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Abstract--An image file contains a large amount of data. Image
compression changes a large image file into a much smaller file.
Smaller files require less memory to store, less computer network
bandwidth to transfer on the Internet, less time for a computer to
process. Image compression becomes important and necessary due
to limited computer network bandwidth, computer processor
speed and computer storage size. In this paper, we represent an
image on our recently created image structure, called Spiral
Architecture. We propose algorithms for image compression based
on important features of Spiral Architecture: locality and
uniformity. Locality is a consequence of a special scheme for
numbering image pixels which guarantees physical proximity of
the pixels with neighbouring addresses. Uniformity refers to
uniformly separating image into similar sub-images.

Index Terms-Image Compression, Spiral Architecture, image
partitioning

I. INTRODUCTION

NEEDLESS to say, visual information is of vital importance if
human beings are to perceive, recognize and understand

the surrounding world. With the tremendous progress that has
been made in computer power, the corresponding growth in the
multimedia market and the advent of the World Wide Web, it is
becoming more than ever possible for image to be widely
utilized in our daily life. In general, an image file contains much
more data than a text file. An image with large amounts of data
require much memory to store, takes longer to transfer, and is
difficult to process. For example, a black and white image with
256 x 256 pixels requests about 64 Kilobytes of memory space
and more than 6 seconds to download using a Dialup Internet
connection. As a consequence, image compression becomes
necessary due to the limited communication bandwidth, CPU
(for computer Central Processing Unit) speed and storage size.
Image compression has been pushed to the forefront in the
image processing field.

The research work to be presented in this paper is based on a
novel data structure, Spiral Architecture [I], which is inspired
from anatomical considerations of the primate's vision [2]. On
Spiral Architecture, an image is a collection of hexagonal
picture elements [3] as shown in Fig. I. In the case of human
eye, these elements (hexagons) would represent the relative
position of the rods and cones on the retina. Each pixel on Spiral
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Architecture is identified by a designated posiuve number,
called Spiral Address. The numbered hexagons form the cluster
of size 7°. The hexagons tile the plane in a recursive modular
manner along the spiral direction as shown in Fig. I. Any
hexagonal pixel has only six neighboring pixels which have the
same distance to the centre hexagon of the seven-hexagon unit
of vision.

Fig. I. A collection of 343 hexagonal pixels

In our preliminary research on image compression based on
Spiral Architecture [4], we focused on the properties of the
hexagonal pixel address labeling scheme. The property of
interest was the physical proximity of the hexagonal pixels with
neighboring addresses. Rectangular systems may, for instance,
have vertical physically adjacent pixels but the address distance
is the length of a scan line. It was demonstrated that in the Spiral
Architecture, unlike the rectangular system, neighboring pixels,
for example, the pixels with addresses 0, I, 2, 3, 4, 5 and 6, have
the similar intensities.

The research reported in our most recently written paper [5]
uses the properties of uniform image partitioning, which is a
novel image operation developed recently based on Spiral
Architecture. On Spiral Architecture, an image can be
partitioned into a few sub-images each of which is a scaled
down near copy of the original image. Namely, each sub-image
holds all the representative intensity information contained in
the original. Using such properties, in our work, the points in the
original image first are re-allocated into a few groups,
sub-images, rather than being unwound in the spiral address
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order to be another one-dimensional data set as shown in [4].
The similar pixel intensity is found between the corresponding
points in the different sub-images. Then, it is possible to choose
one sub-image as a reference image and work out the intensity
difference between the reference image and other sub-images
such that the original image will be stored by recording only the
reference sub-image and the intensity difference information
thus giving opportunities for better image compression. We
have observed that when the partition number is smaller, the
shorter bits account for the higher percentage. As the number of
partition increase, the longer bits take over the shorter bits to
account for the higher percentage. In fact, uniform image
partitioning on Spiral Architecture is a unique re-sampling
procedure. After such partitioning all the points in the original
image are moved to the unique new positions. Thus, the
corresponding points in each sub-image, which are on the same
positions relative to central point of each sub-image, were close
to each other in the original image. But as the number of
partition increases, the original distance between these
corresponding points in the input image increases such that the
difference of the grey scale becomes stronger. Namely, we need
more bits to represent such grey scale difference information.

The organization of this paper is as follows. Section II
overview the image compression methods. Spiral Architecture
is reviewed in Section III. We present image compression
schemes based on Spiral Architecture in Section IV. We
conclude in Section V.

II. OVERVIEW OF IMAGE COMPRESSION SCHEMES

There have been a lot of image compression methods
developed in the previous few decades. Among them, some has
been perfectly matured and some are still under development.

According to whether the compressed file preserves every
detail perfectly or allows some loss of data, image compression
methods fall into two categories: lossless compression and lossy
compression. We list below the popular image compression
techniques which will be adapted in this paper to work with
Spiral Architecture (SA).

