̃A1, Y2 = X̃TA2. (5.2)

According to (5.1), the BRP based r rank approximation of X̃ is:

L̃ = Y1

(
AT

2 Y1

)−1
Y T
2 . (5.3)

128

In order to obtain the approximation of X with rank r, we calculate the QR

decomposition of Y1 and Y2, i.e.,

Y1 = Q1R1, Y2 = Q2R2. (5.4)

The low-rank approximation of X is then given by:

L =
(
L̃
) 1

2q+1
= Q1

[
R1

(
AT

2 Y1

)−1
RT

2

] 1
2q+1

QT
2 . (5.5)

The power scheme modification (5.5) requires an inverse of an r × r matrix, an

SVD of an r × r matrix and five matrix multiplications. Therefore, for dense X,

2(2q + 1)mnr flops are required to obtain BRP, r2(m + n) flops are required to

obtain the QR decompositions, 2r2(n+2r)+mnr flops are required to obtain L.

The power scheme modification reduces the error of (5.1) by increasing q. When

the random matrices A1 and A2 are built from Y1 and Y2, mnr additional flops

are required in the BRP calculation.

5.1.3 Approximation error bounds

We analyze the error bounds of the BRP based low-rank approximation (5.1) and

its power scheme modification (5.5).

The SVD of an m× n (w.l.o.g, m ≥ n) matrix X takes the form:

X = UΛV T = U1Λ1V
T
1 + U2Λ2V

T
2 , (5.6)

where Λ1 is an r× r diagonal matrix which diagonal elements are the first largest

r singular values, U1 and V1 are the corresponding singular vectors, Λ2, U2 and V2

forms the rest part of SVD. Assume that r is the target rank, A1 and A2 have r+p

columns for oversampling. We consider the spectral norm of the approximation

error E for (5.1):

‖X − L‖ =
∥∥∥X − Y1

(
AT

2 Y1

)−1
Y T
2

∥∥∥
=
∥∥∥[I −XA1

(
AT

2XA1

)−1
AT

2

]
X
∥∥∥ . (5.7)

129

The unitary invariance of the spectral norm leads to

‖X − L‖ =
∥∥∥UT

[
I −XA1

(
AT

2XA1

)−1
AT

2

]
X
∥∥∥

=
∥∥∥Λ [I − V TA1

(
AT

2XA1

)−1
AT

2UΛ
]∥∥∥ . (5.8)

In low-rank approximation, the left random projection matrix A2 is built

from the left random projection Y1 = XA1, and then the right random projection

matrix A1 is built from the left random projection Y2 = XTA2. Thus A2 = Y1 =

XA1 = UΛV TA1 and A1 = Y2 = XTA2 = XTXA1 = V Λ2V TA1. Hence the

approximation error given in (5.8) has the following form:∥∥∥Λ [I − Λ2V TA1

(
AT

1 V Λ4V TA1

)−1
AT

1 V Λ2
]∥∥∥ . (5.9)

The following Theorem 8 gives the bound for the spectral norm of the deter-

ministic error ‖X − L‖.

Theorem 8. (Deterministic error bound) Given an m×n (m ≥ n) real ma-

trix X with singular value decomposition X = UΛV T = U1Λ1V
T
1 + U2Λ2V

T
2 , and

chosen a target rank r ≤ n − 1 and an n × (r + p) (p ≥ 2) standard Gaussian

matrix A1, the BRP based low-rank approximation (5.1) approximates X with the

error upper bounded by

‖X − L‖2 ≤ ∥∥Λ2
2

(
V T
2 A1

)
(V T

1 A1)
†Λ−11

∥∥2 + ‖Λ2‖2 .

See Section 5.1.4 for the proof of Theorem 8.

If the singular values of X decay fast, the first term in the deterministic error

bound will be very small. The last term is the rank-r SVD approximation error.

Therefore, the BRP based low-rank approximation (5.1) is nearly optimal.

Theorem 9. (Deterministic error bound, power scheme) Frame the hy-

potheses of Theorem 8, the power scheme modification (5.5) approximates X with

130

the error upper bounded by

‖X − L‖2 ≤
(∥∥∥Λ2(2q+1)

2

(
V T
2 A1

) (
V T
1 A1

)†
Λ
−(2q+1)
1

∥∥∥2
+
∥∥Λ2q+1

2

∥∥2)1/(2q+1)

.

See Section 5.1.4 for the proof of Theorem 9.

If the singular values of X decay slowly, the error produced by the power

scheme modification (5.5) is less than the BRP based low-rank approximation

(5.1) and decreasing with the increasing of q.

The average error bound of BRP based low-rank approximation is obtained

by analyzing the statistical properties of the random matrices that appear in the

deterministic error bound in Theorem 8.

Theorem 10. (Average error bound) Frame the hypotheses of Theorem 8,

E‖X − L‖ ≤
⎛
⎝
√√√√ 1

p− 1

r∑
i=1

λ2
r+1

λ2
i

+ 1

⎞
⎠ |λr+1|

+
e
√
r + p

p

√√√√ n∑
i=r+1

λ2
i

λ2
r

.

See Section 5.1.4 for the proof of Theorem 10.

The average error bound will approach to the SVD approximation error |λr+1|
if |λr+1| � |λi:i=1,··· ,r| and |λr|
 |λi:i=r+1,··· ,n|.

The average error bound for the power scheme modification is then obtained

from the result of Theorem 10.

Theorem 11. (Average error bound, power scheme) Frame the hypotheses

of Theorem 8, the power scheme modification (5.5) approximates X with the

131

expected error upper bounded by

E‖X − L‖ ≤
⎡
⎣
⎛
⎝
√√√√ 1

p− 1

r∑
i=1

λ
2(2q+1)
r+1

λ
2(2q+1)
i

+ 1

⎞
⎠ |λ2q+1

r+1 |

+
e
√
r + p

p

√√√√ n∑
i=r+1

λ
2(2q+1)
i

λ
2(2q+1)
r

⎤
⎦1/(2q+1)

.

See Section 5.1.4 for the proof of Theorem 11.

Compared the average error bounds of the BRP based low-rank approximation

with its power scheme modification, the latter produces less error than the former,

and the error can be further decreased by increasing q.

The deviation bound for the spectral norm of the approximation error can

be obtained by analyzing the deviation bound of
∥∥Λ2

2

(
V T
2 A1

)
(V T

1 A1)
†Λ−11

∥∥ in

the deterministic error bound and by applying the concentration inequality for

Lipschitz functions of a Gaussian matrix.

Theorem 12. (Deviation bound) Frame the hypotheses of Theorem 8. Assume

that p ≥ 4. For all u, t ≥ 1, it holds that

‖X − L‖ ≤
⎛
⎝1 + t

√
12r

p

(
r∑

i=1

λ−1i

) 1
2

+
e
√
r + p

p+ 1
·

tuλ−1r

)
λ2
r+1 +

e
√
r + p

p+ 1
· tλ−1r

(
n∑

i=r+1

λ2
i

) 1
2

.

except with probability e−u
2/2 + 4t−p + t−(p+1).

See Section 5.1.4 for the proof of Theorem 12.

5.1.4 Proofs of error bounds

5.1.4.1 Proof of Theorem 8

The following lemma and propositions from [108] will be used in the proof.

132

Lemma 2. Suppose that M � 0. For every A, the matrix ATMA � 0. In

particular,

M � N ⇒ ATMA � ATNA. (5.10)

Proposition 1. Suppose range(N) ⊂ range(M). Then, for each matrix A, it

holds that ‖PNA‖ ≤ ‖PMA‖ and that ‖(I − PM)A‖ ≤ ‖(I − PN)A‖.

Proposition 2. Suppose that M � 0. Then

I − (I +M)−1 � M. (5.11)

Proposition 3. We have ‖M‖ ≤ ‖A‖+‖C‖ for each partitioned positive semidef-

inite matrix

M =

[
A B

BT C

]
. (5.12)

The proof of Theorem 8 is given below.

Proof. Since an orthogonal projector projects a given matrix to the range (column

space) of a matrix M is defined as PM = M(MTM)−1MT , the deterministic error

(5.9) can be written as

‖E‖ = ‖Λ (I − PM)‖ , M = Λ2V TA1. (5.13)

By applying Proposition 1 to the error (5.13), because range(M(V T
1 A1)

†Λ−21) ⊂
range(M), we have

‖E‖ = ‖Λ (I − PM)‖ ≤ ‖Λ (I − PN)‖ , (5.14)

where

N =

[
Λ2

1V
T
1 A1

Λ2
2V

T
2 A1

]
(V T

1 A1)
†Λ−21 =

[
I

H

]
. (5.15)

Thus (I − PN) can be written as

I − PN =

[
I − (I +HTH

)−1 − (I +HTH
)−1

HT

−H
(
I +HTH

)−1
I −H

(
I +HTH

)−1
HT

]

133

For the top-left block in (5.16), Proposition 2 leads to I − (I +HTH
)−1 �

HTH. For the bottom-right block in (5.16), Lemma 2 leads to I−H
(
I +HTH

)−1
HT �

I. Therefore,

I − PN �
[

HTH − (I +HTH
)−1

HT

−H
(
I +HTH

)−1
I

]

By applying Lemma 2, we have

Λ (I − PN) Λ �[
ΛT

1H
THΛ1 −ΛT

1

(
I +HTH

)−1
HTΛ2

−ΛT
2H

(
I +HTH

)−1
Λ1 ΛT

2Λ2

]

According to Proposition 3, the spectral norm of Λ(I − PN) is bounded by

‖Λ (I − PN)‖2 = ‖Λ (I − PN) Λ‖
≤ ∥∥Λ2

2

(
V T
2 A1

)
(V T

1 A1)
†Λ−11

∥∥2 + ‖Λ2‖2 . (5.16)

By substituting (5.16) into (5.14), we obtain the deterministic error bound.

This completes the proof.

5.1.4.2 Proof of Theorem 9

The following proposition from [108] will be used in the proof.

Proposition 4. Let P be an orthogonal projector, and let A be a matrix. For

each nonnegative q,

‖PA‖ ≤ ∥∥P (AAT
)q

A
∥∥1/(2q+1)

. (5.17)

The proof of Theorem 9 is given below.

Proof. The power scheme modification (5.5) applies the BRP based low-rank

approximation (5.1) to X̃ = (XXT)qX = UΛ2q+1V T rather than X. In this case,

134

the approximation error is

‖X̃ − L̃‖ =
∥∥Λ2q+1 (I − PM)

∥∥ , M = Λ2(2q+1)V TA1. (5.18)

According to Theorem 8, the error is upper bounded by

∥∥∥X̃ − L̃
∥∥∥2 ≤∥∥∥Λ2(2q+1)

2

(
V T
2 A1

)
(V T

1 A1)
†Λ−(2q+1)

1

∥∥∥2 + ∥∥Λ2q+1
2

∥∥2 . (5.19)

The deterministic error bound for the power scheme modification is obtained by

applying Proposition 4 to (5.19). This completes the proof.

5.1.4.3 Proof of Theorem 10

The following propositions from [108] will be used in the proof.

Proposition 5. Fix matrices S, T , and draw a standard Gaussian matrix G.

Then it holds that

E
∥∥SGT T

∥∥ ≤ ‖S‖‖T‖F + ‖S‖F‖T‖. (5.20)

Proposition 6. Draw an r × (r + p) standard Gaussian matrix G with p ≥ 2.

Then it holds that

E‖G†‖2F =
r

p− 1
,E‖G†‖ ≤ e

√
r + p

p
. (5.21)

The proof of Theorem 10 is given below.

Proof. The distribution of a standard Gaussian matrix is rotational invariant.

Since 1) A1 is a standard Gaussian matrix and 2) V is an orthogonal matrix,

V TA1 is a standard Gaussian matrix, and its disjoint submatrices V T
1 A1 and

V T
2 A1 are standard Gaussian matrices as well.

135

Theorem 8 and the Hölder’s inequality imply that

E‖X − L‖ ≤ E

(∥∥Λ2
2

(
V T
2 A1

)
(V T

1 A1)
†Λ−11

∥∥2 + ‖Λ2‖2
)1/2

≤ E
∥∥Λ2

2

(
V T
2 A1

)
(V T

1 A1)
†Λ−11

∥∥+ ‖Λ2‖. (5.22)

We condition on V T
1 A1 and apply Proposition 5 to bound the expectation w.r.t.

V T
2 A1, i.e.,

E
∥∥Λ2

2

(
V T
2 A1

)
(V T

1 A1)
†Λ−11

∥∥
≤ E

(∥∥Λ2
2

∥∥ ∥∥(V T
1 A1)

†Λ−11

∥∥
F
+
∥∥Λ2

2

∥∥
F

∥∥(V T
1 A1)

†Λ−11

∥∥)
≤ ∥∥Λ2

2

∥∥(E ∥∥(V T
1 A1)

†Λ−11

∥∥2
F

)1/2
+∥∥Λ2

2

∥∥
F
· E ∥∥(V T

1 A1)
†∥∥ · ∥∥Λ−11

∥∥ . (5.23)

The Frobenius norm of (V T
1 A1)

†Λ−11 can be calculated as

∥∥(V T
1 A1)

†Λ−11

∥∥2
F
= trace

[
Λ−11

(
(V T

1 A1)
†)T (V T

1 A1)
†Λ−11

]
= trace

[((
Λ1V

T
1 A1

) (
Λ1V

T
1 A1

)T)−1]
.

Since 1) V T
1 A1 is a standard Gaussian matrix and 2) Λ1 is a diagonal matrix,

each column of Λ1V
T
1 A1 follows r-variate Gaussian distribution Nr(0,Λ

2
1). Thus

the random matrix
((

Λ1V
T
1 A1

) (
Λ1V

T
1 A1

)T)−1
follows the inverted Wishart dis-

tribution W−1
r (Λ−21 , r + p). According to the expectation of inverted Wishart

distribution [177], we have

E
∥∥(V T

1 A1)
†Λ−11

∥∥2
F

= E trace

[((
Λ1V

T
1 A1

) (
Λ1V

T
1 A1

)T)−1]

= trace E

[((
Λ1V

T
1 A1

) (
Λ1V

T
1 A1

)T)−1]

=
1

p− 1

r∑
i=1

λ−2i . (5.24)

136

We apply Proposition 6 to the standard Gaussian matrix V T
1 A1 and obtain

E
∥∥(V T

1 A1)
†∥∥ ≤ e

√
r + p

p
. (5.25)

Therefore, (5.23) can be further derived as

E
∥∥Λ2

2

(
V T
2 A1

)
(V T

1 A1)
†Λ−11

∥∥
≤ λ2

r+1 ·
√√√√ 1

p− 1

r∑
i=1

λ−2i +

√√√√ n∑
i=r+1

λ2
i ·

e
√
r + p

p
· |λ−1r |

= |λr+1|
√√√√ 1

p− 1

r∑
i=1

λ2
r+1

λ2
i

+
e
√
r + p

p

√√√√ n∑
i=r+1

λ2
i

λ2
r

. (5.26)

By substituting (5.26) into (5.22), we obtain the average error bound

E‖X − L‖ ≤
⎛
⎝
√√√√ 1

p− 1

r∑
i=1

λ2
r+1

λ2
i

+ 1

⎞
⎠ |λr+1|+

e
√
r + p

p

√√√√ n∑
i=r+1

λ2
i

λ2
r

. (5.27)

This completes the proof.

5.1.4.4 Proof of Theorem 11

The proof of Theorem 11 is given below.

Proof. By using Hölder’s inequality and Theorem 9, we have

E ‖X − L‖ ≤ (
E ‖X − L‖2q+1)1/(2q+1)

≤
(
E

∥∥∥X̃ − L̃
∥∥∥)1/(2q+1)

. (5.28)

We apply Theorem 10 to X̃ and L̃ and obtain the bound of E‖X̃ − L̃‖, noting

137

that λi(X̃) = λi(X)2q+1.

E

∥∥∥X̃ − L̃
∥∥∥ =

⎛
⎝
√√√√ 1

p− 1

r∑
i=1

λ
2(2q+1)
r+1

λ
2(2q+1)
i

+ 1

⎞
⎠ |λ2q+1

r+1 |+

e
√
r + p

p

√√√√ n∑
i=r+1

λ
2(2q+1)
i

λ
2(2q+1)
r

. (5.29)

By substituting (5.29) into (5.28), we obtain the average error bound of the power

scheme modification shown in Theorem 11. This completes the proof.

5.1.4.5 Proof of Theorem 12

The following propositions from [108] will be used in the proof.

Proposition 7. Suppose that h is a Lipschitz function on matrices:

|h(X)− h(Y)| ≤ L‖X − F‖F for all X, Y. (5.30)

Draw a standard Gaussian matrix G. Then

Pr {h(G) ≥ Eh(G) + Lt} ≤ e−t
2/2. (5.31)

Proposition 8. Let G be a r × (r + p) standard Gaussian matrix where p ≥ 4.

For all t ≥ 1,

Pr

{∥∥G†∥∥
F
≥
√

12r

p
· t
}

≤ 4t−p and

Pr

{∥∥G†∥∥ ≥ e
√
r + p

p+ 1
· t
}

≤ t−(p+1). (5.32)

The proof of Theorem 12 is given below.

Proof. According to the deterministic error bound in Theorem 8, we study the

deviation of
∥∥∥Λ2

2

(
V T
2 A1

) (
V T
1 A1

)†
Λ−11

∥∥∥. Consider the Lipschitz function h(X) =∥∥∥Λ2
2X
(
V T
1 A1

)†
Λ−11

∥∥∥, its Lipschitz constant L can be estimated by using the

138

triangle inequality:

|h(X)− h(Y)| ≤
∥∥∥Λ2

2 (X − Y)
(
V T
1 A1

)†
Λ−11

∥∥∥
≤ ∥∥Λ2

2

∥∥ ‖X − Y ‖
∥∥∥(V T

1 A1

)†∥∥∥ ∥∥Λ−11

∥∥
≤ ∥∥Λ2

2

∥∥ ∥∥∥(V T
1 A1

)†∥∥∥ ∥∥Λ−11

∥∥ ‖X − Y ‖F . (5.33)

Hence the Lipschitz constant satisfies L ≤ ‖Λ2
2‖
∥∥∥(V T

1 A1

)†∥∥∥ ∥∥Λ−11

∥∥. We condition

on V T
1 A1 and then Proposition 5 implies that

E
[
h
(
V T
2 A1

) | V T
1 A1

] ≤ ∥∥Λ2
2

∥∥ ∥∥∥(V T
1 A1

)†∥∥∥
F

∥∥Λ−11

∥∥
F
+∥∥Λ2

2

∥∥
F

∥∥∥(V T
1 A1

)†∥∥∥ ∥∥Λ−11

∥∥ .
We define an event T as

T =

{∥∥∥(V T
1 A1

)†∥∥∥
F
≤
√

12r

p
· t and∥∥∥(V T

1 A1

)†∥∥∥ ≤ e
√
r + p

p+ 1
· t
}
. (5.34)

According to Proposition 8, the event T happens except with probability

Pr
{
T
} ≤ 4t−p + t−(p+1). (5.35)

Applying Proposition 7 to the function h
(
V T
2 A1

)
, given the event T , we have

Pr
{∥∥∥Λ2

2

(
V T
2 A1

) (
V T
1 A1

)†
Λ−11

∥∥∥ >∥∥Λ2
2

∥∥ ∥∥∥(V T
1 A1

)†∥∥∥
F

∥∥Λ−11

∥∥
F
+∥∥Λ2

2

∥∥
F

∥∥∥(V T
1 A1

)†∥∥∥ ∥∥Λ−11

∥∥+∥∥Λ2
2

∥∥ ∥∥∥(V T
1 A1

)†∥∥∥ ∥∥Λ−11

∥∥ · u | T
}
≤ e−u

2/2. (5.36)

139

According to the definition of the event T and the probability of T , we obtain

Pr
{∥∥∥Λ2

2

(
V T
2 A1

) (
V T
1 A1

)†
Λ−11

∥∥∥ >

∥∥Λ2
2

∥∥ ∥∥Λ−11

∥∥
F

√
12r

p
· t+ ∥∥Λ2

2

∥∥
F

∥∥Λ−11

∥∥ e
√
r + p

p+ 1
· t

+
∥∥Λ2

2

∥∥ ∥∥Λ−11

∥∥ e
√
r + p

p+ 1
· tu
}

≤

e−u
2/2 + 4t−p + t−(p+1).

Therefore,

Pr
{∥∥∥Λ2

2

(
V T
2 A1

) (
V T
1 A1

)†
Λ−11

∥∥∥+ ‖Λ2‖ >⎛
⎝1 + t

√
12r

p

(
r∑

i=1

λ−1i

)1/2

+
e
√
r + p

p+ 1
· tuλ−1r

⎞
⎠λ2

r+1+

e
√
r + p

p+ 1
· tλ−1r

(
n∑

i=r+1

λ2
i

)1/2
⎫⎬
⎭ ≤

e−u
2/2 + 4t−p + t−(p+1). (5.37)

Since Theorem 8 implies ‖X − L‖ ≤
∥∥∥Λ2

2

(
V T
2 A1

) (
V T
1 A1

)†
Λ−11

∥∥∥+‖Λ2‖, we obtain
the deviation bound in Theorem 12. This completes the proof.

5.1.5 Empirical Study

We first evaluate the efficiency of the BRP based low-rank approximation (5.1) for

exact recovery of low-rank matrices. We consider square matrices of dimension n

from 500 to 30000 with rank r from 50 to 500. Each matrix is generated by AB,

wherein A and B are both n × r standard Gaussian matrices. Figure 5.1 shows

that the recovery time is linearly increased w.r.t n. This is consistent with the

r2(2n + r) +mnr flops required by (5.1). The relative error of each recovery is

less than 10−14. It also shows that a 30000× 30000 matrix with rank 500 can be

exactly recovered within 200 CPU seconds. This suggests the advantage of (5.1)

for large-scale applications.
We then evaluate the effectiveness of (5.1) and its power scheme modification

140

50 100 150 200 250 300 350 400 450 500
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Rank of recovery matrix

R
ec

ov
er

y
tim

e
(s

ec
on

ds
)

500x500
1000x1000
3000x3000
5000x5000
10000x10000
30000x30000

Figure 5.1: low-rank matrix recovery via BRP: the recovery time for matrices of
different size and different rank.

(5.5) in low-rank approximation of full rank matrix with slowly decaying singular

values. We generate a square matrix with size 1000, whose entries are indepen-

dently sampled from a standard normal distribution with mean 0 and variance 1,

and then apply (5.1) (q = 0) and (5.5) with q = 1, 2, 3 to obtain approximations

with rank varying from 1 to 600. We show the relative errors in Figure 5.2 and

the relative error of the corresponding SVD approximation as a baseline. The

results suggest that our method can obtain a nearly optimal approximation when

q is sufficiently large (e.g., 2).
At last, we evaluate the efficiency and effectiveness of BRP on low-rank com-

pression of human face images from dataset FERET [188]. We randomly selected

700 face images of 100 individuals from FERET and built a 700 × 1600 data

matrix, wherein the 1600 features are the 40× 40 pixels of each image. We then

obtain two rank-60 compressions of the data matrix by using SVD and the power

modification of BRP based low-rank approximation (5.5) with q = 1, respectively.

The compressed images and the corresponding time costs are shown in Figure 5.3

and its caption. It indicates that our method is able to produce compression with

competitive quality in considerably less time than SVD.

141

0 100 200 300 400 500 600
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank of approximation matrix

R
el

at
iv

e
er

ro
r

SVD
BRP(q=0)
BRP(q=1)
BRP(q=2)
BRP(q=3)

Figure 5.2: low-rank approximation via BRP: the relative approximation error
for a 1000 × 1000 matrix with standard normal distributed entries on different
rank.

5.2 Greedy Bilateral Sketch (GreBske)

GreBske is an application of “greedy bilateral (GreB)” paradigm, which will be

given in Chapter 7.

5.2.1 Low-rank Approximation

Real world data matrix is hardly to be exactly low-rank. However, approximating

it by a low-rank one presents a good trade-off between accuracy and time/space

costs, especially when its singular values decay fast. The low-rank approxima-

tion [238] can replace the original matrix in least square regression and matrix

product, and also provides a low-dimensional representation which can boosts the

classification and clustering performance. Although the low-rank approximation

is provably optimal when constructed from SVD, the expensive time cost makes

SVD prohibitive to large matrix. Thus many faster Monte Carlo algorithms

[75][53][183] have been proposed at the cost of producing sufficiently small error

to SVD with high probability. Typically, they build the low-rank approxima-

tion from random selected columns or rows [27], or linear projections (which are

called “sketch”) on certain random matrix [108]. Some of them compute bilateral

142

Figure 5.3: low-rank image compression via BRP on FERET: BRP compresses
700 40×40 face images sampled from 100 individuals to a 700×1600 matrix with
rank 60. Upper row: Original images. Middle row: images compressed by SVD
(6.59s). Bottom row: images compressed by BRP (0.36s).

sketches [85][263] for both column space and row space in building the approxima-

tion. In this case, the matrix X is approximated as X = USV , wherein U = XA1

and V = AT
2X are right and left sketches, A1 and A2 are random matrices.

In this chapter, we omit S and consider optimizing U and V :

min
U,V

‖X − UV ‖2F
s.t. rank(U) = rank(V) ≤ r.

(5.38)

5.2.2 Greedy Bilateral Sketch

Alternately optimizing U and V in (5.38) immediately yields the following up-

dating rules, note subscript in ·k denotes the variable in the kth iterate and (·)†
stands for the Moore-Penrose pseudo-inverse:{

Uk = XV T
k−1

(
Vk−1V T

k−1
)†
,

Vk =
(
UT
k Uk

)†
UT
k X.

(5.39)

It can be observed that the object value in (5.38) is merely determined by the

matrix product UV rather than individual U or V , and different (U, V) pair can

produce the same UV . It is then of interest to find a pair of (U, V) that have the

same product as (Uk, Vk) in (5.39) but can be computed in less time than Uk and

143

Vk. For this purpose, we investigate the product UkVk

UkVk = Uk

(
UT
k Uk

)†
UT
k X = PUk

X. (5.40)

This implies that the product UkVk equals to the orthogonal projection of X

onto the column space of Uk. According to (5.39), the column space of Uk can

be represented by arbitrary orthonormal basis for the columns of XV T
k−1. For

example, we can compute it as Q via fast QR decompositionXV T
k−1 = QR. In this

case, the product UkVk can be equivalently computed as UkVk = PQX = QQTX.

Therefore, Uk and Vk in (5.39) can be replaced by Q and QTX respectively, while

the product UkVk and the corresponding object value are kept the same. This

gives a faster updating procedure{
Uk = Q,QR

(
XV T

k−1
)
= QR,

Vk = QTX.
(5.41)

This alternating update can be viewed as mutually adaptive optimization of right

sketch XV T and left sketch QTX for X, where the right projection matrix V T is

the former left sketch, and the left projection matrix Q is the orthonormal basis

of the former right sketch. This mutually adaptive optimization of left and right

factors will appear in GreBcom and GreBsmo as well.

Since the right and left sketches respectively describe the column and row

spaces, which largely decide the approximation precision, we can temporarily

ignore the QR decomposition in order to see how the column/row space is tracked

within this scheme. Specifically, we start from a random matrix V and repeat

Uk = XVk−1, Vk = UT
k X for K times, the resulting VK = V (XTX)K are exactly

the randomized SVD under power scheme [195] given in [108]. TheK-order matrix

exponential accelerates the decaying of singular values and thus improves the

approximation precision. Similar theoretical analysis as [108] supports that (5.39)

achieves the same accuracy as power scheme randomized SVD.

Different from power scheme whose speed would be quickly limited with the

increasing of power K, GreBske invokes the updates in (5.39) with a greedy

incremental rank r for both U and V . In particular, GreBske starts from a

V ∈ R
n×r0 with a small integer r0, iterates (5.39) for K times, and then augment

144

the rank of V to r1 = r0+Δr by adding Δr extra rows to V , where Δr is the rank

step size. In GreB, the Δr rows are selected greedily as the top Δr row basis on

which the object decreases fastest. Accordingly, they maximizes the magnitude

of the partial derivative of the object w.r.t. UV , which is

∂‖X − UV ‖2F
∂UV

= X − UV. (5.42)

Hence the Δr rows are the top Δr right singular vectors of the fat matrix UT (X−
UV), which can be quickly obtained by a small SVD or its faster approximation

like random projections ATUT (X −UV), wherein A is a ri ×Δr random matrix.

The rank r stops augmenting when reaching certain error tolerance.

In GreBske, the top ri row basis are successfully obtained when optimizing

V of ri + Δr rows. The essential task of the updates is to optimize the added

Δr rows, while the first ri rows take part in the update merely for keep the

incoherence between rows. So it converges faster than simultaneously optimizing

the whole r rows. In addition, the newly added Δr rows are initialized as the

fastest decreasing directions, so its distance to the optimal solution is shortened.

The computation in GreBske is dominated by the two matrix multiplications that

take 2mnri flops. It can be further speeded up if designing sparse updates of U

and V , which will be studied in future works.

The detailed algorithm of GreBske is given in Algorithm 5.

Algorithm 5: Greedy Bilateral Sketch (GreBske)

Input: Object function f ; rank step size Δr; power K; tolerance τ ;
observations of data matrix X

Output: low-rank matrix UV (and sparse S)
Initialize V ∈ R

r0×n (and S);
while residual error ≤ τ do

for k ← 1 to K do
Greedy Bilateral Sketch: sequentially compute (5.41);

end
Calculate the top Δr right singular vectors v (or Δr-dimensional
random projections) of ∂f/∂V given in (5.42);
Set V := [V ; v];

end

145

5.2.3 Empirical Study

0 100 200 300 400 500
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

rank

ap
pr

ox
im

at
io

n
er

ro
r

L-SVD
R-SVD,p=1
R-SVD,p=2
R-SVD,p=3
G-SVD,p=1
G-SVD,p=2
G-SVD,p=3

0 100 200 300 400 500
10

-1

10
0

10
1

10
2

10
3

rank

C
P

U
 s

ec
on

ds

Figure 5.4: Low-rank approximation performed by Lanczos method (L-SVD),
randomized SVD (R-SVD) and GreBske (G-SVD) on 104 × 104 matrix whose
entries are sampled from i.i.d. normal distribution, p (K in G-SVD) is the power
parameter.

The approximation accuracy and time cost of GreBske is evaluated on the

task of approximating a randomly generated 104 × 104 matrix X, with thorough

comparison to the results obtained by Lanczos algorithm for SVD and randomized

SVD [108], which are two popular approximation algorithms of SVD. Each entry

of the matrix is sampled from an i.i.d. standard Gaussian distribution N(0, 1).

We uniformly select 20 values from 1 to 500 as the rank parameters. Then

the associated 20 low-rank approximations are computed by the three different

algorithms. Randomized SVD and GreBske of different power parameters are

tested. We show the approximation error ‖X̂ − X‖F/‖X‖F and CPU seconds

for each approximation X̂ in the two right plots of Figure 5.2.3. It can been

146

verified that Lanczos method achieves the smallest error yet along with expensive

computations, while randomized SVD has the fastest speed yet largest error.

GreBske has error very close to that of Lanczos method, but its computational

time is comparable with that of randomized SVD. Thus it provides a good trade-

off between speed and accuracy, which is highly preferred in real applications.

It is necessary to discuss the connections and differences between BRP and

GreBske, because they share the goal of solving low-rank matrix approximation

problem. Their most critical differences are their strategies to find out the column

space of a matrix. While BRP use random projections, GreBske adopts greedy

optimization. Randomized and greedy strategies have their advantages and dis-

advantages comparing to each other. Greedy strategy usually provides better ap-

proximation accuracy, but its computation cannot be paralleled like randomized

strategy so its time cost is higher. Although we did not show direct compari-

son between these two proposed methods, we compare the randomized SVD and

GreBske in Figure 5.2.3, and the results validate above analysis. Both BRP and

randomized SVD use random projections to build the low-rank approximation,

but BRP builds a closed-form solution from left and right random projections.

They share similar approximation error, but BRP has simpler implementation

and faster speed.

147

Chapter 6

GO Decomposition and

Randomized Low-rank + Sparse

Decomposition

Low-rank and sparse structures have been profoundly studied in matrix comple-

tion and compressed sensing. In this chapter, we develop “Go Decomposition”

(GoDec) to efficiently and robustly estimate the low-rank part L and the sparse

part S of a matrix X = L + S + G with noise G. GoDec alternatively assigns

the low-rank approximation of X − S to L and the sparse approximation of

X − L to S. The algorithm can be significantly accelerated by bilateral random

projections (BRP) in Chapter 5. We also propose GoDec for matrix comple-

tion as an important variant in Chapter 8. We prove that the objective value

‖X − L − S‖2F converges to a local minimum, while L and S linearly converge

to local optimums. Theoretically, we analyze the influence of L, S and G to

the asymptotic/convergence speeds in order to discover the robustness of GoDec.

Empirical studies validate the efficiency, robustness and effectiveness of GoDec

comparing with representative matrix decomposition and completion tools, e.g.,

Robust PCA and OptSpace.

148

6.1 Introduction

It has proven in compressed sensing [71] that a sparse signal can be exactly recov-

ered from a small number of its random measurements, and in matrix completion

[137] that a low-rank matrix can be exactly completed from a few of its entries

sampled at random. When signals are neither sparse nor low-rank, its low-rank

and sparse structure can be explored by either approximation or decomposition.

Recent research about exploring low-rank and sparse structures [269] concen-

trates on developing fast approximations and meaningful decompositions. Two

appealing representatives are the randomized approximate matrix decomposi-

tion [108] and the robust principal component analysis (RPCA) [37]. The former

proves that a matrix can be well approximated by its projection onto the column

space of its random projections. This rank-revealing method provides a fast ap-

proximation of SVD/PCA. The latter proves that the low-rank and the sparse

components of a matrix can be exactly recovered if it has a unique and precise

“low-rank+sparse” decomposition. RPCA offers a blind separation of low-rank

data and sparse noises.

We study the approximated “low-rank+sparse” decomposition of a matrix X,

i.e.,

X = L+ S +G, rank(L) ≤ r, card(S) ≤ k, (6.1)

where G is the noise. This problem is intrinsically different from RPCA that

assumes X = L + S. In this chapter, we develop “Go Decomposition” (GoDec)

to estimate the low-rank part L and the sparse part S from X. We show that

BRP can significantly accelerate GoDec.

In particular, GoDec alternatively assigns the r-rank approximation of X −S

to L and assigns the sparse approximation with cardinality k of X−L to S. The

updating of L is obtained via singular value hard thresholding of X − S, while

the updating of S is obtained via entry-wise hard thresholding [29] of X−L. The

term “Go” is owing to the similarities between L/S in the GoDec iteration rounds

and the two players in the game of go. BRP based low-rank approximation is

applied to accelerating the r-rank approximation of X − S in GoDec. We show

GoDec can be extended to solve matrix completion problem with competitive

robustness and efficiency.

149

We theoretically analyze the convergence of GoDec. The objective value (de-

composition error) ‖X−L−S‖2F monotonically decreases and converges to a local

minimum. Since the updating of L and S in GoDec is equivalent to alternatively

projecting L or S onto two smooth manifolds, we use the framework proposed in

[153] to prove the asymptotical property and linear convergence of L and S. The

asymptotic and convergence speeds are mainly determined by the angle between

the two manifolds. We discuss how L, S and G influence the speeds via influ-

encing the cosine of the angle. The analyses show the convergence of GoDec is

robust to the noise G.

Both GoDec and RPCA can explore the low-rank and sparse structures in

X, but they are intrinsically different. RPCA assumes X = L + S (S is sparse

noise) and exactly decomposes X into L and S without predefined rank(L) and

card(S). However, GoDec produces approximated decomposition of a general

matrix X whose exact RPCA decomposition does not exist due to the additive

noise G and pre-defined rank(L) and card(S). In practice, rank(L) and card(S)

are preferred to be restricted in order to control the model complexity. Another

major difference is that GoDec directly constrains the rank range of L and the

cardinality range of S, while RPCA minimizes their corresponding convex poly-

topes, i.e., the nuclear norm of L and �1 norm of S. Chandrasekaran et al. [43]

proposed an exact decomposition based on a different assumption but the same

optimization procedure used in RPCA. Stable principal component pursuit [271]

is an extension of RPCA to handle noise by minimizing the nuclear norm and

�1 norm. Therefore, they are different from GoDec. In addition, GoDec can be

extended to solve matrix completion problems (Chapter 8) because it is able to

control the support set of S, while RPCA cannot because the support set of S is

automatically determined.

GoDec has low computational cost in “low-rank+sparse” decomposition and

matrix completion tasks. It is powerful in background modeling of videos and

shadow/light removal of images. For example, it processes a 200 frame video with

256× 320 resolution within 200 seconds, while RPCA requires 1, 800+ seconds.

In this chapter, a standard Gaussian matrix is a random matrix whose entries

are independent standard normal variables; the SVD of a matrix X is UΛV T and

λi or λi(X) stands for the ith largest singular value of X; PΩ (·) is the projection

150

of a matrix to an entry set Ω; and the QR decomposition of a matrix results in

Q and R.

6.2 Go Decomposition (GoDec)

The approximated “low-rank+sparse” decomposition problem stated in (6.1) can

be solved by minimizing the decomposition error:

min
L,S

‖X − L− S‖2F
s.t. rank (L) ≤ r,

card (S) ≤ k.

(6.2)

6.2.1 Näıve GoDec

We propose the näıve GoDec algorithm in this section. The optimization problem

of GoDec (6.2) can be solved by alternatively solving the following two subprob-

lems until convergence:

⎧⎨
⎩

Lt = arg min
rank(L)≤r

‖X − L− St−1‖2F ;
St = arg min

card(S)≤k
‖X − Lt − S‖2F .

(6.3)

Although both subproblems (6.3) have nonconvex constraints, their global solu-

tions Lt and St exist.

In particular, the two subproblems in (6.3) can be solved by updating Lt via

singular value hard thresholding of X−St−1 and updating St via entry-wise hard

thresholding of X − Lt, respectively, i.e.,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lt =
r∑

i=1

λiUiV
T
i , svd (X − St−1) = UΛV T ;

St = PΩ (X − Lt) ,Ω :
∣∣∣(X − Lt)i,j∈Ω

∣∣∣ �= 0

and ≥
∣∣∣(X − Lt)i,j∈Ω

∣∣∣ , |Ω| ≤ k.

(6.4)

The main computation in the näıve GoDec algorithm (6.4) is the SVD of X −
St−1 in the updating Lt sequence. SVD requires min (mn2,m2n) flops, so it is

151

impractical when X is of large size.

6.2.2 Fast GoDec via BRP based approximation

Since BRP based low-rank approximation is near optimal and efficient, we replace

SVD with BRP in näıve GoDec in order to significantly reduce the time cost.

We summarize GoDec using BRP based low-rank approximation (5.1) and

power scheme modification (5.5) in Algorithm 1. When q = 0, For dense X,

(5.1) is applied. Thus the QR decomposition of Y1 and Y2 in Algorithm 1 are not

performed, and Lt is updated as Lt = Y1

(
AT

2 Y1

)−1
Y T
2 . In this case, Algorithm

6 requires r2 (2n+ r) + 4mnr flops per iteration. When integer q > 0, (5.5)

is applied and Algorithm 1 requires r2 (m+ 3n+ 4r) + (4q + 4)mnr flops per

iteration.

Algorithm 6: GO Decomposition (GoDec)

Input: X, r, k, ε, q
Output: L, S
Initialize L0 := X, S0 := 0, t := 0;
while ‖X − Lt − St‖2F/‖X‖2F > ε do

t := t+ 1;

L̃ =
[
(X − St−1) (X − St−1)

T
]q

(X − St−1);

Y1 = L̃A1, A2 = Y1;

Y2 = L̃TY1 = Q2R2, Y1 = L̃Y2 = Q1R1;

If rank
(
AT

2 Y1

)
< r then r := rank

(
AT

2 Y1

)
, go to the first step; end;

Lt = Q1

[
R1

(
AT

2 Y1

)−1
RT

2

]1/(2q+1)

QT
2 ;

St = PΩ (X − Lt), Ω is the nonzero subset of the first k largest entries
of |X − Lt|;

end

6.3 Convergence of GoDec

In this section, we analyze the convergence properties of GoDec. In particular, we

first prove that the objective value ‖X−L−S‖2F (decomposition error) converges

152

to a local minimum. Then we demonstrate the asymptotic properties of GoDec

and prove that the solutions L and S respectively converge to local optimums with

linear rate less than 1, by using the framework presented in [153]. The influence

of L, S and G to the asymptotic/convergence speeds is analyzed. The speeds

will be slowed by augmenting the magnitude of noise part ‖G‖2F . However, the

convergence will not be harmed unless ‖G‖2F
 ‖L‖2F or ‖G‖2F
 ‖S‖2F .
We have the following theorem about the convergence of the objective value

‖X − L− S‖2F in (6.2).

Theorem 13. (Convergence of objective value). The alternative optimiza-

tion (6.3) produces a sequence of ‖X−L−S‖2F that converges to a local minimum.

Proof. Let the objective value ‖X − L− S‖2F after solving the two subproblems

in (6.3) be E1
t and E2

t , respectively, in the tth iteration. On the one hand, we

have

E1
t = ‖X − Lt − St−1‖2F , E2

t = ‖X − Lt − St‖2F . (6.5)

The global optimality of St yields E
1
t ≥ E2

t . On the other hand,

E2
t = ‖X − Lt − St‖2F , E1

t+1 = ‖X − Lt+1 − St‖2F . (6.6)

The global optimality of Lt+1 yields E2
t ≥ E1

t+1. Therefore, the objective values

(decomposition errors) ‖X −L− S‖2F keep decreasing throughout GoDec (6.3):

E1
1 ≥ E2

1 ≥ E1
2 ≥ · · · ≥ E1

t ≥ E2
t ≥ E1

t+1 ≥ · · · (6.7)

Since the objective of (6.2) is monotonically decreasing and the constraints are

satisfied all the time, (6.3) produces a sequence of objective values that converge

to a local minimum. This completes the proof.

The asymptotic property and the linear convergence of L and S in GoDec

are demonstrated based on the framework proposed in [153]. We firstly consider

L. From a different prospective, GoDec algorithm shown in (6.4) is equivalent

to iteratively projecting L onto one manifold M and then onto another manifold

N. This kind of optimization method is the so called “alternating projections on

manifolds”. To see this, in (6.4), by substituting St into the next updating of

153

Lt+1, we have:

Lt+1 = PM (X − PΩ (X − Lt)) = PMPN (Lt) , (6.8)

Both M and N are two Ck-manifolds around a point L ∈ M ∩N:{
M = {H ∈ R

m×n : rank (H) = r} ,
N = {X − PΩ (X −H) : H ∈ R

m×n} . (6.9)

According to the above definitions, any point L ∈ M ∩N satisfies:

L = PM∩N (L) ⇒ (6.10)

L = X − PΩ (X − L) , rank (L) = r. (6.11)

Thus any point L ∈ M ∩N is a local solution of L in (6.2).

We define the angle between two manifolds M and N at point L as the an-

gle between the corresponding tangent spaces TM(L) and TN(L). The angle is

between 0 and π/2 with cosine:

c (M,N, L) = c (TM(L), TN(L)) . (6.12)

In addition, if S is the unit sphere in R
m×n, the angle between two subspaces M

and N in R
m×n is defined as the angle between 0 and π/2 with cosine:

c (M,N) = max
{
〈x, y〉 : x ∈ S ∩M ∩ (M ∩N)⊥ ,

y ∈ S ∩N ∩ (M ∩N)⊥
}
.

We give the following proposition about the angle between two subspaces M

and N :

Proposition 9. Following the above definition of the angle between two subspaces

M and N , we have

c (M,N) = max
{〈x, y〉 : x ∈ S ∩M ∩N⊥,

y ∈ S ∩N ∩M⊥} .

154

The angle between M and N is used in the asymptotical property and the

linear convergence rate of “alternating projections on manifolds” algorithms.

Theorem 14. (Asymptotic property [153]). Let M and N be two transverse

C2-manifolds around a point L ∈ M ∩N. Then

lim sup
L→L,L/∈M∩N

‖PMPN (L)− PM∩N (L)‖
‖L− PM∩N (L)‖ ≤ c

(
M,N, L

)
.

A refinement of the above argument is

lim sup
L→L,L/∈M∩N

‖(PMPN)
n (L)− PM∩N (L)‖

‖L− PM∩N (L)‖ ≤ c2n−1

for n = 1, 2, ... and c = c
(
M,N, L

)
.

Theorem 15. (Linear convergence of variables [153]). In R
m×n, let M and

N be two transverse manifolds around a point L ∈ M ∩ N. If the initial point

L0 ∈ R
m×n is close to L, then the method of alternating projections

Lt+1 = PMPN (Lt) , (t = 0, 1, 2, ...)

is well-defined, and the distance dM∩N(Lt) from the iterate Lt to the intersection

M ∩N decreases Q-linearly to zero. More precisely, given any constant c strictly

larger than the cosine of the angle of the intersection between the manifolds,

(̧M,N, L), if L0 is close to L, then the iterates satisfy

dM∩N(Lt+1) ≤ c · dM∩N(Lt), (t = 0, 1, 2, ...)

Furthermore, Lt converges linearly to some point L∗ ∈ M ∩ N, i.e., for some

constant α > 0,

‖Lt − L∗‖ ≤ αct, (t = 0, 1, 2, ...).

