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Abstract

This thesis focuses on the modeling and regulation of exercise intensity by using non-

invasive portable sensors. Firstly, an innovative switching Resistance-Capacitor (RC)

model has been proposed to depict the dynamics of human cardio-respiratory (CR)

responses to the onset and offset of exercise. This switching model utilizes electronic

terms with switching mechanism to explicitly depict dynamical characteristics at the

onset/offset of exercise and the transition in between. It can not only guarantee the

continuity of model output between onset and offset of exercise but also quantify lactate

metabolism at onset and offset by using the term ‘oxygen debt’.

Secondly, to effectively regulate human CR responses to exercise, a single-input single-

output (SISO) closed-loop control framework is proposed. Within this framework, a

control oriented modeling approach using support vector regression (SVR) is presented.

Based on that, a novel model predictive control (MPC) algorithm is developed for the

regulation of exercise intensity. Simulation study shows the proposed machine learning

based model predictive control approach can achieve desired performance requirements

for both the onset and offset of exercise and the transitions in between.

The third research topic is related to the monitoring of outdoor exercise. A reliable

Android application based monitoring system is developed. This system includes a

portable HxMBT HR sensor (Zephyr�), an easy-to-use interface, and a supervisory

module. This technique is applicable to cardiovascular disease detection and diagnosis,

home based rehabilitation monitoring, and exercise strength regulation under free living

conditions.

Finally, in order to provide a more reliable automated treadmill system for running

exercise, the multi-loop integral controllability (MIC) analysis is introduced, which ex-

tends the concept of decentralized integral controllability (DIC) from square systems

vi



to multiple-input single-output (MISO) processes. A condition to ensure MIC for 2ISO

is proposed and its sufficiency has been proved by using singular perturbation theory.

Then, a sufficient MIC condition for MISO processes is provided.
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Chapter 1

Introduction

Exercise biomedical engineering synthesizes data from exercise physiology, exercise bio-

medicine, and engineering, utilizing exercise as a stressor to determine the responses

from the structure and function of human body, and furthermore to develop technolo-

gies and devices for improving the longevity and quality of life. Our research interests

focus on new technologies and devices to monitor, evaluate, and control of human car-

diovascular and respiratory responses for safe and effective exercise and rehabilitation

under free living conditions. For convenience, some terms are introduced first:

Biomedical engineering is a discipline that addresses medical and biological prob-

lems through the use of theories borrowed from the physical sciences, and technologies

inherited from engineering [34].

Exercise physiology is the discipline of the acute responses and chronic adaptations

to a wide range of physical exercise conditions, and of how exercise or sport influences the

structure and function of human body [76] [23]. It is studied by assessing how movement

affects systems of the body, mostly represented by the cardiorespiratory (CR) system,

the nervous system, the musculoskeletal system, the endocrine system, and the cells

and sub-cellular molecules of body (Related to our interests the topic of how moderate

exercise effects on human CR system is considered).

Exercise biomedical engineering is a new body of knowledge that now integrates

the studies of medicine, physiology, exercise, and health technologies. It has been widely
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accepted that exercise is beneficial on the prevention and treatment of numerous chronic

diseases such as stroke, cardiovascular and coronary heart diseases, diabetics, hyperten-

sion, and various degenerative disorders [109] [87] [76] [23]. Thus, this field seeks to close

the gap between engineering and exercise medicine: It combines the design and problem

solving skills of engineering with medical and biological sciences to advance healthcare

treatment, including diagnosis, monitoring, treatment, and therapy [34].

Moreover, our studies emphasize exercise biomedical engineering more than exercise

physiology or medicine. Exercise biomedical engineering needs comprehensive knowl-

edge from exercise physiology, medicine, and engineering. For instance, the renal exercise

physiologist studies the kidney as an isolated organ to determine effects of exercise on

kidney function. The exercise biomedical engineers would specialize in those investiga-

tions on the kidney and related physiological responses to exercise, as well as would aim

to develop potential methodologies that can provide solutions to help people living with

kidney diseases.

In a word, this study discusses some problems of exercise biomedicine in general and of

control engineering in particular, as well as comes up with a class of methodologies and

devices arising from the monitoring, modeling, and control of human CR responses to

indoor and outdoor exercises.

The remaining of this section is organized as follows. The study motivation is being

presented in section 1.1, and the aims of the doctoral thesis are introduced in the section

1.2. Section 1.3 and 1.4 include the background and the thesis contribution respectively.

Publications are listed in section 1.5, and the overall structure of this thesis is outlined

in section 1.6.
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1.1 Research Motivation

Exercise and regular daily physical activity are of vital importance for gen-

eral well being and in the management of noncommunicable diseases, par-

ticularly of obesity and diabetes. Obesity and diabetes are now worldwide

public health issues. They lead to increased morbidity and mortality from

a range of associated diseases including heart disease, stroke and kidney

failure. Recent major randomised clinical trials internationally have demon-

strated safe exercise as the best means for the prevention of type 2 diabetes

in individuals. Data on obesity in Australia shows that in 2006 62% of Aus-

tralian Men and 45% of women are overweight or obese. Of these almost

a million are diabetic, and the number is expected to rise to more than

1.6 million in 2030. The total health expenditure attributable to diabetes

was greater than $0.8 billion in 2001 and is rising rapidly. — “Obesity in

Australia: a need for urgent action” [119]

The nature of the illness that beset the whole world population in recent years has un-

dergone a transition from a predominance of communicable diseases (e.g., tuberculosis

and pneumonia) to the present predominance of noncommunicable diseases (e.g., car-

diovascular diseases, diabetes, cancer, hypertension, chronic respiratory diseases, and

various degenerative disorders) [76] [52]. This change represents the contribution of the

medical profession, both in research and clinical practice, toward the virtual control and

the imminent eradication of a large portion of the formerly dreaded infectious scourges.

In 2008 noncommunicable diseases were responsible for 36 million deaths, 63% of the to-

tal deaths occurred in the world. The noncommunicable disease deaths are projected to

increase by 15% between 2010 and 2020 (to 44 million deaths) [52]. The increase of such

noncommunicable diseases offers a challenge not only to medicine, but to exercise as well
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[23]. It seems that as improvements in medical science allow us to escape decimation by

such communicable diseases, we live longer only to fall prey to the noncommunicable

diseases at a slightly later date.

Regular daily physical activity is defined as exercise, the value of which as a prophylactic

and therapeutic measure has been proved for the past five decades by much evidence [76]

[23]. Although the available evidence indicates that exercise maintains optimum levels

of health and fitness, we do not yet have all the answers as to how and why. It may

not be unrealistic to have further scientific investigation for the ultimate development

of a ‘pharmacopoeia of exercise’. One of the relevant interests in the next five decades

is to combine designs and problem solving skills of engineering with purposes of such

‘pharmacopoeia of exercise’ arising from medical and biological sciences. The exercise

influences the CR system [118] [23] [130]. Due to conditions such as the CR system

can result in faster physiological response, non-invasive diagnostic strategies, low risk of

depression in sufferers, the motivation of this research comes from the unsolved issues

surrounding human CR responses to exercise, and tends to develop an innovative method

for cardiovascular disease detection and diagnosis, home based rehabilitation monitoring,

and exercise strength regulation under free living conditions.

Within a second after muscular contraction, there is a withdrawal of vagal

outflow to the heart, which is followed by an increase in sympathetic stim-

ulation of the heart. This results in an increase in cardiac output to ensure

that blood flow to the muscle is matched to the metabolic needs. [78]

The CR system involves the cardiovascular system (e.g., heart, arteries and veins) and

the respiratory system (e.g., mouth, nose and lungs). In most cases, as the body is

exposed to exercise, the cardiovascular system immediately responds to changes in car-

diac output (Q), blood flow, and blood pressure, while the respiratory system triggers
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an acceleration of your normal breathing rate [76].

The cardiorespiratory response to dynamic exercise displays a well-defined

pattern in normal human subjects. Dynamic exercise is accompanied by

an increase in pulmonary ventilation, a rise in cardiac output, caused by

an increase both in heart rate and stroke volume, and a redistribution of

blood flow towards active muscles, mainly owing to a strong decrease in their

vascular resistance. As a consequence of skeletal muscle vasodilation, total

peripheral resistance falls, and systemic arterial pressure only rises modestly

[114] [42] [92].

Since most of dynamics occurred in both cardiovascular and respiratory systems (CR

systems) are nonlinear in fact, and this makes our study very interesting and challenging.

In the second half of the 20th century, developments in mathematical mod-

eling were limited to basic paradigms, such as flow in morphologically simple

regions (e.g., Poiseuille or Womersley solutions) [123], or to models based

on electric network analogies. Exact solutions are very difficult to obtain in

more general situations, because of the strong nonlinear interactions among

different parts of the system and the geometric complexities of individual

vascular morphologies. [123]

With all essential dynamical characteristics of the CR kinetics taken into account, this

PhD dissertation includes the use of application engineering principles (such as data ac-

quisition, signal processing and modeling, and control theory) and computer simulation

techniques for a better choice of the monitoring, modeling, and control of human CR

responses to exercise, which features a small, portable, non-invasive, and reliable auto-

mated exercise assistance system provided for more efficient and safe exercises. As such,
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it particularly concerns about the response relationship between exercise and human CR

system from control engineering practice and aims to develop a set of methodologies

to the monitoring, modeling, and control of human CR responses to exercise under a

portable and non-invasive manner.

1.2 Aims

Currently, both invasive and non-invasive biomedical measurements are rapidly devel-

oped. However, an invasive device is usually considered to have higher potential hazard

than an equivalent non-invasive device [38]. In human exercise responses and relative

areas, the approach to non-invasive measurement is more considered than the one to

invasive measurement, due to its specific circumstances where the users will only com-

promise the non-invasive conditions for their daily exercises meaning that no break in

the skin is created, and there is no contact with the mucosa, or skin break, or internal

body cavity beyond a natural or artificial body orifice.

Another important performance taken into account is portability. Continuous measure-

ment of key CR responses, such as heart rate (HR), oxygen consumption (VO2), cardiac

output (Q), and stroke volume (SV), for outdoor exercise is an important and very chal-

lenging problem, as most existing equipment for measuring CR variables is only suitable

for indoor exercise monitoring because of its size, weight, and mobility limitations. We

aim to develop a sophisticated body-worn portable sensor network, which can wirelessly

monitor the key CR variables to both indoor and outdoor exercise under free living

conditions.

In addition, the fundamental difficulty of this study is the modeling and control of

CR responses from non-invasive measured parameters. The qualitative methodology is

commonly a fashionable branch of research in the area of the biomedical system mod-
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eling and control. However, the reliability of such approaches is weakened by the fact

that the plant is under-standardized and depends on the insights and the abilities of

the observer, thus making an assessment of reliability difficult [50]. To this end, we

emphasize a quantitative approach for this study, as it eliminates extraneous variables

within the internal structure of systems, and can directly assess the experimental data

by a standardized test [50]. Following this idea, our studies develop model-based control

systems in terms of both single-input single-output (SISO) and multiple-input single-

output (MISO) frameworks. First, within the SISO closed-loop control framework a

control oriented modeling approach using support vector regression (SVR) is presented.

Based on that, a novel model predictive control (MPC) algorithm is developed for the

regulation of exercise intensity. Moreover, in order to achieve a more reliable control

performance for exercisers, a fault tolerant control design with MISO processes is in-

troduced. The multi-loop integral controllability (MIC) analysis for MISO processes is

proposed.

Describing in more details the purpose of this study, there are a number of aims as

follows:

1. Develop a switching model for human CR responses to the onset and

offset of exercise. This approach investigates the modeling of human CR re-

sponses to both the onset and offset of exercise. Twenty subjects performed stan-

dardized square-wave exercise bouts on a treadmill. During exercise, HR and VO2

were monitored and recorded by a portable gas analyzer (K4b2, Cosmed). Experi-

mental results confirm that the dynamical characteristics at the onset and offset of

exercise are distinctively different. In order to fully justify the variations of system

dynamics, an innovative switching Resistance-Capacitor (RC) model is proposed.

This model can not only explicitly depict the dynamical characteristics at the on-

set/offset of exercise and the transition in between but also attempt to quantify
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lactate metabolism following the term ‘oxygen debt’. The proposed model is simu-

lated by using Matlab/Simulink, which shows that this single switching model can

estimate human CR responses well in the sense that the simulated model output

fits well with the experimental observations at the onset and offset of exercise.

2. Develop a control oriented modeling methodology to depict nonlinear

behaviour of CR dynamics to exercise by using support vector regres-

sion (SVR). In order to effectively regulate CR responses to exercise, a SISO

closed-loop control framework is proposed. Within this framework, the nonlinear

behaviour of CR dynamic response at the onset and offset of treadmill exercise is

investigated. A well designed exercise protocol is applied for capturing nonlinear

dynamic behaviours, and a healthy male subject has been invited to participate

in the test. Non-invasively measured variables, such as ECG, body movements,

and oxygen saturation (SpO2), have been reliably monitored and recorded. Based

on three sets of experimental data, both steady state gain and time constant of

HR response are identified. We established nonlinear models for steady state gain

and time constant vs walking speed based on SVR. By using the established SVR

models, the nonlinear behaviours for both onset and offset of exercises have been

well described.

3. Develop a model-based control methodology for the regulation of exer-

cise strength at the onset and offset of exercise. In this regard, the study

explores control methodologies to handle time variant behavior for HR dynam-

ics at the onset and offset of exercises. To achieve this goal, a novel switching

Model Predictive Control (MPC) algorithm is presented to optimize the exercise

strength at both onset and offset of exercises. Specifically, Dynamic Matrix Con-

trol (DMC), one of the most popular MPC control algorithms, has been employed

as the essential of the optimization of process regulation while switching strategy
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has been adopted during the transfer between the onset and offset of exercises.

The parameters of the DMC/MPC controller have been well tuned based on a

previously established SVM based regression model relating to both onset and off-

set of treadmill walking exercises. The effectiveness of the proposed modeling and

control approach has been shown from the regulation of dynamical HR response

to exercise through simulation using MATLAB.

4. Develop a Multi-loop Integral Controllability (MIC) analysis method

for nonlinear 2ISO and MISO processes. Although the performance of the

SISO models is adequate, we believe that a special non-square model, unitizing the

fault-tolerant scheme that adds multiple redundant input data, would be achieve

a better estimate of each of the desired CR variables. Multi-loop integral control

is still one of the most popular control strategies in industry due to its simplicity,

efficiency, offset free tracking, and capability for fault tolerance. Skogestad and

Morari introduced Decentralized Integral Controllability (DIC) to investigate the

decentralized unconditional stability under multi-loop integral control for square

systems. However, in engineering practice, some multivariable processes may not

be square, which often utilize multiple redundant control inputs for the regulation

of only one single output. This study extends the concept of Decentralized Integral

Controllability to non-square systems, and presents sufficient conditions for MISO

nonlinear processes based on singular perturbation analysis.

For HR regulation during treadmill exercises, simultaneously adjusting both tread-

mill speed and gradient is able to handle system failures and improve the reliability

of treadmill based exercise rehabilitation. By using the MIC analysis method, this

study provides sufficient conditions for HR tracking under multi-loop integral con-

trol. Simulation results indicate that simultaneously manipulating gradient and

speed can significantly achieve better tracking performance.
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5. Develop an Android application for monitoring and regulation of out-

door exercise. This study develops an Android application to estimate human

CR towards the predefined exercise protocol and assist people to regulate exer-

cise strength under the outdoor exercise environment. During exercise, a portable

HxMBT Bluetooth HR chest strap is unitized to monitor the HR dynamics. In

order to obtain the real-time HR data, the developed Android application is

paired and connected with the HxMBT HR sensor via Bluetooth, while devel-

oping a boundary control method for regulations of exercise strength following

the predefined exercise protocol, and an auditory system for exercise guidance

(this technique has been applied, until now, to a boundary control algorithm, and

is compatible with HR signals (Zephyr�) only. The results obtained, however,

are encouraged enough to, in a near future, develop more portable Bluetooth in-

struments and sensors such as ECG (electrocardiogram), respiration rate, body

temperature, tri-axial accelerometery).

1.3 Background

Mathematical and numerical investigations of the cardiovascular system, al-

though a relatively new research area, will give rise to some of the major

mathematical challenges of the coming decades. - Alfio Quarteroni

The physiology of the cardiovascular system has been elucidated only gradually over

many centuries. Among the major actors in the lengthy process have been some of the

central characters in human history.

Aristotle (384 - 322 B.C.), for example, identified the role of blood vessels in transferring

“animal heat” from the heart to the periphery of the body (although he ignored blood
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circulation). In the third century B.C., Praxagoras realized that arteries and veins have

different roles (believing that arteries transported air while veins transported blood).

Galen (c. 130 - 200 A.D.) was the first to observe the presence of blood in arteries. [123]

Much later, in the 17th century, Sir William Harvey inaugurated modern cardiovascular

research with his De Motu Cardis and Sanguinis Amimalibus, in which he wrote, “When

I turned to vivisection I found the task so hard I was about to think that only God

could understand the heart motion.” His plaintive moment notwithstanding. Harvey

observed that the morphology of valves in veins is such that they are effective only if

blood is flowing toward the heart. His conclusion: “I began privately to consider if it

(the blood) had a movement, as it is, it would be in a circle.” [123]

In the 18th century, the Reverend S. Hales introduced quantitative studies of blood pres-

sure (Hemostatics, 1773). Later, Euler and D. Bernoulli both made great contributions

to fluid dynamics research. In particular, Bernoulli, investigating the laws governing

blood pressure as a professor of anatomy at the University of Basel in Switzerland, for-

mulated his famous law relating pressure, density, and velocity: p + 1/2ρ|μ|2 =const

(vis viva equation, 1730). [123]

In the 19th century, J.P. Poiseuille, a medical doctor and a physicist, was studying

the flow of blood in arteries when he derived the first simplified mathematical model

of flow in a cylindrical pipe, a model that still bears his name today. T. Young later

made fundamental contributions to research on elastic properties of arterial tissues and

on the propagation of pressure: “The inquiry in which manner and at what degree the

circulation of the blood depends on the muscular and the elastic powers of the heart and

of the arteries, supposing the nature of these powers to be known, must become simply

a question belonging to the most renowned departments of the theory of hydraulics”

(from a lesson given by Young at the Royal Society of London in 1809). [123]
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Fig. 1.1: A. V. Hill’s hypothesis for energy metabolism during light to moderate exercise
and recovery.

At the beginning of the 20th century, the increase of degenerative diseases (such as

cardiovascular diseases and obesity) results to developments in exercise physiology. In

1922, A. V. Hill et al. introduced the idea that the exercise energy metabolism during

exercise can be described using financial-accounting terms. The concept of ‘oxygen debt’

was first coined in the analysis of exercise energy metabolism, see Fig. 1.1. The body’s

carbohydrate stores are linked to energy ‘credits’. If these stored credits are expended

during exercise bouts, then a ‘debt’ is occurred. The greater energy ‘deficit’, or use

of available stored energy credits, the larger energy ‘debt’ occurs [101]. The ongoing

oxygen uptake after exercise workouts is thought to represent the metabolic cost of

repaying this debt.

Since the second half of the 20th century, numerous linear and nonlinear mathematical
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models were developed. In 1979, Magosso et al. established input design for model dis-

crimination problem arising from respiratory control during exercise [51]. In 1980, Hajek

et al. developed a model of the heart rate regulation during exercise and recovery, by

measuring the reflex vagal under different exercise intensity [74]. In 2002, Magosso and

Ursino introduced a mathematical model for cardiovascular response to dynamic exer-

cise based on electric network analogies [97], in which they stated, “The model is used to

simulate the steady state response of the main cardiovascular hemodynamic quantities

(systemic arterial pressure, and blood flow in working muscle) to various intensity levels

of two-legs dynamic exercise.” In 2005, Meste et al. used a frequency analysis method

to extract the heart period series under graded exercise conditions [102]. In 2008, Cheng

et al. proposed a nonlinear model for the HR response to treadmill walking exercise,

describing the central and peripheral local responses to walking exercise and their in-

teractions [39]. In 2009, Cabasson et al. introduced a analysis method for time delay

estimation of electrocardiographic signal processing from exercise and recovery, with an

enhancement of PR interval estimation (index of the atrioventricular conduction time)

by limiting the distortion effect of the T wave overlapping the P wave at high heart rates

[28]. In 2011, Mesto et al. established a specific heart rate variability analysis during

exercise stress testing based on the integral pulse frequency modulation model, where

a time-varying threshold is included to account for the non-stationary mean heart rate

[14]. Based on developments in mathematical modeling, control techniques also were

applied to developed models before. Su et al., for example, successfully identified the

heart rate dynamic responses during treadmill exercise by using Hammerstein models

in 2007 [148]. Stefano et al. following this study, introduced nonlinear control tech-

niques. They concluded, “An non-local and non-switching control guarantees heart rate

regulation with no exact knowledge of model parameters and nonlinearities: It simply

generalizes to the nonlinear framework the classical proportional-integral control design
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for linear models of HR response during treadmill exercises. [134]”

Recently developments in mathematical modeling in terms of the exercise physiology

of the cardiovascular system are limited to basic paradigms, such as models based on

electric network analogies. Exact solutions are very difficult to obtain in more general

situations, because of the strong nonlinear interactions among different parts of the

system.

1.4 Thesis contributions

The aim of our studies is to research and develop new methods and devices to monitor,

evaluate, and control of human CR system for safe and effective exercise and rehabili-

tation under free-living conditions.

During medical diagnosis and analysis of CR kinetics, transient response of HR/VO2

is important as it contains indicators of current disease or warnings about impending

cardiac diseases [4]. Although both linear and nonlinear modeling approaches [134] [74]

[28] [39] [102] [14] [71] [15] [27] have been applied to explore dynamic characteristics of

HR/VO2 response to exercise, few papers explore variation of dynamic characteristics

under different exercise intensities at the both onset and offset of exercises. For moderate

exercise, literatures often assume HR/VO2 dynamics can be described by linear time

invariant models. In the previous study [151], it was observed that time constant of HR

response to exercise is influenced by the load of exercise, as well as by self conditions.

If the model contains less uncertainty, higher control performance can be expected.

Therefore, it is worthwhile to establish a more accurate dynamical model to enhance

the control performance of HR regulation.

The first attempt to describe the physiological variation in dynamics of the oxygen
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uptake response during exercise and recovery (also called the onset and offset of exercise)

perhaps was proposed by A.V. Hill and others in 1922 [53], who used financial-accounting

philosophies to analyze this behavior. According to their hypothesis, the concept of

‘oxygen debt’ was first coined in the analysis of exercise energy metabolism, see Fig.

1.1. The body’s carbohydrate stores are linked to energy ‘credits’. If these stored

credits are expended during exercise bouts, then a ‘debt’ is occurred. The greater

energy ‘deficit’, or use of available stored energy credits, the larger energy ‘debt’ occurs

[101]. The ongoing oxygen uptake after exercise workouts is thought to represent the

metabolic cost of repaying this debt. Their studies employed financial-accounting terms

to qualitatively depict energy metabolism during exercise and recovery.

The first contribution in this thesis is a switching Resistance-Capacitor (RC) model

provided whose dynamics, which can closely describe human CR responses during ex-

ercise and recovery, not only numerically verify the physiological phenomena reported

by A.V. Hill and others but also quantify energy ‘credits’, ‘debt’, and the whole energy

process during exercise and recovery. The previous modeling approaches (apart from a

preliminary version of our proposed modeling methodology [169]) utilize only a single

non-switching model for either the onset or offset of exercise. Though it can accurately

describe the dynamical characteristics at the onset and/or offset of exercise, the tran-

sient behavior during switching has previously been overlooked. A natural solution for

the limitations of previous methods without description of a switching transient is to

utilize a model inclusive of a switching mechanism. In order to be consistent with ex-

perimental observations, the switching model should guarantee the continuity of model

output during model switching. In addition, it is also desired that the switching model

can provide physiological explanations for variations of the dynamic characteristics at

the onset and offset of exercise. My supervisors introduced to use the traditional series

Resistance-Capacitor (RC) circuit for modeling of dynamic variations at a non-switching
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single onset or single offset of exercise. Following their idea, in this study, an innova-

tive switching Resistance-Capacitor (RC) model in terms of the traditional series RC

circuit was proposed, which uses electronic terms to quantify human CR responses at

the onset, offset, and transition between exercise. Based on the RC model, a possible

physiological explanation for the process of body energy storage and dissipation at the

onset and offset of exercise is also provided.

