

Analysing Ground Deformation Data to Predict Characteristics of Smear Zone Induced by Vertical Drain Installation for Soft Soil Improvement

A thesis in fulfilment of the requirement for the award of the degree

Doctor of Philosophy

from

University of Technology, Sydney

by

Ali Parsa-Pajouh, BSc Eng, Msc Eng

School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology

February 2014

CERTIFICATION

I, Ali Parsa-Pajouh, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Department of Civil and Environmental Engineering, University of Technology, Sydney, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualification at any other academic institution.

A1: D---- D-:---1-

Ali Parsa-Pajouh

February 2014

DEDICATION

This work is sincerely dedicated to the following special people:

To My Lovely Wife, Neda

For her endless encouragement and patience, without her love and support, I could have never completed this journey.

To My Father, Davoud

He was my role-model of hard work, persistence and personal sacrifices. He inspired me how to be strong, how to be honest.

To My Late Beloved Mother, Maryam

For all the sacrifices she has made to ensure that I obtain the best education possible, for her beautiful mind and unconditional love.

ABSTRACT

The use of prefabricated vertical drain (PVD) assisted preloading has been recognised over the last two decades as a very efficient method of ground improvement for sites with deposits of deep soft soil. One of the major parameters influencing the PVD assisted consolidation process, and consequently the required preloading time, is the formation of a smear zone around the vertical drains, and the corresponding soil properties. In this research a systematic procedure integrated with a developed numerical code is proposed to accurately back calculate the properties of the smear zone based on the consolidation data collected in the laboratory and in the field. Furthermore, an expanded back calculation method is developed to determine the minimum required degree of consolidation and corresponding time after the construction of the trial embankment that would result in accurately predicted smear zone characteristics. The explicit finite difference program FLAC 2D was used to develop the numerical code, simulate the laboratory testing and PVD assisted preloading case histories. Furthermore a comprehensive parametric study was conducted to investigate the effect of smear zone properties variations on the preloading process, and back calculated characteristics of the smear zone.

A large and fully instrumented Rowe cell apparatus was used to investigate the effect of the smear zone on the consolidation process and verify the developed numerical code. The Rowe cell was filled with the intact zone, smear zone, and vertical drain materials to evaluate the permeability and extent ratios of k_h/k_s =4 and r_s/r_m =3, respectively. The back calculation procedure was used to conduct the parametric study and predict the properties of the smear zone. According to the results, the predicted properties of the smear zone were similar to the properties of the applied soil, proving that the proposed back calculation procedure integrated with the developed numerical simulation can successfully predict these properties.

The developed numerical code was used to simulate five PVD assisted preloading case studies, including four trial embankments and a large scale consolidometer, while the back calculation procedure was used to conduct a parametric study to determine the extent and permeability of the smear zone. According to the results, integration of the back calculation procedure in the

numerical code can be used as a reliable tool to make an accurate prediction of the smear zone characteristics in PVD and vacuum assisted preloading projects.

The developed method in this research can be considered as a practical, accurate and cost effective tool, due to its capability in precise estimation of the extent and permeability of the smear zone in the early stages of constructing the trial embankment. In this study, the proposed systematic back calculation procedure was extended to determine the minimum degree of consolidation (i.e. the minimum waiting time after constructing the trial embankment), and accurately predict the properties of the smear zone. The numerical results of the simulated case studies were used to conduct the analyses. Accordingly, it is found that the extent and permeability of the smear zone can be predicted very well with the proposed calculation procedure when at least 33% of predicted final settlement has been reached (i.e. 33% of the degree of consolidation).

ACKNOWLEDGEMENT

Working as a PhD student at University of Technology, Sydney was a magnificent as well as challenging experience to me. In all these years, many people were involved directly or indirectly in shaping up my academic achievements. It was hardly possible for me to succeed in my doctoral work without the precious support of these kind personalities. Here is a small tribute to all those people.

First of all, I would like to express my deepest gratitude to my supervisor, Dr. Behzad Fatahi for his brilliant guidance, caring, patience, and providing me with an excellent atmosphere for doing research. It has been an honour to be his first PhD student. His numerous comments, criticisms and suggestions during the preparation of this thesis are gratefully acknowledged.

I would like to thank my co-supervisor, A/Prof. Hadi Khabbaz, who was abundantly helpful and offered invaluable assistance, support and guidance. His encouragement, support and critical review of the thesis, as well as his comprehensive suggestions at various stages of this study are greatly appreciated. I would also like to acknowledge Bill Clayton for his critical review of the thesis and helpful comments.

My appreciation is also extended to UTS laboratory and workshop staff Antonio Reyno and Laurence Stonard as well as the PhD students Babak Azari, and Thu Minh Le for their valuable assistance and contribution in running and conducting the laboratory test. I am also thankful to University of Technology, Sydeny and its staff for their financial, academic and technical support. The library and computer facilities of the University have been indispensable. I very much appreciate the Centre for Built Infrastructure Research (CBIR), particularly, Prof. Bijan Samali for their support and assistance since the start of my PhD study.

I gratefully acknowledge the funding sources that made my PhD work possible. This research was funded by Australian Research Council and supported by the Menard-Bachy Pty Ltd as the industry partner, which are so appreciated.

I would also like to acknowledge Road and Maritime Services (RMS) for providing the field measurements and site investigation results for Ballina Bypass and Cumbalam trial embankments.

