

Competition and training demands of junior Sprint Kayak athletes

A thesis submitted for the degree

Doctor of Philosophy

August 2013

By

Thiago Oliveira Borges

Bachelor of Physical Education

Master by Research in Sport Sciences

UTS: Health

University of Technology

Sydney, Australia

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree at the University of Technology Sydney nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me, Thiago Oliveira Borges. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of	of Student
Date	

Acknowledgements

"I have a kind of duty, duty of dreaming, always dreaming as being more than a spectacle of myself,

I have to have the best show I can.

And so, I build myself in gold and silk, in rooms alleged, I invent a stage, scenery to live my dream amongst mild lights and invisible music."

Fernando Pessoa

A PhD is a very difficult task to be accomplished in someone's life. It starts as a complex dream and like a puzzle, all the pieces are put in place at their own time and all of a sudden, these pieces are in place and the dream finally come true. However, like any big puzzle, the pieces are put together easier with help, and I am very grateful for everyone that has helped me in any way to complete this PhD. Thank you.

I would like to thank my wife, Dionízia for always being supportive and strong to endure along with me in this endeavour that is life. I love you.

A special thanks to Professor Aaron Coutts for believing in me and for agreeing to supervise my PhD. It has been an honour to be under your superb guidance and mentorship. Also, another special thanks to Sharon Coutts for all support and well-wishes since the first day we met. Most importantly, thank you Sharon and Aaron for making me feel part of your family since the first day in Australia. Dio and I will always be grateful for introducing us to the Australian culture and for everything you have done for us. Thank you very much!

I would also like to thank Dr Nicola Bullock my co-supervisor for all her assistance, valuable advice, experiences shared and especially, patience. Thank you Nic; Dr Fabio

Yuzo Nakamura my co-supervisor for his friendship and valuable contribution during the initial research project and application process for the PhD position and Dr Alexandre Moreira for his friendship and valuable contribution during the application process for the PhD position.

Thank you to Thomas Kempton, Mitchell Smith, Brett Curtice, Dr Ben Dascombe, Dr Mark Watsford, Dr Rob Duffield, John Newton, Christine Duff, Aron Murphy and Luiz Fernando de Almeida for their valuable assistance with data collection and analysis. Also, the participants, their parents and coaches who readily volunteered to be part of the investigations – thank you. Moreover, thank you to Richard Fox, Martin Marinov, Jimmy Owens, Tahnee Norris, Andrea Wood, Anna Wood, Dr Greg Cox, Dr David Aitken, Glen Workman, Vince Fehervari, David Foureur, Tim Jacobs and Jimmy Walker for the opportunity to sharing experiences within Australian Canoeing.

I am also grateful to the Australian Institute of Sport and Australian Canoeing for providing me with the opportunity to be embedded into the Canoe Sprint program. Special thanks to Professor Christopher Gore, Dr David Martin, Professor Will Hopkins and Richard Fox. I would also like to acknowledge Bond University for allowing access to facilities and equipment, in particular to Jacqueline Bondy for her support and commitment with one of my PhD studies.

This research received financial support provided by the University of Technology, Sydney, The Australian Government, Department of Innovation, Industry, Science and Research, Australian Institute of Sport and Australian Canoeing.

Finally, to my family and friends, a huge thank you for all of your encouragement, well-wishes, patience and unwavering support.

Preface

This thesis for the degree of Doctor of Philosophy is in the format of published, submitted or ready for submission manuscripts and abides by the 'Procedures for Presentation and Submission of Theses for Higher Degrees – University of Technology, Sydney; Policies and Directions of the University'. All manuscripts included in this thesis are closely related in subject matter and form a cohesive research narrative.

Based on the research design and data collected by the candidate, two manuscripts have been published, one has been submitted for publication and three are ready to be submitted, in peer-reviewed journals. These papers are initially brought together by an *Introduction*, which provides background information, defines the research problem and the aim of each study. Then, a *Literature Review* provides an overview of previous knowledge that characterizes Sprint Kayak performance, methods for measure training, performance and physiological responses of Sprint Kayak and means to improve those variables. A logical sequence following the development of research ideas in this thesis is presented in manuscript form (*Chapter 3 to Chapter 8*).

