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Abstract

Information integration with the aid of ontology can
roughly be divided into two levels: schema level and data
level. Most research has been focused on the schema level,
i.e., mapping/matching concepts and properties in different
ontologies with each other. However, the data level inte-
gration is equally important, especially in the decentral-
ized Semantic Web environment. Noticing that ontology
data (in the form of instances of concepts) from different
sources often have different perspectives and may overlap
with each other, we develop a matching method that utilizes
the features of ontology and employs the machine learning
approach to integrate those instances. By exploring ontol-
ogy features, this method performs better than other general
methods, which is revealed in our experiments. Through
the process that implements the matching method, ontology
data can be integrated together to offer more sophisticated
services.

1 Introduction

The Semantic Web aims at creating a platform where in-
formation has its semantics and can be understood and pro-
cessed by computers themselves with minimum human in-
terference. Ontology theory and its related technology have
been developed to help construct such a platform because
ontology promises to encode certain levels of semantics for
information and offers a set of common vocabulary for peo-
ple or computer to communicate with. An ontology can
roughly be divided into two parts. One part is schema in-
cluding concepts, properties, relations and etc and another
part is data consisting of instances of concepts, or individu-
als. Ontology matching, mostly dealing with matching con-
cepts that come from different but similar ontologies with
each other [7], is important for data integration, particularly
data transformation. however, this schema-level integra-
tion can not guarantee that data itself transformed from one
source be semantically linked to data from another source.

Data-level integration is then necessary. The need for data-
level integration can be explained as follows. Since the Se-
mantic Web is a distributed environment, we picture it as an
environment consisting of numerous information sources or
peers. For a particular domain, there could be one or more
ontologies that encode the knowledge of this domain in the
form of concepts, properties and their semantic relations.
Let’s assume only one such backbone ontology for one do-
main. This ontology is actually recognized as Terminology
Box (TBox) in description logics [1]. For such a domain on-
tology, a single data source can hardly offer entire or enough
data in the form of individuals or instances for the concepts
of the ontology. In reality, each data source provides a por-
tion of data that is aligned to a certain facet of the ontology.
Overlapping can happen when several data sources describe
the same instances (likely from different angels). While it
is easy to maintain relations of instances within each data
source, it is difficult to create/maintain these relations be-
tween them due to the decentralization and autonomy of
data sources.

We deal with this problem using ontology related tech-
niques in conjunction with machine learning methods for
instance matching. As assumed, in our method one back-
bone domain ontology is used to align data. The core task
is to integrate those data segments from different sources by
matching the instances contained in those segments. This
matching process is not trivial because information of in-
stances by different sources may not be exact for the same
real world entities, and even conflictions may occur. Addi-
tionally, instances that seems to be the same sometimes may
actually refer to different entities. So we not only use tradi-
tional string based similarity measurements but also create
novel ontology enhanced measurements to check instance
similarity. A support vector machine (SVM) [13] classifier,
trained with these similarity measures, is used to identify
instances referring to same real entities, which enables us
to create semantic relations between different data sources.
Experiments reveal that the use of ontology features in-
creases accuracy of instance matching for data integration.

The rest of the paper is organized as follows. Section
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2 discusses related works in the field of ontology-based in-
formation integration. A brief description of ontology, its
schema and data are given in Section 3 . Section 4 presents
the similarity measurements used in instance matching, and
Section 5 discusses the machine learning method for in-
stance matching by using the SVM classifier. Section 6
concludes the paper and discusses the further study.

2 Related Works

Research on ontology-based information integration
starts with the representation of ontology itself (Description
logic [1], OWL [10] and etc.). Several frameworks/systems
for ontology-based information integration have been pro-
posed (refer to [14] for a review in this area). However,
their research efforts are mainly focused on the integration
at the ontology schema level. For those who consider inte-
grating data at the ontology data level by creating/maintain
data relations, they provide general models. No specific or
automatic methods are discussed in details. In addition, to
our knowledge, the issue of decentralization that causes the
difficulty of data-level integration hasn’t been thoroughly
studied and no specific methods are proposed so far.