I have been in charge of tutoring different subjects in last four years, which was a priceless experience for me. I would like to take this opportunity to express my special gratitude towards academic staff of the School of Civil and Environmental Engineering, Dr. Behzad Fatahi, A/Prof. Hadi Khabbaz, Dr. Shami Nejadi, Dr. Rezaul Karim, Anne Gardner, Chris Wilkinson and Dr. Rijun Shrestha, who supported me in this journey.

Gratitude is also expressed to my friends and fellow students at the University of Technology, Sydney, particularly, Amir Zad, Babak Azari, Behnam Fatahi, Binod Shresta, Hamid Tabatabaei, Thu minh Le and Yashar Maali for keeping the study atmosphere enjoyable and pleasant.

I would like to express heartfelt acknowledgement to my wife, Neda Khodadoust, for her constant love, sacrifices, support, encouragement, and patience. She was always there cheering me up and stood by me through the happy and hardships times. Without her guidance and support, I may never have come this far in my study.

Lastly, I would like to thank my parents, who raised me with a love of science and supported me in all my pursuits. Special thanks to my two elder sisters, and my younger brother, who were always supporting and encouraging me with their best wishes.

TABLE OF CONTENT

ABST	RACT		IV
ACK	NOWL	EDGEMENT	VI
TABI	E OF	CONTENT	VIII
LIST	OF FIG	GURES	XIV
LIST	OF TA	BLES	XXIII
LIST	OF SY	MBOLS	XXV
1. II	NTROI	DUCTION	
1.1	Genei	cal	1
1.2	Accel	erating the Consolidation Process	4
1.3	Instal	lation of Vertical Drains and Smear Zone	7
1.4	Trial	Embankment Monitoring to Obtain the Smear zone Properties	9
1.5	Objec	ctives and Scope of Present Study	9
1.6	Organ	nisation of the Thesis	11
2. L	ITERA	TURE REVIEW	
2.1	Histor	ry and Development of Vertical Drain Assisted Preloading	13
2.2	Vacui	um Preloading via Prefabricated Vertical Drains	14
	2.2.1	History and Developments of Vacuum Preloading	15
	2.2.2	Vacuum Preloading Using Membrane	17
	2.2.3	Vacuum Preloading (Membrane Free Techniques)	18
2.3	Facto	rs Affecting Consolidation of Clay with PVDs	20
	2.3.1	Equivalent Diameter	20
	2.3.2	Filter and Apparent Opening Size (AOS)	22
	2.3.3	Tensile Strengths	23
	2.3.4	Discharge Capacity and Well Resistance	24
	2.3.5	Smear Zone	26
	2.3.6	Soil Macro Fibre	26
	2.3.7	Mandrel Size and Shape	27
	2.3.8	Installation Procedure	28
	2.3.9	Drain Spacing and Influence Zone	29
2.4	Smea	ring Effect	29

		2.4.1	Smear Zon	ne Generation	30
			2.4.1.1 So	oil Remoulding Concept	30
			2.4.1.2 TI	he Reconsolidation Theory	31
		2.4.2	Smear Zon	ne Extent & Permeability Variation	32
		2.4.3	Estimation	of the Smear Zone Properties	35
			2.4.3.1 Ex	xperimental Methods	35
			2.4.3.2 C	avity Expansion Theory	43
			2.4.3.3 Fi	inite Element Methods	48
			2.4.3.4 Ba	ack Calculation Methods	50
		2.4.4	Relationsh	ip between Experimental and Practical Results for Sme	ar
			Zone Prope	erties	54
	2.5	Devel	opment of C	Consolidation Theory	55
		2.5.1	Vertical Co	onsolidation	55
		2.5.2	Radial (or)	Horizontal) Consolidation Considering Smear Zone	
			Characteris	stics	57
			2.5.2.1 Co	onversion of Axi-symmetric to Plane-Strain Condition	62
		2.5.3	Combined	Vertical and Radial Consolidation Theory	67
			2.5.3.1 Si	ngle Layer Consolidation (Rigorous Solutions)	67
			2.5.3.2 Si	ngle Layer Consolidation (Approximate Solutions)	68
			2.5.3.3 M	ulti-Layered Consolidation	69
		2.5.4	Theoretical	l Solutions for Vacuum Consolidation	72
	2.6	Nume	rical Simula	ation of PVD Assisted Preloading	74
	2.7	Summ	ary		78
3.	ΡV	/D AS	SISTED PR	RELOADING SIMULATION AND BACK	
				ROCEDURE USING FLAC	
	3.1	Gener	al		80
	3.2	Nume	rical Model	ling	81
		3.2.1		Tumerical Simulation Software	81
		3.2.2	Explicit Fin	nite Difference Method and Lagrangian Analysis	82
		3.2.3	-	nd Mixed-Discretization Zoning Technique	85
		3.2.4	Continuum	Expression of the Governing Equations	87
			3.2.4.1 W	Vater Flow Equation	90