Another contribution in this thesis is that an nonlinear control approach, namely ma-

chine learning based model predictive control, is presented in order to describe nonlinear-

ities found by the experimental observation, showing that the time constant of HR/VO2

response to exercise is influenced by the load of exercise, as well as by self conditions

(e.g., during a constant exercise intensity such as step response, steady state gain and

time constant of HR/VO2 response to exercise were found to mostly still be varying

in every single moment). This approach is a modeling and control integrated method

including a support vector machine regression (SVR) and a model predictive control

(MPC). In addition, the model based switching control strategy is also adopted deal-

ing with the transfer between the onset and offset of exercise, in that the dynamics in

between are dramatically different, and should be described separately.

Moreover, the previous monitoring methods in terms of management of CR responses to

exercise are only suitable for indoor exercise monitoring because of the size, weight and

mobility limitations of equipments [101] [44] [25]. Fig. 1.2 shows an exercise monitoring

equipment. The current method developed in this PhD thesis has been successfully im-

plemented for outdoor exercise, which includes a portable Bluetooth heart rate sensor

and a smart phone (the HxMBT HR sensor (Zephyr�) and Sumsang Galaxy mobile

phone (Sumsang�) in our experiments), referred to as Smartphone-based portable exer-

cise monitoring and regulation system. In this regard, an Android software is developed

in order to implement the wireless communication amongst hardwares, including an

16



Fig. 1.2: Monitoring equipment for ECG and VO2 during treadmill exercise. [118]

easy-to-use interface and a supervision system. Until now, we have developed a bound-

ary control algorithm to manage or assist people to do exercise. However, the main

contribution of this study is to provide a platform in which the exercise intensity and

duration in outdoor exercises can be well regulated by configuring audible and/or visible

reminder features of mobile phones.

Except for issues on SISO feedback control for human CR responses to exercise, some

problems in MISO feedback system in terms of fault tolerant scheme are also discussed

in this thesis. This study discusses the system fault tolerant ability in 2ISO and MISO

plants in terms of the nonlinear multi-loop integral controllability (MIC) analysis, and

provides sufficient conditions which ensure plants for 2ISO and MISO are MIC respec-

tively. The multi-loop integral controller design for both 2ISO and MISO is such that

the control performance can satisfy the free offset tracking results of the closed loop

system under faulty conditions.
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1.6 Structure of the thesis

This thesis is structured in 9 chapters. The brief overview of CR system and exercise in

biomedical applications is presented in Chapter 2, providing an insight into the back-

ground used to this study for dealing with the problems inherent in the exercise-related

biomedical engineering field, such as metabolic energy process, CR fitness, measurement

of work and energy expenditure, treadmill, exercise protocols, exercise and diseases. In

Chapter 3, the detailed quantitative modeling methodology that we proposed for human

CR responses to the onset and offset of exercise, as it is originally devised, is presented.

The next chapters 4 and 5 are centered on the control approach of human CR responses

to exercise, starting with Chapter 4 where considering the nonlinear time-varying of

dynamics of CR exercise responses a qualitative modeling and simulation methodol-

ogy called Support Vector Machine is proposed to deal with such dynamics. As this

control oriented modeling approach can describe the nonlinear time-variance, Chapter

5 focuses on a novel model-based control algorithm, called switching Model Predictive

Control (MPC), which has been proposed for the optimization of exercise efforts. Chap-

ter 6 describes an enhancement of control methodology for dealing with system fault

tolerance inherited to the development of exercise-related biomedical devices, the fault

tolerant control scheme that applies redundant actuators to handle potential system

failures. To this end, a special non-square 2ISO systems, adjusting both treadmill speed

and gradient simultaneously for the control of single output variable (such as HR or
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VO2), is proposed. In Chapter 7, it extends the multi-loop integral control analysis of

2ISO systems, described already in Chapter 6, and tackles a theoretical problem namely

the controllability analysis of MISO systems. Chapter 8 depicts a portable noninvasive

exercise monitoring methodology for measuring CR variables in the both indoor and

outdoor environments, using the developed smartphone application. Finally, Chapter

9 provides a summary of the applicability of this study, lists the major contribution of

the dissertation, and presents an outlook of open problems and possible future research

efforts extending the work presented in this thesis.

21



Chapter 2

Literature review in exercise
biomedicine

2.1 Exercise metabolism

There are three metabolic energy pathways existing in the human body: the phosphagen

system, glycolytic system and the aerobic system [86]. The phosphagen system (also

called the adenosine triphosphate (ATP)-creatine phosphate (CP) system) provides the

fastest pathway to resynthesize ATP. CP, stored in skeletal muscles, is catabolised to

allow the phosphate to combine with ADP to produce ATP. No carbohydrate or fat is

used in this process and the regeneration of ATP is resultant solely from CP. As this

process does not require the presence of oxygen to resynthesize ATP, it is anaerobic

in nature. The phosphagen system is the predominant energy system used for all-out

exercise lasting up to about 10 seconds.

Glycolysis is the second-fastest way to resynthesize ATP and is the dominant system for

exercise lasting from 30 seconds to about 2 minutes. During glycolysis, carbohydrate,

in the form of either blood glucose (sugar) or glycogen (the stored form of glucose in

muscles and the liver), is degraded through a series of chemical reactions to form pyru-

vate (glycogen is first converted into glucose through a process called glycogenolysis).

For every glucose molecule converted to pyruvate through glycolysis, two molecules of

usable ATP are produced [56][86]. Thus, only small volumes of energy are produced

via this pathway. Once pyruvate is formed, it has two fates: conversion to lactate or
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conversion to a metabolic intermediary molecule called acetyl coenzyme A (acetyl-CoA),

which enters the mitochondria for oxidation and the production of more ATP [128][86].

Conversion to lactate occurs when the demand for oxygen is greater than the supply

(i.e., during anaerobic exercise). Conversely, when there is enough oxygen available to

meet the muscles’ needs (i.e., during aerobic exercise), pyruvate (via acetyl-CoA) enters

the mitochondria and goes through the aerobic system.

The aerobic system, which is dependent on the sufficient presence of oxygen in the

mitochondria, is the slowest pathway to resynthesize ATP. The aerobic system, including

the Krebs cycle and the Electron Transport Chain, uses blood glucose, glycogen and fat

as fuels to resynthesize ATP in the mitochondria of muscle cells. Carbohydrate, glucose

and glycogen are first metabolized through glycolysis, with the resulting pyruvate (via

acetyl-CoA), entering the Krebs cycle. The electrons removed from the fuel sources in

the Krebs cycle are then transported through the Electron Transport Chain, where ATP

and water are produced. Complete oxidation of glucose via glycolysis, the Krebs cycle

and the electron transport chain produces 36 molecules of ATP for every molecule of

glucose broken down. Thus, the aerobic system produces 18 times more ATP than does

anaerobic glycolysis (via lactate) from each glucose molecule.

Fat, which is stored as triglyceride in adipose tissue underneath the skin and within

skeletal muscles (called intramuscular triglyceride), is the other major fuel for the aerobic

system, and is the largest store of energy in the body. When using fat, triglycerides

are first broken down into free fatty acids and glycerol (a process called lipolysis). The

free fatty acids, which are composed of a long chain of carbon atoms, are transported

to the muscle mitochondria, where the carbon atoms are used to produce acetyl-CoA

(a process called beta-oxidation).

Following acetyl-CoA formation, fat metabolism is identical to carbohydrate metabolism,

with acetyl-CoA entering the Krebs cycle and electrons being transported to the elec-
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tron transport chain to form ATP and water. The oxidation of free fatty acids yields

many more ATP molecules than the oxidation of glucose or glycogen. For example, the

oxidation of the fatty acid palmitate produces 129 molecules of ATP [128][56].

2.2 Human cardiorespiratory responses to exercise

CR fitness is the ability of human body’s cardiovascular and respiratory systems to

supply oxygen to skeletal muscles during physical activity. Regular exercise makes these

systems more efficient by enlarging the heart muscle, enabling more blood to be pumped

with each stroke, and increasing the number of small arteries in skeletal muscles, which

supply more blood to working muscles. Exercise improves the respiratory system by

increasing the amount of oxygen that is inhaled and distributed to body tissue [46].

2.2.1 Indicators of cardiorespiratory fitness

There are numerous variables in terms of indicating the cardiovascular fitness during ex-

ercise, such as electrocardiogram (ECG), blood pressure, cardiac output (Q), respiration

rate, body temperature, and plasma glucose concentration, etc.

2.2.1.1 Electrocardiogram

An ECG is used to measure the rate and regularity of heartbeats, as well as size and

position of the chambers, the presence of any damage to the heart, and the effects of

drugs or devices used to regulate the heart, such as a pacemaker. Electrocardiography

is a transthoracic (across the thorax or chest) interpretation of the electrical activity of

the heart over a period of time, as detected by electrodes attached to the surface of the

skin and recorded by a device external to the body.
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Fig. 2.1: The normal ECG during rest.

Fig. 2.1 illustrates a normal ECG pattern. Each of these distinct waveforms is identified

by different letters. The P wave results from the depolarization of the atria, the QRS

complex results from ventricular depolarization, and the T wave is due to ventricular

repolarization.

Analysis of the ECG during exercise is often used in the diagnosis of coronary artery

disease. The most common cause of heart disease is the collection of fatty plaque (also

called atherosclerosis) inside coronary vessels. This collection of plaque reduces blood

flow to the myocardium. The adequacy of blood flow to the heart is relative - it depends

on the metabolic demand placed on the heart. An obstruction to a coronary artery, for

example, may allow sufficient blood flow at rest, but may be inadequate during exercise

due to increased metabolic demand placed on the heart. Therefore, a graded exercise

test may serve as a ‘stress test’ to evaluate cardiac function. [118]

An example of an abnormal exercise ECG is shown in Fig. 2.2, the depressed ST segment

in the picture on the right when compared to the normal ECG on the left. Myocardial

ischemia (reduced blood flow) may be detected by changes in the ST segment of the

ECG.
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Fig. 2.2: Depression of the ST segment of the electrocardiogram as a result of myocardial
ischemia (left: normal right: ischemia). [118]

2.2.1.2 Blood pressure

Blood pressure, sometimes referred to as arterial blood pressure, is the force exerted by

blood against the arterial walls and is determined by how much blood is pumped and

the resistance to blood flow. Arterial blood pressure can be estimated by the use of a

sphygmonanometer. The normal blood pressure of an adult male is 120/80, while that

of adult females tends to be lower (110/70). The larger number in the expression of

blood pressure is the systolic pressure expressed in millimeters of mercury (mm Hg);

the lower number in the blood pressure ratio is the diastolic pressure, again expressed in

(mm Hg). Systolic blood pressure is the pressure generated as blood is ejected from the

heart during ventricular systole. During ventricular relaxation (diastole), the arterial

blood pressure decreases and represents diastolic blood pressure.

In the body, the arterial blood pressure depends on a variety of physiological factors,

including cardiac output, blood volume, resistance to flow, and blood viscosity. An

increase in any of these variables results in an increase in arterial blood pressure. Con-

versely, a decrease in any of these variables causes a decrease in blood pressure. Acute

(short-term) regulation is achieved by the sympathetic nervous system, while long-term

regulation of blood pressure is primarily a function of kidneys. [43]
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Fig. 2.3: Factors that regulate Q (variables that stimulate Q are shown by solid arrows,
while factors that reduce Q are shown by dotted arrows). [118]

2.2.1.3 Cardiac output

Cardiac output (Q) is the product of the HR and SV (amount of blood pumped per

heartbeat):

Q = HR× SV. (2.1)

Thus, Q can be increased due to a rise in either HR or SV. During exercise, the increase

in Q is due to an increase in both HR and SV. Fig. 2.3 summarizes those variables that

influence Q during exercise.

HR is the number of heartbeats per unit of time, typically expressed as beats per minute

(bpm) [138]. During exercise the quantity of blood pumped by the heart must change

in accordance with the elevated skeletal muscle oxygen demand. Since the SA node

controls HR, changes in HR often involve factors that influence the SA node. The two

most prominent factors that influence HR are the parasympathetic and sympathetic

nervous systems [132] [158]. The parasympathetic nervous system acts as a braking

system to slow down heart rate. Conversely, stimulation of the sinoatrial node (SA node)

and atrioventricular node (AV node) by the sympathetic nervous system is responsible

for increases in heart rate [85].

SV is the volume of blood pumped from one ventricle of the heart with each beat. SV, at
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rest or during exercise, is regulated by three variables: the end-diastolic volume (the vol-

ume of blood in the ventricles at the end of diastole); the average aortic blood pressure;

and the strength of ventricular contraction. The end-diastolic volume influences SV in

the following way. Two physiologists, Frank and Starling, demonstrated that stretch

of the ventricles increased with an enlargement of the end-diastolic volume. This rela-

tionship has become known as the Frank-Starling law of the heart. The increase in the

end-diastolic volume results in a lengthening of cardiac fibers, which improves the force

of contraction. A rise in cardiac contractility results in an increase in the rate of venous

return to the heart.

2.2.1.4 Respiration rate

VO2, oxygen consumption, is the amount of oxygen taken up and utilized by the body

per minute. Oxygen extraction considers the amount of oxygen in arterial blood that

is sent to metabolically active tissue, and the amount of oxygen in venous blood being

returned to the heart. The difference in arterial oxygen content and venous oxygen con-

tent determines the amount of oxygen that was used by the tissue. Oxygen delivery, on

the other hand, is a measure of cardiac function, specifically of Q. Accurately measuring

oxygen uptake or consumption can be evaluated directly in a clinical setting. It typically

uses a treadmill or stationary bike as an ergometer to measure control exercise intensity.

The subject wears a mask with a breathing tube connect to oxygen and carbon dioxide

analyzers to measure consumption and outputs.

VO2max is most closely linked to the functional capacity of the cardiovascular system to

deliver blood to the working muscles during maximal and supramaximal (>100%VO2max)

work, while maintaining mean arterial blood pressure. It has the form of

V O2max = Q× (CaO2 − CvO2), (2.2)
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where Q is the cardiac output of the heart, CaO2 is the arterial oxygen content, and

CvO2 is the venous oxygen content. (CaO2 − CvO2) is also known as the arteriovenous

oxygen difference (systemic oxygen extraction).

Endurance training programs that increase V O2max involve a large muscle mass in dy-

namic exercise (e.g., running, cycling, swimming, or cross-country skiing) for twenty to

sixty minutes per session, three to five times per week at an intensity of about 50% to

85% V O2max [43].

2.2.1.5 Body temperature

Skin temperature of human body can be measured by placing temperature sensors

(such as thermistors) on the skin at various locations. The mean skin temperature

can be calculated by assigning certain factors to each individual skin measurement

in proportion to the fraction of the body’s total surface area that each measurement

represents. For example, mean skin temperature (Ts) can be estimated by the following

formula:

Ts = (Tforehead + Tchest + Tforearm + Tthigh + Tcalf + Tabdomen + Tback)/7, (2.3)

where Tforehead, Tchest, Tforearm, Tthigh, Tcalf , Tabdomen, and Tback represent skin tem-

peratures measured on the forehead, chest, forearm, thigh, calf, abdomen and back,

respectively.

Heat production increases during exercise due to muscular contraction and is directly

proportional to the exercise intensity. Fig. 2.4 illustrates the roles of evaporation,

convection, and radiation in heat loss during constant-load exercise in a moderate envi-

ronment. [105]
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Fig. 2.4: Changes in metabolic energy production, evaporative heat loss, convective
heat loss, and radiative heat loss during 25 minutes of submaximal exercise in a cool
environment. [118]

2.2.1.6 Plasma glucose concentration

Plasma glucose is the amount of glucose present in the blood [40] [54] [68] [79] [146]

[101]. It is maintained by a rate of glucose appearance (entry into the blood) and glu-

cose disposal (removal from the blood). In the healthy individual, rate of appearance

and disposal are essentially equal during activity of moderate intensity and duration;

however, sufficiently exercise intense (such as the onset exercise in our experiment) can

result in an imbalance leaning towards a higher rate of disposal than appearance, at

which point glucose levels fall. Rate of glucose appearance is dictated by the amount of

glucose being absorbed at the gut as well as hepatic glucose output. Although glucose

absorption from the gut is not typically a source of glucose appearance during exercise,

the liver is capable of catabolising stored glycogen (glycogenolysis) as well as synthe-

sizing new glycogen (gluconeogenesis). When a subject exercises initially, the body

responds to the activity by releasing hormones that cause it to increase rate of glucose

appearance. This occurs primarily through glycogenolysis. However, along with con-

tinued exertion of the workout, rate of glucose appearance is dropping down as glucose
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units are quickly used up. Thereby onset of exercise can induce a tendency of decreas-

ing the blood glucose level, because the rate of consumed energy within muscle cells is

gradually larger than that supplied through glucongeogenesis or muscle glycogen [101].

Following the workout of exercise, firstly rate of glucose appearance remains high as the

demanded energy from muscle cells sharply reduces. This imbalanced plasma glucose

concentration triggers the gluconeogenesis process in the liver. Then the blood glucose

level, for a healthy individual, can drop down to its pre-exercise equilibrium at which

one starts exercising.

2.2.2 Measurement of work and energy expenditure

2.2.3 Treadmill

Treadmill is a device for walking or running while staying in the same place. Work

usually can be calculated for a participant moving on a treadmill by knowing the par-

ticipant’s body weight, and the gradient and speed at which the participant is moving.

Medical treadmills are class IIb active therapeutic devices and also active devices for

diagnosis. They measure the HR of the subject. When connected through interface

with ECG or ergospirometry or blood pressure monitor they become a new medical

system (e.g., stress test system or cardiopulmonary rehab system) and measure also the

ECG, VO2max, breath volumes, blood pressure, muscle activity and various other vital

functions.

2.2.4 Exercise protocol

The onset and offset of exercise (also namely exercise and recovery) is a test that evalu-

ates an individual’s physiological response (e.g., HR and VO2) to exercise, the intensity
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of which is increased in stages.This kind of test can be performed using bench (for step-

ups), a cycle ergometer, or a treadmill. A typical test has three stages: warm-up, the

onset of exercise (also called exercise), and the offset of exercise (also called recovery).

The warm-up stage aims to minimize effects of the anaerobic system for the onset and

offset of exercise, including the phosphagen and glycolytic systems with respect to the

metabolic energy pathways introduced in section 2. Moreover, the exercise duration and

intensity for the onset and offset of exercise in experiments are followed by [16], in which

the VO2max was estimated in people of different ages. For example, the horizontal axis

in Fig. 2.5 demonstrates the warm-up (before 0), exercise (0 - 10 min), and recovery (10

- 20 min), respectively. The test starts with a subject walking gently on a treadmill for

warm-up, whose intensity will then be accelerated in the onset of exercise stage at the

predefined time interval. After the onset of exercise workout the subject is followed by

the offset of exercise stage, which usually has a same exercise intensity with the one in

the warm-up stage. HR and VO2 are monitored continuously. The onset and offset of

exercise provides estimates of the ability of the lungs, heart, and blood vessels to deliver

oxygen to respiring tissue; therefore they are measurements of aerobic or CR fitness.

2.2.4.1 Transition from rest to exercise

At the beginning of exercise there is a rapid increase in Q. It has been shown that Q

begins to increase within the first second after muscular contraction begins, see Fig. 2.5.

If the work rate is constant and below the lactate threshold, a steady state plateau in

HR, SV and Q is reached within two to three minutes. This response is similar to that

observed in oxygen uptake at the beginning of exercise. [118]
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Fig. 2.5: Changes in Q, SV, and HR during the transition from rest to submaximal
constant intensity exercise and during recovery. [118]

2.2.4.2 Transition from exercise to recovery

Recovery from short-term, low exercise intensity is generally rapid. Fig. 2.5 shows that

HR, SV, and Q all decrease rapidly back toward resting levels following this exercise

protocol. Recovery speed varies from individual to individual, with well-conditioned

subjects demonstrating better recuperative powers than untrained subjects. In regard

to recovery HRs, the slopes of HR decay following exercise protocol are generally the

same for trained and untrained subjects. However, trained subjects recover faster since

they do not achieve as a high HR as untrained subjects during a particular exercise

protocol. [131]

Recovery from long-term exercise is much slower than the response depicted in Fig. 2.5.

This is particularly true when the exercise is performed in hot/humid conditions, since

an elevated body temperature delays the fall in HR during recovery from exercise. [131]
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2.2.4.3 Energy expenditure

In biology, energy balance is the biological homeostasis of energy in living systems. It

is measured with the following equation [157]:

Energy intake = internal heat produced+ external work + energy stored. (2.4)

In the US, it is generally measured using the energy unit calorie (i.e., kilogram calorie),

which equals the energy needed to increase the temperature of 1 kg of water by 1 ◦C.

This is about 4.184 kJ.

Energy expenditure is mainly a sum of internal heat produced and external work. In

general, there are two techniques employed in the measurement of human energy ex-

penditure: direct calorimetry and indirect calorimetry. Direct calorimetry is the process

that measures a body’s metabolic rate via the measurement of heat production. The

general process can be drawn schematically as [26]:

Foodstuff +O2 → ATP +Heat. (2.5)

Although directly calorimetry is considered to be a precise technique for the measure-

ment of metabolic rate, equipment for measurement of heat production is very expensive

and the measuring process during exercise is complicated. Fortunately, the term called

indirect calorimetry can be used to measure metabolic rate, which can be explained by

the following relationship:

Foodstuff +O2 → Heat+ CO2 +H2O. (2.6)

Since a direct relationship exists between O2 consumed and the amount of heat produc-
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tion in the body, measuring O2 consumption (VO2) provides an estimate of metabolic

rate [60].

2.3 Exercise and diseases

The nature of the illness that beset the whole world population in recent years has

undergone a transition from a predominance of infectious disease (e.g. tuberculosis

and pneumnia) to the present predominance of degenerative diseases (e.g. cancer and

cardiovascular diseases) [76]. This change represents the contribution of the medical

profession, both in research and clinical practice, toward the virtual control and the

imminent eradication of a large portion of the formerly dreaded infectious scourges. For

example, in 1996 cardiovascular diseases and cancers were responsible for 1.5 million

deaths, greatly overshadowing all other causes of death [7].

The increase of such degenerative diseases such as cardiovascular and coronary heart

diseases, stroke, cancer, diabetes mellitus, osteoporosis, and osteoarthritis offers a chal-

lenge not only to medicine, but to exercise as well [23]. It seems that as improvements

in medical science allow us to escape decimation by such infectious diseases as tubercu-

losis, diphtheria, and poliomyelitis, we live longer only to fall prey to the degenerative

diseases at a slightly later date. Because degenerative diseases will represent the major-

ity of the whole illness of human beings, and because the major degenerative diseases

occur later in life (after 25 years of age), as explained latter in the section 2.3, it is

not uncommon to see such individuals in adult fitness programs, where the research for

biomedical devices in terms of the secretion of exercise has been explored by engineers.

Exercise was used as a primary nonpharmacological intervention for a variety of prob-

lems, and as a normal part of therapy for the treatment of coronary heart disease and

diabetes. This section 2.3 will discuss the special concerns that must be addressed when
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exercise is used for people with specific diseases.

2.3.1 Cardiac diseases

2.3.1.1 Risk factors

Coronary heart disease involves degenerative changes in the intima, or inner lining,

of the larger arteries that supply the myocardium. The problem of establishing the

cause of cardiovascular diseases and coronary heart diseases is much more difficult,

because genetic, environmental, and behavioral factors are involved in a very complex

manner. The difficulty of establishing ‘cause’ in cardiovascular diseases and coronary

heart diseases is best described by the model called the web of causation [96] [130]

[118]. Fig. 2.6 shows how a combination of genetic (heredity), environmental (stress)

and behavioral (diet, smoking, physical activity) factors interact to cause cardiovascular

disease [130] [145]. These risk factors play a major role in prevention programs aimed

at reducing disease and premature death associated with degenerative diseases [21] [84].

The process, atherosclerosis, is the leading contributor to heart attack and stroke deaths

[7] [45]. Fig. 2.7(a) shows the progressive occlusion of an artery from a buildup of

calcified fatty substances in atherosclerosis. The first overt sign of atherosclerotic change

occurs when lipid-laden macrophage cells cluster under endothelial lining in the artery

to form bulge (fatty streak). Over time, proliferating smooth muscle cells migrate to the

inner endothelial layer and accumulate to narrow the lumen of the artery. A thrombus

forms and plugs the artery, depriving the myocardium of normal blood flow and oxygen

supply. When the thrombus blocks one of the smaller coronary vessels, a portion of the

heart muscle dies (necrosis) and person suffers a heart attack or myocardial infarction

(MI) [118].