On the other hand, related studies on data matching, ob-
ject identification or record linkage haven been conducted
for a while in database research community. These studies
try to decide if two relational tuples from two sources re-
fer to the same real world entity [5]. Several techniques
have been employed to perform data matching in differ-
ent applications. String edit distance [8] and TF-IDF based
methods [11] are two common measurements to calculate
the similarity of data records for matching. To make the
measurements adaptive for dynamic situations, machine
learning techniques have been incorporated. Bilenko and
Mooney [3] use a stochastic model and SVM classifier to
learn string similarity measures from samples so that ac-
curacy can be improved for the given situation. Tejada et
al. [12] use a mapping-rule learner consisting of a commit-
tee of decision tree classifiers and a transformation weight
learner to help create mapping between objects from differ-
ent sources. McCallum et al [9] employ clustering-based
methods to identify duplicated reference records. Besides
calculating or learning similarity among shared attributes of
objects/records, profile-based object matching method pro-
posed by Doan et al. [6] also correlates disjoint attributes
to improve matching accuracy. However, the features of
ontology haven’t been fully explored to develop effective
methods for ontology data matching, which is one of the
key issues of ontology-based data-level integration.

3 Ontology: Schema and Data

Ontology can be expressed in description logics (DL)
[1], which are a well-known family of knowledge represen-
tation mechanism and have been studied for several years.
An ontology can be regarded as a typical DL knowledge
base that consists of two components: a “TBox” and a
“ABox”. Concepts and their relations of the ontology are
defined in the TBox as a set of asserted axioms. Individuals
(i.e., instances of concepts) are contained in the ABox.

To make ontologies easy to be published on the Web,
World Wide Web Consortium has proposed a DL-based web
ontology language: OWL [10]. It provides a set of vocabu-
lary as constructs, enabling people to define concepts, prop-
erties, individuals, and their relations. Typically, property
in OWL has two categories: data type property and object
property. Data type properties allow people to describe spe-
cific attributes of a concept, such as “age of person”, “ad-
dress of company”. Meanwhile, object properties enable
people to link two concepts with a semantic relation, like
“supervise” between “professor” and “student”.

Corresponding to the notions of TBox and ABox in DL,
ontology encoded in OWL can also be partitioned into two
parts: ontology schema and ontology data. Definitions of
concepts, properties and their relations in the owl file(s) are
treated as ontology schema. Instances of these concepts, or
individuals, are treated as ontology data.

4 Instance Matching

Instance matching tries to find out instances from differ-
ent data sources referring to the same real world entities,
enabling people to create links between the sources for the
purpose of integration. It can be performed by checking
similarities between instances. If the similarity degree of
two instances reaches a certain level, then the two instances
can be regarded as matched. There are two major methods
to compute similarity degrees between instances: string edit
distance [8] and cosine similarity based on TF-IDF [11].
Besides the two methods, we develop an extended method
for instance matching, in which ontology features are ex-
plored.

4.1 String Edit Distance and TF-IDF

String edit distance (also known as Levenshtein distance)
is used to compare string similarity at the character level. It
is defined as the minimum cost of transforming one string
into another by insertions, deletions, or substitutions. For
two strings S1 and S2 with length m and n respectively,
their string edit distance SED(S1, S2) can be computed by
the dynamic programming algorithm [8].
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Unlike string edit distance methods that compute the dis-
tances of string at character level, TF-IDF based methods
use a vector space model [2], treating strings as “bag of
tokens” and ignoring the sequential order of tokens in the
strings. An instance that consists of one or more strings
can be viewed as a virtual document containing a bag of
string tokens. If there are N instances, then the correspond-
ing N virtual documents form a virtual corpus, which may
finally have a vocabulary of n distinct tokens. A sparse
n-dimensional token vector Vi can be derived from the i-
th virtual document with each element vi,j having TF-IDF
value computed as follows:

vi,j = TFi,j × log
N

DFj
(1)

where TFi,j is the frequency of token tj in the i-th docu-
ment and DFj is the frequency of the document that con-
tains the token tj .

For two instances with S and T as their derived token
vectors respectively, the similarity between them is com-
puted as normalized dot product between their correspond-
ing token vectors.

SIM(S, T ) =

∑n
j=1 sj · tj

‖S‖ · ‖T ‖ . (2)

4.2 Extended Matching by Exploring On-
tology Features

The use of ontology enables us to enhance the methods
that only compute string similarities between ontology in-
stances. Two ontology features are used in the proposed
extended method.

The first feature is the ontology hierarchy. Given an
ontology schema, we can compute the subsumption rela-
tions between concepts in the ontology schema using a
specific reasoner. Then hierarchy of the concepts can be
constructed, which allows us to explore the “concept-level
similarity” of instances. Because ontology data are con-
tributed by different data sources separately, the quality
and the focus of completeness of the data vary. It can not
be guaranteed that the instances referring to the same real
world entity are identified exactly with the same concept
by different data sources. However, their concepts should
have some relations according to their common ontology
schema. For example, if two instances from different data
sources are identified as instances of concept “Student”
and “GradateStudent” respectively, then they are more
likely to be the same than two instances with one identi-
fied as “Student” and another as “Professor”, given
the two pairs have the same similarity degree measured by
string edit distance or TF-IDF. In addition, we are able
to define disjoint concepts in the ontology schema. If

“Student” and “Professor” (both are sub concept of
“Person”) are defined as disjoint concepts, and we assume
that each publisher of the data source is aware of this as-
sertion when contributing ontology data, then a student in-
stance could never be matched with a professor instance,
even they have very high string-based similarity.