		3.2.4.2	Balance Laws	90
		3.2.4.4	Constitutive Laws	91
		3.2.4.4	Compatibility Equation	92
	3.2.5	Numeri	cal Fluid Flow Formulation	92
		3.2.5.1	Basic Scheme	92
		3.2.5.2	Constitutive Law: Derivation of Element "Stiffness Ma	ıtrix"
				93
		3.2.5.3	Continuity Equation	95
		3.2.5.4	Numerical Stability: Fluid Time-step	96
	3.2.6	Optimis	ation of the Mechanical and Fluid Time steps	97
		3.2.6.1	Manual Method	98
		3.2.6.2	Automatic Method	98
	3.2.7	Modifie	d Cam-Clay Model	99
		3.2.7.1	Virgin Consolidation Line and Swelling Lines	99
		3.2.7.2	Yield and Potential Functions	100
		3.2.7.3	Determination of the Input Parameters	101
3.	3 Num	erical Cod	le Development	102
	3.3.1	General		102
	3.3.2	Numerio	cal Code Structure	103
		3.3.2.1	Input data: Geometry and properties of the Materials	104
		3.3.2.2	Grid and Mesh Generation	106
		3.3.2.3	Layering and Assigning Material Properties	106
		3.3.2.4	Defining location of instrumentations and transducers	107
		3.3.2.5	Boundary Conditions, Initial Stresses, and Undrained	
			Analysis	107
		3.3.2.6	Simulation of Preconsolidation Stage	108
		3.3.2.7	Vertical Drains and Smear Zone	109
		3.3.2.8	Vacuum Pressure	110
		3.3.2.9	Construction of Trial Embankment and Consolidation	
			Process	111
3.4	Systema	tic Back	Calculation Procedure	111
3.5	Summar	У		115

	Ol	N THE	PERFORMANCE OF PVD ASSISTED PRELOADING	
	4.1	Gener	al	117
	4.2	Testin	g Apparatus and Experimental Procedure	118
		4.2.1	Apparatus	118
		4.2.2	Material Properties	123
			4.2.2.1 Soil samples	123
			4.2.2.2 Consolidation test on reconstituted samples	126
		4.2.3	Preparation of Rowe cell and initial sample	131
		4.2.4	The pre-consolidation process and preparation of final sample	133
		4.2.5	Initial drainage and de-airing of the Rowe cell system	136
		4.2.6	Vertical drain assisted consolidation test procedure	138
	4.3	Test R	Results	138
	4.4	Verifi	cation of the Numerical Code	144
	4.5	Evalua	ation of Axi-symmetric to Plane-Strain Conversion Methods	149
	4.6	Summ	ary	154
5.	C	ACE CT	TUDIES AND FURTHER VALIDATION EXERCISES	
٠.	5.1	Gener		156
			alum Trial Embankment	157
	3.2		Introduction	157
			Geological Model and Subsoil Condition	159
		5.2.3	Installation of Vertical Drains and Embankment Construction	161
			Numerical Simulation	163
	5 3		Study 2: Ballina Bypass Trial Embankment	167
	5.5	5.3.1	Introduction	167
		5.3.2	Geological Model and Subsoil Condition	168
			Vacuum Consolidation and Embankment Construction	169
			Numerical Simulation	171
	5 4		Study 3: Sunshine Motorway Trail Embankment	176
	٥, ١	5.4.1	Introduction	176
		J. 1.1	11111 0 411 411 111	1/0
		5 4 2	Subsoil Condition	177
		5.4.2 5.4.3	Subsoil Condition Installation of Vertical Drains and Embankment Construction	177 178

4. LABORATORY STUDY TO INVESTIGATE THE SMEARING EFFECT

		5.4.4	Numerical Simulation	179
	5.5	Chitta	gong Airport Trial Embankment	182
		5.5.1	Introduction	182
		5.5.2	Subsurface Conditions	183
		5.2.3	Soil Properties	185
		5.5.4	Installation of Vertical Drain and Embankment Construction	186
			5.5.4.1 Monitoring of Settlement	189
		5.5.5	Numerical Simulation	190
	5.6	Case S	Study 5: Large-scale Consolidometer	193
		5.6.1	Test Apparatus	193
		5.6.2	Test Sample	195
		5.6.3	Test Procedure	196
		5.6.4	Verification of the Developed Numerical Code	197
	5.7	Summ	ary	200
6.	PF	REDIC	MINING THE MINIMUM PERIOD OF MONITORING FO TING SMEAR ZONE PROPERTIES OF A TRIAL KMENT	
	6.1	Genera	al	203
	6.2	Step I:	Estimating the Primary Consolidation Settlement	205
	6.3	Step II	: Conducting Parametric Studies	206
		6.3.1	Chittagong Sea Port Trial Embankment	206
		6.3.2	Cumbalum Trial Embankment	213
		6.3.3	Ballina Bypass trial Embankment	216
		6.3.4	Sunshine Trial Embankment	219
		6.3.5	Large Scale Consolidometer	220
	6.4	Step II	II: Determining the Error	221
	6.5	Step I	V: Determining the Minimum Required Monitoring Time	224
	6.6	Summ	ary	228
7.	C	ONCL	USIONS AND RECOMMENDATIONS	
	7.1	Summ	ary	230
	7.2	Conclu	usions	231
	7.3	Recon	nmendations for Future Research	235

REFERENCES	237
APPENDIX A: Developed FLAC Code to Simulate Trial Embankment	252
APPENDIX B: Developed FLAC Code to Simulate Rowe Cell Test	274