The early classic epidemiological studies related to atherosclerotic disease and physical
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Fig. 2.6: Web of causation: an epidemiologic model showing the complex interaction of
risk factors associated with development of chronic degenerative disease such as cardio-
vascular disease.

activity is based primarily on the epidemiological investigation conducted in Framing-

ham, Massachusetts [45]. When this study began in 1949, cardiovascular disease already

accounted for 50 percent of all deaths in the United States. The Framingham study is

an observational prospective study designed to determine how those who develop car-

diovascular disease differ from those who do not. Approximately 5000 men and women

were examined every year, and measures such as blood pressure, electrocardiographic

abnormalities, serum cholesterol, smoking, and body weight were obtained. The inves-

tigators were then able to relate the different measures to the progression of coronary

heart diseases [45].

The Framingham Study found that the risk of coronary heart diseases increases with the
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(a) Deterioration of a coronary artery. (b) Cast of coronary artery vasculature.

Fig. 2.7: Coronary atherosclerosis disease. A coronary artery bypass graft (CABG)
creates a new ‘transportation route’ around the blocked region to allow the required
blood flow to deliver oxygen and nutrients to the previously ‘starved’ surrounding heart
muscle. The saphenous vein from the leg is the most commonly used bypass vessel.
CABG involves sewing the graft vessels to the coronary arteries beyond the narrowing
or blockage, with the other end of the vein attached to the aorta. Medications (statins)
lower total and LDL-cholesterol, and daily low-dose aspirin (81 mg) reduces post-CABG
artery narrowing beyond the insertion site of the graft. Repeat CABG surgical mortality
averages 5 to 10%.

number of cigarettes smoked, the degree to which the blood pressure is elevated, and the

quantity of cholesterol in the blood [84]. In addition, the overall risk of coronary heart

diseases increases with the number of risk factors; that is, a person who has a systolic

blood pressure of 160 mm Hg, a serum cholesterol of 250 mg/dl, and smokes more than

a pack of cigarettes a day has about six times the risk of coronary heart disease as a

person who has only one of these risk factors (see Fig. 2.6). It is important to remember

that risk factors interact with each other to increase the overall risk of coronary heart

diseases. This has implications for prevention as well as treatment. In this regard,

getting a hypertensive patient to quit smoking confers more immediate benefit than any

anti-hypertensive drug [84]. Furthermore, regular physical activity reduces the risk of
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coronary heart diseases, even in those who smoke and are hypertensive. The concern

about whether a risk factor is related to cardiovascular disease has special significance

for physical activity. For many years physical inactivity was believed to be only weakly

associated with heart disease and was not given much attention as a public health

concern. However, in the late 1980s and early 1990s that changed rather dramatically.

In 1987, Powell et al. [57] did a systematic review of the literature dealing with the role of

physical activity in the primary prevention of coronary heart diseases. The review found

the association to be plausible given the role of physical activity in improving glucose

tolerance, increasing fibrinolysis (breaking of clots), and reducing blood pressure. They

also investigated the percentages of U.S. population at risk for recognized risk factors

related to coronary heart diseases and risk ratio for each risk factor (see Fig. 2.8). The

investigators calculated the relative risk of coronary heart diseases due to inactivity to

be about 1.9, meaning that sedentary people had about twice the chance of experiencing

cardiovascular diseases that physically active people had. The relative risk was similar

to smoking (2.5), high serum cholesterol (2.4), and high blood pressure (2.1). See Fig.

2.6 for more on risk factors.

It should be noted that when the authors controlled for smoking, blood pressure, choles-

terol, age, and sex (all of which are linked with coronary heart disease), the association

of physical activity and coronary heart disease remained, indicating that physical ac-

tivity was an independent risk factor for coronary heart diseases [11]. Obviously, this

conclusion is contradictory to the historical study [33]. It used to classify risk factors

for coronary heart diseases into primary and secondary. Primary meant that a factor in

and of itself increased the risk of coronary heart diseases, and secondary meant that a

certain factor increased the risk of coronary heart diseases only if one of primary factors

was already present. Of course, Powell et al. were not the only investigators in this

issue [111] [57] [142].
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Fig. 2.8: Percentage of U.S. population at risk for recognized risk factors related to
coronary heart disease and risk ratio for each risk factor.

2.3.1.2 Cardiac patient

The persons served by exercise rehabilitation programs include those who have ex-

perienced angina pectoris, myocardial infarctions (MI), coronary artery bypass graft

(CABG) surgery, and angioplasty [55]. Angina pectoris is the chest pain related to

ischemia of the ventricle due to occlusion of one or more of the coronary arteries. The

symptoms occur when the work of the heart (estimated by the double product: systolic

blood pressure × HR) exceeds a certain value. Nitroglycerin is used to prevent an at-

tack and/or relieve the pain by relaxing the smooth muscle in veins to reduce venous

return and the work of the heart [99]. Angina patients may also be treated with a

β-blocker like propranolol (Inderal�). Exercise training supports this drug effect: as

the person becomes trained, the HR response at any work rate is reduced. This allows
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the individual to take on more tasks without experiencing the chest pain.

Myocardial infarction (MI) patients have actual heart damage (loss of ventricular mus-

cle) due to a prolonged occlusion of one or more of the coronary arteries. The degree to

which left ventricular function is compromised is dependent on the mass of the ventricle

permanently damaged. These patients are usually on medications to reduce the work

of the heart (β-blocker), and control the irritability to the heart tissue so that dan-

gerous arrhythmias (irregular heart rhythms) do not occur. Generally, these patients

experience a training effect similar to those who do not have a MI [55].

Coronary artery bypass graft (CABG) surgery patients have had surgery to bypass one

of more blocked coronary arteries. In this procedure, a blood vessel from the patient is

sutured onto the existing coronary arteries above and below the blockage. The success

of the surgery is dependent on the amount of heart damage that existed prior to surgery,

as well as the success of the revascularization itself. In those who had chronic angina

pectoris prior to CABG, most find a relief symptoms, with 50 to 70% having no more

pain [167]. These patients benefit from systematic exercise training because most are

deconditioned prior to surgery as a result of activity restrictions related to chest pain.

In addition, exercise improves the chance that the blood vessel graft will remain open

[122] and helps the patient to differentiate angina pain from chest wall pain related to

the surgery.

Some coronary heart disease patients undergo percutaneous transluminal coronary an-

gioplasty (PTCA) to open occluded arteries. In this procedure the chest is not opened;

instead, a balloon-tipped catheter (a long slender tube) is inserted into the coronary

artery, where the balloon is inflated to push the plaque back toward the arterial wall

[159]. ‘Stents’ may be used in the PTCA procedure to help keep the artery open. These

do not appear to affect exercise test results in predicting closure of the artery [93].
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2.3.1.3 Cardiac rehabilitation

Exercise program is now an accepted part of the therapy used to treat an individual

who has some form of coronary heart diseases. The details of how to structure such

programs, from the first steps taken after being confined to a bed to the time of return-

ing to work and beyond, are described clearly in books such as Guidelines for Exercise

Testing and Prescription by American College of Sports Medicine (ACSM) [17], Wenger

and Hellerstein’s Rehabilitation of the Coronary Patient [166], ACSM’s Exercise Man-

agement for Persons with Chronic Diseases and Disabilities [106], and ACSM’s Resource

Manual for Guidelines for Exercise Testing and Prescription [107].

Cardiac rehabilitation includes a ‘Phase I’ inpatient exercise program that is used to

help the patients make the transition from the cardiovascular event (e.g., a myocardial

infarction that put them in the hospital) to the time of discharge from the hospital. The

specific signs and symptoms exhibited by the patient are used to determine whether

the patient should be placed in an exercise program, and if so, when to terminate

the exercise session [17]. Once the patient is discharged from the hospital, a ‘Phase II’

program can be started. This program includes warm-up, the onset of an exercise session

(strengthening exercises), and the offset of an exercise session (cool-down activities: slow

walking and stretching exercises). However, the coronary heart disease patients, who

are generally very deconditioned (VO2max of 20 ml · kg−1·min−1), require only light

exercise to achieve their target heart rate (THR), whose range describes the optimum

intensity of exercise consistent with making gains in maximal aerobic power and equals to

70-85% HR max. In addition, because these patients are on a wide variety of medications

that may decrease maximal HR, the THR zone is determined from their graded exercise

test (GXT) results; the 220-age formula cannot be used. The patients usually begin

with intermittent low-intensity exercise (e.g., one minute on and one minute off) using

a variety of exercises to distribute the total work output over a larger muscle mass.
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In time the patient increases the duration of the work period for each exercise. The

onset of exercises emphasize a low resistance and high repetition format to involve the

major muscle groups. Given that CABG and post-MI patients have had direct damage

to their hearts, the exercise should facilitate, not interfere with, the healing process.

At the end of the exercise sessions, the offset of exercises is recommended to gradually

return HR toward normal. This part of the exercise session is viewed as important in

reducing the chance of a cardiovascular episode after the exercise session [77]. After a

patient completes probably 8 to 12 week ‘Phase II’ program, the person may continue in

a ‘Phase III’ program away from the hospital where a portable noninvasive automated

exercise assisted device is urgently required.

2.3.1.4 Cardiac rehabilitation in biomedical applications

There is no question that cardiac patients have improved cardiovascular functions as a

result of an exercise program. Recent clinical results show in higher VO2max values,

higher work rates are achieved without ischemia [117] [166]. The exercise program

improves lipid profile (lower total cholesterol and higher HDL cholesterol), and the

saturated fat content of the diet can modify these variables [115]. However, a proposed

exercise program that doctors made as a prescription for their cardiac patients is only

available in the medical system, until a reliable, portable, and noninvasive automated

exercise assistance application is developed, and that is a part of our studies.

2.3.2 Diabetes

Diabetes is a major health problem in the world. More than 366 million people world-

wide, or 8.3% of adults, have the diabetes in 2011. If these trends continue, by 2030,

about 552 million people, or one adult in 10, will have diabetes (see Fig. 2.9). Diabetes
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kills or injures people indirectly by resulting in blindness, kidney disease, stroke, and

heart disease [10]. The major types of diabetes are Type 1 diabetics (lack of insulin)

and Type 2 (resistance to insulin). Type 2 diabetics makes up about 85 to 95% of all

diabetes in high-income countries and may account for an even higher percentage in

low- and middle-income countries [109]. Type 1, insulin-dependent diabetes, is caused

by destruction of the β cells that produce insulin in the pancreas. As insulin deficiency

influences the rate of glucose uptake in the blood, the disease is controlled through

regular insulin injections. The treatment of Type 1 primarily includes diet and insulin

to achieve control of the blood glucose concentration (BGL). An exercise program may

complicate matters. Richter at al. [127] and Kemmer et al. [87] point out the difficulties

a Type 1 has starting an exercise program: the person must maintain a regular exer-

cise schedule, as well as altering diet and insulin. Such behaviors are difficult for some

to follow on a day-to-day basis, and the use of exercise in maintaining the metabolic

control has been diminished. Because metabolic control can be achieved by insulin and

daily diet based on self-monitored blood glucose, exercise makes it complicated. Type

2 is caused by a reduced sensitivity of the target cells for insulin, against influencing

glucose regulation. It is mainly linked to obesity. The increased mass of fat tissue results

in a resistance to insulin, and thus this disease is often managed via diet and exercise

to reduce body weight and to help control plasma glucose. Table 2.1 summarizes the

difference between Type 1 and Type 2 diabetics [22] [31].

2.3.2.1 Exercise and the type 2 diabetic

There is some epidemiological evidence that Type 2 diabetes is linked to a lack of

physical activity and low fitness [89]. In addition, current research supports the benefits

of exercise training in the prevention and treatment of insulin resistance and Type 2

diabetes [81]. However, an inadequate physical activity may result in the occurrence
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Fig. 2.9: Percentage (%) of diabetes (20-79 years) by IDF region, 2011 and 2030.

Table 2.1: Summary of the differences between Type 1 and Type 2 diabetes.

Type 1 Type 2

Characteristics Insulin-Dependent Noninsulin-Dependent

Another name Juvenile-onset Adult-onset

Age at onset <20 >40

Development of disease Rapid Slow

Family history Uncommon Common

Insulin required Always Common, but not always

Pancreatic insulin None, or very little Normal or higher

Katoacidosis Common Rare

Body fatness Normal/lean Generally obese

of a hypoglycemic response [1]. The exercise increases the rate at which glucose leaves

blood. In this way, exercise has been regarded as a useful part of the treatment to

regulate blood glucose in the diabetic. The beneficial effect of exercise however, is
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dependent on whether or not the diabetic has sufficient insulin prior to and during

exercise. The controlled diabetic has sufficient insulin such that glucose can be taken

up into muscle during exercise and can catabolise stored glycogens in the normal increase

from the liver due to the action of glycogenolysis [118]. In contrast, the diabetic with

inadequate insulin experiences only a small increase in glucose utilization by muscle,

but has the normal increase in glucose release from the liver. This leads to an elevation

of the plasma glucose, resulting in hyperglycemia [1].

The exercise prescription for the Type 2 diabetic aims to improve HRmax or VO2max.

The exercise program for general Type 2 diabetic patients includes 20 - 60 minutes of a

continuous aerobic exercise, at 70% - 85% HRmax, 3 to 5 times per week [108] [29] [19].

Strength training with light weights is also recommended [29] [144].

As for deconditioned individuals with exercise programs, the combination of frequency,

intensity, and duration of each exercise session must be carefully managed, so as to

directly benefit those with borderline hypertension, high cholesterol, obesity, conditions

often related to Type 2 diabetes. Because for those, it is even more difficult to carry

along an exercise program with clear identification and controlled BGC. Thus, it would

be much safer if the exercise session for a diabetic can be supervised by someone or some

smart devices which could provide suggestions and assistance if a problem is occurred.

The American Diabetes Association states that exercise is only one part of the treatment

in terms of therapy for the diabetic; diet is the other [2]. The type 2 diabetic secures

numbers of benefits from proper exercise and dietary practices: lower body fat and

weight, increased HDL cholesterol, increased sensitivity to insulin, improved capacity

for work [90] [163]. These changes should not only improve the prognosis of the Type

2 diabetic as far as control of blood glucose is concerned, but should also reduce the

overall risk of coronary heart diseases [127].
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2.3.2.2 Diabetics in biomedical applications

As mentioned earlier, the patients have a variety of risk factors in addition to their dia-

betes such as hypertension, high cholesterol, and hyperglycemia. In order to reduce the

chance of a ‘surprise’ hypoglycemic or hypertensive responses to exercise, it is important

for clear communication to exist between the participant and the exercise leader, the

latter supervising and managing the overall exercise session that the participant carries

(in most cases, nowadays it is represented by nurses or doctors in the hospital). How-

ever, there are limitations in that it is not reasonable for every diabetic individual to

have their daily exercise activity in hospitals. Our studies concern about this problem

from the view of control and biomedical engineering. Instead of the duty of ‘exercise

leader’, a reliable, portable, and noninvasive automated exercise assistance application

is proposed to help every diabetics control BGC, as well as enjoy the joy of exercise.

2.3.3 Hypertension

Today, approximately 1 billion people worldwide have high blood pressure (BP) above

the recommended level of <120 systolic and <80 diastolic (Table 2.2), and this number

is expected to increase to 1.56 billion people by the year 2025 [91]. Raised BP is a

high-risk condition that causes about 51% of deaths from stroke and 45% from coronary

heart diseases [110]. For this reason, non-pharmacological approaches, including diet

and physical activity, are first line interventions for high BP management, even when

medication therapy is implemented [59] [83].

2.3.3.1 Exercise and hypertension

Generally, the person with prehypertension (systolic BP 120 - 139 mmHg and/or di-

astolic BP 80 - 89 mmHg) should use exercise to control BP and establish behaviours
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Table 2.2: Definition and classification of BP levels (mmHg) [59].

Category Systolic Diastolic

Normal <120 <80

High normal∗ 120-139 80-89

Grade 1 (mild) 140-159 90-99

Grade 2 (moderate) 160-179 100-109

Grade 3 (severe) �180 �110

Isolated systolic hypertension �140 ≤90
∗ High-normal has been labeled as prehypertension[83].

that favorably influence other aspects of health. Baster and Baster-Brooks [20] indicate

that the relationship between sedentary behaviour and hypertension is so strong that

the National Heart Foundation [59], the World Health Organisation and International

Society of Hypertension [110], the Unite States Joint National Committee on Detection,

Evaluation and Treatment of High Blood Pressure [83], and the American College of

Sports Medicine (ACSM) [106] have all recommended increased physical activity as a

first line intervention for preventing and treating patients with prehypertension. Such

organisations also suggest exercise as a non-pharmacological intervention program for

patients with grade 1 (140 - 159/80 - 90 mmHg), or grade 2 (160 - 179/100 - 109

mmHg) hypertension (Table 2.2). Physical activity is significant for most of hyperten-

sive individuals because it is a low cost intervention with a reducing effect on BP, and a

non-pharmacological prescription for cardiac diseases (such as coronary heart diseases

and cardiovascular diseases, see section 2.3.1).

Current physiological studies have identified the following physiological benefits of ex-

ercise for hypertensive-related diseases. Physical activity improves endothelial function.

The endothelium lining of blood vessel walls maintains normal vasomotor tone, enhances

fluidity of blood, and regulates vascular growth [139]. There are also vascular structural

changes such as increased length, cross sectional area, and diameter of existing arteries
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and veins in addition to new vessel growth [106]. According to ACSM [106], physical

activity may also reduce the elevated sympathetic nerve activity that is common in

postexercise hypertension (PEH). The exact mechanism for PEH remains unclear, but

appears to involve the arteries and cardiopulmonary baroreflexes. Studies suggest that

the operating point of the arterial baroreflex is set to a lower BP after an acute bout of

exercise [75].

2.3.3.2 Exercise prescription for hypertensive patients

ACSM suggests endurance exercise at low intensities (40% to 70% VO2max) is effective

in reducing BP . Lower-intensity exercise should be done frequently and for durations

long enough to result in the expenditure of a large number of calories. Gordon et al.

[70] proposes a goal of 14 to 20 kcal/kg per week (about 980 to 1440 kcal for a 70

kg person). Based on the literature review, Baster and Baster-Brooks [20] summarize

a more detailed exercise prescription, including patient category, exercise testing and

monitoring, exercise type, frequency, intensity, and duration (Table 2.3). To prescribe

the appropriate column in Table 2.3 to each hypertensive individual, patient’s age, BP

and overall cardiovascular disease risk need to be considered. They also agree that a

variety of rhythmical and aerobic exercise, under indoor or outdoor environments, is the

preferred treatment strategy (walking, running, cycling, swimming) for all hypertensive

patients. More specifically, however, patients over 50 years of age will require additional

evaluation followed by a designed and monitored exercise program. This is because at

least half will be overweight, and/or will have high cholesterol; 40 - 50% will have heart,

stroke and/or vascular conditions [20]. In addition, β-blockers that most patients with

suspected cardiovascular diseases take diminish the HR response to exercise, therefore

medical supervision in dedicated rehabilitation centres is necessary.
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Table 2.3: Exercise prescription to hypertensive patients based on health status and age
[106].

Category Column A Column B Column C

• Prehypertensives with
no suspected CVD <50
years

• Prehypertensives with
suspected CVD

• Hypertensives with no
suspected CVD >50 years

• Grade 1 hypertensives
<50 years

• Prehypertensives >50
years

• Hypertensives with sus-
pected CVD

• Grade 2 hypertensives
with no suspected CVD
<50 years

Exercise Not necessary Recommended Recommended

monitoring

Exercise
type

Aerobic activities (moni-
toring not necessary, but
suggest they seek advice
from a clinical exercise
physiologist for a condi-
tioning and aerobic based
training program)

Walking, cycling, swim-
ming until medically eval-
uated (periodic monitor-
ing may be necessary)

Walking, cycling, swim-
ming until medically eval-
uated (periodic monitor-
ing may be necessary)

Frequency 6-7 days/week 5-7 days/week 5-7 days/week

Intensity Start with 20-30 min-
utes continuous aerobic
activity at comfortable
pace (50-65%) of maxi-
mum HR for 3-4 weeks
for general conditioning,
then exercise at up to 85%
of HRmax

Work at light-moderate
intensity until evaluated
and conditioned, then un-
dertake a maintenance
aerobic program at up to
85% HRmax

Light-moderate lower in-
tensity can start with 20-
30 mins/day of continu-
ous activity, then build to
45-60 mins/day

Duration Minimum 150 mins/week
of aerobic activity

Start with 20-30
mins/day of continu-
ous activity, then build
to 30-60 mins/day

Start with 20-30
mins/day of continu-
ous activity, then build
to 30-60 mins/day

2.3.3.3 Hypertension in Biomedical Applications

A reliable, portable, and noninvasive way for the monitoring and regulation of the hu-

man CR response to exercise is also tightly related to the treatment of hypertension.
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As mentioned earlier, some hypertensive individuals should be placed under medical su-

pervision in dedicated rehabilitation centres, where an aerobic based training program

predefined for each patient will be monitored by a certified clinical exercise physiologist.

However, dedicated rehabilitation centres are generally only available in major cities.

They are usually used for post cardiac event patients and not readily accessible to other

patient populations. An alternative is to develop a reliable portable noninvasive auto-

mated exercise assistance application, not only monitoring the overall exercise session,

but also regulating their metabolic dynamics.

2.4 Conclusion

This chapter introduces the exercise-related biomedicine background for known medical

knowledge in literatures about patient behaviors for some popular CR diseases, and

how exercise plays a primary role to prescribe these diseases by applying biomedical

techniques and devices.

One of most important issues found in biomedical engineering area is to develop an

exercise assistance application for improving CR fitness. HR and VO2 are commonly

considered as the major indicators of CR responses to exercise. The concept and defi-

nition of those variables are presented in this chapter. More importantly, a predefined

exercise protocol including warm-up, the onset of exercise, and the offset of exercise

is a necessary standard for estimation and regulation of CR systems in response of

specific-exercise.

In this chapter, the relationship between CR system and exercise based on our literature

investigations also is outlined from the exercise physiological view. In particular, the

metabolic energy process under exercise conditions are clearly explained. It would be

beneficial for understanding of the mathematic model we discussed in Chapter 3.
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The medical background for exercise and its relevant diseases in clinical medicines is

introduced in this chapter. It has been reported that exercise and relevant biomedical

devices play a primary role to prescribe CR diseases, such as cardiac diseases, diabetes,

and hypertension. The details of diseases and exercise prescriptions are presented that

would enable us to have a deep understanding of our study, if necessary.
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Chapter 3

A single-input single-output
switching model for human
cardiorespiratory responses to the
onset and offset of exercise

3.1 Introduction

One of the greatest public health challenges confronting many industrialized countries

is the obesity epidemic. Low-to-moderate intensity exercise, suitable for every fitness

level, remains one of the healthiest and risk averse methods for reducing body fat [147]

[66] [63]. As HR and oxygen uptake (VO2) are the key indicators of exercise intensity

[62] [12] [153] [35] [113] [9] [18], this study explores the modeling of both HR and VO2

responses in order to facilitate the assessment of human CR responses at the onset and

offset of exercise (also called exercise and recovery). For this purpose, twenty subjects

performed standardized square-wave exercise bouts on a treadmill following predefined

protocols. During exercise and recovery, HR and VO2 were monitored and recorded

by a portable gas analyzer (Cosmed�) . The experimental results are consistent with

the observations reported in existing literature [134] [151] [169] [101] [51]; in that the

dynamics of the HR/VO2 response vary at onset and offset of exercise.

There are both linear and nonlinear [134] [74] [28] [39] [102] [14] [71] [15] [27] modeling

approaches for the estimation of HR and/or VO2 responses to exercise. However, to the
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best of our knowledge, almost all the existing modeling approaches (apart from a pre-

liminary version of this study [169]) utilize only a single non-switching model for either

the onset or offset of exercise. Although it can accurately describe the dynamical char-

acteristics at the onset and/or offset of exercise, the transient behavior during switching

has previously been overlooked. A natural solution for the limitations of previous meth-

ods without a description of a switching transient is to utilize a model inclusive of a

switching mechanism. In order to be consistent with experimental observations, the

switching model should guarantee the continuity of model output during model switch-

ing. In addition, it is also desired that the switching model can provide physiological

explanations for the variations of the dynamic characteristics at the onset and offset of

exercise. In this paper, we propose an innovative switching Resistance-Capacitor (RC)

model , which uses electronic terms to quantitatively describe human CR responses at

the onset, offset, and transition between exercise. Based on the RC model, a possible

physiological explanation for the process of body energy storage and dissipation at the

onset and offset of exercise is also provided.