Each manuscript outlines and discusses the individual methodology and the findings of each study separately. The *General Discussion* chapter provides an interpretation of the collective findings and practical applications from the series of investigations conducted. Lastly, a final *Summary and Recommendations* chapter summarizes the research hypothesis and conclusions from each project. Future research is suggested on the basis of the findings from the studies. Author-date reference style has been used throughout the document and the reference list is at the end of the thesis.

List of Articles Submitted for Publication

Refereed Journal Publications

- Oliveira Borges, T., Bullock, N. and Coutts, A.J. Pacing characteristics of international Sprint Kayaks athletes. *Int J Perf Analysis in Sports*. 13: 353-364, 2013.
- Oliveira Borges, T., Dascombe, B. J., Bullock, N. and Coutts, A.J. (*Prepared for submission*). Physiological characteristics of well-trained junior Sprint Kayak athletes. *Eur J Sports Sci*.
- Oliveira Borges, T., Bullock, N., Newton, J. and Coutts, A.J. (under review). A new field test for assessing and monitoring Sprint Kayak athletes.
 J Sports Sci.
- Oliveira Borges, T., Bullock, N., Duff, C. and Coutts, A.J. Methods for quantifying training in Sprint Kayak. *J Strength Cond Res. Published ahead of print. DOI:10.1519/JSC.0b013e31829b56c4*
- Oliveira Borges, T., Bullock, N., Dascombe, B.J. and Coutts, A.J. (*Prepared for submission*). The acute response of common repeated sprint and high-intensity aerobic training sessions in Sprint Kayak athletes. *J Strength Cond Res*.
- Oliveira Borges, T., Bullock, N., Dascombe, B.J. and Coutts, A.J. (*Prepared for submission*). Comparison of the acute physiological responses of repeated sprint and high-intensity aerobic training sessions in Junior Sprint Kayak athletes. *Int J Sports Phys Perf.*

Conference Proceedings & Abstracts

- Oliveira Borges, T., Bullock, N., Dascombe, B.J. and Coutts, A.J. (2013).
 Comparison of high-intensity aerobic and repeated sprint training on performance and physiological variables of junior Sprint Kayak athletes.
 Oral communication presented at the European College of Sport Sciences, Barcelona, Spain.
- Oliveira Borges, T., Bullock, N., Dascombe, B.J. and Coutts, A.J. (2013). Correlates of whole body and muscle oxygen on kinetics, physiological variables and performance in Sprint Kayak. Mini oral communication presented at the European College of Sport Sciences, Barcelona, Spain.

Statement of Candidate Contribution

The contribution of each author to the investigations undertaken as part of the thesis is outlined in Table A below.

Table A: Percentage contribution (%) of each author to the investigations conducted during the candidature.

Ol		Study 1			Study 2				Study 3			
	Thiago Oliveira Borges	Nicola Bullock	Aaron Coutts	Thiago Oliveira Borges	Nicola Bullock	John Newton	Aaron Coutts	Thiago Oliveira Borges	Ben Dascombe	Nicola Bullock	Aaron Coutts	
Research design	80%	10%	10%	70%	10%		20%	70%	5%	5%	20%	
Ethics Application				70%	10%		20%	70%		10%	20%	
Subject recruitment				30%	20%	50%		90%		10%		
Data collection	100%			70%	10%	20%		90%			10%	
Data analysis	60%		40%	80%	10%		10%	80%	10%		10%	
Statistical analysis	50%		50%	80%			20%	80%			20%	
Manuscript Preparation	100%			100%				100%				
Manuscript Revision		25%	75%		30%		70%		10%	10%	80%	

Table A (cont.): Percentage contribution (%) of each author to the investigations conducted during the candidature.