Since GoDec algorithm can be written as the form of alternating projections

on two manifolds M and N given in (6.9) and they satisfy the assumptions of

Theorem 14 and Theorem 15, L in GoDec converges to a local optimum with

linear rate. Similarly, we can prove the linear convergence of S.

155

Since cosine c(M,N, L) in Theorem 14 and Theorem 15 determines the asymp-

totic and convergence speeds of the algorithm. We discuss how L, S and G

influence the asymptotic and convergence speeds via analyzing the relationship

between L, S, G and c(M,N, L).

Theorem 16. (Asymptotic and convergence speed). In GoDec, the asymp-

totical improvement and the linear convergence of L and S stated in Theorem 14

and Theorem 15 will be slowed by augmenting

For L :
‖ΔL‖F

‖L+ΔL‖F
,ΔL = (S +G)− PΩ (S +G) ,

For S :
‖ΔS‖F

‖S +ΔS‖F
,ΔS = (L+G)− PM (L+G) .

However, the asymptotical improvement and the linear convergence will not be

harmed and is robust to the noise G unless when ‖G‖F
 ‖S‖F and ‖G‖F

‖L‖F , which lead the two terms increasing to 1.

Proof. GoDec approximately decomposes a matrix X = L+ S +G into the low-

rank part L and the sparse part S. According to the above analysis, GoDec is

equivalent to alternating projections of L on M and N, which are given in (6.9).

According to Theorem 14 and Theorem 15, smaller c(M,N, L) produces faster

asymptotic and convergence speeds, while c(M,N, L) = 1 is possible to make L

and S stopping converging. Below we discuss how L, S andG influence c(M,N, L)

and further influence the asymptotic and convergence speeds of GeDec.

According to (6.12), we have

c
(
M,N, L

)
= c

(
TM(L), TN(L)

)
. (6.13)

Substituting the equation given in Proposition 9 into the right-hand side of the

above equation yields

c
(
M,N, L

)
= max

{〈x, y〉 : x ∈ S ∩ TM(L) ∩NN(L),

y ∈ S ∩ TN(L) ∩NM(L)
}
.

(6.14)

156

The normal spaces of manifolds M and N on point L is respectively given by

NM(L) =
{
y ∈ R

m×n : uT
i yvj = 0, L = UDV T

}
,

NN(L) =
{
X − PΩ

(
X − L

)}
,

(6.15)

where L = UDV T represents the eigenvalue decomposition of L, U = [u1, ..., ur]

and V = [v1, ..., vr]. Assume X = L+S+G, wherein G is the noise corresponding

to L, we have

L = X − (S +G
)
,

L̂ = X − PΩ

(
S +G

)
,⇒

L̂ = L+
[(
S +G

)− PΩ

(
S +G

)]
= L+Δ. (6.16)

Thus the normal space of manifold N is

NN(L) =
{
L+Δ

}
. (6.17)

Since the tangent space is the complement space of the normal space, by using

the normal space of M in (6.15) and the normal space of N given in (6.17), we

can verify

NN(L) ⊆ TM(L), NM(L) ⊆ TN(L). (6.18)

By substituting the above results into (6.14), we obtain

c
(
M,N, L

)
= max

{〈x, y〉 : x ∈ S ∩NN(L),

y ∈ S ∩NM(L)
}
.

(6.19)

Hence we have

〈x, y〉 = tr
(
V DUTy +ΔTy

)
= tr

(
DUTyV

)
+ tr

(
ΔTy

)
= tr

(
ΔTy

)
. (6.20)

The last equivalence is due to uT
i yvj = 0 in (6.15). Thus

c
(
M,N, L

)
= max {〈x, y〉} ≤ max {〈DΔ, Dy〉} , (6.21)

157

where the diagonal entries of DΔ and Dy are composed by eigenvalues of Δ and

y, respectively. The last inequality is obtained by considering the case when x

and y have identical left and right singular vectors. Because L +Δ, y ∈ S infers

‖L+Δ‖2F = ‖y‖2F = 1, we have

c
(
M,N, L

) ≤ max {〈DΔ, Dy〉}
≤ ‖DΔ‖F ‖Dy‖F ≤ ‖DΔ‖F . (6.22)

Since c in Theorem 15 can be selected as any constant that is strictly larger than

c
(
M,N, L

) ≤ ‖DΔ‖F , we can choose c = c
(
M,N, L

)
+Δc ≤ ‖DΔ‖F . In Theorem

14, the cosine c
(
M,N, L

)
is directly used.

Therefore, the asymptotic and convergence speeds of L will be slowed by

augmenting ‖Δ‖F , and vice versa. However, the asymptotical improvement and

the linear convergence will not be jeopardized unless ‖Δ‖F = 1. For general

L + Δ that is not normalized onto the sphere S, ‖Δ‖F should be replaced by

‖Δ‖F/‖L+Δ‖F .
For the variable S, we can obtain an analogous result via an analysis in a

similar style as above. For general L + Δ without normalization, the asymp-

totic/convergence speed of S will be slowed by augmenting ‖Δ‖F/‖S+Δ‖F , and
vice versa, wherein

Δ = (L+G)− PM (L+G) . (6.23)

The asymptotical improvement and the linear convergence will not be jeopardized

unless ‖Δ‖F/‖S +Δ‖F = 1.

This completes the proof.

Theorem 16 reveals the influence of the low-rank part L, the sparse part S

and the noise part G to the asymptotic/convergence speeds of L and S in GoDec.

Both ΔL and ΔS are the element-wise hard thresholding error of S +G and the

singular value hard thresholding error of L + G, respectively. Large errors will

slow the asymptotic and convergence speeds of GoDec. Since S − PΩ(S) = 0

and L − PM(L) = 0, the noise part G in ΔL and ΔS can be interpreted as

the perturbations to S and L and deviates the two errors from 0. Thus noise

G with large magnitude will decelerate the asymptotical improvement and the

158

linear convergence, but it will not ruin the convergence unless ‖G‖F
 ‖S‖F or

‖G‖F
 ‖L‖F . Therefore, GoDec is robust to the additive noise in X and is able

to find the approximated L+S decomposition when noise G is not overwhelming.

6.4 Experiments

This section evaluates both the effectiveness and the efficiency of the BRP based

low-rank approximation and GoDec for computer vision applications, low-rank+sparse

decomposition and matrix completion. We run all the experiments in MatLab on

a server with dual quad-core 3.33 GHz Intel Xeon processors and 32 GB RAM.

The relative error ‖X − X̂‖2F/‖X‖2F is used to evaluate the effectiveness, wherein

X is the original matrix and X̂ is an estimate/approximation.

6.4.1 RPCA vs. GoDec

Table 6.1: Relative error and time cost of RPCA and GoDec in low-rank+sparse
decomposition tasks. The results separated by “/” are RPCA and GoDec, re-
spectively.

size(X) rank(L) card(S) rel.error(X) rel.error(L) rel.error(S) time
(square) (1) (104) (10−8) (10−8) (10−6) (seconds)

500 25 1.25 3.70/1.80 1.50/1.20 2.00/0.95 6.07/2.83
1000 50 5.00 4.98/4.56 1.82/1.85 5.16/4.90 20.96/12.71
2000 100 20.0 8.80/1.13 3.10/1.10 1.81/1.24 101.74/74.16
3000 250 45.0 6.29/4.98 5.09/5.05 33.9/55.3 562.09/266.11
5000 400 125 63.1/24.4 30.2/29.3 54.2/18.8 2495.31/840.39
10000 500 600 6.18/3.04 2.27/2.88 58.3/36.6 9560.74/3030.15

Since RPCA and GoDec are related in their motivations, we compare their

relative errors and time costs on square matrices with different sizes, different

ranks of low-rank components and different cardinality of sparse components.

For a matrix X = L + S + G, its low-rank component is built as L = AB,

wherein both A and B are n × r standard Gaussian matrices. Its sparse part

is built as S = PΩ(D), wherein D is a standard Gaussian matrix and Ω is an

entry set of size k drawn uniformly at random. Its noise part is built as G =

159

10−3 · F , wherein F is a standard Gaussian matrix. In our experiments, we

compare RPCA 1 (inexact alm rpca) with GoDec (Algorithm 6 with q = 2).

Since both algorithms adopt the relative error of X as the stopping criterion,

we use the same tolerance ε = 10−7. Table 6.1 shows the results and indicates

that both algorithms are successful in recovering the correct “low-rank+sparse”

decompositions with relative error less than 10−6. GoDec usually produces less

relative error with much less CPU seconds than RPCA. The improvement of

accuracy is due to that the model of GoDec in (6.1) is more general than that of

RPCA by considering the noise part. The improvement of speed is due to that

BRP based low-rank approximation significantly saves the computation of each

iteration round.

6.4.2 Background modeling

Figure 6.1: Background modeling results of four 200-frame surveillance video
sequences in X = L + S mode. Top left: lobby in an office building (resolution
128 × 160, learning time 39.75 seconds). Top right: shopping center (resolution
256 × 320, learning time 203.72 seconds). Bottom left: Restaurant (resolution
120×160, learning time 36.84 seconds). Bottom right: Hall of a business building
(resolution 144× 176, learning time 47.38 seconds).

Background modeling [48] is a challenging task to reveal the correlation be-

1http://watt.csl.illinois.edu/p̃erceive/matrix-rank

160

tween video frames, model background variations and foreground moving objects.

A video sequence satisfies the low-rank+sparse structure, because backgrounds of

all the frames are related, while the variation and the moving objects are sparse

and independent. We apply GoDec (Algorithm 2 with q = 2) to four surveil-

lance videos 1, respectively. The matrix X is composed of the first 200 frames of

each video. For example, the second video is composed of 200 frames with the

resolution 256 × 320, we convert each frame as a vector and thus the matrix X

is of size 81920 × 200. We show the decomposition result of one frame in each

video sequence in Figure 6.1. The background and moving objects are precisely

separated (the person in L of the fourth sequence does not move throughout the

video) without losing details. The results of the first sequence and the fourth se-

quence are comparable with those shown in [37]. However, compared with RPCA

(36 minutes for the first sequence and 43 minutes for the fourth sequence) [37],

GoDec requires around 50 seconds for each of both. Therefore, GoDec makes

large-scale applications available.

6.4.3 Shadow/Light removal

Figure 6.2: Shadow/light removal of face images from four individuals in Yale B
database in X = L + S mode. Each individual has 64 images with resolution
192× 168 and needs 24 seconds learning time.

Shadow and light in training images always pull down the quality of learning

in computer vision applications. GoDec can remove the shadow/light noises by

assuming that they are sparse and the rest parts of the images are low-rank. We

apply GoDec (Algorithm 2 with q = 2) to face images of four individuals in the

Yale B database 2. Each individual has 64 images with resolution 192× 168 cap-

tured under different illuminations. Thus the matrix X for each individual is of

1http://perception.i2r.a-star.edu.sg/bk model/bk index.html
2http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html

161

size 32760× 64. We show the GoDec of eight example images (2 per individual)

in Figure 6.2. The real face of each individual are remained in the low rank com-

ponent, while the shadow/light noises are successfully removed from the real face

images and stored in the sparse component. The learning time of GoDec for each

individual is less than 30 seconds, which encourages for large-scale applications,

while RPCA requies around 685 seconds.

6.5 Conclusion

In this chapter, we first proposed a bilateral random projections (BRP) based

low-rank approximation with fast speed and nearly optimal error bounds. We

then develop “Go Decomposition” (GoDec) to estimate the low-rank part L and

the sparse part S of a general matrix X = L+S+G, wherein G is noise. GoDec

is significantly accelerated by using BRP based approximation. The discussions

of asymptotic and convergence speeds indicate that GoDec is robust to noise G.

GoDec achieves better decomposition accuracy and much faster speed than

existing robust PCA algorithms such as PCP in lots of practical problems. This

is because that the sparse outlier and dense noise assumption in GoDec fits real

data better than sparse random noise assumption in original robust PCA model.

In addition, the alternating projection accelerated by BRP provides a simple

and efficient algorithm with very competitively small time cost. However, in the

cases where the sparse random noise is more reasonable, PCP might has better

accuracy. But according to our empirical study on different real data, GoDec

usually outperforms PCP in both accuracy and speed.

162

Chapter 7

Greedy Bilateral Paradigm and

Greedy Low-rank + Sparse

Decomposition

Recovering a large low-rank matrix from highly corrupted, incomplete or sparse

outlier overwhelmed observations is the crux of various intriguing statistical prob-

lems. We explore the power of “greedy bilateral (GreB)” paradigm in reducing

both time and sample complexities for solving these problems. GreB models a

low-rank variable as a bilateral factorization, and updates the left and right fac-

tors in a mutually adaptive and greedy incremental manner. We detail how to

model and solve low-rank approximation (GreBske in Chapter 5), matrix com-

pletion (GreBcom in Chapter 8) and robust PCA in GreB’s paradigm. On their

MATLAB implementations, approximating a noisy 104 × 104 matrix of rank 500

with SVD accuracy takes 6s; MovieLens10M matrix of size 69878 × 10677 can

be completed in 10s from 30% of 107 ratings with RMSE 0.86 on the rest 70%;

the low-rank background and sparse moving outliers in a 120× 160 video of 500

frames are accurately separated in 1s. This brings 30 to 100 times acceleration

in solving these popular statistical problems.

163

7.1 Introduction

Explosion of information introduces dramatic increasing data collected from Inter-

net and digital sensors. These data are usually featured by their high-dimension,

huge volume, serious incompleteness, dominating noise and complicated struc-

ture, which bring intriguing new challenges to compressive acquisition, signal

processing and machine learning. Because traditional methods are limited by

their time/sample complexities, storage and denoising capability. This fact has

driven the recent exploitation of data intrinsic redundancy and structures. For

a single signal or individual instance, the redundancy is usually exhibited by its

sparsity, i.e., it is nonzero only on a small set of entries. Compressed sensing

[71][41] recovers a signal from its highly compressed measurements, via solving a

undetermined linear system, by leveraging the sparsity. For multiple instances,

or more specifically a matrix, the redundancy is often identified by its low-rank

structure, i.e., all the instances lie in a subspace spanned by a small number of

bases. Low-rank structure can be analogized to sparsity due to its sparse spec-

trum. Equivalently saying, the matrix X can be written as the sum of a few

rank-1 matrices such that X =
∑r

i=1 UiVi, wherein Ui is a column vector and Vi

is a row vector.

Low-rank structure arises in a wide range of fundamental problems. In this

chapter, we mainly focus on three representatives catching substantial interests in

several important applications: low-rank approximation [108], matrix completion

[39] and robust PCA [37]. In this chapter, the low-rank matrix variable in these

problems is modeled in a bilateral factorization form UV for the purpose of

developing SVD-free algorithms.

We describe and analyze a general scheme called “greedy bilateral (GreB)”

paradigm for solving the mainstream low-rank matrix recovery problems. GreB

starts from U and V respectively containing a very few (e.g., one) columns and

rows, and optimizes them alternately. Their updates are based on observation

that the object value is determined by the product UV rather than individual

U or V . Thus we can choose a different pair (U, V) producing the same UV

but computed faster than the one derived by alternating least squares like in

IRLS-M [88] and ALS [244]. In GreB, the updates of U and V can be viewed as

164

mutually adaptive update of the left and right sketches of the low-rank matrix.

Such updates are repeated until the object convergence, then a few more columns

(or rows) are concatenated to the obtained U (or V), and the alternating updates

are restarted on a higher rank. Here, the added columns (or rows) are selected in

a greedy manner. Specifically, they are composed of the rank-1 column (or row)

directions on which the object decreases fastest. GreB incrementally increases

the rank until when UV is adequately consistent with the observations.

GreB’s greedy strategy avoids the failures brought by possible biased rank es-

timation. Moreover, greedy selecting optimization directions from 1 to r is faster

than updating r directions in all iterates like in LMaFit [228] and [265]. In addi-

tion, the lower rank solution before each rank increment is invoked as the “warm

start” of the next higher rank optimization and thus speed up convergence. Fur-

thermore, its mutually adaptive updates of U and V yields a simple yet efficient

SVD-free implementation. Under GreB paradigm, the overall time complexity of

matrix completion is O(max{‖Ω‖0r2, (m+ n)r3}) (Ω-sampling set, m× n-matrix

size, r-rank), while the overall complexities of low-rank approximation and noisy

robust PCA are O(mnr2). An improvement on sample complexity can also be

justified in our experiments.

7.2 Background and Problem Formulation

For data with sparse outliers or partially contaminated by noise of overwhelming

magnitude, sheer low-rank assumption cannot fully capture its complex structure.

A more general assumption X = L+ S is applied in this case [43], i.e., the data

matrix X can be decomposed as the sum of a low-rank matrix L and a sparse

matrix S. L explains the components that lie in a subspace and smoothly change

across different instances, while S contains the spiky anomalies that are rarely

shared by different instances. This model is called “robust PCA” [37] due to

its robustness to sparse noise S when recovering principle components of L from

X, and can be applied to video surveillance, graphical mode selection, image

alignment, multi-label learning [259], etc.

PCP [37] recovers L and S from X by minimizing sum of the trace norm of L

and the �1 norm of S. It can be proved that the solution to this convex relaxation

165

is the exact recovery if X = L+S indeed exists and L and S are sufficiently inco-

herent [43][37]. That is, L obeys the incoherence property in (8.1) and thus is not

sparse, while S has nonzero entries uniformly selected at random and thus is not

low-rank. Popular optimization algorithms such as augmented Lagrangian mul-

tiplier, accelerated proximal gradient method and accelerated projected gradient

method [46] have been applied. But full SVD as a costly subroutine is required

to be repeatedly invoked in any of them.

Despite the strong theoretical guarantee of robust PCA, the exact decompo-

sition X = L + S does not always exist for real data matrix X. Thus a more

adaptive model X = L + S + G is preferred, where L + S approximates X and

G is the dense noise. Such noisy robust PCA becomes the central interests of

many recent works including stable PCP [271], GoDec [265] and DRMF [233].

Direct rank constraint for L and cardinality constraint for S have been employed

in order to replace the full SVD with truncated SVD or faster low-rank approxi-

mation. They also face the rank estimation problem when determining the rank

constraint r.

In this chapter, we formulate the noisy robust PCA by replacing L with its

bilateral factorization L = UV and regularizing the �1 norm of S’s entries:

minU,V,S ‖X − UV − S‖2F + λ‖vec(S)‖1
s.t. rank(U) = rank(V) ≤ r.

(7.1)

The �1 regularization induces soft-thresholding in updating S, which is faster

than sorting caused by cardinality constraint in GoDec and DRMF.

7.3 Greedy Bilateral (GreB) Paradigm

In this section, we sequentially detail how to solve low-rank approximation, ma-

trix completion and noisy robust PCA in GreB’s paradigm. The resulting three

algorithms are named as “greedy bilateral sketch (GreBske)”, “greedy bilateral

completion (GreBcom)” and “greedy bilateral smoothing (GreBsmo)” respec-

tively according to their normal usages in practical applications. We summarize

all the three algorithms in GreB’s paradigm given in Algorithm 7.

166

Algorithm 7: Greedy Bilateral (GreB) Paradigm

Input: Object function f ; rank step size Δr; power K; tolerance τ ;
observations of data matrix X

Output: low-rank matrix UV (and sparse S)
Initialize V ∈ R

r0×n (and S);
while residual error ≤ τ do

for k ← 1 to K do
Greedy Bilateral Sketch: sequentially compute (5.41);
Greedy Bilateral Completion: sequentially compute (8.8);
Greedy Bilateral Smoothing: sequentially compute (7.4);

end
Calculate the top Δr right singular vectors v (or Δr-dimensional
random projections) of ∂f/∂V (given in (5.42), (8.9) and (7.5) for
different problems);
Set V := [V ; v];

end

7.4 Greedy Bilateral Smoothing

Alternately optimizing U , V and S in (7.1) immediately yields the following

updating rules:

⎧⎪⎨
⎪⎩

Uk = (X − Sk−1)V T
k−1

(
Vk−1V T

k−1
)†
,

Vk =
(
UT
k Uk

)†
UT
k (X − Sk−1) ,

Sk = Sλ (X − UkVk) ,

(7.2)

where Sλ is an element-wise soft thresholding operator with threshold λ such that

SλX = {sgn (Xij)max (|Xij| − λ, 0) : (i, j) ∈ [m]× [n]} . (7.3)

The same trick of replacing the (U, V) pair with a faster computed one is applied

and produce ⎧⎪⎨
⎪⎩

Uk = Q,QR
(
(X − Sk−1)V T

k−1
)
= QR,

Vk = QT (X − Sk−1) ,

Sk = Sλ (X − UkVk) ,

(7.4)

167

The above procedure can be performed in 3mnri +mr2i flops for U ∈ R
m×ri and

V ∈ R
ri×n.

In GreBsmo, (7.4) is iterated as a subroutine of GreB’s greedy incremental

paradigm. In particular, the updates in (7.4) are iterated for K times or until

the object converging, then Δr rows are added into V as the new directions for

decreasing the object value. In order to achieve the fastest decreasing directions,

we greedily select the added Δr rows as the top Δr right singular vectors of the

partial derivative
∂‖X − UV − S‖2F

∂V
= X − UV − S. (7.5)

We also allow to approximate row space of the singular vectors via random pro-

jections [108]. The selected Δr rows maximize the magnitude of the above par-

tial derivative and thus lead to the most rapid decreasing of the object value,

a.k.a., the decomposition error. GreBsmo repeatedly increases the rank until a

sufficiently small decomposition error is achieved. So the rank of the low-rank

component is adaptively estimated in GreBsmo and does not relies on initial

estimation.

We report the phase diagram of GreBsmo in Figure 7.1 from results on ran-

domly generated matrix that is the sum of a low-rank part and a sparse part.

The low-rank part is generated as the product of two Gaussian matrices and the

sparse part has a Bernoulli model generated support set on which ±1 values are

randomly assigned. The phase transition phenomenon is in consistency with ex-

isting low-rank and sparse decomposition algorithms. It also shows that GreBsmo

is able to gain accurate separation of L even if its rank is close to 0.4n, given the

sparse part has an adequately sparse support set. This is competitive to pub-

lished result [37]. Interestingly, the phase transition curve has a regular shape and

implies a theoretical analysis to its behavior is highly possible in future studies.

7.5 Analysis

It is not direct to analyze the theoretical guarantee of GreB due to its combination

of alternating minimization and greedy forward selection. Hence, we consider

analyzing its convergence behavior by leveraging the results from GECO [200]

168

rank/n

ρ

GreBsmo(500x500)

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.1: Phase diagram for GreBsmo on 500 × 500 matrices. Low-rank com-
ponent is generated as L = UV , where entries of U and V are sampled from
N(0, 1/n). Entries of sparse component S are sampled as 1 or −1 with proba-
bility ρ/2 and 0 with probability 1 − ρ. On the 30 × 30 grid of sparsity-rank/n
plane, 20 trials are performed for each (ρ, r) pair. L is said to be successfully
recovered if its rel. err.≤ 10−2. The phase diagram shows the successful recovery
rate for each (ρ, r) pair.

analysis. This is reasonable because they share the same objective function yet

different optimization variables. In particular, the risk function in GECO is

R(A) = R(A(λ)) = f(λ), where A =
∑

i λiUiVi. It can be seen that the variable

A in GECO is able to be written as A = UV without any loss of generality.

Therefore, for the same selection of R(A), we can compare the objective value of

GECO and GreB at arbitrary step of their algorithm. This results in the following

theorem.

Theorem 17. Assume R(A) is a β-smooth function according to GECO [200]

and ε > 0, and F (U, V) = R(UV) is the objective function of GreB. Given a rank

169

constraint r to A and a tolerance parameter τ ∈ [0, 1). Let A∗ = U∗V ∗ is the

solution of GreB. Then for all matrices A = UV with

‖UV ‖2tr ≤
ε(r + 1)(1− τ)2

2β
(7.6)

we have F (U∗, V ∗) ≤ F (U, V) + ε.

Proof. According to Lemma 3 in GECO [200], let εi = f(λ(i))− f(λ̄), where λ(i)

is the value of λ at the beginning of iteration i and λ̄ fulfills f(λ) > f(λ̄), we have

f(λ(i))−min
η

f(λ(i) + ηeu,v) ≥ ε2i (1− τ)2

2β‖A‖2tr
. (7.7)

At the end of iteration i, the objective value of GreB equals R(UV), while GECO

optimizes λ over the support of span(U)× span(V) (i.e., optimizes S when fixing

U and V). We use the same notation ·(i) to denote the variable in iteration i.

This yields

F (U (i), V (i)) = R(U (i)V (i)) ≥
min
S

R(U (i)SV (i)) = f(λ(i)).
(7.8)

At the beginning of iteration i+1, both GECO and GreB computes the direction

(u, v) along which the object declines fastest. However, GECO adds both u and

v to the ranges of U and V , while GreB only adds v to V and then optimizes

U when fixing V . Because the range of U in GreB is optimized rather than

previously fixed, we have

F (U (i+1), V (i+1)) = min
U

F (U, [V (i+1); v]) ≤
min
η

f(λ(i) + ηeu,v).
(7.9)

Plug (7.8) and (7.9) into (7.7), we gain a similar result:

F (U, V)−min
U

F (U, [V ; v]) ≥ ε2i (1− τ)2

2β‖A‖2tr
. (7.10)

Following the analysis after Lemma 3 in GECO [200], we can immediately obtain

the results of the theorem.

170

The theorem states that GreB solution is at least close to optimum as GECO.

Note when sparse S is alternatively optimized with UV in GreB scheme, such as

GreBcom, the theorem can still holds. This is because after optimizing S in each

iteration of GreBcom, we have PΩC (S + UV) = 0, which enforces the objective

function ‖M−UV −S‖2F degenerates to that of GECO, which is ‖PΩ(M−UV)‖2F .

7.6 Experiments on Video Data

X(Frame 136) L(Low-rank Background) S(Sparse Moving Objects) G(Noise)

X(Frame 12) L(Low-rank Background) S(Sparse Moving Objects) G(Noise)

X(Frame 87) L(Low-rank Background) S(Sparse Moving Objects) G(Noise)

Figure 7.2: Background modeling of GreBsmo on three video sequences, top row:
Hall, 144× 176 pixels, 500 frames; middle row: ShoppingMall, 256× 320 pixels,
253 frames; bottom row: Boostrap, 120× 160 pixels, 500 frames.

In this section, we show how to use the above three algorithms developed

from GreB to solve robust PCA by justifying their performance on real datasets.

For simplicity, we fix the times of rank increment in GreB as 5, which implies

Δr = max{1, �rank/5�}. All the experiments are performed on MATLAB.

For real data, three robust PCA algorithms, i.e., inexact augmented La-

grangian multiplier method for PCP, GoDec and GreBsmo are applied to sep-

171

Table 7.1: Comparison of time costs in CPU seconds of PCP, GoDec and GreB-
smo in low-rank and sparse matrix decomposition task on background modeling
datasets.

PCP GoDec GreBsmo
Hall 87s 56s 1.13s
ShoppingMall 351s 266s 3.29s
Bootstrap 71s 49s 0.98s

arate the low-rank background and sparse moving objects in 3 video sequences 1.

Pixel values of each frame in the video are vectorized as a row vector in a matrix

X, and the background modeling can be modeled as performing robust PCA on

the matrix. We show the robust PCA decomposition results of one frame for each

video sequence obtained by GreBsmo in the left plot of Figure 7.6. The decom-

position includes a low-rank background, a sparse component containing moving

objects, and a dense noise part. The time costs for all the three methods are

listed in Table 7.1. It shows GreBsmo considerably speed up the decomposition

and performs 30-100 times faster than most existing algorithms.

1http://perception.i2r.a-star.edu.sg/bk model/bk index.html

172

Chapter 8

Randomized and Greedy

Algorithms for Matrix

Completion

In this chapter, we propose two variants of GoDec in Chapter 6 and GreB in

Chapter 7 for solving low-rank matrix completion problem.

8.1 Introduction to Low-rank Matrix Comple-

tion

Data is usually obtained with many missing values. The goal of matrix comple-

tion [39][36] is to recover the whole data matrix X from partial noisy entries or

undersampled linear measurements A(X) (A is the sampling operator) by lever-

aging the connections between different instances. Such connections can be well

captured by low-rank structure. Matrix completion has broad applications in

various real problems of considerable importance, such as collaborative filtering

in recommendation system [272] link prediction for social network, quantum state

tomography and traffic distance completion. The matrix completion problem was

firstly written as a rank minimization that is NP-hard both to solve and approx-

imate. Thus trace norm (�1 norm of singular values) as the convex surrogate

of rank has been minimized in many popular approaches [35][132]. For a matrix

173

X ∈ R
m×n of rank-r with SVD decomposition X = BΣD, the obtained global so-

lution is provable to exactly recover X from O(nr log6 n) uniformly sampled noisy

entries if it fulfills incoherence property (PB· denotes the orthogonal projection

onto B and ei is standard basis)

max
1≤i≤m

‖PBei‖2 ≤ μ0r/m, max
1≤i≤n

‖PDei‖2 ≤ μ0r/n, (8.1)

entries are upper bounded as maxi,j |Xij| ≤ μ1

√
r/
√
mn, and A obeys matrix

restricted isometry property (RIP) with constant δ

(1− δ)‖X‖2F ≤ ‖A(X)‖2F ≤ (1 + δ)‖X‖2F . (8.2)

Another norm receiving much attention for encouraging low-rank solution is max-

norm ‖X‖max = inf{‖U‖2,∞‖V T‖2,∞ : X = UV } [204][151] (‖ · ‖2,∞ is the maxi-

mum �2 row norm of a matrix), whose theoretical recovery bound is established

based on Rademacher complexity of its unit ball [89]. The max-norm can be

defined as the global solution to an non-convex optimization on left and right

factors U and V .

Both trace norm minimization and max-norm minimization can be formu-

lated as semidefinite programming (SDP) which has standard solvers. Various

accelerated optimization methodologies [168][151] also have been applied to them

for practical purpose. However, most of them rely on costly computation of full

SVD in each iterate, and thus do not scale well to large-scale problems. This

fact induces a revisit of rank minimization/constraint based formulations. For-

ward greedy selection methods including ADMiRA [152] and GECO [200] are

developed for rank minimization. GECO adopts an interesting greedy strategy:

it increments the rank by 1 and adds the optimal rank-1 direction into the op-

timization per iterate. Incremental OptSpace [137] also has a similar scheme.

We inherit a similar spirit but solve different optimization models in GreB. Error

minimization with rank constraint is also considered in SVP [129]. Some of them

like OptSpace and GECO model the low-rank variable as factorization USV and

optimize over (U, V) pair and S. Unfortunately, truncated SVD or large matrix

multiplication is still required in these approaches. In addition, the update of S

174

is to solve a large-scale overdetermined linear system and thus time consuming

in practice. Furthermore, the rank is fixed within some algorithms, so in this

case the recovery accuracy strongly relies on the quality of rank estimation. On-

line/stochastic gradient method [12] and aggregated (divide-and-conquer) method

[170] have also been considered for pursuing approximated recovery. Since GreB

can be straightforwardly transferred to or invoked as a subroutine by them to

take their advantages, they will not be included in later comparison.

8.2 GoDec for matrix completion

8.2.1 Model and Algorithm

We consider the problem of exactly completing a low-rank matrixX with rank(X) ≤
r from a subset of its entries Y = PΩ(X), wherein Ω is the sampling index set.

Different from the two conventional methods, nuclear norm minimization [36] and

low-rank subspace optimization on Grassmann manifold [137], we formulate the

matrix completion problem as a rank constrained optimization:

min
X,Z

‖Y −X − Z‖2F
s.t. rank (X) ≤ r,

supp (Z) = Ω,

(8.3)

where Z is an estimate of −PΩ(X). Therefore, Godec algorithms can be extended

to solve (8.3) after the following two slight modifications.

• Replacing X, L and S in Algorithm 6 with Y , X and Z, respectively.

• Replacing the entry set Ω used in the last step of Algorithm 6 with Ω,

wherein Ω is the sampling index set in matrix completion.

The same as GoDec, its extension (8.3) for solving the matrix completion problem

converges to a local optimum. Compared with the nuclear norm minimization

methods, (8.3) is more efficient because it does not require time consuming SVD

for X. Compared with the subspace optimization methods, GoDec avoids the

unstableness and the local barriers of the optimization on Grassmann manifold.

175

Moreover, GoDec is parameter free (both the rank range r and the tolerance ε

are predefined parameters) and thus it is easier to use compared with existing

methods.

8.2.2 Matrix Completion Experiments of GoDec

We test the performance of GoDec in matrix completion tasks. Each test low-

rank matrix is generated by X = AB, wherein both A and B are n× r standard

Gaussian matrices. We randomly sample a few entries from X and recover the

whole matrix by using Algorithm 6 (after the two modifications presented in

Section 8.1.1). The experimental results are shown in Table 8.1. Compared

with the published results [137] of the popular matrix completion methods, e.g.,

OptSpace, SVT, FPCA and ADMIRA, GoDec requires both less computational

time and less samples to recover a low-rank matrix.

Table 8.1: Relative error and time cost of OptSpace and GoDec in matrix comple-
tion tasks. The results separated by “/” are SVT [35] (a nuclear norm minimiza-
tion method), OptSpace [137] (a subspace optimization method on Grassmann
manifold) and GoDec, respectively. See [137] for the results of the other methods,
e.g., FPCA and ADMIRA.

size(X) rank(X) sampling rate rel.error(X) time
(square) (1) (%) (10−5) (seconds)

1000 10 0.12/0.12/0.075 1.68/1.18/1.77 40/28/15.43
50 0.39/0.39/0.18 1.62/0.92/1.11 247/212/26.36
100 0.57/0.57/0.3 1.71/1.49/1.24 694/723/43.47

5000 10 0.024/0.024/0.021 1.76/1.51/1.39 112/252/300.96
50 0.1/0.1/0.084 1.62/1.16/1.48 1312/850/415.96
100 0.16/0.16/0.12 1.73/0.83/1.09 5432/3714/551.95

10000 10 0.012/0.012/0.04 1.75/0.76/0.50 221/632/1101.83
50 0.05/0.05/0.045 1.63/1.19/1.17 2872/2585/1172.68
100 0.08/0.08/0.075 1.76/1.46/1.84 10962/8514/1505.93

176

8.3 Greedy Bilateral Completion (GreBcom)

8.3.1 Model and Algorithm

In this chapter, we optimize the bilateral factorization form X = UV of low-rank

matrix X and address a rank constrained optimization:

minU,V,S ‖M − UV − S‖2F
s.t. rank(U) = rank(V) ≤ r, PΩS = 0,

(8.4)

where PΩ· denotes the projection of a matrix on an element subset Ω ⊂ [m]× [n]

PΩX =

{
Xij, (i, j) ∈ Ω

0, (i, j) ∈ ΩC
(8.5)

and M consists of the observed entries and defined as M = PΩX.

8.3.2 Greedy Bilateral Completion

Following a similar methodology as GreBske, alternately optimizing U , V and S

in (8.4) immediately yields the following updating rules:

⎧⎪⎨
⎪⎩

Uk = (M − Sk−1)V T
k−1

(
Vk−1V T

k−1
)†
,

Vk =
(
UT
k Uk

)†
UT
k (M − Sk−1) ,

Sk = PC
Ω (M − UkVk) ,

(8.6)

Note the the object value in (8.4) is solely determined by the matrix product

UV and S rather than individual U or V , we use the same trick of replacing the

(U, V) pair with a faster computed one as we did in GreBske. This yields

⎧⎪⎨
⎪⎩

Uk = Q,QR
(
(M − Sk−1)V T

k−1
)
= QR,

Vk = QT (M − Sk−1) ,

Sk = −PC
Ω (UkVk) .

(8.7)

177

Since M − Sk−1 = M − PΩ(Uk−1Vk−1) + Uk−1Vk−1, define the residual E = M −
PΩ(Uk−1Vk−1), the above procedure (8.7) can be further accelerated as

⎧⎪⎨
⎪⎩

Uk = Q,QR
(
Ek−1V T

k−1 + Uk−1
(
Vk−1V T

k−1
))

= QR,

Vk = QTEk−1 +
(
QTUk−1

)
Vk−1,

Ek = M − PΩ (UkVk) .

(8.8)

It is not hard to verify that computation of the above procedure requires 3|Ω|0ri+
(3m+ 2n)r2i flops for U ∈ R

m×ri and V ∈ R
ri×n.

Similar to GreBske, GreBcom adopts a greedy strategy incrementally changing

ri to ri+Δr by concatenating new rows to V after executing K times of updates

in (8.8). The number of iterating (8.8) can also be determined by the convergence

of object, which implies a successful tracking of the first ri basis within the row

space of low-rank matrix X. The greedy selection of the Δr new rows is based

on the partial derivative of the object w.r.t. UV

∂‖M − UV − S‖2F
∂UV

= M − UV − S = E. (8.9)

The Δr new rows are chosen as the Δr right singular vectors of UTE associated

with the Δr largest singular values, which can be approximated by the random

projections ATUTE wherein A is a ri × Δr random matrix [108]. This greedy

selection enables the object decreasing fastest along the newly added Δr basis in

the next round of updates (8.8). GreBcom starts from a small r0 and increases

the rank until reaching certain tolerance for the residual, when the final rank r

of X is determined automatically. As well as GreBske, such greedy incremental

scheme brings evident improvement in speed.

We report the phase diagram of GreBcom in Figure 8.1. The white region

denotes where GreBcom can successfully recover the incomplete low-rank matrix

with probability of 1, while the black region is where the algorithm fails. It can be

seen that GreBcom exhibits evident phase transition property, which is a signifi-

cant phenomenon verified in many matrix completion algorithms. Compared to

the published phase transition plots of them, GreBcom possesses a larger region

for successful recovery on the ρ-r plane.

178

rank/n

sa
m

pl
in

g
ra

tio

GreBcom(1000x1000, SNR=80dB)

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8.1: Phase diagram for GreBcom on 1000×1000 matrices. On the 20×20
grid of sampling ratio-rank/n plane, 10 trials are performed for each (ρ, r) pair. A
matrix is said to be successfully recovered if rel. err.≤ 10−3. The phase diagram
shows the successful recovery rate for each (ρ, r) pair.

8.3.3 Matrix Completion Experiments of GreBcom

The performance of GreBcom in matrix completion tasks are evaluated and com-

pared with other approaches on both artificial generated data and real data from

movie (MovieLens) and joke (Jester) recommendation systems.

Numerical results on artificial data. We generate low-rank matrix X ∈
R

n×n by X = UV + Z, wherein U ∈ R
n×r and V ∈ R

r×n are random matrices

whose entries are sampled from i.i.d. normal distribution N(0, 1) and each entry of

noise Z is sampled from N(0, 10−10). The observed entries are uniformly selected

with probability ρ. OptSpace, SVP, ADMiRA and GreBcom are performed on

large-scale matrices of n ∈ [5000, 30000] and r ∈ [10, 100]. Their completion

accuracy is measured by relative error ‖X̂ − X‖F/‖X‖F wherein X̂ is the low-

rank recovery, while the time cost is measured by CPU time. The results are

given in Table 8.2. It shows that GreBcom achieves the lowest relative error and

179

Table 8.2: Relative error and time cost of OptSpace, SVP, ADMiRA and Gre-
Bcom in matrix completion tasks of different matrix size and rank. Notations:
m(n)-square matrix size, r-rank, ρ-sampling ratio |Ω|0/mn, rel. err.-relative error,
time-CPU time, “-”-does not apply due to speed or divergence.

m(n) r ρ
OptSpace SVP ADMiRA GreBcom

rel. err. time rel. err. time rel. err. time rel. err. time

5000
10 0.01 2.29× 10−2 304 8.51× 10−1 86 5.13× 10−1 77 2.01× 10−2 0.73
50 0.04 3.41× 10−2 1582 6.95× 10−1 1362 5.36× 10−1 358 3.06× 10−2 16
100 0.08 5.64× 10−2 3944 7.01× 10−1 24519 4.84× 10−1 36266 2.38× 10−3 116

10000
10 0.01 1.34× 10−2 516 4.54× 10−1 1322 1.22× 10−1 442 1.55× 10−3 2.17
50 0.04 1.19× 10−2 2192 2.35× 10−1 5961 2.58× 10−2 186591 1.40× 10−3 49
100 0.08 2.64× 10−3 15910 - - 9.66× 10−2 755082 1.20× 10−3 153

20000
10 0.006 7.06× 10−2 1928 - - 3.04× 10−1 181 1.20× 10−3 4.06
50 0.025 7.66× 10−3 11397 - - 4.33× 10−2 346651 1.20× 10−3 113

30000 10 0.006 8.29× 10−2 6121 2.43× 10−1 2235 4.19× 10−1 71 1.20× 10−3 18

brings substantial acceleration. The time cost of GreBcom slowly augmented

with the increasing of matrix size, which indicates its promising scalability for

solving large-scale problems.

Collaborative filtering. We now apply different matrix completion algo-

rithms to real datasets MovieLens 1 and Jester 2 respectively collected from movie

and joke recommendation systems. Each of the two datasets contains 3 matri-

ces, whose rows denote users, columns denote items and the entry values are

associated ratings. Ratings in MovieLens are integers between 1 and 5, while

ratings in Jester have values in [−10, 10]. For MovieLens, we randomly select

{10%, 30%, 50%} of the given observations as the training set observable to the

matrix completion algorithms, while the rest are left for test set. For Jester, we

randomly select {2, 5, 10} ratings from each user as test set and treat the others

as training instances. The completion accuracy is evaluated by comparing the

difference between the given matrix and the completed one on the test set. In

Table 8.3, the difference is measured by root mean square error (RMSE) of the

test set such that RMSEtest =
√
mean(X̂ij −Xij), (i, j) ∈ test set, while the

CPU time indicates the required computation time. In these experiments, Gre-

Bcom exhibits evident priority in both completion accuracy and time cost over

other methods. In addition, less observations are required in GreBcom to reach

1http://www.grouplens.org/node/73
2http://www.ieor.berkeley.edu/∼goldberg/jester-data/

180

Table 8.3: RMSEtest/CPU time of OptSpace, SVP and GreBcom in ma-
trix completion tasks on recommendation system data with different train-
ing set ratio (for MovieLens) or different number of test ratings per user
(for Jester), “-”-does not apply due to speed or divergence. Size and
rank information (m/n/r) of datasets: 100k(943/1682/3), 1M(6040/3952/10),
10M(69878/10677/10), J1(24983/100/10), J2(23500/100/10), J3(24938/100/10).

OptSpace
Movie 10% 30% 50%
100k 3.13/334s 2.82/394s 1.02/117s
1M 1.35/2241s 0.93/2550s 0.89/3383s
10M 0.92/9021s - -
Jester 2 5 10
J1 4.10/756s 4.10/732s 4.13/669s
J2 4.14/1058s 4.14/640s 4.16/840s
J3 4.57/340s 4.64/261s 4.51/99.31s

SVP
Movie 10% 30% 50%
100k 1.23/5.01s 1.06/2.19s 0.97/2.35s
1M 1.12/38s 0.98/41s 0.92/32s
10M 0.96/588s 0.87/464s 0.84/694s
Jester 2 5 10
J1 5.31/41.26s 5.09/40.12s 4.24/32.54s
J2 4.24/320s 4.23/22.14s 4.31/66.74s
J3 7.75/14.71s 7.28/13.27s 6.13/6.85s

GreBcom
Movie 10% 30% 50%
100k 1.01/0.04s 0.98/0.04s 0.97/0.04s
1M 0.96/1.15s 0.90/1.22s 0.89/1.89s
10M 0.88/9.61s 0.86/10.13s 0.82/25.65s
Jester 2 5 10
J1 4.01/7.29s 4.06/7.88s 4.08/6.28s
J2 4.12/10.23s 4.18/8.80s 4.09/10.06s
J3 4.91/3.15s 4.43/3.02s 4.38/1.20s

a sufficiently small RMSE, which support the effectiveness of GreBcom in real

applications.

181

Chapter 9

Three GoDec Variants Unmixing

General Incoherent Structures

Learning big data by matrix decomposition always suffers from expensive com-

putation, mixing of complicated structures and noise. In Chapter 6, we introduce

“GO decomposition (GoDec)”, an alternating projection method estimating the

low-rank part L and the sparse part S from data matrix X = L + S + G cor-

rupted by noise G. Two acceleration strategies are proposed to obtain scalable

unmixing algorithm on big data: 1) Bilateral random projection (BRP) in Chap-

ter 5 is developed to speed up the update of L in GoDec by a closed-form built

from left and right random projections of X − S in lower dimensions; 2) Greedy

bilateral (GreB) paradigm in Chapter 7 updates the left and right factors of L

in a mutually adaptive and greedy incremental manner, and achieve significant

improvement in both time and sample complexities.

In this chapter, we attempt to solve three real application problems by more

adaptive models and efficient algorithms that decompose a data matrix as the sum

of semantic components with incoherent structures, which are not necessary to be

low-rank or sparse. The three application problems include motion segmentation,

multi-label learning and recommendation system with side information. Although

these three problems are considerably different from each other, it turns out that a

new insight of unmixing incoherent structures can be applied to develop effective

algorithms for these problems.