The physiological mechanisms for the variation in the dynamics of the HR/VO2 response

at the onset and offset of exercise may be associated with the concept of ‘oxygen debt’,

as first proposed by Archibald Vivian Hill and others [53]. According to A. V. Hill [53],

the body’s carbohydrate stores are linked to energy ‘credits’. If these stored credits are

expended during onset of exercise, then a ‘debt’ is occurred. The greater energy ‘deficit’,

or use of available stored energy credits, the larger energy ‘debt’ occurs [101]. The

ongoing oxygen uptake after onset of exercise is thought to represent the metabolic cost

of repaying this debt. Their studies [53] used financial-accounting terms to qualitatively

describe the process of energy storage and dissipation at the onset and offset of exercise.

However, a quantitative description for this process, e.g., the amount of energy ‘credits’

and ‘debt’, has to date not been addressed. The proposed switching RC model can be
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regarded as an extension of these studies [53]. Indeed, it is proposed this model can

not only numerically verify these reported physiological phenomena, but also provide a

quantitative description for energy ‘credits’, ‘debt’, and the whole energy process during

the onset and offset of exercise.

The remaining of the paper is organized as follows. Section 3.2 presents experimental

details including experimental equipments and protocols. Section 3.3 introduces the

proposed switching RC model as well as model analysis and verification, and Section

3.4 concludes the paper.

3.2 Experiment

In order to investigate HR and VO2 responses to the onset and offset of exercise, twenty

healthy untrained males participated in this study. The University of Technology,

Sydney (UTS) approved this study and an informed consent was obtained from all

participants before commencement of data collection.

The participants were divided into two groups. As shown in Table 3.1, subjects in the

group A have a mean age of 30.63 years (range, 26 - 42 years), a mean weight of 74.63

kg (range, 55 - 90 kg), and a mean height of 173.38 cm (range, 164 -180 cm). Different

with the group A, the larger mean values of age, 45.4 years (range, 36 - 53 years), and

weight, 91.9 kg (range, 71.2 - 102.3 kg), are in the group B. Due to this difference, the

exercise protocols of groups A and B are defined separately, in order to reach as close as

to 80% of HR max and VO2max in exercise [16]. The protocol has three stages: warm up,

onset of exercise, and offset of exercise. Fig. 3.1 shows the protocols served for the two

groups; group A involving 4-minute walking at 5 km/h followed by 6-minute running at

9 km/h and 5-minute recovery period at 5 km/h and group B involving 4 minutes warm

up at 3 km/h with 8 minutes onset period at 8 km/h and 8 minutes offset period at 3
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Fig. 3.1: The exercise protocols for group A (left) and group B (right).

km/h.

As prior nutritional intake, physical activity and environment conditions were standard-

ized for all participants. The participants consumed a standardized light meal at least

2 hours before the experiment and not to engage in any exercises for 24 hours prior to

each experiment [44][25]. The temperature and humidity of the laboratory were set at

20 - 25 ◦C and 50% relative humidity, respectively. To avoid random errors and improve

the accuracy of the recorded data, the protocol was repeated twice by subjects and the

obtained data are interpolated, averaged and filtered.

Table 3.1: Subject physical characteristics.
Group A Group B

ID Age Height Mass ID Age Height Mass
ANDW 27 175 55 ANEL 40 173 102.3
AHMD 32 170 87 BIKE 45 179 97.1
ISSA 29 176 90 BRRU 45 173 100.8
YASA 29 187 100 CHRI 37 170 71.2
ARDI 42 175 80 DACR 53 183 99.2
RAMI 29 164 64 GAHI 45 182 98.4
SATM 31 169 67 MABR 36 186 92.1
OMAR 26 180 77 MACU 53 175 88.8

MAYE 45 180 94.0
RABL 43 178 99.6
ROMU 50 182 86.1
WADO 53 173 72.9

MEAN 30.63 173.38 74.63 MEAN 45.4 178 91.9
STD 4.66 4.95 11.10 STD 5.9 5 10.5

All physiological measurements in this study were collected by a COSMED portable gas
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Fig. 3.2: The wearable K4b2 Gas analyzer equipment for indoor and outdoor exercises.

analyzer (Cosmed�), see Fig. 3.2. The COSMED system includes a compatible HR

monitor which consists of one transmitter in the elastic belt and one receiver. The two

parts are assembled as close as possible for capturing the most effective communication

signals. K4b2 gas analyzer and its compatible products are chosen because it has been

reported to be valid, accurate and reliable [5][116][49]. The data of HR and VO2 of all

subjects in groups A and B are shown in Fig. 3.3.

It has been widely accepted that the step response of HR/VO2 can be approximated as

a first-order process [134][155], K
Ts+1

, where K is the steady state gain and T is the time

constant. Based on the data sets in Fig. 3.3, Matlab System Identification Toolbox was

used to establish the first-order process for both HR and VO2 responses in two groups.

The coefficients (K and T ) for each set of data are identified, and the calculated mean

and standard deviation (STD) are shown in Table 3.2. The results indicate that the

steady state gain (K) at offset of exercise is obviously smaller than that at onset of

exercise for both HR and VO2. Moreover, the mean values of time constant (T ) at

offset of exercise is notably larger than that at onset for both HR and VO2.

There are similar results reported by previous literature [151] [169] [101], which has

identified the differences of the onset and offset dynamics. However, most of the studies
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Fig. 3.3: The measured experimental data for HR and VO2 responses for both groups
of A and B.

separate the onset and offset as two stages, and build a single model for each stage

respectively. Some studies just construct an average model for both onset and offset of

the exercise response. In contrast with existing studies, in the next section, however,

we will introduce a switching RC circuit model. This single switching model can quan-

titatively depict the two different dynamical responses by properly setting the values of

the circuit components (resistors and capacitors).
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Table 3.2: The mean and STD results of T and K of the experiment results for the HR
and VO2 responses at onset and offset of exercise.

Group A Group B
Mean STD Mean STD

HR Response at T 64.8763 20.1383 56.3168 14.9114
Onset of Exercise K 15.3587 2.1107 11.3341 2.4178
HR Response at T 94.8688 28.3923 83.1042 10.6905
Offset of Exercise K 11.28 2.0237 9.0163 1.7090

VO2 Response at T 47.5963 12.7307 62.3447 8.8390
Onset of Exercise K 326.3613 45.3776 386.4850 74.8645
VO2 Response at T 63.6250 18.1615 68.1723 8.6944
Offset of Exercise K 311.0388 49.2890 369.5700 66.5761

3.3 Mathematic model for body’s cardiorespiratory

responses to exercise

3.3.1 Metabolic energy process

The following description about metabolic energy process (mainly from [86] [128] [56])

is a necessary background for the analysis of human CR responses during the onset and

offset exercises.

There are three metabolic energy pathways existing in the human body: the phosphagen

system, glycolytic system and the aerobic system [86]. The phosphagen system (also

called the adenosine triphosphate (ATP)-creatine phosphate (CP) system) provides the

fastest pathway to resynthesize ATP. CP, stored in skeletal muscles, is catabolised to

allow the phosphate to combine with ADP to produce ATP. No carbohydrate or fat is

used in this process and the regeneration of ATP is resultant solely from CP. As this

process does not require the presence of oxygen to resynthesize ATP, it is anaerobic

in nature. The phosphagen system is the predominant energy system used for all-out

exercise lasting up to about 10 seconds.
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Glycolysis is the second-fastest way to resynthesize ATP and is the dominant system for

exercise lasting from 30 seconds to about 2 minutes. During glycolysis, carbohydrate, in

the form of either blood glucose (sugar) or glycogen (the stored form of glucose in muscles

and the liver), is degraded through a series of chemical reactions to form pyruvate

(glycogen is first converted into glucose through a process called glycogenolysis). For

every glucose molecule converted to pyruvate through glycolysis, two molecules of usable

ATP are produced [56] [86]. Thus, only small volumes of energy are produced via

this pathway. Once pyruvate is formed, it has two fates: conversion to lactate or

conversion to a metabolic intermediary molecule called acetyl coenzyme A (acetyl-CoA),

which enters the mitochondria for oxidation and the production of more ATP [128] [86].

Conversion to lactate occurs when the demand for oxygen is greater than the supply

(i.e., during anaerobic exercise). Conversely, when there is enough oxygen available to

meet the muscles’ needs (i.e., during aerobic exercise), pyruvate (via acetyl-CoA) enters

the mitochondria and goes through the aerobic system.

The aerobic system, which is dependent on the sufficient presence of oxygen in the

mitochondria, is the slowest pathway to resynthesize ATP. The aerobic system, including

the Krebs cycle and the Electron Transport Chain, uses blood glucose, glycogen and fat

as fuels to resynthesize ATP in the mitochondria of muscle cells. Carbohydrate, glucose

and glycogen are first metabolized through glycolysis, with the resulting pyruvate (via

acetyl-CoA), entering the Krebs cycle. The electrons removed from the fuel sources in

the Krebs cycle are then transported through the Electron Transport Chain, where ATP

and water are produced. Complete oxidation of glucose via glycolysis, the Krebs cycle

and the electron transport chain produces 36 molecules of ATP for every molecule of

glucose broken down. Thus, the aerobic system produces 18 times more ATP than does

anaerobic glycolysis (via lactate) from each glucose molecule. Of course, fat is also a

major fuel for the aerobic activities [128] [56].
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3.3.2 The proposed switching RC model

The proposed switching model (an electronic circuit) is shown in Fig. 3.4. By analyzing

the model, this section gives a possible physiological explanation of the process of energy

storage and dissipation at the onset and offset of exercise. Although, in the following,

the proposed circuit is applied to explain the observed exercise characteristics of HR

only, it can also account for that of VO2 in a similar way.

Fig. 3.4: (A). The mathematic model for the HR response at onset and offset of exercise;
(B). the onset circuit; (C-1). the offset circuit C-1; (C-2). the offset circuit C-2 (C1:
HR indication, C2: non-exercise energy compensation index, R1: exercise resistance for
onset of exercise, R2: exercise resistance related to offset of exercise, and R3: exercise
resistance related to long-term recovery exercise).

In Fig. 3.4(A), the voltage of DC power supply, V , stands for the power required for

the body to maintain the exercise intensity. The integral of V with respect to time is

therefore regarded as the total energy required for the onset of exercise. According to

the discussions in section 3.3.1, the energy required for exercise is generated through

the metabolic energy pathways [86]. In Fig. 3.4, the capacitor C1 is utilized to depict

cardiac response. Specifically, its voltage, Vc1(t), represents the HR response to exercise.

The capacitor C2 is related to the process of glycogen regeneration. Particularly, the

integral of its voltage (
∫
Vc2(t)dt) stands for the amount of energy for the regeneration

of glycogen (e.g., when the supply for glucose is greater than the demand, glucose is

resynthesized to glycogen through a process called gluconeogenesis), and it only occurs
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in the periods of offset (or long-term recovery) of exercise. The resistors R1, R2 and

R3 are associated with the energy dissipation of human body during exercises. We

have termed them exercise resistances and intuitively, their reciprocals characterize the

ability of overcoming exercise resistance of human body. In particular, R1 is mainly

related to the response for the onset of exercise, R2 for the offset of exercise and R3 for

long-term recovery exercise.

As shown in Fig. 3.4(A), two circuits are separated by a double-pole double-throw

(DPDT) switch. At first, the DPDT connects to a1 and b1 poles, and the onset circuit

is triggered as shown in Fig. 3.4(B). The function of the dioxideD1 is to short the R2 out.

When the connector is switched from poles of a1 and b1 to the other pair of poles a3 and

b3, the offset circuit will be run afterwards as shown in Fig. 3.4(C-1)/Fig. 3.4(C-2). In

the following analysis, we will derive the dynamics of the onset (Fig. 3.4(B)) and offset

circuits (Fig. 3.4(C-1)/(C-2)) to show how the two different dynamic characteristics are

implemented in the single switching RC model.

In the onset period (between t0 and t1 in Fig. 3.5(A)), the DC power supply V charges

the capacitor C1, up to V1 at time t1 that approximately equals the DC power supply

V . The voltage of capacitor C1 (which represents the HR response to onset of exercise)

can be calculated by using the following equation:

Vc1(t) = V (1− e
− t

R1C1 ) (t0 ≤ t ≤ t1) (3.1)

It can be seen that the steady state value of Vc1(t) is V .

Remark 1 The onset circuit can well support the hypothesis made by A. V. Hill and

others [53]. In the onset period, Vc1(t) exponentially grows that implies an increase of

HR. Since Q can be expressed as Q = SV × HR, if we assume SV remains constant

during moderate exercise, HR should be proportional to Q that represents the power
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Fig. 3.5: (A). Voltage variations in C1; (B). voltage variations in C2.
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generated by the heart. In this regard, the amount of energy generated by the heart

in the onset period would also be proportional to the integral of Eq. (3.1), which is

just the white area in the onset period. However, the actual energy required is not

totally proportional to this white area. According to the hypothesis made by A. V. Hill

and others [53], the white area is thought as energy ‘credits’, and the line shadowed

area is energy ‘deficit’ representing those ATP that cannot be pumped out by heart

beat as quickly as possible to satisfy tissue’s urgent needs. Within the circuit, the step

response of HR is approximated as a first order process [155] and its time constant (T )

is impossible to be 0. Therefore, HR cannot instantaneously reach to the steady state

level (V ) at the beginning of exercise. Then, energy ‘deficit’ occurs.

In the offset period (between t1 and t2 in Fig. 3.5), the offset circuit is taking place.

Both circuits C-1 and C-2 in Fig. 3.4 are applicable for the analysis of this period. If

assume R3 is sufficiently big, the current passing through R3 is negligible. Thus, the

two circuits (C-1 and C-2) are approximately equivalent when R3 is sufficiently big.

During the offset period, the capacitor C1 is discharging and its voltage follows an

exponential decay down to V2 at time t2. Conversely, the capacitor C2 is charging,

which results to an exponential growth of its voltage from 0 at time t1 to V3 at time

t2. It is assumed that V2 ≈ V3 ≈ C1V1

C1+C2
at time t2. The voltage variations of C1 (HR

indication) and C2 (Non-exercise Energy Consumption Index) in this period can be

respectively described as:

Vc1(t) =
C1

C1 + C2

V1 +
C2V1

C1 + C2

e
− (C1+C2)t

C1C2(R1+R2) (t1 ≤ t ≤ t2), (3.2)

Vc2(t) =
C1

C1 + C2

V1 − C1V1

C1 + C2

e
− (C1+C2)t

C1C2(R1+R2) (t1 ≤ t ≤ t2). (3.3)
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Remark 2 The precise biochemical explanation for the offset of exercise is not possible,

because the specific chemical dynamics are still unclear [101]. The offset circuit, however,

provides a possible physiological explanation from the view of the body’s energy storage

and dissipation process. The experimental observation (see section 3.2) shows that the

time constant at offset of exercise is larger than that at onset of exercise, meaning that

the line shadowed area plus cross line shadowed area in this period is greater than the

area of energy ‘deficit’ in the onset period. If the two line shadowed areas (the areas

of energy ‘deficit’ and ‘debt’ in Fig. 3.5) would equal each other (i.e., the energy ‘debt’

equals to the energy ‘deficit’), a question is raised: what does the extra area (the cross

line shadowed area in Fig. 3.5(A)) represent? According to mass-energy equivalence

relation (E = MC2), any change in the energy of an object causes a change in the mass

of that object [86]. Thus, the extra cross line shadowed area implies there must exist an

energy storage process, which converts the energy into ‘molecules’, and causes a change

in the body’s mass. It is well believed that any physiological process which contributes

to the recovery of the body to its pre-exercise condition may result in the appearance

of the extra area, e.g., glycogenesis (a process of glycogen synthesis). For this reason,

the capacitor C2 is going to store this kind of energy, like the liver stores glycogens.

Thus, the cross line shadowed area in Fig. 3.5(B) is presumably proportional to the one

with the same mark in Fig. 3.5(A). However, there still has been a controversial issue

in A. V. Hill’s hypothesis. In his hypothesis, the line shadowed areas plus the cross line

shadowed area between t1 and t2 in Fig. 3.5(A) are thought to represent the metabolic

cost of repaying energy ‘debt’ [53]. However, in this study, energy ‘debt’ is only a part of

that. Instead, glycogenesis and all others for the recovery of the body to its pre-exercise

condition also take place in the offset period.

Based on Eq. (3.1) - Eq. (3.3), time constants and steady state gains for the onset and

offset of exercise are derived as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K̃on = Kon

Kon
= 1,

Ton = R1C1,

K̃off =
Koff

Kon
= C2

C1+C2
,

Toff = (R1 +R2)
C1C2

C1+C2
,

(3.4)

where Kon (Koff ) and Ton (Toff ) represent the steady state gains and the time con-

stants of onset (offset) exercise respectively. New defined parameters K̃on and K̃off are

normalized steady state gains. If Kon, Koff , Ton, and Toff are given and assume R2 is

a predefined free parameter, the values of capacitors and resistor (C1, C2, and R1) can

be calculated by the following equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C1 =
Toff−TonK̃off

R2K̃off
,

C2 =
Toff−TonK̃off

R2(1−K̃off )
,

R1 =
TonR2K̃off

Toff−TonK̃off
.

(3.5)

Remark 3 There are two divergent behaviors after the offset period. See Fig. 3.4, the

dash and solid lines in the period between t2 and t3 show the two possible consequent

behaviors, which are depicted by the offset circuit C-1 (see Fig. 3.4(C-1)) and the offset

circuit C-2 (see Fig. 3.4(C-2)) respectively. The offset circuit C-1 enables the shift

of equilibrium point, as the equilibrium is 0 at time t0 and then becomes V2 ≈ V3 ≈
C1V1

C1+C2
at time t3. Alternatively, in circuit C-2, there is no shift of equilibrium, i.e., the

equilibrium remains at 0 around time t3. The circuit C-1 is applicable to the repetitive

switching of training behaviors (e.g., interval training), and the circuit C-2 is fitting for

the single switching behaviors (e.g., single combination of onset and offset training).
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3.3.3 Model verification

This section verifies the proposed model for both HR and VO2 by using the experimental

data of groups A and B respectively. In section 3.2, we have already calculated the

time constants and steady state gains of HR and VO2 for both two groups (see Table

3.2). Based on these results, we can identify all parameters (the values of resistors

and capacitors) of four switching RC models according to Eq. (3.5). The identified

parameters of the four models are summarized in Table 3.3. These four models are

implemented by using Matlab/Simulink (see Fig. 3.6). The simulated model outputs

are compared with their corresponding experimental data as shown in Fig. 3.7. In Fig.

3.7, the dash curves represent the model outputs, and the solid lines stands for the

experimental results. This figure clearly indicates that the model outputs fit well with

the experimental data at the onset/offset of exercise and the transition in between for

both two groups.

Fig. 3.6: The simulated schematic diagram.
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(a) HR for group A
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(b) VO2 for group A
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(c) HR for group B
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(d) VO2 for group B

Fig. 3.7: The model outputs vs. the experiment results for both HR and VO2 responses
at onset and offset of exercise for subjects in group A and B.
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Table 3.3: Tuning parameters for switching RC model for both HR and VO2 responses
at onset and offset of exercise for subjects in group A and B.

Model Physiological Group A Group B
Parameters Significance HR VO2 HR VO2

R1 (Ω) Capacity of exercise
resistance at the on-
set of exercise

100.9028 248.3758 116.9592 696.7596

R2 (Ω) Capacity of exercise
resistance at the off-
set of exercise

100 100 100 100

C1 (F ) Heart rate response
at both onset and off-
set of exercise

0.6430 0.1916 0.4815 0.0895

C2 (F ) The process of glyco-
gen regeneration

1.7782 3.8900 1.8731 1.9550

V (V ) The total energy re-
quired for the onset
of exercise

55.1 1319 59.58 1945.6

3.4 Conclusion

Two slightly different exercise protocols were used for two different groups of subjects

to investigate the dynamic characteristics of the HR and VO2 responses to onset and

offset of treadmill exercise. The portable gas analyzer K4b2 was used to measure breath-

by-breath VO2 and beat-by-beat HR values. It was concluded that the dynamic char-

acteristics of human CR responses at the onset and offset of exercise are distinctively

different. Based on the experimental observations, we developed a switching RC model

that can explicitly depict the dynamical characteristics of human CR responses at the

onset/offset of exercise and the transition in between. In addition, the developed model

provides the quantitative analyses for the terms of energy ‘credit’, ‘deficit’, and ‘debt’.

The validity of the proposed switching model is confirmed by comparing the simulated

model outputs with the experimental results. In the next step, we will develop a general

framework for the implementation of bump-less switching between two or more higher

dimensional systems based on multi-realization theory [8] [149].
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Chapter 4

An nonlinear modeling method
using support vector machine for
cardiorespiratory responses to
exercise

Although considered as an experimentally validated mathematic model of the human CR

responses to the onset and offset of exercise, the proposed switching model in Chapter

3 has not been identified the time-varying nonlinear dynamics of CR responses during

exercises (i.e., as early stated that the HR response to the onset and offset of exer-

cise can be approximated as the first order process, we observed that time constant and

steady state gain is influenced not only by exercise intensity, but also by self-conditions),

whose time-varying dynamics are a challenge for control engineers. In order to accu-

rately regulate nonlinear time-variate dynamics of cardiovascular responses to exercise

for individual exercisers, we proposed another modeling approach, a control oriented

modeling approach, to depict nonlinear behavior of HR responses at both the onset

and offset of treadmill exercises. In the following, this model will be built up based on

support vector machine regression (SVR). The nonlinear behaviors at both the onset

and offset of exercises have been well described by using the established SVR models.

The model provides the fundamentals for the optimization of exercise efforts by using

model based optimal control approaches, which will be covered in the next Chapter 5.
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4.1 Introduction

Exercise and regular daily physical activity are of vital importance for general well

being and in the management of obesity and diabetes. Obesity and diabetes are now

worldwide public health issues. They lead to increased morbidity and mortality from

a range of associated diseases including heart disease, stroke and kidney failure. The

global health care expenditure attributable to diabetes has been estimated in 2003 and

2006 by the International Diabetes Federation (IDF) and reported in the second and

third editions of the Diabetes Atlas. Recent major randomized clinical trials [160] [112]

internationally have demonstrated safe exercise as the best means for the prevention of

type 2 diabetes in individuals.

We seek to develop a control oriented modeling approach to proficiently estimate CR

response to exercise for individuals, by non-invasive means. HR, as we know, has been

extensively applied to evaluate CR response [153] [154] [58] [12] [62] to exercise as it

can be easily measured by cheap wireless portable noninvasive sensors. In this sense,

therefore, developing nonlinear models with respect to the analysis of dynamic char-

acteristics of HR response is the starting point of this project. Based on the model,

a nonlinear switching Model Predictive Control (MPC) approach will be developed to

optimize exercise effects while keeping level of exercise intensity within the safe range .

There are plenty of papers [136] [37] about the analysis of steady state characteristics

of HR response. Nonlinear behavior has been detected and nonlinear models have

been established for response analysis when response entering steady state. During

medical diagnosis and analysis of CR kinetics, however, transient response of HR is more

valuable as it contains indicators of current disease or warnings about impending cardiac

diseases [4]. Although both linear and nonlinear modeling approaches [74] [39] have been

applied to explore dynamic characteristics of heart response to exercise, few papers
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focus on the variation of dynamic characteristics under different exercise intensities for

both the onset and offset of exercises. For moderate exercise, literatures often assume

HR dynamics can be described by linear time invariant models. In this study, it was

observed time constant of heart response to exercise is influenced by the load of exercise,

as well as by self conditions (e.g., during a constant exercise intensity, steady state

gain and time constant of HR/VO2 response to exercise were found to mostly still

be varying in every single moment). Papers [41] [41] prove that exercise effects can

be optimized by regulating heart rate following a predefined exercise protocol. It is

well known that higher control performance can be obtained if the model contains

less uncertainty. Therefore, it is worthwhile to establish a more accurate dynamical

model to enhance the controller design of heart rate regulation. In this study, we

designed a treadmill walking exercise protocol to analyze step response of heart rate.

During experiments, ECG, body movement, and oxygen saturation were recorded by

using portable non-invasive sensors: Alive ECG monitor, Micro Inertial Measurement

Unit (IMU), and Alive Pulse Oximeter. It was confirmed that time constant are not

invariant especially when walking speed is faster than 3 miles/hour. Time constant

for offset exercise is normally bigger than that of onset exercises. Steady state gain

variation under different exercise intensity has also been visibly observed. Furthermore,

the experiment results indicate that it is difficult to describe the variation of the transient

parameters (such as, time constant) by using a simple linear model. We applied the

novel machine learning method, support vector machine (SVM), to depict the nonlinear

relationship .