Author	Study 4			Study 5				Study 6				
Oliveira	Thiago Oliveira Borges	Nicola Bullock	Christine Duff	Aaron Coutts	Thiago Oliveira Borges	Nicola Bullock	Ben Dascombe	Aaron Coutts	Thiago Oliveira Borges	Nicola Bullock	Ben Dascombe	Aaron Coutts
Research design	80%	10%		10%	70%	10%	10%	10%	80%	10%		10%
Ethics Application	80%	10%		10%	80%			20%	80%	10%		10%
Subject recruitment	40%	10%	50%		90%	10%			90%	10%		
Data collection	90%		10%		90%			10%	90%	10%		
Data analysis	100%				90%			10%	70%	10%	10%	10%
Statistical analysis	90%			10%	100%				90%			10%
Manuscript Preparation	100%				100%				100%			
Manuscript Revision		25%		75%		10%	20%	70%		15%	15%	70%

Abstract

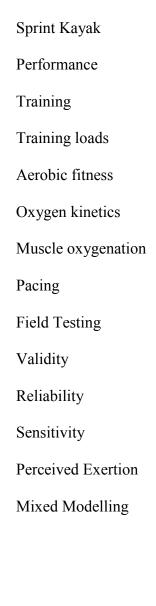
Introduction: Sprint Kayak is an Olympic sport where women race over 200-m and 500-m and men compete over 200 and 1000-m. In 2009 the 200-m event was included into the Olympic Games' program replacing the men's 500-m events and providing the women with an additional event. Currently, little research is available on the demands of the 200-m event. With the inclusion of this short distance event, the training practices require review, especially in the case of young developing athletes, as this group may begin to specialise their training toward this new format. Therefore, the overall goals of this thesis were to: 1) gain a better understanding of the racing and physiological demands in Sprint Kayak, 2) develop specific methods for monitoring training and performance and 3) compare methods for training well-trained junior Sprint Kayak athletes. The results of four separate studies were reported in six manuscripts.

Study 1: The split –time results from six Sprint Kayak world championships (n_{total} = 486) were pooled and the pacing strategies and performance analysed according to race level (Finals A and B) and boat (K1, K2 and K4). Collectively, the world-class Sprint Kayak athletes present different pacing strategy according to final A and B), boat class (K1, K2 and K4) and from year to year.

Study 2: Examined the relationships between physiological variables, including $\dot{V}O_2$ max, maximal aerobic power (MAP), lactate threshold (LT₂), whole body ($\dot{V}O_2$ kinetics) and muscle oxygen kinetics (MO_{2kinetics}), muscle oxygenation parameters and on-water time-trial performances. The results showed physiological variables correlated with performance in both 200-m and 1000-m events. Furthermore, the muscle oxygenation parameters increased the predictive power of these physiological variables highlighting the importance of muscle oxygen extraction for the 200-m time-trial.

Study 3: Tested a specific performance test (SK_{test}) in the laboratory and in the field for validity (as a performance and fitness measure) and reliability (part A). In addition, the test sensitivity was assessed during a normal training period (part B) in a separate group of well-trained junior Sprint Kayak athletes. Part A - Participants (n = 11) completed a standard incremental kayak step test in the laboratory, a SK_{test} consisting of two sets of ten 100-m efforts with 20 s rest between efforts and 1000-m between sets in both laboratory and on-water and on-water time trials over 200 and 1000-m. Part B – Another group of athletes (n = 8) performed weekly trials of the short version of the SK_{test} for four weeks, in their usual training environment. The results showed the SK_{test} to be valid, reliable and sensitive for monitoring fitness and performance changes.

Study 4: Tested the validity of methods for quantifying training load and established the relationships between training loads, physiological variables and onwater performance in well-trained junior Sprint Kayak athletes. The results demonstrated the validity of the session-RPE method for quantifying training loads in Sprint Kayak. Moreover, the inverse relationships between physiological variables, performance and training loads showed that aerobically fitter and faster athletes have lower perceived training loads when external loads are controlled.


Study 5: Compared the power outputs and acute physiological responses (i.e. heart rate [HR], blood lactate [BLa $^-$], $\dot{V}O_2$, and tissue saturation index [TSI])) of common repeated sprint (RS) and high-intensity aerobic (HIA) interval training sessions in well-trained junior Sprint Kayak athletes. Two different RS training sessions consisting of a shorter 10 s repeat effort session (2 sets of 10 s efforts with 10 s rest between efforts and eight minutes between sets) and a longer 30-s repeat effort session (6 x 30 s efforts with 210 s rest). The HIA sessions included a shorter (2 x 3 min efforts with 3 min rest between efforts, and 5 min between sets) and a longer 2-km (3 x 2 km efforts on a 15

