The application of structural contingency theory to supply chain management – developing a strategic model for prefabricated timber systems

Matthew Ian Holmes

A thesis submitted in fulfillment of the requirement for the degree of Doctor of Philosophy

University of Technology Sydney, Australia

2013
Certificate of authorship/originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Date:
Acknowledgements

First and foremost I would like to thank my supervisors, Dr Grace Ding and Professor Keith Crews, for their time and support for my work. Their ongoing assistance and feedback throughout this research made completion of this thesis possible. Grace in particular went above and beyond the call of duty and I am extremely grateful. I would also like to thank Professor Goran Runeson for his valued feedback and input on my thesis. I would also like to pay homage to Peter Moore for the arduous task of editing the thesis in its entirety.

I would also like to thank my family and friends for their ongoing support - in particular my parents for their patience and support whilst completing this research, I would not have been able to do it without them! I would also like to thank my colleagues at university, in particular Doug Thomas and Dr Michael Er for their on-going discussions and freely giving up their time to review my work. Also a thank you to Tobias Smith for designing the virtual case study building used to test the supply chain model in this thesis.

Last but not least I would like to thank all the industry practitioners who freely contributed their time for this research. They have made this research possible and without their contributions and insight a lot of the data for this research would not have been able to be collected.
Table of Contents