SVM is a new promising non-linear, non-parametric classification technique, which al-

ready showed good results in the medical diagnostics. The main advantages in this

study is to offer a regularization parameter, which can avoid over-fitting of the HR/VO2

response during exercise, guarantee the continuity during model switching, and achieve
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good tracking for nonlinear systems at onset and offset of exercise. Support vector

machine based regression [48] (Support Vector Regression (SVR)) has been success-

fully applied to nonlinear function estimation [67] [156]. Vapnik et al. established the

foundation of SVM [161] [162]. The formulation of SVM embodies the structure of the

risk minimization principle, which has been shown to be superior to other traditional

empirical risk minimization principles [72]. SVR applies the kernel methods implic-

itly to transform data into a feature space (this is known as a kernel trick [135]), and

uses linear regression to get a nonlinear function approximation in the feature space.

SVR is extremely efficient in terms of speed and complexity, and successfully solves

the over-fitting problem [73] by introducing regularization techniques. By using radial

basis function (RBF) kernel, this study efficiently established the nonlinear relationship

between time constant and exercise intensity for both onset and offset exercises.

This section is organized as follows. Section 4.2 provides preliminary knowledge of

SVM based regression. Section 4.3 describes the experimental equipments and exercise

protocol. Data analysis and modeling results are given in section 4.4. Eventually, section

4.5 gives conclusions.

4.2 SVM Regression

Let {ui, yi}Ni=1 be a set of inputs and outputs data points (ui ∈ U ⊆ Rd, yi ∈ Y ⊆ R, N

is the number of points). The goal of the support vector regression is to find a function

f(u) which has the following form

f(u) = w · φ(u) + b, (4.1)
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Where φ(u) is equivalent to mapping the input space U into the new high-dimensional

feature spaces induced by a kernel F = {φ(u) | u ∈ U}, which are nonlinearly trans-

formed from u. The weight vector w and bias b are defined as the hyperplane by the

equation 〈w · φ(u)〉+ b = 0. The hyperplane is estimated by minimizing the regularized

risk function:

1

2
‖w‖2 + C

1

N

N∑
i=1

Lε(yi, f(ui)), (4.2)

The first term is called the regularized term. The second term is the empirical error

measured by ε-insensitivity loss function which is defined as:

Lε(yi, f(ui)) =

⎧⎪⎪⎨
⎪⎪⎩
| yi − f(ui) | −ε, | yi − f(ui) |> ε

0, | yi − f(ui) |≤ ε

(4.3)

This defines an ε tube. The loss is equal to zero if the difference between the predicted

f(ui) and the measured value is less than ε (see Fig. 4.1). For all other predicted points

outside the tube, the loss is equal to magnitude of the difference between the predicted

value and the radius of the tube. The radius ε of the tube and the regularization

constant C are both determined by user.

The selection of parameter C depends on application knowledge of the domain. Theo-

retically, a small value of C will under-fit the training data because the weight placed on

the training data is too small, thus resulting in large values of mean square error (MSE)

on the test sets. However, when C is too large, SVR will over-fit the training set so that

1

2
‖w‖2 will lose its meaning and the objective goes back to minimize the empirical risk

only. Parameter ε controls the width of the ε-insensitive zone. Generally, the larger the

ε the fewer number of support vectors and thus the sparser the representation of the

solution. However, if the ε is too large, it can deteriorate the accuracy on the training

data.
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Fig. 4.1: The parameters used in (one-dimension) Support Vector Regression.

By solving the above constrained optimization problem, we have

f(u) =
N∑
i=1

βiφ(ui) · φ(ui) + b, (4.4)

As mentioned above, by the use of kernels, all necessary computations can be performed

directly in the input space, without having to compute the map φ(u) explicitly. After

introducing kernel function k(ui, uj), the above equation can be rewritten as follows.

f(u) =
N∑
i=1

βik(ui, u) + b, (4.5)

Where the coefficients βi corresponding to each (ui, yi). The support vectors are the

input vectors uj whose corresponding coefficients βj 
= 0. For linear support regression,

the kernel function is thus the inner product in the input space:

f(u) =
N∑
i=1

βi〈ui, u〉+ b, (4.6)

For nonlinear SVR, there are a number of kernel functions which have been found

to provide good generalization capabilities, such as polynomials, radial basis function
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Fig. 4.2: Experiment protocol.

(RBF), sigmod. Here we present the polynomials and RBF kernel functions as follows:

Polynomial kernel: k(u, u′) = ((u · u′) + h)p.

RBF Kernel: k(u, u′) = exp(−‖u− u′‖2
2σ2

).

Details about SVR, such as the selection of radius ε of the tube, kernel function, and

the regularization constant C, can be found in [135] [95].

4.3 Experiment

A 41 years old healthy male joined the study. He is 178 cm high and 79 kg heavy.

Table 4.1: The Values of Walking Speed Va and Vb.
Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Va (m/h) 0.5 1.5 2 2.5 3 3.5
Vb (m/h) 1.5 2.5 3 3.5 4 4.5

Experiments were performed in the afternoon, and the subject was allowed to have a

light meal one hour before the measurements. After walked for about 10 minutes on

the treadmill to get acquainted with this kind of exercise, the subject walked at six

sets of exercise protocol (see Fig. 4.2) to test step response. The values of walking

speed Va and Vb were designed to vary exercise intensity and are listed in Table I. To

76



properly identify time constants for onset and offset exercises, the recorded data should

be precisely synchronized. Therefore, time instants t1, t2, t3, and t4 should be identified

and marked accurately. In this study, we applied a Micro Inertial Measurement Unit

(Xsens MTi-G IMU) to fulfill this requirement. We compared both attitudes information

(roll, pitch, and yaw angles) and acceleration information provided by the Micro-IMU.

It was observed that acceleration information alone is sufficient to identify these time

instants (see Fig. 4.3 and Fig. 4.4).
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Fig. 4.3: Accelerations of three axes provided by the Micro IMU.

During experiments, continuous measurements of ECG, body movement, and SpO2 (oxy-

gen saturation) were made by using portable non-invasive sensors. Specifically, ECG

was recorded by using Alive ECG Monitor. Body movement was measured by using the

Xsens MTi-G IMU. SpO2 was monitored by using Alive Pulse Oximeter to guarantee

the safety of the subject. The experimental scenario is shown in Fig. 4.5.
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Fig. 4.4: Roll, pitch and yaw angles provided by the Micro IMU.

4.4 Data analysis and discussion

Original signals of IMU, ECG, and SpO2 are shown in Fig. 4.4, Fig. 4.6, and Fig. 4.7

respectively. It is well known that even in the absence of external interference the heart

rate can vary substantially over time under the influence of various internal or external

factors [155]. As mentioned before, in order to reduce the variance, designed experi-

mental protocol has been repeated three times. Experimental data of these repeated

experiments has been synchronized and averaged.

A typical measured heart rate response is shown in Fig. 4.8. Paper [155] found that HR

response to exercise can be approximated as first order process from a control application

point of view. Therefore we established first order model for six averaged step response

data by using Matlab System Identification Toolbox.

Table 4.2 shows the identified steady state gain (K) and time constant (T ) by using

averaged data of three sets of experimental data. A typical Curve fitting result is shown

in Fig. 4.9. From Table 4.2, we can clearly see that both steady state gain and time
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Fig. 4.5: Experimental scenario.

constant vary when walking speed Va and Vb change. Furthermore, time constant of

offset exercise are noticeably bigger than those of onset exercises. However, it should be

pointed out the variant of time constant is not distinctly dependent on walking speed

when walking speed is less than 3 miles/hour. Overall, experimental results indicate that

HR dynamics at onset and offset exercise exhibited highly nonlinearity when walking

speed is higher than 3 miles/hour.

Table 4.2: The identified time constants and steady state gains by using averaged data.
Sets Onset Offset

DC gain Time constant DC gain Time constant
1 9.2583 9.4818 7.9297 27.358
2 11.264 10.193 9.8561 27.365
3 10.006 13.659 8.9772 26.741
4 12.807 18.618 12.087 30.865
5 17.753 38.192 17.953 48.114
6 32.911 55.974 25.733 81.693
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Fig. 4.6: Original ECG signal.

In order to quantitatively describe the detected nonlinear behavior, we employed the

novel machine learning modeling method, support vector machine regression, to model

time constant and DC gain of HR dynamics.

The time constant regression results at onset and offset exercises are shown in Fig. 4.10

and Fig. 4.11 respectively. In these figures, the continuous curve stands for the estimated

input output steady state relationship. The dotted lines indicate the ε-insensitivity tube.

The plus markers are the points of input and output data. The circled plus markers are

the support points. It should be emphasized that ε-insensitive SVR just uses less than

30 percent of total points to sparsely describe the nonlinear relationship efficiently.

It can be seen that time constant at offset exercise is bigger than that at onset exercise.

It can be also observed the time constant at onset exercise is more accurately identified

than that at offset exercise. This is indicated by the ε tube (or the width of the ε-

nsensitive zone). It is probability that the recovery stage can be influenced by more

other exercise unrelated factors than those at the onset exercise.

80



2100 2200 2300 2400 2500 2600 2700 2800 2900 3000
80

90

100

S
pO

2 (P
er

ce
nt

ag
e)

2900 3000 3100 3200 3300 3400 3500 3600 3700
85

90

95

100

S
pO

2 (P
er

ce
nt

ag
e)

3600 3700 3800 3900 4000 4100 4200 4300 4400
90

95

100

S
pO

2 (P
er

ce
nt

ag
e)

t(seconds)

Fig. 4.7: The recording of SpO2.

The SVM regression results for DC gain at onset and offset exercises are shown in Fig.

4.12 and Fig. 4.13. It can be observed the DC gain for recovery stage is less than that

at onset exercise. Especially, when walking speed is greater than 3 miles per hour.

4.5 Conclusion

This study aims to capture nonlinear behavior of HR response to treadmill walking

exercises by using support vector machine based analysis. We identified both steady

state gain and the time constant under different walking speeds by using the data from a

healthy middle aged male subject. Both steady state gain and the time constant are not

invariant under different walking speeds. The time constant for recovery stage is longer

than that at onset of exercise as predicted. In this study, these nonlinear behaviors have

been quantitatively described by using an effective machine learning based approach,

named SVM regression. Based on the established model, we have already developed a

new switching control approach which will be reported somewhere else. We believe this
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Fig. 4.8: A measured HR step response signal.

integrated modeling and control approach can be utilized to a broad range of process

control. In the next step of this study, we are planning to recruit more subjects to test

the established nonlinear modeling and control approach further.
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Fig. 4.10: SVM regression results for time constant at the onset of exercise.
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Fig. 4.11: SVM regression results for time constant at the offset of exercise.
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Fig. 4.12: SVM regression results for DC gain at the onset of exercise.

84



1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

Speed (mph)

S
te

ad
y 

S
ta

te
 G

ai
n

Steady state gain at offset exercise

Fig. 4.13: SVM regression results for DC gain at the offet of exercise.
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Chapter 5

A machine learning based control
method for human cardiorespiratory
responses to exercise

5.1 Introduction

As HR was found to be a predictor of major ischemic heart disease events, cardiovas-

cular mortality, and sudden cardiac death [6] [4], many scholars have been interested

in monitoring it to evaluate the cardiovascular fitness[153] [154] [58] [12] [62]. HR is

determined by the number of heartbeats per unit of time, it can vary with as the body’s

need for oxygen changes during exercise.

SVM regression offers a solution for nonlinear behavior description of HR response to

moderate exercises as shown in Chapter 4. This SVM based model for HR estimation

can be used to implicitly indicate some key cardio-respiratory response to exercise, such

as oxygen uptake as discussed in [153] and [164]. In our previous study [36], it is shown

that time constant of HR response are not invariant. It is often bigger at offset of

exercise than that for onset of exercise. The captured difference leads to setting up two

nonlinear models separately to present the dynamic characteristics of HR at onset and

offset of exercise.

One process possessing two or more quite different characteristics is quite common not

only for human body responses but also for some industrial processes. For instance, the
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boiler is widely used in live stream sector which is a closed vessel where water or other

liquid is heated. It may only takes a few minutes to heat the water (or other liquid) up

to 100 ◦C, but may spend several hours to cool down in general. Although it is evident

that using different model for different stage (as shown in section 4) may provide more

precise description of the process, it requires more advanced control strategy to handle

this complicate mechanism.

MPC is a family of control algorithms that employ an explicit model to predict the

future behavior of the process over a prediction horizon. The controller output is cal-

culated by minimizing a predefined objective function over a control horizon. Fig. 5.1

illustrates the ‘moving horizon’ technique used in MPC. Recently, MPC has established

itself in industry as an important form of advance control [125] due to its advantages

over traditional controllers [65] [104]. MPC displays improved performance because the

process model allows current computations to consider future dynamic events. This pro-

vides benefit when controlling processes with large dead times or non-minimum phase

behavior. MPC also allows for the incorporation of hard and soft constraints directly

in the objective function. In addition, the algorithm provides a convenient architecture

for handling multi-variable control due to the superposition of linear models within the

controller.

In this study, one of the most popular MPC algorithms, Dynamic Matrix Control

(DMC), is selected to control the HR responses based on previously established SVM

based nonlinear time variant model. The major benefit of using a DMC controller is

its simplicity and efficiency for the computation of optimal control action, which is

essentially a least-square optimization problem.

To well handle different dynamic characteristics at onset and offset of exercises, the

switching control strategy has been implemented during the transmission between onset

and offset of treadmill exercises. By integrating the proposed modeling and control
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Fig. 5.1: The ‘moving horizon’ concept of model predictive control [47].
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methods, HR response to exercise has been optimally regulated at both onset and offset

of exercises.

The organization of this chapter is as follows. The preliminaries of DMC/MPC are

clarified in section 5.2. The proposed switching DMC control approach is discussed in

section 5.3, which is followed by simulation results. Conclusions are given in section 5.4.

5.2 Background

5.2.1 Model-based predictive control (MPC)

5.2.1.1 Brief introduction for MPC

The development of MPC began in the late seventies after the publication of the paper

by Richalet et al in 1978 [126] and has considerably developed both within the research

control community and industry. Initially, it was developed to meet the specialized

control needs of petroleum refineries. Currently, the MPC technology is used in a wide

variety of application areas including chemical, food processing, automotive, aerospace,

metallurgy, and pulp and paper [24].

The MPC controller has proved that it delivers significant financial benefits to industries,

compared to other advance control methods. A survey conducted by Qin and Badgwell

in 2003 [121] identifies that there are more than 4600 industrial applications of MPC.

This varies from SISO to very complex multiply-input multiply-output (MIMO) with

over 600 variables. The MPC has become a very powerful and attractive strategy as it

has many advantages.

In relation to the MPC controller, the systems constraints are very systematically added

into the controller design, in order to handle the constraints effectively. In addition, the
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handling features of MIMO delivers the capacity to perform all multivariable processing

in a single loop hence eliminating the need of a cascading process. This significantly

increases the performance of the controller. In addition, the MPC technology can be

applied to linear and non-linear systems, and the concept is equally applicable to SISO

and MIMO models.

Another advantage of MPC is measured disturbance can be added into the system

dynamic to compensate the disturbance in the controller optimization process. Fur-

thermore, the ability explicitly of the system model and ability to predict the system

behavior helps engineers to learn the system performance in advance [94].

One of its drawbacks is that it requires more computational power when calculating

the online control optimization and plant linearization. However, this problem can be

overcome with the latest high speed microprocessor computers [24].

5.2.1.2 MPC structure

The basic structure of the MPC controller consists of two main elements as depicted

in Fig. 5.2. The first element is the predicted model of the process to be controlled.

Further, if any measurable disturbance or noise exists in the process it can be added to

the model of the system for compensation. The second element is the optimizer that

calculates the future control action to be executed in the next step while taking into

account the cost function and constraints [24].

As it can be seen in the Fig. 5.2, the set point is corrected for any model error or

disturbance through the feedback loop. While the basic structure of the MPC remains

the same, the control algorithms vary with the predicted model used to represent the

processes and the noises, and cost function to minimize the error. Some of the most

popular algorithms are:
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Fig. 5.2: Structure of Model Predictive Control.

1. Dynamic matrix control (DMC)

The DMC uses a step response to model the process dynamic. This method was initially

introduced in Shell Oil in the early period of 1973 [129]. One of the main popular char-

acteristics of this method is handling the constraints using the quadratic programming

(QP) method. A general discrete state-space model can also use this method in the

controller design [24].

2. Model algorithmic control (MAC)

It was initially called as model predictive heuristic control (MPHC). This method is the

same as the previous DMC method except for a few differences. Firstly, it uses an im-

pulse response to model the system whereas the DMC uses step response. Furthermore,

it does not follow the concept of control horizon and introduces a reference trajectory

as a first order system which is computed to minimize the error between output and

reference trajectory [24].

3. Predictive functional control (PFC)

Richalet developed this controlled method to achieve a fast process. This method uses
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Fig. 5.3: Structure of Model Predictive Control.

the state space model of the process and handles non-linear and unstable space model

[124].

4. Extended prediction self adaptive control (EPSAC)

Discrete transfer function (z-transform) is used to model the process. Its control method

is very simple. It assumes the control signal stays constant from instant t. The distur-

bance model can also be included in the model [129].

5. Generalized predictive control (GPC)

A controlled autoregressive integrated moving average (CARIMA) model is used to

predict the output of the system. The GPC uses quadratic cost function with weighting

of control effort. An analytic solution of optimal control can be given in the absence of

constraints [129].

5.2.1.3 MPC control strategy

The MPC control strategy can be explained by comparing the behavior of human beings

when driving a car, as shown in Fig. 5.3.

The prediction horizon (P ) is how far the driver can see in front of the car. The moving

horizon (M) is how far the driver can take actions to control. The predicted model is the
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trained driving skills of human beings. For example, if there is an emergency situation

ahead and the driver takes the emergency stop immediately, the distance between the

location where one began one’s actions and the point where the car actually is stopped,

is called by moving horizon. The drive adjusts the control actions such as accelerator,

brake, and steering by looking long ahead of the desired trajectory. The control decision

can be changed with the conditions ahead such as a signal light, traffic, road type etc.

Hence the driver only executes the first control action for the decision of that instance

and continually adjusts the control action for the changes ahead.

The optimizer setting of the accelerator or brake depends on driver optimization criteria

and reaction. By combining the optimization criteria and driving skills, one can drive

one’s car for different purposes, similar to real MPC. For example, if the driver wants

to minimize the traveling time, the driver will accelerate more and if he/she wants to

save the fuel they drive at a constant speed [170].

5.2.2 Dynamic matrix control (DMC)

DMC uses a linear finite step response model of the process to predict the process

variable profile, ŷ(k + j) over j sampling instants ahead of the current time, k:

ŷ(k + j) = y0 +

j∑
i=1

Ai � u(k + j − i)

︸ ︷︷ ︸
Effect of current and future moves

+
N−1∑
i=j+1

Pi � u(k + j − i)

︸ ︷︷ ︸
Effect of past moves

j = 1, 2 · · ·P ;N : ModelHorizon. (5.1)

where P is the prediction horizon and represents the number of sampling intervals into

the future over which DMC predicts the future process variable [47]. In Eq. (5.1), y0

is the initial condition of the process variable, �ui = ui − ui−1 is the change in the
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controller output at the ith sampling instant, Ai and Pi are composed by the ith unit

step response coefficient of the process, and N is the model horizon and represents the

number of sampling intervals of past controller output moves used by DMC to predict

the future process variable profile.

The current and future controller output moves have not been determined and cannot

be used in the computation of the predicted process variable profile. Therefore, Eq.

(5.1) reduces to

ŷ(k + j) = y0 +
N−1∑
i=j+1

(Pi � u(k + j − i)) + d(k + j), (5.2)

where the term d(k + j) combines the unmeasured disturbances and the inaccuracies

due to plant-model mismatch. Since future values of the disturbances are not available,

d(k+ j) over future sampling instants is assumed to be equal to the current value of the

disturbance, or

d(k + j) = d(k) = y(k)− y0 −
N−1∑
i=1

(Hi � u(k − j)), (5.3)

where y(k) is the current process variable measurement.

The goal is to compute a series of controller output moves such that

Rsp(k + j)− ŷ(k + j) = 0, (5.4)
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Substituting Eq. (5.1) in Eq. (5.4) gives

Rsp(k + j)− y0 −
N−1∑
i=j+1

Pi � u(k + j − i)− d(k + j)

︸ ︷︷ ︸
Predicted error based on past moves, e(k+j)

=

j∑
i=1

Ai � u(k + j − i)

︸ ︷︷ ︸
Effect of current and future moves to be determined

(5.5)

Eq. (5.5) is a system of linear equations that can be represented as a matrix equation

of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e(k + 1)

e(k + 2)

e(k + 3)

...

e(k +M)

...

e(k + P )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
P×1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 . . . 0

a2 a1 0 . . . 0

a3 a2 a1 . . . 0

...
...

...
. . .

...

aM aM−1 aM−2 a1
...

...
...

. . .
...

aP aP−1 aP−2 . . . aP−M+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P×M

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�u(k)

�u(k + 1)

�u(k + 2)

...

�u(k +M − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M×1

(5.6)

or in a compact matrix notation as18

ē = A� ū, (5.7)
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where ē is the vector of predicted errors over the next P sampling instants, A is the

dynamic matrix, and �ū is the vector of controller output moves to be determined.

An exact solution to Eq. (5.7) is not possible since the number of equations exceeds

the degrees of freedom (P > M). Hence, the control objective is posed as a least

squares optimization problem with a quadratic performance objective function of the

form determined.

min
�ū

J = [ē− A� ū]T [ē− A� ū], (5.8)

The DMC control law of this minimization problem:

� ū = (ATA)−1AT ē, (5.9)

Implementation of DMC with the control law in Eq. (5.9) results in excessive control

action, especially when the control horizon is greater than one. Therefore, a quadratic

penalty on the size of controller output moves is introduced into the DMC performance

objective function. The modified objective function has the form

min
�ū

J = [ē− A� ū]T [ē− A� ū] + [�ū]Tλ[�ū], (5.10)

where λ is the move suppression coefficient (controller output weight). This weighting

factor plays a crucial role on the optimizer of DMC. If the value of λ is enough large,

the optimizer attaches more importance to the effects of �u, so that the robustness of

output moves of the process is straightly improved, but the accuracy of output moves

along with reference profile might be sacrificed. In the same way to reduce the value of

λ, to optimize the effect of ē has higher priority than that of �u. Accuracy of system

becomes more significant than robustness.
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In the unconstrained case, the modified objective function has a closed form solution of

(e.g., Marchetti, Mellichamp, & Seborg, 1983; Ogunnaike, 1986) [98] [120]

� ū = (ATA+ λI)−1AT ē, (5.11)

Adding constraints to the classical formulation given in Eq. (5.10) produces the quadratic

dynamic matrix control (QDMC) [103] [64] algorithm. The constraints considered in

this work include:

ŷmin ≤ ŷ ≤ ŷmax (5.12a)

�ūmin ≤ �ū ≤ �ūmax (5.12b)

ūmin ≤ ū ≤ ūmax (5.12c)

5.2.3 Programming approach in C language for DMC

The whole follow-up steps for DMC implementation in C language are listed in Table

5.1. The DMC control system similar with PID control is a closed loop system. At the

beginning of loop, DMC parameters (such as P , M , N and λ), initial value of input,

and set point array R should be defined by developers. More details will be found

about tuning DMC parameters in section 5.2.4. After initializations, the process output

y(k)(k = 1) is calculated and recorded for further steps.
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Table 5.1: The identified time constants and steady state gains by using averaged data.
Dynamic Matrix Control (DMC) Algorithm Implementation using C

Language Programming
Steps Actions
1 Initialize prediction horizon (P ), moving horizon (M), move

suppression coefficient (λ), model horizon (N), input value
u(k − 1), set point R and the process output, y(k), is measured.

2 Compute free response of the system by using F matrix and
measured y(k) , and calculate error vector e(k + j) =
Rsp(k + j)− [ŷ(k + j) + d(k + j)] (j = 1, 2 . . . P ).