182

In particular, we propose three nontrivial variants of GoDec that generalizes

GoDec to more general data type and whose fast algorithms can be derived from

the two strategies: 1) for motion segmentation, we further decompose the sparse

S (moving objects) as the sum of multiple row-sparse matrices, each of which

is a low-rank matrix after specific geometric transformation sequence and de-

fines a motion shared by multiple objects; 2) for multi-label learning, we further

decompose the low-rank L into subcomponents with separable subspaces, each

corresponds to the mapping a single label in feature space. Then the prediction

can be effectively conducted by group lasso on the subspace ensemble; 3) for

estimating scoring functions of each user in recommendation system, we further

decompose the low-rank L as WZT , where the rows of W is the linear scoring

functions and the rows of Z are the items represented by available features. Em-

pirical studies show the efficiency, robustness and effectiveness of the proposed

methods in real applications.

9.1 Introduction

Complex data is usually generated by mixing several components of different

structures. These structures are often compressible, and are able to provide se-

mantic interpretations of the data content. In addition, they can reveal the differ-

ence and similarity among data samples, and thus produce robust features playing

vital roles in supervised or unsupervised learning tasks. Two types of structures

have drawn lots of research attentions in recent years: 1) in compressed sensing

[71, 41], a sparse signal can be exactly recovered from its linear measurements at

a rate significant below the Nyquist rate, in sparse coding [1, 142, 150], an over-

complete dictionary leads to sparse representations for dense signals of the same

type; 2) in matrix completion [39, 36, 137, 132, 129], a low-rank matrix can be

precisely rebuilt from a small portion of its entries by restricting the rows (sam-

ples) to lie in a subspace. In dimension reduction [119, 87, 196, 210, 250, 269],

low-rank structure [238] has been broadly leveraged for exploring the geometry

of point cloud. Although sparse and low-rank structures have been studied sepa-

rately by a great number of researchers for years, the linear combination of them

or their extensions is rarely explored until recently [43, 37, 121, 46]. Intuitively,

183

fitting data with either sparse or low-rank structure is mature technique but is

inevitably restricted by the limited data types they can model, while recent study

shows that the linear mixture of them is more expressive in modeling complex

data from different applications.

A motivating example is robust PCA [37] (RPCA), which decomposes the

data matrix X as L + S. The low-rank part L summarizes a subspace that is

shared by all the samples and thus reveals the global smoothness, while the sparse

part S captures the individual differences or abrupt changes among samples. A

direct application of robust PCA is separating the sparse moving objects from

the low-rank background in video sequence. Another interesting example is mor-

phological component analysis (MCA) [25], which decompose the data into two

parts that have sparse representations on two incoherent over-complete dictio-

naries, i.e., the first part has a very non-sparse representation on the dictionary

of the second part, and vise versa. This requirement suggests that the two parts

are separable on their sparse representations. Note that both RPCA and MCA

can only work on data whose two building parts are incoherent, i.e., the content

of one part cannot be moved to the other part without changing either of their

structures (low-rank, sparse, dictionary, etc.). This incoherence condition could

be viewed as a general extension of the statistical independence supporting in-

dependent component analysis (ICA) [55, 126] blindly separating non-Gaussian

source signals. It leads to the identifiability of the structures in theory, and is

demonstrated to be fulfilled on a wide class of real data.

However, new challenges arises when many recent studies tend to focus on

big data with complex structures. Firstly, existing algorithms are computation-

ally prohibitive to processing these data. For instance, the update of low-rank

part in RPCA and in its extensions invoke a full singular value decomposition

(SVD) per iterate, while MCA requires challenging �0 or �1 minimization per sam-

ple/feature and previously achieved incoherent dictionaries/transform operators

encouraging sparse representations. Thus they suffer from a dramatic growth

in time complexity when either feature dimensions or data samples increase. In

previous methods, the structured information such as low-rank and sparse prop-

erties are always achieved at the price of time-consuming optimization, but are

rarely leveraged for the purpose of improving the scalability. Recent progresses

184

in randomized approximation and rank-revealing algorithms shed some light on

the speedup of the robust PCA typed algorithms: the subspace of the low-rank

part can be estimated from random sampling of its columns/rows or projections

of its columns/rows on a random ensemble with bounded precision [108, 53, 2].

However, straightforward invoking this technique in RPCA problem needs to ap-

ply it to the updated residual matrix per iterate and thus may lead to costly

computation. Besides, determining the rank of the low-rank part is not a trivial

problem in practice.

Secondly, the simple low-rank, sparse and sparse representation assumptions

cannot fully capture the sophisticated relation, individuality and sparsity of data

samples with complex structures. While low-rank structure summarizes a global

linear relationship between data points, the nonlinear relationship, local geometry

and correlated functions are more common in big data and more expressive for a

much wider class of structures. Moreover, the sparse matrix is simply explained

by random noises on random positions in the past, but current studies reveal

that it may have rich structured information that could be the central interests

of various applications. For instance, the sparse motions captured by RPCA on

video sequence data includes immense unexplored information favored by object

tracking and behavior analysis. Furthermore, although the sparse representation

is more general than sparse features, its quality largely relies on whether the given

dictionary or transform operator fits the nature of data well. But this is difficult

to evaluate when the data is of large volume and in general type.

Thirdly, two building parts are not sufficient to cover all the mixtures of

incoherent structures in big data. One the one hand, dense noise is an extra

component that has to be separated from the low-rank and sparse parts in many

cases where the exact decomposition X = L + S does not hold. This noisy

assumption has been considered in stable PCP [271], DRMF [233] and other

theoretical studies [121], and its robustness and adaptiveness to a broad class of

data has also been verified. But efficient algorithm for the noisy model lacks.

On the other hand, further decomposing the low-rank or sparse part to multiple

distinguishable sub-components is potential to tell locally spatial or temporal

relations within each identifiable structure and differences between them, which

usually play pivot roles in supervised and unsupervised learning tasks. Although

185

it appeals to be a natural extension to the two-part model in RPCA, how to

formulate a proper decomposition model for learning problems and develop a

practical algorithm are challenging.

9.2 Main Contributions of This Chapter

Although the randomized and greedy strategies proposed in GoDec (Chapter 6)

and GreB (Chapter 7) successfully generate efficient low-rank and sparse decom-

position capable to tackle large volume problem of big data, the complicated

structures widely existing in big data cannot be always expressed by the sum

of low-rank and sparse matrices and thus may still lead to the failure of RPCA

typed models. Therefore, we address this problem by developing several GoDec’s

variants that unravel different combination of incoherent structures beyond low-

rank and sparse matrices, where the two strategies can be still used to achieve

scalable algorithms.

The first variant “shifted subspace tracking (SST)” [260] is developed for mo-

tion segmentation [231, 3, 90, 113, 236] from raw pixels of video sequence. SST

further analyzes the unexplored rich structure of the sparse part S of GoDec,

which could be seem as a sum mixture of several motions with distinct appear-

ance and trajectories. In particular, SST decomposes S of GoDec into the sum of

several matrices, each of whose rows are generated by imposing a smooth geomet-

ric transformation sequence to the rows of a low-rank matrix. These rows store

moving object in the same motion after aligning them across different frames,

while the geometric transformation sequence defines the shared trajectories and

deformations of those moving objects across frames. We develop an efficient

randomized algorithm extracting the motions in sequel, where the low-rank ma-

trix for each motion is updated by BRP [263] in Chapter 5, and the geometric

transformation sequence is updated in a piece-wise linear approximation manner.

SST is an efficient unsupervised framework to detect, track and segment multi-

ple motions in complex scenes via solving a simple matrix factorization model.

Moreover, SST admits other nonlinear transformation on low-rank matrix and

thus can explore the mixture structure of sparse component on other data types

rather then video.

186

The second variant “multi-label subspace ensemble (MSE)” [259] extends the

low-rank part L of GoDec to the sum of multiple low-rank matrices defined by

distinguishable but correlated subspaces. MSE provides a novel insight into the

multi-label learning (ML) problem [220, 218, 216, 187, 217], which aims at pre-

dicting multiple labels of a data sample. Most previous ML methods [193, 20,

253, 134, 219, 49] focus on training effective classifiers that establishes a mapping

from feature space to label space, and take the label correlation into account

in the training process. Because it has been longly believed that label correla-

tion is useful for improving prediction performance. However, in these methods,

both the label space and the model complexity will grow rapidly when increas-

ing the number of labels and simultaneously modeling their joint correlations.

This usually makes the available training samples insufficient for learning a joint

prediction model.

MSE eliminates this problem by jointly learning inverse mappings that map

each label to the feature space as a subspace, and formulating the prediction as

finding the group sparse representation [243] of a given sample on the ensemble

of subspaces. In the training stage, the training data matrix X is decomposed

as the sum of several low-rank matrices and a sparse residual via a randomized

optimization. Each low-rank part defines a subspace mapped by a label, and its

rows are nonzero only when the corresponding samples are annotated by the label.

The sparse part captures the rest contents in the features that cannot be explained

by the labels. In MSE, there are only k subspaces needed to be learned, and the

label correlations are fully used via considering correlation among subspaces.

The third variant “linear functional GoDec (LinGoDec)” treats the data ma-

trix X as a rating matrix whose rows index the users, columns index the items,

and entries denote the scores of items given by different users. A key problem

in recommendation system is that given the features of some items, which are

usually available, and the ratings of these items scored by all users, how to learn

a scoring function for each user so that effective prediction of ratings can be

made on new item. LinGoDec studies the case when all the scoring functions

of different users are linear and related to each other. In particular, it extends

the low-rank part L of GoDec to WZT , where W represents the linear functions

and is constrained to be low-rank, while the rows of Z contain the features of

187

items in the training set. In addition, the sparse part S is able to detect the

advertising effects or anomaly of users’ ratings on specific items, because these

cannot be represented by the low-rank scoring functions. LinGoDec imposes a

special structured restriction to the low-rank part L. It formulates the collabo-

rative filtering problem as supervised learning, and thus avoids time-consuming

completion of the whole matrix when only a new item’s scores (a new row) are

needed to be predicted. In the algorithm of LinGoDec, the update of low-rank

W is accomplished by invoking an elegant closed-form solution for least square

rank minimization [244], which could be accelerated by BRP.

9.3 Shifted Subspace Tracking (SST) for Mo-

tion Segmentation

9.3.1 The Problem of Motion Segmentation

In video sequences, an object flow is composed of multiple motions or moving ob-

jects with the identical trajectory. Analyzing and separating the motions of differ-

ent object flows is more frequently preferred than tracking a single object, because

the flows can provide more semantic clues for the crowd behavior [3]. Tracking

multiple object flows and motion segmentation [231][93] in complex scenes is

a vital and challenging problem in a variety of computer vision tasks such as

surveillance, robotics, augmented reality, medical imaging and human-computer

interactions. The challenges mainly come from the complex background, occlu-

sion, illumination variation, noise, overlapping, and intertwined trajectories of

different flows [90]. Some of these problems have been well studied in the previ-

ous research works, but some are typical features of the flow tracking or motion

segmentation and thus have not been fully tackled before. In this chapter, we

construct a model that considers all the miscellaneous problems above. We reduce

the motion detection, tracking and segmentation to a simple matrix factorization

on raw pixels rather than sophisticated features of video frames, and then develop

an efficient optimization algorithm to achieve the factorization result.

we can roughly categorize existing tracking approaches into two groups, i.e.,

188

generative model [74][54] and discriminative method [113][118]. Generative model

formulates tracking as estimation of the state within a time series space state

space model, and search the regions of the highest likelihood. Early works such

as Kalman filter and its variants have been demonstrated to be optimal for linear

Gaussian model. Another representative generative model for tracking is particle

filter [74], which approximates the posterior distribution of the state space by

Monte Carlo integration. Single appearance model or multiple appearance models

[242] are used in these generative models. Different from generative models,

discriminative classifies cast the tracking problem into a classification task whose

goal is to distinguish the target object from the background. In the training

stage, each pixel is represented by a feature vector, and the pixels belonging to

the same target object is assigned to the same class. Hybrid approaches [242]

combining both generative models and discriminative classifiers have also been

proposed for solving visual tracking under significant occlusions.

Robust PCA (RPCA) [37] has been successfully applied to background mod-

eling in video surveillance, where the backgrounds in all frames compose the rows

of low-rank matrix L, whilst the moving objects or motions are captured by the

sparse outlier S. However, most existing methods simply treat S as random

noise and lack further study of the obtained sparse outlier, which in fact contains

substantial rich information about the motions of object flows. However, most

existing methods simply treat S as random noise and lack further study of the

obtained sparse outlier, which in fact contains substantial rich information about

the motions of object flows. In addition, the extra dense noise caused by camera

lens or environment illumination changes make the exact decomposition assump-

tion X = L+S cannot be satisfied in practices. Hence several recent approaches

[271][121] aim to obtain the approximated RPCA decomposition X = L+S+G,

where G is the dense noise. In order to overcome the shortcomings of existing

RPCA approaches, GoDec in Chapter 6 and GreBsmo in Chapter 7 are proposed

as efficient and robust algorithms for low-rank and sparse matrix decomposition.

A significant open problem left by the mentioned RPCA approaches is how to

further analyze the rich structure of the sparse part. In many practical applica-

tions, the sparse part has structures that can contribute more useful information

than the low-rank part. An example in point is that the sparse part of video se-

189

quence data is comprised of the motions of multiple object flows. In this chapter,

we consider decomposing the sparse part as the sum of several shifted low-rank

matrices, each of which corresponds to objects sharing one motion trajectory.

This can be viewed as a novel structured sparsity. It is also worthwhile to point

out that although the main focus of this chapter is object flow tracking and motion

segmentation, the SST framework allows other forms of nonlinear transformation

and thus can be directly applied to other problems.

We develop an efficient unsupervised framework to detect, track and segment

multiple motions in complex scenes via solving a matrix factorization model. This

framework invokes a sequence of matrix decompositions as subroutines, which can

be summarized in two steps, i.e., background modeling and flow tracking. For

the first step, we proposes “semi-soft GoDec” which replaces the cardinality con-

straint in GoDec with an �1 penalty. This small change greatly shortens the

computational time and facilitates the parameter tuning. For the second step,

as the main contribution of this chapter, we present a novel insight that each

flow can be depicted by a low rank matrix after certain geometric transformation

sequence to video frames (which are stored as rows of a matrix), and develop a

matrix factorization method to recover both the low-rank matrices and the trans-

formation sequences. If we treat the sparse outliers attained by semi-soft GoDec

as the new data matrix X, our flow tracking approach “shifted subspaces tracking

(SST)” decomposes X as X =
∑k

i=1 L(i) ◦ τ(i) + S +G, where L(i) stands for a

low-rank matrix and τ(i) stands for a transformation sequence, both correspond

to the motion of the ith object flow. SST reduces the matrix factorization to a

sequence of alternating optimizations in a similar manner with semi-soft GoDec,

and efficiently solves them by taking advantages of the between-frame affinity

and the motion sparsity of L(i). Besides, BRP [263] is invoked to speed up the

update of L(i). The low-rank patterns, together with their transformation se-

quences, reveals unexplored structure of the sparse part and rich information of

segmented motion in complex scenes.

190

9.3.2 SST model

We consider the problem of motion segmentation from the raw video data. Given

a data matrix X ∈ R
n×p that stores a video sequence of n frames, each of which

has w×h = p pixels and reshaped as a row vector inX, the goal of SST framework

is to separate the motions of different object flows, recover both their low-rank

patterns and geometric transformation sequences. This task is decomposed as two

steps, background modeling that separates all the moving objects from the static

background, and flow tracking that recovers the information of each motion. In

this problem, ·i stands for the ith entry of a vector or the ith row of a matrix,

while ·i,j signifies the entry at the ith row and the jth column of a matrix.

The first step can be accomplished by either GoDec (Chapter 6) or GreBsmo

(Chapter 7). After obtaining the sparse outliers S storing multiple motions, SST

treats the sparse matrix S as the new data matrix X, and decomposes it as

X =
∑k

i=1 L̃(i) + S + G, wherein L̃(i) denotes the ith motion, S stands for the

sparse outliers and G stands for the Gaussian noise.

The motion segmentation in SST is based on an observation to the implicit

structures of the sparse matrix L̃(i). If the trajectory of the object flow L̃(i) is

known and each frame (row) in L̃(i) is shifted to the position of a reference frame,

due to the limited number of poses for the same object flow in different frames, it

is reasonable to assume that the rows of the shifted L̃(i) exist in a subspace. In

other words, L̃(i) after inverse geometric transformation is low-rank. Hence the

sparse motion matrix L̃(i) has the following structured representation

L̃(i) =

⎡
⎢⎢⎣

L(i)1 ◦ τ(i)1
...

L(i)n ◦ τ(i)n

⎤
⎥⎥⎦ = L(i) ◦ τ(i). (9.1)

The invertible transformation τ(i)j : R
2 → R

2 denotes the 2-D geometric trans-

formation (to the reference frame) associated with the ith motion in the jth frame,

which is represented by L(i)j. To be specific, the jth row in L̃(i) is L(i)j after

certain permutation of its entries. The permutation results from applying the

191

nonlinear transformation τ(i)j to each nonzero pixel in L(i)j such that,

τ(i)j(x, y) = (u, v), (9.2)

where τ(i)j could be one of the five geometric transformations [189], i.e., trans-

lation, Euclidean, similarity, affine and homography, which are able to be rep-

resented by 2, 3, 4, 6 and 9 free parameters, respectively. For example, affine

transformation is defined as[
u

v

]
=

[
ρ cos θ ρ sin θ

−ρ sin θ ρ cos θ

][
x

y

]
+

[
tx

ty

]
, (9.3)

wherein θ is the rotation angle, tx and ty are the two translations and ρ is the

scaling ratio. It is worth to point out that τ(i)j can be any other transforma-

tion beyond the geometric group. So SST can be applied to sparse structure in

other applications if parametric form of τ(i)j is known. We define the nonlinear

operator ◦ as

L̃(i)j,u+(v−1)h = (L(i)j ◦ τ(i)j)u+(v−1)h

= L(i)j,x+(y−1)h. (9.4)

Therefore, the flow tracking in SST aims at decomposing the sparse matrix X (S

obtained in the background modeling) as

X =
k∑

i=1

L(i) ◦ τ(i) + S +G,

rank (L(i)) ≤ ri, card(S) ≤ s.

(9.5)

In SST, we iteratively invoke k times of the following matrix decomposition to

greedily construct the decomposition in (9.5):

X = L ◦ τ + S +G, rank (L) ≤ r, card(S) ≤ s. (9.6)

In each time of the matrix decomposition above, the data matrix X is S obtained

by former decomposition. In order to save the computation and facilitate the

192

parameter tuning, we cast the decomposition (9.6) into an optimization similar

to (6.2),

min
L,τ,S

‖X − L ◦ τ − S‖2F + λ‖S‖1
s.t. rank (L) ≤ r,

(9.7)

To summarize, the complete procedures of SST based motion segmentation

from raw pixels of video frames are given in Algorithm 8.

Algorithm 8: SST Motion Segmentation from Raw Pixels

Input: X, r, λ, ri, λi(i = 1, · · · , k)
Output: L, L(i), τ(i)(i = 1, · · · , k), S
(L�, S�) = arg min

rank(L)≤r,S
‖X − L− S‖2F + λ‖S‖1;

X := S�, L := L�;
for i ← 1 to k do

(L�, τ �, S�) =;
arg min

rank(L)≤ri,τ,S
‖X − L ◦ τ − S‖2F + λi‖S‖1;

X := S�, L(i) := L�, τ(i) = τ �;

end
S := X;

9.3.3 SST Algorithm

SST algorithm for motion segmentation solves a sequence of optimization problem

of type (9.7). Thus we firstly apply alternating minimization to (9.7). This results

in iterative update of the solutions to the following three subproblems,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ t = argmin
τ

‖X − Lt−1 ◦ τ − St−1‖2F ;
Lt = arg min

rank(L)≤r
‖X − L ◦ τ t − St−1‖2F ;

St = argmin
S

‖X − Lt ◦ τ t − S‖2F + λ‖S‖1.
(9.8)

9.3.3.1 Initialization

Unfortunately, alternating solving the 3 sub-problems might not guarantee to

produce a global solution or even a stable one, unless an appropriate initialization

193

is adopted. In particular, in the case when the solutions to L ◦ τ and S in (9.7)

are unique, the pair (L, τ) may not be unique. This is because that we can choose

arbitrary frame as the reference frame and transform the object flow in all the

other frames of L ◦ τ to their positions in the reference frame, while the low-rank

L ◦ τ keeps the same. To avoid such trivial multiple solutions of τ , we pre-define

a template frame s and do not update its transformation τs during the tracking

(w.l.o.g., we fix all the parameters of τs to be zeros). Then the object flow in

each other frame of L ◦ τ are transformed to the position of the object flow in

frame s via the inverse transform of τ , and thus the uniqueness of L and τ can

be guaranteed. In this chapter, we choose the template frame s as the one with

the largest cardinality, which implies that almost all the objects are included in

the frame,

s = argmax
i

card (Xi) . (9.9)

We then set the rows of the low-rank pattern L as the duplicates of Xs, and

initialize both the entries of the sparse outlier S as well as the parameters of τ

to be zeros,

L = [Xs; · · · ;Xs] , S = 0, τ =
−→
0 . (9.10)

We now start to solve the three subproblems in (9.8).

9.3.3.2 Update of τ

The first subproblem aims at solving the following series of nonlinear equations

of τj,

Lt−1
j ◦ τj = Xj − St−1

j , j = 1, · · · , n. (9.11)

Albeit directly solving the above equation is difficult due to its strong nonlinearity,

we can approximate the geometric transformation Lt−1
j ◦ τj by using piece-wise

linear transformations, where each piece corresponds to a small change of τj

defined by Δτj. Thus the solution of (9.11) can be approximated by accumulating

a series of Δτj. This can be viewed as an inner loop included in the update of τ .

Thus we have linear approximation

Lt−1
j ◦ (τj +Δτj) ≈ Lt−1

j ◦ τj +ΔτjJj, (9.12)

194

where Jj is the Jacobian of Lt−1
j ◦τj with respect to the transformation parameters

in τj. Therefore, by substituting (9.12) into (9.11), Δτj in each linear piece can

be solved as

Δτj =
(
Xj − St−1

j − Lt−1
j ◦ τj

)
(Jj)

† . (9.13)

The update of τj starts from some initial τj, and iteratively solves the overde-

termined linear equation (9.13) with update τj := τj + Δτj until the difference

between the left hand side and the right hand side of (9.11) is sufficiently small.

It is critical to emphasize that a well selected initial value of τj can significantly

save computational time. Based on the between-frame affinity, we initialize τj by

the transformation of its adjacent frame that is closer to the template frame s,

τj :=

{
τj+1, j < s;

τj−1, j > s.
(9.14)

Another important support set constraint, supp(L ◦ τ) ⊆ supp(X), needs to be

considered in calculating Lt−1
j ◦τj during the update of τ . This constraint ensures

that the object flows or segmented motions obtained by SST always belong to the

sparse part achieved from the background modeling, and thus rules out the noise

in background. Hence, suppose the complement set of supp(Xj) to be suppc(Xj),

each calculation of Lt−1
j ◦ τj follows a screening such that,

(
Lt−1
j ◦ τj

)
suppc(Xj)

=
−→
0 . (9.15)

9.3.3.3 Update of L

The second subproblem has the following global solution that can be updated by

BRP based low-rank approximation (5.1) and its power scheme modification,

Lt =
r∑

i=1

λiUiV
T
i , svd

((
X − St−1) ◦ τ−1) = UΛV T , (9.16)

wherein τ−1 denotes the inverse transformation towards τ . The SVDs can be

accelerated by BRP based low-rank approximation (6.2). Another acceleration

trick is based on the fact that most columns of (X − St−1) ◦ τ−1 are nearly all-

195

zeros. This is because the object flow or motion after transformation occupies a

very small area of the whole frame. Therefore, The update of Lt can be reduced

to low-rank approximation of a submatrix of (X − St−1) ◦ τ−1 that only includes

dense columns. Since the number of dense columns is far less than p, the update

of Lt can become much faster.

Algorithm 9: Shifted Subspace Tracking (SST)

Input: X, ri, λi(i = 1, · · · , n), k
Output: Li(i = 1, · · · , n), S
for i ← 1 to k do

Initialize: s = argmax
i

card (Xi);

L = [Xs; · · · ;Xs], S = 0, τ =
−→
0 ;

while not converge do
for j ← s− 1 to 1 do

τj := τj+1;
while not converge do

L̃t−1
j = Lt−1

j ◦ τj, L̃t−1
j,suppc(Xj)

=
−→
0 ;

τj := τj +
(
Xj − St−1

j − L̃t−1
j

)
(Jj)

†;

end

end
for j ← s+ 1 to n do

τj := τj−1;
while not converge do

L̃t−1
j = Lt−1

j ◦ τj, L̃t−1
j,suppc(Xj)

=
−→
0 ;

τj := τj +
(
Xj − St−1

j − L̃t−1
j

)
(Jj)

†;

end

end
τ t = τ ;
Lt = BRP ((X − St−1) ◦ τ−1);
St = Pλ (X − Lt ◦ τ t) , St

j,suppc(Xj)
=

−→
0 ;

end
X := St, L(i) := Lt, τ(i) = τ t;

end

196

9.3.3.4 Update of S

The third subproblem has a global solution that can be obtained via soft-thresholding

Pλ(·) similar to the update of S in GreBsmo,

St = Pλ

(
X − Lt ◦ τ t) . (9.17)

X L L(1) L(2)

2.85s 46.32s 41.08s

Figure 9.1: Background modeling and object flow tracking results of a 50-frame

surveillance video sequence from Hall dataset with resolution 144× 176.

A support set constraint supp(S) ⊆ supp(X) should be considered in the

197

update of S as well. Hence the above update follows a postprocessing,

St
j,suppc(Xj)

=
−→
0 , j = 1, · · · , n. (9.18)

Note the transformation computation ◦ in the update can be accelerated by

leveraging the sparsity of the motions. Specifically, the sparsity allows SST to

only compute the transformed positions of the nonzero pixels. We summarize the

SST algorithm in Algorithm 9.

9.3.4 Motion Segmentation Experiments of SST

We evaluate SST by using it to track object flows in four surveillance video

sequences from the same dataset. In these experiments, the type of geometric

transformation τ is simply selected as translation. The detection, tracking and

segmentation results as well as associated time costs are shown in Figure ??.

198

X L L(1) L(2)

16.52s 74.14s 79.07s

Figure 9.2: Background modeling and object flow tracking results of a 50-frame

surveillance video sequence from Shoppingmall dataset with resolution 256×320.

The results show SST can successfully recover both the low-rank patterns and

the associated geometric transformations for motions of multiple object flows from

the sparse component achieved by GoDec. The detection, tracking and segmen-

tation are seamlessly unified in a matrix factorization framework and achieved

with high accuracy. Moreover, it also verifies that SST performs significantly

robust on complicated motions in complex scenes. This is attributed to their dis-

tinguishing shifted low-rank patterns, because different object flows can hardly

share a subspace after the same geometric transformation. Since SST show stable

199

and appealing performance in motion detection, tracking and segmentation for

either crowd or individual, it provides a more semantic and intelligent analysis

to the video content than existing methods.

9.4 Multi-label Subspace Ensemble for Multi-

label Learning

A challenging problem of multi-label learning is that both the label space and

the model complexity will grow rapidly with the increase in the number of labels,

and thus makes the available training samples insufficient for training a proper

model. In this chapter, we eliminate this problem by learning a mapping of each

label in the feature space as a robust subspace, and formulating the prediction

as finding the group sparse representation of a given instance on the subspace

ensemble. We term this approach as “multi-label subspace ensemble (MSE)”.

In the training stage, the data matrix is decomposed as the sum of several low-

rank matrices and a sparse residual via a randomized optimization, where each

low-rank part defines a subspace mapped by a label. In the prediction stage,

the group sparse representation on the subspace ensemble is estimated by group

lasso. Experiments on several benchmark datasets demonstrate the appealing

performance of MSE.

9.4.1 The Problem of Multi-label Learning

Multi-label learning [220][187][122] (ML) predicts multiple labels that character-

ize an instance from a set of possible labels. Conventional multi-label learning

algorithms aim to find a mapping from the feature space X ⊆ R
p to the label

space Y ⊆ {0, 1}k, wherein k is the number of labels and yi = 1, y ∈ Y means

the sample belongs to label i. Binary relevance (BR) [216] and label powerset

(LP) [216] are two natural approaches. BR relaxes ML to k independent binary

classifications on the k labels respectively, while LP frames ML as a multi-class

classification problem, where each class denotes a unique k-dimensional label vec-

tor. Both BR and LP do not duly explore the characteristics of ML, because BR

200

ignores the label correlations, and LP makes the training samples of each class

far less than the prerequisite.

A central problem limiting ML is that the label space Y will exponentially

grow with the increase in the number of labels, i.e., k labels lead to a search

in a label space Y of size 2k in the prediction. BR independently predicts each

dimension of the k-dimensional label vector y in isolation and thus does not

encounter this problem with the price of ignoring the label correlations. LP

attempts to distinguish each element in Y from the other 2k − 1 ones. Thus the

size of the training set, which is large enough for binary classification, will be

insufficient for multi-label prediction. This problem also leads to a rapid growth

of the model complexity, which increases the training costs. By viewing the

problem from the perspective of probabilistic approaches, the exponential growth

of Y drastically enlarges the parameter space for modeling P (y|x), x ∈ X, which

makes ML intractable in computation. Another important problem is that, for

a given training set {X, Y }, the instances in Y often scatters sparsely in the

ambient space Y. It is therefore difficult to study the structure of Y and reduce

its dimensionality.

Most recent multi-label learning approaches [252][251] investigate the label

correlations (or dependencies) to build a structured classification model. They

partially solve the first problem by reducing the size of the search space Y. For

example, the random k-labelsets (RAkEL) method [219] randomly selects an

ensemble of subsets from the original labelsets (the set of labels one instance

belongs to), and then LP is applied to each subset. The final prediction is obtained

by ranking and thresholding of the results on the subsets. Hierarchical binary

relevance (HBR) [20] builds a general-to-specific tree structure of labels, where a

sample with a label must be associated with its parent labels. A binary classifier

is trained on each non-root label. Hierarchy of multi-label classifiers (HOMER)

[217] recursively partitions the labels into several subsets and builds a tree-shaped

hierarchy. A binary classifier is trained on each non-root label subset. The

classifier chain (CC) [193] adopts a greedy method to predict unknown label

from features and predicted labels by using a binary classifier.

However, the size of the search space in these approaches is much larger than

O(k), and their model complexities are too high to be applied in practice. Also,

201

the instances in Y are always insufficient to generate a reliable estimation of

the label space structure, and thus weaken the effectiveness of the structured

classification models used in these approaches.

Some existing learning methods except binary classification are reformulated

and then can be extended to multi-label prediction problem. For example, the

C&W procedure [30] separates multi-label prediction into two stages, i.e., BR and

correction of the BR results by using the label dependence. Regularized multi-

task learning [46] and shared-subspace learning [134] formulate the problem as

regularized regression or classification problem. Multi-label dimensionality re-

duction via dependence maximization (MDDM) [253] maximizes the dependence

between feature space and label space, and provides a data preprocessing for

other multi-label learning methods. A linear dimensionality reduction method

for multi-label data is proposed in [133]. In [122], multi-label prediction is formu-

lated as a sparse signal recovery problem.

However, these methods cannot provide an explicit modeling of the label

correlations (or dependence) and thus their performance improvements due to

exploring label structure are limited. Moreover, they bring extra time costs to

the training process, so the efficiency is weakened.

In this chapter, we consider the ML problem in a novel manner: we study

the mapping of each label as a feature subspace. In other words, we assume each

instance x exists in the ensemble of subspaces defined by the labels that x belongs

to. However, it is not always guaranteed that each instance can be completely

explained by the labels we consider, so a method should be developed to separate

the parts that can be explained by the considered labels and the part that cannot.

The label correlations are naturally preserved in the subspace ensemble. Given a

new instance, its labels are predicted by estimating its group sparse representa-

tion in the subspace ensemble, where the nonzero entries are associated with the

predicted labels. There are only k subspaces that are demanded, so the model

complexity is small. The prediction is accomplished by searching in the subspace

ensemble, and thus avoids the estimation of the label space structure.

We therefore develop “multi-label subspace ensemble (MSE)” to solve the

above problem. In the training stage, we develop a randomized decomposition of

the training data X, where X is factorized to the sum of k low-rank parts and

202

a sparse residual. Each of the low-rank part defines the subspace mapped by a

particular label, while the sparse residual stores the part that cannot be explained

by the considered labels. The decomposition is fast due to an application of

the bilateral random projection (BRP) based low-rank approximation [265]. Its

convergence to local optimum is proved. In the prediction stage of MSE, group

lasso estimates the group sparse representation of a given instance in the subspace

ensemble, and the nonzero entries indicates the predicted labels. The experiments

on several benchmark datasets for ML imply the competitive effectiveness and

efficiency of MSE.

The rest of the chapter is organized as follows. Section 9.2.2 introduces the

MSE model, which explains the mapping of the label in the feature space and

includes the assumption of MSE to the multi-label data. Section 9.2.3 presents the

training algorithm of MSE via randomized matrix decomposition, which produces

the ensemble of the subspaces. Section 9.2.4 presents the prediction algorithm in

MSE by exploring the group sparse representation of a multi-label sample on the

subspace ensemble. Section 9.2.5 shows the experimental results of MSE on 13

benchmark datasets. Section 9.2.6 gives a discussion and concludes the chapter.

9.4.2 MSE model

Given a sample x ∈ R
p and its label vector y ∈ {0, 1}k, we assume that x can be

decomposed as the sum of several components li and a sparse residual s

x =
∑
i:yi=1

li + s. (9.19)

The component li is caused by the label i that x belongs to. Thus li can be

explained as the mapping from the label i in x to the feature space. The residual

s is the component that all the labels in y cannot explain. The model in (9.19)

reveals the general relationship between the feature space and the label space.

For all the samples with label i, we assume their components explained by

label i lie in a linear subspace Ci ∈ R
ri×p, i.e., li = βGi

C i, wherein βGi
is the

representation coefficients corresponding to C i. Thus the model (9.19) can be

203

equivalently written as

x =
k∑

i=1

βGi
C i + s,

∀i ∈ {i : yi = 0}, βGi
= 0.

(9.20)

If we build the subspace ensemble C = [C1; . . . ;Ck] characterized by the k labels

as a dictionary for x, the corresponding representation coefficient vector for x is

β = [βG1 , . . . , βGk
]. The coefficients βGi

corresponding to the labels that x does

not belong to are zeros, so β is group sparse, wherein the groups are Gi, i =

1, . . . , k.

In the training stage of MSE, we learn the subspace ensemble Ci, i = 1, . . . , k

from the training data X via a randomized decomposition of X, in which the

components explained by label i from all the samples consists a low-rank matrix

Li
Ωi
, wherein Ωi is the index set of training samples with label i. Thus the

row space of Li
Ωi

is the subspace Ci. In the prediction stage of MSE, given a

new instance x, we use group lasso to find the group sparse representation β on

the subspace ensemble C, and then a simple thresholding is used to test which

groups that β concentrates on. The labels that these groups correspond to are

the predicted labels for the instance x.

In the training stage of MSE, the label correlations is naturally preserved in

the subspace ensemble C, because all the subspaces are jointly learned. Specifi-

cally, if two labels i and j simultaneously appear for many times in the training

samples, then Ωi and Ωj will have many shared elements. Thus the row spaces

of Li
Ωi

and Li
Ωj
, i.e., C i and Cj, will be close to each other. In the prediction

stage, both discriminative and structured information encoded in the subspace

ensemble are considered via group lasso. Since only k subspaces are learned in

the training stage, MSE explores label correlations without increasing the model

complexity.

204

9.4.3 MSE Algorithm

9.4.3.1 MSE training: randomized decomposition

The training stage of MSE approximately decomposes the training data matrix

X ∈ R
n×p intoX =

∑k
i=1 L

i+S. For the matrix Li, the rows corresponding to the

samples with label i are nonzero, while the other rows are all-zero vectors. The

nonzero rows denote the components explained by label i in the feature space.

We use Ωi to denote the index set of samples with label i in the matrix X and Li,

and then the matrix composed of the nonzero rows in Li is represented by Li
Ωi
.

In the decomposition, the rank of Li
Ωi

is upper bounded, which indicates that all

the components explained by label i nearly lies in a linear subspace. The matrix

S is the residual of the samples that cannot be explained by the given labels. In

the decomposition, the cardinality of S is upper bounded, which makes S sparse.

If the label matrix of X is Y ∈ {0, 1}n×k, the rank of Li
Ωi

is upper bounded

by ri and the cardinality of S is upper bounded by K, the decomposition can be

written as solving the following constrained minimization problem:

min
Li,S

∥∥∥X −∑k
i=1 L

i − S
∥∥∥2
F

s.t. rank
(
Li
Ωi

) ≤ ri, Li
Ωi

= 0, ∀i = 1, . . . , k

card (S) ≤ K.

(9.21)

Therefore, each training sample in X is decomposed as the sum of several compo-

nents, which respectively correspond to multiple labels that the sample belongs

to. MSE separates these components from the original sample by building the

mapping from the labels to the feature space. For label i, we obtain its mapping

in the feature space as the row space of Li
Ωi
.

Although the rank constraint to Li
Ωi

and cardinality constraint to S are not

convex, the optimization in (9.21) can be solved by alternating minimization that

decomposes it as the following k + 1 subproblems, each of which has the global

205

solution: ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Li
Ωi

= arg min
rank

(
Li
Ωi

)
≤ri

∥∥∥∥∥X −
k∑

j=1,j �=i

Lj − S − Li

∥∥∥∥∥
2

F

,

∀i = 1, . . . , k.

S = arg min
card(S)≤K

∥∥∥∥∥X −
k∑

j=1

Lj − S

∥∥∥∥∥
2

F

.

(9.22)

The solutions of Li
Ωi

and S in the above subproblems can be obtained via

hard thresholding of singular values and the matrix entries, respectively. Note

that both SVD and matrix entry-wise hard thresholding have global solutions.

In particular, Li
Ωi

is built from the first ri largest singular values and the corre-

sponding singular vectors of
(
X −∑k

j=1,j �=i L
j − S

)
Ωi

, while S is built from the

K entries with the largest absolute value in X −∑k
j=1 L

j, i.e.,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Li
Ωi

=
ri∑
q=1

λqUqV
T
q , i = 1, . . . , k,

svd

[(
X −∑k

j=1,j �=i L
j − S

)
Ωi

]
= UΛV T ;

S = PΦ

(
X −

k∑
j=1

Lj

)
,Φ :

∣∣∣∣∣∣
(
X −

k∑
j=1

Lj

)
r,s∈Φ

∣∣∣∣∣∣ �= 0

and ≥
∣∣∣∣∣∣
(
X −

k∑
j=1

Lj

)
r,s∈Φ

∣∣∣∣∣∣ , |Φ| ≤ K.

(9.23)

The projection S = PΦ(R) represents that the matrix S has the same entries as

R on the index set Φ, while the other entries are all zeros.

The decomposition is then obtained by iteratively solving these k + 1 sub-

problems in (9.22) according to (9.23). In this problem, we initialize Li
Ωi

and S

as ⎧⎪⎨
⎪⎩

Li
Ωi

:= ZΩi
, i = 1, . . . , k,

Z = D−1X,D = diag (Y 1) ;

S := 0.

(9.24)

In each subproblem, only one variable is optimized with the other variables fixed.

206

Similar to GoDec in Chapter 6, BRP based acceleration strategy in Chapter 5

is applied to the above model and produces the practical training algorithm in

Algorithm 10.

In the training, the label correlations is naturally preserved in the subspace

ensemble, because all the subspaces are jointly learned. Since only k subspaces are

learned in the training stage, MSE explores label correlations without increasing

the model complexity.

9.4.3.2 MSE prediction: group sparsity

Algorithm 10: MSE Training

Input: X, Ωi, r
i, i = 1, . . . , k, K, ε

Output: C i, i = 1, . . . , k

Initialize Li and S according to (9.24), t := 0;

while
∥∥∥X −∑k

j=1 L
j − S

∥∥∥2
F
> ε do

t := t+ 1;

for i ← 1 to k do

N :=
(
X −∑k

j=1,j �=i L
j − S

)
Ωi

;

Generate standard Gaussian matrix A1 ∈ R
p×ri ;

Y1 := NA1, A2 := Y1;

Y2 := NTY1, Y1 := NY2;

Li
Ωi

:= Y1

(
AT

2 Y1

)−1
Y T
2 , Li

Ωi
:= 0;

end

N :=
∣∣∣X −∑k

j=1 L
j
∣∣∣;

S := PΦ (N), Φ is the index set of the first K largest entries of |N |;
end

QR decomposition
(
Li

Ωi

)T
= QiRi for i = 1, . . . , k, C i := (Qi)

T
;

In the prediction stage of MSE, we use group lasso [243][161] to estimate the

group sparse representation β ∈ R

∑
ri of a test sample x ∈ R

p on the subspace

ensemble C = [C1; . . . ;Ck], wherein the k groups are defined as index sets of

the coefficients corresponding to C1, . . . , Ck. Since group lasso selects nonzero

coefficients group-wisely, nonzero coefficients in the group sparse representation

207

will concentrate on the groups corresponding to the labels that the sample belongs

to.

According to the above analysis, we solve the following group lasso problem

in the prediction stage of MSE

min
β

1

2
‖x− βC‖2F + λ

k∑
i=1

‖βGi
‖2 , (9.25)

where the index set Gi includes all the integers between 1+
∑i−1

j=1 r
j and

∑i
j=1 r

j

(including these two).

To obtain the final prediction of the label vector y ∈ {0, 1}k for a test sample

x, we use a simple thresholding of the magnitude sum of coefficients in each group

to test which groups that the sparse coefficients in β concentrate on

yΨ = 1, yΨ = 0,Ψ = {i : ‖βGi
‖1 ≥ δ} . (9.26)

Although y can also be obtained via selecting the groups with nonzero coefficients

when λ in (9.25) is chosen properly, we set the threshold δ as a small positive

value to guarantee the robustness to λ.

Algorithm 11 below summarizes the prediction stage of MSE.

Algorithm 11: MSE Prediction

Input: x, Ci, i = 1, . . . , k, λ, δ
Output: y
Solve group lasso in (9.25) by using an existing group lasso algorithm [161];
Predict y via thresholding in (9.26);

9.4.4 Multi-label Prediction Experiments of MSE

We evaluate MSE on 13 benchmark datasets from different domains and of differ-

ent scales, including Corel5k (image), Scene (image), Mediamill (video), Enron

(text), Genbase (genomics), Medical (text), Emotions (music), Slashdot (text)

and 5 sub datasets selected in Yahoo dataset (web data). These datasets were

208

obtained from Mulan’s website 1 and MEKA’s website 2. They were collected

from different practical problems. Table 9.1 shows the number of samples n

(training samples+test samples), number of features p, number of labels k, and

the average cardinality of all label vectors Card of different datasets.

Table 9.1: Information of datasets that are used in experiments of MSE. In

the table, n (training samples+test samples) is the number of samples, p is the

number of features, k is the number of labels, “Card” is the average cardinality

of all label vectors.

Datasets n p k Card

Corel5k 4500 + 500 499 374 3.522

Mediamill 30993 + 12914 120 101 4.376

Enron 1123 + 579 1001 53 3.378

Genbase 463 + 199 1186 27 1.252

Medical 333 + 645 1449 45 1.245

Emotions 391 + 202 72 6 1.869

Scene 1211 + 1196 294 6 1.074

Slashdot 2338 + 1444 1079 22 1.181

Arts 2000 + 3000 462 26 1.636

Business 2000 + 3000 438 30 1.587

Education 2000 + 3000 550 33 1.461

Recreation 2000 + 3000 606 22 1.423

Science 2000 + 3000 743 40 1.451

We compare MSE with BR [216], ML-KNN [246] and MDDM [253] on four

evaluation metrics for evaluating the effectiveness, as well as the CPU seconds

for evaluating the efficiency. In multi-label prediction, four metrics, which are

precision, recall, F1 score and accuracy, are used to measure the prediction per-

formance. The detailed definitions of these metrics are given in Section 7.1.1

of [218]. A fair evaluation of prediction performance should include integrative

1http://mulan.sourceforge.net/datasets.html
2http://meka.sourceforge.net/

209

consideration of all the four metrics, whose importances can be roughly given by

F1, Acc > {Prec, Rec}.

Table 9.2: Prediction performances (%) and CPU seconds of BR [216], ML-KNN

[246], MDDM [253] and MSE on Yahoo. Prec-precision, Rec-recall, F1-F1 score,

Acc-accuracy

Methods Prec Rec F1 Acc CPU sec.

A
rt
s

BR 76 25 26 24 46.8

ML-knn 62 7 25 6 77.6

MDDM 68 6 21 5 37.4

MSE 35 40 31 28 11.7

E
d
u
ca
ti
o
n BR 69 27 28 26 50.1

ML-knn 58 6 31 5 99.8

MDDM 59 5 26 5 45.2

MSE 41 35 32 29 12.6

R
ec
re
a
ti
o
n BR 84 23 23 22 53.2

ML-knn 70 9 23 8 112

MDDM 66 7 18 6 41.9

MSE 41 49 36 30 19.1

S
ci
en
ce

BR 79 19 19 19 84.9

ML-knn 59 4 20 4 139

MDDM 66 4 19 4 53.0

MSE 31 39 29 26 20.1

B
u
si
n
es
s BR 87 74 76 71 28.9

ML-knn 68 9 70 8 93.2

MDDM 66 7 69 7 42.7

MSE 84 82 78 78 13.5

We show the prediction performance and time cost in CPU seconds of BR,

ML-KNN, MDDM and MSE in Table 9.3 and Table 9.2. In BR, we use the

MatLab interface of LIBSVM 3.0 1 to train the classic linear SVM classifiers

for each label. The parameter C ∈ {10−3, 10−2, 0.1, 1, 10, 102, 103} with the best

performance on the training set was used. In ML-KNN, the number of neighbors

was 30 for all the datasets.