Lossless methods
The simplest method in this category is called Run-Length

Coding (RLC) [6). RLC had been in use since the earliest days
of information theory. It takes advantage ofrepetitive data. The
term run is used to indicate the repetition of a symbol, and the
term run-length is used to represent the number of repeated
symbols, that is, the number of consecutive symbol of the same
value. Instead of encoding the consecutive symbols
individually, it is obvious that encoding the run and the
run-length is more efficient.

The second method was first introduced by David Huffman
[7) and later referred as Huffman Coding. Huffman codes are
created by analyzing the data set and assigning short bit stream
to the datum (or pixel value) occurring most frequently. This
algorithm attempts to create codes that minimize the average
number of bits per image pixel. The beauty of Huffman Coding
is the use of variable length codes. These codes have various
lengths: the more frequently the value appears in the image, the
shorter code will be assigned to represent it. As mentioned in

[8), for complex image, Huffman coding alone will typically
reduce the file size by 10% to 50%, which are equivalent to
compression ratio 10:9 to 2: 1. The compression ratio can be
improved to 3: I by preprocessing for irrelevant information
removal. When Huffman coding is used for lPEG encoding, it is
common to break an image into 8 x 8 blocks for encoding [9).

One of the most common compression algorithms used in
computer images is Lemple-Ziv- Welch Coding (LZW) [10). This
lossless method can be found in several image file format, such
as GIF, TIFF and overall PDF format. The LZW coding
algorithm works by encoding strings of data. Each string of data
is a sequence of grey values of contiguous pixels from an image.
First of all, it produces an initial dictionary of some original
patterns (or strings) with indexes. Then it starts to read the input
pixel grey value from the beginning of an image and appends the
grey values of continuous pixels to the string until it cannot find
a match in the dictionary. The string consisting of the matched
string and the next pixel value appended is recorded as a new
pattern and saved in the dictionary. The index of the matched
pattern (string) is encoded and the value of its succeeding pixel
is recorded as the initial value for next pattern (string). The
encoding process continues in this manner until comes to the
end of input image. With LZW compression method, if the
de-compression process uses the same initial dictionary as that
for image compression, the dictionary itself is not necessary to
be saved with the compressed file because it can be re-generated
during the de-compression.

Another lossless compression method is called Arithmetic
Coding [11, 12). This method divides the original image into
smaller sub-images and compresses each block with specific
code word, which is normally a single floating point number
between 0 and 1. Arithmetic Coding is a two-pass algorithm.
The first pass called modeling computes the data frequency and
generates a probability table. Based on this table, the more
frequently occurring pixel values are assigned wider ranges in
the interval and are requiring fewer bits to represent them. On
the other hand, the less likely characters are assigned more
narrow ranges and are requiring more bits. The second pass
called coding does the actual compression.

Lossy methods
A simple method used in lossy image compression, called

Gray-level Run-Length Coding [13), inherits the simple
Run-Length Coding (RLC) for loseless image compression. It
uses a smaller set of gray levels to represent the original image
and applies the standard RLC technique. The 'Dynamic
Window-Based RLC' is one of the most popular RLCs in
practice. This algorithm relaxes the criterion of the runs being
the same value and allows the runs to fall within a gray-level
range, called the dynamic window range. This range is dynamic
because it starts out larger than the actual gray-level window
range, and maximum and minimum values are narrowed down
to the actual range as each pixel value is encountered. Similar to
the simple RLC, the image is encoded with two values, one for
the run-length and the other for the approximate gray-level
value of the run. This approximate value can be the average of
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all the gray-level values in the run, or a value computed using a
more complex method.

The Block Truncation Coding (BTC) [14. 15] method is
popular for its low computational complexity and the
preservation of edge and single pixel resolution. This method
works by dividing image into small sub-images and then
reducing the number of gray levels within each block. A
quantizer that adapts to the original image statistics achieves
this reduction. The levels for the quantizer are chosen to
minimize a specified error criterion, and then all the pixel values
within each sub-image are mapped to the quantized levels.
There are many different BTC algorithms that have been
defined using various types of quantization and error criteria, as
well as various pre-processing and post-processing methods.
Generally speaking, "the more complicated algorithms provide
better results but with a corresponding tradeoff of increasing
computation time" [8].