3 Compute u(k) = K × e(k + j) by using performance objective
function (optimizer) : K = (ATA+ λI)−1AT

4 u(k) is added to controller output
5 Shift the value of p.v matrix and update the first element with u(k)
6 k = k + 1
7 Repeat step 1—6

The error vector e(k+ j) can be rewritten by extending ŷ(k+ j) according to Eq. (5.1)

e(k + j) = Rsp(k + j)− [y0 +

j∑
i=1

Ai � u(k + j − i)

︸ ︷︷ ︸
Effect of current and future moves

+
N−1∑
i=j+1

Pi � u(k + j − i)

︸ ︷︷ ︸
Effect of past moves

+d(k + j)], (5.13)

A and P matrix in Eq. (5.13) both are composed of elements of unit step response

under the selected length of model horizon (N) in different ways, based on superposition

principle [69].
j∑

i=1

Ai (j = 1, 2, · · ·P )
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for current and future effects is represented by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 . . . 0

a2 a1 0 . . . 0

a3 a2 a1 . . . 0

...
...

...
. . .

...

aM aM−1 aM−2 a1
...

...
...

. . .
...

aP aP−1 aP−2 . . . aP−M+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P×M

;

N−1∑
i=j+1

Pi (j = 1, 2, · · ·P )

for past moves is expressed as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2 a3 a4 . . . aN

a3 a4 a5 . . . aN+1

a4 a5 a6 . . . aN+2

...
...

...
. . .

...

aM aM+1 aM+2 aN+M−2

...
...

...
. . .

...

aP+1 aP+2 aP+3 . . . aP+N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P×N−1

.

As noted in Eq. (5.4), the ideal control goal assumes e(k + j) = 0, which directly

generates the representations of Eq. (5.5). Importantly, it vividly tells us that the

effects of current and future moves could be completely re-described by calculating the
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effects of past moves. Along with this result, we can safely write error vector as

e(k + j) = Rsp(k + j)− y0 −
N−1∑
i=j+1

Pi � u(k + j − i)− d(k + j), (5.14)

replacing d(k + j) with Eq. (5.3), e(k + j) can be revised by

e(k + j) = Rsp(k + j)− y(k) +

[
N−1∑
i=1

Hi � u(k + j − i)−
N−1∑
i=j+1

Pi � u(k + j − i)]

︸ ︷︷ ︸
F Matrix

, (5.15)

As for minimizing the combination of set point tracking (e) and control effect (�u), the

modified objective function has been proposed in Eq. (5.10). By a series of mathematical

manipulations, Eq. (5.16) is obtained:

� û = ATA+ λI)−1AT︸ ︷︷ ︸
K

e, (5.16)

5.2.4 Formulation of tuning DMC parameters

The foundation of DMC lies with the formal tuning rules [140] [141] based on fitting

the controller output to measured process variable dynamics at one level of operation

with a FOPDT model approximation. A FOPDT model has the form

τp
dy(t)

dt
+ y(t) = Kpu(t− θp) or

y(s)

u(s)
=

Kpe
−θps

τps+ 1
, (5.17)

where Kp is the process gain, τp is the overall time constant and θp is the effective dead

time. Specifically, Kp indicates the size and direction of the process variable response

to a control move, τp describes the speed of the response, and θp tells the delay prior to
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when the response begins.

The tuning parameters for single-loop DMC include the sample time (Ts), prediction

horizon (P ), moving horizon (M), model horizon (N) and move suppression coefficient

(λ).

The tuning parameters are calculated offline prior to the start-up of the DMC controller.

Following this previous work, the sample time, Ts, is computed as

Ts = Max(0.1τp, 0.5θp), (5.18)

This value of sample time balances the desire for a low computation load (a large Ts)

with the need to properly track the evolving dynamic behavior (a small Ts). Many

control computers restrict the choice of Ts [61] [13]. Recognizing this, the remaining

tuning rules permit values of Ts other than that computed by Eq. (5.18) to be used.

The sample time and the effective dead time are used to compute the discrete dead time

in integer samples as

k = Int(
θp
Ts

) + 1, (5.19)

The prediction horizon, P , and the model horizon, N , are computed as the process

settling time in samples as

P = N = Int(
5τp
Ts

) + k, (5.20)

Note that both N and P cannot be selected independent of the sample time.

A larger P improves the nominal stability of the closed loop. For this reason, P is

selected such that it includes the steady-state effect of all past controller output moves,
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i.e., it is calculated as the open loop settling time of the FOPDT model approximation.

The control horizon, M , must be long enough such that the results of the control actions

are clearly evident in the response of the measured process variable. The tuning rule

thus chooses M as one dead time plus one time constant, or

M = Int(
τp
Ts

) + k, (5.21)

This equation calculates M such that M × T is larger than the time required for the

FOPDT model approximation to reach 60% of the steady state.

The final step is the calculation of the move suppression coefficient, λ. Its primary role

in DMC is to suppress aggressive controller actions. Shridhar and Cooper [140] [141]

(1997, 1998) derived the move suppression coefficient based on a FOPDT model fit as

λ =
M

10
(
3.5τp
T

+ 2− M − 1

2
)K2

p , (5.22)

Eq. (5.22) is valid for a control horizon greater than 1 (M > 1). When the control

horizon is 1 (M = 1), no move suppression coefficient should be used (λ = 0).

5.3 Control methodologies design

5.3.1 Discrete Time Model

From the previous studies, HR response to exercise can be approximated as first order

process, which is expressed in S-domain as Eq. (5.23).

H(s) =
Y (s)

U(s)
=

K

Ts+ 1
, (5.23)
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For obtaining the discrete time model, Eq. (5.23) has to be transformed to z-domain

by

s =
1− z−1

Ts

, (5.24)

Ts is the sample time.

To bring Eq. (5.24) to Eq. (5.23), this model in z-domain will be followed as Eq. (5.25)

(
T

Ts

+ 1)y =
T

Ts

yz−1 +Ku. (5.25)

According to y(k)z−1 = y(k− 1) (k: the kth sample time), Eq. (5.25) is transformed to

the discrete time norm by

y(k) =
T

T + Ts

y(k − 1) +
TsK

T + Ts

u(k). (5.26)

In Eq. (5.26), T and K are the only parameters to be defined for describing the first

order model. It can be regarded as a nonlinear model when the set of parameters K

and T varies as u(k) does change. This is exactly what the mathematic model of the

dynamic characteristics of CR response to exercise is. The relationships between the

transient parameters (K and T ) and u(k) relating to SVR results can be found in section

4.4.

5.3.2 Switching control method

If a control system has two or more than two processes, switching control would be one

of approaches commonly used in the multiply model control field. The switching control

for discrete time models increases the control accuracy, lowers the system consumption
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Fig. 5.4: Block Diagram for Double Model Predictive Switching Control System.

and raises the efficiency of control processing. Nevertheless, it also issues the risk on

system robustness, because of the existing gap between models.

By the analysis of the previous experiment results in section 4.4, there are two nonlinear

time invariant models being introduced for dynamic characteristics of HR response at

onset and offset of exercises. Certainly, two unique DMC controllers also are established,

each computing their own control actions. Although two models plus two controllers

are employed in this work, the approach can easily be extended to include as many local

models and controllers as the practitioner would like, seen as Fig. 5.4.

If �R(k) = R(k) − R(k − 1) is the set point change, �u(k) = u(k) − u(k − 1) is the

input change of designed controller at kth sample time, uonset is controller output for

onset of exercises, uoffset is controller output for offset of exercise, yonset is measured

output of the process for onset of exercise and yoffset is measured output of the process

for offset of exercise, then

If �R(k) > 0 then

umeas = uonset, (3.27a)

And if �u(k) > 0

ymeas = yonset, (3.27b)
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Otherwise

ymeas = yoffset, (3.27c)

If �R(k) = 0

And if �u(k) > 0

umeas = uonset, (3.28a)

ymeas = yonset, (3.28b)

Otherwise

umeas = uoffset, (3.28c)

ymeas = yoffset, (3.28d)

If �R(k) < 0 then

umeas = uoffset, (3.29a)

And if �u(k) > 0

ymeas = yonset, (3.29b)

Otherwise

ymeas = yoffset, (3.29c)

In this point of view, ymeas is the actual measured output of the control system and

umeas is the actual controller output after which controller is being selected by the above

conditions. It should be mentioned that in the simulation stage the constraints for u(k)

and e(k) have not been involved, which will be studies in the experiment validation

stage.
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5.3.3 Demonstration of tuned DMC parameters for control

system of cardiorespiratory responses to exercise

The parameters consisting of the sample time (Ts), prediction horizon (P ), moving

horizon (M), model horizon (N), move suppression coefficient (λ), peak value of the

reference profile (Rp) and number of samples (S) seen as Table 5.2, were tuned only based

on the authors’ experience and simulation results, which may vary at the experiment

validation stage.

Table 5.2: Tuning Parameters for DMC Control System of Cardio-respiratory Response
to Exercise.

Controller for Onset Stage Controller for Offset Stage
P 30 30
M 10 10
N 180 250
λ 300 3000
S 900
Rp 30
Ts 2

According to previous studies in section 4.4, the range of a normal measured HR step

response signal is approximately from 100 btm to 140 btm. Therefore, the reference scale

(Rp) are kept around 30 as an expected value.

Due to its nonlinearity of this study, the DMC parameters usually are set by combination

of practical training and theoretical philosophies. For example, in order to find a best

value for the move suppression coefficient (λ), a test is carried out that employs 21 sets

of steady state gain (K) and time constant (T ) in terms of the SVR simulation results

in section 4.4. These 21 different experiment data can be simply treated as 21 linear

models. The method of practical training tends to tailor these linear models with a

possible best value and evaluate them to find the final λ for nonlinear DMC controllers.

The tuned values of for DMC onset and offset controllers through 21 sets of test data
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Table 5.3: Tuning model horizon (N) for HR response at onset and offset of exercise.
Input (u) Model Horizon (N) at Onset Model Horizon (N) at Offset

1 30 166
2 43 145
3 113 251
4 179 367

analysis respectively amount to 300 and 3000.

The sample time (Ts) is set as 2 seconds based on the general heartbeat rate of human

beings. The experiment period is about 30 minutes except 10 minutes for warm-up at

the beginning of exercise. Hence, the number of samples (S) is 900. Considering about

the larger Ts and S, prediction horizon (P ) and moving horizon (M) are modulated to

30 and 10 severally. In addition, the tuned parameters Ts and N improve the system

response time so as to the control effect can match with the sample time moves.

Model horizon (N) also needs to be tuned in order to reduce the system’s computational

time and enhance efficiency of DMC controller. In particular, N is defined as a dynamic

array to keep storing and shifting the values of steady-state responses of the process

until it stays at level. If the length of N is too long, it would be redundant. To cut the

length of N for each controller, an experiment was performed where the two machine

learning based nonlinear model for HR response to exercise were tested to get their own

unit step response data respectively when input u = 1 ,u = 2 ,u = 3 and u = 4 . The

experiment data in Table 5.3 shows N for DMC onset controller is 180 and for DMC

offset controller 250 is estimated.
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Fig. 5.5: Simulation results for machine learning based double nonlinear model predic-
tive switching control for CR response to exercise with all tuning parameters (I).

5.3.4 Simulation

5.3.4.1 Simulation for double nonlinear model predictive switching control

of cardiorespiratory responses to exercise

The simulation results for machine learning based double nonlinear model predictive

switching control for CR response to exercise is demonstrated in Fig. 5.5 and Fig. 5.6.

Based on these figures, the results are sound, even if a randomly disturbance is added

into DMC controllers (see Figure 5.6), which also can efficiently avoid the distortion.

In the experiment results, these complex nonlinear behaviors have been qualitatively

optimized with high accuracy by using the double model predictive switching control

approach.

On the other hand, switching control brings the slight oscillations at middle stage, seen

as Fig. 5.7. As the amplitudes of these oscillations do not exceed the theoretical error
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Fig. 5.6: Simulation results added noise for machine learning based double nonlinear
model predictive switching control for CR response to exercise with all tuning parame-
ters.

range (σ ≤ 5%), it should not be emphasize too much for the simulation work.

5.3.4.2 Experiment for a single nonlinear model control of cardiorespiratory

responses to exercise

To visibly demonstrate the advantages of modeling the HR response at onset and offset

of exercises separately, a comparative experiment for single Onset (Fig. 5.8) or Offset

(Fig. 5.9) Nonlinear Model Predictive Control by Using SVR, are presented. The single

onset nonlinear model control strategy (see Fig. 5.8) has a failed simulation result due

to the bad performance at offset stage. Similar with the single offset one, it is regulated

well at end but lose its control at beginning. This comparative experiment validated

the necessity of the design of double models and the relevant regulations.

109



250 300 350 400 450 500 550 600 650
29.4

29.5

29.6

29.7

29.8

29.9

30

30.1

Simulation Results WITH All Tuning Parameters

time, 30 minutes

Fig. 5.7: Simulation results for machine learning based double nonlinear model predic-
tive switching control for CR response to exercise with all tuning parameters (II).

Fig. 5.8: Simulation results for machine learning based single onset nonlinear model
predictive control.
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Fig. 5.9: Simulation results for machine learning based single offset nonlinear model
predictive control.

5.4 Conclusion

In this study, a machine learning based nonlinear model predictive control for HR re-

sponse to exercise is introduced.

As discussed in section 4.4, this nonlinear behavior of HR response to treadmill walking

exercise can be effectively captured by using SVM regression. We investigated both

steady state gain and the time constant under different walking speeds by using the

data from an individual healthy middle aged male subject. The experiment results

demonstrate that the time constant for recovery stage is longer than that at onset of

exercise, which provide the essential to form double models method to describe the

corresponding onset or offset of exercises.

Based on the established model, a novel switching model predictive control algorithm

has been developed, which applied DMC algorithm to optimize the regulation of HR
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responses at both onset and offset of exercises.

Simulation results indicate switching DMC controller can efficiently handle the different

dynamic characteristics at onset and offset of exercise. However, it should be pointed

out that the proposed approach, as most switching control strategy, also suffers from

transient behavior during controller switching. For example, the simulation results in

transition stage (�R = 0 , Fig. 5.7; Eq. (3.28a) , (3.28b), (3.28c) and (3.28d)) have

slight oscillation due to the quick switching between two controllers. In the next step of

this study, we will develop bump-less transfer controller to minimize the transient behav-

ior and implement those methodologies in the real time control of HR response during

treadmill exercises. In the future, the experiment validation of the SVM based nonlinear

MPC control algorithm for HR response to exercise will be continuously explored.
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Chapter 6

Multi-loop integral controllability
analysis for nonlinear two-input
single-output processes and its
application to cardiorespiratory
regulation for treadmill exercise

6.1 Introduction

One of the greatest public health challenges confronting many industrialized countries

is the obesity epidemic. The safe, low-to-moderate intensity exercise, which is suitable

for every fitness level (especially suitable for patients with existing chronic conditions

such as diabetes, cardiovascular disease or arthritis), remains the healthiest and least

risky way for losing weight [147] [3]. The development of automated exercise assisted

equipments can greatly enhance the safety and reduce the requirement of supervision.

For an automated treadmill system, and efficient method for exercise strength regulation

is to stimulate exercisers’ HR to follow a pre-designed HR profile. Paper [133] devel-

oped a non-switching, nonlinear anti-windup integral control for the long duration HR

response to treadmill exercise; however, most studies [39] [100] [152] [155] consider only

using one manipulate variable (treadmill speed or gradient) to regulate HR responses.

In [80] [82], for exercise testing and rehabilitation of subjects with impaired exercise tol-

erance, ramp type protocols were proposed by simultaneously manipulating both speed
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and gradient, which could produce a low initial metabolic rate that then increases the

work rate linearly to reach the subject’s limit of tolerance in approximately 10 minutes.

In [165], a multi-loop PID controller based HR tracking system has been presented which

simultaneously tuned both treadmill speed and gradient in closed loop, and achieved

good performance. However, in paper [165], it is assumed that the HR response to

treadmill exercise is in a linear range, and only linear modeling and control approaches

were presented. The advantages of using both speed and gradient to regulate HR are

therefore only valid in a certain linear response range. The main purpose of this study is

to theoretically analyze the advantage of using two manipulators in terms of nonlinearity

near walking-running transition zone of treadmill exercise.

For most linear processes, the control of two correlated inputs and single output can be

transferred as a SISO control problem by simply combining the two control inputs as

one. However, in engineering practice, nonlinear systems with multiple control inputs are

commonly encountered and sometimes it is not proper to combine them as a single input.

Besides the process was investigated in this study, another example is the regulation

of temperature of a container (such as a chemical reactor), which may apply multiple

actuators (such as heaters and fans) to simultaneously control the temperature.

There are several advantages in practice for using multiple (redundant) actuators. Firstly,

it can increase the non-saturation range. Real systems always have physical limitations

and therefore have limited non-saturation range. If simultaneously execute multiple

actuators, the output range can be extended. Secondly, it can increase the maximum

gain of the actuator so that fast tracking or regulation of the manipulated variable can

be achieved as shown experimentally in [165].

Furthermore, from reliability point of view, redundancy of actuators can facilitate fault

accommodation for the implementation of fault tolerant control strategies. For the reg-
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ulation of HR, multi-loop integral controllers were developed [165] in order to achieve

zero steady state tracking error. For multi-loop integral control of square process, Sko-

gestad and Morari [143] introduced the concept of DIC for evaluating the feasibility of a

process to achieve Decentralized Unconditional Stability (DUS), a passive fault tolerant

capability. DIC analysis [168] [30] [150] determines whether a multivariable plant can be

stabilized by multi-loop controllers, whether the controller can have integral action to

achieve offset free control, and whether the closed-loop system will remain stable when

any subset of loops is detuned or taken out of service.

This study extended the DIC analysis for the nonlinear square process to this special

non-square (a two-input single-output) process, and experimentally detected the HR

range in which the MIC is valid/invalid. Simulation study is provided to show that

simultaneous manipulating of treadmill speed and gradient can significantly improve

the tracking performance near walking-running transition zone.

The organization of this chapter is as follows. Section 6.2 will define the MIC for a 2ISO

nonlinear process, and present a sufficient MIC condition based on singular perturbation

analysis [137] [88]. The MIC range as well as transition zone for HR tracking will be

presented in this section as well. Section 6.3 concludes this chapter.

6.2 Multi-loop integral controllability

6.2.1 Multi-loop integral controllability analysis for HR re-

sponse

In [165], multi-loop PID controller has been designed for the regulation of HR response

to treadmill exercise. Based on the configuration in [165], we will introduce a definition

of MIC for this special non-square process (2ISO), which is a direct extension of DIC
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Fig. 6.1: MIC for a 2ISO system.

concept from square processes to non-square processes.

As shown in Fig. 6.1, we assume HR response can be described by the following nonlinear

state variable equations with an input vector u ∈ R2 and an output vector y ∈ R1:

P

⎧⎪⎨
⎪⎩

ẋ = f(x, u) x ∈ X ⊂ Rn, u ∈ U ⊂ R2

y = g(x, u) y ∈ Y ⊂ R1.
(6.1)

It is assumed that the state x(t) is uniquely determined by its initial value x(0) and the

input function u(t). Another assumption made for convenience is that the system (6.1)

has equilibrium at origin, that is, f(0, 0) = 0, and g(0, 0) = 0. If the equilibrium xe is

not at origin, a translation is needed by redefining the state x as x− xe.

Definition 1 (Multi-loop integral controllability (MIC) for nonlinear 2ISO processes)

Consider the closed loop system depicted in Fig. 6.1.

(i). For the nonlinear process P described by Eq. 6.1, if there exists a multi-loop

integral controller C, such that the unforced closed loop system (r = 0) is Globally

Asymptotically Stable (GAS) for the equilibrium x = 0.

(ii) Assume each individual loop is detuned independently by a factor ki (0 ≤ ki ≤ 1,

i = 1, 2), and for each pair of multi-loop gain {k1, k2} the closed loop system is still

Asymptotically Stable (AS) for an equilibrium x̃e (not necessarily x̃e = x = 0), then the

nonlinear process P is said to be Multi-loop Integral Controllable.
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The stability with detuning factor {k1, k2} for the square process is the so-called ‘de-

centralized unconditional stability’ [155]. A closed-loop system which is decentralized

unconditionally stable allows the gains of each controller subsystem to be modified in-

dependently by a factor in the range [0, 1] [155].

It should be noted that for the non-square process under multi-loop integral control the

equilibrium varies when the ratio of the detuning factor k1 and k2 is changed, which is

different with the decentralized integral control for the square process.

In Fig. 6.1, we assume the state equation of the general process P̃ (which includes

original process P and the two scalar non-integral controllers c1 and c2) is modeled as

below (with the same assumptions for process P in Eq. 6.1).

P̃ :

⎧⎪⎨
⎪⎩

ẋ = f(x, ũ)

y = g(x, ũ).
(6.2)

The state equation for the linear integral controller can be expressed as:

Cl :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ̇ =

⎡
⎢⎣ ξ̇1

ξ̇2

⎤
⎥⎦ = η

⎡
⎢⎣ k1

k2

⎤
⎥⎦ e = −η

⎡
⎢⎣ k1

k2

⎤
⎥⎦ y

ũ = ξ.

(6.3)

In this paper, we assume the initial conditions of the two integrators in Fig. 6.1 are

zero. Then, it is easy to see that the above equation can be simplified as follows:

Cl :

⎧⎪⎨
⎪⎩

ξ̇ = −ηy = ηe

ũ = [ũ1 ũ2]
T = [k1 k2]

T ξ.
(6.4)

Theorem 1 (Sufficient steady-state MIC conditions for nonlinear 2ISO processes)
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Consider the closed loop system in Fig. 6.1, and assume that the general process P̃ and

the linear part of the controller Cl are described by Eq. 6.2 and Eq. 6.4 respectively. If

the following assumptions are satisfied:

(i) The equation 0 = f(x, ũ) obtained by setting ẋ = 0 in Eq. 6.2 implicitly defines a

unique C2 function x = h(ũ) for ũ ∈ Ũ ⊂ R2;

(ii) For any fixed ũ ∈ Ũ ⊂ R2, the equilibrium x = h(ũ) of the system ẋ = f(x, ũ) is

Globally Asymptotically Stable (GAS) and Locally Exponentially Stable (LES);

(iii) Denote ũ = [ũ1 ũ2]
T = [k1ξ k2ξ]

T , and suppose the steady-state input output

function of the general process P̃ can be factorized as g(h(ũ), ũ) = ψ(ũ)(ũ1 − φ(ũ2)).

Assume φ(ũ2) is a unique C2 function with ∂φ(ũ2)
∂ũ2

≤ μ < 0, and ψ(ũ) 
= 0 when

ũ ∈ Ũ ⊂ R2;

Further assume

k1
∂g(h(ũ),ũ)

∂ũ1
+ k2

∂g(h(ũ),ũ)
∂ũ2

> ρ > 0 (for some scalar ρ > 0) for in a neighborhood of ũ = 0,

then there exists η > 0, such that the equilibriums (under different k1 and k2) are GAS.

That is, if the two scalar controllers c1and c2can be found such that the generalized

process P̃ can satisfy Conditions i), ii) and iii), then the nonlinear 2ISO process is MIC.

Proof : We prove this theorem based on singular perturbation theory [137][88].

Consider the system of Fig. 6.1 described by Eq. 6.2 and Eq. 6.4. In order to analyse

the Lyapunov stability of the unforced closed loop (P̃ ,−Cl), the input signal r is set to

zero. The state equation for the closed loop (P̃ ,−Cl) can be expressed as:

(P̃ ,−Cl) :

⎧⎪⎨
⎪⎩

ẋ = f(x, [k1ξ, k2ξ]
T )

ξ̇ = η e = −η y = −η g(x, ξ).
(6.5)
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Equation 6.5 can be transformed into a standard singular perturbation form [137]: Let

τ = η(t− t0), so that τ = 0 at t = t0. As
dτ
dt

= η, we have:

(P̃ ,−Cl) :

⎧⎪⎨
⎪⎩

η d
dτ
x = f(x, [k1ξ, k2ξ]

T )

d
dτ
ξ = −g(x, ξ).

(6.6)

In order to be consistent with standard singular perturbation notation, we will for the

moment use the notation ẋ to denote the derivative on the slow time scale τ when we

analyse singular perturbation models.

Now, for the standard singular perturbation model (see Eq. 6.6), based on Condition

a) and b), the verification of the following two conditions (the first two conditions of

Theorem 3.18 in [137]) is straightforward:

(i) The equation 0 = f(x, ξ) obtained by setting η = 0 in Eq. 6.6 implicitly defines a

unique C2 function x = h(ξ).

(ii) For any fixed ξ ∈ Rm, the equilibrium xe = h(ξ) of the subsystem ẋ = f(x, ξ) is

Globally Asymptotically Stable (GAS) [137] and Locally Exponentially Stable (LES).