We define “concept distance” to measure concept-level
similarity. Suppose two instances i, j are of concept A and
B respectively. This can be denoted as A(i) , B(j). Con-
cept distance between i and j, denoted by CD(i, j), is de-
fined as follows:

CD(i, j) =




0 A ≡ B,
PT (A,B) A � B or B � A,
PT (A,B) + P A �� B, B �� A,
∞ A � B =⊥ .

(3)

where PT (A, B) means the length of the path between
concept A and B according to the computed concept hier-
archical tree; P is a penalty item, always given a positive
number. In our experiments, P = 2. For ∞, we use a big
enough positive number to represent it in the implementa-
tion. Intuitively, if the concept distance of two instances are
bigger, the likeness of being same would be less.

We also examine object properties of instances to com-
pute “context similarity”. Object properties allow users to
create specific relations between instances. Usually, before
an object property is employed to link instances with se-
mantic relations, it is defined between concepts with an op-
tion to specify its cardinality constraints. In addition, an
object property can have an inverse object property, which
allows more flexible ways of describing ontology data. Us-
ing inverse object properties could be very common among
different data sources. For example, a publisher may tend
to describe publications using a property “wrttenBy” to
relate them to their author instances, while a professor may
choose to use the inverse property “write” to link his own
instance with his publications.

By reasoning on the inverse properties and checking the
cardinalities on them, we can compute the context simi-
larity between instances. For instance a and b, their con-
text similarity in terms of the object property r, denoted by
CSr(a, b), is computed as follows:

CSr(a, b) =

∑
∀m,r(a,m)

∑
∀n,r(b,n) SIM(m, n)

|{m : r(a, m)}| × |{n : r(b, n)}| (4)

5 Learning Instance Matching

We employ a machine learning approach to integrate
these different similarity measurements for instance match-
ing. We create a set of matched instance pairs with positive
labels and a set of non-matched instance pairs with negative
labels. A binary classifier is trained by using different simi-
larity measurements as features from the two pair sets. This
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binary classifier then acts as a paring function [4] h(a, b),
taking a pair of instances a, b as input and generating de-
cision values as output. If it generates positive values, the
two input instances are regarded as matched; otherwise, un-
matched.

Based on the discussion in [3], we choose support vector
machine (SVM) [13] as the classification model. SVM is
able to learn from small training sets of high-dimensional
data with satisfactory precision. Therefore, we create a fea-
ture vector of an instance pair using the separate property
similarity measures for SED and SIM instead of their
overall similarity measures. For a pair of instance a and
instance b, its feature vector is composed as follows:

p(a, b) = [SIMd1(a, b), . . . , SIMdm(a, b),
SEDd1(a, b), . . . , SEDdm(a, b),
CSo1(a, b), . . . , CSon(a, b),
CD(a, b)]. (5)

Although using separate property features increases the
dimensions of the feature vectors greatly, the learned classi-
fier can implicitly reflect the weight of different properties
based on the training set, relying on more informative prop-
erties to make classification decisions.

Experiments have been conducted to test the proposed
method for learning instance matching. 453 real word in-
stances (aligned with a backbone ontology schema describ-
ing the university domain) were collected from different
data sources. The results in the form of precision and recall
(illustrated in Table 1) show that performance of instance
matching was improved by incorporating ontology features
(due to limited space, details of experiments are omitted in
this paper).

Table 1. Precision/recall of different methods
Recall Level 0.2 0.4 0.6 0.8

Precision
SIM 0.883 0.905 0.930 0.927
SED 0.939 0.966 0.970 0.453

+ONTO 0.959 0.978 0.984 0.968

6 Conclusions and Further study

Ontology-based information integration involves two
levels: schema level and data level. The data level integra-
tion is very necessary in the real world applications. This
study proposes a method to integrate ontology data from
different sources by learning to match instances of concepts
contained in those data. Experiments confirm that by incor-
porating ontology features, performance of instance match-
ing can be improved.

By the instance matching process, ontology data can
be integrated together to offer more sophisticated services.
Therefore, the future work of this study includes the design
of a system that uses this matching process to integrate on-
tology data and the design of query or reasoning services
that take advantage of the integrated data. It is believed
that services provided by this system will be more powerful
since it can access multiple sources via the semantic rela-
tions created by instance matching.
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