LIST OF FIGURES

Figure 1.1	Procedure to select the appropriate technique for ground improvement (after Arulrajah et al., 2003)	3
Figure 1.2	Typical consolidation settlement	4
Figure 1.3	Preloading method (a) without vertical drains, (b) with vertical drains	6
Figure 1.4	Prefabricated vertical drain, (a) Circular, (b) & (c) Band shape	6
Figure 1.5	Typical Effect of vertical drains on consolidation settlement rate of soft clay	6
Figure 1.6	PVD installation (a) crane mounted installation rig, (b) drain delivery arrangement, (c) cross section of mandrel and drain (after Koerner, 1987 and (d) schematic installation process	'), 7
Figure 1.7	3D schematic diagram of the installation of vertical drains in square patterns of the installation of vertical drains in square patterns of the installation of vertical drains in square patterns of the installation of vertical drains in square patterns of the installation of vertical drains in square patterns of the installation of vertical drains in square patterns of the installation of vertical drains in square patterns of the installation of vertical drains in square patterns of the installation of vertical drains in square patterns of the installation of vertical drains in square patterns of the installation of vertical drains in square patterns of the installation of vertical drains in square patterns of the installation of vertical drains in square patterns of the installation of vertical drains of the installation of the installat	er 8
Figure 2.1	Vacuum preloading system	17
Figure 2.2	Horizontal pipe used for vacuum preloading (a) corrugate flexible pipes, (b) and (c) other types of geo-composites (after Chu et al. 2008)	18
Figure 2.3	Vacuum preloading-membrane free technique (a) PVD and tubing for vacuum preloading, and (b) cross section of vacuum-PVDs method	19
Figure 2.4	Low level vacuum preloading with no membrane (after Chu et al. 2008)2	20
Figure 2.5	Equivalent diameter, (a) vertical band shaped drain, and (b) PVD equivalent diameter	20
Figure 2.6	Schematic comparison of different PVD equivalent diameter calculation approach	22
Figure 2.7	Examples of mandrel shapes, (a) rectangular, (b) rhombic, and (c) circular	ar 27
Figure 2.8	PVD installation equipment, (a) crane and drain delivery arrangement, and (b) vertical drain surrounded by hollow mandrel and attached to the anchor plate at bottom	28
Figure 2.9	Influence zone of PVD, (a) square patter and (b) triangular pattern	29
Figure 2.1	0 PVD surrounding by smear zone (remoulding theory), (a) installed drai (b) profile A-A, and (c) cross section B-B	n, 31
Figure 2.1	1 PVD surrounding by disturbed soil (reconsolidation theory), (a) installed drain. (b) profile A-A, and (c) cross section B-B	ed 32

Figure 2.12	for three zones hypothesis profile, (c) cross section A-A for two zones hypothesis, and (d) cross section B-B for three zones hypothesis	` /
Figure 2.13	Variation of permeability in the disturbed zone, (a) two zones hypothe and (b) three zones hypothesis	sis 34
Figure 2.14	Large-scale consolidation apparatus (after Indraratna and Redana 1998	3) 36
Figure 2.15	Large scale consolidation apparatus (after Sharma and Xiao 2000)	37
Figure 2.16	Schematic diagram of sampling locations for the Oedometer test specimen (after Sharma and Xiao 2000)	38
Figure 2.17	Radial penetration test, (a) Large-scale consolidometer, and (b) Microcone penetrometer (after Shine et al. 2009)	39
Figure 2.18	Directions of MCPs and ERPs horizontal penetration (after Sine et al. 2009)	40
Figure 2.19	Schematic design, (a) Large consolidometer, and (b) radial positions (plannar view) of fast response pore pressure transducers (Ts) relative the centre of the cell at levels identified in (a) (after Ghandeharioon et al., 2012)	
Figure 2.20	Expansion of a cavity (after Yu 2000)	44
Figure 2.21	Distribution pattern for the ratio of the plastic shear strain to the rigidit index in relation to the radial distance normalized by the equivalent elliptical radius of the mandrel characterising the disturbed soil surrounding a PVD (after Ghandeharioon et al. 2010)	ty 47
Figure 2.22	Mesh and boundary conditions for the large-scale test (after Rujikiatkamjorn et al. 2009)	49
Figure 2.23	Proposed values for smear zone characteristics	53
Figure 2.24	Average degree of consolidation versus time factor based on Equation 2.9 (after Das, 2008)	56
Figure 2.25	Profile prefabricated vertical drain and smear zone, (a) axisymmetric, plane-strain	(b) 65
Figure 2.26	Proposed equivalent plane-strain unit cells, (a) Indraratna et al. (1997) and (b) Tran and Mitachi (2008)	, 67
Figure 2.27	Partially penetrating drain based on DPM model (after Wang and Jiao, 2004)	, 70
Figure 2.28	Down drag effects due to mandrel installation in layered soil (after Rujikiatkamjorn and Indraratna 2010)	71

Figure 2.29 A schematic diagram of a vacuum preloading system: (a) vacuum ar surcharge combining load, (b) vacuum preloading, and (c) surcharge preloading (after Mohamedelhassan and Shang 2002)	
Figure 2.30 The distribution patterns of vacuum pressure in the horizontal and vertical directions (after Indraratna et al. 2005a)	73
Figure 3.1 Basic explicit calculation cycle (after Itasca, 2008)	83
Figure 3.2 Finite difference mesh, (a) FLAC 2D zone composed of overlaid triangular elements and (b) typical triangular element	86
Figure 3.3 Normal consolidation line swelling lines for an isotropic compression	test 100
Figure 3.4 Yield surface of the Modified Cam-Clay model in p'-q plane (after Roscoe and Borland, 1968)	101
Figure 3.5 Generated FLAC mesh, (a) sample of discretised finite-difference me trial embankment and (b) the pattern of meshes in the smear zone and undisturbed region	
Figure 3.6 Structure of the developed numerical code	104
Figure 3.7 Typical input parameters for numerical simulation 105	
Figure 3.8 Input parameters in terms of different groups for numerical simulation	n107
Figure 3.9 Boundary conditions of the numerical model	108
Figure 3.10 Schematic model for the preconsolidation stage	109
Figure 3.11 Sample of the simulated vertical drain and adjacent disturbed area, (Discretised finite-difference mesh of the trial embankment, (b) Varia of the hydrostatic pressure along the vertical drain and (c) the pattern meshes in the smear zone and undisturbed region elements	ation
Figure 3.12 Simulation of vacuum pressure, (a) variation of vacuum pressure alo the vertical drain, and (b) the pattern of meshes in the smear zone an undisturbed region elements	_
Figure 3.13 Back calculation flowchart for smear zone characteristics and the minimum required monitoring time for trial embankment	112
Figure 4.1 Large scale Rowe cell apparatus (a) schematic diagram of the cell and locations of the pore pressure transducers at the base of the cell	d (b) 119
Figure 4.2 Pressure/volume controller device, (a) a photographic view of the GD controller and (b) an operational schematic diagram of the instrument	
Figure 4.3 Infinite volume controller instrument	121
Figure 4.4 Schematic diagram of Rowe cell set-up	122