We only need to prove Conclusion (iii) of Theorem 3.18 in [137], the stability (GAS and

LES) of “slow time scale”. That is, the following conclusion needs to be proved:

(iii) The equilibrium ξ = 0 of the reduced model (slow time scale) ξ̇ = −g(h(ũ), ũ) is

GAS and LES. Where ũ = [k1ξ k2ξ]
T .

To prove GAS, we select V (ξ) = 1
2
(ũ1 − φ(ũ2))

2 = 1
2
(k1ξ − φ(k2ξ))

2 as a Lyapunov

function candidate for the “slow time scale” system. It can be seen that

V̇ (ξ) = (ũ1 − φ(ũ2)) · (k1 − k2
∂

∂ũ2
φ(ũ2))(−g(h(ũ), ũ))

= −ψ(ũ)(ũ1 − φ(ũ2))
2 · (k1 − k2

∂
∂ũ2

φ(ũ2))
(6.7)
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As ψ(ũ) 
= 0 when ũ ∈ Ũ ⊂ R2, it will be either always positive or negative:

1. When ψ(ũ) is positive and ξ 
= 0, it is easy to see that V̇ (ξ) < 0 as (k1 −
k2

∂
∂ũ2

φ(ũ2)) > 0.

2. When ψ(ũ) is negative, we can change the sign of the general process P̃ by simply

changing the sign of the two scalar non-integral controllers c1 and c2 simultane-

ously. Then, the steady state function g(h(ũ), ũ) becomes −g(h(ũ), ũ). Thus,

when ξ 
= 0

V̇ (ξ) = (ũ1 − φ(ũ2)) · (k1 − k2
∂

∂ũ2
φ(ũ2))(g(h(ũ), ũ))

= ψ(ũ)(ũ1 − φ(ũ2))
2 · (k1 − k2

∂
∂ũ2

φ(ũ2)) < 0.

This ensures the ‘slow time scale’ system is GAS.

To prove Locally Exponential Stability (LES), we simply select VL(ξ) =
1
2
ξ2 as a Lya-

punov function candidate for the ‘slow time scale’. It can be seen that

V̇L(ξ) = −ξ g(h(ũ), ũ). (6.8)

It is easy to check both VL(ξ)and V̇L(ξ) will satisfy the requirements for LES given that

k1
∂g(h(ũ),ũ)

∂ũ1
+ k2

∂g(h(ũ),ũ)
∂ũ2

> ρ > 0 for some scalar ρ > 0 in a neighborhood of ũ = 0.

Specifically, for V̇L(ξ), in a neighborhood of u′ = 0

V̇L(ξ) = −ξ g(h(ũ), ũ) ≈ −[k1
∂g(h(ũ), ũ)

∂ũ1

+ k2
∂g(h(ũ), ũ)

∂ũ2

]ξ2.

Now, we consider two cases again:
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1. For ψ(ũ) > 0 (ψ(0) = q1 > 0) and ξ 
= 0, in a neighborhood of ũ = 0, we have

V̇L(ξ) = −ξ g(h(ũ), ũ) = −ψ(ũ)(ũ1 − φ(ũ2))ξ

≈ −ψ(0) · (k1 − k2
∂

∂ũ2
φ(ũ2))ξ

2 < −ρl1ξ
2,

where ρl1 is a positive scalar.

2. For ψ(ũ) < 0 (ψ(0) = q2 < 0), the sign of the general process P̃ has been

changed by changing the sign of the two scalar non-integral controllers c1 and c2

simultaneously. Then, in a neighborhood of ũ = 0, we have:

V̇L(ξ) ≈ ψ(0) · (k1 − k2
∂

∂ũ2

φ(ũ2))ξ
2 < −ρl2ξ

2,

where ρl2 is a positive scalar.

Based on Definition 1, we can easily check that a necessary MIC condition for a 2ISO

process is each single loop, a SISO system whose input is one of the inputs and output

is the single output (with the other input fixed), is DIC respectively. For the HR

regulation, the necessary condition is the speed-HR and gradient-HR loops are DIC

respectively.

A sufficient DIC condition for a SISO system is its monotone increasing (or monotone

decreasing) in steady state. It is easy to see the monotone increasing conditions for

each loop (i.e. εimax ≥ ∂
∂ũi

g(ũ1, ũ2) ≥ εimin > 0, i = 1, 2) are sufficient to ensure

0 > −ε ≥ ∂
∂ũ2

φ(ũ2). In fact, from Condition iii) in Theorem 1, we can conclude that for

the steady-state input output function of the general process P̃ , g(h(ũ), ũ) = 0 implies

that ũ1 = φ(ũ2). Then, we have g(h(φ(ũ2), ũ2)) = 0. Thus, [ ∂g
∂ũ1

∂φ
∂ũ2

k2+
∂g
∂ũ2

k2]ξ = 0, and

∂φ
∂ũ2

= − ∂g
∂ũ2

/ ∂g
∂ũ1

. Considering that εimax ≥ ∂
∂ũi

g(ũ1, ũ2) ≥ εimin > 0, i = 1, 2, we have

0 > − ε2min

ε1max
≥ ∂

∂ũ2
φ(ũ2) ≥ − ε2max

ε1min
.
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For either purely walking (or purely running), it is not hard to see that the monotone

increasing of speed or gradient respectively will lead to the monotone increasing in HR,

i.e., each single loop is DIC in either walking zone or running zone. In [165], it is

experimentally proved that in walking zone simultaneous manipulating both speed and

gradient can achieve fast HR tracking.

However, due to the different motor patterns [32] of walking and running, HR response

in walking/running transition zone would be non-monotone. In the following part,

experiments are designed and implemented to investigate the heart rate response to

walking and running around transition speed.

6.2.2 Experiments

In order to collect the HR data while walking or running on the treadmill, a portable and

efficient device the Alive Heart Monitor (HM131), manufactured by Alive Technologies

Pty Ltd, was used. This device is equipped with a HR sensor and a triaxial accelerom-

eter. The ECG and accelerometer data is collected at a rate of 300 samples/sec and

75 samples/sec respectively. Data is transmitted in real time over a Bluetooth SPP

connection. Data acquisition system was designed and implemented in the National In-

strument LabVIEW 8.6, which provides easy synchronization and graphic user interface.

The treadmill used in the experiment is powered by a DC motor and the controlled via

the RS232 protocol using a serial port.

The physical characteristics of all three participants are presented in Table 6.1. The

experiment scenario is shown in Fig. 6.2.

All subjects were asked to exercise on a motor-controlled treadmill, and they all selected

7 km/hour as the speed for which both walking and running are possible. Then, subject

was asked to walk for 5 minutes at 7 km/hour for a certain gradient and followed 7
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Table 6.1: Subjects Characteristics.
Subject
No.

Age (Year) Height
(cm)

Weight (Kg)

1 24 170 52
2 26 175 55
3 27 173 53
Mean ±
STD

25.7 ± 1.5 172.7 ±
2.5

53.3 ± 1.5

Fig. 6.2: The experiment environment.

minutes rest. This procedure was repeated for running as well as for different gradients.

During experiments, HR response was recorded by the potable ECG monitor. The

averaged steady state HR of the three subjects for both walking and running under

different gradients is summarized in Table 6.2.

From Table 6.2, it can be seen that for a certain gradient, the HR for running is more

than 15% higher than that for walking with speed 7 km/h. During exercise, the subjects

may switch between walking and running when the treadmill speed is around 7 km/h.

So, we find out, for example, when gradient is around 15 degree, the transition zone for

HR is between 121 bpm and 144 bpm. When the reference HR is in the transition zone,

simultaneous manipulation of speed and gradient would be beneficial as shown in the
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Table 6.2: HR response at steady state.
Gradient
(degree)

HR (bpm)
Walking at 7
km/h

HR (bpm)
Running at 7
km/h

0 102 125
15 121 144
25 137 171

following illustrative example by simulation.

6.2.3 Illustrative simulation study

Now, we provide simulation studies for the tracking of HR around transition zone. The

reason why we use simulation rather than experiment is the fact that HR reflects not

only the relative stress placed on the cardiopulmonary system due to activity, but it can

also be elevated by emotional stress [153]. In the experimental condition, it is rather

difficult to well control emotional stress of the exercisers around transition zone. On

the other hand, in the simulation study, the irrelevant stimuluses of HR can be totally

removed so that we can see the transition effects during HR tracking more clearly.

First, we discuss the model of HR response to treadmill exercises which will be used

in the following simulation studies. In the control of HR, paper [3] assumed the HR

response (vs. treadmill speed) can be described by a SISO Hammerstein model, i.e.,

a static nonlinear function followed by a linear dynamic system. In this study, both

treadmill speed and gradient have been applied as control inputs. As shown in [80], for

different speed v(t) and gradient θ(t), external exercise work rate on treadmill can be

simply quantified as: p(t) = mgv(t) sin(θ(t)).

Therefore, the two control inputs (speed and gradient) together only manipulate one

control input variable, external exercise work rate p(t). In order to simplify the analysis

of HR response to treadmill exercise, similarly we depict this 2ISO system as a special
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Fig. 6.3: The 2ISO Hammerstein system.

Hammerstein model as shown in Fig. 6.3. In Fig. 6.3, the linear dynamic part can

be modeled as a first order SISO process [165] [155]: G(s) = k
Ts+1

, with time constant

T = 35 sec and steady state gain k = 1 as presented in [155].

For purely walking or purely running exercises, according to p(t) = mgv(t) sin(θ(t)), the

static nonlinearity g(ũ1, ũ2) can be approximately modeled as p(ũ1, ũ2) = khũ1 sin(ũ2)+

p0, where p0 is the resting energy expenditure rate. Near the transition zone, it will

be much complicated. In order to simplify the simulation, we consider the following

simple function: p(ũ1, ũ2) = p(v, α) = κ · [av3 + bv2 + cv][sin(α) + η], where κ = 0.3487,

a = 21.3221, b = −3.0516, c = 0.1453, and η = 0.75. When the gradient is fixed as 15

deg (α = 15 deg) and assuming the resting HR is 75 bpm, the steady state relationship

between treadmill speed and HR is plotted in Fig. 6.4.

It should be clarified the parameters of the static nonlinearity presented above is not

identified based on experimental data. To achieve a more accurate model of static

nonlinearity which includes the walking/running transition, extensive experimental data

together with sophisticated modeling methods are need. In this study, our focus is not

the modeling of HR response. We investigate the control approach which will handle

HR tracking around walking/running zone. Therefore, we constructed a third order

polynomial to describe the fluctuation of HR due to the transition of running and

walking. During simulation, we added random noisy (σ = 0.8 bpm) to the HR sensor.

As it can be easily checked that g(h(ũ), ũ) = p(ũ1, ũ2) = p(v, α) = κ · [av3 + bv2 +
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Fig. 6.4: Steady state response of HR.

cv][sin(α) + η], when the HR reference is selected as r0, and simply choose ψ(ũ) = 1

(see Theorem 1), then ũ1 = φ(ũ2) can be determined analytically or numerically. For

the selected HR reference r0 (115 bpm and 120 bpm), we numerically calculated the

function ũ1 = φ(ũ2) for each reference HR respectively. As shown in Fig. 6.4, in the

speed ranges (2 km/h ∼ 6.6 km/h) and (7.4 km/h ∼ 12 km/h), ∂φ(ũ2)
∂ũ2

< −μ < 0.

However, in the speed range (6.6 km/h ∼ 7.4 km/h), the condition ∂φ(ũ2)
∂ũ2

< −μ < 0 is

not valid.

The above Hammerstein model has been implemented by using MATLAB/Simulink.

First, we fix treadmill gradient as α = 15 deg, set the reference HR as 115 bpm, the

initial speed as v0 = 6 km/h, and select η = 0.001 and k1 = 0.5 for the speed-HR loop

integral controller. Fig. 6.6(a) shows the simulation result for which only speed has

been manipulated. From Fig. 6.6(b) we can observe that although the regulated HR is

quite close to reference HR, treadmill speed is swinging between 6.2 and 6.9 km/hour.
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Fig. 6.6: Simulation results.

It should also be noted that due to the closed loop system is multi-loop unconditional

stable (MUS), the stability of closed loop system is guaranteed for any integral gains

k1 ∈ [0, 1] and k2 ∈ [0, 1].
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6.3 Conclusion

In order to analyze the advantage of using two manipulators in terms of nonlinear-

ity existed near walking-running transition zone of treadmill exercises, a MIC analysis

method for 2ISO processes was introduced. The proposed method extended the con-

cept of nonlinear DIC to MISO nonlinear process, and presented a sufficient condition

which only needs to check the steady state input-output relationship of under controlled

processes. Based on the proposed condition, we investigate the new defined MIC for

walking, running, and walking/running transition zones. Simulation study showed by si-

multaneously manipulating two control inputs, the automated control system can avoid

the transition of motor patterns if the gains of the two multi-loop integral controllers are

well tuned. Although the simulation work was sound enough, the experiment validation

for simultaneously manipulating treadmill speed and gradient by using the proposed

MIC analysis is also truly required in the future studies.
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Chapter 7

Multi-loop integral controllability
analysis for nonlinear multiple-input
single-output processes

7.1 Introduction

Although various sophisticated control approaches have been developed, the most pop-

ular control strategy in engineering practice is perhaps still multi-loop integral control.

Comparing with centralized control structure, the advantages of multi-loop control are

its simplicity, effectiveness and potential for fault tolerance.

For multi-loop integral control of linear square process (the number of inputs and outputs

is equal), Skogestad and Morari [143] introduced the concept of DIC. DIC analysis [30]

[168] [150] investigates the possibility of a process to achieve decentralized unconditional

stability [143], which determines whether a multivariable plant can be stabilized by

multi-loop controllers, whether the controller can have integral action to achieve offset

free control, and whether the closed-loop system will remain stable when any subset of

loops is detuned or taken out of service.

Processes with more inputs than outputs occur commonly in engineering practice. This

study extends the DIC analysis of nonlinear square processes [150] to a special non-

square process, MISO processes, and presents a sufficient condition for the analysis of

unconditional stability for nonlinear MISO processes.
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MISO processes are met frequently in engineering practices, particularly in the topic of

the monitoring and regulation of Human CR responses to exercise. For example, the

regulation of CR responses to outdoor exercises, which may require multiple sensors

(such as gas analyzer (CosmedÂ�), ECG, body temperature, tri-axial accelerometer,

signals from a GPS, and micro-IMU) to simultaneously control the exercise intensity for

improving the reliability of system.

The advantages of system having multiple inputs are evident. Firstly, real engineering

processes always have physical limitations and therefore have limited non-saturation

range. By simultaneously manipulating multiple inputs, the non-saturation range of

the processes can be extended. Secondly, multiple inputs can increase the maximum

gain of the actuator so that fast tracking can be achieved, which has been experimentally

demonstrated in [165].

In engineering practice, MISO processes are often simplified as SISO systems by discard-

ing some redundant control inputs. However, such simplification may greatly devalue

the system as the discarded inputs have the potential to facilitate fault accommodation

for fault tolerant control. In order to make fully use of the redundant control inputs,

in this study, we extend the DIC analysis [143] [150] [168] to MISO processes, and pre-

sented an easy to use sufficient condition for MIC analysis. Based on this analysis, a

practical multi-loop integral control design method is given, which can ensure offset free

tracking under partial or complete failure of some actuators.

The organization of the chapter is as follows. In section 7.2 a definition of MIC is given,

followed by a sufficient condition for the MISO process to achieve MIC. In section 7.3,

the proposed approach is illustrated by using a real time temperature control system.

Section 7.4 concludes the chapter.
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7.2 Multi-loop integral controllability (MIC) and its

sufficient conditions

We first introduce a definition of multi-loop integral controllability (MIC) for MISO

processes. After that, we will provide sufficient MIC conditions for MISO processes,

which can also be adapted to handle non-square processes with multiple outputs.

Fig. 7.1: MIC for a MISO system.

As shown in Fig. 7.1, assume the MISO system P can be described by the following

equations with an input vector u ∈ Rm and a scalar output y ∈ R1:

P

⎧⎪⎨
⎪⎩

ẋ = f(x, u) x ∈ X ⊂ Rn, u ∈ U ⊂ Rm

y = g(x, u), y ∈ Y ⊂ R1,
(7.1)

It is assumed that the state x(t) is uniquely determined by its initial value x(0) and

the input function u(t). Under this assumption, in the following discussions, we further

assume that the system (7.1) has equilibrium at origin, that is, f(0, 0) = 0, and g(0, 0) =

0. If the equilibrium xe is not at origin, a translation can be performed by redefining

the state x as x− xe. In the following discussions, it is assumed such a translation has
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been done whenever it is applicable.

In Fig. 7.1, the block η is a positive scalar, and the blocks C1, C2, · · · , Cm are all stable

scalar controllers, which stand for the nonlinear part of the controller.

Definition 2 (Multi-loop Integral Controllability for nonlinear MISO processes) The

nonlinear process P defined in Eq. (7.1) is said to be MIC with respect to a given

reference r = r0 if the closed loop system depicted in Fig. 7.1 satisfies the following

conditions:

1. There exists a multi-loop integral controller C, such that the nominal closed loop

system is Globally Asymptotically Stable (GAS) for the equilibrium x = xe0 with

respect to the given constant reference r = r0.

2. When each individual loop is detuned independently by a factor ki (0 ≤ ki ≤ 1,

i = 1, 2, · · ·m), for each set of fixed multi-loop gain {k1, k2, · · · , km} the closed

loop system is Globally Asymptotically Stable (GAS) for an equilibrium x̃e (not

necessarily x̃e = xe0).

Remark: In the above definition, the reference is a constant value r0. For any other

interested reference values, all statements should be valid for the new equilibrium with

respect to the new reference. Different with DIC, for MIC, the equilibrium x̃e is not only

determined by the reference input r = r0. The ratio of detuning factors ki (0 ≤ ki ≤ 1,

i = 1, 2, · · ·m) may also influence the equilibrium. We will discuss how the equilibrium

x̃e can be calculated later.

In Fig. 7.1, we assume the state equation of the general process P̃ (which includes

original process P and m stable scalar controllers C1, C2, · · · , and Cm) is modeled as

below (with the same assumptions for Eq. (7.1) of process P ).
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P̃ :

⎧⎪⎨
⎪⎩

ẋ = f(x, ũ)

y = g(x, ũ).
(7.2)

The state equation for the linear integral controller is expressed as:

Cl :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε̇ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε̇1

ε̇2
...

ε̇m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= ηeIm×m = −ηyIm×m

ũ = diag{[k1, k2, · · · km]}ε.

(7.3)

There are extensive research papers for DIC analysis. The reason that the MIC has not

been explored may be due to its input multiplicity [88]. In order to cope with input

multiplicity, we swap the bank of integrators with a single integrator in Fig. 7.1. That

means, we use only one scalar variable (ξ) to take the role of all integral states (εi,

i = 1, 2, · · · ,m) in Eq. (7.3) for the multi-loop controller.

If we assume the controller is with zero initial conditions (i.e. εi(0
−) = 0, i =

1, 2, · · ·m.), Eq. (7.3) can be simplified as follows:

Cl :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̇ = η e = −η y

ũ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k1

k2
...

km

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
ξ.

(7.4)

The following theorem presented a sufficient condition for MIC for MISO processes:

Theorem 2 (Steady-state MIC conditions for nonlinear MISO processes)
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Consider the closed loop system in Fig. 7.1, and assume that the general process P̃ and

the linear part of the controller Cl are described by Eq. (7.2) and (7.4) respectively. If

the following assumptions are satisfied:

a) The equation 0 = f(x, ũ) obtained by setting ẋ = 0 in Eq. (7.2) implicitly defines a

unique C2 function x = h(ũ) for ũ ∈ Ũ ⊂ Rm.

b) For any fixed ũ ∈ Ũ ⊂ Rm, the equilibrium x = h(ũ) of the system ẋ = f(x, ũ) is

Globally Asymptotically Stable (GAS) and Locally Exponentially Stable (LES).

c) When ũ = [k1α k2α · · · kmα ]T (0 ≤ ki ≤ 1, i = 1, 2, · · ·m), if the steady-state

input output function g(h(ũ), ũ) (with respect to the reference input r0) of the general

process P̃ satisfies the following requirements:

α · g(h(ũ), ũ) > 0 (when α 
= 0, and
m∑
i=1

ki 
= 0)

and

α · g(h(ũ), ũ) > ρ · α2 (when α 
= 0, and
m∑
i=1

ki 
= 0)

in a neighbourhood of α = 0.

c’) When ũ = [k1α k2α · · · kmα ]T , if the steady-state input output function

g(h(ũ), ũ) (with respect to its equilibrium point) of the general process P̃ satisfies the

following requirements:

k1
∂g(h(ũ),ũ)

∂ũ1
+ k2

∂g(h(ũ),ũ)
∂ũ2

+ · · ·+ km
∂g(h(ũ),ũ)

∂ũm
> 0 (when α 
= 0, and

m∑
i=1

ki 
= 0)

and

(k1
∂g(h(ũ),ũ)

∂ũ1
+ k2

∂g(h(ũ),ũ)
∂ũ2

+ · · ·+ km
∂g(h(ũ),ũ)

∂ũm
) > ρ > 0.

Then there exists η > 0, such that the equilibriums are GAS. That is, if the scalar

controllers c1, c2, and cm can be found such that the generalized process P̃ can satisfy

Conditions a), b) and c) or c’), then the nonlinear MISO process is MIC.
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Proof The Proof of the above theorem (similar to that of Theorem 2 in [150]) is based

on the singular perturbation theory [143]. By using singular perturbation theory, the

overall dynamic system can be reduced as the integrator dynamics feedback with the

steady state input-output mapping of the process. For details, see Appendix A.

Conditions a) and b) in Theorem 2, which require the stability of the open loop process,

are easy to check even without the need of an explicit model of the processes. Condition

c) is a sector condition with parameters ki (0 ≤ ki ≤ 1, i = 1, 2, · · ·m). If an explicit

steady state model in the operation range cannot be obtained, Condition c) is not easy

to be verified. Instead, we provide Condition c’), a sufficient condition of Condition c),

which can be checked by experiments for real processes as this qualitative type condition

does not need an explicit model to verify (see section 7.3). We present the following

discussions for the proposed sufficient conditions in Theorem 2:

1. The proposed MIC conditions in Theorem 2 are only involved in steady state input-

output function of the process. Models of the steady state behavior of processes

are generally more accurate and readily available than are those of the transient

[88]. Thus the proposed steady state sufficient condition is easy to use.

2. Similar to the sufficient condition for DIC of nonlinear square processes (see Con-

dition iii) of Theorem 2 in [150]), both conditions c) and c’) require the con-

ditions of Local Exponentially Stable (LES) of the reduced model (slow time

scale) around equilibrium point. Actually, the LES conditions are rather mild.

For example, it is easy to check the following steady state input-output function:

g1(h(ũ), ũ) = ũ3
1+ ũ1+5ũ5

2+2ũ2 satisfies LES condition around ũ = 0. To see this,

we only need check ∂g(h(ũ),ũ)
∂ũi

> ρ > 0, for all i = 1, 2, · · ·m. (when α 
= 0, and
m∑
i=1

ki 
= 0) in a neighbourhood of α = 0. It should be emphasized that although

the function g2(h(ũ), ũ) = ũ3
1 + 5ũ5

2 does not satisfy LES conditions in the planes
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ũ1 = 0 and ũ2 = 0 (inflexion points), but it satisfies these conditions for any other

points.

3. As Condition c’) is a sufficient condition of c), some steady state functions satisfy

Condition c) but may not satisfy Condition c’) as shown in the following examples:

g3(h(ũ), ũ) = ũ3
1+

√
15
2
ũ2
1+ ũ1+ ũ3

2+3ũ2 and g4(h(ũ), ũ) = ũ3
1+ ũ2

1ũ
3
2+ ũ1+ ũ3

2+3ũ2.

4. Although some functions cannot satisfy Condition c) or c’) at all equilibriums, it

can satisfy these conditions at some equilibriums. For example, g5(h(ũ), ũ) = ũ2
1ũ

2
2

cannot meet Condition c) and c’) around zero, but it satisfies these conditions

around the new equilibrium [ũ1, ũ2]
T = [k1α0, k2α0]

T (with 0 < c0 < α0 < ∞ ) in

{(ũ1, ũ2)|ũ1 ≥ k1c0 > 0, and ũ2 ≥ k2c0 > 0}. As function g5(h(ũ), ũ) = ũ2
1ũ

2
2 can

be rewritten as ḡ5(h(ũ), ũ) = (ũ1 + k1α0)
2(ũ2 + k2α0)

2 − k2
1k

2
2α

4
0 by equilibrium

translation, it is easy to check Condition c) and c’) are valid around the new

equilibrium.