min cycle) interval training sets. The results showed the physiological responses and external loads to the main body the HIA interval sessions were considerably different from RS sessions, with the exception of TSI which was similar for all. Mixed modelling showed significant random variation for the time spent in different training zones for mean power output and $\dot{V}O_2$. The present study highlighted distinct differences in the HR, $\dot{V}O_2$, [BLa⁻], and perceptual responses to common RS and HIA training, with the shorter RS sessions placing a greater stimulus on glycolytic pathways, and the longer HIA sessions requiring greater energetic demands. Importantly, *large* inter-individual physiological responses were observed across each of the different training sessions. These findings highlight the need to individualise training programs for Sprint Kayak based on the athletes' characteristics and demands of competition.

Study 6: Compared the effects of 5 weeks of RS and HIA interval training on physiological ($\dot{V}O_2$ max, MAP, LT₂, $\dot{V}O_{2kinetics}$ and MO_{2kinetics}) and performance (200 and 1000-m on water time trial) variables in well-trained junior Sprint Kayak athletes using matched-groups randomised design. The groups were matched for physical fitness and on-water kayak performance. In addition to their usual training, the RS training group completed a shorter 10 s repeat effort session (2 sets of 10 s efforts with 10 s rest between efforts and 8 minutes between sets) and longer 30-s repeat effort session (6 x 30 s efforts with 210 s rest), where each session was completed once per week. Similarly, the HIA interval training group completed a three-minute (2 x 3 min efforts with 3 min rest between efforts and 5 min between sets) and longer 2-km aerobic training (3 x 2 km efforts on a 15 min cycle) session once each week during the study in addition to their usual training. Results showed that the RS and HIA interval training interventions elicited *trivial* changes in maximal indicators of aerobic fitness (i.e. $\dot{V}O_2$ max and maximal HR) and *trivial* and *small* on-water performance (i.e. time trials

over 200 and 1000-m, respectively) in both groups. In contrast, submaximal physiological responses (i.e. lactate threshold) were *trivial* whereas oxygen kinetics presented *small-to-moderate* improvements after five weeks (~19 training sessions) performed by both RS and HIA groups. This information suggests that physiological and performance characteristics are very stable in well-trained junior Sprint Kayak athletes. It seems that either larger loads of RS or HIA interval training or longer training periods are required to elicit larger changes in specific physiological adaptations in well-trained junior Sprint Kayak athletes.

Keywords

List of Abbreviations

% HRmax maximal heart rate percentage

μL microlitre

AIS Australian Institute of Sport

ANOVA analysis of variance

asymptotic amplitudes for the primary exponential component $A_{\mathfrak{p}}$ asymptotic amplitude for the slow exponential component A_s

ATP adenosine triphosphate [BLa] blood lactate concentration

canoe single C1 C2canoe double

CI confidence intervals CR-10 category-ratio scale coefficient of variation CV EEO_2 end-exercise o₂ value

total gain G_{o} primary gain $G_{\mathfrak{p}}$

GPS global positioning system

slow gain

 $G_s \\ \eta^2$ partial eta squared deoxyhaemoglobin HHb

HR heart rate

exercise heart rate HR_{exercise} **HRmax** maximal heart rate rest heart rate HR_{rest}

intraclass correlation **ICC**

international canoe federation **ICF**

In natural logarithm

internationale repräsentantenschaft kanusport **IRK**

iTRIMP individualized training impulse

K1 kayak single K2 kayak double K4 kayak four L·min litres per minute LT_1 aerobic threshold LT_2 lactate threshold

Metre m

MAP maximal aerobic power

min Minute

mL·kg⁻¹·min⁻¹ millilitres per kilogram per minute

mm millimetre

mmol·L⁻¹ mill moles per litre

sample size N

near infrared spectroscopy **NIRS**

Oxyhaemoglobin O_2Hb o₂ at a given time $O_2(t)$ **PCr** phosphocreatine correlation coefficient r

r² determination coefficient
RPE ratings of perceived exertion

RSA repeated sprint ability
RSS residual sum of squares

s seconds

SD standard deviation SK_{test} sprint kayak test

session-RPE ratings of perceived exertion of the training session

SPSS statistical package for social science SWT squared wave submaximal tests

tHb total haemoglobin

TD_p time delay for the primary exponential component TD_s time delay for the slow exponential component