Figure 4.5 Established setup in the laboratory	123
Figure 4.6 Grain size distribution curve for vertical drain sand	125
Figure 4.7 Pre-consolidation process prior to the oedometer test; (a) cylinder contacting reconstituted sample and (b) samples under pre-consolidate pressure	tion 127
Figure 4.8 Preparing the samples for the oedometer test, (a) placing the oedometring, (b) cutting the extra top part, (c) cutting the extra bottom part, at (d) the final sample	
Figure 4.9 Consolidation test, (a) placing the prepared sample and (b) oedometer apparatus connected to the data logger	r 128
Figure 4.10 Variation of permeability against void ratio (sample S1)	129
Figure 4.11 Variation of permeability against void ratio (sample S3)	129
Figure 4.12 Variation of void ratio versus effective stress (sample S1)	130
Figure 4.13 Variation of void ratio versus effective stress (sample S3)	130
Figure 4.14 Placing of PVC and brass pipes as the smear zone boundary and the vertical drain border, (a) top view, (b) side view and (c) a typical crossction of the Rowe cell	
Figure 4.15 Sample placement, (a) filling the undisturbed area (intact zone) with prepared soil and (b) the setup after placing PVC and Brass pipes as smear zone boundary and vertical drain border	
Figure 4.16 Rig set up, (a) geotextile filters, (b) pre-consolidation loading rings, the first two loading rings with drainage grooves and holes, (d) place of the first loading ring and (e) full loading condition	
Figure 4.17 Testing procedures, (a) Pouring the vertical drain material and (b) Pulling out the outer pipe	135
Figure 4.18 Testing procedures, (a) pulling out the inner pipe and (b) cutting the extra part of the filter paper	135
Figure 4.19 Testing procedures, (a) leveling the top surface and (b) placing the geotextile on top surface	136
Figure 4.20 Testing procedures, (a) filling the cell with water and (b) placing the top	e cell 136
Figure 4.21 Schematic diagram of the de-airing process	137
Figure 4.22 Schematic diagram of the instrumentation plan, (a) plan view of the of Rowe cell and (b) the cross section of bottom of the Rowe cell	body 139
Figure 4.23 Settlement and corresponding surcharge versus consolidation time	140

Figure 4.24	Measured excess pore water pressure at transducers located on the bottom of the cell (r is measured from the centre of the drain)	141
Figure 4.25	Measured excess pore water pressures from transducers located on the sides of the cell (h is measured from the bottom of the impervious boundary of the cell)	ne 141
	•	
Figure 4.26	Variation of excess pore water pressures with the vertical distance from the bottom of the impermeable boundary	om 142
Figure 4.27	Variation of excess pore water pressures with the radial distance from the centre of the drain	n 143
Figure 4.28	Sample of the grid pattern for the simulated Rowe cell using the developed code (r_s = smear zone extent, and R= width of the cell), and the condition of the pore water pressure distribution boundary along vertical drain.	
Figure 4.29	Comparison between predicted numerical settlements and laboratory measurements	146
Figure 4.30	Calculated final cumulative error for the selected cases by using the proposed back calculation procedure	147
Figure 4.31	Variation of excess pore water pressures at PWPT A1 versus consolidation time	148
Figure 4.32	Variation of excess pore water pressures at PWPT B3 versus consolidation time	148
Figure 4.33	Variation of excess pore water pressure versus consolidation time for different equations used to convert permeability from an axi-symmet to a plane-strain condition	
Figure 4.34	Cumulative error between plane-strain and axisymmetric results in ealloading stage	ach 152
Figure 4.35	Variation of predicted excess pore water pressure versus consolidation time for the adopted equations for permeability conversion from axisymmetric to plane-strain condition	on 153
-	A map of the Ballina Bypass upgrade route and surrounding surface features (modified after Bishop, 2004)	158
Figure 5.2 I	Location of the Cumbalum trial embankment (courtesy of Google Maj	ps) 159
_	Interpreted section for Cumbalum trial embankment study area (after Bishop, 2004)	160
Figure 5.4 N	Moisture content, liquid limit and plastic limit (after RTA, 2000)	161

