Spectroscopic Studies of Hydrogen Dopants in ZnO Crystals

by

Laurent Olivier Lee Cheong Lem

A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy
in the

School of Physics and Advanced Materials
Faculty of Science

2013
Declaration of Authorship

I, Laurent Olivier Lee Cheong Lem, declare that this thesis titled, ‘Spectroscopic Studies of Hydrogen Dopants in ZnO Crystals’ and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.

- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.

- Where I have consulted the published work of others, this is always clearly attributed.

- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.

- I have acknowledged all main sources of help.

- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed:

Date:
Abstract

ZnO is a semiconductor with a direct band gap of 3.37 eV and an exciton binding energy of 60 meV at room temperature. These properties make it an attractive material for optoelectronic devices across a wide range of applications. Significant obstacles preventing the wide scale usage of ZnO include the lack of reliable p-type doping and high uncertainty surrounding the nature of its defects. Moreover, as-grown ZnO is intrinsically n-type and it is thought that hydrogen is the cause for the high n-type character.

The aim of this thesis is therefore to elucidate the role of hydrogen with respect to the optical and electrical properties of ZnO as well as its interaction with native defects and impurities.

During this work, hydrogen was introduced in ZnO single crystals through an RF plasma source. Hydrogen incorporation was confirmed by XPS measurements which showed an increase in hydrogenated oxygen states. Hydrogen also modified the near-surface region of the crystals only and not the bulk.

Hydrogen doped ZnO showed significant increases in the carrier concentration as well as in the near band edge (NBE) luminescence. This is attributed to hydrogen introducing new shallow donors. The green luminescence, whose origin is attributed to V_{Zn}, was quenched after hydrogen incorporation, indicating formation of neutral V_{Zn}-H$_2$ complexes. The yellow luminescence in the as-received crystal is identical to that in Li doped ZnO and was assigned to recombinations involving Li$_{Zn}$.

Hydrogen doped ZnO also exhibits a negative thermal quenching (NTQ) of the NBE luminescence where the intensity of the luminescence increases with increasing temperature. Q-DLTS measurements detected new electronic states being created following hydrogen incorporation. A model involving the H-related state
at 11 meV releasing electrons to form free excitons is proposed to explain the NTQ behaviour.

XANES studies of H-doped ZnO showed that hydrogen interacted with oxygen states only but not zinc. This suggests that most of the hydrogen dopants introduced by plasma sit at the oxygen anti-bonding site.

The recombination kinetics of the various luminescence was investigated. While the kinetics of the NBE luminescence followed the expected behaviour for excitonic type recombination, the green and yellow luminescences showed high temperature dependencies and is explained in terms of different recombination mechanisms.

Finally, it was found that hydrogen is stable under normal SEM excitation conditions.
Acknowledgements

I would like to thank my supervisors Dr. Cuong Ton-That and Prof. Matthew Phillips for allowing me to work in their research group and for all their support, guidance and help they have offered me during my time as a student at the University of Technology, Sydney.

I would also like to extend my gratitude to Geoff McCredie for his help with the plasma chamber and also the staff of the MAU for their help with sample preparation and data collection, acquisition and analysis.

To Mark Lockrey and Trevor Manning for their help with using and developing the CL system.

To Christian Nenstiel for his help with the PL measurements.

To my fellow research students and colleagues in the MAU for their insightful discussions and ideas and for contributing to a cheerful and pleasant atmosphere. You have made my time at UTS not only successful, but enjoyable.

To my family and friends for their understanding and support during this daunting and important endeavour.
2.5 Optical Processes in ZnO .. 17
 2.5.1 Exciton Formation .. 18
 2.5.2 Recombination of electron-hole pairs 20
 2.5.3 Radiative Recombination 20
 2.5.3.1 Near Band Edge Emission 20
 2.5.3.2 Deep Level Emission 22
 2.5.3.3 Green Luminescence 23
 2.5.3.4 Yellow Luminescence 24
 2.5.3.5 Red Luminescence 25
 2.5.3.6 Summary .. 25
 2.5.4 Non-Radiative Recombination 26
 2.5.4.1 Non-Radiative via Deep Level 26
 2.5.4.2 Auger Recombination 26
 2.5.4.3 Surface Recombination 27
 2.6 Hydrogen in ZnO ... 27
 2.6.1 Hydrogen as a Donor 28
 2.6.2 Location of Hydrogen in the Lattice 30
 2.6.3 Interaction of Hydrogen With Defects 31