The third lossy compression method is Vector Quantization
[16,17]. Here 'Quantization' means the process of representing
a large, possibly infinite, set of values with a much smaller set.
Generally, there are two types of quantization. One of these
types is scalar quantization, which uses a single level value to
represent a pixel in a sub-image as we discussed previously in
the previous paragraph for BTC. The other type of vector
quantization is vector quantization, which applies to every pixel
on the entire 'sub-image'. Each vector corresponds to a
sub-image, or a block. Vector Quantization is done by utilizing
a codebook, which stores a fixed set of vectors, and then
encodes the sub-image by using the index into the codebook.
The toughest part during the process of vector quantization is to
generate the codebook. In practice, the codebook is typically
fulfilled by a training algorithm that finds a set of vectors that
best represents the blocks in the images. The set of vectors is
determined by optimizing some error criteria, where the error is
defined as the sum of difference between the original
sub-images and the resulting decompressed sub-images [8].
Some popular methods using vector quantization can be found
in [16] and [18].

Instead of encoding a signal directly, Differential Predictive
Coding [19] technique codes the difference between the signal
itself and its prediction. That is to say, this method works by
predicting the next pixel value based on the previous values and
encoding the difference between the predicted value and the
actual value. This technique takes advantage of the fact that
adjacent pixels are highly correlated, which means that the
difference between adjacent pixels is typically small. Because
the difference is small, it will take only a small number of bits to
represent. The use of a predictor allows us to further reduce the
amount of information to be encoded. By using a simple
prediction equation, we can estimate the next pixel value and
then encode only the difference between the estimate and the
actual value. For a higher compression ratio, a method called
Differential Pulse Code Modulation (DPCM) can be applied. In
DPCM coding, the difference signal is quantized and codeword
is assigned to the quantized difference. There are two typical

predictors classified in DPCM coding according to their
dimensionality for still image compression. They are I-D and
2-D predictors. DPCM with a 2-D predictor demonstrates better
performance than a I-D predictor since it utilizes more spatial
correlation. A 2-D predictor uses not only horizontal correlation
but also vertical correlation.

Transform Coding [20,21] is a form of block coding done in
the transform domain. The image is divided into blocks, or
sub-images, and the transform is calculated for each block. Any
transform such as linear transform can be used. It has been
claimed that the discrete cosine transform (DCT) is optimal for
most images [20]. After the transform is found, the transform
coefficients are quantized and coded. The primary reason that
this method is effective is because the transform of images
efficiently puts most of the information into relatively few
coefficients so that many of the high-frequency coefficients can
be quantized to 0 (or eliminated completely). This type of
transform is really just a special type of mapping that uses
spatial frequency concepts as a basis for the mapping. For image
compression, whole idea of mapping the original data into
another mathematical space is to pack the information into as
few coefficients as possible. An internationally recognized
standard, lPEG standard, uses DCT as its basic coding scheme.
This is the baseline of lPEG and is sufficient for many
applications [22].

Hybrid methods
In image compression field, it is not uncommon to implement

more than one method to achieve a better result. Hybrid
Methods, as its name implies, use both the spatial domain and
the transform domain. Model-based image compression, such as
Object-Based and Fractals methods, can be considered as a
hybrid method. and the transform used may be an object-based
transform rather than a block-based one. Model-based
compression works by finding models for objects within the
image and using model parameters for the compressed file. The
objects are often defined by lines or shapes (boundaries).

Advantages and disadvantages of current techniques
RLC scheme, the same as Gray-Level Run-Length Coding, is

simple and fast but the compression efficiency depends on the
type of image data encoded. A black-and-white image or images
with solid backgrounds, like cartoons, can be encoded very
well, due to the large amount of contiguous data that is all the
same color. However, for those natural images or images
without many repetitive symbols, RLC may even enlarge the file
size.

The most outstanding character of Huffman Coding is the use
of variable length code. The determination of code length
depends on the analysis of data occurrence frequency.
Consequently, Huffman Coding needs more time to proceed.
The use of variable length code also means the process is not on
the 'byte' boundary any more and any corrupted bit during
compression may cause a fatal failure over the whole file.

When applying LZW, the codeword always uses more bits
than the original data so that any single encoded value will
expand the data size. This is always seen in the early stages of
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compressing a data set with LZW. However, LZW compresses
repetitive sequences of data well. Especially after a reasonable
string table is built, compression improves dramatically.
Compared with other image compression methods, LZW has
the following advantages: it requires no pre-processing; the
string table is built on the fly during compression and
decompression, and it not necessary to be stored with the
compressed data; the computation is reasonably fast and easy
for both compression and decompression.

Arithmetic Coding requires the possibility of each value
within the sub-image to be known exactly by pre-processing the
image with a modeler. In Arithmetic Coding, the modeler and
the coder can operate independently, which permits any degree
of complexity in the modeler without any change to the coder.
Each code is a single floating number, which may make the
compression slower due to the complexity of computation.