Figure 5.5 Construction history of Cumbalum trial embankment (after Kelly 2008)	52
Figure 5.6 Layout of the Cumbalum trial embankment (after RTA, 2000)	52
Figure 5.7 Cross section of the Cumbalum trial embankment and subsoil profile 16	53
Figure 5.8 Finite-difference meshes for the plane-strain analysis of Cumbalum trial embankment 16	
Figure 5.9 Numerical parametric study results; Cumbalum trial embankment at SP9	
Figure 5.10 Variation of excess pore pressure over time for PC2 at a depth 5.8m 16	6
Figure 5.11 Location of the critical section and trial embankment of the Ballina Bypass (courtesy of Google Maps) 16	57
Figure 5.12 Interpreted section for Ballina Bypass trial embankment study area (after Bishop 2004)	59
Figure 5.13 Layout of instrumentation for the trial embankment at Ballina Bypass (modified after Kelly and Wong 2009) 17	70
Figure 5.14 Cross section of the Ballina Bypass trial embankment and subsoil profile 17	70
Figure 5.15 Construction history of Ballina Bypass trial embankment	71
Figure 5.16 (a) Discretised finite-difference mesh of Ballina Bypass trial embankment, (b) Variation of vacuum pressure along the vertical drain (c) The pattern of meshes in the smear zone and undisturbed region, (c) FLAC zone composed of overlaid triangular elements	d)
Figure 5.17 Results of numerical parametric study; Ballina Bypass trial embankment at SP12	73
Figure 5.18 Variation of excess pore pressure over time for P3 at depth 11.8m 17	' 4
Figure 5.19 Location of the Sunshine Motorway study area, (courtesy of Google Maps)	76
Figure 5.20 Profile of the Geotechnical characteristics (Sunshine Motorway Stage Interim Report, 1992)	
Figure 5.21 Plan view of Sunshine Motorway trial embankment	78
Figure 5.22 Typical cross-section of embankment with selected instrumentation points (after Sathananthan et al. 2008)	79
Figure 5.23 Cross section of the Sunshine trial embankment and the subsoil profile 17	
Figure 5.24 Sample of mesh grid pattern for an embankment considering the smea	r

zone and undisturbed region, (r_s = smear zone extent; L_I = intact zone

	extent; h_t = depth of the soil profile; and hd = length of the vertical d_t d_t = drain spacing)	rain, 180
Figure 5.25	Construction history of the trial embankment	180
Figure 5.26	Comparison of numerical results with filed data (for settlement plate P1)	e 182
Figure 5.27	Location of the container yard at Chittagong Port (courtesy of Goog Maps)	le 183
Figure 5.28	Approximate locations of the boreholes, Chittagong Airport trial embankmnet (after Dhar et al., 2011)	184
Figure 5.29	General ground profile along with SPT N-values (after Dhar et al., 2011)	185
Figure 5.30	Settlement monitoring program, (a) Settlement gauge and (b) Points settlement measurement (schematic plan) (after Dhar et al. 2011)	s of 188
Figure 5.31	Schematic details of the ground improvement works (after Dhar et a 2011)	ıl., 189
Figure 5.32	Variation of ground settlement with time	190
Figure 5.33	Cross section of constructed embankment at Chittagong Port site	190
Figure 5.34	Construction history (Chittagong Port embankment)	191
Figure 5.35	Sample of mesh grid pattern for Chittagong Port embankment considering the smear	191
Figure 5.36	Comparison of numerical results with filed data at Chittagong Port s	site 192
_	Numerical variation of excess pore water pressure against consolidatime	tion 193
Figure 5.38	Large scale consolidometer (after Bamunawita 2004)	194
Figure 5.39	Cross section of the large consolidometer (modified after Indraratna al. 2004a)	et 195
Figure 5.40	Loading history for the large scale consolidometer	197
Figure 5.41	Sample of grid pattern for the large consolidometer applying development of the cell, we width of the cell), (a) boundary conditions apply to the simulated cell and (b) pore pressure distribution boundary condition along the vertical drain	h _c =
Figure 5.42	Results of large consolidometer cell: Settlement versus consolidatio time	n 199

Figure 5.4	43 Results of large consolidometer cell: Excess pore pressure versus consolidation time	199
Figure 6.1	Flowchart of the systematic procedure to determine the minimum deg of consolidation resulting in an accurate estimation of smear zone	ree
	characteristics	204
Figure 6.2	Parametric study results for Chittagong port case history at point G1; r_s/r_m =2, (b) r_s/r_m =3, (c) r_s/r_m =4, and (d) r_s/r_m =5	(a) 208
Figure 6.3	Results of parametric study using the FLAC code developed to invest the influence of the smear zone properties on the dissipation of excess pore water pressure for Chittagong port case history at point G2, (a) $r_s/r_m=2$, (b) $r_s/r_m=3$, (c) $r_s/r_m=4$, and (d) $r_s/r_m=5$	_
Figure 6.4	Predicted time to obtain 90% degree of consolidation (Chittagong tria embankment)	l 211
Figure 6.5	Results of FLAC analysis for points in Table 7 using the Chittagong process history, (a) Settlement variation, and (b) dissipation of excess powater pressure	
Figure 6.6	Settlement variations against consolidation time for the Chittagong tri embankment	al 213
Figure 6.7	Results of numerical parametric study: Cumbalum trial embankment a SP9	at 214
Figure 6.8	Variation of excess pore pressure with time for the Cumbalum trial embankment at PC2 (depth 5.8m)	215
Figure 6.9	Results of numerical parametric study: Ballina Bypass trial embankment SP12	ent 216
Figure 6.10	0 Variation of excess pore pressure variation with time for Ballina Byr trial embankment at P3 (depth 11.8m)	ass 217
Figure 6.1	1 Results of numerical parametric study: Sunshine trial embankment a	at P1 219
Figure 6.12	2 Results of numerical parametric study: Large scale consolidometer to	est 220
Figure 6.12	3 Normalised cumulative error versus degree of consolidation for diffesimear zone properties, (a) Cumbalum trial embankment at SP9, (b) Ballina Bypass trial embankment at SP12, (c) Sunshine trial embankment at P1, (d) Chittagong Port trial embankment, and (e) la scale consolidometer	
Figure 6.14	4 Total cumulative error (for the smear zone properties resulting in minimum cumulative error) versus degree of consolidation, (a)	-