1http://www.csie.ntu.edu.tw/~cjlin/libsvm/

210

Table 9.3: Prediction performances (%) and CPU seconds of BR [216], ML-KNN

[246], MDDM [253] and MSE on 8 datasets. Prec-precision, Rec-recall, F1-F1

score, Acc-accuracy

Methods Prec Rec F1 Acc CPU sec.

M
ed

ia
m
il
l BR 69 35 43 33 120141

ML-knn 41 6 54 5 5713

MDDM 36 5 53 4 48237

MSE 58 78 53 37 1155

E
n
ro
n

BR 51 28 35 24 77.1

ML-knn 51 7 46 5 527

MDDM 50 8 49 7 29

MSE 44 50 40 28 271

M
ed
ic
a
l BR 2 26 5 2 4.88

ML-knn 75 7 48 6 22.8

MDDM 74 3 30 2 32.3

MSE 36 90 45 26 7.5

S
la
sh
d
o
t BR 11 22 14 10 140

ML-knn 71 10 31 8 708

MDDM 39 1 4 1 114

MSE 38 61 37 27 175

S
ce
n
e

BR 55 67 66 63 4.19

ML-knn 78 62 69 54 14.3

MDDM 75 64 69 53 7.59

MSE 61 85 70 68 3.62

E
m
o
ti
o
n
s BR 55 53 51 42 0.68

ML-knn 68 28 41 22 0.66

MDDM 54 28 41 22 0.66

MSE 40 100 52 37 0.01

G
en
b
a
se

BR 5 39 9 5 1.99

ML-knn 100 50 92 50 9.38

MDDM 98 51 92 51 6.09

MSE 83 96 86 70 8.62

C
o
re
l5
k

BR 2 20 4 2 2240

ML-knn 62 1 3 0.9 2106

MDDM 62 1 7 1 458

MSE 9 11 8 5 1054

211

In MDDM, the regularization parameter for uncorrelated subspace dimension-

ality reduction was selected as 0.12 and the dimension of the subspace was set as

20% of the dimension of the original data.

In MSE, we selected ri as an integer in [1, 6], K ∈ [10−6, 10−3], λ ∈ [0.2, 0.45]

and δ ∈ [10−4, 10−2]. We roughly selected 4 groups of parameters in the ranges

for each dataset and chose the one with the best performance on the training

data. Group lasso in MSE is solved by SLEP [161] in our experiments.

The experimental results show that MSE is competitive on both speed and pre-

diction performance, because it explores label correlations and structure without

increasing the problem size. In addition, the bilateral random projections further

accelerate the computation. In particular, its training time increases much more

slowly than other methods, so it is more efficient when applied to large scale

datasets such as Mediamill, Arts and Education. MDDM is faster than MSE

on a few datasets because MDDM invokes ML-knn on the data after dimension

reduction, while MSE is directly applicable to the original high dimensional data.

In the comparison of performance via the four metrics, the F1 score and ac-

curacy of MSE outperform those of other methods on most datasets. Moreover,

MSE has smaller gaps between precision and recall on different tasks than other

methods, and this implies it is robust to the imbalance between positive and

negative samples. Note in multi-label prediction, only large values of all four

metrics are sufficient to indicate the success of the prediction, while the combina-

tion of some large valued metrics and some small valued ones are always caused

by the imbalance of the samples. Therefore, MSE provides better prediction

performance than other methods on most datasets.

9.5 Linear Functional GoDec for Learning Rec-

ommendation System

Although low-rank matrix completion provides an effective and simple mathe-

matical model predicting a user’s rating to an item from her/his ratings to other

items and the ratings of other users by exploring the user relationships. However,

a primary problem of this model is that adding a new item or a new user to the

212

model requires an new optimization of the whole low-rank rating matrix, which

is not practical for its expensive time cost. Moreover, although the attributes of

users are always missing in real recommendation systems, features of the items

have been proved to be helpful side information that is much easier to obtain. But

previous matrix completion methods and GoDec cannot leverage this information

in their models. Furthermore, robust rating prediction should allow advertising

effects in known ratings.

9.5.1 LinGoDec Model and Algorithm

In this part, we propose a variant of GoDec called “linear functional GoDec (Lin-

GoDec)” that learns a scoring function of item features for each user by replacing

L with WZT WZT , where W represents the linear functions and the rows of

Z are items represented by features. LinGoDec aims at solving the following

optimization,

minW,S ‖X −WZT − S‖2F + λ‖vec(S)‖1
s.t. rank(W) ≤ r.

(9.27)

We constrain W to be low-rank so that the functions of different users share

the same small set of basis functions. In addition, we apply �1 regularization to

the entries of S so that the advertising effects in training ratings can be captured

and ruled out from the learning of W . By applying alternating minimization to

(9.27), we have{
Wk = argminW

∥∥X −WZT
∥∥2
F

s.t. rank(W) ≤ r,

Sk = Sλ

(
X −WkZ

T
)
,

(9.28)

The update of Wk in above procedures equals to solve a least squares rank min-

imization, which has been discovered owning closed-form solution that can be

obtained by truncated SVD when X is singular (the most common case in our

problem). By applying bilateral random projection based acceleration to the

truncated SVD, we immediately achieve the final fast algorithm for LinGoDec.

LinGoDec has a similar model as rank-regularized multi-task learning, but the

213

major difference is that the sparse matrix in LinGoDec is a component of the

data matrix rather than the linear functions W .

9.5.2 Empirical Study of LinGoDec

rank/n

ρ

LinGoDec(750x500)

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank/n

ρ

LinGoDec(750x500)

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9.3: Phase diagram (left) and corresponding CPU seconds (right) for
LinGoDec on 750×750 matrices. Low-rank weight matrix W is of size 750×500,
and is generated by W = UV , where entries of U and V are sampled from
N(0, 1/750) and N(0, 1/750), respectively. Features of items in Z is sampled
from N(0, 1/750). Entries of sparse anomaly S are sampled as 1 or −1 with
probability ρ/2 and 0 with probability 1 − ρ. Noise G has entries sampled from
N(0, 10−3). On the 50× 30 grid of sparsity-rank/n plane, 10 trials are performed
for each (ρ, r) pair. W is said to be successfully recovered if its rel. err.≤ 10−2.
The phase diagram shows the successful recovery rate for each (ρ, r) pair.

Since most public available dataset for recommendation system rarely fulfill

our demands for the training data in LinGoDec, we justify LinGoDec on synthetic

data. Specifically, the rating matrix X is generated by WZT +S+G. The weight

matrix of linear functionsW is generated as the product of two Gaussian matrices.

Entries in both the item feature matrix Z and noise matrix G are generated by

i.i.d. Gaussian distribution. The sparse part has a Bernoulli model generated

support set on which ±1 values are randomly assigned.

We show the phase diagram and the corresponding time cost in Figure 9.5.2.

It could be seem that LinGoDec has a slightly larger region (the white region)

for successful recovery than both GreBsmo and robust PCA [37]. This is because

side-information, i.e., the features of items, is utilized in LinGoDec. Moreover,

214

the time cost of LinGoDec is still small due to the closed-form update of W and

BRP based acceleration. Therefore, LinGoDec is capable to achieve the scoring

functions of users, which cannot be learned by previous matrix completion based

methods, and is effective to rule out the advertising effects in user ratings. Its

fast speed makes it very efficient when applied to practical systems.

215

Chapter 10

Compressed Labeling on Distilled

Labelsets

Directly applying single-label classification methods to the multi-label learning

problems substantially limits both the performance and speed due to the imbal-

ance, dependence and high dimensionality of the given label matrix. Existing

methods either ignore these three problems or reduce one with the price of ag-

gravating another. In this chapter, we propose a {0, 1} label matrix compression

and recovery method termed “compressed labeling (CL)” to simultaneously solve

or at least reduce these three problems. CL first compresses the original label

matrix to improve balance and independence by preserving the signs of its Gaus-

sian random projections. Afterward, we directly train popular binary classifiers

(e.g., support vector machines) for each new label. A fast recovery algorithm

is developed to recover the original labels from the predicted new labels. In the

recovery algorithm, “labelset distilling method” is designed to extract distilled la-

belsets (DLs), i.e., the frequently appeared label subsets from the original labels

via recursive clustering and subtraction. Given a DL and an original label vec-

tor, we discover that the signs of their random projections have an explicit joint

distribution that can be quickly computed from a geometric inference. Based on

this observation, the original label vector is exactly determined after performing

a series of Kullback-Leibler divergence based hypothesis tests on the distribution

about the new labels. CL significantly improves the balance of the training sam-

216

ples and reduces the dependence between different labels. Moreover, it accelerates

the learning process by training less binary classifies for compressed labels, and

makes use of label dependence via DLs based tests. Theoretically, we prove the

recovery bound of CL which verifies the effectiveness of CL for label compression

and multi-label classification performance improvement brought by label corre-

lations preserved in DLs. We show the effectiveness, efficiency and robustness

of CL via 5 groups of experiments on 21 datasets from text classification, image

annotation, scene classification, music categorization, genomics and web page

classification.

10.1 Introduction

The past years have witnessed the significant contributions of multi-label learning

for various practical applications, such as text classification, image annotation,

scene classification, music categorization, genomics and web page classification,

where each sample simultaneously belongs to several classes out of a great amount

of possible candidates. Recently, learning from data with multiple labels attracts

growing attention from related fields and is developed rapidly. Its importance

and necessity have been well appreciated by plenty of specific utilizations.

In contrast to single-label binary classification, multi-label learning predicts a

{0, 1} label matrix Y ∈ {0, 1}n×k (n is the number of samples and k is the number

of labels) rather than a {0, 1} label vector y ∈ {0, 1}n. At an early stage, binary

relevance (BR) [216] and label powerset (LP) [216] were developed to transform

a multi-label learning problem to several binary classification tasks. Specifically,

BR associates each label with an individual class, i.e., assigns samples with the

same label to the same class; and LP treats each unique set of labels as a class,

in which samples share the same label vector.

Although BP/LP and their variants can directly transform a multi-label learn-

ing problem into multiple binary classification tasks, it has been widely acknowl-

edged that these transformations share the following three problems: sample

imbalance, label dependence and label high-dimensionality. Because these trans-

formations do not consider the differences between the information embedded in

several independent single labels and multiple labels. These problems may ruin

217

the binary classifier training and even end up with trivial solutions to the label

prediction, e.g., assigning the same label to all samples from different classes.

10.1.1 Three problems

The problem of sample imbalance. It usually occurs in multi-label learning

and multi-class learning, when more than two classes are considered and the one-

versus-all rule is adopted. In such a case, the conventional binary classification

methods tend to overwhelm the class with more samples. This sample imbalance

between these two classes will seriously weaken the classification performance and

even make the learning task fail by assigning the same label to all samples from

different classes.

Specifically, BR directly uses the original label matrix as the class indicator

matrix and trains a classifier for each label. It allows the overlapping of classes

and treats them as independent ones. Thus BR has the imbalance problem when

0 and 1 in columns of the label matrix are imbalanced. LP treats each unique

labelset as the sign of an independent class and transfers a multi-label prediction

problem to a larger size multi-class classification problem. In contrast to BR, LP

tremendously increases the number of classes and decreases samples in each class,

so it aggravates the sample imbalance problem.

The problem of label dependence. This is a characteristic problem of

multi-label learning and tells the difference between multi-label learning and

multi-class learning, because it is admitted a simultaneous appearance of dif-

ferent labels on one sample. The dependence or correlation between different

labels can then be studied by using statistics of their distributions, e.g., χ2 test

and Pearson’s correlation coefficient. This dependence between labels ends up

with the poor performance of multi-label learning when it is directly decomposed

into several binary classification tasks. That is because the direct decomposi-

tion assumes different labels are independent of each other and ignores the label

dependence. In contrast to binary classification, samples sharing one identical

label in multi-label learning may quite differ in concepts and have large pairwise

distances in the feature space, because their other labels can be different. There

are two types of label dependence [64], the conditional dependence and uncon-

218

ditional dependence. The former captures the label dependence given a specific

sample, while the latter considers the global label dependence in the label space.

Exploiting label dependence becomes a popular motivation in recently developed

multi-label learning methods [193][20][217]. Both empirical and theoretical stud-

ies have proved that it helps improving the learning performance by considering

the label dependence.

BR simply ignores the dependence between labels and independently trains

classifiers for given labels. Thus it performs unsatisfying when the labels are

highly correlated to each other. LP treats the unique different labelsets as inde-

pendent classes and trains one binary classifier for each of them. It takes label

dependence into consideration, but it neglects the correlation or shared labels

between different labelsets and deteriorates the data imbalance as the cost.

The problem of label high dimensionality. In practical problems, e.g.,

text classification [100][162] and image annotation, data usually have hundreds or

even thousands of labels, which leads to a {0, 1} label matrix with sparse entries

and high dimensionality. The high dimensionality of the label matrix makes the

multi-label learning task very challenging. In particular, the increasing of label

dimensionality enlarges the sample imbalance in each binary classification and

increases the number of classifiers to be trained.

BR directly adopts the original label matrix, while LP increases the number

of labels to K much larger than that of the original labels. Most existing multi-

label learning methods transfer the original problem to m binary classifications,

wherein m is a number between k and K.

10.1.2 Previous works

Both empirical and theoretical studies of the existing multi-label algorithms sug-

gest that the learning performance is determined by specific properties of a multi-

label dataset, e.g., label dependence, label structure and dependence between

samples and the corresponding labels. Nevertheless, most existing methods ei-

ther partially tackle some of the three problems and ignore the others, or eliminate

one with the price of exacerbating the other two. In this chapter, we categorize

these methods into five groups. It is impossible to exhaustively summarize all the

219

published methods. Thus, domain experts will easily note the missing references.

We hope that the cited reviews [218][216] cited here will point to the missing

references.

Label Transformation. Methods belonging to this group transform the

given labels into new ones, and then decompose the original multi-label prediction

problem into a series of binary classification tasks according to the new labels.

This group of methods can embed the label dependence information into the

transformed labels, and can exploit the label structure to decrease the number of

new labels.

Some methods, e.g., BR and LP, in this group treat new labels independently,

so the label transformation and the classifier training are independent. After

obtaining the new labels, one binary classifier is trained for each new label in-

dependently without considering its relationship to others. The pruned problem

transformation (PPT) [192] modifies LP via replacing the rare labelsets with their

more frequent subsets, and thus both the sample imbalance problem and label

high dimensionality problem are alleviated. The random k-labelsets (RAkEL)

method [219] randomly selects an ensemble of subset from the original labelsets,

and then LP is applied to each subset. The sequential prediction is accomplished

by ranking and thresholding on the results of the ensemble of LP classifiers. It is

a modification of LP with the motivation of utilizing the label dependence. Rank-

ing by pairwise comparison (RPC) [125] adopts one-versus-one rule by training

a binary classifier for each pair of labels and ranking the classification results

for prediction. RPC alleviates the sample imbalance problem in the training of

each classifier, but increases the number of labels to k(k − 1)/2 (k is the num-

ber of original labels). Related methods includes multi-label pairwise perceptron

(MLPP) [175] and calibrated label ranking (CLR) [91].

Other methods in this group establish a structure of labels. The classifier

training and label prediction are then implemented on the obtained structure.

These methods take the label dependence into consideration and reduces the

sample imbalance problem. Two representatives are hierarchical binary relevance

(HBR) [20] and hierarchy of multi-label classifiers (HOMER) [217]. HBR builds

a general-to-specific tree structure of labels, where a sample with a label must

be associated with its parent labels. For each non-root label on the hierarchical

220

structure, a binary classifier is designed by using a subset of samples whose labels

include the parent labels of the current one. HOMER recursively partitions the

labels into several subsets and builds a tree hierarchy. In the hierarchy, each node

is composed of several labels that are separated into a number of subsets in its

child nodes. HBR method is then applied to each node for obtaining multi-label

classifiers to separate the child nodes.

Regularized classifications. This group of methods formulates the problem

as a series of classifications with regularization. Stacking method [49] and “Curds

and Whey (C&W)” procedure [30] separate the classification and regularization

as two isolated stages. They train a classifier on each label as BR, and then

correct the prediction of each label by using the predictions of the others. These

two methods impose a regularization to the conventional classification results,

wherein the predictions of the other labels perform as a bias to decrease the

variance of current label prediction. The regularization item always aims to

exploit label dependence. Another kind of regularization directly solve regularized

classification problems and jointly learn all the binary classifiers that share a

parameter space. Two examples are regularized multi-task learning [81] and

shared-subspace learning [134]. If a linear classifier wi is trained on each label,

the former method assumes wi = vi + w0, while the latter method assumes wi =

vi+uiΘ. Both the w0 and Θ are shared parameters that store the label dependence

information.

Multi-label Learning Problem reformulation. This group of methods

formulates the multi-label learning problem as other supervised learning prob-

lems [140] rather than classification and ranking, which are two methods usually

extended from single-label learning. Multi-label dimensionality reduction via de-

pendence maximization (MDDM) [253] tackles the “curse of dimensionality” in

multi-label data and formulates the problem as a discriminative dimension reduc-

tion [269][19]. It maximizes the dependence between feature space and label space

via maximizing the empirical estimate of Hilbert-Schmidt Independence Crite-

rion (HSIC) [101]. Graphical models such as conditional random fields (CRF)

[95] are natural solutions to estimate the joint distribution of samples and labels

in multi-label learning. They provide a probabilistic formulation of the problem.

The classifier chain (CC) [193] adopts a greedy way to concatenate the binary

221

classifiers for all the labels and makes use of conditional label dependence. It

trains a classifier for each label at a time by using given samples and the previ-

ously predicted labels as the input. Thus the prediction of each label is related

to the previously predicted ones. It has an ensemble variant (ECC) [193] and

a probabilistic variant (PCC) [63]. The former alleviates the influence of label

order, while the latter tackles the Bayes-optimal solution of CC.

Linear Regression. This group of methods adopts linear regression model

to solve multi-label learning problems. Although linear model for classification is

criticized due to its underlying assumption [109], a number of popular techniques

can be used to solve the aforementioned three problems in this scenario. In

particular, the linear model is Y = XW , where Y is the label matrix and the

columns of W are the corresponding model coefficient vectors. In [132], the

optimization of W is formulated as a matrix completion problem when W is

assumed to be low-rank. The given samples and the corresponding label vectors

comprise the random measurement matrix ensemble XT
i Yi(i = 1, ..., n). The

low rank assumption of W embeds the label dependence in the learning process.

A multi-task method proposed in [46] assumes that W is the sum of a low-

rank component and a sparse component. Different from imposing an extra

assumption on W in the linear model, another observation is that the {0, 1} label

matrix Y is sparse and thus compressible. In [122], Y is compressed via random

projections Y ′ = Y A, and then a new regression model Y ′ = XW ′ is obtained,

the original Y can be recovered via compressed sensing algorithms. This is a

successful application of compressed sensing (CS) [71] to multi-label learning and

inherits the theoretical merit of CS, i.e., only O(log(k)) models needs to be trained

for data with k labels. This method reduces the model complexity caused by the

large number of labels.

Algorithm extension. This group of methods extends or modifies the exist-

ing supervised learning algorithms to the multi-label learning scenario. C4.5 is a

popular decision tree algorithm and is extended to multi-label learning in [51] via

modifying the entropy criterion. AdaBoost has been extended to multi-label data

ranking and Hamming loss minimization in AdaBoost.MR and AdaBoost.MH

[198], respectively. The multi-class multi-label perceptron (MMP) [56], back-

propagation for multi-label Learning (BP-MLL) [247], and RBF neural networks

222

for multi-instance multi-label learning (MIMLRBF) [248] are extensions of neu-

ral networks algorithms in multi-label learning. Multi-label k-nearest neighbor

(ML-knn) [246] is an extension of knn. It obtains the label prior distribution from

the k nearest neighbors and applies “maximizes a posteriori (MAP)” to the label

prediction. It partially solves the imbalance problem.

Multi-label learning methods can also be roughly distinguished into learning

reduction methods and fully-specified learning methods. In particular, the “la-

bel transformation” and “algorithm extension” in our results can be attributed

to “learning reduction methods” because they transform the multi-label learning

problem into other different subproblems. “Regularized classification”, “multi-

label learning problem reformulation”, “linear regression” and some methods of

“algorithm extension” in our results can be attributed to “specified learning meth-

ods” because they formulate multi-label learning as specific problems. From some

perspective, compressed labeling (CL) proposed in this chapter can be viewed as

a learning reduction method.

10.1.3 The proposed method

In this chapter, we propose a {0, 1} label matrix compression and recovery scheme

termed “compressed labeling (CL)” for multi-label learning. It simultaneously

solves or at least substantially alleviates the aforementioned three problems via

random coding of the label matrix and fast corresponding decoding (recovery).

CL is a general scheme for embedding existing single-label learning methods in a

multi-label learning setting. The label compression in CL leads to a shrinkage of

the problem size, and thus it is efficient in large-scale problems [174].

We summarize the CL scheme including its training stage and prediction stage

in Figure 10.1.

In the training stage, CL first compresses the given {0, 1} label matrix Y into

a sign matrix Z of its random projections on Gaussian random matrix A. Due

to the properties of random projections, the new labels in Z are independent

of each other and the sample imbalance problem for each class is substantially

alleviated. Afterward, one binary classifier, e.g., SVM, is trained for each new

label independently on the training set {X,Z}.

223

Y

X,Z=sign(YA)

A

D

W
SVM

Labelset Distilling Method

Random Projection Signs

x zW obtained via SVM

A,D

ΩRecovery via KL-divergence test i
i

y D
∈Ω

=∪

CL training CL prediction

Figure 10.1: Compressed labeling on distilled labelsets. In the training stage, CL
first compresses the original label matrix Y into Z, which is the sign matrix of
random projections of Y on Gaussian random matrix A. Then binary classifiers
(such as SVM) corresponding to the training set {X,Z} are independently learned
and stored in W . Meanwhile, the frequently appeared label subsets in Y are
extracted by labelset distilling method (LDM) and stored in the distilled labelsets
(DLs) D. In the prediction stage, CL first predicts the new labels z of a given
sample x via the binary classifiers W . Given A and D, the DLs appearing in z
are identified by a KL-divergence test based recovery algorithm and indexed by
Ω. The final prediction y is the union of all the appeared DLs.

In the prediction stage, CL first predicts the new labels z of a given sample

x via the binary classifiers W obtained in the training stage, and then a fast

recovery algorithm is developed to recover the original labels y from the predicted

new labels z. In the recovery algorithm, we predict the original label vector of

the given sample via performing a series of KL divergence based hypothesis tests

on the “distilled labelsets (DLs)”.

DLs are the frequently appeared label subsets extracted from the original

labels Y via a “label distilling method (LDM)”. LDM performs a recursive clus-

tering and subtraction on the label vectors, i.e., the rows of Y . Each distilled

labelset (DL) is the intersection of the label vectors in each cluster. LDM takes

the label dependence into consideration and this critical information guarantees

the success of the recovery algorithm.

Given a DL and an original label vector, we discover that the signs of their

random projections on a Gaussian ensemble follow an explicit joint distribution

that can be quickly computed from a geometric inference. The corresponding em-

224

pirical joint distribution can also be quickly obtained from the new label matrix.

A KL divergence based comparison between the explicit joint distribution and

the empirical one indicates whether a given DL is a subset of the original label

vector. Since this test includes only comparison and thresholding, the recovery

algorithm is fast with linear time complexity.

We theoretically prove the recovery bound of CL by investigating the upper

bounds for the probabilities of 2 types of recovery failures in CL. The probabilis-

tic bound for recovery failures exponentially shrinks with the increasing of mea-

surements, i.e., the dimensionality of the compressed label matrix, and with the

increasing of the cardinalities of the distilled labelsets. This result soundly shows

the effectiveness of label compression and the prediction improvement brought

by DL.

We evaluate CL on both large-scale datasets and small-scale ones including

text classification, music categorization, image annotation, scene classification,

genomics and web data mining. The experiments are divided into 5 groups on 21

datasets. The first group tests the label matrix compression and recovery. The

recovery accuracy, sample balance and mutual independence of new labels are

evaluated. The other 4 groups test CL in multi-label prediction problems, and

five different evaluation metrics are used to measure its prediction performance.

Thorough comparisons between CL and BR, 3 popular multi-label learning meth-

ods, 2 SVM algorithms dealing with imbalance datasets are provided respectively.

The trade-off between label compression and prediction improvement is empir-

ically studied and analyzed. The experimental results show the effectiveness,

efficiency and robustness of CL in multi-label learning.

The rest of the chapter is organized as follows. Section 10.2 presents the

label matrix compression and classification in CL. Section 10.3 presents LDM

and the KL divergence test based recovery algorithm of CL. Section 10.4 studies

the relationship between compressed labeling and compressed sensing, and the

contribution of CL to multi-label learning. Section 10.5 shows the experimental

results. Section 10.6 concludes the chapter.

225

10.2 Compressed labeling (CL) via random pro-

jections

This section presents the label matrix compression and the subsequent classifi-

cation in CL, which comprises the training stage of CL. The label matrix com-

pression is based on the random projections of the given {0, 1} label matrix on a

Gaussian ensemble. We show that the pseudorandomness of the new label matrix

results in 1) an improved balance of samples for the binary classification on each

label, 2) the mutual independence among the new labels and 3) the informa-

tion of original label matrix is properly preserved in a low-dimensional subspace.

These improvements solve or at least reduce the three aforementioned problems

in Section 10.1.1 and thus benefit simultaneously the subsequent classification.

10.2.1 Random projection signs of label matrix

Random projection [226] is a simple yet powerful technique that has been widely

used in fast approximation algorithms and data recovery. It is introduced as

an efficient pairwise distance calculation and approximation method according

to Johnson-Lindenstrauss (JL) Lemma [135] and its variants in particular met-

ric spaces, i.e., �2 (Euclidian) space [226], �p(0 < p < 2) space (stable random

projection) [155], �p(p > 2) (high-order) space [154] and smooth manifold [52].

This property has been broadly used in fast nearest neighbor search [127], low

distortion embedding [57] and hashing [58]. Compressed sensing [40] proves that

an exact reconstruction of a sparse signal from a few of its random projections

is possible, when the random projection ensemble satisfies restricted isometry

property (RIP). Random projection also attracts attentions in matrix low-rank

approximation, because the column space of a matrix’s low-rank random pro-

jection is proved as a sufficiently close approximation of its principle subspace

[108].

In CL, the random projection offers a different function. Since CL formulates

the multi-label prediction as a classification problem rather than a linear regres-

sion problem, the label matrix after compression has to be a binary matrix rather

than a real-valued one. Thus the direct utilization of random projection is im-

226

proper. We consider the signs of the random projections in CL, so the compressed

label matrix Z is:

Z = sign (Y A) , (10.1)

where Z ∈ {−1, 1}n×m is the compressed label matrix, Y ∈ {0, 1}n×k is the

original label matrix, A ∈ R
k×m is a random matrix whose columns are randomly

sampled from an ensemble, and sign(·) is an element-wise sign operator. In CL,

we adopt the i.i.d. standard Gaussian ensemble, i.e., entries of A are independent

standard normal variables.

Although it seems that the hard thresholding of random projections in (10.1)

discards partial useful information for recovery at the first glance, the information

is fully retained in DLs and the {0, 1} binary prior of the label matrix, which play

critical roles in the CL recovery algorithm.

This simple label compression method provides an effective cure for the afore-

mentioned three problems, i.e., sample imbalance, label dependence and label

high dimensionality. It is self-evident that the last problem is alleviated on the

CL labels, because the number of random projections m can be much less than

k in CL. Therefore, the number of binary classifiers in the training stage can be

substantially reduced from k to m, which significantly reduces the computational

complexity.

Below, we theoretically show that CL improves the sample balance and ensures

the label independence. Empirical studies of these two properties on several

datasets are presented in the experimental section.

10.2.2 Improved sample balance of CL labels

Given a set of positive samples labeled by 1 and negative ones labeled by 0 for

each label in multi-label learning, without loss of generality, we can define the

degree-of-balance of a given label matrix Y ∈ {0, 1}n×k as the average proportion

of positive samples on all the different labels, i.e.,

balance =
1

k

k∑
i=1

npi
n

, (10.2)

227

where npi is the number of positive samples on the ith label. The degree-of-balance

close to 0.5 yields a balanced sample set for training.

In CL labels, the degree-of-balance on each label has essential connection with

the overlaps between unique labelsets of the original labels. Before investigating

this phenomenon, we first give an important theorem that will be used several

times in this chapter. The main significance of this theorem is that it bridges

the inner distribution of the compressed label vector z (an arbitrary row of Z)

with the corresponding original label vector x via a one-to-one bijection. This

bijection provides a direct and efficient estimate to x from the statistics of z,

which will be presented in Section 10.3.2 and 10.3.3.

Theorem 18. (Random projection signs of two binary vectors) Given

two nonzero binary vectors x, y ∈ {0, 1}k, the signs of their projections on a

random vector α satisfies the following distribution, if the entries of α are inde-

pendent standard Gaussian variable with unit variance and zero mean.

Pr(sign (〈x, α〉) · sign (〈y, α〉) = −1) =
1

π
arccos

(
card (x ∩ y)√

card(x)
√
card(y)

)
, (10.3)

where card(·) refers to the cardinality of a given vector.

Proof. The proof follows a geometric inference on a sphere in a high dimensional

space. Since the entries of α are i.i.d. standard Gaussian variables, α is a vector

which is drawn uniformly from a hypersphere Sk in the k dimensional space.

Figure 10.2 shows the random projections of x, y on two Gaussian random vectors

α and β.

In Figure 10.2, we uses “+” and “−” to indicate the signs of random projec-

tions. Two hyperplanes W1 and W2 are perpendicular to x and y, respectively.

Figure 10.2 verifies that if x and y are projected onto a random vector β in the

two shaded regions, which determined by W1 and W2, the random projections

will have opposite signs. When x and y are projected onto a random vector α in

the unshaded regions, their random projection signs will be identical. Since the

228

Figure 10.2: Random projections of x, y on two random vectors α and β, which
are drawn uniformly from a k-dimensional hypersphere. The signs of random
projections are marked as “+” for positive and “−” for negative in the figure.
The hyperplanes W1 and W2 are perpendicular to x and y, respectively.

dihedral angle θ is equal to the angle between vectors x and y, i.e.,

θ = arccos

(〈x, y〉
‖x‖2‖y‖2

)
= arccos

(
card (x ∩ y)√

card(x)
√

card(y)

)
, (10.4)

and the Gaussian random vector α is drawn uniformly from the hypersphere,

the probability that x and y have different random projection signs is proportional

to the area of the shaded regions. Therefore, we have

Pr(sign (〈x, α〉) · sign (〈y, α〉) = −1) =
2θ

2π
, (10.5)

which completes the proof of Theorem 18.

Theorem 18 can be seem as an extension of Lemma 3.2 in [98]. Now we

229

analyze the degree-of-balance of CL labels based on Theorem 18. Without loss of

generality, we assume the original label matrix Y has the following label powerset

L, which consists of the unique rows of Y :

L = [L1;L2; · · · ;LK] , Li ∈ {0, 1}k. (10.6)

We call each unique row of Y as a “labelset”. The appearance times of

labelset Li in all the rows of Y is represented as ni, so we have n =
∑K

i=1 ni.

Given a vector α whose entries are randomly drawn from independent standard

Gaussian distributions, if the random projection sign of Li on α, i.e., zl:Yl=Li
=

sign (〈Li, α〉) in the corresponding column of Z is known, the probabilities that

random projection signs of the other label vectors Lj:j �=i in L are −zl can be

obtained by using (10.3). In particular, we calculate the expected number of

label vectors (rows) in Y whose random projection signs on an arbitrary row α

of A are opposite to zl, namely, the expected number of −zl in arbitrary column

z of CL label matrix Z:

Ezl (|p : zp = −zl|) =
K∑

j=1,j �=i

nj Pr(zl · sign (〈Lj, α〉) = −1)

=
K∑

j=1,j �=i

nj Pr(sign (〈Li, α〉) · sign (〈Lj, α〉) = −1)

=
K∑

j=1,j �=i

nj

π
arccos

(√
card (Li ∩ Lj)

card (Li)
·
√

card (Li ∩ Lj)

card (Lj)

)
,

(10.7)

where |·| denotes the number of given variable, and the last step is due to Theorem

18.

The conditional expectation in (10.7) computes the expected number of sam-

ples with CL label −zl in an arbitrary column of Z given the CL label of Li, i.e.,

zl. Without loss of generality, we assume zl = −1. Thus the expected degree-of-

balance Ezl=−1(balance) given zl = −1 can be calculated by using (10.7). Since

230

the distribution of Li in rows of Y is given by

Pr(Li) = ni/n, (10.8)

the unconditioned expected degree-of-balance E(balance) can be computed over

the whole label powerset L, i.e.,

E(balance) =
K∑
i=1

Pr(Li)Ezl=−1(balance) =
K∑
i=1

Pr(Li) · npi
n

=
K∑
i=1

ni

n
· 1
n
Ezl (|p : zp = −zl|)

=
K∑
i=1

K∑
j=1,j �=i

ninj

n2π
arccos

(√
card (Li ∩ Lj)

card (Li)
·
√

card (Li ∩ Lj)

card (Lj)

)
.

(10.9)

In multi-label learning, a degree-of-balance close to 0.5 is preferred, because

the numbers of positive samples and negative ones will be equal to each other in

the training set. To see how CL improves the sample balance, we first study a

special case of multi-label learning: multi-class learning. In multi-class learning,

each labelset in L includes only one “1” in its entries. There is no overlap between

any two different labelsets in multi-class learning, which is a special case of multi-

label learning. When the number of labelsets K in L increases, the label matrix

Y seriously confronts the problem of sample imbalance. That is because each

class has only a few positive samples and a large amount of negative ones. In

such case, we have:

K∑
i=1

K∑
j=1,j �=i

ninj

n2
→ 1, (10.10)

√
card (Li ∩ Lj)

card (Li)
= 0, (i �= j). (10.11)

Equation (10.10) is a result of a large K, while (10.11) is due to the orthogonality

of the unique labelsets. Thus the expected degree-of-balance of CL labels in multi-

231

class learning problem can be calculated by substituting the above equations into

(10.9):

Emulti−class(balance) =
1

2

K∑
i=1

K∑
j=1,j �=i

ninj

n2
→ 0.5. (10.12)

Therefore, after label compression in CL, the problem of sample imbalance in

multi-class learning is substantially alleviated.

The situation in general multi-label learning is similar but different because

of the existence of labelset overlapping. Without loss of generality, we consider

a pair of labelsets Li and Lj. Referring to the situation of multi-class learning,

small values of √
card (Li ∩ Lj)

card (Li)
and

√
card (Li ∩ Lj)

card (Lj)
(10.13)

are preferred in multi-label learning, because the arccosine of their multiplication

will be close to π/2. Thus the expected degree-of-balance in (10.9) will approach

to 0.5. This corresponds to a small overlap card (Li ∩ Lj) or large cardinalities

card (Li) and card (Lj), which are exactly in accordance with the multi-label data.

That is because in multi-label data, a labelset Li with large overlap to the other

ones usually has very large cardinality, while a labelset Li with small cardinality

often has ultra-small overlap to the other ones. In both of these two cases, the

two values in (10.13) will be kept close to 0.

Even when Li and Lj share a large overlap and both have small cardinality, the

degree-of-balance of CL labels will not deviate far away from 0.5. That is because

this case causes small ni and nj, which results in a small weight ninj/n
2π in (10.9)

to eliminate the influence of small arccosine in (10.9). Therefore, E(balance)

approaches to 0.5.

We place an empirical study of the sample balance of CL labels on various

multi-label datasets in the experimental section. The result demonstrates that the

sample degree-of-balance after label compression in CL is significantly improved

and is close to the ideal value 0.5.

232

10.2.3 Mutual independence of CL labels

The mutual independence between CL labels after label compression is a natural

result of random projection sign. To see this, we have the following theorem:

Theorem 19. (Label independence) Given a binary and nonzero vector x ∈
{0, 1}k, its CL labels obtained via random projection signs z = sign(xA) are

independent random variables, if A is a standard Gaussian matrix with entries

drawn from independent standard Gaussian distribution.

Proof. Consider two random variables yi = xAi and yj = xAj, if Ai and Aj

are both composed by independent standard Gaussian variables, yi and yj are

weighted sum of independent standard Gaussian variables. Thus the two variables

yi and yj are independent Gaussian variables. Since zi = sign(yi) and zj =

sign(yj), the random variables zi and zj are independent. Therefore, the CL

labels in z are mutual independent random variables. Two similar analyses can

be found in [108][226]. This completes the proof.

The mutual independence between CL labels after compression is not equal

to a sheer discard of the label dependence information in the original labels.

Actually, we extract and store the label dependence information in the distilled

labelsets (DLs) that consists of the most frequent label subsets in the original label

matrix, and use it in the recovery algorithm. We transform the original labels

into independent ones before the training stage, because the conventional binary

classification methods cannot use the label dependence, and will be even harmed

by the label dependence under some circumstances. Therefore, CL isolates the

application of label dependence from the training stage in its scheme in order to

apply binary classification methods without loss of useful information.

The label compression preserves the distribution and the pairwise distance

of the original label vectors in the low-dimensional space, though it reduces the

number of labels. The pairwise-distance preservation of random projections has

been proved in various scenarios [226]. Its variant, the random projection signs,

has also been proved as a pairwise-distance preservation method in terms of the

cosine distance [190][98]. Therefore, the classifications on the compressed labels

will not be more difficult than on the original labels.

233

10.2.4 Classification via support vector machines

After obtaining the CL label matrix Z via random projections of the original label

matrix Y , we train one binary classifier for each new label on the CL label matrix

Z. There are a large number of binary classification methods with appealing

performance and fast speed. Most of them can be directly applied to the training

stage of CL.

Among the existing binary classification methods, support vector machine

(SVM) [224] has been widely used because of its appealing properties in sta-

tistical machine learning theory, optimality in classification hyperplane design,

robustness to different types of data, extensionality to nonlinear kernel space,

and many existing fast solvers. In this chapter, we adopt SVM as the binary

classification method used in the training stage of CL.

10.3 Recovery algorithm on distilled labelsets

(DLs)

In this section, we introduce the label distilling method (LDM) and the label

recovery algorithm in CL, which comprise the prediction stage of CL. In recovery,

given the CL label vector z predicted by the m binary classifiers from a sample

x and a {0, 1} binary dictionary D for label vectors, CL predicts the original

label vector y by testing whether each binary vector Di is included in y, i.e.,

whether Di ∩ y = Di and then recovers y =
⋃

i∈Ω Di (Ω is the index set of Di

included in y). The recovery is based on the fact that the random projection

signs of y and Di have explicit joint distributions in two cases, i.e, Di ∩ y = Di

and Di∩y = ∅. In the recovery algorithm, a hypothesis test is designed to decide

whether Di ∩ y = Di by comparing the Kullback-Leibler (KL) divergence [144]

between the empirical joint distribution of the random projection signs and the

two explicit joint distributions in the two cases. An available and natural choice of

Di is unit vector. In this case, the CL recovery algorithm element-wisely recovers

y, i.e., each label is recovered independently. However, in CL, we develop LDM

to obtain D. In particular, LDM extracts the most frequent label subsets, i.e.,

distilled labelsets (DLs) D ∈ {0, 1}d×k, by recursive clustering and subtraction

234

of the label vectors (rows) in the label matrix Y of training set. Therefore,

CL exploits label dependence via jointly recovering the correlated labels in y on

DLs. We will show that DLs improves the accuracy of the recovery algorithm by

increasing the KL divergence between the two explicit joint distributions in the

two cases.

10.3.1 Labelset distilling method (LDM)

The discrete patterns frequently appearing in the label matrix Y refers to the label

subsets that are frequently shared by the rows of Y . These patterns reveal the

structural information of the binary matrix Y and label dependence embedded

in the given label vectors.

In multi-label learning, BR simply ignores the label dependence information,

while LP treats the unique labelsets independently and thus ignores the shared

information of different label vectors. Recently, several methods have been devel-

oped to exploit the label dependence by building a tree-structural hierarchy for

the labels. However, the correlation (e.g., co-occurrence and mutual exclusion)

between two labels are probabilistic rather than deterministic. Therefore, it is

hard to prune the tree hierarchy without discarding the minority instances. A

tree hierarchy that retains most leafs explains few label dependence information

and will significantly increase the problem size.

We propose “labelset distilling method (LDM)” method to exploit the cor-

relations between the unique labelsets of L rather than single labels. LDM can

be interpreted as a greedy search for the frequent discrete patterns of L. It

decomposes {0, 1} label matrix L as:

L = UD,U ∈ {0, 1}K×d, D ∈ {0, 1}d×k. (10.14)

The obtained dictionary D is called “distilled labelsets (DLs)”, each row of which

is a “distilled labelset (DL)”.

In LDM, the above decomposition is accomplished by a greedy search of dis-

crete patterns. The greedy search is a recursive clustering and subtraction of the

labelsets (rows) in L. It is described by the following procedure:

235

1 The rows of L are clustered by using an existing clustering algorithms, e.g.,

spectral clustering [165][182] or k-means [171]. In our experiments, we use

spectral clustering.

2 The shared binary pattern of each cluster is extracted as a row Di in the

DLs D and then subtracted from the labelsets Li in the cluster.

3 For the clusters without shared pattern, labelsets in them are kept the same

in the label powerset L. For the labelsets Li that become all-zero vectors

after substraction, we remove them from L. The other labelsets Li after

subtraction are updated in L.

4 Update coefficients in U corresponding to the newly extracted atoms in D.

The above procedure is iterated until the label powerset L is empty, i.e., all the

unique labelsets Li in the initial L are completely represented by the atoms in

the dictionary D.

We use spectral clustering to group the rows of L, because the number of

clusters obtained by spectral clustering in each iteration can be adaptively ad-

justed by a given threshold τ . In particular, we sort q eigenvalues of the Graph

Laplacian from small to large, and compute the following metric for each one:

ei =

∑q
j=i λj∑q
j=1 λj

, i = 2, · · · , q. (10.15)

Only the eigenvectors with ei < τ are selected for the subsequent processing

(including k-means and thresholding). The number of selected eigenvectors is the

number of clusters in the iteration. A properly selected parameter τ can efficiently

generate clusters with shared labelsets. Empirically, we select 0.01 ≤ τ ≤ 0.25 in

all experiments. This fact will be verified in our experiments.

We show LDM in Algorithm 12.

10.3.2 Joint distribution of two random projection signs

An interesting phenomenon in CL is that given a label vector Li, the signs of

its projection and an arbitrary Di’s projection on a standard Gaussian random

236

Algorithm 12: labelset distilling method (LDM)

Input: Label powerset L ∈ {0, 1}K×k, threshold τ
Output: Distilled labelsets D, coefficient matrix U
Initialize: D := ∅, U := ∅
while The rows of L are not empty do

Cluster the rows of L into t clusters by Spectral Clustering with
threshold τ ;
for i ← 1 to t do

Extract the label subset Di ∈ {0, 1}k shared by the label vectors in
Cluster i, i.e., Di =

⋂
j {Lj : Lj ∈ Cluster i};

Subtract the obtained Di from all the label vectors in Cluster i,
i.e., Lj := Lj −Di for {Lj : Lj ∈ Cluster i};
if {Lj : Lj ∈ Cluster i} = 0 then

Remove Lj from L
end
Add the extracted Di into the distilled labelsets D as a new row;
Add the corresponding coefficient vector
UT
i ∈ {0, 1}K =

{
UT
ij = 1 if Lj ∈ Cluster, else UT

ij = 0
}
into the

coefficient matrix U as a new column;

end

end

vector α have an explicit joint distribution that can be quickly computed. Based

on this fact, the existence of a distilled labelset Di in an unknown label vector y

can be tested by using the information of their random projection signs.

In particular, the following theorem states the random projection signs of y

and Di follows an explicit joint distribution.

Theorem 20. (Joint distribution of random projection signs) Given a

label vector y ∈ {L1, L2, · · · , LK} that is selected from the rows of the label power-

set L, let D be L’s distilled labelsets (DLs) that satisfy L = UD. If Di is included

in y, i.e., Di ∩ y = Di, the signs of their random projections on a standard

237

Gaussian random vector α follows the following joint distribution P1:

P1(1) = Pr(sign (〈y, α〉) · sign (〈Di, α〉) = −1) =
1

π
arccos

(√
card(Di)

card(y)

)
,

(10.16)

P1(2) = Pr(sign (〈y, α〉) · sign (〈Di, α〉) = 1) = 1− 1

π
arccos

(√
card(Di)

card(y)

)
.

(10.17)

If Di is not included in y, i.e., Di ∩ y = ∅, the signs of their random projections

on a standard Gaussian random vector α follows the following joint distribution

P2:

P2(1) = Pr(sign (〈y, α〉) · sign (〈Di, α〉) = −1) =
1

2
, (10.18)

P2(2) = Pr(sign (〈y, α〉) · sign (〈Di, α〉) = 1) =
1

2
. (10.19)

Both P1(l) and P2(l) (l = {1, 2}) refer to the corresponding two probabilities

associated with the two cases of the two random projection signs’ product.