TE typical error

TEM technical error of measurement

TL training loads

 $\tau^{\rm s}$ time constants for the primary exponential component

TRIMP training impulse

iTRIMP individualized training impulse

 τ^{s} time constants for the slow exponential component

TSI tissue saturation index TSS total sum of squares

TT time trial

UTS University of Technology, Sydney

 V_{min} highest speed V_{min} lowest speed $\dot{V}O_2$ oxygen uptake

 $\dot{V}O_2$ max maximal oxygen uptake

W Watts

wMRT weighted mean response time ΔHR_{ratio} rate of heart rate elevation

Table of Contents

Preface	V
List of Articles Submitted for Publication	vi
Refereed Journal Publications	Vi
Conference Proceedings & Abstracts	vii
Statement of Candidate Contribution	viii
Abstract	ix
Keywords	xiii
List of Abbreviations	xiv
Table of Contents	xvi
List of Figures	xx
List of Tables	xxii
CHAPTER ONE	1
Introduction	1
1. Background	2
2. Research Problem	6
3. Study Objectives	7
CHAPTER TWO	15
Literature Review	15
Abstract	16
Literature Search Strategy	17
Plan of Development	22

Brief history of canoeing and kayaking	22
Racing Characteristics	23
Physiological Attributes and Factors Affecting Performance in Sprint	Kayak
Athletes	27
Training and Monitoring Training	33
Summary of Literature Review	41
CHAPTER THREE	44
Pacing characteristics of international Sprint Kayak	44
Abstract	45
Introduction	46
Methods	47
Results	49
Discussion	54
Conclusion	58
CHAPTER FOUR	60
Physiological characteristics of well-trained junior Sprint Kayak athletes	60
Abstract	61
Introduction	63
Methods	65
Results	72
Discussion	74
Conclusion	80
CHAPTER FIVE	81
A new field test for assessing and monitoring Sprint Kayak athletes	81

Abstract	82
Introduction	83
Methods	85
Results	91
Discussion	96
Conclusions	.100
CHAPTER SIX	.101
Methods for quantifying training in Sprint Kayak	.101
Abstract	.102
Introduction	.103
Methods	.106
Results	.113
Discussion	.118
CHAPTER SEVEN	.124
Comparison of the acute physiological responses of repeated sprint and h	nigh-
intensity aerobic training sessions in Junior Sprint Kayak athletes	.124
Abstract	.125
Introduction	.126
Methods	.128
Discussion	.139
Conclusions	.144
CHAPTER EIGHT	.146
Comparison of repeat sprint and high-intensity aerobic interval training	g on
physiological variables and performance in junior Sprint Kayak athletes	.146

Abstract	147
Introduction	149
Methods	151
Discussion	168
Conclusions	174
CHAPTER NINE	175
General Discussion	175
1. Main Findings	176
2. Limitations	183
3. Practical Applications	185
CHAPTER TEN	188
Summary and Recommendations.	188
1. Thesis Summary	189
2. Directions for Future Research	194
REFERENCES	196
APPENDIX	207

List of Figures

Figure 2.1: Examples of paddles and boats evolution (from Berlin Olympic Games
– 1936 to Beijing Olympic Games – 2008) * - Most recently used blades
Figure 2.2: Re-arrangement of the Olympic Program for Canoe Sprint Racing for
London 2012
Figure 3.1: Pacing profile (% of mean velocity) of World Class 1000-m Sprint
Kayak races in 250 m splits. A – K1 A final; B – K1 B final; C – K2 A final; D – K2 B
final; E – K4 A final; F – K4 B final
Figure 3.2: Pacing profile (% of mean velocity) of World Class 500-m Sprint
Kayak races in 250 m splits. A – K1 A final; B – K1 B final; C – K2 A final; D – K2 B
final51
Figure 5.1: SK _{water} : A – Representation of the full protocol; B - SK _{water} set up 89
Figure 6.1: iTRIMP weighting factor from a representative sprint kayaker
participating in the study. ΔHR_{ratio} equals (Session HR - Rest HR)/(Max HR - Rest
HR)111
Figure 6.2: Correlations between performance in 200-m and the training loads
quantified by the session rating of perceived exertion methods using the RPE 6-20, CR
100 and CR 10 scales (A, B and C respectively); Correlations between performance in
1000-m and the training loads quantified by the session rating of perceived exertion
methods using the RPE 6-20, CR 100 and CR 10 scales (D, E and F respectively);117
Figure 7.1: Percentage contribution of each low (<lt<sub>1), moderate (LT₁-LT₂) and</lt<sub>
high (>LT ₂) intensity training zones for internal responses and external loads for the
different high-intensity training sessions
Figure 8.1: Average training intensity (A), accumulated training volume (B) and