Block Truncation Coding (BTC), Vector Quantization (VQ)
and Transform Coding have the same first step: to divide the
original image into smaller sub-images. Any of the VQ
algorithms is computationally intensive during the encoding
stage because of the creation of codebook. But the decoding is
relatively quicker by merely pulling vectors out of the codebook
and re-building the image. Therefore VQ is particularly suitable
for some application that users do not care too much about the
encoding process but do expect to view images quickly.

Differential Predictive Coding (DPC) has two processes: a
predictor is first designed to predict the difference between two
neighboring pixel values; then, a quantizer is optimized for the
distribution of signal difference. It codes the difference rather
than the pixel value itself, which makes DPC quite efficient.

Hybrid Method is simple a combination of any other
compression methods. The compressed image via a method can
be the input data for another compression process with different
method. Based on the specific requirements, users can select
any combination of compression methods to achieve the best
result.

We summarize the various image compression schemes in
Table I attached.

III. SPIRAL ARCHITECTURE

On Spiral Architecture, each (hexagonal) pixel is assigned a
number called 'Spiral Address'. An example of a cluster with
size of 72 and the corresponding addresses are shown in Fig. 2.
The importance of the hexagonal representation is that it
possesses special computational features that are pertinent to the
vision process.

On Spiral Architecture, two algebraic operations have been
defined, that are Spiral Addition and Spiral Multiplication [23]
based on Spiral addresses. These two operations form two
image transformations, which are translation of image and
scaling rotation of image.

Fig. 2. A collection of 49 hexagonal pixels with assigned Spiral Addresses

In this paper, we will use Spiral Multiplication to achieve
uniform image separation. Spiral Architecture improves image
partitioning performance in terms of accuracy and speed. The
operation of a Spiral Multiplication is fast as it can be converted
to an addition operation as described in [23]. Spiral
Multiplication improves the accuracy of image processing by
the fact that it separates image into sub-images, of which each is
similar to the original image. Fig. 3 demonstrates the result of
separating (or partitioning) an image into seven sub-images
using a Spiral Multiplication.

a) Original image

b) Result of image separation
Fig. 3. !mage partition on Spiral Architecture
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IV. IMAGE COMPRESSION ON SPIRAL ARCHITECTURE

In this section, we propose image compression schemes
based on one-dimensional spiral addressing and the uniform
image separation on Spiral Architecture (SA). All lossless and
lossy image compression methods described in Section II will
be examined based on SA. Then, hybrid methods (algorithms)
on SA will be proposed for both lossless and lossy image
compression.

Lossless image compression
Based on our research done in paper [4], the Spiral

Architecture has better locality, i.e., adjacent pixels having
closer grey values. It can be expected that RLC will work better
along the spiral addressing direction as the length of each run is
expected to be longer in general.

We apply Huffman coding to images represented on SA.
Rather than breaking an image into 8 x 8 blocks, we break each
image into blocks of 72 = 49 hexagonal pixels with continuous
spiral addresses.

As mentioned above, image separation on SA creates
sub-images which are very similar. It is expected to see that the
patterns in each sub-image are close to those in other
sub-images. Hence, LZW compression method will work well
after image separation on SA.

Note that Arithmetic Coding requires image separation. On
the other hand, image separation can be easily done on SA for as
many similar sub-images as required. Hence, it is not doubtful
that SA is a perfect structure for arithmetic coding.

Lossy image compression
Similar to RLC for lossless compression, Gray-level

Run-Length Coding will receive its better compression ratio
when it applies to SA.

When working with BTC, SA will make it easier to determine
the quantizer levels in each sub-image because its similarity to
the original image.

The uniform image separation on SA also helps the training
process for vector quantization of a sub-image. The reason is
that the similar sub-images should also produce similar vectors
representing the sub-images. A neural network can be applied
for the training process.

Because the difference between any two sub-images
produced by an image separation on SA is very small,
Differential Predictive Coding will well fit into SA.

In a most recently published paper [21], a simple transform of
polynomial axy+bx+cy+d was introduced. This can be applied
to Transform Coding in Spiral Architecture after uniform image
separation.

Hybrid image compression
We list some possible hybrid image compression methods on

SA as follows.
Step 1. Uniformly separate an image on Spiral Architecture

into similar blocks of 49 pixels.
Step 2. Use either RLC, Huffman Coding, Arithmetric

Coding or BTC for coding an image block.
Step 3. Use either LZW, Differential Predictive Coding or

Transform Coding to encode other image blocks.

Many more hybrid compression methods can be created
based on the features of Spiral Architecture.

V. CONCLUSION

To answer how SA can improve image compression, this
paper has presented possible approaches to image compression
on Spiral Architecture. The development of a IPEG-like
compression standard (or format) based on Spiral Architecture
will be sought after the implementation of the image
compression schemes discussed in this paper. Video (moving)
image compression based on Spiral Architecture is another
direction of our future work.
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