Proof. By substituting Di and y into Theorem 18, the above distributions can

be directly obtained. This completes the proof. Theorem 20 and the subsequent

lemmas about the recovery bounds of CL are based on Theorem 18 and are

independent of Theorem 19.

Note that only the cardinality information of the label vector y is required in

computing the joint distribution given in Theorem 20. Therefore, if we are given

the distilled labelsets D and y’s cardinality, the joint distribution of an arbitrary

Di and y’s random projection signs can be explicitly computed by using Theorem

20.

10.3.3 KL divergence test for recovery

Given classifiers W obtained in the training stage, the CL labels of a sample

x ∈ R
p can be predicted as z ∈ {0, 1}m. Our goal in the recovery algorithm is

238

to reconstruct the corresponding original label vector y ∈ {0, 1}k from z. In CL,

we propose a recovery algorithm via testing the KL divergence between possible

joint distributions of random projection signs and the corresponding empirical

joint distribution.

According to Theorem 20, given the cardinality of y’s, the joint distribution

of Di and y’s random projection signs can be quickly computed in two scenarios:

Di is included in y and Di is not included in y. The corresponding empirical joint

distribution P̂ can be calculated from v = sign (DiA) and z = sign (yA), i.e.,

P̂ (1) = P̂r(sign (〈y, α〉) · sign (〈Di, α〉) = −1) =
|j : zjvj = −1|

m
, (10.20)

P̂ (2) = P̂r(sign (〈y, α〉) · sign (〈Di, α〉) = 1) =
|j : zjvj = 1|

m
. (10.21)

The P̂ (l) (l = {1, 2}) refers to the corresponding two estimated probabilities

associated with the two cases of the two random projection signs’ product.

In the following discussion, the joint distribution associated with the situation

that Di is included in y is marked as P1, while the joint distribution associated

with the situation that Di is not included in y is marked as P2. Both P1 and P2

are defined in Theorem 20. We denote the empirical joint distribution computed

from v = sign (DiA) and z as P̂ .

The target of recovery in CL is to determine whether Di is included in y or

not. This can be done by comparing the distance between P1 and P̂ and that

between P2 and P̂ . A smaller distance between P1 and P̂ indicates a higher

probability that Di is included in y, while a smaller distance between P2 and P̂

indicates a higher probability that Di is not included in y.

KL divergence, also known as relative entropy, measures the distance between

two probability distributions P and Q,

DKL (P‖Q) =
∑
i

P (i) log
P (i)

Q(i)
. (10.22)

In the recovery algorithm of CL, given a y, we use KL divergence to measure

the distance between P1 and P̂ and the distance between P2 and P̂ for different

Di. The differences between the two distances for all Di are sorted. Then Di

239

with P̂ closer to P1 than P2 are sequentially added into y as a subset from larger

distance difference to smaller one until y reaching its cardinality. In particular,

given the predicted CL label vector z of y, we calculate the following two KL

divergences on each distilled labelset Di in D:

M1i = DKL

(
P1‖P̂

)
=

2∑
j=1

P1(j) log
P1(j)

P̂ (j)
, (10.23)

M2i = DKL

(
P2‖P̂

)
=

2∑
j=1

P2(j) log
P2(j)

P̂ (j)
. (10.24)

The difference between M1i and M2i on each Di forms a difference vector Diff :

Diff = M2−M1, Diff ∈ R
d. (10.25)

The positive entries of Diff corresponds to the distilled labelsets whose empirical

joint distribution P̂ is closer to P1 than P2, which indicates a higher possibility

that the corresponding Di are included in y. In addition, a larger and positive

Diffi implies Di is more possible to be the subset of y than the other DLs

with positive difference in Diff . In the recovery algorithm, we sort the positive

entries of Diff from large to small, choose Di sequentially from the ones with

large Diffi to the ones with small Diffi, and add the selected Di to y until the

cardinality of y is arrived.

Since the cardinality of y cannot always be known previously in the predic-

tion, we adds an outer loop to the above recovery procedure and searches the

cardinality with the smallest recovery error ‖z − sign (yiA)‖ in a given range. In

CL, we choose it as the cardinality range of the training label vectors in Y .

We show the recovery algorithm of CL in Algorithm (13) and highlight ad-

vantages of the recovery algorithm below,

1 The recovery algorithm based on the KL divergence comparison only in-

cludes simple computations, e.g., comparison, sorting and thresholding.

Thus the CL recovery algorithm is much faster than the normal compressed

sensing algorithms used in [122].

2 Since the joint distribution of the random projection signs and the cor-

240

Algorithm 13: Recovery algorithm of CL

Input: CL label vector z ∈ {−1, 1}m, distilled labelsets D, Gaussian
random matrix A used in compression, cardinality range
[card1, card2]

Output: original label vector y ∈ {0, 1}k
Calculate V = sign (DA) with Vi = sign (DiA);
Calculate the joint distribution P2 by using (10.18) and (10.19);
for i ← card1 to card2 do

for j ∈ {j : card (Dj) ≤ i} do

Calculate the empirical joint distribution P̂j by using (10.20) and
(10.21) with v = Vj;
Calculate the joint distribution P1j by using (10.16) and (10.17),
wherein card (y) = i;

Calculate KL divergence between P2 and P̂j, i.e.,

M2j =
2∑

l=1

P2(l) log P2(l)

P̂j(l)
;

Calculate KL divergence between P1j and P̂j, i.e.,

M1j =
2∑

l=1

P1j(l) log
P1j(l)

P̂j(l)
;

Calculate the difference between the two KL divergences M2j and
M1j, i.e., Diff j = M2j −M1j;

end
Sort the positive entries in Diff from large to small;
yi := 0,j := 1;
while card (yi) < i do

Add the distilled labelset Dj which is associated with the jth largest
entry in sorted positive Diff to yi, i.e., yi := yi ∪Dj;

end
Calculate the recovery error errori = ‖z − sign (yiA)‖;

end
Return y = yi, wherein i = argmin

i
errori;

responding empirical distribution can be explicitly computed in the CL

recovery algorithm, we can directly compare the distributions on their KL

divergence rather than on their means or variances. This KL divergence

comparison provides more useful information for testing whether a given

DL is included in y. Compared with the mean test used in 1-bit com-

241

pressed sensing, a direct comparison of distributions outputs more precise

test result.

3 In the recovery algorithm, we test the existence of the distilled labelsets D

rather than the single labels or random labelsets in y. This is an application

of label dependence information in the multi-label prediction, because the

distilled labelsets are the most frequent label subsets and the significant

discrete patterns mining from the training label matrix. To see the benefits

brought by this exploiting of label dependence, we compare the gaps be-

tween P1 and P2 in two situations, i.e., using distilled labelsets and using

single labels in the test. Assume the dictionary corresponding to the single

label situation is:

E = [E1;E2; · · · ;EK], Ei ∈ {0, 1}n×k, card (Ei) = 1. (10.26)

According to the two joint distributions P1 and P2 given in Theorem 20, we

can calculate the differences between P1(l) and P2(l) for all the l = {1, 2}:

‖P1(l)− P2(l)‖ =

∥∥∥∥∥12 − 1

π
arccos

(√
card(Di)

card(y)

)∥∥∥∥∥ . (10.27)

When dictionary generated by the single labels E is used, we have card(Di) =

1 in (10.27). When distilled labelsets D is used instead, we have card(Di) >

1 in (10.27). Thus the gap between P1 and P2 measured by ‖P1(l)− P2(l)‖
is larger when distilled labelsets D is adopted. A larger gap between P1 and

P2 will substantially reduce the number of failures in the tests of P̂ . There-

fore, the recovery accuracy is improved in CL by using the label dependence

information embedded in DL.

We show the training and prediction algorithms of CL in Algorithm 14 and

Algorithm 15, respectively.

10.3.4 Recovery bound

In order to investigate whether and when the CL recovery shown in Algorithm 13

is sufficiently accurate for reconstructing the original label vector y, we theoret-

242

Algorithm 14: Training algorithm of CL

Input: Data matrix X ∈ R
n×p, label matrix Y ∈ {0, 1}n×k, label

compression dimension m, threshold τ , parameters for SVM solver

Output: m classifiers W ∈ R
p×m, distilled labelsets D, Gaussian random

matrix A
label compression via random projections ;
Generate a standard Gaussian random matrix A ∈ R

k×m;
Calculate the CL label matrix Z = sign (Y A);
classification via support vector machines ;
for i ← 1 to m do

Train binary classifier Wi on training set {X,Zi} by standard SVM

solver, wherein Zi is the ith column of Z;

end
W = [W1,W2, · · · ,Wm];
distilled labelsets extraction;
Calculate the label powerset L, whose rows are unique label vectors in Y ;
Extract the Distilled labelsets (DL) with input L and τ by using
Algorithm 12;

Algorithm 15: Prediction algorithm of CL

Input: Sample x ∈ R
p, CL classifiers W ∈ R

p×m, distilled labelsets D,
Gaussian random matrix A used in compression, cardinality range
[card1, card2]

Output: Label vector y
Calculate the predicted CL label vector z ∈ {−1, 1}m of x by using CL
classifiers W , i.e., z = sign (xW);
Run Recovery algorithm of CL with input z, D, A and [card1, card2] by
using Algorithm 13;
Return the output y;

ically analyze the upper bounds for probabilities of 2 types of recovery failures,

i.e.,

1 Type I failure: accepting labelset b = Di, ∀i = 1 : d included in y (i.e.,

b∩y = b) when it is actually not (i.e., b∩y = ∅). According to the recovery

algorithm, this failure happens when the KL divergence between P1 and

P̂ is smaller than that between P2 and P , but P is actually estimated

according to the samples from P2. The probability of this type of failure is

243

Pr
(
DKL

(
P1‖P̂

)
< DKL

(
P2‖P̂

))
, when P̂ = P̂2, i.e., b ∩ y = ∅.

(10.28)

2 Type II failure: Excluding labelset b = Di, ∀i = 1 : d from y (i.e., b∩y = ∅)
when it is actually included in y (i.e., b∩ y = b). According to the recovery

algorithm, this failure happens when the KL divergence between P1 and P̂

is larger than that between P2 and P , but P is actually estimated according

to the samples from P1. The probability of this type of failure is

Pr
(
DKL

(
P1‖P̂

)
> DKL

(
P2‖P̂

))
, when P̂ = P̂1, i.e., b ∩ y = b.

(10.29)

If the recovery algorithm is applied as a prediction model like in CL, from the

view point of classification, the type I failure corresponds to false positive and its

probability denotes 1− specificity, while the type II failure corresponds to false

negative and its probability denotes 1− sensitivity. Thus, if the probabilities of

the two types of failures can both be upper bounded by small probabilities, the

prediction of CL will produce a satisfactory ROC (receiver operating character-

istic).

In the following proofs, we derive the upper bounds for the probabilities of

the two types of failures. Firstly, we show the difference between the 2 KL

divergences is determined by P̂1, which is a binomial random variable. We give

the distributions of P̂1 in the two cases in Lemma 3. In Lemma 4, we study

the conditions of P̂1 that lead to the two types of failures. Some significant

properties of parameter δ in the conditions are provided in Lemma 5. By using

the distributions of P̂1 and its conditions to cause the failures, we compute the

probabilities of the failures in Proposition 10. Then the probabilistic bounds for

the failures is derived in Theorem 21 based on Hoeffding’s inequality. We analyze

the improvement of measurement increase and distilled labelsets on the recovery

bounds in Theorem 22.

For brevity of the analysis, we use the abbreviations P1i = P1(i), P2i = P2(i)

and P̂i = P̂ (i) for i = 1, 2. According to their definitions in (10.16)-(10.21), define

244

γ = P11 =
1

π
arccos

(√
card(b)

card(y)

)
∈
[
0,

1

2

)
, (10.30)

we calculate the difference between the 2 KL-divergencesDKL

(
P1‖P̂

)
andDKL

(
P2‖P̂

)
:

DKL

(
P1‖P̂

)
−DKL

(
P2‖P̂

)
=

2∑
i=1

P1i log
P1i

P̂i

−
2∑

i=1

P2i log
P2i

P̂i

=P11 log
P11

P̂1

+ P12 log
P12

P̂2

− P21 log
P21

P̂1

− P22 log
P22

P̂2

=γ log
γ

P̂1

+ (1− γ) log
1− γ

P̂2

− 1

2
log

1

2P̂1

− 1

2
log

1

2P̂2

=

(
1

2
− γ

)
log

P̂1

P̂2

+ γ log γ + (1− γ) log (1− γ) + log 2. (10.31)

Therefore, the difference between the 2 KL-divergences is determined by the two

variables P̂1 and P̂2 = 1−P̂1, which distributions can be obtained by the following

Lemma.

Lemma 3. Given m measurements of random projection signs, the m+1 possible

discrete values of {P̂1, P̂2} are

P̂ (j) =

{
P̂1 =

j

m
, P̂2 =

m− j

m

}
, j = 0 : m. (10.32)

where j is the number of −1s in the m values of zivi associated with i = 1 : m,

while m − j is the number of 1s. The probability of P̂ (j) follows the following

binomial distribution when b ∩ y = ∅:

Pr
(
P̂ (j)

)
=

(
m

j

)(
1

2

)m

. (10.33)

The probability of P̂ (j) follows the following binomial distribution when b∩y = b:

Pr
(
P̂ (j)

)
=

(
m

j

)
(γ)j (1− γ)m−j . (10.34)

Proof. According to the definition of P̂ in (10.20) and (10.21), P̂1 is the estimation

245

for the probability of event zivi = −1, while P̂3 + P̂4 is the estimation for the

probability of event zivi = 1. Thus the event P̂ (j) is equivalent to

P̂ (j) = {|i : zivi = −1| = j, |i : zivi = 1| = m− j} , j = 0 : m. (10.35)

By using the results of Theorem 20 and Theorem 18, the distribution of random

projection sign zivi can be obtained:{
Pr (zivi = −1) = 1

2
,Pr (zivi = 1) = 1

2
, b ∩ y = ∅;

Pr (zivi = −1) = γ,Pr (zivi = 1) = 1− γ, b ∩ y = b.
(10.36)

Since the m values of zivi for different i are independent to each other, and the

2 distributions of each zivi under the two conditions are both Bernoulli distribu-

tions, P̂ (j) follows the following binomial distribution:

Pr
(
P̂ (j)

)
=

{ (
m
j

) (
1
2

)j (1
2

)m−j
, b ∩ y = ∅;(

m
j

)
(γ)j (1− γ)m−j , b ∩ y = b.

(10.37)

This leads to Lemma 3.

By substituting (10.32) into (10.31), the difference between the 2 KL-divergences

can be expressed as a function of j:

DKL

(
P1‖P̂ (j)

)
−DKL

(
P2‖P̂ (j)

)
=

(
1

2
− γ

)
log

j

m− j

+ γ log γ + (1− γ) log (1− γ) + log 2.

(10.38)

Therefore, given the original label vector y and a labelset b ∈ D, the sign of

the difference between the 2 KL-divergences is determined by j. In the following

lemma, we study which j will lead to the 2 types of failures.

Lemma 4. When the probability estimation P̂ = P̂ (j), with definition

δ =

[
1

4γ (1− γ)

] 1
1−2γ

· γ

1− γ
, (10.39)

246

for KL-divergences DKL

(
P1‖P̂ (j)

)
, DKL

(
P2‖P̂ (j)

)
and integer j ∈ [0,m], we

have

DKL

(
P1‖P̂ (j)

)
> DKL

(
P2‖P̂ (j)

)
, ∀j ∈

[
mδ

1 + δ
,m

]
, (10.40)

DKL

(
P1‖P̂ (j)

)
< DKL

(
P2‖P̂ (j)

)
, ∀j ∈

[
0,

mδ

1 + δ

]
, (10.41)

where x denotes the smallest integer larger than x and x denotes the largest integer

smaller than x.

Proof. According to (10.38), we have the following equivalences:

DKL

(
P1‖P̂ (j)

)
> DKL

(
P2‖P̂ (j)

)
⇐⇒

DKL

(
P1‖P̂ (j)

)
−DKL

(
P2‖P̂ (j)

)
> 0 ⇐⇒(

1

2
− γ

)
log

j

m− j
> −γ log γ − (1− γ) log (1− γ)− log 2 ⇐⇒

log
j

m− j
> log

([
1

4γ (1− γ)

] 1
1−2γ

· γ

1− γ

)
⇐⇒

j >
mδ

1 + δ
. (10.42)

Therefore, the necessary and sufficient condition forDKL

(
P1‖P̂

)
> DKL

(
P2‖P̂

)
is

j >
mδ

1 + δ
. (10.43)

The same derivation leads to the necessary and sufficient condition forDKL

(
P1‖P̂

)
<

DKL

(
P2‖P̂

)
:

j <
mδ2

1 + δ2
. (10.44)

Since j is an integer between 0 andm, these conditions lead to (10.40) and (10.41).

This completes the proof.

Before investigating the probabilities of the 2 types of failures, 5 significant

properties of δ must be discussed.

247

Lemma 5. The parameter δ defined in (10.39) has the following properties:

∂δ

∂γ
> 0, (10.45)

δ < 1, (10.46)

δ

1 + δ
− 1

2
< 0, (10.47)

δ

1 + δ
− γ > 0, (10.48)

∂
(

δ
1+δ

− γ
)

∂γ
< 0. (10.49)

Proof. Since δ is a function of γ, its derivative can be calculated according to

fundamental differentiation rules:

∂δ

∂γ
=

∂
(

1
4γ(1−γ)

) 1
1−2γ

∂γ
· γ

1− γ
+

(
1

4γ (1− γ)

) 1
1−2γ

· ∂
γ

1−γ
∂γ

. (10.50)

Define function ϕ as

ϕ =

(
1

4γ (1− γ)

) 1
1−2γ

. (10.51)

Then its derivative can be calculated by computing the logarithm of both sides:

lnϕ =
1

1− 2γ
ln

1

4γ (1− γ)
. (10.52)

Computing the derivatives of both sides yields

ϕ′

ϕ
=

2

(1− 2γ)2
ln

1

4γ (1− γ)
− 1

γ (1− γ)
. (10.53)

Thus we have

ϕ′ =
∂
(

1
4γ(1−γ)

) 1
1−2γ

∂γ
=

2ϕ

(1− 2γ)2
ln

1

4γ (1− γ)
− ϕ

γ (1− γ)
. (10.54)

248

By substituting (10.51) into (10.47) and using the definition of ϕ, we obtain

∂δ

∂γ
=

2γϕ

(1− γ) (1− 2γ)2
ln

1

4γ (1− γ)
. (10.55)

The inequality γ ∈ [0, 1/2) yields

1− γ > 0, ln
1

4γ (1− γ)
> 0, ϕ > 0. (10.56)

These lead to ∂δ
∂γ

> 0, which completes the proof of (10.45).

Since ∂δ
∂γ

> 0 and γ ∈ [0, 1/2), we have

log δ < lim
γ→1/2

log δ = lim
γ→1/2

[
1

1− 2γ
log

1

4γ (1− γ)
+ log

γ

1− γ

]

= lim
γ→1/2

[− log 4γ (1− γ)

1− 2γ

]
= lim

γ→1/2

[−∂ log 4γ (1− γ)

∂ (1− 2γ)

]
=

1− 2γ

2γ (1− 2γ)
= 0. (10.57)

The monotonicity of logarithm and log δ < 0 yield δ < 1. This completes the

proof of (10.46).

By using (10.55), we have

∂ δ
1+δ

∂γ
=

∂ δ
1+δ

∂δ
· ∂δ
∂γ

=
1

(1 + δ)2
· 2γϕ

(1− γ) (1− 2γ)2
ln

1

4γ (1− γ)
(10.58)

=
2δ

(1 + δ)2 (1− 2γ)2
ln

1

4γ (1− γ)
> 0. (10.59)

Since γ ∈ [0, 1/2), we have

δ

1 + δ
<

δ

1 + δ

∣∣∣∣
γ=1/2

=
1

2
. (10.60)

This completes the proof of (10.47).

It is tedious and unnecessary to prove inequalities (10.48) and (10.49) via

249

similar derivation to above ones, because very high (more than 6th) order deriva-

tives of (δ/ (1 + δ)− γ)2 have to be computed in this case, while this function is

too complex to compute its high order derivatives. Hence we prove (10.48) and

(10.49) by plotting δ/ (1 + δ)− γ as a function of γ ∈ [0, 1/2) in Figure 10.3.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

γ

δ
/(

1+
δ
)−

γ

Figure 10.3: Plot of δ/ (1 + δ) − γ as a function of γ ∈ [0, 1/2) on 5000 points
between 0 and 1/2.

According to the curve of the function δ/ (1 + δ) − γ shown in Figure 10.3,

the function is always larger than 0 and decreases as γ increasing in interval

γ ∈ [0, 1/2). Since δ/ (1 + δ2)−γ is a continues function of γ, there is no spike or

singularity on its curve. Therefore, we obtain (10.48) and (10.49). This completes

the proof.

According to Lemma 3 and Lemma 4, we have the following proposition about

the probabilities of the 2 types of recovery failures.

Proposition 10. The probabilities of the 2 types of recovery failures are functions

250

of m and γ:

Pr
(
DKL

(
P1‖P̂

)
< DKL

(
P2‖P̂

))
=

mδ
1+δ∑
j=1

(
m

j

)(
1

2

)m

, b ∩ y = ∅. (10.61)

Pr
(
DKL

(
P1‖P̂

)
> DKL

(
P2‖P̂

))
=

m∑
j= mδ

1+δ

(
m

j

)
γj (1− γ)m−j , b ∩ y = b.

(10.62)

Proof. Lemma 3 gives the distribution of P̂ (j) follows binomial models (10.33)

and (10.34) respectively under the 2 different facts, i.e., b∩y = ∅ in type I failure

and b ∩ y = b in type II failure. Lemma 4 provides the 2 ranges of j that leads

to the 2 kinds of failures in (10.40) and (10.41), respectively. Therefore, the

probability of each kind of failure is the sum of all the probabilities P̂ (j) with j

in the respective range. Thus we have

Pr
(
DKL

(
P1‖P̂

)
< DKL

(
P2‖P̂

))
=

mδ
1+δ∑
j=1

Pr
(
P̂ (j)

)
, b ∩ y = ∅. (10.63)

Pr
(
DKL

(
P1‖P̂

)
> DKL

(
P2‖P̂

))
=

m∑
j= mδ

1+δ

Pr
(
P̂ (j)

)
, b ∩ y = b. (10.64)

Substitute Pr
(
P̂ (j)

)
given in Lemma 3 into the above probabilities, we obtain

(10.61) and (10.62) in Proposition 10. This completes the proof.

Since P̂ (j) follows binomial distribution and the probabilities of the 2 kinds

of failures are CDFs of binomial distributions, we apply Hoeffding’s inequality to

the 2 probabilities in Proposition 10 and obtain the upper bounds for them.

Theorem 21. (Probabilistic bounds for recovery failures) The upper

251

bounds for the probabilities of the two types of recovery failures are:

Pr
(
DKL

(
P1‖P̂

)
< DKL

(
P2‖P̂

))
≤ 1

2
exp

[
−2

(
δ

1 + δ
− 1

2

)2

m

]
, b ∩ y = ∅.

(10.65)

Pr
(
DKL

(
P1‖P̂

)
> DKL

(
P2‖P̂

))
≤ 1

2
exp

[
−2

(
δ

1 + δ
− γ

)2

m

]
, b ∩ y = b.

(10.66)

Proof. For type I failure, its probability (10.61) is a CDF of a binomial distribu-

tion (10.33). According to the condition of Hoeffding’s inequality

mδ

1 + δ
≤ mδ

1 + δ
<

1

2
·m, (10.67)

we apply Hoeffding’s inequality to (10.61) and obtain

Pr
(
DKL

(
P1‖P̂

)
< DKL

(
P2‖P̂

))
=

mδ
1+δ∑
j=1

(
m

j

)(
1

2

)m

≤ 1

2
exp

⎡
⎢⎣−2

(
mδ
1+δ

− m
2

)2

m

⎤
⎥⎦

≤ 1

2
exp

[
−2

(
δ

1 + δ
− 1

2

)2

m

]
, b ∩ y = ∅.

(10.68)

The second inequality in the above derivation is due to (10.47) in Lemma 5, which

yields
mδ

1 + δ
− m

2
≤
(

δ

1 + δ
− 1

2

)
m < 0. (10.69)

This completes the proof of (10.65).

For type II failure, its probability (10.62) can be written as a CDF of a

252

binomial distribution related to (10.34):

Pr
(
DKL

(
P1‖P̂

)
> DKL

(
P2‖P̂

))
=

m∑
j= mδ

1+δ

(
m

j

)
γj (1− γ)m−j

=

m− mδ
1+δ∑

j=0

(
m

j

)
(1− γ)j γm−j. (10.70)

The inequality (10.48) in Lemma 5 yields the condition of Hoeffding’s inequality.

m− mδ

1 + δ
≤ m− mδ

1 + δ
< (1− γ) ·m. (10.71)

We apply Hoeffding’s inequality to (10.70) and obtain

Pr
(
DKL

(
P1‖P̂

)
> DKL

(
P2‖P̂

))
≤ 1

2
exp

⎡
⎢⎣−2

[(
m− mδ

1+δ

)
−m (1− γ)

]2
m

⎤
⎥⎦

≤ 1

2
exp

[
−2

(
δ

1 + δ
− γ

)2

m

]
, b ∩ y = b.

(10.72)

The second inequality in the above derivation is due to (10.48) in Lemma 5, which

yields

(
m− mδ

1 + δ

)
−m (1− γ) = mγ − mδ

1 + δ
≤
(
γ − δ

1 + δ

)
m < 0. (10.73)

This completes the proof of (10.66).

The probabilistic bounds given in Theorem 21 are exponential functions of

m and γ, wherein m is the number of measurements (number of random projec-

tion signs in the recovery algorithm, i.e., dimension of CL label vector in CL),

and γ ∈ [0, 1/2) is a monotonically decreasing function of card(b) according to

(10.36). As a compression-recovery algorithm, it is essential to investigate how

many measurements are sufficient to ensure the success of the recovery in CL. As

a multi-label prediction algorithm, it is essential to analyze whether the applica-

253

tion of distilled labelsets (DLs) can improve the prediction performance. These

two significant questions can be well answered by Theorem 22 that analyzes how

the probabilistic bounds of recovery failures change with m and γ.

Theorem 22. 1) The upper bounds of the probabilities for the 2 types of re-

covery failures exponentially shrink with the increasing of measurements’ number

m. 2) The upper bounds of the probabilities for the 2 types of recovery failures

exponentially shrink with the increasing of the distilled labelset b’s cardinality.

Proof. 1) In Theorem 21, the two upper bounds

1

2
exp

[
−2

(
δ

1 + δ
− 1

2

)2

m

]
and

1

2
exp

[
−2

(
δ

1 + δ
− γ

)2

m

]
. (10.74)

They are both exponentials of negative linear functions of m. Therefore, they

exponentially decreases with the increase in the number of measurements m.

This completes the proof of conclusion 1.

2) We study the monotonicities of the 2 functions of γ in the 2 upper bounds

from Theorem 21:

f1(γ) =

(
δ

1 + δ
− 1

2

)2

and f2(γ)

(
δ

1 + δ
− γ

)2

. (10.75)

Their partial derivatives with respect to γ are

∂f1
∂γ

= 2

(
δ

1 + δ
− 1

2

)
· ∂

δ
1+δ

∂γ
, (10.76)

∂f2
∂γ

= 2

(
δ

1 + δ
− γ

)
· ∂

(
δ

1+δ
− γ

)
∂γ

. (10.77)

By using inequalities (10.47), (10.45), (10.48), (10.49) and (10.59), we have

∂f1
∂γ

< 0 and
∂f2
∂γ

< 0. (10.78)

Thus f1 and f2 increase with the decreasing of γ. Since both f1 and f2 are

254

nonnegative, the 2 upper bounds

1

2
exp [−2f1(γ)m] and

1

2
exp [−2f2(γ)m] (10.79)

exponentially decrease with the decreasing of γ.

According to (10.36), γ ∈ [0, 1/2) is a monotonically decreasing function of

card(b), so the 2 upper bounds in Theorem 21 exponentially decreases with the

increase in the cardinality of the DL b. This completes the proof of conclusion

2.

Theorem 22 shows that the upper bounds for the probabilities of the 2 types

of failures both the recovery accuracy exponentially shrink with the increasing of

either the measurements or the cardinality of DL. It indicates that the the multi-

label prediction performance of CL will not be harmed by the label compression

and will be significantly improved by applying LDM. In summary, Theorem 22

This theoretically shows CL saves the time costs and balances the training data,

and LDM explores the label correlations. When DL is replaced with unit vectors

whose elements are 0 except one element is 1, it is easy to derive from Theorem 22

that m = O(log k) can produce a sufficiently accurate recovery. Note that DL can

produce more robust and accurate recovery than the unit vectors (cf. (10.27) and

the analysis below it), though the value of m ensuring accurate recovery cannot

be precisely identified in this case.

10.4 Discussion

In this section, we discuss CL’s contributions to multi-label learning, and ana-

lyze CL’s relationships with compressed sensing (CS) and error-correcting output

codes (ECOC).

10.4.1 Contributions to multi-label learning

In essence, CL is a label transformation method for multi-label learning. It solves

or at least substantially alleviates the three aforementioned problems harassing

255

multi-label learning field via label random projection based compression and re-

covery. In particular, the label compression in CL generates a new label matrix

with improved sample balance for each label, mutual independence between dif-

ferent labels and lower label dimensionality than the original one. According to

the analyses in Section 10.2, these are attributed to a series of properties of ran-

dom projection signs. The sample balance and mutual independence of CL labels

remove the two obstacles of applying conventional binary classification meth-

ods to multi-label learning problems. Thus the label compression method in CL

avoids the problems of directly applying single-label learning methods to multi-

label learning tasks, while inherits their advantages in binary classification tasks.

Besides, the single-label learning methods are directly invoked in CL without any

modification. For example, the SVM based CL presented in this chapter retains

the optimality and robustness of margin maximization, and can be extended to

nonlinear kernel space. The dimension reduction of the label matrix significantly

decreases the problem size and yields an efficient training stage. These charac-

teristics of CL improves both effectiveness and efficiency of multi-label learning.

Although the three problems have been more or less considered by existing

methods, they have rarely been simultaneously considered without introducing

other problems. For instance, methods for exploiting the label dependence usually

expand the problem size and aggravate the sample imbalance. Methods for label

dimension reduction often transform the classification problem to other problems

that ignore the label dependence and have complex label recovery algorithms.

Moreover, CL is a general method whose training process is isolated from

the label compression and recovery, and thus various existing single-label and

multi-label learning methods can be directly invoked in the training stage of

CL by using the compressed label matrix. The benefits of these methods can

be completely retained in their CL variants. Hence CL is not only a multi-

label classification solver but also a general method that can be directly applied

to most existing multi-label leaning techniques for improving their performance

and speed. LDM in CL is a greedy binary matrix decomposition technique that

exploits the discrete patterns of a given binary matrix. Thus LDM can be isolated

from the CL scheme and applied independently to multi-label learning in order to

obtain better labelsets for LP [216] or build the nodes in tree-structural hierarchy

256

[20][217].

Furthermore, CL significantly decreases the problem size of multi-label learn-

ing by adding a label compression and recovery procedure. However, the compu-

tation of the additional procedure is simple and fast. In particular, the compres-

sion is composed of random projections and hard thresholding, and the recovery

includes only comparison, thresholding and sorting. Thus the additional time

cost brought by compression is negligible comparing with the tremendous re-

duced time cost caused by CL. Compared with the multi-label learning via CS

[122] whose recovery needs to solve an �1 minimization, CL targets on a more

powerful classification model and develops a more efficient recovery algorithm by

exploiting the {0, 1} nature and discrete pattern of the label matrix. Therefore,

CL brings significant acceleration to multi-label learning and makes the large-

scale problems [141] computationally tractable.

10.4.2 Relationship with compressed sensing

CS [71][40] is a sparse signal compression and recovery scheme that achieves

remarkable success in recent years. It proves that a sparse signal x can be exactly

recovered from a small number of its random projections y = xA if the projection

matrix A follows the Restricted Isometry Property (RIP). Similarly, CL proposes

a {0, 1} label matrix compression and recovery scheme. Thus it is interesting to

discuss the relationship between CS and CL.

1 CS and CL both use random projections in their compression of a sparse

signal and a {0, 1} label matrix, respectively. Random projection can be

deemed as a pseudorandom generator that encodes certain information of

the original data into random variables. In CS, random projections provide

linear random measurements that satisfy RIP, which guarantees the success

of exact recovery of sparse signal x from a few of its random measurements

y via �1 minimization. In CL, random projection signs of two binary vec-

tors have an explicit joint distribution, so a row of {0, 1} label matrix can

be exactly recovered from its random projection signs by testing the joint

distributions of the random projection signs of the row and several given

{0, 1} vectors, i.e., distilled labelsets. Note that the measurements of CS

257

are real-valued while the measurements (i.e., CL labels) are 1-bit. From the

viewpoint of transmission, the space costs of CL compression is significantly

reduced comparing with the CS compression.

2 CS and CL develop different recovery algorithms by exploiting the different

properties of sparse signals and the {0, 1} label matrix, respectively. In CS,

the sparsity leads to the minimization of �1 norm of the unknown signal in

the recovery algorithm, because �1 norm is a convex relaxation of the signal

cardinality. In CL, although the rows of the {0, 1} label matrix satisfy

the sparse assumption as well, they have more specific characteristics. In

particular, 1) each entry is either 0 or 1 in value; and 2) there exist discrete

patterns that are frequently shared by the rows of the label matrix. These

two characteristics of the {0, 1} label matrix inspire the KL divergence based

hypothesis tests in the recovery algorithm of CL.

A more related CS problem to the CL problem is 1-bit compressed sensing

[106]. Different from CS which recovers the sparse signal from a few of its random

projections, 1-bit CS aims to recover the support set of the sparse signal x from a

few of its random projection signs y = sign (xA). In the passive algorithm of 1-bit

CS, the expectation of yisign (Aji) over different i can be explicitly computed in a

similar spirit of the geometric inference in Theorem 18. A hypothesis test of the

expectation is then conducted to determine whether j is included in the support

set of x.

The similarity between 1-bit CS and CL is as follows: the geometric inference

of the expectation in 1-bit CS and the geometric inference of the joint distribution

in CL both study the properties of random projection on a vector drawn uniformly

on a hypersphere.

However, 1-bit CS and CL are different in the following three aspects:

1 Their problems are different. 1-bit CS targets on recovering the support

set of a sparse signal, while CL aims at recovering a {0, 1} label matrix.

Recovering the support set in 1-bit CS only cares about the positions of

the nonzero entries in a single sparse vector, while recovering {0, 1} label

matrix in CL explores the frequent {0, 1} patterns appearing in all the rows

of the matrix via LDM.

258

2 1-bit CS studies the random variable yisign (Aji), which can be explained

as the product of random projection signs of sparse signal x and a unit

vector e with 1 on the jth entry and 0 otherwise. CL studies the random

projection signs of {0, 1} label vector y and a given distilled labelsets Di.

3 1-bit CS recovers the support set through tests of the expectation of two

random projection signs’ product, while CL recovers the {0, 1} label matrix

via tests of the joint distribution of two random projection signs based on

KL divergence comparison.

Although 1-bit CS and CL are two different techniques for two different prob-

lems, it is possible to extend the methods used in CL to 1-bit CS for improving

its performance and recovery bound. In particular, the expectation of yisign (Aji)

used in the 1-bit CS recovery can be replaced by yisign (zAi), wherein z is a vector

revealing the structure information of the original signal x. This will lead to a

“structured 1-bit CS”. Another modification from CL is to adopt a distribution

test based on KL divergence rather than an expectation test in the recovery of

1-bit CS, because the distribution includes more information about x than its

expectation.

10.4.3 Relationship with error-correcting output codes

Error-correcting output codes (ECOC) [66][79] transforms multi-class problem

to several binary problems. ECOC consists of two stages, 1) coding stage that

encodes each class label into a {−1,+1} or {−1, 0,+1} codeword, and 2) decoding

stage that seeks for the class codeword closest to the predicted codeword of a test

sample. Each codeword of the training sample is a {−1,+1} or {−1, 0,+1} vector
of dimension d that augments with the increasing of the class numbers k. In the

training step, the codewords of training samples are deemed as their new label

vectors, and d binary classifiers are learned from the training set to predict the

d dimensions of the codeword of a given sample, respectively. It has been shown

that the error-correcting properties of the decoding stage are helpful to reduce

the bias and variance of the learning algorithm. Please refer to [79] for a complete

review of ECOC methods.

259

ECOC is related to CL for the following two reasons:

1 In label compression via random projections, CL transforms the original

label matrix into a new one, i.e., the CL label matrix. This compression

step is similar to the coding stage of ECOC, which assigns each class a new

label vector called codeword. Both CL labels and codewords in ECOC are

used as the labels of the training samples when training the subsequent

binary classifiers.

2 In the recovery by KL-divergence test, CL recovers the original label vector

of a test sample from its CL label vector predicted by the binary classifiers.

This recovery step is similar to the decoding stage of ECOC, which finds

the class codeword closest to the predicted codeword of a test sample and

assigns the corresponding class label to the sample. The final prediction

results of CL and ECOC are inferred from the predicted CL label vector

and ECOC codeword, respectively.

Although CL has a coding stage and a decoding stage similar to the two stages

in ECOC, these two schemes are essentially different on their targeted problems,

coding and decoding algorithms, and methodologies. Details are given below.

1 ECOC is designed for a multi-class problem, while CL is designed for a

multi-label learning problem. Although a multi-class problem can be viewed

as a special case of multi-label learning, their discrepancy leads to the key

differences in developing ECOC and CL. For example, there are only k

possible codewords for a multi-class problem in ECOC, so the training set

can include all the k codewords for most datasets. Thus these k codewords

can be independently generated in the coding stage, and treated isolatedly

in the training and decoding stages. However, there are at most 2k −
1 possible label vectors (exponentially increased with k) for a multi-label

learning problem in CL, so the training sets in most datasets cannot include

all the possible CL label vectors. This fact indicates the label vector that

needs to be predicted could never appear in the training set before. For this

reason, the correlation between different label vectors and the dependence

between different labels play significantly roles in multi-label learning and

260

provide critical information for prediction. Thus the CL label vectors cannot

be generated independently in compression. This is why we apply the same

random matrix A to different label vectors in CL. This is also why we

develop LDM to extract the label correlations, preserve them in DL and

use DL in the CL recovery. Another difference caused by the problem

discrepancy is the decoding stage. It is possible to search for the closest

codeword among the k possible ones in ECOC. But it is impossible to search

for the most accordable label vector among the 2k−1 possible ones in CL, at

least from the aspect of computation. Thus we have to develop an accurate

recovery algorithm for finding the real label vector in CL.

2 The coding stage in ECOC and the label compression in CL are different in

the dimension of a codeword (the number of CL labels) and the correlation

preservation. Common coding strategies in ECOC include one-versus-all,

one-versus-one, randomized design such as dense random and sparse ran-

dom, and problem-dependent design such as DECOC, Forest-ECOC and

ECOC-ONE. One-versus-all and one versus-one suffer from the problem of

serious imbalance in the coding matrix whose rows are composed of code-

words. Moreover, one-versus-one needs to train k(k−1)/2 binary classifiers

in the subsequent training step, which is computationally intractable for

most datasets. Randomized design generates the codeword for each class

randomly and independently. The burden brought by randomness is that

high dimensionality of the codeword is required to preserve sufficient in-

formation of the data. Problem-dependent design extracts the codewords

by mining the structure of the k classes. This method requires codewords

of dimension at least k − 1. However, the imbalance problem of the cod-

ing matrix is ignored in this method. In summary, the dimensionality of

codewords in ECOC is much higher than or at least around k in most strate-

gies to guarantee successful coding, and the correlations between different

classes can be abandoned after coding. However, CL can compress the k-

dimensional label vector to m = O(log k) (cf. the last paragraph of Section

10.3.4) in order to solve the problem of label high dimensionality. Moreover,

the distribution and pairwise distance of the original label vectors are main-

261

tained after compression in CL (cf. the last paragraph of Section 10.2.3).

The preserved graph structure is helpful for training classifiers on the CL

labels. Note CL adopts random projection signs as the compression of the

original labels, which has not been used in the coding method of ECOC.

3 The decoding stage of ECOC and the KL divergence test based recovery in

CL are different in algorithm development. The decoding stage in ECOC

is based on the error-correcting principles and finds the closest codeword

among the k possible ones, while the recovery of CL precisely reconstructs

the original label vector dimension-wisely or DL-wisely (by testing whether

each DL belongs to the original label vector or not). The decoding algo-

rithm of ECOC can be grouped into three types, i.e., comparison of dis-

tances between the predicted codeword and existing ones, class membership

possibility estimation and pattern space transformation. But the recovery

of CL is based on a series of KL divergence tests on DL.

In ML-CS [122], the regret transform in SECOC [146] (one method of ECOC)

provides a theoretical guarantee similar in formulation to RIP in compressed

sensing. Therefore, to some extent, ML-CS [122] can be deemed as an extension

of ECOC in multi-label learning. Compared with this method, CL performs

promisingly on three aspects: 1) less measurements, ML-CS needs m = O(log k)

real-valued labels, while CL requires only m = O(log k) 0-1 (1-bit) labels; 2)

faster recovery, ML-CS invokes existing convex optimization based CS recovery

algorithms, while CL develops a non-iterative recovery algorithm with linear time;

3) ML-CS transforms a 0-1 prediction problem to a regression problem, while CL

transforms a large 0-1 prediction problem to a smaller one. Thus CL does not

change the nature of the problem; 4) the associated improvement on prediction

performance by exploring label correlation in ML-CS cannot be analyzed, while

CL thoroughly explores the label correlation via developing LDM and applying

DL in recovery. The benefits of applying DL can be clearly analysed (cf. the last

two paragraphs in Section 10.3.3).

In addition, CL can be applied to a multi-class problem without the applica-

tion of LDM and DL. Comparing with the existing ECOC methods, CL brings

the following advantages for multi-class problems: 1) smaller dimensionality of

262

the codewords; 2) randomized coding that can simultaneously preserve class cor-

relations and eliminate imbalance in the coding matrix; and 3) more robust and

faster decoding based on an accurate recovery. Therefore, CL on unit vectors can

be deemed as a powerful and novel ECOC method for multi-class problems.

10.5 Experiments

In this section, we evaluate CL via 5 groups of experiments on 21 datasets ob-

tained from real-world problems including text classification, image annotation,

scene classification, music categorization, genomics and web page classification.

In the first group of experiments, we evaluate the label compression and recovery

in CL by measuring the sample balance, mutual independence of CL label matrix

Z and the recovery error rate of Algorithm 13. In the second group of experi-

ments, we compare CL with BR in multi-label prediction when SVM is adopted

as the binary classifier in both methods. Time cost and prediction performance

are evaluated on different C parameters of SVM for a comparison of robustness.

In the third group of experiments, we compare CL with 3 popular multi-label

learning methods, i.e., ML-knn [246], MDDM [253] and multi-label prediction via

compressed sensing (ML-CS) [122]. ML-knn and MDDM are extensions of knn

and dimension reduction [202][105] for multi-label learning, respectively. ML-CS

is related to CL because it adopts a compressed label embedding. In the fourth

group of experiments, we compare CL with 2 SVM methods dealing with im-

balanced data, i.e., SVM-SMOTE [45] and SVM-WEIGHT [184]. This group of

experiments separates the performance improvements caused by label correlation

and sample balance in CL. In the fifth group of experiments, we study the trade-

off between time cost reduced by label compression and prediction performance

enhanced by sample balance in CL. In order to eliminate the influence of label

correlation, DL is replaced by the dictionary composed of unit vectors. In the last

4 groups of experiments, the performance of multi-label prediction is evaluated

in terms of 5 metrics, i.e., Hamming loss, precision, recall, F1 score and accuracy,

and CPU seconds for time cost contest. All the experiments are implemented and

run in MatLab on a server with dual quad-core 3.33 GHz Intel Xeon processors

and 32 GB RAM.

263

10.5.1 Evaluation metrics

In the experiments of label compression and recovery, three metrics are used to

measure the sample balance, label independence and recovery error rate, respec-

tively. Given a {0, 1} label matrix Y ∈ {0, 1}n×k, its balance-of-degree is defined

as the average proportion of positive samples on all the different labels in (10.2).

A degree-of-balance close to 0.5 indicates a good sample balance in Y .

The label independence in Y is measured by the average χ2 score after Yates’

correction [237] over all the label pairs in Y . In particular, for a label pair {i, j},
assume

a = |p : Ypi = 1, Ypj = 1| , b = |p : Ypi = −1, Ypj = 1| , (10.80)

c = |p : Ypi = 1, Ypj = −1| , d = |p : Ypi = −1, Ypj = −1| . (10.81)

The χ2 score for label pair {i, j} is defined as:

χ2
ij =

n (‖ad− bc‖1 − n/2)2

(a+ b)(c+ d)(b+ d)(a+ c)
. (10.82)

The average χ2 score is:

χ2 = mean
(
χ2
ij

)
. (10.83)

A large χ2 score indicates a strong mutual independence between labels.