training loads (C), average temperature (D), humidity (E) and average wind speed for

the 5-week training period. (■) Repeated Sprint Group, □ High-intensity aerobic interval group. 161 Figure 8.2: Within-group standard difference in change for 200 and 1000-m time trial performance, maximum oxygen uptake, anaerobic threshold, maximal aerobic power and power to weight ratio with repeat sprint (RS) and high-intensity aerobic (HIA) interval training programs (bars indicate uncertainty in the true mean changes with 90% confidence intervals). Trivial area was calculated from the smallest worthwhile change 162 Figure 8.3:. Comparison of the performance and physiological responses to both interventions. Differences in the changes in maximum heart rate (HR_{max}), maximum oxygen uptake (VO₂max), power to weight ratio (P:W ratio), anaerobic threshold (LT₂), maximal aerobic power (MAP), 1000-m time trial performance and 200-m time trial performance for repeat sprint (RS) vs. high-intensity aerobic (HIA) interval training Figure 8.4: Comparison of the muscle and whole body oxygen kinetics to repeat sprint (RS) vs. high-intensity aerobic (HIA) interval training interventions. The shaded

area represents the smallest worthwhile change. 165

List of Tables

Table A: Percentage contribution (%) of each author to the investigations conducted
during the candidatureviii
Table A (cont.): Percentage contribution (%) of each author to the investigations
conducted during the candidatureviii
Table 2.1: Published studies relevant for training in Sprint Kayak. 18
Table 3.1: Mean (±SD) of performance times of world-class 1000-m canoe sprint
athletes
Table 3.2: Mean (±SD) of performance times of world-class 500-m canoe sprint
athletes53
Table 4.1: Mean (±SD), 90% confidence intervals and correlations coefficients of
physiological, energetic and performance characteristics of well-trained junior Sprint
Kayak athletes
Table 4.2: Mean (±SD), 90% confidence interval and correlation coefficients of
whole body and muscle oxygen on-kinetics, muscle deoxygenation parameters and
performance characteristics of well-trained junior Sprint Kayak athletes74
Table 5.1. Validity measures of the sprint kayak performance test variables (mean
±SD)93
Table 5.2. Reliability measures for the on-water and ergometer sprint kayak test95
Table 6.1: Mean (±SD) of the within individual correlations between the training
distance and the internal methods to quantify the training loads
Table 6.2: Mean (±SD) of the within individual correlations between the training
mean speed and the internal methods to quantify the training loads

Table 6.3: Mean (±SD) of the within individual correlations between the subjective
(RPE) and the objective (HR-based) methods to quantify the internal training loads116
Table 6.4: Correlations between the mean session RPE training loads, time trial
performances, mean session speed and aerobic fitness variables
Table 7.1: Mean (± SD) internal responses (physiological and perceptual) and
external loads for each Sprint Kayak training session (i.e. including, warm up, main
section and cool down)
Table 7.2: Internal responses and external loads (mean \pm SD) for the main body of
each Sprint Kayak training session. 136
Table 8.1. Typical training week for the period of the study. 155
Table 8.2: Changes in time-trial performance and physiological responses following
5 weeks of RS and HIA interval training (mean ±SD)
Table 8.3: Changes in whole body and muscle level O2 kinetics (phase II time
constant - τ^{p}) pre and post treatment for the moderate, heavy and severe domains
following 5 weeks of RS and HIA interval training (mean ±SD)
Table 10.1: Summary of the investigations conducted as part of the thesis 190
Table 10.1 (cont.): Summary of the investigations conducted as part of the thesis.
Table B: – Downs and Black (1998) criteria for Quality of Reporting in Research.
218