3 Experimental Details ... 33
 3.1 ZnO Crystal Specimen 33
 3.2 Sample Cleaning and Preparation 35
 3.3 Hydrogen Doping .. 35
 3.4 Scanning Electron Microscopy (SEM) 36
 3.5 Cathodoluminescence Spectroscopy 38
 3.5.1 CL System Calibration 40
 3.6 Monte Carlo Simulations (CASINO) 42
 3.7 Electrical Measurements 45
 3.7.1 Resistivity Measurement 45
 3.7.2 Hall Measurement 46
 3.8 Synchrotron Light Experiments 47
 3.8.1 X-Ray Photoelectron Spectroscopy 47
 3.8.2 X-Ray Absorption Near Edge Spectroscopy 49
 3.9 Raman Spectroscopy .. 50
 3.10 Charge-based Deep Level Transient Spectroscopy 52
 3.11 Other Characterisation Techniques 54

4 Hydrogen Doped ZnO ... 55
 4.1 Introduction .. 55
 4.2 Crystal Morphology and Structure 56
 4.3 Electrical Properties of Hydrogen Doped ZnO 59
 4.4 Optical Properties of Hydrogen doped ZnO 60
4.4.1 Effects of Hydrogen on the NBE luminescence 62
4.4.2 Effects of Hydrogen on the DLE 65
4.4.3 Effects of Temperature on Hydrogen Incorporation 66
4.4.4 Deconvolution of the Deep-Level Luminescence Band 69
4.4.5 Depth Distribution of Luminescence Centres 72
 4.4.5.1 Simulations of CL Interaction Volumes in ZnO 73
 4.4.5.2 Distribution of Luminescence Centres in H-doped
 ZnO ... 75
4.4.6 Effect of Plasma Exposure Time on the Luminescence 78
4.5 Raman Spectroscopy ... 81
4.6 Synchrotron Light Measurements 85
 4.6.1 X-Ray Photoelectron Spectroscopy 85
 4.6.2 X-Ray Absorption Near Edge Spectroscopy 92
4.7 Summary ... 101

5 Hydrogen States and Recombination Kinetics in ZnO 103
 5.1 Introduction .. 103
 5.2 Temperature Dependence of the Luminescence 104
 5.3 Negative Thermal Quenching of the NBE Luminescence 112
 5.4 Shallow Carrier Traps in ZnO 117
 5.5 Recombination Kinetics 123
 5.6 Characteristics of the Yellow Luminescence 130
 5.7 Stability of Hydrogen Under the Electron Beam in ZnO 132
 5.8 Summary ... 140

6 Conclusions and Future Directions 142
 6.1 Conclusions .. 142
 6.2 Future Directions .. 145
 6.3 Closing Remarks ... 146

Bibliography 147
List of Publications

Refereed Journal Publications

Oral Presentations

List of Figures

2.1 Unit cells for common ZnO structures ... 8
2.2 Band structure and splitting of the valence band in ZnO 9
2.3 Point defects in ZnO ... 12
2.4 Formation energies of oxygen vacancies 13
2.5 Formation energies of native defects in ZnO 17
2.6 Typical luminescence spectrum of ZnO 18
2.7 Thermal ionisation of excitons in ZnO and GaN 19
2.8 Radiative recombination channels .. 21
2.9 The H+/H− transition level for various semiconductors 28
2.10 Formation energies of interstitial hydrogen in ZnO 29
2.11 Model for Hi in ZnO .. 30
3.1 Photograph of ZnO crystal ... 34
3.2 Plasma Chamber ... 36
3.3 Schematic diagram showing key parts of a typical SEM 37
3.4 Processes induced by electron bombardment 37
3.5 CL setup .. 39
3.6 CL intensity calibration .. 41
3.7 CL wavelength calibration ... 41
3.8 Influence of carrier diffusion on interaction volume 44
3.9 Van der Pauw setup .. 45
3.10 X-ray photoionisation cross sections 48
3.11 Optical Raman modes in ZnO ... 51
3.12 Q-DLTS band diagram ... 53
3.13 DLTS setup ... 53
4.1 X-ray diffraction patterns for ZnO .. 57
4.2 AFM images of as-received and H-doped ZnO 58
4.3 CL spectrum of as-received ZnO ... 60
4.4 CL spectrum of as-received ZnO at 10 K 62
4.5 CL comparison after H-doping ... 63
4.6 PL spectra of as-received and H-doped ZnO 64
4.7 CL on H-doped ZnO performed at different temperatures 67
List of Figures

4.8 Normalised bound exciton emission 68
4.9 XPS spectrum of Li doped ZnO 70
4.10 Lithium doped ZnO spectrum 71
4.11 Deconvolution of the DLE peak 72
4.12 CASINO simulated electron energy loss curves 74
4.13 CL generation depth 74
4.14 Distribution of luminescence centres 76
4.15 Time dependent CL 79
4.16 Distribution of luminescence centres as a function of plasma time 80
4.17 Raman modes in ZnO 82
4.18 Raman spectra for as-received and H-doped ZnO 84
4.19 XPS survey spectrum of ZnO 86
4.20 Inelastic mean free path of electrons 89
4.21 O 1s XPS spectrum of ZnO at different X-ray photon energies ... 90
4.22 Valence-band photoemission spectra 92
4.23 X-ray attenuation length in ZnO 93
4.24 XANES experimental geometry 94
4.25 O K-edge XANES 96
4.26 Zn L-edge XANES for as-received ZnO 99
4.27 Band structure of ZnO 100