LIST OF FIGURES	VIII
LIST OF TABLES	IX
LIST OF PUBLICATIONS DURING CANDIDATURE	X

ABSTRACT XI

CHAPTER 1 INTRODUCTION 1

1.1 BACKGROUND 1

1.2 PROBLEM DEFINITION 2

1.3 THE APPLICATION OF STRUCTURAL CONTINGENCY THEORY TO SUPPLY CHAIN MANAGEMENT OF PREFABRICATED TIMBER SYSTEMS 4

1.4 MOTIVATION FOR UNDERTAKING RESEARCH 5

1.5 THE RESEARCH AIMS AND OBJECTIVES 5

1.6 RESEARCH SCOPE AND FOCUS 7

1.7 RESEARCH METHOD 8

1.8 OUTLINE OF THESIS 10

CHAPTER 2 STRUCTURAL CONTINGENCY THEORY & SUPPLY CHAIN MANAGEMENT 13

2.1 INTRODUCTION 13

2.2 ORGANISATIONAL THEORIES – BACKGROUND 13

2.2.1 Classical management & human orientated schools 15

2.2.2 Decision theory & system orientated schools 16

2.3 CONTINGENCY MANAGEMENT SCHOOL 18

2.3.1 Size as a contingency 19

2.3.2 Strategy as a contingency 20

2.3.3 Environment as a contingency 21

2.4 STRUCTURAL CONTINGENCY THEORY 22

2.4.1 Limitations and application to other disciplines 24

2.5 APPLICATIONS OF STRUCTURAL CONTINGENCY THEORY TO SUPPLY CHAIN MANAGEMENT 24

2.6 CONCLUSION 26

CHAPTER 3 SUPPLY CHAIN MANAGEMENT & ENGINEERED-TO-ORDER PRODUCTS 27

3.1 INTRODUCTION 27

3.2 BACKGROUND AND KEY THEMES IN SCM 28

3.2.1 Distribution 29

3.2.2 Production 31

3.2.3 Strategic Procurement 33

3.2.4 Industrial organisational economics 35

3.3 STRATEGIC PROCUREMENT MANAGEMENT 37

3.3.1 Partnering & Strategic Alliances 39

3.3.2 Vertical Integration (VI) 42

3.4 PRODUCT TYPOLOGY AND THE SUPPLY CHAIN AND ENGINEERED TO ORDER (ETO) 43

3.4.1 SCM Strategies for ETO supply chains 46

3.5 ETO COMPANY AND SUPPLY CHAIN MODELS 48

3.5.1 ETO company models 49

3.5.2 ETO supply chain models (multiple companies) 51

3.5.3 Selection of ETO models 53

3.6 CONCLUSION 54
CHAPTER 10 SUMMARY AND CONCLUSIONS 226
10.1 INTRODUCTION 226
10.2 SUMMARY OF RESEARCH 226
10.3 REVIEW OF AIMS AND OBJECTIVES 228
 10.3.1 Investigating ‘how’ and ‘why’ the supply chain impacts on the performance of prefabricated timber systems 229
 10.3.2 Examining ‘how’ and ‘why’ the structure of organisations along the supply chain impact on performance of prefabricated timber systems 230
 10.3.3 Applying the concept of supply chain management to investigate issues of the supply chain for prefabricated timber systems 231
 10.3.4 Developing a supply chain model – the SBE model 231
 10.3.5 Verifying and testing of supply chain model 232
10.4 LIMITATIONS WITH RESEARCH & SBE MODEL 233
10.5 RECOMMENDATIONS FOR FURTHER RESEARCH 234
 10.5.1 Undertake further building case studies to determine issues along the supply chain that affect time, cost and quality 235
 10.5.2 Undertake further analysis on completed buildings in Europe using prefabricated timber systems 236
 10.5.3 Obtaining feedback from companies along the supply chain on their interest to be involved & implement the SBE model 236
 10.5.4 Implementing and testing the SBE model on real building cases 237
 10.5.5 Re-testing structural contingency theory on building case studies that have used the SBE model 238
 10.5.6 Implement & test the SBE model on other ETO products 238
 10.5.7 Compare time, cost and quality of completed timber buildings with steel and concrete alternatives 239
10.6 CONCLUSIONS 240

REFERENCES 241

APPENDICES 252
APPENDIX A – INTERVIEW CONSENT AUTHORITY FORM 252
APPENDIX B – NVIVO 9 NODE REPORT 253
APPENDIX C – INTERVIEW TRANSCRIPT EXAMPLE – R1 AUSTRALIA/NZ 255
APPENDIX D – EXAMPLE OF SEMI-STRUCTURED INTERVIEW QUESTIONS R1 AUSTRALIA/NZ 269
APPENDIX E – EXAMPLE OF SEMI-STRUCTURED INTERVIEW QUESTIONS R2 AUSTRALIA/NZ 271
APPENDIX F – VIRTUAL BUILDING CASE STUDY USED TO TEST SBE MODEL 274
List of Figures

Figure 1.1 Prefabricated timber system supply chain and scope of research ..8
Figure 2.1 Porter’s value chain ..14
Figure 2.2 Progression of management & organisation theories & schools .. 15
Figure 3.1 Six supply chain structures and processes involved ... 44
Figure 4.1 Australia Softwood Timber Harvest Forecast 2010 - 2049 .. 83
Figure 4.2 New Zealand Softwood Timber Harvest Forecast 2012-2040 .. 83
Figure 5.1 The basic pattern-matching model .. 104
Figure 5.2 Seven steps to testing theories from case studies ... 105
Figure 6.1 Supply for MTS prefabricated timber products used in residential market 113
Figure 6.2 Supply for ETO prefabricated timber products used in non-residential market 114
Figure 7.1 The Five Forces That Shape Industry Competition .. 149
Figure 7.2 Conceptual framework ... 153
Figure 7.3 Current supply chain for EXPAN products in Australia/NZ ... 157
Figure 7.4 Supply chain model for prefabricated timber systems in Australia and NZ 163
Figure 8.1 Completed prefabricated floor systems .. 170
Figure 8.2 Supply chain for prefabricated timber elements on project .. 172
Figure 8.3 UTS test floors break up – Expressed as percentage (%) of total cost 176
Figure 8.4 Theory testing from case studies ... 178
Figure 8.5 STIC office during construction ... 182
Figure 8.6 STIC office in University of Canterbury test laboratory .. 183
Figure 8.7 Supply chain for prefabricated timber elements on the project ... 183
Figure 8.8 Temporary plywood gussets (non-engineered) .. 185
Figure 8.9 Installing frames onto steel rods on concrete plinths ... 186
Figure 8.10 Breakup of STIC Office as a percentage of total costs .. 189
Figure 8.11 Percentages of Labour and Material Costs for STIC Test Building .. 191
Figure 8.12 Theory testing from case studies ... 193
Figure 8.13 NMIT project – prefabricated timber structural system installation 198
Figure 8.14 Supply chain for prefabricated timber elements on NMIT .. 199
Figure 8.15 Theory testing from case studies ... 206
Figure 9.1 Updated SBE model .. 218
Figure 9.2 Case study building - timber structural system .. 219
Figure 9.3 Case study supply chain route to project site ... 220
Figure 9.4 Fabricated wood manufacturing in Australia cost structure .. 222
List of Tables