Cumbalum trial embankment at SP9, (b) Ballina Bypass trial embankment at SP12, (c) Sunshine trial embankment at P1, and (d) Chittagong Port trial embankment at G1, (e) Large-scale consolidometer test 226

LIST OF TABLES

	Applicability of ground improvement for different soil types (after Kam and Bergado, 1992)	on 2
Table 2.1	PVD assisted preloading projects	14
Table 2.2	Vacuum preloading projects	16
Table 2.3	Suggested equations for equivalent diameter of PVD	21
Table 2.4	Apparatus opening size requirements of PVD	23
Table 2.5	Suggested values for discharge capacity of PVD	26
Table 2.6	Back calculated smear zone properties (after Chai and Miura, 1999)	51
Table 2.7	Back calculated kh/ks ratio (reported by Saowapakpiboon et al., 2010)	52
Table 2.8	Proposed values for Cf (after Chai and Miura, 1999)	55
	Proposed solutions for radial consolidation considering constant smear zone properties	59
Table 2.10	Proposed solutions for radial consolidation considering variable smear zone properties	60
Table 2.11	Summary of conducted numerical studies to simulate PVD assisted preloading process	76
Table 3.1	Comparison of explicit and implicit solution methods (after Itasca, 2008)	3)84
Table 4.1	Properties of the adopted soil samples in this study	124
Table 4.2	Important sizes	125
Table 4.3	Mix design for the reconstituted samples	126
Table 4.4	Properties of the reconstituted samples	126
Table 4.5	Permeability of mixtures (Surcharge = 20 kPa)	129
Table 4.6	Properties of the intact zone, the smear zone, and drain	130
Table 4.7	Adopted properties for the numerical simulation	131
Table 4.8	Details of consolidation loading stages	138
Table 4.9	Surface settlement at the end of each loading stage	140
Table 4.10	The EPWP increase rate from the centre of the drain to the boundary of smear zone for selected consolidation times	f 144
Table 4.11	Applied combinations of smear zone permeability and extent in numer analyses	rical 146
Table 4.12	2 Adopted equations for converting permeability from axi-symmetric to plane-strain condition	150

Table 4.13 Adopted permeability coefficients for 2D analyses	151
Table 5.1 Summary of simulated case studies	157
Table 5.2 Adopted properties for subsoil layers for Cumbalum trial embankme SP9	ent near 164
Table 5.3 Adopted properties for the layers of subsoil for Ballina Bypass trial embankment near SP12	173
Table 5.4 Adopted properties for the numerical simulation (after Sathananthan 2008)	et al. 181
Table 5.5 Applied Properties for Sand Layer (after Sathananthan et al. 2008)	181
Table 5.6 Properties of the cohesive soil samples (Dhar et al., 2011)	186
Table 5.7 Properties of the applied PVD (Dhar et al., 2011)	187
Table 5.8 Adopted soil properties in FLAC simulation (after Dhar et al. 2011)	192
Table 5.9 Soil properties of the reconstituted sample of Moruya clay (after Bamunawita 2004)	196
Table 5.10 Soil properties for Modified Cam-Clay (after Indraratna et al. 2004)	a) 198
Table 6.1 Primary consolidation settlements and the corresponding degree of consolidations	205
Table 6.2 Back calculated smear zone properties to achieve t _{90%} = 34 days (Chittagong trial embankment)	212
Table 6.3 The final cumulative errors for different combinations of smear zone properties	224
Table 6.4 Minimum required degree of consolidation and corresponding time resulting in predicting reliable smear zone properties	227

LIST OF SYMBOLS

initial radius of cavity a_{o} В equivalent plane-strain radius of the influence zone RPback Pressure equivalent plane-strain radius of the smear zone b_s equivalent plane-strain radius of the drain b_w C_c compression index hydraulic conductivity ratio between the field and laboratory C_f values CPcell Pressure swelling index Cs c'cohesion in drained condition hydraulic conductivity ratio between field and laboratory values C_f coefficient of horizontal consolidation C_h permeability change index c_k vertical coefficient of consolidation c_{v} coefficient of consolidation for the combined vacuum and c_{vc} surcharge preloading effective particle size D_{10} grain diameter at 15% passing D_{15} grain diameter at 30% passing D_{30} D_{50} grain diameter at 50% passing grain diameter at 60% passing D_{60} grain diameter at 85% passing D_{85} DLdata logger diameter of unit cell dcde equivalent drain diameter mandrel diameter d_m smear zone diameter d_{s} diameter of drain d_w EYoung's modulus E_f final cumulative error cumulative error at step i $(E_f)_i$

 $(E_t)_s$ corresponding cumulative error to the extent ratio s

 E_i error between numerical predictions and field measurements at

step i

 $(E_{min})_s$ minimum error corresponding to step s

 $(E_t)_n$ normalised cumulative error at time t and step number n

 $(E_t)_n$ normalised cumulative error at time t and step number n

 $(E_{U\%})_i$ corresponding error to U% at step i

 $(E_{U\%})_{min}$ minimum error

 $(E_{U\%})_s$ corresponding error to the extent ratio s

EPWP excess pore water pressure

e void ratio

 e_{cs} void ratio at the critical state

 e_0 initial void ratio

 F_k field measurements

 F_s reduction factor G shear modulus

 G_s Specific garvity

 g_i or g_k gravity vector

 H_d vertical drainage length

 I_r normalised by the rigidity index

IVC definite volume controller

 K_w water bulk modulus

k coefficient of isotropic mobility

 $(k_h/k_s)_i$ permeability ratio at step i

 $(k_h/k_s)_{max}$ maximum permeability ratio $(k_h/k_s)_{min}$ minimum permeability ratio