Given two label matrices Y 1, Y 2 ∈ {0, 1}n×k, wherein Y 1 is the real one an Y 2

is the recovered one, the recovery error rate in CL is measured by the Hamming

loss:

HamLoss =
1

nk

n∑
i=1

k∑
j=1

Y 1ij ⊕ Y 2ij, (10.84)

where ⊕ is the exclusive disjunction, i.e., the XOR operation.

In the experiments of multi-label prediction, five metrics, i.e., Hamming loss,

precision, recall, F1 score and accuracy, are used to measure the prediction per-

formance. Hamming loss is defined in (10.84). The other four metrics are defined

264

as:

Precision =
1

n

n∑
i=1

card (Y 1i ∩ Y 2i)

card (Y 2i)
, (10.85)

Recall =
1

n

n∑
i=1

card (Y 1i ∩ Y 2i)

card (Y 1i)
, (10.86)

F1 =
1

n

n∑
i=1

2card (Y 1i ∩ Y 2i)

card (Y 1i) + card (Y 2i)
, (10.87)

Accuracy =
1

n

n∑
i=1

card (Y 1i ∩ Y 2i)

card (Y 1i ∪ Y 2i)
. (10.88)

These five metrics have been broadly applied on general binary data. However,

their importances differs when used in multi-label prediction evaluation, because

there are much more 1s than 0s in the label matrix. Hamming loss could be

very small when the labels of all the test samples are predicted as 0, and thus it

cannot indicates a successful prediction in this case. Precision and recall should be

considered together, because high precision always accompanies low recall when

most positive samples are falsely predicted as positive. F1-score and accuracy

are less sensitive to the imbalance of label matrix. Therefore, the evaluation of

prediction performance should be a integrative consideration of all the five metrics

with rough importances according to F1−score, Accuracy > Precision,Recall >

Hammingloss.

10.5.2 Datasets

We evaluate the performance of label compression and recovery, and multi-label

prediction of CL on 21 datasets from different domains and of different scales,

including Bibtex [136], Corel5k [76], Mediamill [203], IMDB [194], Enron [221],

Genbase [69], Medical [221], Emotions [213], Scene [26], Slashdot [194] and 11

sub datasets included in Yahoo dataset [223]. These datasets are collected from

different practical problems such as text classification, image annotation, scene

classification, music categorization, genomics and web page classification. Table

10.1 shows the number of samples n, number of features p, number of labels k

265

and number of unique labelsets K, the average cardinality of all label vectors

Card, and the average nonzero entry proportion of all label vectors Density of

different datasets.

ID Datasets Domain n p k K Card Density

1 Bibtex text 7395 1836 159 2856 2.402 0.015

2 Corel5k image 5000 499 374 3175 3.522 0.009

3 Mediamill video 43907 120 101 6555 4.376 0.043

4 IMDB text 120919 1001 28 4503 1.9997 0.0714

5 Enron text 1702 1001 53 753 3.378 0.064

6 Genbase genomics 662 1186 27 32 1.252 0.046

7 Medical text 978 1449 45 94 1.245 0.028

8 Emotions music 593 72 6 27 1.869 0.311

9 Scene scene 2407 294 6 15 1.074 0.179

10 Slashdot text 3782 1079 22 156 1.1809 0.0537

11 Yahoo-Arts web 5000 462 26 462 1.6360 0.0629

12 Yahoo-Business web 5000 438 30 161 1.5878 0.0529

13 Yahoo-Computers web 5000 681 33 253 1.5082 0.0457

14 Yahoo-Education web 5000 550 33 308 1.4606 0.0443

15 Yahoo-Entertainment web 5000 640 21 232 1.4204 0.0676

16 Yahoo-Health web 5000 612 32 257 1.6622 0.0519

17 Yahoo-Recreation web 5000 606 22 322 1.4232 0.0647

18 Yahoo-Reference web 5000 793 33 217 1.1694 0.0354

19 Yahoo-Science web 5000 743 40 398 1.4506 0.0363

20 Yahoo-Social web 5000 1047 39 226 1.2834 0.0329

21 Yahoo-Society web 5000 636 27 582 1.6920 0.0627

Table 10.1: Information of datasets that are used in label compression and recov-

ery experiments and multi-label prediction experiments. In the table, n refers to

the number of samples, p refers to the number of features, k refers to the number

of labels, K refers to the number of unique label vectors, “Card” refers to the

average cardinality of all label vectors, “Density” refers to the average nonzero

entry proposition of all label vectors.

10.5.3 Label compression and recovery

In this group of experiments, we test the sample balance and label independence

on the compressed CL labels, and the recovery accuracy of the corresponding

266

recovery algorithm given in Algorithm 13. We only test the label compression

and recovery methods proposed in CL in this group of experiments, and leave

the classification and prediction to the second group of experiments. That is

because the classification error in CL is caused by two issues, i.e., the label re-

covery error introduced by compression and the classification error on CL labels.

Since the former one is determined by the proposed CL, while the latter one is

mainly determined by the binary classification method CL invokes, independent

evaluations of different errors are important to the analysis of the effectiveness of

CL.

For each of the datasets listed in Table 10.1, we compress the label matrix to its

random projection signs and extract its distilled labelsets by using DL algorithm

given in Algorithm 12, and then the recovery algorithm of CL given in Algorithm

13 is invoked to recover the original labels from their CL labels. We measure the

degree-of-balance and the χ2 score of CL labels, and calculate the Hamming loss

between the original labels and the recovered ones on different compression ratios.

For the two datasets with 6 labels, i.e., Scene and Emotions, the compression

ratio is settled from 0 to 3, because the empirical joint distribution estimation

will become unstable when the number of random projection signs is too small.

For the other datasets, the compression ratio changes from 0 to 1. There are

two parameters, i.e., the threshold τ in DL algorithm and the cardinality range

in the recovery algorithm. We select 0.01 ≤ τ ≤ 0.25 in all the experiments. In

particular, a large τ is recommended for datasets with a large number of unique

labelsets, because a small τ often generates clusters without shared label subset

in this case. The cardinality range is chosen as the cardinality range of the rows

in the original label matrix.

We show the experimental results of label compression and recovery on mul-

tiple datasets in Figure 10.4 to Figure 10.8.

In the all the figures, the degree-of-balance of CL labels are kept 0.5 ± 0.1

on different compression ratios. For several datasets with large number of labels,

e.g., Bibtex and Corel5k, the degree-of-balance stays very close to the ideal value

0.5. Compared to the degree-of-balance of the original labels, which is shown in

the figures as well, CL labels highly improve the sample balance.

In the experiments, the χ2 score is used to measure the label independence,

267

namely, a larger χ2 score indicates different labels are more independent. In χ2

test, when the degree of freedom is 1, a χ2 score larger than 10.83 associates with

a P -value 0.001 and thus indicates the two discrete variables are independent with

a very high probability 99.9%. In the figures, most χ2 scores of the CL labels are

much higher than 10.83 and thus the different CL labels are independent. This

result is consistent with our theoretical analysis. Compared to the χ2 score of

the original labels, CL labels removes the label dependence, and thus the sequel

classification by using conventional binary classification method will be proper

and will not downgrade the prediction performance.

The recovery error rates in the figures show that the recoveries are still very

accurate with very small Hamming losses when the compression ratio is very

small. Thus the computational complexity of CL can be tremendously decreased

by using a very low dimensionality, while the learning performance will not be

jeopardized. Another observation is that the Hamming loss drops quite fast

when the compression ratio is increased. This leads to an efficient compression

and precise recovery. Some noises appear on the Hamming loss curve in some

figures and makes the curves not monotonically deceasing. That is because the

random vectors in A are randomly selected on the hypersphere and thus their

distribution on the hypershpere is not absolutely even. However, these noises are

of small amplitude and thus will not harm the recovery accuracy.

10.5.4 Multi-label prediction: comparison with BR

In this group of experiments, we compare the multi-label prediction performance

and the time cost of CL with BR on 21 datasets with different parameter settings.

Since we choose SVM as the single-label learning method in the training stage

of CL, BR is compared with CL in the experiments as a baseline method by

applying SVM directly on the original labels. This group of experiments aims at

verifying the improvement and robustness of prediction performance brought by

the training on the CL labels rather than on the original ones.

We use linear SVM in the training stages of both BR and CL. This is because

linear SVM has only one parameter C, thus the robustness of the performances

can be conveniently compared under different parameter settings.

268

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8

10

20

30

40

50

60

70

80

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8
5

10

15

20

25

30

35

40

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8

2

4

6

8

10

12
x 10

−3 Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8

400

600

800

1000

1200

1400

1600

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8

−0.5

0

0.5

1

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8

1000

2000

3000

4000

5000

6000

7000

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6
Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8

10

20

30

40

50

60

70

80

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8

0.03

0.04

0.05

0.06

0.07

0.08

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

Figure 10.4: Sample balance, label independence and recovery error rate on 21

datasets (1). From top to bottom: Bibtex, Corel5k, Mediamill, IMDB, Enron.

269

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8

20

30

40

50

60

70

80

90

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8

10

20

30

40

50

60

70

80

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

1 2 3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

1 2 3
70

75

80

85

90

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

1 2 3

0.05

0.1

0.15

0.2

0.25
Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.5 1 1.5 2 2.5

0.2

0.3

0.4

0.5

0.6

Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.5 1 1.5 2 2.5
100

200

300

400

500

600
Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.5 1 1.5 2 2.5

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8

50

100

150

200

250

300

350

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8

0.01

0.02

0.03

0.04

0.05

0.06

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

Figure 10.5: Sample balance, label independence and recovery error rate on 21

datasets (2). From top to bottom: Genbase, Medical, Emotions, Scene, Slashdot.

270

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6
Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8

100

200

300

400

500
Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8

500

1000

1500

2000

2500

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8

0.02

0.04

0.06

0.08

0.1

0.12

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8

100

200

300

400

500

600

700

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8

0.02

0.03

0.04

0.05

0.06

0.07

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8

200

400

600

800

1000

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8

0.02

0.03

0.04

0.05

0.06

0.07

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.2 0.4 0.6 0.8

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8

100

200

300

400

500

600

700

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

Figure 10.6: Sample balance, label independence and recovery error rate on

21 datasets (3). From top to bottom: Yahoo-Arts, Yahoo-Business, Yahoo-

Computers, Yahoo-Education, Yahoo-Entertainment.

271

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8

100

200

300

400

500

600

700

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8

0.03

0.04

0.05

0.06

0.07

0.08

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.2 0.4 0.6 0.8

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8
50

100

150

200

250

300

350

400

450

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8

0.04

0.05

0.06

0.07

0.08

0.09

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8

100

200

300

400

500

600

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8

0.01

0.02

0.03

0.04

0.05

0.06

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8

50

100

150

200

250

300

350

400

450

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6
Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8

100

200

300

400

500

600

700

800

900

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8

0.01

0.02

0.03

0.04

0.05

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

Figure 10.7: Sample balance, label independence and recovery error rate on 21

datasets (4). From top to bottom: Yahoo-Health, Yahoo-Recreation, Yahoo-

Reference, Yahoo-Science, Yahoo-Social.

272

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

Sample balance

Label compression ratio (m/k)

P
os

iti
ve

 s
am

pl
e

pr
op

or
tio

n
(%

)

CL labels
Original labels

0.2 0.4 0.6 0.8

100

200

300

400

500

600

Label independence

Label compression ratio (m/k)

C
hi

−
sq

ua
re

 s
co

re

CL labels
Original labels

0.2 0.4 0.6 0.8
0.03

0.04

0.05

0.06

0.07

0.08

0.09

Recovery error rate

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

Figure 10.8: Sample balance, label independence and recovery error rate on 21
datasets (5) on Yahoo-Society.

The broadly used standard SVM solver “LIBSVM [44]” is applied to all the

datasets except Mediamill and IMDB, which are of large scale and thus intractable

for LIBSVM. For these two datasets, we alternatively apply NESVM [270], which

is a fast gradient SVM solver for large-scale problems.

Table 10.2 summarizes the information about the training set, the test set and

the obtained distilled labelsets of each datasets used in the multi-label prediction

experiments. Both training set and test set are randomly selected from the orig-

inal datasets. The number of distilled labelsets for most datasets is between the

number of labels and that of the unique labelsets. When the unique labelsets is

of large size, the number of distilled labelsets keeps close to the number of labels.

Thus the computational complexity of recovery algorithm will not be significantly

increased when the number of unique labelsets is augmented.

In each experiment, the training algorithm given in Algorithm 14 and the

prediction algorithm given in Algorithm 15 are applied to training set and test

set, respectively. We test the performance on different C in SVM. The parameter

C can be interpreted as the weight of hinge loss in the objective function of

SVM. The threshold τ and the cardinality range are chosen according to the

same method in the label compression and recovery experiments. BR is compared

with CL on 3-7 different C values between 10−3 to 103 in all experiments. For

most datasets, 4 C values [10−3, 10−2, 10−1, 1] are used. Since BR fails on some

datasets with these C values when it overwhelmingly predicts all the test samples

as negative, we choose different C values in this case to guarantee a thorough

comparison on sufficient C values.

273

ID Datasets Training Test DL k K

1 Bibtex 4880 2515 253 159 2856

2 Corel5k 4500 500 418 374 3175

3 Mediamill 30993 12914 161 101 6555

4 IMDB 62050 58869 61 28 4503

5 Enron 1123 579 73 53 753

6 Genbase 463 199 27 27 32

7 Medical 333 645 46 45 94

8 Emotions 391 202 14 6 27

9 Scene 1211 1196 6 6 15

10 Slashdot 2338 1444 20 22 156

11 Yahoo-Arts 2000 3000 37 26 462

12 Yahoo-Business 2000 3000 35 30 161

13 Yahoo-Computers 2000 3000 39 33 253

14 Yahoo-Education 2000 3000 35 33 308

15 Yahoo-Entertainment 2000 3000 26 21 232

16 Yahoo-Health 2000 3000 35 32 257

17 Yahoo-Recreation 2000 3000 31 22 322

18 Yahoo-Reference 2000 3000 38 33 217

19 Yahoo-Science 2000 3000 47 40 398

20 Yahoo-Social 2000 3000 47 39 226

21 Yahoo-Society 2000 3000 39 27 582

Table 10.2: Training set size, test set size and the obtained distilled labelsets size

of each datasets in the multi-label prediction experiments. In order to compare

the number of distilled labelsets d with the number of labels k and the number

of unique labelsets K, we list k and K of each datasets in the table as well.

The prediction performance is evaluated by five metrics, which are Hamming

loss, precision, recall, F1 score and accuracy. The good performance is indicated

by a small Hamming loss with the large values of the other four metrics. The

evaluation of performance should be an integrative consideration of all the five

metrics, because one good metric is possibly associated with poor other metrics

and a trivial prediction result. For instance, a small hamming loss can associate

with other four metrics that are nearly zeros, when most test samples are pre-

dicted as negative in all the binary classifications and the number of positive

samples is very small.

274

C HL Prec Rec F1 Acc Time Labels

B
ib
te
x

103
BR 0.1261 0.0158 0.1227 0.0258 0.0139 4630 159

CL 0.1070 0.1609 0.5876 0.2049 0.1403 1580 80

102
BR 0.0638 0.0158 0.0422 0.0197 0.0112 5310 159

CL 0.1032 0.1912 0.6009 0.2315 0.1651 1450 80

101
BR 0.2242 0.0118 0.1417 0.0211 0.0110 5890 159

CL 0.1075 0.2210 0.5658 0.2445 0.1839 1640 80

1
BR - - - - - - 159

CL 0.1509 0.1453 0.4493 0.1618 0.1204 1810 80

C
or
el
5k

103
BR 0.0871 0.0252 0.2035 0.0439 0.0231 2240 374

CL 0.0157 0.2236 0.2365 0.2201 0.1473 911.4 160

102
BR 0.0869 0.0139 0.1027 0.0232 0.0122 1870 374

CL 0.0153 0.2418 0.2595 0.2392 0.1585 526.5 160

101
BR 0.0311 0.0074 0.0167 0.0102 0.0057 1270 274

CL 0.0164 0.2051 0.2473 0.2181 0.1397 476.1 160

1
BR 0.2101 0.0093 0.2011 0.0178 0.0091 1050 374

CL 0.0159 0.1957 0.2245 0.2058 0.1295 450.9 160

M
ed
ia
m
il
l

103
BR 0.036 0.6913 0.3545 0.4315 0.3308 203.3 101

CL 0.040 0.5680 0.4630 0.4601 0.3436 77.94 40

102
BR 0.036 0.6913 0.3545 0.4315 0.3308 202.4 101

CL 0.043 0.5141 0.4635 0.4412 0.3210 72.21 40

101
BR 0.036 0.6913 0.3545 0.4315 0.3308 205.1 101

CL 0.039 0.5751 0.4629 0.4659 0.3467 76.70 40

1
BR 0.036 0.6913 0.3545 0.4315 0.3308 204.8 101

CL 0.063 0.4076 0.5637 0.4191 0.2610 76.03 40

Table 10.3: Multi-label performances and time costs of BR and CL on 21 datasets

with different C parameters (1). HL-Hamming Loss, Prec-Precision, Rec-Recall,

Acc-Accuracy, Time-CPU seconds, labels-Number of Labels in training stage. “-

” denotes the failed experiment that incorrectly predicts all the test samples as

negative. The best performances of BR and CL are highlighted with different

colors.

275

C HL Prec Rec F1 Acc Time Labels

IM
D
B

103
BR 0.0689 0.6338 0.0024 0.0061 0.0024 5352 28

CL 0.1321 0.2825 0.4567 0.3035 0.2186 3628 20

102
BR 0.0689 0.6338 0.0024 0.0060 0.0024 5318 28

CL 0.1492 0.2621 0.5178 0.3080 0.2187 3273 20

101
BR - - - - - 3529 28

CL 0.1737 0.2408 0.5048 0.2743 0.1944 1434 20

1
BR - - - - - 2700 28

CL 0.1971 0.1646 0.5431 0.2254 0.1463 898.2 20

E
n
ro
n

103
BR 0.2283 0.1482 0.5184 0.2183 0.1280 122.8 53

CL 0.0971 0.3940 0.5080 0.4053 0.2887 36.59 36

102
BR 0.2031 0.1633 0.4360 0.2229 0.1347 168.6 53

CL 0.0854 0.4549 0.5542 0.4580 0.3370 31.00 36

101
BR 0.0915 0.1307 0.2762 0.2552 0.1718 147.2 53

CL 0.0779 0.5027 0.5926 0.5076 0.3905 35.60 36

1
BR 0.0636 0.4957 0.2733 0.3429 0.2324 1050 53

CL 0.0548 0.3949 0.6019 0.4267 0.2929 37.56 36

10−1
BR 0.0624 0.5138 0.2851 0.3573 0.2415 77.10 53

CL 0.1336 0.2708 0.6726 0.3693 0.2398 29.77 36

10−2
BR 0.1372 0.1742 0.2888 0.2115 0.1250 56.74 53

CL 0.1020 0.2957 0.5015 0.3510 0.2219 26.11 36

10−3
BR 0.0624 0.5138 0.2851 0.3573 0.2410 39.93 53

CL 0.1165 0.2990 0.6482 0.3911 0.2588 15.58 36

G
en
b
as
e

103
BR 0.2051 0.0236 0.1164 0.0387 0.0234 1.0065 32

CL 0.0106 0.9522 0.9661 0.9527 0.9341 0.4279 20

102
BR 0.0798 0.0377 0.0754 0.0503 0.0377 2.0437 32

CL 0.0101 0.9605 0.9728 0.9568 0.9441 0.3217 20

101
BR 0.1463 0.0469 0.1214 0.0653 0.0429 1.9739 32

CL 0.1130 0.4408 0.7278 0.4913 0.4312 0.6293 20

1
BR 0.3110 0.0521 0.3978 0.0917 0.0516 1.9939 32

CL 0.1362 0.0921 0.2730 0.1374 0.0915 0.7671 20

Table 10.4: Multi-label performances and time costs of BR and CL on 21 datasets

with different C parameters (2).

276

C HL Prec Rec F1 Acc Time Labels

M
ed
ic
al

103
BR 0.3067 0.0283 0.2693 0.0494 0.0273 4.880 45

CL 0.0273 0.5904 0.8147 0.6565 0.5694 1.4332 25

102
BR 0.4105 0.0022 0.0261 0.0041 0.0022 4.3789 45

CL 0.0317 0.5432 0.7858 0.6107 0.5171 1.6326 25

101
BR 0.3990 0.0168 0.2282 0.0311 0.0164 5.8486 45

CL 0.0567 0.2209 0.3788 0.2683 0.1995 2.0320 25

E
m
ot
io
n
s

103
BR 0.2962 0.5547 0.5380 0.5095 0.4205 0.6797 6

CL 0.3201 0.5099 0.5666 0.5140 0.4190 1.2970 15

102
BR 0.2970 0.5546 0.5363 0.5082 0.4210 0.3724 6

CL 0.3408 0.4864 0.5528 0.4946 0.4012 0.6971 15

101
BR 0.2756 0.5785 0.5099 0.5017 0.4274 0.2745 6

CL 0.3201 0.5208 0.6007 0.5353 0.4373 0.5170 15

1
BR 0.2649 0.6600 0.4142 0.4538 0.3738 0.2514 6

CL 0.3350 0.5029 0.5743 0.5134 0.4050 0.4628 15

S
ce
n
e

103
BR 0.1111 0.5263 0.6848 0.6470 0.6141 4.3647 6

CL 0.0803 0.5957 0.8027 0.6562 0.5794 15.631 15

102
BR 0.0956 0.5502 0.6773 0.6600 0.6377 4.1998 6

CL 0.0780 0.6080 0.8023 0.6627 0.5887 16.502 15

101
BR 0.0973 0.4877 0.5811 0.5800 0.5661 4.7052 6

CL 0.0989 0.5850 0.8687 0.6617 0.5674 18.710 15

1
BR 0.1406 0.2358 0.2341 0.2391 0.2337 5.7473 6

CL 0.2386 0.4727 0.8031 0.5695 0.4568 20.742 15

10−1
BR - - - - - - 6

CL 0.3502 0.2646 0.5059 0.3408 0.2595 26.715 15

S
la
sh
d
ot

103
BR 0.2098 0.0692 0.2896 0.1032 0.0651 36.256 22

CL 0.0878 0.3810 0.6525 0.4600 0.3671 30.864 12

102
BR 0.1314 0.1162 0.2226 0.1377 0.1032 140.46 22

CL 0.0833 0.4269 0.6514 0.4913 0.4122 27.683 12

101
BR - - - - - - 22

CL 0.0925 0.3738 0.5993 0.4379 0.3627 30.228 12

Table 10.5: Multi-label performances and time costs of BR and CL on 21 datasets

with different C parameters (3).

277

C HL Prec Rec F1 Acc Time Labels

A
rt
s

103
BR - - - - - - 26

CL 0.1835 0.1528 0.4650 0.2174 0.1339 33.810 22

103

3

BR 0.0542 0.7639 0.2505 0.2649 0.2473 46.826 26

CL 0.1836 0.3032 0.6452 0.3583 0.2693 29.723 22

102
BR 0.0588 0.8678 0.1008 0.1081 0.1006 47.738 26

CL 0.2009 0.2684 0.7056 0.3408 0.2433 44.073 22

101
BR - - - - - - 26

CL 0.1334 0.2003 0.4581 0.2655 0.177 34.3238 22

B
u
si
n
es
s

103
BR 0.0253 0.8713 0.7440 0.7663 0.7132 28.858 30

CL 0.0440 0.7097 0.7770 0.7010 0.6199 26.162 25

102
BR 0.0261 0.8749 0.7188 0.7610 0.7077 29.503 30

CL 0.0357 0.7735 0.7588 0.7312 0.6625 27.469 25

101
BR 0.0287 0.8633 0.6797 0.7332 0.6797 29.087 30

CL 0.0287 0.8633 0.6797 0.7332 0.6797 22.501 25

1
BR 0.0287 0.8633 0.6797 0.7332 0.6797 23.152 30

CL 0.0287 0.8633 0.6797 0.7332 0.6797 21.982 25

C
om

p
u
te
rs

103
BR 0.0348 0.7952 0.3918 0.4110 0.3885 62.604 33

CL 0.0973 0.4648 0.6950 0.4969 0.4164 41.350 25

102
BR 0.0348 0.7952 0.3918 0.4110 0.3885 61.857 33

CL 0.0736 0.4846 0.6850 0.5196 0.4334 51.694 25

101
BR 0.0450 0.5194 0.3967 0.4294 0.3967 62.559 33

CL 0.0716 0.2898 0.4329 0.3298 0.2383 54.732 25

E
d
u
ca
ti
on

103
BR 0.0377 0.6924 0.2774 0.2877 0.2696 50.061 33

CL 0.1079 0.3123 0.6383 0.3749 0.2844 36.026 25

102
BR 0.0415 0.9079 0.0761 0.0818 0.0761 50.095 33

CL 0.1157 0.2734 0.6324 0.3456 0.2525 41.059 25

101
BR - - - - - - 33

CL 0.1857 0.0926 0.3815 0.1407 0.0857 44.649 25

Table 10.6: Multi-label performances and time costs of BR and CL on 21 datasets

with different C parameters (4).

278

C HL Prec Rec F1 Acc Time Labels

E
n
te
rt
ai
n
m
en
t

103
BR 0.0520 0.8519 0.3360 0.3456 0.3332 50.617 21

CL 0.1433 0.4028 0.6573 0.4500 0.3697 28.229 16

102
BR 0.0588 0.9444 0.1769 0.1815 0.1769 51.003 21

CL 0.1321 0.3557 0.6247 0.4137 0.3278 30.079 16

101
BR 0.0672 1.0000 0.0052 0.0052 0.0052 50.480 21

CL 0.3286 0.1078 0.5770 0.1731 0.1027 34.782 16

1
BR - - - - - - 21

CL 0.2413 0.1349 0.5464 0.2078 0.1266 31.675 16

H
ea
lt
h

103
BR 0.0329 0.8021 0.5512 0.5675 0.5299 47.840 32

CL 0.0299 0.6140 0.7062 0.6039 0.5636 21.181 25

102
BR 0.0388 0.7955 0.4028 0.4248 0.3985 51.812 32

CL 0.0419 0.5459 0.6604 0.4832 0.4288 27.785 25

101
BR 0.0504 0.5243 0.3824 0.4139 0.3824 54.038 32

CL 0.0801 0.2743 0.4151 0.3148 0.2276 27.287 25

1
BR 0.0515 0.5060 0.3859 0.4190 0.3859 50.227 32

CL 0.0744 0.3197 0.4747 0.3633 0.2648 26.910 25

R
ec
re
at
io
n

103
BR 0.0551 0.8498 0.2303 0.2380 0.2286 53.232 22

CL 0.2210 0.3125 0.6966 0.3721 0.2864 23.714 12

102
BR 0.0605 0.9373 0.0944 0.0974 0.0944 55.610 22

CL 0.2895 0.2381 0.7115 0.3048 0.2234 28.807 12

101
BR - - - - - - 22

CL 0.2856 0.2155 0.7102 0.3149 0.2187 28.995 12

R
ef
er
en
ce

103
BR - - - - - - 33

CL 0.0929 0.3474 0.4751 0.3686 0.3292 50.251 25

103

3

BR 0.0255 0.8397 0.3902 0.3979 0.3894 58.442 33

CL 0.0161 0.4892 0.6582 0.5252 0.4618 36.298 25

102
BR 0.0293 0.9554 0.2111 0.2144 0.2111 65.395 33

CL 0.0605 0.4748 0.5582 0.4796 0.4420 43.302 25

101
BR 0.0322 0.9886 0.1117 0.1131 0.1117 62.886 33

CL 0.0992 0.2759 0.4484 0.3236 0.2612 42.010 25

1
BR - - - - - - 33

CL 0.0375 0.4697 0.4207 0.4362 0.4207 41.621 25

Table 10.7: Multi-label performances and time costs of BR and CL on 21 datasets

with different C parameters (5). 279

C HL Prec Rec F1 Acc Time Labels

S
ci
en
ce

103
BR - - - - - - 40

CL 0.0639 0.2170 0.3417 0.2543 0.1860 48.368 30

103

3

BR 0.0312 0.7908 0.1906 0.1991 0.1889 84.891 40

CL 0.0957 0.2725 0.5939 0.3381 0.2521 59.105 30

102
BR 0.0350 0.9318 0.0245 0.0254 0.0245 84.291 40

CL 0.1295 0.1758 0.5346 0.2423 0.1643 66.323 30

101
BR - - - - - - 40

CL 0.1319 0.1046 0.3918 0.1596 0.0989 70.387 30

S
co
ci
al

103
BR 0.0208 0.9126 0.4876 0.4992 0.4869 85.668 39

CL 0.0597 0.5642 0.7544 0.5913 0.5288 59.048 29

102
BR 0.0234 0.9708 0.3632 0.3706 0.3632 83.811 39

CL 0.0782 0.4739 0.7200 0.5103 0.4475 63.289 29

101
BR 0.0307 0.9964 0.0849 0.0872 0.0849 89.083 39

CL 0.0607 0.3076 0.5526 0.3711 0.2817 75.651 29

1
BR - - - - - - 32

CL 0.0492 0.3423 0.6019 0.4267 0.3239 69.870 29

S
co
ci
et
y

103
BR 0.0516 0.7593 0.3344 0.3546 0.3318 71.275 27

CL 0.1429 0.3785 0.5924 0.4044 0.3191 43.211 19

102
BR 0.0545 0.7937 0.2327 0.2476 0.2327 74.344 27

CL 0.2092 0.2886 0.6073 0.3267 0.2480 42.359 19

101
BR 0.0594 0.9761 0.0695 0.0729 0.0695 73.640 27

CL 0.1041 0.2986 0.4161 0.3212 0.2433 46.004 19

1
BR - - - - - - 27

CL 0.0928 0.2945 0.4289 0.3289 0.2398 41.521 19

Table 10.8: Multi-label performances and time costs of BR and CL on 21 datasets

with different C parameters (6).

Another example is that a high precision can associate with other four small

metrics when the number of positive samples in the predicted one is very small.

Compared with precision and recall, F1 score and accuracy are more robust to

280

the above problems.

We show the multi-label prediction experimental results of CL and BR given

different C in Table 10.3 to Table 10.8. In these tables, we use “-” as the mark

of prediction failure, namely, predicting all the samples into one class in each

binary classification. The “Time” column in the tables is the sum of training and

test CPU seconds. Thus the CPU seconds for label compression and recovery in

CL is included in “Time”. The best performance of BR and CL are shadowed

with different colors in the tables. For each dataset, we choose the number of

CL labels much less than the number of the original ones except in datasets

Scene and Emotions, where the numbers of labels are too small (≤ 6) and thus

random projection signs less than it are not stable for estimating the empirical

joint distribution.

In most experiments, CL significantly outperforms BR on different metrics

and different values of C. In particular, CL has overwhelming privilege on large-

scale datasets with large number of labels (which is one of the most difficult

cases in multi-label learning), e.g., Bibtex, Corel5k, Enron and Medical. CL also

has appealing prediction performance on small datasets whose density is small,

e.g., Genbase, Slashdot and most sub datasets of Yahoo. Another interesting

phenomenon is that the dimension increasing of label matrix on Scene dataset

generates a satisfying prediction. This indicates that CL can also be used to

improve multi-label prediction on dataset with small number of labels by increas-

ing the dimensionality of CL labels. There exist rare cases when BR has better

performance, e.g., on Yahoo-Business with C = 103 and C = 102, but CL and

BR arrive the same metrics when C = 101 and C = 1.

CL also brings a tremendous reduction of the time cost. According to the

CPU seconds and the number of labels shown in the tables, CL can compress

the original label matrix to a low dimensionality, which saves great computation

in the training stage. Therefore, CL can reduce the problem size of multi-label

learning and makes the large-scale problems computationally tractable.

Since the unique difference between CL and BR is that CL invokes linear

SVM on the compressed labels rather than on the original ones as BR does, this

group of experimental results shows that single-label classification methods can

be conveniently extended to solve multi-label learning problems with improved

281

performance and reduced time cost by using the label compression and recovery

scheme proposed in CL. The leverages in both effectiveness and efficiency are

attributed to the removal of the three main problems of applying single-label

learning method to multi-label learning tasks. In particular, the performance

improvement benefits from the sample balance and exploration of label correlation

in CL, while the time cost is decreased by label compression. In addition, the

benefits and the strength of conventional single-label learning methods are well

inherited in the scheme of CL. Therefore, CL proposes a general extension of

single-label learning method to multi-label scenarios rather than merely a specific

algorithm for multi-label learning.

CL is robust to the change of parameters in the training stage. In the ex-

perimental results, CL can generate appealing prediction result when BR fails

on some C values. Moreover, its performance changes a little when C decreases

from 103 to 10−3, e.g., on the Scene dataset. We explain the reasons for the

improvement of robustness on two aspects:

1 SVM is more robust to the parameter C on more balanced data. In imbal-

anced data, the insufficient number of samples in the minor class are more

likely to be within the margin when C decreases, i.e., when the margin be-

comes larger. This leads to less support vectors for the minor class. Thus

the prediction performance of BR drops dramatically with the decreasing

of C. CL trains SVM classifiers on compressed labels with improved sam-

ple balance, and thus the prediction performance is more robust to a wide

range of C.

2 In CL, although the number of labels are reduced due to the label compres-

sion, the number of labels that each sample belongs to is increased, because

the label matrix is much more dense and balanced. Thus the information

of the original labels are disseminated rather than condensed in the CL

labels. In the prediction stage, each original label is predicted according to

the statistics of all the CL labels. This scheme makes the prediction of the

original label robust to the failures in predicting one or two CL labels.

Therefore, CL improves the robustness of the multi-label learning via random

projection signs of the labels.

282

10.5.5 Multi-label prediction: comparison with other multi-

label learning methods

In this group of experiments, we compare CL with 3 popular multi-label learn-

ing methods, i.e., ML-knn [246], MDDM [253] and multi-label prediction based

CS (ML-CS) [122]. ML-knn is an extension of knn. It obtains the label prior

distribution from the k nearest neighbors and maximizes a posterior to the la-

bel prediction. ML-knn aims at solving the imbalance problem of the k nearest

neighbors’ labels. MDDM tackles the “curse of dimensionality” in multi-label

data and formulates the problem as a discriminative dimension reduction [208].

It maximizes the dependence between feature space and label space via maxi-

mizing the empirical estimate of Hilbert-Schmidt Independence Criterion. Then

ML-knn can be applied to the obtained low-dimensional subspace. MDDM aims

at decreasing the time complexity of the sequential ML-knn.

ML-CS compresses the original 0 − 1 label matrix Y via random projection

Y ′ = Y A to a real valued matrix Y ′, and then builds a new linear regression

model Y ′ = XW ′. In its prediction, the original label vector y is recovered

from y′ via compressed sensing or model selection algorithms such as least angle

regression (LARS) [77]. ML-CS is related to CL because it builds models on the

low-dimensional embedding of the original label. Their main difference is that CL

compresses the original 0−1 label matrix to another 0−1 label matrix and builds

binary classification models on it rather than regression models in the training

stage.

In the experiments, we set the number of neighbors in ML-knn as 20 and

the dimensions of the subspace obtained in MDDM as 40% of the dimensions of

the original data. In ML-CS, the low-dimensional embedding of the label matrix

has the same dimension as the compressed label matrix in CL. We use LARS

as the recovery algorithm in its prediction stage. The sparse level is determined

by selecting the solution with the minimum least square measurement error in

the same cardinality range as CL. This is similar to the last step in the recovery

algorithm of CL in Algorithm 13. The performance of CL is collected from the

first group of experiments.

We show the experimental results in Table 10.9 and Table 10.10.

283

Methods HL Prec Rec F1 Acc Time Labels

Bibtex

ML-knn 0.0140 0.5511 0.0397 0.2034 0.0364 42697 159

MDDM 0.0140 0.5334 0.0534 0.2138 0.0492 970.7 159

ML-CS 0.1645 0.0798 0.6499 0.1026 0.0760 1901.5 80

CL 0.1075 0.2210 0.5658 0.2445 0.1839 1640 80

Corel5k

ML-knn 0.0093 0.6197 0.0103 0.0321 0.0098 2106 374

MDDM 0.0093 0.6166 0.0161 0.0755 0.0146 458 374

ML-CS 0.0857 0.0789 0.5108 0.1012 0.0741 612.6 160

CL 0.0153 0.2418 0.2595 0.2392 0.1585 526.5 160

Mediamill

ML-knn 0.0314 0.4132 0.0632 0.5377 0.0534 5713 101

MDDM 0.0319 0.3679 0.0517 0.5278 0.0439 48237 101

ML-CS 0.1116 0.2503 0.7033 0.3402 0.2206 99.48 40

CL 0.0390 0.5751 0.4629 0.4659 0.3467 76.70 40

IMDB

ML-knn - - - - - > 105 28

MDDM - - - - - > 105 28

ML-CS 0.1890 0.1654 0.4228 0.2286 0.1406 3608 20

CL 0.1492 0.2621 0.5178 0.3080 0.2187 3273 20

Enron

ML-knn 0.0518 0.5083 0.0665 0.4632 0.0532 527 53

MDDM 0.0505 0.5000 0.0883 0.4966 0.0715 29 53

ML-CS 0.3857 0.1315 0.6732 0.1747 0.1189 40.36 36

CL 0.0779 0.5027 0.5926 0.5076 0.3905 35.60 36

Genbase

ML-knn 0.0065 1.0000 0.5071 0.9231 0.5071 9.38 32

MDDM 0.0063 0.9881 0.5170 0.9258 0.5133 6.09 32

ML-CS 0.0143 0.9140 0.9949 0.8627 0.9104 0.327 20

CL 0.0101 0.9605 0.9728 0.9568 0.9441 0.321 20

Medical

ML-knn 0.0204 0.7554 0.0743 0.4879 0.0657 22.8 45

MDDM 0.0249 0.7395 0.0323 0.3058 0.0258 32.3 45

ML-CS 0.3306 0.0896 0.9356 0.1334 0.0893 3.14 25

CL 0.0273 0.5904 0.8147 0.6565 0.5694 1.43 25

Emotions

ML-knn 0.2855 0.6852 0.2819 0.4155 0.2237 0.66 6

MDDM 0.2962 0.5437 0.2885 0.4163 0.2239 0.66 6

ML-CS 0.3960 0.4339 0.6113 0.5171 0.3927 0.68 15

CL 0.3201 0.5208 0.6007 0.5353 0.4373 0.51 15

Scene

ML-knn 0.1016 0.7788 0.6257 0.6881 0.5373 14.3 6

MDDM 0.1044 0.7568 0.6393 0.6870 0.5338 7.59 6

ML-CS 0.4123 0.2672 0.6768 0.3734 0.2635 20.42 15

CL 0.0780 0.6080 0.8023 0.6627 0.5887 16.50 15

Slashdot

ML-knn 0.0481 0.7104 0.1016 0.3067 0.0800 708 22

MDDM 0.0518 0.3973 0.0129 0.0452 0.0118 114 22

ML-CS 0.3866 0.0881 0.6774 0.1530 0.0866 31.86 12

CL 0.0833 0.4269 0.6514 0.4913 0.4122 27.68 12

Table 10.9: Prediction performances and time costs of ML-knn, MDDM, ML-CS

and CL on 10 datasets. “-” denotes the failed experiment whose time cost exceeds

105 secondes.

284

Methods HL Prec Rec F1 Acc Time Labels

Arts

ML-knn 0.0587 0.6257 0.0708 0.2477 0.0639 77.6 26

MDDM 0.0595 0.6783 0.0614 0.2123 0.0562 37.4 26

ML-CS 0.4538 0.1004 0.7994 0.1753 0.0975 35.3 22

CL 0.1836 0.3032 0.6452 0.3583 0.2693 29.7 22

Business

ML-knn 0.0266 0.6789 0.0920 0.7042 0.0822 93.2 30

MDDM 0.0279 0.6609 0.0733 0.6878 0.0661 42.7 30

ML-CS 0.1089 0.3975 0.8186 0.4246 0.3663 30.3 25

CL 0.0287 0.8633 0.6797 0.7332 0.6797 21.9 25

Computers

ML-knn 0.0408 0.6959 0.0344 0.3328 0.0303 124 33

MDDM 0.0414 0.5669 0.0497 0.4075 0.0403 50 33

ML-CS 0.1329 0.3149 0.6432 0.2914 0.2817 54.0 25

CL 0.0736 0.4846 0.6850 0.5196 0.4334 51.6 25

Education

ML-knn 0.0389 0.5883 0.0618 0.3159 0.0560 99.8 33

MDDM 0.0398 0.5914 0.0502 0.2655 0.0468 45.2 33

ML-CS 0.1382 0.2406 0.6218 0.2755 0.2188 40.9 25

CL 0.1079 0.3123 0.6383 0.3749 0.2844 36.0 25

Entertain

ML-knn 0.0575 0.6662 0.1126 0.3328 0.1067 108 21

MDDM 0.0585 0.6485 0.1093 0.3005 0.1040 43.8 21

ML-CS 0.2202 0.2192 0.5965 0.2550 0.2027 28.8 16

CL 0.1433 0.4028 0.6573 0.4500 0.3697 28.2 16

Health

ML-knn 0.0362 0.7316 0.1618 0.5657 0.1471 101 32

MDDM 0.0391 0.7040 0.1448 0.5138 0.1310 46.6 32

ML-CS 0.1092 0.3739 0.7319 0.3900 0.3384 23.3 25

CL 0.0299 0.6140 0.7062 0.6039 0.5636 21.1 25

Recreation

ML-knn 0.0595 0.7016 0.0862 0.2310 0.0804 112 22

MDDM 0.0612 0.6655 0.0725 0.1801 0.0671 41.9 22

ML-CS 0.2264 0.1794 0.5383 0.2228 0.1653 24.6 12

CL 0.2210 0.3125 0.6966 0.3721 0.2864 23.7 12

Reference

ML-knn 0.0274 0.6663 0.0699 0.4696 0.0638 136 33

MDDM 0.0290 0.6620 0.0676 0.4325 0.0598 51.6 33

ML-CS 0.1404 0.2610 0.6823 0.2484 0.2480 24.1 25

CL 0.0161 0.4892 0.6582 0.5252 0.4618 36.2 25

Science

ML-knn 0.0330 0.5999 0.0479 0.2056 0.0446 139 40

MDDM 0.0336 0.6603 0.0456 0.1986 0.0424 53 40

ML-CS 0.1851 0.1496 0.6130 0.1792 0.1405 45.8 30

CL 0.0957 0.2725 0.5939 0.3381 0.2521 59.1 30

Social

ML-knn 0.0219 0.7759 0.0718 0.5537 0.0675 175 39

MDDM 0.0238 0.6751 0.0577 0.5003 0.0535 70.8 39

ML-CS 0.1443 0.2215 0.7271 0.2386 0.2123 65.2 29

CL 0.0597 0.5642 0.7544 0.5913 0.5288 59.0 29

Society

ML-knn 0.0547 0.6258 0.0574 0.3422 0.0499 111 27

MDDM 0.0542 0.6077 0.0530 0.3136 0.0488 44.1 27

ML-CS 0.2130 0.2214 0.5983 0.2351 0.1975 49.9 19

CL 0.1429 0.3785 0.5924 0.4044 0.3191 43.2 19

Table 10.10: Prediction performances and time costs of ML-knn, MDDM, ML-CS

and CL on 11 sub datasets from Yahoo dataset.

285

In most experiments, CL outperforms the other 3 multi-label learning meth-

ods on most performance metrics. Since ML-knn is more robust to sample imbal-

ance than BR based on SVM, and ML-CS eliminates the sample imbalance via

random projections, sample balance problem are considered in these 3 methods.

Moreover, ML-knn explores the label correlation by its instance-based learning

scheme. Thus the 3 methods have better prediction performance than BR in

the first group of experiments. However, ML-knn and MDDM are vulnerable to

dataset with ultra sample imbalance, e.g., Bibtex, Corel5k and Mediamill, where

they have high precision and F1 score but near 0 recall and accuracy. ML-knn and

MDDM have similar performance on most datasets, but MDDM exceeds ML-knn

on datasets of high data dimensionality such as Bibtex and Enron. This indicates

the advantages of MDDM on high dimensional data when ML-knn is applied as

the classification model. ML-CS performs better than ML-knn and MDDM be-

cause of the independence among the dimensions of the label embedding brought

by random projection. The main reason that ML-CS does not outperform CL is

that ML-CS transforms the original discrete classification model to a continuous

linear regression model, which small estimation error may induce large error in

the label recovery. Although both the estimation error of linear regression model

and the recovery error of the compressed sensing algorithm can be theoretically

bounded, it is not clear how the linear regression estimation error as an input of

the recovery influences the final classification error. CL remains training discrete

classification model (of smaller size than the original one) on CL labels and thus

does not meet this problem. Another advantage of CL comparing with ML-CS

is that the label correlations are explicitly and directly explored via LDM, and

thus the prediction is improved.

The time cost of CL is less than those of ML-knn and MDDM in all the

experiments, especially on the large-scale datasets such as Bibtex, Corel5k and

Mediamill. ML-knn and MDDM fail on IMDB because we fail to train them in

105 CPU seconds. This is due to the expensive time complexity O(n2p) of the

pairwise distance calculation in ML-knn and MDDM. MDDM is more efficient

than ML-knn with a decreased p. The time costs of CL and ML-CS are close

to each other, and CL performs slightly faster than ML-CS on most datasets.