All the above presented conditions and its discussions are around some specific equilib-

riums. For square processes, the equilibrium often can be determined by the reference

input. For MISO processes, as discussed before, the equilibrium point for MISO systems

is also influenced by the ratio of detuning factors ki (0 ≤ ki ≤ 1, i = 1, 2, · · ·m). We

provide the following formulas to calculate the equilibrium:

1. Based on the reference input r = ref , we can calculate αr by using the following

equation:

g(h([k1αr, · · · , kmαr]
T ), [k1αr, · · · , kmαr]

T ) = ref (7.5)

(For simplicity, we assume there exists only one αr in the interested range).

2. For the given detuning factors ki (0 ≤ ki ≤ 1, i = 1, 2, · · ·m), the equilibrium can
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be calculated as follows:

xe = h([k1αr, · · · , kmαr]
T ).

For the equilibrium xe, if all the conditions in Theorem 1 are satisfied, the process

is MIC for the reference input r = ref .

In Fig. 7.1, the initial conditions of all the integrators are assumed to be zero. If they

are not zero, Eq. (7.5) needs to be adjusted as:

g(h([k1(αr + α10), · · · , km(αr + αm0)]
T ),

h([k1(αr + α10), · · · , km(αr + αm0)]
T ) = ref (7.6)

where α10, · · · , αm0 are the initial conditions of the integrators in Fig. 7.1.

It is easy to check that for stable linear systems all the conditions in Theorem 2 can be

satisfied given that there are no zero items in the steady state input-output functions,

and the equilibrium for linear system can be easily calculated. Assume a linear system

is described by a state variable description{A,B,C,D}, then the equilibrium can be

calculated in the following steps:

1. G0 = −CA−1B +D;

2. αr = {ref −G0 · diag([k1, · · · , km]) · [α10, · · · , αm0]
T}/(G0 · [k1, · · · , km]T );

3. xe = −A−1B · diag([k1, · · · , km]) · {[α10, · · · , αm0]
T + αr}.

Now, based on Theorem 2, we discuss the advantages of using multiple inputs for the

purpose of fault tolerant control. For square processes, the DIC condition actually can
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guarantee offset free tracking under the faulty of loop gain decreasing. However, it

cannot achieve offset free tracking when some of the actuators are totally out of order

although closed loop stability is still maintained. For MIC MISO systems, when some of

the actuators are totally out of order, if any other actuators are not fully failure broken

then offset tracking is still ensured. Furthermore, even when some of the loop controller

served as positive feedback (perhaps due to wrong connections), offset tracking as well

as closed loop system stability can still be achieved given that the condition c) or c’) is

satisfied for a specific set of coefficients ki, i ∈ 1, 2, · · · ,m.

7.3 Illustrative example

In this section, a pilot real time temperature control system, which has two actuators

(a heater and a fan) and one output (the temperature of a sink), is introduced here for

the simulation verification of the proposed method. It also should be pointed out that

the RC modeling work proposed in Chapter 3 is not applicable because it is just a SISO

model with switching, in which the treadmill speed is the only input.

P2
~u

1
~u

2u

1u

y

Generalized process P~

Heater Temperature

-1

1

Fan

Fig. 7.2: Open loop block diagram of a pilot temperature control system.

We illustrated the proposed analysis approach by using a pilot real time temperature

control system. This system has two actuators (a heater and a fan) for the control of

the temperature of a sink. The output power of both heater and fan is adjusted by
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tuning the duty cycles of two PWM generated by a PIC microcontroller (see Fig. 7.2).

In Fig. 7.2, u1 and u2 are the incremental changes of duty cycles for heater and fan

respectively, and y is the temperature of the sink.

For this two-input single output system, we actually need not to quantitatively identify

the model for the verification of the sufficient Conditions a), b), and c’) of MIC condition

given in Theorem 2. Actually, for this real time system, we can easily derive that the

steady state temperature of the sink will be a fixed value for two constant duty cycles if

we assume no disturbances exists. This ensures that Condition a) is valid. Because the

temperature of the sink is determined by the input powers of the heater and the fan,

the open loop asymptotically stability is also evident. Furthermore, as the process is

asymptotically stable, it is reasonable to assume the linearized dynamic system is strictly

stable around equilibriums. That is the open loop process is LES around equilibriums.

Thus, Condition b) is ensured.

Condition c’) actually requires the incremental steady state gain from any one of the

inputs to the single output is positive when the other input keeps a constant value in

the interested working range.

In the interested temperature range (between 25 deg and 90 deg), it can be easily

checked in steady state when the PWM duty cycle of heater increases, the temperature

also increases incrementally if the power for the fan keeps constant. On the mean time,

if the input power of the heater keeps a constant value, the increasing of the duty cycle

of the fan will decrease of the temperature. If we design pre-compensators as c1 = 1

and c2 = −1 (see Fig. 7.2), then qualitatively we can see that the generalized process P̃

satisfies Conditions c’). Based on the above observations, we conclude that the system

is MIC. Then, we can easily design a multi-loop PI controller for the generalized process.

The tuning of this multi-loop PI controller is quite simple as the generalized process is
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MIC:

Initially select two small enough values for the two coefficients Kp and Ki for each loop

so that the overall closed loop is stable. Then, gradually increase the values of the

coefficients until desired tracking performance achieves. The overall real time control

results are shown in Fig. 7.3.
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Fig. 7.3: Experimental results.

From Fig. 7.3 it can be seen that the overall tracking performance (from 30 degree to

90 degree) are satisfactory for both increasing and decreasing stages of the temperature.

There are two interesting observations which should be emphasized:

If the heater is the only actuator of the system, the increasing of temperature is much

faster than decreasing, which makes the process nonlinear (onset and offset of the process

have different dynamics). From Fig. 7.3 we can see that the fan almost does not operate

when the output temperature is tracking a high reference temperature, but nearly fully
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operate when tracking a low reference temperature. The main functionality of the fan is

the acceleration of the decreasing of temperature and thus compensating the nonlinear

behavior of the process.

Another interesting phenomena showed in Fig. 7.3 is that for the same steady state

temperature, the steady state duty cycles of fan and heater could be quite different,

which is distinct with the control of square processes. Specifically, around 50 degree,

after 3500 seconds, the duty cycles for heater and fan are (98% and 89%), (65% and

35%), (45% and 5%), and (60% and 25%) respectively when the detune factors ki

changed (we also deliberate generate some impulse style disturbances for the reference

temperature) as well.

It should be pointed out as the provided MIC conditions can be verified qualitatively,

throughout the design of this example, the explicit model of the process, which is often

either difficult or time consuming to identify, does not need. After the verification of

MIC, a simple but efficient multi-loop integral controller can be easily designed and

tuned. We believe this practical approach will be useful in engineering practice.

7.4 Conclusion

This paper extends the concept of DIC analysis to MISO processes and presented easy

to use sufficient conditions. A special phenomena for the multi-loop integral control of

MISO processes is that the equilibrium of the overall closed loop system may change

when the steady state loop gain is detuned, which is different with the case for square

MIMO processes. We apply the proposed MIC analysis in the control of a real-time tem-

perature control system and obtained anticipated results. We hope it can provide useful

guidance for the experiment validation of offset free tracking controllers for nonlinear

2ISO processes.
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Chapter 8

A future direction for outdoor
exercise regulations

8.1 Introduction

The body-worn HR monitoring and regulation systems provide the intuitive guide for

people in outdoor exercises and health rehabilitation. In clinical cases, however, the

existing medical devices have disadvantages in terms of the safety and reliability issues.

From exercise physiology point of view, a novel nonlinear multivariable model was suc-

cessfully established (see the details in Chapter 2), which could completely estimate the

body’s metabolic rate during dynamic exercises. Following by this idea, this chapter

describes a more individualised and auto-adaptive smartphone based HR monitoring,

modeling and regulation system.

The aim of this study is to develop a smartphone-based real-time HR monitoring, model-

ing, and regulation system. It provides the real-time measure of HR and the automated

exercise guidance system by communicating a wearable HR sensor with the smartphone

via Bluetooth serial port protocol (SPP) and displaying them on an intuitive user in-

terface (UI). The automated exercise guidance system has the ability to make its own

decision of whether to increase or decrease the intensity of a workout in a given prede-

fined exercise protocol. The proposed modeling work will be applied into this guidance

system, as it can well describe HR dynamics during exercises. The established physical

model uses a simple switchable resistance-capacitor (RC) circuit to unify the complex
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dynamics at the human’s onset and offset of exercise. It not only explains the body’s

energy-generating process, metabolism and CR responses during exercise, but also math-

ematically accounts for CR dynamics at the both onset and offset of exercise, in which

the continuity of the output and states during switching is guaranteed [169]. Another

feature of the developed system is the beeping sound notification. Currently, the bound-

ary control method was implemented well in the guidance system to setup some sorts

of exercise programs. Within the predefined program, different types of beeping will be

triggered when subjects move from one HR zone to another.

The organization of this chapter is as follows. Section 8.2 introduces the devices applied

(Zephyr�), experiment activities, and developed modeling and control methods. Section

8.3 outlines the exercise guidance results of the developed application under the outdoor

exercise environment. The application will be tested and the test results will be shown

in section 8.3. Section 8.4 concludes this chapter.

8.2 Methods

8.2.1 Modeling of human cardiorespiratory responses during

indoor treadmill exercises

In order to test the reliability and accuracy of the completed Android mobile phone based

network system, an indoor treadmill exercise was performed. A 27 years old healthy but

untrained male subject participated in the experiment. The Zephyr Bluetooth HR chest

strap was put on properly (see Fig. 8.1). During exercise the real-time HR data are sent

to an Android mobile device via Bluetooth transmission. An intuitive user interface is

provided to display and record the HR data and control efforts during workout, shown

in the green and red coordinate planes of Fig. 8.2(b) respectively. The subject was
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asked to have a light meal at least 2 hours before taking experiment. In the exercise

session, the subject walks on a treadmill at 5 km/h for 6 minutes at the warming-up

interval. Then, they begin running for 8 minutes at 9 km/h in the onset of exercise

session. That consequently follows another 15 minutes walking at 5 km/h speed in the

offset afterwards. The recorded data was precisely synchronized. Fig. 8.3 shows the

experimental protocol (by red line) and the observed HR readings (by blue line).

Fig. 8.1: Experimental hardware: Zephyr Bluetooth HR chest strap.

(a) The Android-based automated exercise
guidance application UI - 1

(b) The Android-based automated exercise
guidance application UI - 2

Fig. 8.2: Experimental software: Android-based real-time HR measurement and regu-
lation system.
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Fig. 8.3: Measured experiment data (HR) followed by the onset and offset exercise
protocol.

8.2.2 Modeling of human cardiorespiratory responses for out-

door exercises

The treadmill exercise protocol was defined to analyze the step response of HR. The

experiment results in Fig. 8.3 support our early observation [151]: time constant of HR

response to exercise is influenced by the load of exercise, as well as by self conditions (e.g.,

during a constant exercise intensity, steady state gain and time constant of HR/VO2

response to exercise were found to mostly still be varying in every single moment); in

other words, the dynamic characteristics of HR response at onset and offset of exercise

are notably different. A natural way to describe this variation is to set up two models

for onset and offset dynamics separately, and unify these two models by using switching

mechanism. However, how to guarantee the continuity of both output and states of

established model is not trivial. Furthermore, to find a physical system that matches

this switching model is more difficult. In this project, we proposed a physical system,

a switching RC circuit, which can fully explain metabolic dynamics at both onset and

offset of exercise. As far as the authors known, this kind of switching model has not

been reported in literature till date [53]. More discussions about this modeling work
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can be found in Chapter 2.

This modeling work overcame the fundamental difficulty that is the derivation of es-

timates of metabolic rate from non-invasive measured parameters, such as HR. In the

next step, the model will be applied into this application for outdoor exercise.

8.2.3 Regulation of human cardiorespiratory responses during

outdoor exercises

At this stage a boundary control system was used. The aim of this control system is

to ensure that the subjects’ exercise program stays within safe bounds for their level

of fitness, and for the high-risk client, within their symptom limited metabolic range.

The beeping duration will be adjusted when their HR move into a specific HR zone,

and the received current HR value will be added into the blue coordinate of Fig. 8.2(b).

In the control law, if the HR is lower than 100 bpm, a fast-paced sound is activated

twice per second that allows the subject to have a higher intensity. Then the HR will be

increased in every increment in exercise intensity. When the HR exceeds 100 bpm, the

sound pattern repeats once per second. If the HR continues to increase over 120 bpm,

it beeps at intervals of 3 seconds to alert subjects to stop or slow down exercising.

8.3 Application simulation

The Zephyr sensor transmits HR data to a paired Android mobile phone through SPP

protocol. The Bluetooth adapter is configured to read the stream in every 100 millisec-

onds. Fig. 8.4 shows the recorded HR data (the green coordinate plane) and Boundary

Level (BL) data (the red coordinate plane). The horizontal axis scale in both red and

green coordinate planes of Fig. 8.4 is 10 seconds; the veridical axis scales are 10 and
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Fig. 8.4: The developed Android-based outdoor exercise regulation system test.

20, respectively. Once a valid HR data is received, its corresponding boundary level

will be computed and both data of HR and BL will be plotted on their own planes syn-

chronously. The beep duration will be a various time according to the different BLs. In

addition, the current averaged HR value will be shown on the UI when users touch the

screen. The results in Fig. 8.4 clearly demonstrate that the reliability of the constructed

monitoring system, and the accuracy of the developed boundary control system.

8.4 Conclusion

The experimental results performed by using Zephyr HR belt have shown such device

has good performance on multi-event synchronization, low noise interference and fast

real-time computation. In the next step, a wireless network involving the smartphone

application, the modeling and regulation methods developed in Chapters 3, 4, 5, 6 and

7, the multi-sensor signal processing (such as gas analyzer (Cosmed�), ECG, body tem-

perature, tri-axial accelerometer, signals from a GPS, and micro-IMU), and a robust

control approach that has the capability for fault detection and tolerance, will be estab-

lished. Then, the proposed methods can be validated through the outdoor exercises.
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Chapter 9

Conclusion and future work

Biomedical engineering is a discipline that address medical and biological problems

through the use of theories borrowed from the physical sciences, and technologies in-

herited from engineering. Exercise-related biomedical engineering synthesizes data from

exercise physiology, biomedicine, and engineering, utilizing exercise as the stressor to

develop technologies for early detection, diagnosis, and rehabilitation of diseases.

Several difficulties inherent to the exercise-related biomedical fields, particular to model-

ing and control of human CR systems, have restrained the progress in the past, problems

that make these systems much more difficult to tackle than practically all other types

of systems met anywhere in science and engineering.

The goal of the work developed in this dissertation was to address some of these difficul-

ties, of exercise-related biomedicine in general and of control engineering in particular,

and to come up with a methodology that would make the optimal estimation and regu-

lation of human CR responses for indoor and outdoor exercises in a portable noninvasive

manner, and would utilize external information for exercise monitoring of CR responses

based on these types of models and regulation mechanisms.

In a first step, a mathematic modeling methodology was developed. Two slight differ-

ent exercise protocols were used for two different groups of subjects to investigate the

dynamic characteristics of the HR and VO2 responses to onset and offset of treadmill

exercise. The portable gas analyzer K4b2 was used to measure breath-by-breath VO2

and beat-by-beat HR values. It was concluded that the dynamic characteristics of hu-
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man CR responses at the onset and offset of exercise are distinctively different. Based

on the experimental observations, we developed a Switching Resistance-Capacitor (RC)

Model that can explicitly depict the dynamical characteristics of human CR responses

at the onset/offset of exercise and the transition in between. In addition, the developed

model provides the quantitative analyses for the terms of energy ‘credits’, ‘deficit’, and

‘debt’. The validity of the proposed switching model is confirmed by comparing the

simulated model outputs with the experimental results.

Second, a modeling and control integrated methodology has been used to demonstrate

the validity of this methodology for dealing with the transient behaviors during controller

switching. In this study, a machine learning based nonlinear model predictive control

for HR response to exercise is introduced. The nonlinear behavior of HR response to

treadmill walking exercise is effectively captured by using support vector regression. We

investigate both steady state gain and time constant under different walking speeds by

using the data from an individual healthy middle aged male subject. The experiment

results demonstrate that the time constant for recovery stage is longer than that at onset

of exercise. This motivates the use of a time variant model to describe the response to

both onset and offset of exercises. Based on this time invariant model, a novel switching

model predictive control algorithm has been developed, which applies DMC algorithm to

optimize the regulation of HR responses at both onset and offset of exercises. Simulation

results indicates switching DMC controller can efficiently handle the different dynamic

characteristics at the onset and offset of exercise. However, it should be pointed out

that the proposed approach, as most other switching control strategies, also suffers

from transient behavior during controller switching. Simulation results in transition

stage have slight oscillation due to the quick switching between two controllers.

While the performance of the developed SISO model and control methodology mentioned

above was adequate, we believe that a MIMO model would be achieve a better estimate
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of each of the desired CR variables, since all available input data will be utilized in each

estimation. However, the mutivariable model based control is not trivial. In my PhD

studies, the main objective is to develop a set of control methodologies providing zero

offset tracking errors under faulty conditions, approaches that could be valid from SISO

models to MIMO models, and from 2ISO nonsquare models to MISO nonsquare models.

We first analyzed the system controllability for 2ISO nonsquare processes that is ex-

tremely useful for improving fault tolerance ability, as two actuators are simultaneously

manipulated. For instance, we proposed to use both control inputs, speed and gradient

of treadmill, for regulation of treadmill exercise responses. The concept of nonlinear

DIC was extended to 2ISO nonsquare processes, and a sufficient condition is presented.

Based on this condition, the new defined MIC for walking, running, and walking/running

transition zones was investigated. Simulation study showed the proposed 2ISO control

system can avoid the transition of motor patterns if the gains of the two multi-loop inte-

gral controllers are well tuned, and ensure offset tracking errors under faulty conditions.

Following the results from 2ISO processes, MIC analysis for MISO processes was es-

tablished. We presented easy to use sufficient conditions for MISO processes based on

singular perturbation analysis. Following conditions, when some of the actuators are to-

tally out of order, if any other actuators are not fully failure broken then offset tracking

is still ensured. Moreover, even when some of loop controller served as positive feedback

(perhaps due to wrong connections), offset tracking and closed loop system stability can

still be achieved. We applied the proposed MIC analysis in the control of a real-time

temperature control system and obtained anticipated results.

Finally, an exercise monitoring methodology on the portable and non-invasive measure-

ments of CR responses to outdoor exercises was investigated. The exercise monitoring

system developed in my PhD studies is a smartphone application, including intercon-

nections of Bluetooth-connected portable instruments, sensors, and mobile phone. This
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technique has been applied, until now, to a simply boundary control algorithm to reg-

ulate HR signals only. Outdoor exercise experiments have well validated the accuracy

and reliability of the exercise monitoring system. The results obtained are encouraged

enough to, in a near future, apply additional transducers to more advanced control

algorithms.

Summarizing, the major contributions of this doctoral thesis are the following:

• Amethodology for modeling of human CR responses to the onset and offset of exercise.

• A switching model to guarantee the continuity of the model output during model

switching.

• A quantitative methodology for A. V. Hill’s hypothesis on exercise metabolism during

exercise and recovery [53].

• A methodology for the control of human CR responses to the onset and offset of

exercise whose dynamics have time-variant properties.

• A sufficient condition for MIC of nonlinear 2ISO processes that has potential for zero

offset tracking performance.

• A sufficient condition for MIC of nonlinear MISO processes that has potential for zero

offset tracking performance.

• A methodology to closed-loop feedback control for linear MIMO processes involving

DIC analysis.

• A methodology for non-invasively monitoring of human CR responses to outdoor

exercise by means of interconnections of Bluetooth-based portable transducers

and smartphone.
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There are some problems that remain open to future research. Although the approach

to the modeling and control of human CR responses to exercise has been established,

see details in Chapters 3, 4 and 5, the experiment validation of such approach has not

yet tackled. In addition, the modeling approach described in Chapter 3 , referred to as

Switching Resistance-Capacitor (RC) Model, also has the contribution in multi-model

switching control, and thus it will be used for the implementation of bump-less switching

between two or more higher dimensional systems based on multi-realization theory [8]

[149]. Moreover, the MIC analysis method for nonlinear 2ISO and MISO processes

described in Chapter 6 and 7 respectively, should be validated through experiments in

the future studies.

Another important issue in the outdoor exercise monitor of human CR responses is the

reliability of the wireless network involving the smartphone applications and a set of

portable and non-invasive sensors. Some current results described in Chapter 8 only

surveyed the boundary control of HR signal (Zephyr�). The future studies will concern

the multi-sensor signal processing such as ECG (electrocardiogram), respiration rate,

body temperature, tri-axial accelerometery and signals from a GPS (Global Positioning

System) device and micro-IMU (Inertial Measurement Unit), as well as a robust control

approach that has the capability for fault tolerance.

We hope that, with this thesis, we have provided a significant contribution to the field

of biomedical engineering, and that our results will prove to be useful for many other

researchers dealing with exercise-related CR systems.
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Appendix A

Appendix

Proof of Theorem 2.

Proof We prove this theorem based on singular perturbation theory [137][88].

Consider the system of Fig. 7.1 described by Eq. (7.2) and Eq. (7.3). In order to

analyze the Lyapunov stability of the unforced closed loop (P̃ ,−Cl), the input signal r

is set to zero. The state equation for the closed loop (P̃ ,−Cl) can be expressed as:

(P̃ ,−Cl) :

⎧⎪⎨
⎪⎩

ẋ = f(x, ξ)

ξ̇ = η e = −η y = −η g(x, ξ).
(A.1)

Equation (A.1) can be transformed into a standard singular perturbation form [137]:

Let τ = η(t− t0), so that τ = 0 at t = t0. As
dτ
dt

= η, we have:

(P̃ ,−Cl) :

⎧⎪⎨
⎪⎩

η d
dτ
x = f(x, ξ)

d
dτ
ξ = −g(x, ξ).

(A.2)

In order to be consistent with standard singular perturbation notation, we will for the

moment use the notation ẋ to denote the derivative on the slow time scale τ when we

analyse singular perturbation models.

Now, for the standard singular perturbation model (A.2), based on Condition a) and

b), the verification of the following two conditions (the first two conditions of Theorem

2 in [137]) is straightforward:
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(i) The equation 0 = f(x, ξ) obtained by setting η = 0 in Eq. (A.2) implicitly defines a

unique C2 function x = h(ξ).

(ii) For any fixed ξ ∈ Rm, the equilibrium xe = h(ξ) of the subsystem ẋ = f(x, ξ) is

Globally Asymptotically Stable (GAS) [137] and Locally Exponentially Stable (LES).

We only need to prove Conclusion (iii) of Theorem 2 in [137], the stability (GAS and

LES) of “slow time scale”. That is, the following conclusion needs to be proved:

(iii) The equilibrium ξ = 0 of the reduced model (slow time scale) ξ̇ = −g(h(ũ), ũ) is

GAS and LES. Where ũ = [k1ξ k2ξ · · · kmξ ]T .

To prove the above conclusion, select V (ξ) = 1
2
ξ2 as a Lyapunov function candidate for

the “slow time scale”. It can be seen that

V̇ (ξ) = −ξ g(h(ũ), ũ). (A.3)

It is easy to check both V (ξ)and V̇ (ξ) will satisfy the requirements for GAS and LES

given that Condition c) is satisfied.

Now, we prove that c’) is sufficient to ensure c).

The steady state input-output functiong(h(ũ), ũ)can be rewritten as g(h(ũ), ũ) = g(ũ1, ũ2, · · · , ũm) =

g(k1ξ, k2ξ, · · · , kmξ). Then, its derivative with ξ is ∂
∂ξ
g(k1ξ, k2ξ, · · · , kmξ) = k1

∂g
∂ũ1

+

k2
∂g
∂ũ2

+ · · ·+km
∂g
∂ũm

. Consider that g(0, 0) = 0, and k1
∂g
∂ũ1

+k2
∂g
∂ũ2

+ · · ·+km
∂g
∂ũm

> 0. We

have V̇ (ξ) = −ξ g(h(ũ), ũ) < 0 for ξ 
= 0. Furthermore, as k1
∂g
∂ũ1

+k2
∂g
∂ũ2

+ · · ·+km
∂g
∂ũm

>

ρ > 0 in a neighbourhood of ξ = 0, it can be concluded that ξ · g(h(ũ), ũ) > ρ · ξ2 in a

neighbourhood of ξ = 0.
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