5.1 Temperature dependent CL 105
5.2 Energy position of the phonon replica 107
5.3 Temperature dependent of the FX and phonon replica ... 108
5.4 Temperature dependence FX and bound exciton 110
5.5 Temperature dependence of the NBE peak intensities ... 111
5.6 Temperature dependence of the DLE 112
5.7 NTQ fits to find activation energies 115
5.8 $I-V$ characteristics of Au Schottky contacts 117
5.9 Q-DLTS spectra of as-received ZnO 119
5.10 Q-DLTS spectra of H-doped ZnO 120
5.11 Temperature dependence of the Y line 121
5.12 Mechanism for the NTQ effect 122
5.13 DLE emission at low and high beam power 125
5.14 Power density plots 126
5.15 CL spectra at 300K 128
5.16 Temperature dependence of the FWHM of the YL peak ... 131
5.17 LEEBI spectra on H-doped ZnO 133
5.18 Time resolved irradiation on H-doped ZnO 134
5.19 LEEBI spectra on as-received ZnO 136
5.20 Time resolved irradiation on as-received ZnO 137
5.21 Time resolved irradiation of NBE at 10K and 300K 138
5.22 Time resolved irradiation of DLE at $10\, K$ 139
List of Tables

1.1 Comparison of different optoelectronic materials 2
2.1 Compilation of some physical properties of ZnO 7
2.2 Summary of bound exciton lines in ZnO at low temperature 22
2.3 Summary of deep level emissions in ZnO 25
3.1 ZnO single crystal substrate supplied by MTI Corporation ... 34
3.2 CASINO simulation parameters for depth approximations ... 44
4.1 Hall measurements on as-received and H-doped ZnO 59
4.2 Fit parameters for yellow and green luminescences 71
4.3 Assignment of XPS peaks 87
4.4 Summary of XANES peaks 98
5.1 Varshni fit parameters 109
5.2 Coefficients of the excitation density fits 129
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A^0X</td>
<td>Neutral acceptor bound exciton</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic force microscopy</td>
</tr>
<tr>
<td>ASF</td>
<td>Atomic sensitivity factor</td>
</tr>
<tr>
<td>BX</td>
<td>Bound exciton</td>
</tr>
<tr>
<td>C-DLTS</td>
<td>Capacitance-based deep level transient spectroscopy</td>
</tr>
<tr>
<td>CB</td>
<td>Conduction band</td>
</tr>
<tr>
<td>CCD</td>
<td>Charge-coupled device</td>
</tr>
<tr>
<td>CVD</td>
<td>Chemical vapour deposition</td>
</tr>
<tr>
<td>CL</td>
<td>Cathodoluminescence</td>
</tr>
<tr>
<td>$D^{+}X$</td>
<td>Ionised donor bound exciton</td>
</tr>
<tr>
<td>D^0X</td>
<td>Neutral donor bound exciton</td>
</tr>
<tr>
<td>DAP</td>
<td>Donor-acceptor pair</td>
</tr>
<tr>
<td>DFT</td>
<td>Density functional theory</td>
</tr>
<tr>
<td>DLE</td>
<td>Deep level emission</td>
</tr>
<tr>
<td>DLTS</td>
<td>Deep level transient spectroscopy</td>
</tr>
<tr>
<td>DRCL</td>
<td>Depth-resolved cathodoluminescence</td>
</tr>
<tr>
<td>EPR</td>
<td>Electron paramagnetic resonance</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full width at half maximum</td>
</tr>
<tr>
<td>FX</td>
<td>Free exciton</td>
</tr>
<tr>
<td>IMFP</td>
<td>Inelastic mean free path</td>
</tr>
<tr>
<td>LED</td>
<td>Light emitting diode</td>
</tr>
<tr>
<td>LO</td>
<td>Longitudinal optical</td>
</tr>
<tr>
<td>LVM</td>
<td>Local vibration mode</td>
</tr>
<tr>
<td>NBE</td>
<td>Near band edge</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>PL</td>
<td>Photoluminescence</td>
</tr>
<tr>
<td>Q-DLTS</td>
<td>Charge based deep level transient spectroscopy</td>
</tr>
<tr>
<td>sccm</td>
<td>standard cubic centimetres per minute</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SIMS</td>
<td>Secondary ion mass spectrometry</td>
</tr>
<tr>
<td>TES</td>
<td>Two-electron satellite</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra-violet</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultra-violet visible</td>
</tr>
<tr>
<td>VB</td>
<td>Valence band</td>
</tr>
<tr>
<td>XANES</td>
<td>X-ray absorption near edge spectroscopy</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray diffraction</td>
</tr>
</tbody>
</table>