Table 3-1 Benefits of partnering .. 41
Table 3-2 Characteristics of production management in the product taxonomy ... 45
Table 4-1 Residential construction market in Australia .. 65
Table 4-2 New housing starts in Australia (2006 – 2012) ... 65
Table 4-3 Non-residential construction market in Australia .. 67
Table 4-4 Structural costs as a % of overall structural costs .. 68
Table 4-5 LCA results from studies comparing timber (LVL), concrete and steel buildings ... 69
Table 4-6 BCA Alternate Solutions for case study buildings .. 71
Table 4-7 Construction costs associated with different multi-storey building types in NZ ... 76
Table 5-1 Relevant Situations for Different Research Strategies ... 88
Table 6-1 Round 1 Interviewee details – Australia/NZ .. 111
Table 6-2 Key theme affecting performance of prefabricated timber systems ... 112
Table 6-3 Round 1 Interviewee details – Europe .. 119
Table 6-4 Key theme affecting performance of prefabricated timber systems ... 120
Table 6-5 Key issues affecting time, cost and quality of prefabricated timber systems ... 123
Table 6-6 Round 2 Interviewee details – Australia/NZ .. 126
Table 6-7 Services offered/business models of timber companies in Australia & NZ ... 128
Table 6-8 Round 2 Interviewee details – Australia/NZ .. 131
Table 6-9 Services offered/business models of timber companies in Europe .. 132
Table 7-1 Manufacturers and fabricators of prefabricated timber systems in Australia and NZ ... 143
Table 7-2 Different technologies – suggested model boundaries and processes ... 154
Table 7-3 Supply chain performance measures (metrics) associated with model goals .. 159
Table 8-1 Interviewee details UTS floors ... 170
Table 8-2 Final report of UTS floor system ... 175
Table 8-3 Actual cost and time comparison – STIC Test building (NZD) ... 188
Table 8-4 Cost breakdown of elements in STIC Test building (NZD) ... 190
Table 8-5 Interviewee details from NMIT project .. 197
Table 8-6 Time for key prefabricated timber structural systems on the NMIT project .. 200
Table 9-1 Cross-case analysis of issues in part one and part two case studies ... 212
Table 9-2 Case study building cost comparison, traditional supply chain vs SBE model .. 221
Table 9-3 Shipping costs NZ (Marsden Point) to Australia (Sydney/ Melbourne) ... 223
List of publications during candidature

Conference papers

- Holmes, M., Crews, K. & Ding, G. 2011, 'The influence building codes and fire regulations have on multi-storey timber construction in Australia ', paper presented to the World Sustainable Building Conference Helsinki, Finland

Industry presentations

- New innovative prefabricated timber systems for multi-storey construction presentation for EG Property Group – Lunch and Learn session, August 2012, Sydney, Australia
- A case study on construction market needs and expectations for new timber based approaches, presentation for the Forest and Wood Products Australia (FWPA), MADAG group. January 2012 Melbourne, Australia

Reports

- Smith, T., Holmes, M. & Carradine, D. 2012, A Full Construction, Deconstruction and Reconstruction cycle Cost and Construction analysis of the STIC test building, Structural Timber Innovation Company (STIC), Christchurch, New Zealand

Posters

Abstract

There is currently limited market penetration for prefabricated timber structural systems in non-residential multi-storey construction in Australia and New Zealand. This limited penetration is caused in part by a fragmented supply chain. There is a need for manufacturers, fabricators and designers to align themselves to better meet the needs and expectations of the non-residential construction environment. There is limited literature available on the impact of the supply chain on other Engineered-To-Order (ETO) products and there is a gap in knowledge on how the supply chain impacts on the performance of prefabricated timber systems. The manufacturer in the prefabricated timber supply chain is the key figure preventing the entire supply chain being structured to better meet the needs of the end user. The prefabricated timber construction supply chain is not structured with the end user in mind, thus decreasing its value. The prefabricated timber supply chain in its entirety should be structured for the non-residential market to better suit the needs of the customer rather than the supplier. Structural contingency theory outlines there should be a fit between the organisational processes and the environment. It states that company models that match the environmental requirements should perform more successfully than those that do not. When applying structural contingency theory to the supply chain the individual dimensions of supply chain should be aligned in order to achieve the best performance.

Case studies interviews were undertaken with industry practitioners and senior leaders from organisations along the supply chain for prefabricated timber systems in Australia, New Zealand (NZ), United Kingdom (UK), Austria, Germany and Finland. These were undertaken to establish how and why the supply chain and organisations along it impact on the performance of prefabricated timber systems. These interviews together with current state-or-art of literature formed the basis of the preliminary supply chain model. Building case studies were then undertaken to further clarify these issues and test structural contingency theory, with the supply chain as the environment, the theory was tested using prefabricated timber systems.