 $(k_h/k_s)_0$ assumed initial permeability ratio

 $(k_h/k_s)_{opt}$ predicted permeability ratio at U%_{min}

 $(k_h/k_s)_s$ permeability ratio corresponding to step s that gives the minimum

error

 $\hat{k}(s)$ relative permeability

ratio between the vacuum pressure at the top and bottom of the

dran

 $k_{e,ax}$ equivalent horizontal permeability for the axi-symmetric unit cell

 $k_{e,pl}$ equivalent horizontal permeability for the plane-strain unit cell

horizontal permeability coefficient in the equivalent zone of plane-

strain unit

 k_{ep}

 k_f permeability of the filter

 k_h intact zone horizontal permeability

 k_h/k_s permeability ratio

 k_{hp} horizontal permeability of intact zone in plane-strain condition

 k_{ij} tensor of the coefficient of permeability

 k_s smear zone permeability

 k_{sp} horizontal permeability of smear zone in plane-strain condition

 k_{ν} intact zone vertical permeability

 k_{ve} equivalent coefficient of vertical permeability

 k_w coefficient of permeability of PVD

LL liquid limit

LVDT linear vertical displacement Transducer

l drainage length

 l_m the length of the vertical drain

[M] stiffness matrix

 M_b biot modulus

M slope of the critical state line

MCC modified cam clay

N total number of observation points

n porosity

 $n = R/r_w$ ratio of the influence radius to the drain radius

 $n = k_h/k_s$ permeability ratio

 n_p isotropic over consolidation ratio

 O_{50} opening size of the filter which is larger than 50% of the fabric

pore

 O_{95} the apparent opening size of the filter

OCR over consolidated ratio

P/VC pressure/volume controller

PL plastic limit

PVD prefabricated vertical drain

PWPT pore water Pressure Transducer

p' mean effective stress

 P'_{I} reference pressure

 P'_c preconsolidation pressure

PI plasticity index

 P_k numerical predictions

p_o initial mean pressure

 p'_{o} initial effective mean pressure

 P_{vo} vacuum pressure applied at the top of the drain

 p'_{y_o} maximum isotropic preconsolidation stress

 $\{Q\}$ nodal flow rate

q deviator stress

 q_i specific discharge vector

 q_{req} required discharge capacity

 q_{ν} intensity of the volumetric water source

 q_w discharge capacity of PVD

 q_{wp} equivalent plane-strain discharge capacity

R radius of the influence zone

 $(r_s/r_m)_i$ extent ratio at step i

 $(r_s/r_m)_{max}$ maximum extent ratio

 $(r_s/r_m)_{min}$ minimum extent ratio

 $(r_s/r_m)_0$ assumed initial extent ratio

 $(r_s/r_m)_{opt}$ predicted extent ratio at U%_{min}

 $(r_s/r_m)_s$ extent ratio corresponding to step s that gives the minimum error

 r_1 instantaneous radius of an elliptical cavity

 r_m mandrel radius

initial radius (in the direction of the semi-major axis) of an r_0

o elliptical cavity

 r_p radial distance of the plastic zone around the cavity

 r_s smear zone radius

 $r_s/r_m \& r_s/r_w$ extent ratio

 r_{tr} radius of transition zone

 r_w drain radius

S drain spacing (centre to centre)

 S_f final primary consolidation settlement

 S_{pr} field settlement at the end of preloading time

 S_t field settlement at time t

 S_{tp} predicted settlement at time t

s extent ratio (r_s/r_w) or (r_s/r_m)

 T_{hp} radial consolidation time factor T_r or T_h radial consolidation time factor

 T_{ν} vertical consolidation time factor

 T_{vc} time factor for the combined vacuum and surcharge preloading

t90% corresponding time at 90% degree of consolidation

 t_{min} corresponding consolidation time to the U%_{min}

 t_{pr} preloading time

 \overline{U} total degree of consolidation in plane-strain condition

U% degree of consolidation at time t

 $U\%_{min}$ minimum required degree of consolidation

 $U\%_n$ degree of consolidation at step n

 \overline{U}_h average degree of radial consolidation in axi-symmetric condition

 \overline{U}_{hp} average degree of radial consolidation in plane-strain condition

 U_{pr} % degree of consolidation at the end of preloading

 \overline{U}_{v} average degree of vertical consolidation

 u_0 initial excess pore water pressure

V total volume associated with the node

w water Content

z depth

Greek Letters

 α biot's coefficient

 β pore pressure coefficient

 γ_q^p plastic shear strain

 γ_s unit weight

 ΔR permeability ratio incremental rate

15 extent ratio incremental rate

equivalent increase in the nodal volume arising from ΔV_{mech}

mechanical deformation of the grid

octahedral normal stress $\Delta\sigma_{oct}$

octahedral shear stress Δau_{oct}

volumetric strain ϵ

ariation of water volume per unit volume of porous material ζ

stress ratio η

slope of the specific volume versus ln(p') curve for swelling κ

plastic volumetric strain ratio Λ

slope of the specific volume versus ln(p') curve for compression λ

Poisson's ratio μ

specific volume ν

specific volume at the reference pressure ν_{λ}

bulk density of the dry matrix ρ_d

density of the solid phase ρ_{s}

mass density of the water $\rho_{\scriptscriptstyle W}$

the lateral pressure σ_c

initial cavity internal pressure $\sigma_{\rm o}$

total stress σ_r

total radial stress at the elastic-plastic boundary σ_{rp}

 φ' friction angle in drained condition