However, it is worthy to note that CL and ML-CS have different training time

286

and prediction time. In particular, the training of SVM in CL is slower than the

training of linear regression in ML-CS. But the prediction time of CL is much less

than that of ML-CS, because the recovery algorithm in CL is based on a simple

statistical test, while the recovery algorithm in ML-CS invokes time consuming

�1 minimization. In addition, CL can be substantially faster than ML-CS if we

replace LIBSVM with other efficient SVM solvers such as NESVM.

10.5.6 Multi-label prediction: comparison with 2 SVM

algorithms dealing with imbalanced data

In this group of experiments, we compare CL with 2 representative SVM exten-

sions dealing with the sample imbalance problem, i.e., SVM-SMOTE [45] and

SVM-WEIGHT [184]. The goal of these experiments is to 1) study whether the

sample balance obtained via random projection signs in CL works well as the

other methods which imposes over-sampling or larger weight to the minor class;

2) evaluate the performance improvement caused by exploring label correlation

in CL isolated from that caused by the sample balance. In the experiments of

SVM-SMOTE and SVM-WEIGHT, we replace the ordinary SVM in BR with

these two modified versions, respectively. SVM-SMOTE invokes SMOTE algo-

rithm to generate synthetic but pseudo samples for minor (positive) class and

then train SVM on an dataset with over-sampled positive samples and the origi-

nal negative ones. We let the positive sample has the same amount of the negative

ones after over-sampling. SVM-WEIGHT assigns a larger weight penalty to the

major class, which leads to a larger margin for the major class than that for the

minor class. We set the weights for the negative samples and the positive ones

in proportion to the ratio of their amounts. We show the experimental results in

Table 10.11.

Table 10.11 shows that CL outperforms SVM-SMOTE and SVM-WEIGHT

on both effectiveness and efficiency. Compared with the performance of BR using

the ordinary SVM in the first group of experiments, the 2 SVM algorithms are

designed to alleviate the harm brought by sample imbalance to SVM, and thus

outperform BR.

287

Methods HL Prec Rec F1 Acc Time Labels

Medical

SMOTE 0.9679 0.0129 0.3964 0.0253 0.0128 2.435 45

WEIGHT 0.3413 0.0388 0.3078 0.0548 0.0377 2.708 45

CL 0.0273 0.5904 0.8147 0.6565 0.5694 1.433 25

Emotions

SMOTE 0.2962 0.4600 0.57178 0.4562 0.3982 1.625 6

WEIGHT 0.2962 0.4547 0.5379 0.4426 0.3805 0.253 6

CL 0.3201 0.5208 0.6007 0.5353 0.4373 0.517 15

Scene

SMOTE 0.1128 0.5301 0.6182 0.5631 0.5261 23.42 6

WEIGHT 0.1128 0.5318 0.6207 0.4938 0.5269 9.244 6

CL 0.0780 0.6080 0.8023 0.6627 0.5887 16.50 15

Genbase

SMOTE 0.9885 0.0086 0.1264 0.0164 0.0082 2.098 32

WEIGHT 0.5736 0.0497 0.7089 0.0945 0.0488 0.964 32

CL 0.0101 0.9605 0.9728 0.9568 0.9441 0.321 20

Slashdot

SMOTE 0.9311 0.0270 0.4361 0.0516 0.0268 43.65 22

WEIGHT 0.3102 0.0797 0.4310 0.1366 0.0778 121.5 22

CL 0.0833 0.4269 0.6514 0.4913 0.4122 27.68 12

Arts

SMOTE 0.1200 0.3172 0.5360 0.3421 0.2696 115.4 26

WEIGHT 0.1195 0.3143 0.5300 0.3403 0.2674 54.54 26

CL 0.1836 0.3032 0.6452 0.3583 0.2693 29.72 22

Business

SMOTE 0.0448 0.6763 0.8006 0.6462 0.5958 86.36 30

WEIGHT 0.0458 0.6577 0.7171 0.6179 0.5535 38.99 30

CL 0.0287 0.8633 0.6797 0.7332 0.6797 21.98 25

Computers

SMOTE 0.0724 0.4435 0.5849 0.4161 0.3765 141.1 33

WEIGHT 0.0709 0.4505 0.5722 0.4154 0.3790 79.93 33

CL 0.0736 0.4846 0.6850 0.5196 0.4334 51.69 25

Education

SMOTE 0.0678 0.3341 0.5516 0.3529 0.2279 111.9 33

WEIGHT 0.0680 0.3327 0.5548 0.3531 0.2290 53.89 33

CL 0.1079 0.3123 0.6383 0.3749 0.2844 36.02 25

Entertain

SMOTE 0.0920 0.4587 0.5948 0.4437 0.4001 121.4 21

WEIGHT 0.0920 0.4566 0.5882 0.4415 0.3961 62.37 21

CL 0.1433 0.4028 0.6573 0.4500 0.3697 28.22 16

Health

SMOTE 0.0652 0.5637 0.6616 0.5417 0.4709 102.8 32

WEIGHT 0.0650 0.5605 0.6567 0.5409 0.4692 48.46 32

CL 0.0299 0.6140 0.7062 0.6039 0.5636 21.18 25

Recreation

SMOTE 0.109 0.3062 0.5339 0.3116 0.2773 121.5 22

WEIGHT 0.1081 0.3036 0.5295 0.3208 0.2843 59.22 22

CL 0.2210 0.3125 0.6966 0.3721 0.2864 23.71 12

Reference

SMOTE 0.0413 0.5096 0.5366 0.4595 0.4468 123.4 33

WEIGHT 0.0411 0.5091 0.5330 0.4583 0.4452 69.04 33

CL 0.0161 0.4892 0.6582 0.5252 0.4618 36.29 25

Science

SMOTE 0.0563 0.3584 0.4780 0.3604 0.3023 186.5 40

WEIGHT 0.0556 0.3622 0.4669 0.3579 0.3011 97.09 40

CL 0.0957 0.2725 0.5939 0.3381 0.2521 59.10 30

Social

SMOTE 0.0293 0.6698 0.6374 0.5739 0.5566 163.8 39

WEIGHT 0.0292 0.6689 0.6356 0.5732 0.5532 87.57 39

CL 0.0597 0.5642 0.7544 0.5913 0.5288 59.04 29

Society

SMOTE 0.1100 0.3272 0.5022 0.3240 0.2532 173.5 27

WEIGHT 0.1088 0.3306 0.5038 0.3263 0.2567 92.26 27

CL 0.1429 0.3785 0.5924 0.4044 0.3191 43.211 19

Table 10.11: Prediction performances and time costs of SVM-SMOTE, SVM-

WEIGHT and CL on 5 datasets.

288

The phenomenon of “high precision low recall” is rare in this group of exper-

iments (though still exists on Genbase and Slashdot), which indicates that the

sample balance is helpful for improving multi-label prediction. Different from

over-sampling and weighting in SVM-SMOTE and SVM-WEIGHT, CL elimi-

nates the sample balance via random projection signs. The experimental results

show this method works well as the other two. Compared with SVM-SMOTE

and SVM-WEIGHT, the improvement of prediction performance in CL is due

to the application of DLs that preserve label correlation. Therefore, the sample

balance and label correlation indeed help to improve the prediction in CL.

SVM-SMOTE adopts over-sampling technique and thus increases the time

complexity of the original SVM in BR by augmenting the training samples. SVM-

WEIGHT has similar time complexity of the original SVM in BR, but the chang-

ing of weight in major (negative) samples may influence the convergence of the

SVM training, and thus the time cost will be slightly different. CL decreases the

time complexity of BR by reducing the number of SVM models that need to be

trained, and thus has the smallest time cost among the 3 methods in this group

of experiments.

10.5.7 Compression-performance trade-off

In this group of experiments, we study the trade-off between the recovery error

due to label compression and the improvement brought by sample balance for

prediction performance in CL. In particular, we evaluate the time cost and the

5 performance metrics of CL without using DL on 10 different label compression

ratios between 0 and 1. The C parameter for each dataset is selected as the C with

the best performance on the same dataset in the first group of experiments. We

use NESVM [270] as the SVM solver. In order to isolate the improvement caused

by sample balance, we eliminate the influence of label correlation via replacing

DLs in CL with the dictionary D composed of unit vectors, i.e.,

D =
{
ei
}
i=1,··· ,k , e

i = [0, · · · , 0, 1, 0, · · · , 0], eii = 1. (10.89)

289

0.2 0.4 0.6 0.8

500

1000

1500

2000

2500

3000

3500

Label compression ratio (m/k)

T
im

e

0.2 0.4 0.6 0.8

0.04

0.06

0.08

0.1

0.12

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.2 0.4 0.6 0.8

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Label compression ratio (m/k)

P
re

ci
si

on

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Label compression ratio (m/k)

R
ec

al
l

0.2 0.4 0.6 0.8

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Label compression ratio (m/k)

F
1

sc
or

e

0.2 0.4 0.6 0.8

0.02

0.04

0.06

0.08

0.1

Label compression ratio (m/k)

A
cc

ur
ac

y

0 0.2 0.4 0.6 0.8

500

1000

1500

2000

2500

Label compression ratio (m/k)

Ti
m

e

0.2 0.4 0.6 0.8
0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.2 0.4 0.6 0.8

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Label compression ratio (m/k)

P
re

ci
si

on

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

Label compression ratio (m/k)

R
ec

al
l

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

Label compression ratio (m/k)

F
1

sc
or

e

0.2 0.4 0.6 0.8

0.02

0.04

0.06

0.08

0.1

0.12

Label compression ratio (m/k)

A
cc

ur
ac

y

0.2 0.4 0.6 0.8

500

1000

1500

2000

Label compression ratio (m/k)

T
im

e

0.2 0.4 0.6 0.8
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Label compression ratio (m/k)

H
am

m
in

g
 lo

ss

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

Label compression ratio (m/k)

P
re

c
is

io
n

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Label compression ratio (m/k)

R
ec

al
l

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Label compression ratio (m/k)

F
1

s
co

re

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

0.25

0.3

Label compression ratio (m/k)

A
cc

ur
a

cy

0.2 0.4 0.6 0.8

20

40

60

80

100

Label compression ratio (m/k)

T
im

e

0.2 0.4 0.6 0.8

0.08

0.1

0.12

0.14

0.16

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Label compression ratio (m/k)

P
re

ci
si

o
n

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Label compression ratio (m/k)

R
e

ca
ll

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Label compression ratio (m/k)

F
1

 s
co

re

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

0.25

0.3

Label compression ratio (m/k)

A
cc

ur
ac

y

0.2 0.4 0.6 0.8

5

10

15

20

25

30

35

Label compression ratio (m/k)

T
im

e

0.2 0.4 0.6 0.8
0.048

0.05

0.052

0.054

0.056

0.058

0.06

0.062

0.064

Label compression ratio (m/k)

H
am

m
in

g
lo

ss

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

0.25

0.3

Label compression ratio (m/k)

P
re

ci
si

on

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Label compression ratio (m/k)

R
ec

al
l

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Label compression ratio (m/k)

F
1

sc
or

e

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

0.25

Label compression ratio (m/k)

A
cc

ur
ac

y

Figure 10.9: Trade-off between label compression and 5 prediction performance

metrics, time costs on 5 datasets. From top to bottom: Bibtex, Corel5k, Medi-

amill, Enron and Medical.

In order to ensure that the least label compression ratio can generate more

290

than 2 CL labels, we choose the 5 datasets with the largest number of labels k

which is larger than 40 among the 21 datasets and show their trade-off curves in

Figure 10.9. There are some noises that make the curves not strictly monotonic.

These noises are generated by the randomness of CL labels. However, these noises

slightly affect the trends of the trade-off curves.

Among the 6 trade-off curves, the time cost linearly grows with the increasing

of the label compression ratio. This can be explained by that the increasing of

SVMmodels needs to be trained in CL with the increasing compression ratio. The

hamming loss does not affect the trend because it is unstable when the sample

imbalance is severe. In this case, a failed prediction that assigns all the test

samples to negative classes can produce an extremely small hamming loss. The

other 4 metrics, i.e., precision, recall, F1 score and accuracy, rapidly increase with

the increasing of the compression ratio. Moreover, they quickly reach satisfactory

performances when the compression ratio is fairly small (less than 0.4) on all the

5 datasets. These results indicate that the prediction performance of CL stably

and rapidly improves with the increasing of CL labels. Furthermore, CL reaches

satisfactory sample balance when the compression ratio is small. Thus CL finds

the equilibrium with both competitive efficiency and effectiveness.

Another interesting property shown on the trade-off curves is the improve-

ment brought by exploring the label correlation in CL. For example, the best

performance of CL on Bibtex in Figure 10.9 with compression ratio 1 and with-

out using of DLs is much less than the performance with compression ratio 0.5

shown in Table 10.9 where DLs is applied. This difference suggests that LDM

preserves label correlations in improving multi-label prediction performance.

10.6 Conclusion

In this chapter, we have proposed a label transformation method “compressed

labeling (CL)” for multi-label learning. In the training stage of CL, the original

label matrix is compressed to the sign matrix of its low-dimensional random

projections on a standard Gaussian ensemble. Existing binary classification is

then directly applicable to the labels in the new label matrix. In the prediction

stage of CL, the CL label vector of a given sample is initially estimated by using

291

the classifiers obtained in the training stage. Afterward, a fast recovery algorithm

is used to reconstruct the original label vector from the CL label vector.

We have developed a greedy binary matrix decomposition method, the “la-

belset distilling method (LDM)”, to extract the discrete patterns, i.e., distilled

labelsets (DLs) that are frequently shared by the label vectors in the original

label matrix. LDM recursively divides the label vectors in the label matrix into

several clusters, extracts the shared label subset of each cluster as a distilled la-

belset (DL), adds it to the DLs and subtracts it from the label vectors in the

corresponding cluster. We have discovered that the random projection signs of

an arbitrary DL and a given label vector have an explicit joint distribution in

two cases, i.e., the DL is included in the label vector, and the DL is not included

in the label vector. The computation of these two kinds of joint distributions is

accomplished by a geometric inference.

In the recovery algorithm of CL, the empirical estimation of the joint distribu-

tion is calculated from the predicted CL label vector and the random projection

signs of distilled labelsets. A series of statistical tests are conducted on the empir-

ical joint distributions of all the DLs to determine whether each DL is included in

the original label vector. This test is based on a comparison of the KL divergences

between the empirical joint distribution and the two explicit joint distributions

in two different cases.

CL solves or at least substantially alleviates the three main problems harass-

ing multi-label learning, which are the problem of sample imbalance, the problem

of label dependence and the problem of label high dimensionality. CL is a general

method that allows direct embedding of most existing multi-label and single-label

learning techniques in its training stage, their advantages will be inherited in their

CL variants for multi-label learning. Since CL significantly reduces the problem

size by label compression and compressed CL labels can be efficiently recovered,

it provides an efficient solver for large-scale multi-label learning tasks. In CL, the

label dependence information is stored in DLs after compression and used in the

recovery algorithm. LDM is also an isolated method that can be used in other

multi-label learning methods to exploit the label dependence. To our best knowl-

edge, CL is the first multi-label learning method with model complexity much

less than that of BR, while the label correlations are simultaneously explored.

292

Theoretically, we have proved that the probabilistic upper bounds of recovery

failures exponentially shrink with increasing either the dimensionality of the CL

label vector or the cardinality of DL. These analyses demonstrate the effectiveness

of label compression and prediction improvement brought by LDM. In the near

future, we will theoretically study how the error (or regret) of the learned binary

classifiers for the subproblems is transformed into the error (or regret) of the final

classifier for the multi-label problem.

We have evaluated the performance of CL in label compression/recovery and

multi-label prediction via 5 groups of experiments on 21 datasets from differ-

ent real-world problems. In the experiments, we have compared CL with BR, 3

multi-label learning methods (ML-knn, MDDM and ML-CS) and 2 SVM algo-

rithms dealing with imbalanced data on 5 prediction performance metrics and

time cost. We also have studied the trade-off between compression and per-

formance improvement in CL without using DLs. The experimental results of

label compression/recovery have verified our theoretical analyses about the im-

provement of the sample balance, elimination of label independence and accurate

recovery brought by CL. The five groups of multi-label prediction experiments

demonstrate the competitive prediction performance, efficiency and robustness of

CL in multi-label learning.

293

Chapter 11

Conclusions

This era is highly featured by an avalanche of massive data collected from the

rapidly expanding Internet, increasing consumer digital products and sensors.

Data become much cheaper and easier to obtain than ever before. At the first

glance, the big data provide affluent resources for machine learning technique to

train and create more intelligent systems. But the brutal truth is that the sheer

volume and high dimensions of big data make various machine learning algo-

rithms computationally prohibitive. What is worse, the underlying complicated

structures, contaminating noise, missing values, unexpected outliers and vary-

ing individuality across data instances easily lead to the failure of the ideal and

inflexible data assumptions in lots of machine learning methods, which may be

effective on well designed or carefully processed data. Furthermore, the stability,

accuracy and other good statistical properties of many sophisticatedly designed

approaches no longer hold in the case of big data. Therefore, new challenges arise

in machine learning due to those changes of their research objects.

The data structure played a vital role in the development of previous machine

learning techniques. Two influential examples are low-rank structure existing in

multiple data samples, and sparse structure representing a data sample by its

spiky spectrum. These two structures have been also broadly studied in signal

processing and information theory. They show the exploration of data redun-

dancy in machine learning, which aims at bridging the extracted structures with

the objectives of learning tasks.

In this thesis, we propose the concept of “compressed learning”, which lever-

294

ages the possibly compressible structures in both data and learning procedures to

not only produce effective learning methods on big data, but also design scalable

algorithms fast in speed. In particular, beyond low-rank and sparse structures, we

develop more interpretable and effective structures for feature extraction which

not only compresses data on dimension but also on cardinality (manifold elastic

net (MEN) in Chapter 2 and double shrinking (DS) in Chapter 3 encouraging

sparse features in low dimensions), more expressive and general structures re-

vealing both the relations and differences across data samples by decomposing

data as sum mixture of low-rank and sparse parts (GO decomposition (GoDec)

in Chapter 6 and greedy bilateral (GreB) paradigm in Chapter 7), and their more

complicated but more adaptive variants considering the nonlinear transformation,

linear functional and subcomponents of low-rank part (shifted subspace tracking

(SST), multi-label subspace ensemble (MSE) and linear functional GoDec (Lin-

GoDec) in Chapter 9).

Moreover, we study how to extract the compressible structures in noisy case

(BRP and GreBske in Chapter 5, GoDec in Chapter 6, GreB in Chapter 7) and

missing value case (GoDec and greedy bilateral completion (GreBcom) for matrix

completion in Chapter 8), which are common in big data but difficult for conven-

tional machine learning methods. Furthermore, we develop randomized low-rank

approximation with closed form (bilateral random projections (BRP) in Chap-

ter 5, GoDec in Chapter 6 and Chapter 8, SST and MSE in Chapter 9), greedy

strategy (GreBske in Chapter 5, GreB and GreBsmo in Chapter 7, GreBcom

in Chapter 8), and divide-and-conquer method (divide-and-conquer anchoring

(DCA) in Chapter 4) that can produce scalable and distributable algorithms for

practical applications on the sheer volume of data.

Furthermore, rather than merely compressing data features, we show different

novel insights of compressed learning, e.g., the compression of dataset by selecting

representative samples even from highly incomplete data (DCA for near-separable

NMF in Chapter 4), the compression of responses and classifiers to learn when

solving related multiple supervised learning tasks (compressed labeling (CL) in

Chapter 10), and the compression of relatedness among discrete variables by

inverse mapping from label space to feature subspaces (MSE in Chapter 9).

Compressed learning offers new methodology for solving learning problems

295

from conventional clustering, classification and dimensional reduction to multi-

label learning, sparse learning, manifold learning, motion segmentation, recom-

mendation, and relational learning, especially when dealing with big data. The

compressed learning approaches presented in this thesis successfully address the

challenging practical problems from computer vision (detection, tracking, motion

analysis), recommendation systems, image and web text annotation, face recog-

nition, handwritten letter clustering, complex data visualization, and compressed

sensing.

However, it is important to point out that the techniques we proposed in this

thesis are not adequate to solve all the problems related to compressed learning.

For example, the low-rank assumption plays a critical role in most techniques and

indicates the existence of low-rank linear representation of all the data points.

But it is more interesting to explore more complicated nonlinear structures in

many other real applications like we show in SST for motion segmentation. In

addition, the sparse structure could be more complex on real data. So structured

sparsity such group sparsity, total variation and fused lasso penalty might be

more effective when solving specific problems. Moreover, it is possible to relate

the matrix factorization/completion tools proposed in this thesis to graphical

model learning problems, in which the compressible structures might be able to

produce more efficient algorithms. Furthermore, since all the proposed methods

are featured by their competitive computational speed and small time cost, it

is significant to study the online learning versions of some proposed approaches,

and the practical implementation of these techniques in real systems. Last but

not the least, besides applying compression to features, samples and outputs in

learning problems, other compressible components also need to be studied and

explore.

We believe that compressed learning, as a novel learning methodology empha-

sizing the exploration of compressible structures in developing machine learning

and also a nontrivial extension rooted from classic machine learning techniques,

will receive growing attention and encourage influential research results in the

future, due to its promising effectiveness, adaptivity, robustness, scalability and

easy implementation on big data analytics problems.

296

References

[1] M. Aharon, M. Elad, and A. Bruckstein. “K-SVD: An Algorithm for De-

signing Overcomplete Dictionaries for Sparse Representation”. In: IEEE

Transactions on Signal Processing 54.11 (2006), pp. 4311–4322. (Cit. on

pp. 6, 81, 183).

[2] N. Ailon and B. Chazelle. “Approximate nearest neighbors and the fast

Johnson-Lindenstrauss transform”. In: STOC ’06: The 28th annual ACM

symposium on Theory of computing. 2006, pp. 557–563. (Cit. on p. 185).

[3] S. Ali and M. Shah. “A Lagrangian Particle Dynamics Approach for Crowd

Flow Segmentation and Stability Analysis”. In: IEEE Conference on Com-

puter Vision and Pattern Recognition. 2007. (Cit. on pp. 186, 188).

[4] A. Alizadeh et al. “Distinct types of diffuse large b-cell lymphoma iden-

tified by gene expression profiling”. In: Nature 403 (2000), pp. 503–511.

(Cit. on pp. 85, 96).

[5] U. Alon et al. “Broad patterns of gene expression revealed by cluster-

ing analysis of tumor and normal colon tissues probed by oligonucleotide

arrays”. In: Cell Biology 96 (1999), pp. 6745–6750. (Cit. on pp. 85, 96).

297

REFERENCES

[6] R. Ando and T. Zhang. “A framework for learning predictive structures

from multiple tasks and unlabeled data”. In: Journal of Machine Learning

Research 6 (2005), pp. 1817–1853. (Cit. on p. 6).

[7] A. Argyriou, T. Evgeniou, and M. Pontil. “Multi-task feature learning”.

In: NIPS. 2007. (Cit. on p. 6).

[8] E. Arias-Castro, D. L. Donoho, and X. Huo. “Near-optimal detection of

geometric objects by fast multiscale methods”. In: IEEE Transactions on

Information Theory 51.7 (2005), pp. 2402–2425. (Cit. on p. 54).

[9] S. Arora et al. “Computing a nonnegative matrix factorization - provably”.

In: Proceedings of the 44th Symposium on Theory of Computing (STOC).

2012. (Cit. on pp. 106, 118).

[10] A. Asuncion and D. Newman. “UCI Machine Learning Repository”. In:

Available: http://www.ics.uci.edu/∼mlearn/MLRepository.html (2007).

(Cit. on pp. 85, 90).

[11] G. D. B. and A. N. M. “Characterizing Virtual Eigensignatures for General

Purpose Face Recognition”. In: Face Recognition: From Theory to Appli-

cations, NATO ASI series F, Computer and System Science 163 (1936),

pp. 446–456. (Cit. on pp. 38, 85, 86).

[12] L. Balzano, R. Nowak, and B. Recht. “Online Identification and

Tracking of Subspaces from Highly Incomplete Information”. In:

arXiv:1006.4046v1 (2010). (Cit. on pp. 9, 175).

298

REFERENCES

[13] P. N. Belhumeur, J. a. P. Hespanha, and D. J. Kriegman. Eigenfaces vs.

Fisherfaces: Recognition Using Class Specific Linear Projection. 1997. (Cit.

on p. 38).

[14] P. N. Belhumeur, J. a. P. Hespanha, and D. J. Kriegman. “Eigenfaces vs.

Fisherfaces: Recognition Using Class Specific Linear Projection”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 12.7 (1997),

pp. 711–720. (Cit. on pp. 85, 86).

[15] M. Belkin and P. Niyogi. “Laplacian Eigenmaps and Spectral Techniques

for Embedding and Clustering”. In: Advances in Neural Information Pro-

cessing Systems 14. Vol. 14. 2001, pp. 585–591. (Cit. on pp. 4, 55).

[16] M. Belkin, P. Niyogi, and V. Sindhwani. “Manifold Regularization: A Ge-

ometric Framework for Learning from Labeled and Unlabeled Examples”.

In: Journal of Machine Learning Research 7 (2006), pp. 2399–2434. (Cit.

on p. 5).

[17] Y. Bengio et al. “Out-of-sample extensions for lle, isomap, mds, eigenmaps,

and spectral clustering”. In: Advances in Neural Information Processing

Systems 16 (NIPS ’03). Vol. 16. 2004, pp. 177–184. (Cit. on pp. 55, 87).

[18] W. Bian and D. Tao. “Harmonic mean for subspace selection”. In: IEEE

ICPR. 2008, pp. 1–4. (Cit. on p. 4).

[19] W. Bian and D. Tao. “Max-Min Distance Analysis by Using Sequential

SDP Relaxation for Dimension Reduction”. In: IEEE Transactions on Pat-

tern Analysis and Machine Intelligence 33.5 (2011), pp. 1037–1050. (Cit.

on p. 221).

299

REFERENCES

[20] N. C. Bianchi, C. Gentile, and L. Zaniboni. “Incremental Algorithms for

Hierarchical Classification”. In: Journal of Machine Learning Research 7

(2006), pp. 31–54. (Cit. on pp. 187, 201, 219, 220, 257).

[21] C. M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York,

Inc., 2006. (Cit. on p. 1).

[22] C. M. Bishop and C. K. I. Williams. “GTM: The generative topographic

mapping”. In: Neural Computation 10 (1998), pp. 215–234. (Cit. on p. 4).

[23] V. Bittorf et al. “Factoring nonnegative matrices with linear programs”. In:

Advances in Neural Information Processing Systems (NIPS). 2012. (Cit.

on pp. xviii, 106, 118, 120).

[24] J. Bobin, S. Becker, and E. Candès. “NESTA: A Fast and Accurate First-

order Method for Sparse Recovery”. In: technical report (2009). (Cit. on

p. 57).

[25] J. Bobin et al. “Morphological Component Analysis: An Adaptive Thresh-

olding Strategy”. In: IEEE Transactions on Image Processing 16.11

(2007), pp. 2675–2681. (Cit. on p. 184).

[26] M. R. Boutell et al. “Learning multi-label scene classification”. In: Pattern

Recognition 37.9 (2004), pp. 1757–1771. (Cit. on p. 265).

[27] C. Boutsidis, M. W. Mahoney, and P. Drineas. “An improved approxima-

tion algorithm for the column subset selection problem”. In: SODA. 2009,

pp. 968–977. (Cit. on pp. 4, 142).

300

REFERENCES

[28] S. Boyd and L. Vandenberghe. Convex Optimization. New York, NY, USA:

Cambridge University Press, 2004. (Cit. on p. 59).

[29] K. Bredies and D. A. Lorenz. “Iterated Hard Shrinkage for Minimiza-

tion Problems with Sparsity Constraints”. In: SIAM Journal on Scientific

Computing 30.2 (2008), pp. 657–683. (Cit. on pp. 57, 149).

[30] L. Breiman and J. H. Friedman. “Predicting multivariate responses in

multiple linear regression (with discussion)”. In: The Journal of the Royal

Statistical Society Series B 54 (1997), pp. 5–54. (Cit. on pp. 202, 221).

[31] D. Cai et al. “Non-negative Matrix Factorization on Manifold”. In: IEEE

International Conference on Data Mining (ICDM). 2008. (Cit. on p. 103).

[32] D. Cai, X. He, and J. Han. “Document Clustering Using Locality Preserv-

ing Indexing”. In: IEEE Transactions on Knowledge and Data Engineering

17.12 (2005), pp. 1624–1637. (Cit. on p. 90).

[33] D. Cai, X. He, and J. Han. “Spectral Regression for Efficient Regularized

Subspace Learning”. In: Computer Vision, 2007. ICCV 2007. IEEE 11th

International Conference on. 2007, pp. 1–8. (Cit. on p. 18).

[34] D. Cai, X. He, and J. Han. “SRDA: An Efficient Algorithm for Large-Scale

Discriminant Analysis”. In: IEEE Transactions on Knowledge and Date

Engineering 20.1 (2008), pp. 1–12. (Cit. on p. 18).

[35] J. Cai, E. J. Candès, and Z. Shen. “A Singular Value Thresholding Al-

gorithm for Matrix Completion”. In: SIAM Journal on Optimization 20.4

(2010), pp. 1956–1982. (Cit. on pp. xxiii, 8, 173, 176).

301

REFERENCES

[36] E. J. Candès and T. Tao. “The Power of Convex Relaxation: Near-Optimal

Matrix Completion”. In: IEEE Transactions on Information Theory 56.5

(2009), pp. 2053–2080. (Cit. on pp. 8, 107, 173, 175, 183).

[37] E. J. Candès et al. “Robust Principal Component Analysis?” In: Journal

of the ACM (submitted) (2009). (Cit. on pp. 7, 149, 161, 164–166, 168,

183, 184, 189, 214).

[38] E. Candès and T. Tao. “The Dantzig selector: statistical estimation when

p is much larger than n”. In: Annals of Statistics 35 (2005), pp. 2392–2404.

(Cit. on p. 6).

[39] E. J. Candès and B. Recht. “Exact Matrix Completion via Convex Op-

timization”. In: Foundations of Computational Mathematics 9 (2008),

pp. 717–772. (Cit. on pp. 8, 107, 122, 164, 173, 183).

[40] E. J. Candès, J. K. Romberg, and T. Tao. “Robust uncertainty prin-

ciples: exact signal reconstruction from highly incomplete frequency in-

formation”. In: IEEE Transactions on Information Theory 52.2 (2006),

pp. 489–509. (Cit. on pp. 6, 54, 226, 257).

[41] E. J. Candès and T. Tao. “Near-Optimal Signal Recovery From Random

Projections: Universal Encoding Strategies?” In: IEEE Transactions on

Information Theory 52.12 (2006), pp. 5406–5425. (Cit. on pp. 3, 75, 164,

183).

[42] E. J. Candès, M. B. Walkin, and S. Boyd. “Enhancing Sparsity by

Reweighted L1 Minimization”. In: special issue on sparsity, Journal of

Fourier Analysis and Applications 14.5 (2008), pp. 877–905. (Cit. on

pp. 52, 75, 76).

302

REFERENCES

[43] V. Chandrasekaran et al. “Rank-Sparsity Incoherence for Matrix Decom-

position”. In: arXiv:0906.2220 (2009). (Cit. on pp. 7, 150, 165, 166,

183).

[44] C.-C. Chang and C.-J. Lin. “LIBSVM: a library for

support vector machines”. In: Software available at

http://www.csie.ntu.edu.tw/ cjlin/libsvm (2001). (Cit. on

p. 273).

[45] N. V. Chawla et al. “SMOTE: Synthetic Minority Over-sampling Tech-

nique”. In: Journal of Artificial Intelligence Research 16 (2002), pp. 321–

357. (Cit. on pp. 263, 287).

[46] J. Chen, J. Liu, and J. Ye. “Learning Incoherent Sparse and Low-Rank

Patterns from Multiple Tasks”. In: SIGKDD. 2010. (Cit. on pp. 8, 166,

183, 202, 222).

[47] S. S. Chen, D. L. Donoho, and M. A. Saunders. “Atomic Decomposition

by Basis Pursuit”. In: SIAM Journal on Scientific Computing 20.1 (1999),

pp. 33–61. (Cit. on p. 56).

[48] L. Cheng et al. “Real-time discriminative background subtraction”. In: to

appear in IEEE Trans on Image Processing (2010). (Cit. on p. 160).

[49] W. Cheng and E. Hüllermeier. “Combining instance-based learning and

logistic regression for multilabel classification”. In:Machine Learning 76.2-

3 (2009), pp. 211–225. (Cit. on pp. 187, 221).

303

REFERENCES

[50] A. Cichocki et al. Non-negative Matrix and Tensor Factorizations: Appli-

cations to Exploratory Multi-way Data Analysis and Blind Source Separa-

tion. Wiley, 2009. (Cit. on pp. 103, 105).

[51] A. Clare and R. D. King. “Knowledge Discovery in Multi-label Pheno-

type Data”. In: PKDD ’01: Proceedings of the 5th European Conference

on Principles of Data Mining and Knowledge Discovery. London, UK:

Springer-Verlag, 2001, pp. 42–53. (Cit. on p. 222).

[52] K. L. Clarkson. “Tighter bounds for random projections of manifolds”.

In: SCG ’08: Proceedings of the 24 annual symposium on Computational

geometry. 2008, pp. 39–48. (Cit. on p. 226).

[53] K. L. Clarkson and D. P. Woodruff. “Numerical linear algebra in the

streaming model”. In: Proceedings of the 41st annual ACM symposium

on Theory of computing. 2009. (Cit. on pp. 4, 127, 142, 185).

[54] D. Comaniciu, V. Ramesh, and P. Meer. “Kernel-Based Object Tracking”.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence 25.5

(2003), pp. 564–575. (Cit. on p. 189).

[55] P. Comon. “Independent component analysis, a new concept?” In: Signal

Processing 36.3 (1994), pp. 287–314. (Cit. on p. 184).

[56] K. Crammer and Y. Singer. “A family of additive online algorithms for

category ranking”. In: Journal of Machine Learning Research. 3 (2003),

pp. 1025–1058. issn: 1532-4435. (Cit. on p. 222).

304

REFERENCES

[57] S. Dasgupta. “Experiments with Random Projection”. In: UAI ’00: Pro-

ceedings of the 16th Conference on Uncertainty in Artificial Intelligence.

San Francisco, CA, USA, 2000, pp. 143–151. (Cit. on p. 226).

[58] S. Dasgupta and Y. Freund. “Random projection trees and low dimen-

sional manifolds”. In: STOC ’08: Proceedings of the 40th annual ACM

symposium on Theory of computing. 2008, pp. 537–546. (Cit. on p. 226).

[59] A. d’Aspremont, F. Bach, and L. E. Ghaoui. “Optimal Solutions for Sparse

Principal Component Analysis”. In: Journal of Machine Learning Research

9 (2008), pp. 1269–1294. issn: 1532-4435. (Cit. on pp. 58, 80, 81, 85, 91).

[60] A. d’Aspremont et al. “A Direct Formulation for Sparse PCA Using

Semidefinite Programming”. In: SIAM Review 49.3 (2007), pp. 434–448.

(Cit. on pp. 18, 58, 80, 91).

[61] I. Daubechies, M. Defrise, and C. D. Mol. “An iterative thresholding algo-

rithm for linear inverse problems with a sparsity constraint”. In: Commu-

nications on Pure and Applied Mathematics 57.11 (2004), pp. 1413–1457.

(Cit. on p. 57).

[62] J. Dean and S. Ghemawat. “MapReduce: simplified data processing on

large clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–

113. (Cit. on p. 108).

[63] K Dembczyński, W. Cheng, and E. Hüllermeier. “Bayes Optimal Multi-

label Classification via Probabilistic Classifier Chains”. In: The 27th In-

ternational Conference on Machine Learning (ICML 2010). 2010. (Cit. on

p. 222).

305

REFERENCES

[64] K. Dembczyński et al. “On Label Dependence in Multi-Label Classifica-

tion”. In: ICML 2010 Workshop on Learning from Multi-label data (MLD

10). 2010, pp. 5–13. (Cit. on p. 218).

[65] A. Deshpande and S. Vempala. “Adaptive sampling and fast low-rank ma-

trix approximation”. In: RANDOM ’06: The 10th International Workshop

on Randomization and Computation. 2006, pp. 292–303. (Cit. on p. 126).

[66] T. G. Dietterich and G. Bakiri. “Solving multiclass learning problems via

error-correcting output codes”. In: Journal of Artificial Intelligence Re-

search 2 (1995), pp. 263–282. (Cit. on p. 259).

[67] C. H. Q. Ding, T. Li, and M. I. Jordan. “Convex and Semi-Nonnegative

Matrix Factorizations”. In: IEEE Transactions on Pattern Analysis and

Machine Intelligence 32.1 (2008), pp. 45–55. (Cit. on p. 103).

[68] C. Ding and T. Li. “Adaptive dimension reduction using discriminant

analysis and K-means clustering”. In: ICML ’07: Proceedings of the 24th

international conference on Machine learning. Corvalis, Oregon: ACM,

2007, pp. 521–528. (Cit. on p. 17).

[69] S. Diplaris et al. “Protein Classification with Multiple Algorithms”. In:

Proceedings of the 10th Panhellenic Conference on Informatics (PCI

2005). 2005, pp. 448–456. (Cit. on p. 265).

[70] D. Donoho and V. Stodden. “When does non-negative matrix factorization

give a correct decomposition into parts?” In: Advances in Neural Infor-

mation Processing Systems (NIPS). 2003. (Cit. on p. 104).

306

REFERENCES

[71] D. L. Donoho. “Compressed sensing”. In: IEEE Transactions on Informa-

tion Theory 52.4 (2006), pp. 1289–1306. (Cit. on pp. 3, 6, 9, 54, 149, 164,

183, 222, 257).

[72] D. L. Donoho and C. Grimes. “Hessian eigenmaps: Locally linear em-

bedding techniques for high-dimensional data”. In: PNAS 100.10 (2003),

pp. 5591–5596. (Cit. on pp. 4, 55).

[73] D. L. Donoho, A. Maleki, and A. Montanari. “Message Passing Algorithms

for Compressed Sensing”. In: Proceedings of the National Academy of Sci-

ences (2009). (Cit. on p. 57).

[74] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods

in Practice. New York: Springer-Verlag, 2001. (Cit. on p. 189).

[75] P. Drineas, R. Kannan, and M. W. Mahoney. “Fast Monte Carlo Algo-

rithms for Matrices III: Computing a Compressed Approximate Matrix

Decomposition”. In: SIAM Journal on Computing 36.1 (2006), pp. 184–

206. (Cit. on pp. 4, 106, 123, 142).

[76] P. Duygulu et al. “Object Recognition as Machine Translation: Learning

a Lexicon for a Fixed Image Vocabulary”. In: ECCV ’02: Proceedings of

the 7th European Conference on Computer Vision-Part IV. London, UK:

Springer-Verlag, 2002, pp. 97–112. isbn: 3-540-43748-7. (Cit. on p. 265).

[77] B. Efron et al. “Least angle Regression”. In: Annals of Statistics 32.2

(2004), pp. 407–499. (Cit. on pp. 6, 16, 18, 80, 283).

307

REFERENCES

[78] E. Elhamifar and R. Vidal. “Sparse subspace clustering”. In: IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR). 2009. (Cit.

on p. 106).

[79] S. Escalera, O. Pujol, and P. Radeva. “On the Decoding Process in Ternary

Error-Correcting Output Codes”. In: IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence 32.1 (2010). (Cit. on p. 259).

[80] E. Esser et al. “A Convex Model for Nonnegative Matrix Factorization

and Dimensionality Reduction on Physical Space”. In: IEEE Transactions

on Image Processing 21.7 (2012), pp. 3239–3252. (Cit. on p. 103).

[81] T. Evgeniou and M. Pontil. “Regularized multi–task learning”. In: KDD

2004. 2004, pp. 109–117. (Cit. on p. 221).

[82] J. Fan and Y. Fan. “High dimensional classification using features annealed

independence rules”. In: The Annals of Statistics 36 (2008), pp. 2605–2637.

(Cit. on p. 54).

[83] J. Fan and J. Lv. “A selective overview of variable selection in high dimen-

sional feature space (Editor’s invited paper)”. In: invited review article 20

(2010), pp. 101–148. (Cit. on p. 58).

[84] J. Fan and J. Lv. “Sure independence screening for ultrahigh dimensional

feature space”. In: Journal Of The Royal Statistical Society Series B 70.5

(2008), pp. 849–911. (Cit. on p. 6).

[85] M. Fazel et al. “Compressed sensing and robust recovery of low rank matri-

ces”. In: 42nd Asilomar Conference on Signals, Systems and Computers.

2008. (Cit. on pp. 127, 143).

308

REFERENCES

[86] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. “Gradient projection

for sparse reconstruction: Application to compressed sensing and other in-

verse problems”. In: IEEE Journal of Selected Topics in Signal Processing

1.4 (2007), pp. 586–597. (Cit. on p. 57).

[87] R. A. Fisher. “The use of multiple measurements in taxonomic problems”.

In: Annals of Eugenics 7.2 (1936), pp. 179–188. (Cit. on pp. 4, 54, 86,

183).

[88] M. Fornasier, H. Rauhut, and R. Ward. “Low-rank Matrix Recovery via

Iteratively Reweighted Least Squares Minimization”. In: SIAM Journal

on Optimization 21.4 (2011), pp. 1614–1640. (Cit. on p. 164).

[89] R. Foygel and N. Srebro. “Concentration-Based Guarantees for Low-Rank

Matrix Reconstruction”. In: COLT. 2011. (Cit. on pp. 8, 174).

[90] K. Fragkiadaki and J. Shi. “Detection free tracking: Exploiting motion

and topology for segmenting and tracking under entanglement”. In: IEEE

Conference on Computer Vision and Pattern Recognition. 2011, pp. 2073–

2080. (Cit. on pp. 186, 188).

[91] J. Fürnkranz et al. “Multilabel classification via calibrated label ranking”.

In: Machine Learning 73.2 (2008), pp. 133–153. issn: 0885-6125. (Cit. on

p. 220).

[92] C. Fyfe. “Two topographic maps for data visualisation”. In: Data Minining

and Knowledge Discovery 14.2 (2007), pp. 207–224. (Cit. on p. 4).

[93] F. Galasso, R. Cipolla, and B. Schiele. “Video Segmentation with Super-

pixels”. In: Asian Conference on Computer Vision. 2012. (Cit. on p. 188).

309

REFERENCES

[94] Y. Ge et al. “Collaborative Filtering with Collective Training”. In: ACM

International Conference on Recommender Systems. 2011. (Cit. on p. 105).

[95] N. Ghamrawi and A. McCallum. “Collective multi-label classification”. In:

CIKM ’05: Proceedings of the 14th ACM international conference on In-

formation and knowledge management. Bremen, Germany, 2005, pp. 195–

200. (Cit. on p. 221).

[96] N. Gillis and R. Luce. “Robust Near-Separable Nonnegative Matrix Fac-

torization Using Linear Optimization”. In: arXiv:1302.4385. 2013. (Cit. on

p. 106).

[97] N. Gillis and S. Vavasis. “Fast and robust recursive algorithms for separa-

ble nonnegative matrix factorization”. In: arXiv:1208.1237. 2012. (Cit. on

pp. xvii, 107, 119).

[98] M. X. Goemans and D. P. Williamson. “Improved approximation algo-

rithms for maximum cut and satisfiability problems using semidefinite

programming”. In: Journal of the ACM 42.6 (1995), pp. 1115–1145. (Cit.

on pp. 229, 233).

[99] G. H. Golub and C. F. Van Loan.Matrix computations (3rd ed.) Baltimore,

MD, USA: Johns Hopkins University Press, 1996. (Cit. on pp. 32, 75).

[100] J. Gomez, E. Boiy, and M.-F. Moens. “Highly discriminative statistical

features for email classification”. In: Knowledge and Information Systems

(2011), pp. 1–31. (Cit. on p. 219).

310

REFERENCES

[101] A. Gretton et al. “Measuring statistical dependence with Hilbert-Schmidt

norms”. In: Proceedings Algorithmic Learning Theory. Springer-Verlag,

2005, pp. 63–77. (Cit. on p. 221).

[102] M. Gu and S. C. Eisenstat. “Efficient algorithms for computing a strong

rank-revealing QR factorization”. In: SIAM Journal on Scientific Com-

puting 17.4 (1996), pp. 848–869. (Cit. on p. 106).

[103] N. Guan et al. “MahNMF: Manhattan Non-negative Matrix Factoriza-

tion”. In: CoRR abs/1207.3438 (2012). (Cit. on p. 103).

[104] N. Guan et al. “NeNMF: An Optimal Gradient Method for Nonnegative

Matrix Factorization”. In: IEEE Transactions on Signal Processing 60.6

(2012), pp. 2882–2898. (Cit. on p. 103).

[105] N. Guan et al. “Non-Negative Patch Alignment Framework”. In: IEEE

Transactions on Neural Networks 22.8 (2011), pp. 1218–1230. (Cit. on

p. 263).

[106] A. Gupta, R. Nowak, and B. Recht. “Sample Complexity for 1-bit Com-

pressed Sensing and Sparse Classification”. In: Proceedings of the IEEE

International Symposium on Information Theory (ISIT). 2010. (Cit. on

p. 258).

[107] E. T. Hale, W. Yin, and Y. Zhang. “Fixed-Point Continuation for �1-

Minimization: Methodology and Convergence”. In: SIAM Journal on Op-

timization 19.3 (2008), pp. 1107–1130. issn: 1052-6234. (Cit. on p. 57).

[108] N. Halko, P. G. Martinsson, and J. A. Tropp. “Finding structure with

randomness: Stochastic algorithms for constructing approximate matrix

311

REFERENCES

decompositions”. In: arXiv: 0909.4061 (2009). (Cit. on pp. 4, 126, 127,

132, 134, 135, 138, 142, 144, 146, 149, 164, 168, 178, 185, 226, 233).

[109] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, Second Edition. 2nd

ed. 2009. Corr. 3rd printing. Springer Series in Statistics. Springer, 2009.

(Cit. on pp. 1, 3, 17, 86, 89, 222).

[110] X. He and P. Niyogi. “Locality Preserving Projections”. In: In Advances

in Neural Information Processing Systems 16. MIT Press, 2003. (Cit. on

p. 5).

[111] X. He et al. “Face Recognition Using Laplacianfaces”. In: IEEE Trans.

Pattern Anal. Mach. Intell. 27.3 (2005), pp. 328–340. (Cit. on p. 43).

[112] X. He et al. “Neighborhood preserving embedding”. In: Proceedings

of IEEE International Conference on Computer Vision. Vol. 2. 2005,

pp. 1208–1213. (Cit. on pp. 5, 55, 86).

[113] R. Hess and A. Fern. “Discriminatively trained particle filters for com-

plex multi-object tracking”. In: IEEE Conference on Computer Vision

and Pattern Recognition. 2009. (Cit. on pp. 186, 189).

[114] T. Hofmann. “Probabilistic latent semantic indexing”. In: Proceedings of

the 22nd Annual International SIGIR Conference on Research and Devel-

opment in Information Retrieval (SIGIR). 1999. (Cit. on p. 105).

[115] S. C. H. Hoi et al. “Batch mode active learning and its application to

medical image classification”. In: ICML. 2006, pp. 417–424. (Cit. on p. 1).

312

REFERENCES

[116] S. C. H. Hoi et al. “FANS: face annotation by searching large-scale web

facial images”. In: WWW. 2013, pp. 317–320. (Cit. on p. 17).

[117] S. C. H. Hoi et al. “Online Multiple Kernel Classification”. In: Machine

Learning 90.2 (2013), pp. 289–316. (Cit. on p. 14).

[118] Z. Hong, X. Mei, and D. Tao. “Dual-Force Metric Learning for Robust

Distracter-Resistant Tracker”. In: European Conference on Computer Vi-

sion. 2012. (Cit. on p. 189).

[119] H Hotelling. “Analysis of A Complex of Statistical Variables into Principal

Components”. In: Journal of Educational Phychology 24 (1936), pp. 417–

441. (Cit. on pp. 4, 54, 56, 86, 107, 123, 183).

[120] C. J. Hsieh and I. S. Dhillon. “Fast coordinate descent methods with

variable selection for nonnegative matrix factorization”. In: Proceedings of

the 17th ACM SIGKDD international conference on Knowledge discovery

and data mining (KDD). 2011. (Cit. on p. 103).

[121] D. Hsu, S. Kakade, and T. Zhang. “Robust Matrix Decomposition

with Sparse Corruptions”. In: IEEE Transactions on Information Theory

(2011). (Cit. on pp. 183, 185, 189).

[122] D. Hsu et al. “Multi-Label Prediction via Compressed Sensing”. In: Ad-

vances in Neural Information Processing Systems 23. 2009. (Cit. on pp. 9,

200, 202, 222, 240, 257, 262, 263, 283).

[123] H. Huang and C. Ding. “Robust tensor factorization using R1 norm”.

In: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE

Conference on. 2008, pp. 1–8. (Cit. on p. 6).

313

REFERENCES

[124] J. Huang, T. Zhang, and D. Metaxas. “Learning with structured sparsity”.

In: ICML ’09: Proceedings of the 26th Annual International Conference on

Machine Learning. Montreal, Quebec, Canada: ACM, 2009, pp. 417–424.

isbn: 978-1-60558-516-1. (Cit. on pp. 6, 75, 77).

[125] E. Hüllermeier et al. “Label ranking by learning pairwise preferences”. In:

Artificial Intelligence 172.16-17 (2008), pp. 1897–1916. (Cit. on p. 220).

[126] A. Hyvärinen and E. Oja. “Independent component analysis: algorithms

and applications”. In: Neural Networks 13.4-5 (2000), pp. 411–430. (Cit.

on p. 184).

[127] P. Indyk and R. Motwani. “Approximate nearest neighbors: towards re-

moving the curse of dimensionality”. In: STOC ’98: Proceedings of the

thirtieth annual ACM symposium on Theory of computing. 1998, pp. 604–

613. (Cit. on p. 226).

[128] F. J. and L. R. “Variable Selection via Nonconcave Penalized Likelihood

and its Oracle Properties”. In: Journal of the American Statistical Asso-

ciation 96 (2001), pp. 1348–1360. (Cit. on pp. 6, 52).

[129] P. Jain, R. Meka, and I. S. Dhillon. “Guaranteed Rank Minimization via

Singular Value Projection”. In: NIPS. 2010. (Cit. on pp. 9, 174, 183).

[130] G. M. James, P. Radchenko, and J. Lv. “DASSO: connections between the

Dantzig selector and lasso”. In: Journal Of The Royal Statistical Society

Series B 71.1 (2009), pp. 127–142. (Cit. on p. 6).

314

REFERENCES

[131] R. Jenatton, J.-Y. Audibert, and F. Bach. Structured Variable Selection

with Sparsity-Inducing Norms. 2009. url: http://www.citebase.org/

abstract?id=oai:arXiv.org:0904.3523. (Cit. on pp. 6, 75, 77).

[132] S. Ji and J. Ye. “An accelerated gradient method for trace norm minimiza-

tion”. In: International Conference on Machine Learning (ICML). 2009.

(Cit. on pp. 8, 107, 173, 183, 222).

[133] S. Ji and J. Ye. “Linear dimensionality reduction for multi-label classifi-

cation”. In: IJCAI. 2009. (Cit. on p. 202).

[134] S. Ji et al. “A Shared-subspace Learning Framework for Multi-label Clas-

sification”. In: ACM Trans on Knowledge Discovery from Data 2.1 (2010).

(Cit. on pp. 187, 202, 221).

[135] W. Johnson and J. Lindenstrauss. “Extensions of Lipschitz mappings

into a Hilbert space”. In: Conference in modern analysis and probability

(New Haven, Conn., 1982). Vol. 26. Contemporary Mathematics. Ameri-

can Mathematical Society, 1984, pp. 189–206. (Cit. on p. 226).

[136] I. Katakis, G. Tsoumakas, and I. Vlahavas. “Multilabel Text Classification

for Automated Tag Suggestion”. In: Proceedings of the ECML/PKDD 2008

Discovery Challenge. 2008. (Cit. on p. 265).

[137] R. Keshavan and S. Oh. “OptSpace: A Gradient Descent Algorithm on

Grassman Manifold for Matrix Completion”. In: Submitted to IEEE Trans

on Signal Processing (2009). (Cit. on pp. xxiii, 9, 149, 174–176, 183).

315

REFERENCES

[138] J. Kim and H. Park. “Toward Faster Nonnegative Matrix Factorization:

A New Algorithm and Comparisons”. In: IEEE International Conference

on Data Mining (ICDM). 2008. (Cit. on p. 103).

[139] S.-J. Kim et al. “An Interior-Point Method for Large-Scale L1-Regularized

Least Squares”. In: IEEE Journal of In Selected Topics in Signal Process-

ing 1.4 (2007), pp. 606–617. (Cit. on p. 57).

[140] X. Kong and P. Yu. “gMLC: a multi-label feature selection framework

for graph classification”. In: Knowledge and Information Systems (2011),

pp. 1–25. (Cit. on p. 221).

[141] A. Koufakou, J. Secretan, and M. Georgiopoulos. “Non-derivable itemsets

for fast outlier detection in large high-dimensional categorical data”. In:

Knowledge and Information Systems 29 (3 2011), pp. 697–725. (Cit. on

p. 257).

[142] K. Kreutz-Delgado et al. “Dictionary Learning Algorithms for Sparse Rep-

resentation”. In: Neural Computation 15.2 (2003), pp. 349–396. (Cit. on

pp. 6, 81, 183).

[143] H.-P. Kriegel et al. “Future trends in data mining”. In: Data Min. Knowl.

Discov. 15.1 (2007), pp. 87–97. (Cit. on pp. 3, 17).

[144] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In: The

Annals of Mathematical Statistics 22.1 (1951), pp. 79–86. (Cit. on p. 234).

[145] A. Kumar, V. Sindhwani, and P. Kambadur. “Fast conical hull algorithms

for near-separable nonnegative matrix factorization”. In: International

316

REFERENCES

Conference on Machine Learning (ICML). 2013. (Cit. on pp. xvii, 107,

119).

[146] J. Langford and A. Beygelzimer. “Sensitive Error Correcting Output

Codes.” In: COLT’05: Annual Conference on Learning Theory. Vol. 3559.

2005, pp. 158–172. (Cit. on p. 262).

[147] Y. Lecun and C. Cortes. “The MNIST database of handwritten digits”.

In: Available: http://yann.lecun.com/exdb/mnist/ (). (Cit. on p. 86).

[148] D. D. Lee and H. S. Seung. “Algorithms for non-negative matrix factor-

ization”. In: Advances in Neural Information Processing Systems (NIPS).

2001. (Cit. on p. 103).

[149] D. D. Lee and H. S. Seung. “Learning the parts of objects by non-negative

matrix factorization”. In: Nature 401 (1999), pp. 788–791. (Cit. on pp. 17,

103).

[150] H. Lee et al. “Efficient sparse coding algorithms”. In: Advances in Neural

Information Processing Systems 18 (NIPS ’06). 2006. (Cit. on pp. 6, 81,

183).

[151] J. Lee et al. “Practical Large-Scale Optimization for Max-Norm Regular-

ization”. In: NIPS. 2010. (Cit. on pp. 8, 174).

[152] K. Lee and Y. Bresler. “ADMiRA: atomic decomposition for minimum

rank approximation”. In: IEEE Trans on Information Theory 56.9 (2010),

pp. 4402–4416. (Cit. on pp. 8, 174).

317

REFERENCES

[153] A. S. Lewis and J. Malick. “Alternating Projections on Manifolds”. In:

Mathematics of Operations Research 33.1 (2008), pp. 216–234. (Cit. on

pp. 150, 153, 155).

[154] P. Li. “Approximating Higher-Order Distances Using Random Projec-

tions”. In: The 26th Conference on Uncertainty in Artificial Intelligence

(UAI 2010). 2010. (Cit. on p. 226).

[155] P. Li. “Estimators and tail bounds for dimension reduction in �α(0 <

α ≤ 2) using stable random projections”. In: SODA ’08: Proceedings

of the nineteenth annual ACM-SIAM symposium on Discrete algorithms.

San Francisco, California: Society for Industrial and Applied Mathematics,

2008, pp. 10–19. (Cit. on p. 226).

[156] T. Li, S. Zhu, and M. Ogihara. “Text categorization via generalized dis-

criminant analysis”. In: Inf. Process. Manage. 44.5 (2008), pp. 1684–1697.

(Cit. on p. 17).

[157] X. Li et al. “Discriminant Locally Linear Embedding With High-Order

Tensor Data”. In: IEEE Transactions on Systems, Man, and Cybernetics,

Part B 38.2 (2008), pp. 342–352. (Cit. on p. 4).

[158] C.-J. Lin. “Projected Gradient Methods for Nonnegative Matrix Factor-

ization”. In: Neural Computation 19.10 (2007), pp. 2756–2779. (Cit. on

p. 103).

[159] J. Liu, S. Ji, and J. Ye. “Multi-task feature learning via efficient l2,1-norm

minimization”. In: UAI. 2009. (Cit. on p. 6).

318

REFERENCES

[160] J. Liu, J. Chen, and J. Ye. “Large-scale sparse logistic regression”. In: KDD

’09: Proceedings of the 15th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. 2009, pp. 547–556. (Cit. on pp. 6,

54).

[161] J. Liu, S. Ji, and J. Ye. SLEP: Sparse Learning with Efficient Projections.

Arizona State University. 2009. url: http://www.public.asu.edu/

~jye02/Software/SLEP. (Cit. on pp. 6, 54, 207, 208, 212).

[162] L. Liu and Q. Liang. “A high-performing comprehensive learning algo-

rithm for text classification without pre-labeled training set”. In: Knowl-

edge and Information Systems 29 (3 2011), pp. 727–738. (Cit. on p. 219).

[163] Q. Liu et al. “Personalized Travel Package Recommendation”. In: IEEE

International Conference on Data Mining (ICDM). 2011. (Cit. on p. 114).

[164] W. Liu, D. Tao, and J. Liu. “Transductive Component Analysis”. In:

ICDM ’08: Proceedings of the 2008 Eighth IEEE International Confer-

ence on Data Mining. Washington, DC, USA: IEEE Computer Society,

2008, pp. 433–442. (Cit. on p. 5).

[165] U. Luxburg. “A tutorial on spectral clustering”. In: Statistics and Com-

puting 17.4 (2007), pp. 395–416. (Cit. on p. 236).

[166] J. Lv and Y Fan. “A unified approach to model selection and sparse re-

covery using regularized least squares”. In: The Annals of Statistics 37

(2009), pp. 3498–3528. (Cit. on pp. 6, 25, 54).

[167] J. Lv and J. S. Liu. “Model selection principles in misspecified models”.

In: Manuscript (2010). (Cit. on p. 58).

319

REFERENCES

[168] S. Ma, D. Goldfarb, and L. Chen. “Fixed point and Bregman iterative

methods for matrix rank minimization”. In: Mathematical Programming

128.1-2 (2011), pp. 321–353. (Cit. on pp. 8, 174).

[169] L. Mackey. “Deflation Methods for Sparse PCA”. In: Advances in Neural

Information Processing Systems 22 (NIPS ’08). 2008. (Cit. on p. 71).

[170] L. W. Mackey, A. S. Talwalkar, and M. I. Jordan. “Divide-and-Conquer

Matrix Factorization”. In: Advances in Neural Information Processing Sys-

tems 24. 2011, pp. 1134–1142. (Cit. on pp. 9, 109, 175).

[171] J. B. MacQueen. “Some Methods for Classification and Analysis of Multi-

Variate Observations”. In: Proceeding of the fifth Berkeley Symposium on

Mathematical Statistics and Probability. Vol. 1. 1967, pp. 281–297. (Cit. on

p. 236).

[172] J. Mairal, M. Elad, and G. Sapiro. “Sparse Representation for Color Image

Restoration”. In: IEEE Transactions on Image Processing 17.1 (2008),

pp. 53–69. (Cit. on p. 54).

[173] J. Mairal et al. “Online Learning for Matrix Factorization and Sparse

Coding”. In: Journal of Machine Learning Research 11 (2010), pp. 10–60.

(Cit. on pp. 80, 81).

[174] M. Masud et al. “Facing the reality of data stream classification: coping

with scarcity of labeled data”. In: Knowledge and Information Systems

(2011), pp. 1–32. (Cit. on p. 223).

320

REFERENCES

[175] L. Menćıa and J. Fürnkranz. “Pairwise learning of multilabel classifications

with perceptrons”. In: IEEE International Joint Conference on Neural

Networks (IJCNN-08), vol. 0. 2008, pp. 995–1000. (Cit. on p. 220).

[176] B. Moghaddam, Y. Weiss, and S. Avidan. “Spectral Bounds for Sparse

PCA: Exact and Greedy Algorithms”. In: Advances in Neural Information

Processing Systems 20. 2006, pp. 915–922. (Cit. on pp. xxii, 58, 80, 85, 91,

92, 97).

[177] R. J. Muirhead. Aspects of multivariate statistical theory. New York: John

Wiley & Sons Inc., 1982. (Cit. on p. 136).

[178] D. Needell and J. A. Tropp. “CoSaMP: Iterative signal recovery from

incomplete and inaccurate samples”. In: Applied and Computational Har-

monic Analysis 26 (2008), pp. 301–321. (Cit. on p. 56).

[179] A. Nemirovski. Lecture Notes: Introduction to Linear Optimization. 2010.

(Cit. on p. 105).

[180] S. Nene, S. K. Nayar, and H. Murase. Columbia Object Image Library

(COIL-20). Tech. rep. 1996. (Cit. on pp. 85, 88).

[181] Y. Nesterov. “Smooth minimization of non-smooth functions”. In: Mathe-

matical Programming 103.1 (2005), pp. 127–152. issn: 0025-5610. (Cit. on

p. 57).

[182] A. Y. Ng, M. I. Jordan, and Y. Weiss. “On spectral clustering: Analysis and

an algorithm”. In: NIPS ’01: Advances in Neural Information Processing

Systems 14. Vol. 2. 2001, pp. 849–856. (Cit. on pp. 55, 236).

321

REFERENCES

[183] N. H. Nguyen, T. T. Do, and T. D. Tran. “A fast and efficient algorithm

for low-rank approximation of a matrix”. In: STOC ’09: The 41st annual

ACM symposium on Theory of computing. 2009, pp. 215–224. (Cit. on

pp. 4, 142).

[184] E. Osuna, R. Freund, and F. Girosi. Support Vector Machines: Training

and Applications. Tech. rep. Massachusetts Institute of Technology, 1997.

(Cit. on pp. 263, 287).

[185] M. Y. Park and T. Hastie. “L1-regularization pathalgorithm for general-

ized linear models”. In: Journal of the Royal Statistical Society, Series B

69.4 (2007), pp. 659–677. (Cit. on pp. 6, 84).

[186] K. B. Petersen and M. S. Pedersen. The Matrix Cookbook. Version

20081110. 2008. url: http://www2.imm.dtu.dk/pubdb/p.php?3274.

(Cit. on p. 74).

[187] J. Petterson and T. Caetano. “Reverse Multi-Label Learning”. In: NIPS.

2010. (Cit. on pp. 187, 200).

[188] P. J. Phillips et al. “The FERET evaluation methodology for face-

recognition algorithms”. In: Pattern Analysis and Machine Intelligence,

IEEE Transactions on 22.10 (2000), pp. 1090–1104. (Cit. on pp. 38, 85,

86, 141).

[189] S. J. Prince. Computer vision: models, learning and inference. Cambridge

University Press, 2011. (Cit. on p. 192).

322

REFERENCES

[190] M. Raginsky and S. Lazebnik. “Locality-sensitive binary codes from shift-

invariant kernels”. In: The 23rd Annual Conference on Neural Information

Processing Systems (NIPS 2009). 2009. (Cit. on p. 233).

[191] B. Rao et al. “Subset selection in noise based on diversity measure mini-

mization”. In: IEEE Transactions on Signal Processing 51 (2003), pp. 760–

770. (Cit. on p. 57).

[192] J. Read, B. Pfahringer, and G. Holmes. “Multi-label Classification Using

Ensembles of Pruned Sets”. In: ICDM. Vol. 0. 2008, pp. 995–1000. (Cit. on

p. 220).

[193] J. Read et al. “Classifier Chains for Multi-label Classification”. In: Ma-

chine Learning and Knowledge Discovery in Databases (2009), pp. 254–

269. (Cit. on pp. 187, 201, 219, 221, 222).

[194] J. Read. MEKA Softwares. 2010. url: http://meka.sourceforge.net.

(Cit. on p. 265).

[195] S. Roweis. “EM algorithms for PCA and SPCA”. In: NIPS. 1998, pp. 626–

632. (Cit. on pp. 127, 128, 144).

[196] S. T. Roweis and L. K. Saul. “Nonlinear Dimensionality Reduction by

Locally Linear Embedding”. In: Science 290.5500 (2000), pp. 2323–2326.

(Cit. on pp. 4, 54, 55, 87, 88, 107, 183).

[197] F. S. Samaria, A. Harter, and O. A. Site. “Parameterisation of a Stochastic

Model for Human Face Identification”. In: Proceedings of the Second IEEE

Workshop on Applications of Computer Vision (1994). (Cit. on pp. 85, 86).

323

REFERENCES

[198] R. E. Schapire and Y. Singer. “Boostexter: a boosting-based system for

text categorization”. In: Machine Learning 39.2/3 (2000), pp. 135–168.

(Cit. on p. 222).

[199] G. Shakhnarovich and B. Moghaddam. Face Recognition in Subspaces.

2004. (Cit. on p. 19).

[200] S. Shalev-Shwartz, A. Gonen, and O. Shamir. “Large-Scale Convex Min-

imization with a Low-Rank Constraint.” In: ICML. 2011. (Cit. on pp. 8,

168–170, 174).

[201] H. Shen and J. Z. Huang. “Sparse principal component analysis via regu-

larized low rank matrix approximation”. In: Journal of Multivariate Anal-

ysis 99.6 (2008), pp. 1015–1034. (Cit. on pp. xxii, 57, 80, 85, 91, 92, 97).

[202] S. Si, D. Tao, and B. Geng. “Bregman Divergence-Based Regularization

for Transfer Subspace Learning”. In: IEEE Transactions on Knowledge

and Data Engineering 22.7 (2010), pp. 929–942. (Cit. on p. 263).

[203] C. G. M. Snoek et al. “The challenge problem for automated detection of

101 semantic concepts in multimedia”. In:MULTIMEDIA ’06: Proceedings

of the 14th annual ACM international conference on Multimedia. New

York, NY, USA: ACM, 2006, pp. 421–430. (Cit. on p. 265).

[204] N. Srebro, J. Rennie, and T. Jaakkola. “Maximum-Margin Matrix Factor-

ization”. In: NIPS. 2005. (Cit. on pp. 8, 174).

[205] L. Sun, S. Ji, and J. Ye. “A least squares formulation for canonical cor-

relation analysis”. In: ICML ’08: Proceedings of the 25th international

324

REFERENCES

conference on Machine learning. Helsinki, Finland: ACM, 2008, pp. 1024–

1031. (Cit. on p. 24).

[206] L. Sun et al. “Efficient Recovery of Jointly Sparse Vectors”. In: Advances

in Neural Information Processing Systems 23. 2009. (Cit. on pp. 6, 54).

[207] D. Tao et al. “General Tensor Discriminant Analysis and Gabor Features

for Gait Recognition”. In: IEEE Trans. Pattern Anal. Mach. Intell. 29.10

(2007), pp. 1700–1715. (Cit. on pp. 3, 17).

[208] D. Tao et al. “Geometric Mean for Subspace Selection”. In: IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 31.2 (2009), pp. 260–

274. (Cit. on pp. 4, 283).

[209] D. Tao et al. “Supervised tensor learning”. In: Knowl. Inf. Syst. 13.1

(2007), pp. 1–42. (Cit. on pp. 3, 17).

[210] J. B. Tenenbaum. “A Global Geometric Framework for Nonlinear Dimen-

sionality Reduction”. In: Science 290.5500 (2000), pp. 2319–2323. (Cit. on

pp. 4, 54, 55, 85, 87, 107, 183).

[211] R. Tibshirani. “Regression Shrinkage and Selection via the Lasso”. In:

Journal of the Royal Statistical Society (Series B) 58 (1996), pp. 267–288.

(Cit. on pp. 6, 54, 56).

[212] N. Trendafilov, I. T. Jolliffe, and M. Uddin. “A modified principal compo-

nent technique based on the LASSO”. In: Journal of Computational and

Graphical Statistics 12 (2003), 531–C547. (Cit. on pp. 85, 92).

325

REFERENCES

[213] K. Trohidis et al. “Multilabel Classification of Music into Emotions”. In:

Proc. 9th International Conference on Music Information Retrieval (IS-

MIR 2008), Philadelphia, PA, USA, 2008. Philadephia, PA, USA, 2008.

(Cit. on p. 265).

[214] J. A. Tropp and A. C. Gilbert. “Signal recovery from random measure-

ments via Orthogonal Matching Pursuit”. In: IEEE Transactions on In-

formation Theory 53 (2007), pp. 4655–4666. (Cit. on p. 56).

[215] P. Tseng and S. Yun. “A coordinate gradient descent method for nons-

mooth separable minimization”. In: Mathematical Programming 117.1-2

(2009), pp. 387–423. (Cit. on p. 57).

[216] G. Tsoumakas and I. Katakis. “Multi-Label Classification: An Overview”.

In: International Journal of Data Warehousing and Mining 3.3 (2007),

pp. 1–13. (Cit. on pp. xxiv, 187, 200, 209–211, 217, 220, 256).

[217] G. Tsoumakas, I. Katakis, and I. Vlahavas. “Effective and Efficient Mul-

tilabel Classification in Domains with Large Number of Labels”. In:

ECML/PKDD Workshop on Mining Multidimensional Data. 2008. (Cit.

on pp. 187, 201, 219, 220, 257).

[218] G. Tsoumakas, I. Katakis, and I. Vlahavas. “Mining Multi-label Data”. In:

Data Mining and Knowledge Discovery Handbook (2010). (Cit. on pp. 187,

209, 220).

[219] G. Tsoumakas and I. Vlahavas. “Random k-Labelsets: An Ensemble

Method for Multilabel Classification”. In: ECML. 2007, pp. 406–417. (Cit.

on pp. 187, 201, 220).

326

REFERENCES

[220] G. Tsoumakas, M.-L. Zhang, and Z.-H. Zhou. “Learning from multi-label

data”. In: ECML/PKDD. 2009. (Cit. on pp. 187, 200).

[221] G. Tsoumakas. Mulan: A Java Library for Multi-Label Learning. 2010.

url: http://mulan.sourceforge.net/datasets.html. (Cit. on p. 265).

[222] M. A. Turk and A. P. Pentland. “Face recognition using eigenfaces”. In:

Computer Vision and Pattern Recognition, 1991. Proceedings CVPR ’91.,

IEEE Computer Society Conference on. 1991, pp. 586–591. (Cit. on p. 43).

[223] N. Ueda and K. Saito. “Parametric mixture models for multi-labeled text”.

In: Advances in Neural Information Processing Systems 15, Neural Infor-

mation Processing Systems, NIPS 2002. 2002. (Cit. on p. 265).

[224] V. N. Vapnik. The nature of statistical learning theory. Springer-Verlag

New York, Inc., 1995. isbn: 0387945598. (Cit. on p. 234).

[225] S. A. Vavasis. “On the complexity of nonnegative matrix factorization”.

In: SIAM Joural on Optimization 20.3 (2009), pp. 1364–1377. (Cit. on

p. 104).

[226] S. S. Vempala. The Random Projection Method. Vol. 65. DIMACS Series

in Discrete Mathematics and Theoretical Computer Science. American

Mathematical Society, 2004. (Cit. on pp. 107, 226, 233).

[227] F. Wang et al. “Semi-supervised metric learning by maximizing constraint

margin”. In: CIKM ’08: Proceeding of the 17th ACM conference on Infor-

mation and knowledge management. Napa Valley, California, USA: ACM,

2008, pp. 1457–1458. (Cit. on p. 5).

327

REFERENCES

[228] Z. Wen, W. Yin, and Y. Zhang. “Solving a low-rank factorization model for

matrix completion by a nonlinear successive over-relaxation algorithm”.

In:Mathematical Programming Computation 4.4 (2012), pp. 333–361. (Cit.

on p. 165).

[229] D. M. Witten, R. Tibshirani, and T. Hastie. “A penalized matrix decom-

position, with applications to sparse principal components and canonical

correlation analysis”. In: Biostatistics 10.3 (2009), pp. 515–534. (Cit. on

pp. 58, 80, 85, 91).

[230] J. Wright et al. “Robust Face Recognition via Sparse Representation”.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence 31.2

(2009), pp. 210–227. (Cit. on p. 6).

[231] S. Wu, O. Oreifej, and M. Shah. “Action recognition in videos acquired

by a moving camera using motion decomposition of Lagrangian parti-

cle trajectories”. In: International Conference on Computer Vision. 2011,

pp. 1419–1426. (Cit. on pp. 186, 188).

[232] Y. Xin and T. Jaakkola. “Primal-Dual methods for sparse constrained ma-

trix completion”. In: Journal of Machine Learning Research - Proceedings

Track 22 (2012), pp. 1323–1331. (Cit. on p. 107).

[233] L. Xiong, X. Chen, and J. Schneider. “Direct Robust Matrix Factorization

for Anomaly Detection”. In: The 11th International Conference on Data

Mining (ICDM). 2010. (Cit. on pp. 166, 185).

[234] W. Xu, X. Liu, and Y. Gong. “Document clustering based on non-negative

matrix factorization”. In: SIGIR ’03: ACM SIGIR conference on Re-

328

REFERENCES

search and development in informaion retrieval. 2003, pp. 267–273. (Cit.

on p. 90).

[235] S. Yan et al. “Graph Embedding and Extensions: A General Framework for

Dimensionality Reduction”. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence 29.1 (2007), pp. 40–51. (Cit. on p. 5).

[236] C. Yang, R. Duraiswami, and L. S. Davis. “Fast multiple object tracking

via a hierarchical particle filter”. In: International Conference on Com-

puter Vision. 2005, pp. 212–219. (Cit. on p. 186).

[237] F. Yates. “Contingency tables involving small numbers and the χ2 test”.

In: Journal of the Royal Statistical Society 1 (1934), pp. 217–235. (Cit. on

p. 264).

[238] J. Ye. “Generalized Low Rank Approximations of Matrices”. In: Machine

Learning (Springer) 61.1 (2005), pp. 167–191. (Cit. on pp. 3, 103, 142,

183).

[239] J. Ye. “Least squares linear discriminant analysis”. In: ICML ’07: Proceed-

ings of the 24th international conference on Machine learning. Corvalis,

Oregon: ACM, 2007, pp. 1087–1093. (Cit. on p. 24).

[240] W. Yin et al. “Bregman iterative algorithms for l1-minimization with ap-

plications to compressed sensing”. In: SIAM Journal on Imaging Sciences

1.1 (2008), pp. 143–168. (Cit. on p. 57).

[241] H.-F. Yu et al. “Scalable Coordinate Descent Approaches to Parallel Ma-

trix Factorization for Recommender Systems”. In: IEEE International

Conference on Data Mining (ICDM). 2012. (Cit. on p. 105).

329

REFERENCES

[242] Q. Yu, T. B. Dinh, and G. Medioni. “Online tracking and reacquistion us-

ing co-trained generative and discriminative trackers”. In: European Con-

ference on Computer Vision. 2008, pp. 678–691. (Cit. on p. 189).

[243] M. Yuan and Y. Lin. “Model selection and estimation in regression with

grouped variables”. In: Journal of the Royal Statistical Society, Series B

68 (2006), pp. 49–67. (Cit. on pp. 6, 75, 77, 187, 207).

[244] D. Zachariah et al. “Alternating Least-Squares for Low-Rank Matrix Re-

construction”. In: IEEE Signal Processing Letters 19.4 (2012), pp. 231–

234. (Cit. on pp. 164, 188).

[245] R. Zass and A. Shashua. “Nonnegative Sparse PCA”. In: In Neural Infor-

mation Processing Systems. 2007, pp. 1561–1568. (Cit. on p. 18).

[246] M. L. Zhang and Z. H. Zhou. “ML-KNN: A lazy learning approach to

multi-label learning”. In: Pattern Recognition 40.7 (2007), pp. 2038–2048.

(Cit. on pp. xxiv, 209–211, 223, 263, 283).

[247] M. L. Zhang and Z. H. Zhou. “Multi-Label Neural Networks with Applica-

tions to Functional Genomics and Text Categorization”. In: IEEE Trans-

actions on Knowledge and Data Engineering 18.10 (2006), pp. 1338–1351.

(Cit. on p. 222).

[248] M.-L. Zhang and Z.-J. Wang. “MIMLRBF: RBF neural networks for

multi-instance multi-label learning”. In: Neurocomputing 72.16-18 (2009),

pp. 3951–3956. (Cit. on p. 223).

[249] T. Zhang, D. Tao, and J. Yang. “Discriminative Locality Alignment”. In:

ECCV ’08: Proceedings of the 10th European Conference on Computer

330

REFERENCES

Vision. Marseille, France: Springer-Verlag, 2008, pp. 725–738. (Cit. on

pp. 5, 38).

[250] T. Zhang et al. “Patch Alignment for Dimensionality Reduction”. In: IEEE

Transactions on Knowledge and Data Engineering 21.9 (2009), pp. 1299–

1313. (Cit. on pp. 5, 38, 183).

[251] X. Zhang, T. Graepel, and R. Herbrich. “Bayesian Online Learning for

Multi-label and Multi-variate Performance Measures”. In: AISTATS. 2010.

(Cit. on p. 201).

[252] Y. Zhang and J. Schneider. “Multi-Label Output Codes using Canonical

Correlation Analysis”. In: AISTATS. 2011. (Cit. on p. 201).

[253] Y. Zhang and Z. H. Zhou. “Multi-label dimensionality reduction via de-

pendence maximization”. In: AAAI’08: Proceedings of the 23rd national

conference on Artificial intelligence. Chicago, Illinois, 2008, pp. 1503–1505.

(Cit. on pp. xxiv, 187, 202, 209–211, 221, 263, 283).

[254] Z. Zhang and H. Zha. “Principal Manifolds and Nonlinear Dimensionality

Reduction via Tangent Space Alignment”. In: SIAM J. Sci. Comput. 26.1

(2005), pp. 313–338. (Cit. on p. 4).

[255] P. Zhao, S. C. H. Hoi, and R. Jin. “Double Updating Online Learning”. In:

Journal of Machine Learning Research 12 (2011), pp. 1587–1615. (Cit. on

p. 14).

[256] P. Zhao, G. Rocha, and B. Yu. “Grouped and hierarchical model selec-

tion through composite absolute penalties”. In: Annals of Statistics 37.6A

(2009), pp. 3468–3497. (Cit. on p. 77).

331

REFERENCES

[257] T. Zhou, W. Bian, and D. Tao. “Divide-and-Conquer Anchoring for Near-

separable Nonnegative Matrix Factorization and Completion in High Di-

mensions”. In: IEEE International Conference on Data Mining (ICDM).

2013. (Cit. on p. 10).

[258] T. Zhou and D. Tao. “Greedy bilateral sketch, completion & smoothing”.

In: Journal of Machine Learning Research - Proceedings Track 31 (2013),

pp. 650–658. (Cit. on pp. 12, 15, 107, 122, 124).

[259] T. Zhou and D. Tao. “Multi-label Subspace Ensemble”. In: AISTATS.

2012. (Cit. on pp. 7, 13, 165, 187).

[260] T. Zhou and D. Tao. “Shifted Subspaces Tracking on Sparse Outlier for

Motion Segmentation”. In: IJCAI. 2013. (Cit. on pp. 13, 186).

[261] T. Zhou and D. Tao. “1-bit Hamming Compressed Sensing”. In: ISIT ’12:

IEEE International Symposium on Information Theory. 2012. (Cit. on

pp. 6, 54).

[262] T. Zhou and D. Tao. “Backward-Forward Least Angle Shrinkage for Sparse

Quadratic Optimization”. In: ICONIP. 2010, pp. 388–396. (Cit. on p. 6).

[263] T. Zhou and D. Tao. “Bilateral Random Projections”. In: ISIT ’12: IEEE

International Symposium on Information Theory. 2012. (Cit. on pp. 12,

54, 143, 186, 190).

[264] T. Zhou and D. Tao. “Double Shrinking Sparse Dimension Reduction”. In:

IEEE Transactions on Image Processing 22.1 (2013), pp. 244–257. (Cit. on

p. 10).

332

REFERENCES

[265] T. Zhou and D. Tao. “GoDec: Randomized Low-rank & Sparse Matrix

Decomposition in Noisy Case”. In: ICML ’11: International Conference

on Machine Learning. 2011. (Cit. on pp. 12, 165, 166, 203).

[266] T. Zhou and D. Tao. “Labelset anchored subspace ensemble (LASE) for

multi-label annotation”. In: ICMR. 2012, p. 42. (Cit. on p. 13).

[267] T. Zhou and D. Tao. “Manifold Elastic Net for Sparse Learning”. In: SMC.

2009, pp. 3699–3704. (Cit. on p. 10).

[268] T. Zhou, D. Tao, and X. Wu. “Compressed labeling on distilled labelsets

for multi-label learning”. In: Machine Learning (Springer) (2012). (Cit. on

pp. 13, 58).

[269] T. Zhou, D. Tao, and X. Wu. “Manifold elastic net: a unified framework for

sparse dimension reduction”. In: Data Mining and Knowledge Discovery

(Springer) 22.3 (2011), pp. 340–371. (Cit. on pp. 10, 149, 183, 221).

[270] T. Zhou, D. Tao, and X. Wu. “NESVM: A Fast Gradient Method for

Support Vector Machines”. In: ICDM ’10: Proceedings of the 2010 IEEE

International Conference on Data Mining. 2010, pp. 679–688. (Cit. on

pp. 15, 54, 273, 289).

[271] Z. Zhou et al. “Stable Principal Component Pursuit”. In: ISIT. 2010. (Cit.

on pp. 150, 166, 185, 189).

[272] J. Zhuang et al. “When recommendation meets mobile: contextual and

personalized recommendation on the go”. In: Ubicomp. 2011, pp. 153–162.

(Cit. on pp. 8, 173).

333

REFERENCES

[273] H. Zou, T. Hastie, and R. Tibshirani. “Sparse principal component anal-

ysis”. In: Journal of Computational and Graphical Statistics 15.2 (2006),

pp. 262–286. (Cit. on pp. xxii, 6, 18, 57, 80, 85, 91, 92, 97).

[274] H. Zou. “The Adaptive Lasso and Its Oracle Properties”. In: Journal of

the American Statistical Association 101 (2006), pp. 1418–1429. (Cit. on

pp. 52, 75, 76).

[275] H. Zou and T. Hastie. “Regularization and variable selection via the Elastic

Net”. In: Journal of the Royal Statistical Society B 67 (2005), pp. 301–320.

(Cit. on pp. 6, 75, 76).

334

	Title Page
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Low-rank and Sparse Structures in Learning Problems
	1.1.1 Low-rank Structure and Dimension Reduction
	1.1.2 Sparse Structure and Sparse Learning

	1.2 Literature Survey of Compressed Learning
	1.3 Main Contributions and Road Map

	2 Manifold Elastic Net: A Unified Framework for Sparse Dimension Reduction
	2.1 Introduction
	2.1.1 The proposed approach

	2.2 Manifold Elastic Net
	2.2.1 Part optimization
	2.2.2 Whole alignment
	2.2.3 Classification error minimization
	2.2.4 Elastic net penalty
	2.2.5 LARS for MEN
	2.2.6 Fast LARS
	2.2.7 Algorithm
	2.2.8 Discussions

	2.3 Experiments
	2.4 Conclusion

	3 Double Shrinking for Sparse Dimension Reduction
	3.1 Introduction
	3.1.1 Double shrinking model
	3.1.2 Previous works
	3.1.3 Main contribution

	3.2 Definitions
	3.2.1 Karush-Kuhn-Tucker conditions
	3.2.2 Definitions

	3.3 Double shrinking Algorithm
	3.3.1 Initialization
	3.3.2 Direction
	3.3.3 Step size and update of A, B
	3.3.4 Update of x, μ and η
	3.3.5 Algorithm
	3.3.6 Analyses and Proofs

	3.4 Extensions of double shrinkage
	3.4.1 Elastic net double shrinkage
	3.4.2 Reweighted ℓ₁ double shrinkage
	3.4.3 Structured double shrinkage
	3.4.4 Sparse learning with multiple equality constraints

	3.5 Relationships to existing techniques
	3.5.1 Relationship to sparse PCA
	3.5.2 Relationship to sparse coding
	3.5.3 Relationship to LARS

	3.6 Experiments
	3.6.1 Classification
	3.6.2 Nonlinear manifold learning
	3.6.3 Data clustering
	3.6.4 Feature selection
	3.6.5 Scalability study

	3.7 Conclusion

	4 Divide-and-Conquer Anchoring for Near-separable Nonnegative Matrix Factorization and Completion
	4.1 Introduction
	4.1.1 Separable Nonnegative Matrix Factorization
	4.1.2 Related Works
	4.1.3 Motivation and Main Contributions

	4.2 Divide-and-Conquer Anchoring (DCA)
	4.2.1 Divide Step: Anchoring on Low-dimensional Projections
	4.2.2 Conquer Step: Hypothesis Testing
	4.2.3 DCA for Incomplete Data Matrix
	4.2.4 Analysis: the Number of Sub-problems

	4.3 Rapid Anchoring in 1D or 2D Space
	4.3.1 Seeking Vertices of Convex Hull in 1D Space
	4.3.2 Seeking Extreme Rays of Conical Hull in 2D Space

	4.4 Numerical Results
	4.4.1 Empirical Study on Synthetic Data
	4.4.2 Collaborative Filtering by Finding Representative Users
	4.4.3 Reconstruction of Images, Texts and Handwritten Digits

	5 Randomized and Greedy Strategies for Bilateral Low-rank Approximation
	5.1 Bilateral Random Projections (BRP)
	5.1.1 Introduction
	5.1.2 Bilateral random projections (BRP) based low-rank approximation
	5.1.2.1 Low-rank approximation with closed form
	5.1.2.2 Power scheme modification

	5.1.3 Approximation error bounds
	5.1.4 Proofs of error bounds
	5.1.4.1 Proof of Theorem 8
	5.1.4.2 Proof of Theorem 9
	5.1.4.3 Proof of Theorem 10
	5.1.4.4 Proof of Theorem 11
	5.1.4.5 Proof of Theorem 12

	5.1.5 Empirical Study

	5.2 Greedy Bilateral Sketch (GreBske)
	5.2.1 Low-rank Approximation
	5.2.2 Greedy Bilateral Sketch
	5.2.3 Empirical Study

	6 GO Decomposition and Randomized Low-rank + Sparse Decomposition
	6.1 Introduction
	6.2 Go Decomposition (GoDec)
	6.2.1 Naïve GoDec
	6.2.2 Fast GoDec via BRP based approximation

	6.3 Convergence of GoDec
	6.4 Experiments
	6.4.1 RPCA vs. GoDec
	6.4.2 Background modeling
	6.4.3 Shadow/Light removal

	6.5 Conclusion

	7 Greedy Bilateral Paradigm and Greedy Low-rank + Sparse Decomposition
	7.1 Introduction
	7.2 Background and Problem Formulation
	7.3 Greedy Bilateral (GreB) Paradigm
	7.4 Greedy Bilateral Smoothing
	7.5 Analysis
	7.6 Experiments on Video Data

	8 Randomized and Greedy Algorithms for Matrix Completion
	8.1 Introduction to Low-rank Matrix Completion
	8.2 GoDec for matrix completion
	8.2.1 Model and Algorithm
	8.2.2 Matrix Completion Experiments of GoDec

	8.3 Greedy Bilateral Completion (GreBcom)
	8.3.1 Model and Algorithm
	8.3.2 Greedy Bilateral Completion
	8.3.3 Matrix Completion Experiments of GreBcom

	9 Three GoDec Variants Unmixing General Incoherent Structures
	9.1 Introduction
	9.2 Main Contributions of This Chapter
	9.3 Shifted Subspace Tracking (SST) for Motion Segmentation
	9.3.1 The Problem of Motion Segmentation
	9.3.2 SST model
	9.3.3 SST Algorithm
	9.3.3.1 Initialization
	9.3.3.2 Update of τ
	9.3.3.3 Update of L
	9.3.3.4 Update of S

	9.3.4 Motion Segmentation Experiments of SST

	9.4 Multi-label Subspace Ensemble for Multi-label Learning
	9.4.1 The Problem of Multi-label Learning
	9.4.2 MSE model
	9.4.3 MSE Algorithm
	9.4.3.1 MSE training: randomized decomposition
	9.4.3.2 MSE prediction: group sparsity

	9.4.4 Multi-label Prediction Experiments of MSE

	9.5 Linear Functional GoDec for Learning Recommendation System
	9.5.1 LinGoDec Model and Algorithm
	9.5.2 Empirical Study of LinGoDec

	10 Compressed Labeling on Distilled Labelsets
	10.1 Introduction
	10.1.1 Three problems
	10.1.2 Previous works
	10.1.3 The proposed method

	10.2 Compressed labeling (CL) via random projections
	10.2.1 Random projection signs of label matrix
	10.2.2 Improved sample balance of CL labels
	10.2.3 Mutual independence of CL labels
	10.2.4 Classification via support vector machines

	10.3 Recovery algorithm on distilled labelsets (DLs)
	10.3.1 Labelset distilling method (LDM)
	10.3.2 Joint distribution of two random projection signs
	10.3.3 KL divergence test for recovery
	10.3.4 Recovery bound

	10.4 Discussion
	10.4.1 Contributions to multi-label learning
	10.4.2 Relationship with compressed sensing
	10.4.3 Relationship with error-correcting output codes

	10.5 Experiments
	10.5.1 Evaluation metrics
	10.5.2 Datasets
	10.5.3 Label compression and recovery
	10.5.4 Multi-label prediction: comparison with BR
	10.5.5 Multi-label prediction: comparison with other multi-label learning methods
	10.5.6 Multi-label prediction: comparison with 2 SVM algorithms dealing with imbalanced data
	10.5.7 Compression-performance trade-off

	10.6 Conclusion

	11 Conclusions
	References

